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Message from the  
ICAC ’14 Program Co-Chairs

Welcome to Philadelphia, and to ICAC 2014, the 11th International Conference on Autonomic Computing! Since 
its inception, ICAC has attracted top quality papers in all areas of autonomic computing and continues to catalyze 
attention of researchers in this important area. This year’s program includes a set of excellent contributions covering 
topics in model-driven management and self-adaptation, cloud-resource management, network and system manage-
ment, scheduling and pricing, resource and workload management, and energy management in data centers. 

As in past editions of the conference, the paper selection process was highly competitive. A total of 53 papers were 
submitted. All submissions were evaluated through a double-blind process. Papers were allocated four  reviewers 
from program committee (PC) members not in conflict of interest with the authors. In some cases, additional 
reviews from experts outside the PC were solicited. The paper selection process culminated in the virtual PC meet-
ing on April 7, 2014. Twelve full papers were selected for inclusion in the final program, leading to a competitive 
acceptance rate of 23%. Additionally, nine thought-provoking submissions were accepted as short papers, and two 
submissions were forwarded to the MDBS and SCPS special tracks. Following this selection process, a best paper 
award has been awarded to the best-ranked paper, namely “Self-Tuning Intel Transactional Synchronization Exten-
sions” co-authored by Nuno Diegues and Paolo Romano; we congratulate the authors for their achievement.

The two special tracks, MDBS and SCPS, received in total 13 papers, 4 of which were accepted to each of the 
tracks, adding two additional sessions to the conference program. We also attempted to include both papers with 
 mature results and thorough evaluations, as well as early-stage papers that propose new concepts/problems or reach 
into new areas. In addition, ICAC ’14 will offer daily keynote speeches from Lucy Cherkasova, Ion Stoica, and 
 Yuanyuan Zhou, a panel on Big Data Systems, and a joint poster session and reception with the USENIX Annual 
Technical Conference.

We are extremely grateful to the PC members and external reviewers for providing timely and thorough reviews, for 
exchanging a large volume of comments in the active online discussions and online PC meeting, and for their help in 
the shepherding process. We would also like to thank all the authors who submitted papers. Their efforts and enthu-
siasm are the true driving forces of ICAC.

We are very grateful to USENIX for sponsoring ICAC and hosting it as part of the Federated Conferences Week this 
year. The USENIX staff assisted us in a variety of tasks, including configuring and using the conference  submission 
site, preparing the proceedings, advertising the conference, and last but not least, hosting the conference. Special 
thanks go to Xiaoyun Zhu, the general chair, and Jeff Kephart, the chair of the ICAC steering committee, for their 
constant help and support throughout the preparation of this edition of ICAC; the special track chairs for organizing 
MDBS and SCPS; to Martina Maggio and Ming Zhao for their activity as publicity chairs; to Christopher Stewart for 
his continuous efforts in organizing the joint poster session with ATC; and to Diwakar Krishnamurthy for selecting  
an excellent tutorial program.

We hope that you will find this year’s program stimulating and highly innovative. Enjoy!

Giuliano Casale, Imperial College London 
Xiaohui (Helen) Gu, North Carolina State University 
ICAC ’14 Program Co-Chairs
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Storage Workload Isolation via Tier Warming: How Models Can Help

Ji Xue1, Feng Yan1, Alma Riska2, and Evgenia Smirni1

1College of William and Mary, Williamsburg, VA, USA, xuejimic,fyan,esmirni@cs.wm.edu
2EMC Corporation, Cambridge, MA, USA, alma.riska@emc.com

Abstract
Storage systems are often deployed in a tiered form to
enable high performance and availability. These tiers
utilize all possible volatile and non-volatile storage tech-
nologies, including DRAM, SSD, and HDD. The trade-
offs among their cost, features, and capabilities can make
their effective integration into a single storage entity
complex. Here, we propose an autonomic technique
that learns user traffic patterns in a storage system over
long time-scales to optimize user performance but also
volume of completed system work. Our purpose is to
multiplex as best as possible user workload with stor-
age system features (e.g., voluminous internal system
work) such that the latter is not starved but rather com-
pleted with minimal impact on user performance. Key
to achieving the above is to use an autonomic learning
engine to predict when the user workload intensity in-
creases/decreases and then proactively stop/start bulky
internal system work. Being proactive allows the sys-
tem to effectively bring into the fast tier the active user
working set just-in-time and right before it is needed
most, i.e., when user traffic suddenly peaks. We illus-
trate the effectiveness of this mechanism by using both
trace driven simulations from production systems as well
experiments on a real testbed.

1 Introduction

As data storage technologies such as flash make their
way into either enterprise storage [18, 11] or cloud
storage [1], it is essential to integrate them with ex-
isting and (usually) slower, cheaper, and even vintage
ones, e.g., hard disk storage, in order to strike a good
balance among overall performance, availability, and
cost [10, 16]. Following tradition in costs across the
data path of a computer system, the fastest data tier, e.g.,
DRAM, is the most expensive, while the slowest tier,
e.g., hard disk storage, is the least expensive per unit of
data stored. In high-performing enterprise storage sys-
tems, it is common to find large DRAM caches, reach-
ing as much as hundreds of GByte capacity, SSD caches

reaching tens of TBs capacity, and a variety of high-
end HDDs (15KRPM SAS HDDs) and low-end HDDs
(7200RPM Nearline-SAS HDDs), all together exceeding
the PByte-range of storage capacity. Given such a struc-
ture in the IO hierarchy, the expectation is that the bulk
of user workload is served by the fast tiers, while slow
tiers are used to persistently store the majority of data as
well as improve on storage capacity and data reliability.
The challenge lies in determining what portion of the vo-
luminous data set to bring up to the smaller fast tiers and
when to do that such that the benefits with regard to user
performance and overall system operation are the high-
est.

Storage systems, both enterprise ones and those sup-
porting web services, often receive the bulk of user traf-
fic during business hours on weekdays. In addition, the
storage system generates itself a considerable amount of
internal traffic as a result of complex features that aim
to enhance performance, reliability, availability, and in-
tegrity. Such system internal work includes, but is not
limited to, making additional copies of the data off-site
for added disaster recovery capabilities, snapshooting,
deduplication, and policy compliance in a multi-tenant
system. Recently, other sources of work have emerged
in scaled-out storage systems such as virtual data ana-
lytics clusters that are brought up on demand to conduct
analysis on large data sets without moving the data to a
separate compute cluster, requiring effective interleaving
of user and system workloads. In Figure 1, we show the
average arrival intensity of user and system internal work
over three days in a single data node of a large distributed
storage cluster supporting a web application. During the
day, the data node receives user requests that peak in in-
tensity at around noon. During night, at regular intervals,
the system generates its own work, which clearly is bulky
and would have impacted user performance significantly
if not scheduled during off-peak hours.

Because the system work shown in Figure 1 is the re-
sult of several features, it greatly surpasses in intensity
all other user traffic. More importantly, its working set is
(usually) much larger than the user working set. As a re-
sult, in a well balanced multi-tiered system, system work
could negatively impact data placement policies which



2 11th International Conference on Autonomic Computing USENIX Association

0 6 12 18 24 30 36 42 48 54 60 66 72
101

102

103

104

Time: Hour

Ar
riv

al
s/

m
in

User Requests
System Requests

Figure 1: User and system arrival intensity (number of
arrivals per minute) over a three day period.

ensure that the most active working set is in the highest
performing tier. To schedule system work at regular in-
tervals (e.g., at around midnight, as in Figure 1) does not
necessarily guarantee good user performance (note that
the figure illustrates only the arrival intensity, not work
that needs to be done). Here, we contend that it is neces-
sary to pair scheduling of system work with other system
metrics measuring user activity and workload, such as
utilization due to user-traffic, user traffic intensity, and
fast storage tier hit rates, in order to improve overall sys-
tem usage while ensuring that system work completes
timely.

A critical difference between system internal work and
user traffic is that the corresponding working sets are
vastly different in both footprint and location within the
storage system. Generally, the system working set is
much larger than the user working set. As a result, in
a multi-tiered storage system with tiers having different
capacities and performance characteristics, standard ef-
forts to isolate system and user workload in-time may
still result in poor user performance. As the system tran-
sitions between system work to user work, high perform-
ing tiers could experience high user miss rates. Warming
up the faster tier with the user working set is not instan-
taneous [25] and unless done proactively, performance
degradation of user traffic can become unsurmountable.

In this paper, we propose an autonomic technique that
learns the intensity patterns of user work within a proba-
bilistic model over long time-scales, i.e., days and hours.
The prediction of user intensity is paired with the knowl-
edge of tier capacity, performance differences across
tiers, and other metrics such as active user data set to
derive a schedule for system work, i.e., when to start and
stop it. Predicting user intensity patterns at large time
scales can support

• proactively stopping system work before the user in-
tensity increases and warming up the fast tier with
the user working set,

• scheduling system work according to predicted user
activity patterns such that large amounts of system
work is completed with minimal impact on user per-
formance, and

• avoiding instability due to short-lived, low user in-
tensity that may erroneously initiate voluminous

system work if short time-scale prediction or if re-
active (i.e., feedback-based) scheduling is used.

Our methodology is light-weight and robust. Its benefits
are evaluated via trace-driven simulation and actual ex-
periments on a real test-bed. We do comparisons against
feedback-based techniques that are usually applied in
industry. Our experiments indicate that the larger the
fast tiers and the larger the active user working set, the
higher the benefits of having predictive models to sched-
ule bulky system work.

This paper is organized as follows. Section 2 presents
a workload characterization of user workload in a stor-
age system supporting web data services. In Section 3,
we present our predictive algorithm. Section 4 presents
experiments on a real system and trace driven simula-
tions that demonstrate the effectiveness of our technique.
Section 5 discusses related work. We conclude in Sec-
tion 6.

2 Trace Overview and Motivation

In this section, we present a set of production traces that
describe how a storage system is utilized by a large scale
web application. The traces contain the user IO inten-
sity (in IO requests per second) in a scale-out storage
back-end of a mid-size web service provider1. The web
service has multiple locations that serve the user work-
load based on geography. As a result, in each location
the workload intensity follows well the day/night pat-
tern (working hours vs. non-working hours) as well as
weekday/weekend patterns. Here we focus on the traf-
fic received by a single data node. However, because of
the load balancing in the storage system, the behavior
observed in a single node persists across all other data
nodes in the cluster.

Figures 2 and 3 show the average arrival intensity of
user requests per minute averaged over 10 minutes and
1 hour intervals for 10 days and 35 days periods, re-
spectively. There is a clear daily and weekly pattern in
the workload intensity. This is expected since nowadays
large scale web services, although available 24/7 world-
wide, are deployed in geographically distributed data en-
ters, resulting in clear day-and-night patterns in each of
the available locations. Similar patterns are seen also
in enterprise storage, which although different in nature
from web storage, serves heavy traffic during business
hours and much less during night hours. These patterns
suggest opportunities for predicting user traffic intensity.
The ability to predict these drastic changes can be used to
prepare the system proactively for the heavy user work-
load, for example by moving the active user data set to
the fast tier before it starts being accessed. Effective pre-
diction should also ensure that the system schedules long
and resource demanding internal work only when it is
safely predicted that the system is to enter a long period
of low utilization.

1Due of confidentiality agreements, the traces or provider details
can not be made publicly available.
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Figure 2: IO request arrival intensity (number of arrivals per 10 minutes) over 10 days.
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Figure 3: IO request arrival intensity (number of arrivals per hour) over 35 days.

We plot the empirical density of the user arrival rate
at a granularity of a minute in Figure 4 for all 35 days.
The graph illustrates a clear bi-modal pattern, which con-
firms that the arrival intensity changes between two gen-
eral states that we roughly classify as high/low. In the
next section, we show how we incorporate the stochas-
tic characteristics of the user arrivals to derive a model
that predicts the duration of each high and low intensity
period.
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Figure 4: Empirical density of the arrival rate of user
requests.

Prediction of low/high intensity periods provides the
system with the information it needs to intelligently in-
terleave user workload with voluminous system internal
work. For example, it can proactively stop the system
work and warm up the fast tier storage just before the
high user intensity period so that the majority of user
traffic is served by the fast tier rather than the slow tier.
As discussed later in the paper, we do not determine here

what data to bring but rather when to bring them in the
fast tier. Determining the user working set (i.e., what to
bring) is outside the scope of this paper.
To illustrate the benefits of predicting arrivals of high

and low intensity periods and motivate our work, we
evaluate three scenarios on handling system work in a
data node:

- user only: no system work is interleaved with user
traffic,

- reactive: system work runs only during low user uti-
lization periods; when user high utilization is detected,
the system work is stopped and reactively the fast tier
cache is warmed up with active user data,

- proactive with future knowledge: system work runs
only during low user utilization periods; since we know
a priori when user high utilization starts, we stop system
work early enough to allow for the fast tier cache to be
warmed up with active user data right before the surge of
user work.

Figure 5 illustrates the CDF of user response time
when a single day of trace data (see Figure 3) is used
to drive a simulation of the above three scenarios. For
the two policies that allow system work, the simulation
starts and stops it at the same time, with the purpose of
evaluating only the benefit of proactive vs. reactive fast
tier warm up (which takes the same amount of time in
both scenarios). Clearly, with a reactive warm up a large
portion of user requests experience long response time by
being served from the slow tier of the system. Both the
body and the tail of the user response time distribution
benefit greatly by a proactive fast tier warm up, which
can be possible only if a model enables prediction of ar-
rival of high user utilization periods.
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Figure 5: CDFs of user response time of day 20 for dif-
ferent algorithms.

3 Model-based Storage Tiering

The data patterns described in Section 2 (see Figures 2
and 3) favor prediction. User intensities go through a
clear high/low pattern which if captured accurately can
be used to intelligently interleave workloads with widely
different demands. Indeed, this is the current state of the
practice in most data centers [6], a practice that is also
illustrated in Figure 1. Yet, rather than schedule system
work conservatively as in Figure 1, we aim to develop a
model that would allow for better overall system resource
utilization by completing aggressively system work and
achieve better performance isolation across user and sys-
tem workloads.
We first present a Markovian-based model that cap-

tures the duration of low/high traffic intensities in user
arrivals across different time scales (i.e., daily distin-
guishing between weekday/weekend and hourly distin-
guishing between day/night activity). We also develop a
model that captures the changes in user performance as a
function of fast tier hit rate. Finally, we apply these mod-
els to predict when such periods of high/low intensities
arrive to schedule system work and cache warm up with
the goal of optimizing performance.

3.1 Traffic Intensity Prediction Model
The preliminary workload analysis in Section 2 shows
that there are repeatable low/high daily intensity patterns.
We refer to the state with high average arrival intensity
as the High state and the lower one as the Low state. The
threshold for distinguishing the High and Low states can
be discovered via statistical analysis. Alternatively, the
threshold could be user-defined. We need to determine
the following: how long does the user traffic resides in
each state, i.e., the duration of each state and the condi-
tional probability that there is a transition from one state
to the next. The analysis of Section 2 also shows that
weekend High state intensity is different from weekday
High state intensity. We aim to capture these patterns in
order to distinguish days with overall less intensity from
days of higher intensity.

To capture this effect, we use a hierarchical model that
captures different types or classes of high/low intensities.
The difference between these is that the average intensity
for the High or Low states may be different as well as the
duration of each state. Note that in addition to transitions
within the High/Low states within each class, there are
probabilistic transitions from the states that represent one
class (e.g., weekdays) to another class (e.g., weekend or
holidays). This hierarchical model is shown in Figure 6.
The model in Figure 6 has two classes of high/low in-
tensities (capturing day/night and weekday/weekend pat-
terns). However if more classes are detected then the hi-
erarchy of the model can grow to accommodate them.

H1 L1

H2 L2

P_H1H1

P_H2H2

P_L1L1

P_H1L1

P_L1H1

P_H2L2

P_L2H2

P_H2L1

Duration_H1

P_L2L2

P_H1L2

Duration_H2 Duration_L2

Duration_L1

Figure 6: High level Markovian model.

We start building the model by first categorizing the
observed arrival intensities. We use clustering to deter-
mine how many types of low/high intensities exist in the
workload using Silhouette [19] and K-means. Silhouette
is used to calculate the dissimilarity value s(i) of the av-
erage arrival intensity of day i. The dissimilarity value
s(i) is defined as:

s(i) =
b(i)−a(i)

max{a(i),b(i)}
,

where i is the day index, a(i) is the average dissimilarity
of day i to all other days within the same cluster, and b(i)
is the lowest average dissimilarity of day i to all days in
a different cluster. Distance measures are the most com-
mon for calculating the dissimilarity values a(i) and b(i).
The values of s(i) are in [−1,1] and the larger its value
the better, e.g., when s(i) approaches to 1, a(i) ≪ b(i),
which means that the distance between data within each
cluster is the smallest. More specifically, the following
three steps are performed to determine the number of
clusters in the model:
1. Define the upper bound of the number of clusters

as
√ n

2 , where n is the total number of days in the
historical information2;

2. Calculate the average s(i) for a different number of
clusters;

2√ n
2 is used as a rule of thumb in K-means to avoid too many clus-

ters and unnecessary overheads [13].
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3. Choose the number of clusters with the highest s(i).

After the number of clusters is determined, we calculate
the transition probabilities between them. We also esti-
mate the duration of High/Low states within each cluster
as well as their transition probabilities.

In a live system, the goal is to have an initial model
built with the data collected over the first few weeks of
operations. Then, the model is updated continuously
as new data on user workload is collected, so that any
changes in system operation and user access patterns are
reflected in the model.

Figure 7 illustrates the effectiveness of prediction by
comparing it with actual state changes. The dashed lines
illustrate the points where the model detects a change in
the state (from High to Low or Low to High). The dotted
line illustrates the actual state changes. The graph shows
that the model predicts effectively changes from one user
intensity state to the next.

3.2 Fast Tier Hit Rate
The fast tier hit rate in a storage system is related to many
factors, including its capacity and active user working
set. Here, we provide an estimation method for the in-
stant fast tier hit rate with the goal of estimating how it
changes as active user data moves from the slow tier up
to the fast tier and vice versa.

As we focus mostly on large capacity fast tiers as well
as large active data sets, it becomes necessary to warm
up the fast tier cache rather than allow it to be warmed
up gradually by the user accesses. Figure 5 clearly illus-
trates that warming up the cache can tremendously affect
performance.3
The average IO service rate for user traffic is a combi-

nation of fast storage tier access speed and slow storage
tier access speed and can be expressed as follows:

µ(t) = (1+S(t))∗ µorigi = H ∗R f ast +(1−H)∗Rslow,
(1)

where µ(t) is the average service rate of user traffic at
time t. µorigi is the original average service rate of user
traffic, e.g., when there is no system work. S(t) is the ser-
vice slowdown which describes how the average service
rate changes from the original one. H is the fast tier hit
rate, Rslow is the average slow storage tier access speed
and R f ast is the average fast storage tier access speed, im-
plying that the fast tier hit rate can be defined as follows:

H =
(1+ S(t))∗ µorigi−Rslow

R f ast −Rslow
(2)

with 0 ≤ H ≤ 100%.
3The model presented here can be trivially extended to capture the

no warm up case, i.e., passively move data when first accessed, by
changing the parameter of the average transfer speed between the fast
storage tier and slow storage tier to a function that is determined by the
intensity of arrivals.

When system work is served, the average service rate
of user traffic unavoidably decreases due to sharing of the
fast storage tier with the working set of the system work-
load. We assume that the Service Slowdown increases
linearly over time during the periods of serving system
work:

S(t) = S(ti−START )+a∗ t, (3)
where S(ti−START ) is the Service Slowdown at the begin-
ning of the time window i serving the additional work.
This parameter is necessary because the slowdown ef-
fects may propagate through several windows of time.
Finally, a is an coefficient that describes how fast the
slowdown increases during system work serving periods.

The maximum slowdown occurs when the fast storage
tier is filled with the system working set, and unavoid-
ably all user traffic is served from the slow storage tier,
therefore

Rslow = (1+Smax)∗ µorigi, (4)
or

Smax =
Rslow
µorigi

−1. (5)

Note that µorigi may not equal to R f ast because the Fast
Tier Hit Rate may not equal to 100% even when no sys-
tem work is served.

When S(ti−START ) = 0, i.e., when the fast storage tier
is filled with the user working set, Tf ast expresses the
period before system work data starts occupying the en-
tire fast storage tier. After the user working set is re-
moved from the fast storage tier, the user service slow-
down reaches its maximum, i.e., no user IO requests can
use the fast storage tier to improve performance. Accord-
ing to Eq. 3, we have:

Smax = a∗Tf ast . (6)

By definition, the capacityC equals to the transfer speed
F multiplied by time, therefore:

C = F ∗Tf ast (7)

and
µ(t) = (1+S(t))∗ µorigi. (8)

From Eq. 3 and Eq. 5 – Eq. 7, when t > ti−END, we
have :

S(t) = S(ti−START )+
Smax∗F

C ∗ t.
= S(ti−START )+

F
C ∗ ( Rslow

µorigi
−1)∗ t, (9)

which shows that the user service slowdown is related
to the average fast and slow storage tier access speed,
the average transfer speed between fast and slow storage
tiers, the original average service rate of user traffic, and
the fast tier capacity.

When the system stops serving system work, the user
service slowdown due to sharing of the fast tier with sys-
tem workload decreases over time. We assume that this
decrease is linear across time:

S(t) = S(ti−END)−b∗ t. (10)
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Figure 7: Comparison of actual and predicted arrival intensity state changes.

S(ti−END) is the user service slowdown at the end time
of system work serving window i and b is an coefficient
that describes how quickly the slowdown decreases over
non-system work serving periods.

Similarly, when S(ti−END) = Smax, i.e., when the fast
tier is filled with all system work data, it takes Tf ast time
units before the user working set refills the entire fast tier.
After the user working set is restored, the user service
slowdown reaches its minimum, i.e., to the original ser-
vice rate without any system work. According to Eq. 10,
when S(ti−END) = Smax, S(t) = 0:

0 = Smax − b ∗Tf ast. (11)

By comparing Eq. 3 and Eq. 10, we have b = a. There-
fore, for ti−START ≤ t ≤ ti−END, we have:

S(t) = S(ti−START )−
Smax∗F

C ∗ t
= S(ti−START )−

F
C ∗ ( Rslow

µorigi
− 1)∗ t. (12)

Using Eq. 9 and Eq. 12

S(t) =



























S(ti−START )−
F
C ∗ ( Rslow

µorigi
− 1)∗ t,

for ti−START ≤ t ≤ ti−END,

S(ti−END)+
F
C ∗ ( Rslow

µorigi
− 1)∗ t,

for t > ti−END.

(13)

From Eq. 2 and Eq. 13, it follows that the hit rate is:

H =































µorigi(S(ti−START )+1)−Rslow−
F
C ∗(Rslow−µorigi)∗t

R f ast−Rslow
,

for ti−START ≤ t ≤ ti−END,

µorigi(S(ti−START )+1)−Rslow+
F
C ∗(Rslow−µorigi)∗t

R f ast−Rslow
,

for t > ti−END.
(14)

3.3 Storage Tiering
Figure 8 presents an algorithm for scheduling sys-
tem work in a multi-tier storage system. In the
characterization state, the algorithm collects arrival in-
tensity information to compute the parameters and build
the Markovian model. Based on the Low and High states

1. if system in characterization state do
a. collect arrival intensity information and use

Silhouette and K-means to do clustering.
b. Compute duration of High/Low states per cluster

and transition probabilities within and across clusters
c. Build the Markovian model with the computed

parameters and continue updating the model
while the system is in operation

2. if the system is in serving system work state do
a. Predict how long the system will be in Low state

and compute warmup time for fast storage tier Tf ast
b. if residual time in Low state > Tf ast

i. compute the Fast Tier Hit Rate and
average utilization UT ILpast of past t minutes

ii. if no outstanding user request
and H >= Hlow

threshold−lower
and UT ILpast <=UT ILthreshold
schedule system work

iii.else if H <= Hlow
threshold−lower, stop serving

system work until H = Hlow
threshold−upper

go to Step 2.b.iv
iv.else process user request or stay idle
v. go to Step 2.b

c. else if the residual time in Low state < Tf ast
i. stop serving system work and warm up the fast tier
ii. go to Step 2.b

d. else if system in high arrival intensity state
i. if no outstanding user request

and H >= Hhigh
threshold−lower

and UT ILpast <=UT ILthreshold
schedule system work

ii. else if H <= Hhigh
threshold−lower, stop serving

system work until H = Hhigh
threshold−upper

go to Step 2.d.iii
iii.else process user request or stay idle
iv. go to Step 2.b
go to Step 1

Figure 8: Prediction-based deployment of systems work.

duration and the fast tier warm up time, the algorithm
schedules system work. For example, during the Low
state, the system work is served concurrently with the
low user traffic because the overall performance impact
is small. The thresholds of the fast tier hit rate can be
considered as a control knob. For example, the thresh-
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olds of Low state can be set much smaller than the thresh-
old of those of the High state so that more system work
can be finished.

The algorithm proactively warms up the fast tier by
stopping system work ahead of the predicted arrival of
the High state. The warm up time depends on the fast tier
capacity and can be computed via Eq. 7. Such proactive
action is critical because the fast tier can not be warmed
up instantly. For large fast tiers, the warm up may take a
long time, hours or in some cases even days [25]. With-
out proactive warm up, the user requests that arrive in the
initial period of the High state are to be impacted signif-
icantly.

4 Experimental Evaluation

In this section, we evaluate the proposed scheduling
framework via an extensive set of experiments in a real
system and through trace-driven simulations. We first de-
scribe the testbed and the workload we use in Section 4.1
and then show the respective experimental results that
validate our method in Section 4.1.1. Then we use our
traces from Section 2 to drive a set of simulation ex-
periments for more sensitivity analysis of our predictive
model. Throughout this section we compare our frame-
work with other common practices such as feedback-
based techniques.

4.1 Experimental Testbed and Workloads
Our testbed consists of a server with a disk enclosure at-
tached to it, which provides data services to a host. Its
memory is 12GB and the disk enclosure has 12 SATA
7200RPM HDDs of 3TB each. In our experiments the
system memory emulates the fast tier and the disk enclo-
sure the slow tier used for the bulk of the data. The ben-
efits of effective workload prediction are high for system
with large gaps in the performance characteristics across
tiers. For the shake of presentation clarity, we evaluate
here the predictive framework on a system with two-tiers
only that provide services that differ by one order of mag-
nitude. We stress that our approach can be directly ap-
plied in a system with any number of storage tiers.

The workload is generated and measured at the host
machine. We use fio [2] as the IO workload generator
for the flexibility it provides to generate a wide range of
IO workload intensities and general patterns. We gener-
ate two types of IO workloads, user and system, which
differ on the active working set size rather than their ac-
cess pattern. The working set size for the user workload
is 1GB4, i.e., such that it always fits into the memory of
the server that emulates the fast tier. The system work
has an active working set of 24GB, i.e., it does not fit
fully into the fast tier and the large slow tier is accessed
to retrieve the data. The access pattern for both user and
system workload is 100% small random reads to emulate

4Experiments with 4GB and 8GB user working sets yielded similar
results and are omitted here due to lack of space.

common enterprise workloads that would benefit from
prefetching (warm-up) only if the working set can fully
(or almost) fit in the high performing tier (i.e., the SSD).

Our framework determines only when to warm up the
cache with a pre-determined user data set. Determining
what data should be brought into the cache is outside
the scope of this paper. The user active working set can
be determined by evaluating statistically access patterns
such as the number of accesses per storage location. Here
we also assume that the system is provisioned in such a
way that the fast tier can fit the entire (or the majority of
the) user active working set. The fast tier is warmed up
via a sequential read of the user working set.

We measure the following system work scheduling
policies:

• user-only - used only as a baseline to evaluate the
impact of the additional system work,

• feedback-based - a reactive policy that monitors the
current load intensity in the system and determines
if it is in a high or low intensity period,

• prediction-based - a proactive policy (see Figure 8)
that uses the proposed Markovian model to predict
user traffic intensity by having learned from past
data the duration of periods of high and low inten-
sity.

Rules that determine the change of state (from High
to Low or vice versa) for both the feedback-based and
the prediction-based policy are the same and follow the
discussion in Section 3. The main difference is that by
predicting the arrival of the High state the system can
prefetch the user working set before the state changes and
avoid performance penalties in a large portion of user re-
quests. The feedback-based policy is a reactive one: it
acts after it detects a state change. As a result, user re-
quests arriving right after the state change suffer from
performance penalty of being served at the slow tier, till
the fast tier is warmed up. The larger the fast tier, the
longer it takes to warm it up and the higher the perfor-
mance penalty of the feedback-based policy.

The prediction-based policy is designed to fall-back
on the feedback-based policy: if the prediction time for
a High state is in the future but the High state is already
detected, then system work is stopped and the fast tier is
warmed-up with the working set reactively.

4.1.1 Measurement Results

Using fio, we generate a random reads workload access-
ing data stored in our server. The intensity of user IO re-
quests is shown in Figure 9 and it emulates very closely
the load pattern of user requests shown in Section 2. Note
that without any system work, the response time of user
IO requests remains in the same range of about 150ms.
All IOs are served from the fast tier. The user throughput
however does increase by one order of magnitude as the
arrival intensity increases. This confirms that the storage
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Figure 9: User IOPS (throughput) and user response time over time, user-only policy.
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Figure 10: User and system IOPS (throughput) and user response time over time. In the first half of the experiment
there is minimal system work, in the second half system work is increased by two orders of magnitude.

0 20 40 60 80 100 120 140 160 180 200
0

5000

10000

TP
U

T 
(IO

PS
)

Time (min)
0 20 40 60 80 100 120 140 160 180 200

0

4000

8000

U
se

r R
es

po
ns

e 
Ti

m
e 

(m
s)

IOPS of User Requests
IOPS of System Work
RT of User Requests
Start−Feedback
End−Feedback

Figure 11: User and system IOPS (throughput) and user response time over time. Till the 100th minute, there is only
user workload. In the time periods from the 100th to the 120th minute and the 150th to the 170th minute, the feedback
policy is launched. The prediction policy is launched from the 120th to the 150th minute, as well as after the 170th
minute to the end of the experiment.

system does not suffer from queuing delays and it has the
capacity to sustain more user load.

We add on the same experiment some system work.
Initially, the system work is slowed down as to not inter-
fere with the user workload performance. In Figure 10,
we show the same user workload but interleaved with
system work with very low intensity. For the first 100
minutes, the system throughput reaches up to 121 IOPS.
In the next 100 minutes, the intensity of system work
increases and its throughput reaches 5968 IOPS, a two-
orders of magnitude increase from the first half of the ex-
periment. User performance is not impacted in the first
half of the experiment, but system work here is minimal.
The figure plots the throughput of both user and system
work, as well as the response time of the user workload.
In the second part of the experiment (100 min to 200 min)
where system work is launched, the increase in user re-
sponse time grows by two orders of magnitude, while its
throughput is very low.

In Figure 11 we do the same experiment but we now
activate the feedback and the prediction-based policies
in the second half of the experiment, when the system
work is launched. The feedback policy is used from
the 100th to the 120th minute as well as for the time
period between the 150th to the 170th minute. In the
rest of the time periods, the prediction-based policy is
used. The graph shows that when the prediction policy is
activated (i.e., in time periods: 120-150, and 170-200),
user performance remains unscathed, both with respect
to throughput and response time. In the time periods
when the feedback policy is used, there is high through-
put of system work but also user response times that are
orders of magnitude higher than the user-only case.

What makes the difference in user performance be-
tween the feedback and prediction-based policies is the
timely fast-tier warm up. Figure 12 captures this effect.
In this experiment, we use a very small data set of 1GB
and let the fast tier warm up 1) by the accesses of the
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Figure 12: Response time with warm up and without
warm up across the experiment time.

regular user workload (i.e., no explicit warm up) and 2)
by specifically bringing the working set up to the fast tier
(i.e., explicit warm up) via a sequential read of the user
working set. While it takes only 130 seconds to bring
1GB of data into our fast tier by reading it sequentially
(300 seconds and 700 seconds for 4GB and 8 GB of data,
respectively), it takes 600 seconds to fully warm up the
cache by the user workload alone (more than one hour for
the 4GB and 8GB working sets). As the working sets and
fast tier capacities grow to TBytes, it becomes imperative
not only to warm up the cache before the high user load
starts, but doing it proactively (with the aid of our model)
than reactively (feedback). A more fine-grained evalua-
tion of our predictive policy is done via trace-driven sim-
ulation in the next subsection.

4.2 Simulation Results
In order to evaluate our predictive approach at a fine-
grain level and better understand its statistical properties,
we experiment also with a trace-driven simulation that
allows us to change the various parameters of the exper-
iment. The simulation, in particularly, allows us to ana-
lyze the benefits of the predictive methods as the size of
the fast tier increases, without being constricted by the
specific hardware as in the case of our limited testbed.

Our simulation is driven by the traces described in
Section 2. Since the traces contain only the arrival pro-
cess, the service process is assumed to be exponentially
distributed with a mean service rate that ensures that the
response time remains flat during the full range of user
arrival intensities. We simulate a two-tiered storage sys-
tem with configurable capacities and user active data set
sizes to experiment with different fast tier warm up times
(i.e., 1 minute, 15 minutes, and 60 minutes).

We have implemented the feedback-based and the
prediction-based policies for scheduling system work.
As a baseline comparison, we also report performance
data when no system work is launched (i.e., we also
present the user-only case). The simulation, similar to
our measurement experiments, is built such that when
the system is experiencing high user arrival intensities,
the system work is stopped. When the system experi-
ences low arrival intensities then the system serves both
user requests and system work. The difference between
the predictive and feedback approaches lies in the exact

time when the system work is stopped and resumed.

0 4 8 12 16 20 240

40

80

120

Time: Hour

Ar
riv

al
s/

m
in

User Requests
Feedback
Prediction

Figure 13: Predicted state change by feedback and pre-
diction methods.

For the results that we present here, the model is already
trained with two weeks of trace data and we present
results when the model is applied in one of the days
(day 20, see Figure 3). Figure 13 illustrates the points
where the two models differ. The lines that are marked
as feedback illustrate the points in time where the ar-
rival intensity changes after observation. Note the feed-
back uses on-line detection, so there is a delay between
the true change point and detected moment. The pre-
diction lines correspond to the time stamps where the
model predicts that there is an imminent load change.
Due to the stochasticity of the arrival intensities and the
Markovian-based model, the prediction model deviates
from the real change that is accurately detected by the
reactive, feedback-based method. Yet, this accuracy of
the feedback model becomes almost a moot point since
it cannot be used to enable tier warm up before the high
user load.

In our simulation experiments, we compare the av-
erage user response time and the average system work
throughput between different fast tier capacities (mea-
sured by the time it takes to warm up). The expecta-
tion is that the predictive method would detect the in-
coming High state and proactively warm-up the fast tier
earlier than the feedback method detects the High state
after the fact. As a result, system work runs for longer
stretches under the feedback method than the predictive
method. Consequently, the predictive method completes
less system work, but also maintains high user perfor-
mance. Note that the larger the fast tier, the higher the
benefits of the predictive approach, otherwise the system
is left to operate under high user arrival intensities and
a cold fast tier for longer periods of time. These behav-
iors are captured in Figure 14 and further corroborated
by Figure 15, where the CDF of the user response time
is plotted under the scenario of a fast tier requiring 60
minutes to warm up. In the other two cases of smaller
fast tiers, the differences between the feedback method
and the predictive methods are not as pronounced. As
a final note, note that in Figure 15 we have also added
the ideal proactive policy that assumes full knowledge of
the future workload to initiate the tier warm up. The re-
sponse time CDF of the prediction-based policy is very
close to that of the ideal one, which further argues about
the effectiveness of the model prediction.
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5 Related Work

There is a rich body of work in the literature on storage
tiering. Hierarchical storage systems are early examples
of storage tiering techniques . HPSS [3] has higher tier
(disk) and lower tier (tape), but only allows files to be
read or written from the higher tier while the lower tier is
treated as an offline device, e.g., data must first migrate to
the higher tier before been accessed. VxFS [9] improves
the flexibility of the early hierarchical storage systems by
allowing user defined placement and migration rules. As
the cost of SSDs reduced, SSDs have been introduced
in the storage hierarchy. HP’S 3PAR [18] and EMC’s
FAST [11] are examples of such systems.

Storage tiering is usually critical for meeting service
level agreements (SLA) because it can significantly boost
the overall system performance. Amazon provides Elas-
tiCache [1] for improving application performance by
adding an in-memory caching layer to the infrastructure.
FlashTier [20] proposes an interface that is designed for
using an SSD as a fast storage tier. Everest [15] of-
floads bursty I/O workloads by using spare disk band-
width to a virtual short-term persistent storage so that the
I/O request latency during peaks is improved. There are
other storage tiering works focused on improving relia-
bility [5, 17, 7] and cost or energy savings [10, 16].

There are various system storage works that are usu-
ally scheduled as a “background” activity for various
purposes, including replication [21, 23], security [12],
and data analysis [22, 14]. Several workload interleav-
ing techniques [8, 24] have been proposed for schedul-
ing such system or background work, but they do not
consider storage tiering.

The work most related to ours is optimizing stor-
age cache warm up. Bonfire [25] accelerates the cache
warmup by using more efficient pre-load methods. Win-
dows SuperFetch [4] pre-loads the frequently used sys-
tem and application information and libraries into mem-
ory based on the usage pattern in history to reduce the
system boot and application launching time. While Bon-
fire [25] and SuperFetch [4] focus mostly on identify-
ing the data that should be brought into the fast tier for
higher efficiency, our work concentrates on identifying
when to proactively bring a specific and pre-identified
data set into the fast tier such that the system can be best
utilized by system work with minimal impact on user
perceived performance. In this regard, our proposed pre-
dictive framework can be viewed as complementary to
Bonfire [25] and SuperFetch [4].

6 Conclusions

In this paper, we examine the effects of various workload
interleaving techniques in tiered storage and demonstrate
the performance benefits of a stochastic, Markovian-
based model that can be used to first learn and then pre-
dict cyclic patterns in user workload intensity. Using a
variety of user workload traces for production systems,
we demonstrate the robustness of the model as it effec-
tively suggests when to start and when to stop the deploy-
ment of system storage features in order to serve system
work during the most opportune low utilization periods.
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Abstract

Workloads for web applications can change rapidly.
When the change is an increase in customers, a com-
mon adaptive approach to maintain SLAs is elasticity,
the on-demand allocation of computing resources. How-
ever, application-level denial-of-service (DoS) attacks
can also cause changes in workload, and require an en-
tirely different response. These two issues are often
addressed separately (in both research and application).
This paper presents a model-driven adaptive manage-
ment mechanism which can correctly scale a web ap-
plication, mitigate a DoS attack, or both, based on an
assessment of the business value of workload. This ap-
proach is enabled by modifying a layered queuing net-
work model previously used to model data centers to
also accurately predict short-term cloud behavior, despite
cloud variability over time. We evaluate our approach
on Amazon EC2 and demonstrate the ability to horizon-
tally scale a sample web application in response to an in-
crease in legitimate traffic while mitigating multiple DoS
attacks, achieving the established performance goal.

1 Introduction
The use of software-defined infrastructure enables the
addition or removal of resources (computation, storage,
networking, etc.) to or from a deployed web applica-
tion at run-time in response to changes in workload or
in the environment. Central to this elasticity is the use
of mechanisms that autonomically decide when to make
these changes. Many approaches have been proposed
and tested (see for example a recent survey [7]), includ-
ing reactive approaches that establish thresholds or elas-
ticity policies which determine when changes will be
made (e.g., [10, 18, 17, 5]) and proactive approaches
that attempt to anticipate future requirements using tech-
niques like queuing models [30, 9], simulation-generated
state machines [28], or reinforcement learning [4]. The
focus is typically on meeting a desired service level by

ensuring provisioned resources are sufficient to handle a
workload, perhaps while minimizing the total infrastruc-
ture cost [9].

The typical assumption of elasticity mechanisms is
that all traffic arriving at the application is desirable. This
is not always the case. For example, an application-level
denial of service (DoS) attack has many of the same
characteristics of an increase in legitimate visitors, es-
pecially a low-and-slow DoS attack [25], but represents
undesirable load on the application. Such attacks are in-
creasing in volume and sophistication [6], due in part to
freely available tools [14, 22]. A common response to a
denial-of-service attack at the application layer is to add
resources to ensure the service remains available (e.g.
[14, 8, 16]), which resembles elasticity. However, de-
ploying sufficient resources to handle a major DoS at-
tack is expensive [23], with little return on investment.
Another example is a cost of service attack, where the
goal is not to deny service but to increase the cost of of-
fering a service [12, 26]; or heavy traffic from an online
community (the so-called Slashdot Effect) that does not
generate revenue.

In this paper, we propose, implement, and evaluate
a unified approach to enabling elasticity and mitigating
DoS attacks. Rather than view DoS attempts as mali-
cious traffic (in contrast to legitimate traffic), or even an
evolved definition of “any workload beyond our capac-
ity” [3], we define DoS traffic to be any segment of work-
load we cannot handle while still providing value to the
organization. This perspective offers the opportunity to
view self-management as a business decision based on a
cost-benefit analysis of adding resources: if there is ben-
efit (e.g. increased sales, ad impressions, profit, brand
reputation, etc.) that exceeds the expected cost, then add
resources; otherwise, manage the traffic. Workload is re-
garded not as malicious or legitimate, but rather as either
(potentially) undesirable or desirable.

We describe three primary contributions of this work:
an adaptive management algorithm for choosing which
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portions of a workload need additional resources and
which portions represent undesirable traffic and should
be mitigated; adapting a layered queuing network (LQN)
model to cloud environments to enable proactive cost-
benefit analysis of workload; and an implementation and
a series of experiments to evaluate this approach in the
Amazon EC2 IaaS cloud environment.

Our algorithm (§2) examines portions of the workload
and assesses whether incoming traffic is desirable or un-
desirable. This decision is based on a runtime software
quality metric called the cloud efficiency metric [26],
which at its most basic calculates the total cost of the
software-defined infrastructure and calculates the ratio to
the revenue generated by incoming traffic (though in the
general case, value can be defined very broadly). Traffic
considered undesirable is handled as described in previ-
ous work [3, 2], where instead of being discarded it is
forwarded to a checkpoint. At this checkpoint, a chal-
lenge is issued and the user is asked to verify that they
are a legitimate (and valuable!) visitor (for example, us-
ing a CAPTCHA test as in [20]). The management is
completely autonomic; this avoids the known problems
with the complexity of manually tuning threshold-based
elasticity rules [10].

Estimating the cost-benefit potential requires a proac-
tive approach that takes measurements from the deployed
infrastructure and makes short-term predictions. Our
overall approach does not prescribe which mechanism
should be used; we have chosen to illustrate our approach
using a LQN model called OPERA. Section 3 describes
the challenges in using OPERA to predict cloud behavior
in practice. We present experimental results demonstrat-
ing how OPERA diverges from reality over time due to
the unpredictable variability of cloud services [24], de-
scribe the modifications required to account for unex-
plained delays, and a second set of results that demon-
strate with the modifications the LQN remained synchro-
nized with the actual performance of the real cloud sys-
tem.

We implemented our algorithm (§4), deployed a sam-
ple e-commerce application protected with our updated
protection/elasticity autonomic manager, and tested re-
sponse to a several attack scenarios: DoS alone, increase
in customer traffic alone, and both combined (the com-
mon case where a site becomes more popular but also at-
tracts negative attention). Our results (§5) show that the
application is protected from all forms of surging traffic
by adding servers or mitigating undesirable traffic, as ap-
propriate. We also identify a limitation of our approach:
the reaction time is slow enough that a temporary back-
log of requests can be created, which skews calculations
and leads to the temporary mitigation of desirable traffic
until the model recovers. We present an example of this
limitation.

2 Methodology
The goal of our approach is to treat desirable traffic
(which generates business value) differently than unde-
sirable traffic (which consumes resources disproportion-
ate to the value created). This novel broad view of elas-
ticity better reflects business objectives, while also ad-
dressing issues that have historically been dealt with sep-
arately. To achieve this goal, the autonomic manager
must be capable of differentiating between the two, and
adding or removing resources to ensure desirable traf-
fic encounters sufficient quality of service without over-
spending, while routing undesirable traffic through an
additional checkpoint. In this section, we introduce an
algorithm for an adaptive manager with these capabili-
ties.

The overall model of the approach resembles a stan-
dard feedback-loop, with an adaptive manager accept-
ing monitoring data, using a predictive model to inform
decision-making, and executing decisions autonomically
using a deployment component capable of adding and
removing resources. The managed system is a standard
three-tier web application.

The behavior of the adaptive manager is described in
Algorithm 1. At each iteration, a new set of metrics
is observed from the managed system and its environ-
ment, including current workload, current performance,
and current deployment information (which includes any
ongoing traffic redirection or scaling activities). Some
of this information is provided for each distinct class of
traffic. For example, traffic accessing features related
to browsing an e-commerce catalog might be grouped
into a single class of traffic; similarly, features related to
the checkout process might get their own class. These
classes (sometimes called usage scenarios) allow traf-
fic to be treated more granularly than simply looking at
overall traffic to the application. A class of traffic cor-
responds to classes of services used in Layered Queuing
models (§3.1).

Included in the set of performance metrics is the cur-
rent cost efficiency (CE) [26], a runtime software qual-
ity metric that captures the ratio of the benefit derived
from the application to the cost of offering the applica-
tion: CE = application benefit function

infrastructure cost function .
Due to size constraints, the details of the cost effi-

ciency metrics are not included in this paper, but the
reader can find an in-depth presentation in [26]. To sum-
marize, the cost function must capture the real cost of
offering a given application on the cloud for the given
period (e.g., per hour). This function excludes other
costs related to the application, e.g. the cost of devel-
opment, the cost of goods sold, and customer support.
It is not a measure of overall profitability; rather, it cap-
tures current infrastructure costs. The benefit function
must capture the benefit the application provides to the

2
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Algorithm 1: Decision Algorithm – The algorithm
used by the adaptive manager to choose appropriate
actions for the managed system.

input : Cu – the set of unaltered traffic classes;
input : C f – the set of all classes of traffic redirected to a

checkpoint;
input : Lu – the vector of current load on unaltered classes of

traffic;
input : L f – the vector of current load on each class of traffic

redirected to a checkpoint;
input : Mm – the vector of measured performance metrics;
input : svrcur – the number of current web servers;
input : svrmax – the maximum number of web servers that can be

allowed to run;
input : err – the accepted error for the model estimations;
output: A – the deployment plan.

1 Use LQM to compute the estimated performance metrics, Me, for
the load Lu;

2 while
∣

∣

∣
1− Me

Mm

∣

∣

∣
> err do

3 D ← Kalman(Mm, Lu, LQM); Me ← LQM(D, Lu);

4 svrce ← the maximum number of servers that can be added and
still be cost effective;

5 A ← {do nothing};
6 if Mm violates SLOs then
7 svr ← min(svrmax,svrcur + svrce);
8 n ← CalculateServersToAdd(Lu, Mm, svrcur, svr);
9 if n > 0 then

10 A← {add n web servers};

11 else
12 C← TrafficClassesToRedirect(Lu, Mm, err, Cu);
13 A← {redirect traffic classes C};

14 else
15 set in the model the number of web servers to svrcur + svrce;
16 C← TrafficClassesToRestore(Lu, L f , Mm, err, C f );
17 if C �= /0 then
18 svr ← svrcur −1;
19 Ctmp ← /0;
20 while Ctmp �= C do
21 svr ← svr+1;
22 set in the model the number of web servers to svr;
23 Ctmp ← TrafficClassesToRestore(Lu, L f , Mm, err,

C f );

24 if svr− svrcur > 0 then
25 A← {add svr− svrcur web servers} ∪ {stop

redirecting traffic classes C};

26 else
27 A← {stop redirecting traffic classes C};

28 else
29 n ← CalculateServersToRemove(Lu, Mm, svrcur);
30 if n > 0 then
31 A← {remove n web servers};

32 return A

organization. Typically, organizations have mechanisms
for assessing this benefit at least at the macro-level. The
benefit may come from many sources: revenue, adver-
tising, brand awareness, customer satisfaction, number
of repeat customers, or any number of business-specific

metrics. For example, a denial of service attack on an
e-commerce website would reduce the value of incom-
ing traffic (as fewer visitors would be able to make pur-
chases), which would reduce the overall cost efficiency.
If an adaptive manager were in use and were to add ad-
ditional resources to handle the DoS traffic, the current
value would be maintained, but the cost would increase:
the overall effect would be the same.

OPERA is used to estimate a set of performance met-
rics (CPU utilization, response time, throughput), which
are compared to the measured set of performance metrics
to ensure the model is still synchronized with the system
(line 2; if not, it is re-tuned using Kalman filters [32]).

On line 6, we test compliance with service-level ob-
jectives (SLOs); if any measured performance metrics
are non-compliant (perhaps due to a decrease in cost ef-
ficiency, or an increase in response time), a remedial ac-
tion must be taken (logic regarding cool-down times to
avoid thrashing is omitted for clarity). The remedial ac-
tion is chosen from two options (adding servers because
the traffic has value or redirecting traffic to a checkpoint
because it does not). To decide on which action is appro-
priate, we call a function which uses the predictive model
to estimate the impact of adding one or more web servers,
up to a maximum cap on the number of servers. If adding
web servers is estimated to bring performance metrics in
compliance with the SLO, this solution is executed and
the chosen number of servers is added (line 8). Perfor-
mance metrics include the cost efficiency metric, which
means that if additional traffic does not add business
value, adding servers will increase the cost and therefore
lower cost efficiency. In this case the approach will be
rejected and 0 will be returned. The algorithm will then
consider redirecting some traffic to a checkpoint instead.
The algorithm considers each class of traffic separately.
For example, it might be appropriate to redirect the traf-
fic of users who access only free services, while preserv-
ing the traffic of those who pay a monthly subscription
fee. Or we might give priority to the class of traffic
that includes the actual checkout process, versus the cus-
tomer discussion forums. The function TrafficClasses-
ToRedirect determines which class of traffic should be
redirected. The complete definition is provided in [3],
but conceptually the LQN model is used to produce a
set of performance metric estimates based on blocking
various classes of traffic. The set returned consists of
the classes that produce the best performance metrics
(including cost efficiency). Traffic to these classes are
redirected to a checkpoint for verification of legitimacy;
this checkpoint also serves as a speedbump for legitimate
traffic.

In contrast, if measured performance complies with
the SLOs, the algorithm checks to see if we can restore
classes of traffic (or if we could restore classes of traf-

3
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Figure 1: Software and hardware layers in a LQN of a 2-tier
web system.

fic if we added additional servers, line 16) or if we can
reduce the number of servers. The model is used to
predict performance measures (including cost efficiency)
under each possible action. If the model estimates that
performance metrics would remain in compliance with
the SLO after restoring traffic classes, these classes are
restored; similarly for removing one or more servers
(line 29). It is important to note that servers can be re-
moved even while traffic is being redirected; the elas-
ticity function is focused on the desirable traffic, not on
overall traffic. The number of servers to remove is calcu-
lated as the largest possible reduction before the model
estimates SLOs would be violated.

The algorithm will terminate returning a set of ac-
tions (which may be a null set), specifying which traffic
classes to redirect (or restore) and specifying the number
of servers to add (or remove).

This general approach allows an administrator to spec-
ify their expected SLOs, to define a benefit function, and
to define classes of traffic; however, they are not expected
to write procedural rules or detailed policies. The adap-
tive manager is responsible for deciding both what action
to take (managing traffic or adding/removing resources)
and the magnitude of that action (how much traffic to
manage, how many resources to add/remove). The in-
clusion of a general cost efficiency metric allows the
adaptive manager to make decisions that reflect business
objectives, rather than going to great expense to handle
large amounts of traffic.

3 A Layered Queuing Network for Cloud
Environments

A layered queuing network model (LQN) is at the heart
of our methodology. While our algorithm is general, we
implement it using a particular layered queuing network
(named OPERA) which we have used successfully to
model transactional web applications deployed on hard-
ware infrastructure. In the process of validating its ac-
curacy in cloud environments, we found that over time it
diverged from reality, and that for some values (such as
modeled response time) it was consistently below the ac-

tual values. This section describes using a LQN to model
an application on the cloud.

3.1 Previous model

For a transactional web application such as those exam-
ined in this paper, the user interaction with the system
is modeled using classes of services (or simply classes),
a service or a group of services that have similar statis-
tical behavior and have similar requirements. When a
user begins interacting with a service, a user session is
created, and persists until the user logs out or becomes
inactive. We define N as the number of active users at
some moment t; these users can be distributed among
different classes of services. For a system with C classes,
we define Nc as the number of users in class C, thus
N = N1 +N2 + · · ·+NC. N is also called workload in-
tensity or population while combinations of Nc are called
workload mixes or population mixes.

Any software-hardware system can be described by
two layers of queuing networks [21, 19]. The first layer
models the software resource contention, and the second
layer models the hardware contention. To illustrate the
idea, consider a web based system with two software
tiers, a web application server (WS) and database (DB)
server (see Figure 1). Each server runs on dedicated
hardware, which for the purpose of this illustration we
will limit to CPUs only (CPU1 and CPU2 respectively).
The hardware layer can be seen as a queuing network
with two queues, one for each hardware resource. The
software layer also has two queues, one for the WS pro-
cess and another for the DB process, which queue re-
quests waiting for an available thread (or for critical sec-
tions, semaphores, etc.). The software layer also has a
Think Time centre that models the delay between requests
that replicate how to model how long a user waits before
sending their next request.

Each resource has a demand (or service time, i.e. the
time necessary for a single user to get service from that
resource) for each class. If in this example there are
two classes of service, there will be four demands for
the hardware layer: each class will have a demand for
each CPU. The service times (demands) at the software
layer are the response times of the hardware layer. In our
case, for class C, they are Rs

1,C and Rs
2,C, and they include

the demand and the waiting time at the hardware layer
(we use the upper script s to denote software metrics that
belong to the software layer). Ideally, hardware demand
is based on measured values; however, this is impractical
for CPUs because of the overhead imposed by collecting
such measurements. In our approach the CPU demands
are estimated using Kalman filters. Once the model is
created, it is iteratively tuned, also using Kalman filters.

This model has been used to inform a variety of
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Figure 2: Observed versus estimated values for 2 key perfor-
mance metrics, showing the marketing scenario only.
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Figure 3: The CPU utilization for the marketing scenario; the
model is not sychronized with observed measurements.

adaptive systems, including implementing elasticity poli-
cies [9] and mitigating DoS attacks [3, 2]. In earlier
work, Zheng et al. [32] present a method for tuning
model parameters for a web application. Properly tuned
models have been shown to accurately estimate perfor-
mance metrics [32].

3.2 OPERA in the Cloud

Despite the proven track record of this model, when we
switched from modelling a private data center to mod-
elling the public cloud (Amazon AWS EC2), we no-
ticed significant differences between the model’s esti-
mates and the actual observed performance metrics.

To illustrate the issue, we deployed a sample web
application (see §5) and generated an increasing work-
load to a single class of service, marketing scenario.
Figure 2 shows the measured and modeled response
time (right Y-axis) and throughput (left Y-axis) when the
workload is increased. The picture shows that the model
is well-synchronized with the system for throughput, but
not for the response time; the measured response time
is almost three times the estimated one. As the work-
load increases, the synchronization procedure manages
to tune the model for the throughput, but does not im-
prove the accuracy of predicted response time.

Figure 3 shows the CPU utilization for the database
server and the application server, both observed and pre-
dicted. The distance between the observed and predicted

values is noticeable, and diverges further as workload in-
creases, demonstrating that this metric is also not syn-
chronized between the model and reality.

LQN models are well-established approaches to pre-
dicting the performance of web applications; after rul-
ing out measurement errors, we concluded our particular
model is missing an unknown factor related to the known
variance in EC2 [24, 27]. In order to improve the es-
timated metrics and reduce the modelling error overall,
we added a “cloud delay centre” designed to capture all
the undocumented work or delay. The cloud delay queue
is shared by all classes of traffic, it has no limit, it exists
at the software level, and it is the first queue encountered
by incoming requests.

Following this change, we again tested synchroniza-
tion and obtained substantially better results §5. The
modified LQN is used throughout the remainder of this
paper to make decisions about workload, to inform
adaptive systems, and to implement elasticity policies;
it demonstrated close alignment with measured values
throughout this process. Other approaches that use LQN
models to predict cloud behavior but do not validate their
models against an actual cloud (e.g. [15],[1]) may wish
to adopt a similar solution.

4 Implementation

We have implemented our adaptive management algo-
rithm to manage applications deployed to the Amazon
EC2 public cloud infrastructure, using a framework that
can automatically deploy a topology in EC2 by launch-
ing all instances required (application servers, database,
load balancer), install the required software on each ma-
chine (e.g. Tomcat and all dependencies, the web appli-
cation and its libraries, etc.), and configure each applica-
tion (for example, add the application servers to the load
balancer). The framework provides an API that accepts
requests to modify the deployed topology – for exam-
ple, if the request is to horizontally scale the web tier,
the framework can launch an instance for the applica-
tion server, install all required software, and add the new
server to the load balancer. The framework is general
enough to allow us to install and configure any type of
application in a linux environment, once the deployer
provides installation and management scripts.

Our implementation uses Amazon CloudWatch de-
tailed monitoring to acquire performance metrics from
the deployed instances. As discussed in [27], these
metrics are delayed by one minute from when they are
recorded. Our implementation runs the main algorithm,
and acquires Cloudwatch metrics, once per minute. The
arrival rate, throughput, and response time for each class
of traffic are acquired from a reverse proxy on the load
balancer at the same time1. This reverse proxy moni-
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tors incoming requests and assigns them to the appro-
priate traffic class (based on the URL); the classification
rules can be modified at runtime if necessary. The ad-
ministrator of an application is responsible for defining
their traffic classes based on their business logic. Mea-
suring response time at the load balancer allows us to fo-
cus on the component of user-experienced response time
that we can control. While end-to-end response time will
be higher and more variable, adapting to slow user con-
nections is outside the scope of this paper.

5 Experiments

To evaluate the contributions of this paper, we performed
a set of experiments. The first examines our modified
LQN to assess its ability to synchronize with the man-
aged application so its estimates have predictive value.
Experiments 2-4 examine a sample web application.

In all experiments we have used a bookstore applica-
tion that we have developed using Java EE, which em-
ulates an e-commerce web application. We defined six
classes of traffic: marketing (browsing reviews and ar-
ticles); product selection (searching the store cata-
log, product comparisons); buy (add to cart); pay (com-
plete checkout); inventory (inventory tracking); and
auto bundle (an upselling / discounting system). The
workload used is generated randomly by a workload gen-
erator using an unevenly weighted mix of the 6 classes.
Each class of traffic has a different performance impact
on the deployed application.

Each experiment starts with a deployed topology, with
a single application server in the web tier. The web tier
is scaled horizontally by adding and removing resources.
The traffic filtering approach described in [3] is used
to refer undesirable traffic to a captcha to serve as the
checkpoint.

5.1 Experiment 1: Synchronizing the
model with public cloud resources

To verify the ability of our LQN to synchronize with re-
ality in a cloud environment, we generated a constant
workload and compared the estimated performance met-
rics to actual measurements at each sampling interval
(Figure 4). We generated workload for all scenarios,
though not all are shown due to space constraints. At
each iteration or sampling interval, we measure the ar-
rival rate for each scenario. We feed this workload into

1Initially, our framework used SNMP and JMX on the deployed
VMs and application servers; however, these monitoring tools did not
capture performance metrics for individual classes of traffic. Addition-
ally, some values are measured incorrectly (such as CPU utilization)
when running on a virtual machine in a cloud environment.

the model, and then solve the model to calculate the es-
timated metrics. If the error between measured and esti-
mated values exceeds a specified threshold (10% in our
case), we run the Kalman filters on the model in order to
find more accurate values for the model parameters (this
process is called tuning the model).

At t = 0, the estimated CPU utilization numbers
(Fig. 4a) for the database server are almost double the
measured values. Within 25-50 iterations, the Kalman
filter settles on accurate model parameters, and the differ-
ence between measured and estimated values was around
1%. Importantly, once synchronization is achieved, it is
not lost. Before we added the Cloud Delay Center, this
synchronization was never achieved.

In plots 4b-4c, we show the measured response time
(green line, using right Y-axis) and measured throughput
(blue line, using left Y-axis) for two classes of traffic. Af-
ter some initial error, the estimated values and measured
values also remain within several percentage points, even
through peaks and valleys.

We conclude from this data that the modified LQN has
addressed the challenges of modelling a cloud environ-
ment by treating the variability of the cloud as a delay
center in an LQN, and modifying the demand on that
delay center using Kalman filters to account for unpre-
dictable variability.

5.2 Experiment 2: Elasticity in the public
cloud

This experiment examines the adaptive management al-
gorithm’s ability to provide elasticity when overall traffic
increases and decreases. We use a simplified cost metric
to calculate the cost of our EC2 deployment, and use the
volume of the pay class of traffic as our benefit function.
This is roughly analogous to prioritizing checkout activ-
ity over other activities. Application-level DoS attacks
are not expected to generate traffic to this traffic class,
because reaching the checkout page usually requires user
interaction, a valid account, and valid credit card num-
bers2. The workload mix remained constant over the ex-
periment, and therefore so did the cost efficiency metric.

Figure 5 shows the measurements obtained during this
experiment. The workload generated for each scenario is
captured (approximately) as the arrival rate (blue line in
figures 5b–5g, on the left Y-axis). We started with a base-
line workload; at iteration 50, we increased the workload.
The adaptive manager added a new web server (purple
line in figure 5a, on the right Y-axis). When the workload
is increased, there is a brief spike in the CPU utilization
metric for the web servers (red line in figure 5a, on the

2Of course, our focus is the general approach and not optimal se-
lection of the benefit function.
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Figure 4: Experiment #1. Comparing estimated values to measured values for a selection of traffic classes for consistent workload.

left Y-axis), but also on the response time for each sce-
nario (green line in figures 5b–5g, on right Y-axis). This
violated the SLO, and caused the addition of a server be-
cause the cost efficiency metric remained within an ac-
ceptable range.

After workload increases at iteration 120 and again at
190, again a new server is added each time. Notice that
after adding new servers, the CPU utilization for the web
servers and the response time for the various classes of
traffic have about the same values as before. This sug-
gests that the number of servers added each time (es-
timated using the model) was appropriate to maintain
SLOs.

At iteration 220, we dropped the workload sharply.
The algorithm decided that two web servers could be
safely removed. Again, the performance metrics re-
mained acceptable following this removal.

The spikes in some of the measurements are largely
due to delays in actuated new servers, leading to some
backlog of requests and temporarily higher response
times (off the graph, in some cases).

5.3 Experiment 3: Elasticity while mitigat-
ing DoS attacks

This experiment tests one of our key contributions:
achieving elasticity to maintain SLOs for our desirable
traffic, while detecting and redirecting undesirable traf-
fic. To emulate a DoS attack, we dramatically increased
the volume of traffic generated to one (or more) of the
traffic classes. Our measurements from this experiment
are shown in Figure 6.

At iteration 4, we increase the workload across all traf-
fic classes, and a new virtual machine is added. Per-

formance degrades across all performance metrics in all
classes, including the average CPU utilization. However,
the addition of the new server restores performance met-
rics to acceptable levels.

At iteration 15 a first attack starts on a URL in the
traffic class marketing. The arrival rate abruptly jumps
from around 1.5 requests per second to close to 100 re-
quests per second. The degradation in performance is
immediate. Our algorithm provides the new metrics and
workload levels to the LQN. The algorithm contemplates
adding additional servers, but the increased cost is not
offset by an increase in benefit, as the marketing traf-
fic class does not generate revenue directly, and does not
contribute to the benefit function. It instead determines
it is necessary to redirect some traffic classes to a check-
point and, after solving the model for various possible
redirection schemes, determines (correctly) that the best
course of action is to filter the requests on marketing.

A few iterations later (iteration 27), we emulated a
second simultaneous attack on the product selection

traffic class. Using a similar process, the algorithm once
again identified the scenario under attack and redirected
traffic to a checkpoint.

While these two attacks continued, the workload to the
other classes increased for unrelated reasons. We can see
response time (particularly for inventory and pay) in-
crease. Once an SLO is violated, the algorithm decides
two servers will be necessary to handle the continuing
increase in desirable traffic (see purple line in figure 6a).
This decision appears to be the correct one, as all perfor-
mance metrics return to satisfactory levels (without being
over provisioned).

At iteration 97, the first DoS attack (on marketing)
is stopped, and the algorithm stops redirecting traffic for
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Figure 5: Experiment #2. Increasing and decreasing the workload resulted in the addition/removal of servers, while maintaining
key performance metrics at acceptable levels.

that class of traffic. By iteration 120, the temporary in-
crease in desirable traffic also resides, and at iteration
130 a web server is removed leaving the web cluster
with three machines. Note there is still an ongoing DoS
attack, and removing resources is counter-intuitive, but
again the performance metrics suggest this was the cor-
rect decision as they are maintained at acceptable levels.
When the second attack finishes, and the last redirection
is halted, the system performance metrics stay within the
SLOs. We do see an increase in some response times and
had the experiment continued we expect the algorithm
may have added an additional server.

This experiment shows that our algorithm is able to as-
sure the elasticity of the web application and make good
decisions to achieve SLOs and maintain cost efficiency
even while the application is under one or more attacks.

5.4 Experiment 4: A limitation of the im-
plementation

The previous experiments demonstrated the strength of
our approach and our algorithm. However, there is a lim-
itation: the reaction time is slower than is sometimes re-
quired to respond appropriately. This problem can be
addressed by adding a statistical model that responds
rapidly using a heuristic (as in [3]). The measurements
from this experiment are shown in Figure 7.

When the first DoS attack starts on marketing, the
system identified the problem and started redirecting
traffic. At iteration 67, a second attack causes a severe
and rapid degradation of performance metrics across all
traffic classes and servers. Due to delays between itera-
tions, the system is unprotected and the internal queues
are filled. Our algorithm analyses the data and decides
that two more classes need to be protected: buy and auto
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Figure 6: Experiment #3. Overlapping DoS attacks on two traffic classes; the algorithm mitigated these attacks while adjusting
the number of VMs for the remaining workload.

bundle. The decision is correct in that it restores SLOs,
but of course incorrect since no malicious traffic is tar-
geting these classes.

When the scenario under attack is resource-intensive,
it will take multiple iterations to process the backlog of
DoS requests that made it through before we started di-
recting traffic. Although traffic to inventory and pay

is not redirected, there is a significant drop in the arrival
rate and an increase in response time. The drop in arrival
rate is normal behaviour, because normal users will not
make a new request to the server until they receive the
response from their previous request.

6 Related Work
There are many approaches in achieving elasticity.
Companies such as Amazon, Azure, RightScale, and
Rackspace offer pre-defined rule-based autoscalers. The
application owners manually define rules (often thresh-
old based) for triggering scaling out/in actions. Then,

at runtime, the autoscalers monitor the application per-
formance metrics and evaluate them against the rules.
When a rule condition becomes true, the system executes
the rule’s action such as adding or removing VM. Some
researchers argue that specifying good threshold based
rules is a challenging task [10, 29].

A potential weakness of pre-defined rule system is the
thrashing effect when the system constantly adds or re-
moves VM due to a fast changing workload. To address
this problem, Iqbal et al. [13] combine rule-based scal-
ing with statistical predictive models. Xiong et al. [31]
demonstrated that an application analytic model could
be used as an efficient method to identify the relation-
ship between a number of required servers, workload and
QoS.

Many researchers have designed and developed elas-
tic algorithms without considering the cost factor; how-
ever, Han et al. [11] propose an elastic algorithm which
considers both the cost and performance. An elastic al-
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Figure 7: Experiment #4. A DoS attack causes overcorrection due to a slow reaction, and additional classes are blocked.

gorithm will identify the application tier to scale in or-
der to resolve the QoS issue while keeping the overall
deployment cost as low as possible. A queuing analytic
performance model is utilized for identification of the in-
efficient application tier.

The main weakness of the above approaches is that all
user requests are considered desirable to the application
owner. This may not be true in actual deployment envi-
ronments. Many researchers and practitioners agree that
DoS attacks are one of the biggest threats in the today’s
security landscape. Our novel approach distinguishes be-
tween desirable and undesirable traffic using cost effi-
ciency metrics that consider not only the cost of the in-
frastructure, but also the business value of the workload.

7 Conclusion
This paper presented a model-driven adaptive manage-
ment architecture and algorithm to scale a web applica-
tion, mitigate a DoS attack, or both, based on an assess-
ment of the business value of workload. The business

value is measured through an efficiency metric as a ra-
tio between the revenue and cost. The approach is en-
abled by a layered queuing network model previously
used to model data centers but adapted for cloud. The
model accurately predicts short-term cloud behavior, de-
spite cloud variability over time. We evaluated our ap-
proach on Amazon EC2 and demonstrate the ability to
horizontally scale a sample web application in response
to an increase in legitimate traffic while mitigating mul-
tiple DoS attacks, achieving the established performance
goal. We also showed the limitation of the approach
which can be overcome through further work.
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Abstract
Control theory provides solid foundations for develop-
ing reliable and scalable feedback control for software
systems. Although, feedback controllers have been ac-
knowledged to efficiently solve common classes of prob-
lems, their adoption by state-of-the-art approaches for
designing self-adaptation in legacy software systems re-
mains limited and at best consists in ad hoc integrations,
which are usually engineered manually.

In this paper, we revisit the Znn.com case study and we
present an alternative implementation based on classi-
cal feedback controllers. We show how these controllers
can be easily integrated into software systems through
control theory centric architecture models and domain-
specific modeling support. We also provide an assess-
ment of the resulting properties, quality attributes and
limitations.

1 Introduction

Feedback control is acknowledged as one of the viable
solutions for self-adaptive software systems engineer-
ing [8, 31, 34]. It provides solid foundations and a sys-
tematic approach for designing reliable and robust adap-
tation mechanisms, controllers, which drive the system
adaptation [3]. However, integrating such controllers
into legacy software systems remains challenging [8,10].
In particular, this requires selecting the appropriate tar-
get system outputs and control inputs (touchpoints), de-
vising the actual controller design, and finally a soft-
ware architecture integrating the controller into the target
system [21]. As a matter of example, well-established
feedback controllers for common and recurring prob-
lems (e.g. Quality of Service (QoS) management [2, 20]
or performance guarantees [1, 3, 4]), are being inte-
grated into target systems and tuned manually. Even
though supporting tools, such as MATLAB, SIMULINK,
or SYSWEAVER [35], provide code generation capabili-
ties, the controller integration into the target system still
requires an extensive handcrafting of a non-trivial code

that results in significant accidental complexities. More-
over, these tools mostly target embedded real-time sys-
tems rather than distributed enterprise systems.

In this paper, we revisit the Znn.com case study [12],
an acknowledged case study from the self-adaptive soft-
ware systems community1, and we describe an elegant
solution integrating classical feedback controllers using
control theory centric architecture models [27]. Znn.com
is a web-based N-tier client-server system that models a
news service provider like cnn.com. The main control
objective is to make Znn.com to serve its content within
acceptable response time and quality even in the event
of traffic spikes caused by highly popular news by using
content adaptation (e.g. serving reduced content qual-
ity). This paper contributes to demonstrate a systematic
integration of a control theory based approach that ad-
dresses the Znn.com control objective.

Our solution is based on a technologically agnostic
Domain-Specific Modeling Language (DSML) for defin-
ing Feedback Control Loops (FCLs). It supports compo-
sition, distribution and reflection, thereby enabling co-
ordination and composition of multiple distributed FCLs
using control schemes. It raises the level of abstraction
at which the FCL architectures are defined, and a support
is provided for automated implementation code synthe-
sis and verification. The application to Znn.com enables
us to demonstrate the model capabilities to progressively
refine adaptation mechanisms, going from local content
delivery adaptation using an existing and proven control
algorithm [2, 3] to distributed content adaptation, and fi-
nally to adaptive control.

2 Related Work

IBM proposed MAPE-K decomposition of a FCL [24]
which has become a widely referenced model for auto-
nomic systems, followed by number of framework-based
approaches [34]. The Rainbow framework [18] provides

1http://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/model-
problem-znn-com
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an architecture-based approach for self-adaptive soft-
ware systems using utility theory for an optimal adap-
tation strategy selection. The DYNAMICO model [38]
defines a fixed three-layers architecture with three FCLs
for managing control objectives, target system adap-
tation and dynamic monitoring. The StarMX frame-
work [6] designs self-managing Java-based applications
using JMX for target system touchpoints and a policy-
rule language for adaption engine. The Zanshin Frame-
work [5] uses requirements engineering and goal models
for self-adaptive software development.

The advantage of the above framework based solutions
is that they provide an architecture basis of an appli-
cation and therefore they can simplify its development.
However, the adaptation mechanisms within these frame-
works mostly use a simple, fixed threshold-based event-
condition actions, not providing support for control the-
ory based controllers. For example, both DYNAMICO
and Zanshin implements Znn.com decision policies by
using simple conditions such as experiencedRespTime
> MAX_RESPTIME [11, p. 187]. As a result, the target
system is more likely to experience instability due to
oscillations (e.g. continuously enlisting and discharg-
ing servers). Furthermore, frameworks always impose
the use of a specific technological stack. The level of
abstraction and formal reasoning is also usually limited
since the adaptation is an integral part of the implemen-
tation. Finally, except DYNAMICO, they are primar-
ily designed for scenarios that can be solved by central-
ized control loop and do not allow hierarchical control
schemes nor adaptive control as they do not support run-
time modifications of adaptation strategies or thresholds.

The model@run.time approaches are using models to
represent abstractions of running systems and MDE tech-
niques for their adaptation at runtime [15]. For example,
Vogel et al. [40] propose runtime executable megamod-
els with a language for adaptation logic modeling and a
runtime interpreter. Similarly to our approach they also
support hierarchically organization and FCL coordina-
tion, however, they present only a high-level overview
of how the actual adaptations look like.

A lot of effort has been also invested in tools for en-
gineering feedback control for real-time embedded sys-
tems. Ptolemy II [13] is an extensive framework for
the simulation of concurrent actor-oriented systems al-
lowing to combine heterogeneous models of computa-
tion. We follow a similar actor-oriented approach and
our execution semantics is derived from Ptolemy push-
pull model of computation (cf. Section 3.2). However,
Ptolemy focus rather on simulation of the executable
models and their transformations to the embedded sys-
tems. SIMULINK is an industry standard tool for de-
veloping feedback control targeting primarily embedded
systems. SYSWEAVER extends SIMULINK code genera-
tion capabilities for distributed real-time systems.

3 Control Theory Centric Architecture
Models

This section outlines our approach for integrating adap-
tation mechanisms into software systems through control
theory centric architecture models. A detailed descrip-
tion is provided in [26].

3.1 Principles and Design Decisions
Generality (applicability to a wide range of target
platforms and adaptation scenarios), visibility (explicit
FCLs, their processes and interactions), and composabil-
ity (fine-grained reusable elements representing the FCL
processes) are all well-identified requirements for FCL
engineering [8, 10, 32, 34]. In order to meet these re-
quirements, we structure the approach around a DSML
with an actor-oriented design. The key advantage of a
DSML is the possibility to raise the level of abstrac-
tion at which the FCLs are described and directly use
the FCL domain concepts. Moreover, DSMLs are partic-
ularly suitable for automated reasoning and implemen-
tation code synthesis [25]. Since FCLs are inherently
concurrent, we choose an actor-oriented design [22] rep-
resenting the FCL processes as message-passing actors.
The actor model allows to implement FCLs without wor-
rying about thread safety, it is scalable [19] and seam-
lessly supports remote distribution.

For illustration, we use the Apache overload control
FCL (cf. Figure 1) from Hellerstain et al. [21, §4.6.2]2,
which can be considered as a simple Znn.com adaptation
mechanism. It adjusts the maximum number of simulta-
neous connections (MC) based on the difference between
reference (MEM∗) and actual (MEM) memory usage.

Controller
Apache 

Web 
Server

MEMMCMEM⇤

Figure 1: Apache overload control block diagram

3.2 Feedback Control Definition Language
Our approach is based on an actor-oriented component
meta-model for representing FCLs abstractions, called
Feedback Control Definition Language (FCDL) [27].
The components are actor-like entities called Adaptive
Elements (AE) that are connected into hierarchically
composed networks that form closed FCLs.

Syntax. An AE defines properties and input/output ports
through which it communicates with other AEs using ei-
ther data-driven (push) and demand-driven (pull) mode.

2For simplicity, we only use the case with one controller.

2
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Once an AE receives a message, it executes its associated
behavior whose result may or may not be sent further to
the connected downstream elements which in turn will
cause them to react and so on and so forth. An AE can
be passive, i.e. triggered by a message, or active, i.e. trig-
gered by an external event (e.g. a file modification). The
ports and properties data values are statically typed and
FCDL further supports parametric polymorphism. We
recognize the following types of AE: a sensor (raw in-
formation collection), an effector (changes propagation),
a processor (data processing and analyzing), and a con-
troller (decision making). FCDL also contains a com-
posite type that can be created from both atomic AEs and
other composites. It can define ports, which are used to
promote ports of the contained elements. Furthermore, a
composite is also the primary unit of deployment.

Figure 2 shows an FCDL model implementing the
FCL from Figure 1. The figure uses an informal FCDL
graphical notation (a formal textual syntax is presented
further in Section 4).

ApacheLoadControl

mem
: SysMem

controller
: Controller

mcConf
: SetApacheConf

out  output

in  input

out  output

scheduler
: PeriodTrigger

out  output

in  input in  inputMEM MEM MC
controller

effector

sensor

active
processor

Figure 2: A FCDL model of Apache overload control

The PeriodicTrigger is an active processor. It peri-
odically pulls memory utilization (MEM) from SysMem
sensors and in turn pushes the value to the Controller
that computes a new MC configuration to be applied by
the SetApacheConf effector. The MEM∗ value is mod-
eled as a property of the controller.

Conceptually, each AE can be seen as a target system
itself, and as such it can provide sensors and effectors
enabling the AE reflection. This is a crucial feature per-
mitting to hierarchically organize multiple FCL [36] in
an uniform way and therefore realize complex control
schemes from elementary building blocks.

Semantics. The execution semantics is based on the
Ptolemy [13] push-pull model of computation [42]. We
further adapt a notion of Interaction Contracts (IC) to
precisely define allowed interactions of AE [9]. An
IC specifies what ports activate an AE, what inputs
might be pulled during AE execution, and what outputs
might push results. For example, the IC associated with
PeriodicTrigger is 〈sel f ;⇓ (input); ⇑ (output?)〉. It
denotes an interaction caused by a self activation, pulling
data from the input port and conditionally pushing data
to the output port. ICs allow for asserting certain archi-
tectural properties (e.g., consistency, determinacy, com-
pleteness) and they denote the type of the associate ac-
tivation function making the generated source code both
prescriptive (guiding developers) and restrictive (limit-

ing developers to what the architecture allows).

4 Application to ZNN.COM

The main Znn.com control objective is content adapta-
tion whereby the delivered content quality (e.g. degraded
image quality) is reduced when the server is under heavy
load. This has been well studied by Abdelzaher et al.
[1–3], providing a control theoretic approach, which we
integrate into Znn.com using FCDL.

4.1 Local Content Delivery Adaptation
The aim of the adaptation is to maintain web server load
at a certain pre-set value. The server content is pre-
processed and stored in M trees where each one offers
the same content, but of a different quality and therefore
size. At runtime, a given URL request, e.g. photo.jpg,
is served from either /full/photo.jpg or /degraded/-
photo.jpg depending on the current load of the server.
Since the resource utilization is proportional to the size
of the content delivered, offering the content from the
degraded tree helps to reduce the server load.

Controller Design. Abdelzaher et al. [2,3] proposes two
controllers: a simple integral controller and a more so-
phisticated proportional integral controller. Due to the
space limitations, in this paper we only consider the for-
mer one, however, from the software architecture per-
spective, the only difference between them is the type of
AE that is instantiated. The focus of FCDL is to facili-
tate the controller integration into software system not to
develop of the controller itself.

The controller input is the web server utilization U =
aR+bW that is periodically computed using request rate
R = ∑r

t and delivered bandwidth W = ∑w
t , where a and b

are platform constants3 and ∑r, ∑w are the number of re-
quests and the amount of bytes sent over some period of
time t, respectively. The controller output is the severity
of the adaptation action G = G+KIE = G+KI(U∗ −U)
where KI is the controller integral gain, U∗ is the target
utilization (set by a system administrator) and U is the
observed utilization. It determines which content tree
should be used ranging from G = M, servicing all re-
quests using the highest quality content tree to G = 0 in
which case all requests are rejected.

Architecture. Figure 3 shows one possible integration of
the above controller into the target system using FCDL.

For the decision-making part we create an AE,
IController, that implements a general integral con-
troller. Once a new value (U) is pushed into its input,
it computes and pushes the control input (G). Both the
integral gain (KI) and the reference input (U∗) are repre-
sented as the controller properties. The monitoring part
periodically computes server utilization U . Both the R

3cf. Abdelzaher et al. [2, 3]

3
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Figure 3: Apache content delivery control

and W can be obtained from Apache access log file. We
create an active sensor, FileTailer, that activates ev-
ery time a file content changes pushing out the modified
part. The connected AccessLogParser extracts the num-
ber of requests r, the size of the responses w and pushes
the values into the connected counters requestCounter
and responseSizeCounter. To compute utilization U ,
the sum of requests ∑r and response size ∑w has to be
converted into request rate R and bandwidth W—i.e., the
number of requests and sent bytes over certain time pe-
riod t. We reuse the periodic trigger, which by pulling its
input causes LoadMonitor to compute U using the accu-
mulated ∑r, ∑w sums. In the reconfiguration part, the
FileWriter updates the web server URL rewrite rules
reflecting the newly computed content tree.

To demonstrate composition, the presented ele-
ments are assembled into three composites ApacheQOS,
QOSControl and ApacheWebServer, representing the
main composite that will be deployed, the control, and
the target system, respectively. This makes a clear sep-
aration of concerns and easy to switch from web server
implementation to another.
Implementation. FCDL models are implemented in
a domain-specific language called Extended Feedback
Control Definition Language (XFCDL). It is a textual
DSL for authoring FCDL models that further supports
modularization and AE implementation using a Java-like
expression language Xbase4. Listing 1 shows an excerpt5

of the IController AE. Line 1 defines a new active poly-
morphic processor type with data type parameter T , fol-
lowed by ports declaration (lines 2-4) and property defi-
nition (line 6). Line 7 specifies an IC and line 10 provides
its implementation directly in Xbase.

4.2 Distributed Adaptation
Next, we extend the adaptation to cover distributed
Znn.com deployment on a pool of replicated servers with
a load balancer.

Controller Design. The distributed deployment con-

4A statically typed Java-like expression language http://bit.ly/1mr36bt
5The complete XFCDL code is available from the companion website http:

//fikovnik.github.io/Actress/ICAC14.html

1 active processor PeriodicTrigger<T> {
2 push in port output: T
3 pull in port input: T
4 self port selfport: long // self port for self-activation
5
6 property initialPeriod: Duration = 10.seconds
7 act activate(selfport; input; output?)
8
9 implementation xbase {

10 act activate { output.put(input.get) }
11 }
12 }

Listing 1: XFCDL code of PeriodicTrigger AE

sists of a server pool S with n servers and one load bal-
ancer. Each server Si runs locally the previously devel-
oped ApacheQOS FCL computing its target content tree
Gi. In order to maintain the highest QoS, the load bal-
ancer dynamically schedules the arriving requests to a
server s ∈ S that provides the least degraded content:
content_tree(s) = max(content_tree(S)).

Architecture. Figure 4 depicts the FCL architecture
representing the distributed control. The LocalApache-
QOS runs at each of the server Si, encapsulating the local
ApacheQOS FCL. The LoadBalancerControl runs on the
load balancer controlling the scheduler using the above
equation.

The load balancer FCL first collects the content tree
(G) status of all the participating servers using dis-
tributed publish/subscribe event bus. An advantage of
using an event bus is that it does not need to be a pri-
ori aware of all the participating servers. In FCDL,
an event bus is facilitated by two AEs: the pub-
lisher (EventBusPublisher) and the subscriber (Event-
BusSubscriber). We use key-value tuples of servers
Si (server hostname) with their corresponding content
trees Gi. The Gi is obtained from a newly promoted
ApacheQOS port contentTree so that the G is available
from the outside. The pushed (Si,Gi) entries are re-
ceived by the EventBusSubscriber and aggregated us-
ing the MapStore AE, which is a map storage. The server
with the highest G is selected by the MapMaxKey AE and
consequently used to update the load balancer scheduling
rules.

4
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Figure 4: Distributed QoS Management Control FCLs

4.3 System Identification
Controllers for software systems are usually driven by
“black box” models derived from experimental runs col-
lecting data and statistical model constructions. An ex-
perimental run consists of observing the effect of control
inputs on the measured outputs. In FCDL, this can be fa-
cilitated by designing an open loop architecture in which
target system touchpoints are used to set control inputs
and observe/log corresponding system outputs. For ex-
ample, Figure 5 shows an architecture model for tuning
the controller from Section 4.1 into an open loop that
can exercise the system on a range of inputs and log its
outputs. Instead of connecting a controller output into
the ApacheWebServer content tree input, we connect it
directly to a value generator, a discrete sine wave.

SystemIdentification

out  output

log
: FileWriter
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utilization
: UtilizationMonitor

out  utilization

in  requests

in  size scheduler
: PeriodTrigger

in  input out  output
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contentTree: FileReader
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contentTree: SineWaveserver: ApacheWebServer

(U,G) (U,G)

Figure 5: Apache content delivery control. The Utili-

zationMonitor contains the requestCounter, responseSize-
Counter and loadMonitor elements from Figure 4.

4.4 Adaptive Control
An adaptive control improve FCL portability to load con-
ditions and platform resource capacities that have not
been anticipated during the system identification [4]. In

FCDL, an adaptive control is facilitated by the model re-
flection. Figure 6 depicts an architecture of adaptive con-
trol for local content delivery adaptation FCL (cf. Sec-
tion 4.1) that reuses part of the system identification de-
veloped above.

The aim is to perform an online profiling of the tar-
get system (relation between U and G), based on which
we estimate the controller parameters (KI). First the
IController is extended with a provided effector to al-
low to change KI at runtime. Next, we reuse the part of
the architecture developed for the system identification
and we create an AdaptiveController for the parame-
ter estimation. It can be implemented using an adaptive
controller as shown by Lu et al. [29] or by constructing a
dynamic system model as proposed by Filieri et al. [37].
Finally, we encapsulate the corresponding elements into
a new composite AdaptiveControl that can be placed on
the top of the FCL developed in Section 4.1.

Adaptive control is one example of the FCDL reflec-
tion capabilities, which can also be used to design adap-
tive monitoring, or to organize multiple FCLs using var-
ious control schemes, such as hierarchical control.

5 Assessment and Discussion

In this section we assess our approach by discussing its
properties and quality attributes. As such, the assess-
ment is rather qualitative since we do not evaluate the
controllers themselves.

Implementation. To facilitate the development us-
ing FCDL, we have implemented a prototype of a
Java/EMF [14] based modeling environment called AC-
TRESS [27]. It provides support for FCDL modeling,
verification (user defined constraints and temporal prop-
erties) and source code generation together with runtime
platform.

Properties. The generality is addressed by using a fine-
grained FCL decomposition which should be usable in
any domain for various adaptation property. FCDL is
built as a technologically-agnostic model and the Java
based ACTRESS implementation provides only one tech-
nological solution. Generality is also obtained in adapta-
tion scenarios, as they are captured at a conceptual level
using the problem domain concepts, rather than the im-
plementation concepts. The visibility property is tack-
led by having all the FCL processes represented as first-
class entities with explicit interactions that are precisely
guided by interaction contracts. Finally, we have shown
that FCLs are composed from clearly structured fine-
grained AEs using ICs to guide AE interactions and im-
plementations (cf. Section 4.1).

Quality Attributes. Among many software quality at-
tributes, the following are relevant for evaluating self-
adaptive engineering approaches and have been already
used by others, e.g. Asadollahi et al. [6].
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Figure 6: Adaptive control for Apache content delivery controller

− Flexibility. FCDL can represent both closed and open
control loops and AE reflection allows for designing
complex control schemes. Unlike most frameworks,
FCDL does not dictate any system architecture nor
any specific technology. Furthermore, it promotes
separation of concerns in the sense that the FCL ar-
chitecture and control mechanisms may be defined
by control engineers while the technical/system-level
processors and touchpoints may be implemented by
software engineers. Next to the Znn.com case study,
FCDL was also used to build overload control adap-
tation scenarios in the domain of high-throughput
computing [26, §8.1].

− Scalability. The FCDL support for composition,
polymorphic data types and ICs allowed us to incre-
mentally refine the needed FCLs throughout the case
study. These techniques are likely to allow for build-
ing larger models.

− Usability. Our approach relies on known concepts,
as FCDL is using notions from control theory and
component-based software engineering, XFCDL fol-
lows known concepts from Java, and the ACTRESS
modeling environment is integrated in the Eclipse
IDE, which might simplify adoption for the users al-
ready familiar with it. Furthermore, using on the
actor-model simplifies AE implementation without
the need to protect mutable states [19]. The im-
plementation effort varies between 200-300 XFCDL
lines of code per scenario6.

− Reusability. There are two features that contributes
to AE reusability: the FCDL support for data type
polymorphism and the Xbase support for lambda ex-
pressions that allows to use functions types as prop-
erties. This results in higher-order polymorphic AEs
definitions.

− Extensibility. FCDL and XFCDL are both defined
using their respective EMF meta-models. Therefore,
extending their core functionality is only possible by
modifying the ACTRESS source code. On the other
hand, thanks to MDE, it is possible to use the FCDL

6The complete XFCDL code is available from the companion websitehttp:
//fikovnik.github.io/Actress/ICAC14.html

models and target different systems, providing new
code generators, verification techniques and the like.

− Performance. The ACTRESS runtime is based on
Akka7 which with no AE deployed accounts for
1.5MB8. The memory overhead is about 400 bytes
per actor instance with a possible throughput of 50
million messages per sec on a single machine9. The
size and the CPU time of an AE is mostly affected by
the amount of state it keeps and the complexity of its
activation methods. However, the main potential per-
formance issues are in the indirect load caused by the
sensors and effectors.

6 Conclusions

While control theory provides solid foundations for de-
signing self-adaptive systems, its mapping into imple-
mentation artifacts often results in the development of
dedicated assets (e.g. code, models) which inevitably
prevents their reuse and adoption at a larger scale. To
overcome this limitation, we define FCDL, a domain-
specific modeling language for integrating adaptation
mechanisms into legacy software systems. We demon-
strated its use on an implementation of local and dis-
tributed content delivery adaptation and distributed re-
source management. FCDL is a domain-specific and
technologically-agnostic architecture model that pro-
vides an actor-based programming model.

Currently we are focusing in carrying more case stud-
ies, in particular targeting different self-adaptive prop-
erties and improvements such as support for distributed
deployment and failure propagation. For future work, we
intend to investigate adaptive feedback controllers and
the principles of defensive programming in order to bet-
ter control the execution of feedback control loops.

Acknowledgments. This work is partially supported by
the Datalyse project www.datalyse.fr.

7http://akka.io
8MacBook Pro 2.53 Ghz, 8GB RAM, Java 1.7_17 64bit, Akka 2.2
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Abstract
Motivated by the growing popularity of database-as-a-
service clouds, this paper presents ShuttleDB, a holis-
tic approach enabling flexible, automated elasticity of
database tenants in the cloud. We first propose a
database-aware live migration and replication method
designed to work with off-the-shelf databases without
any database engine modifications. We then combine
these database-aware techniques with VM-level mech-
anisms to implement a flexible elasticity approach that
can achieve efficient scale up, scale out, or scale back for
diverse tenants with fluctuating workloads. Our experi-
mental evaluation of the ShuttleDB prototype shows that
by applying migration and replication techniques at the
tenant level, automated elasticity can be achieved both
intra- and inter-datacenter in a database agnostic way.
We further show that ShuttleDB can reduce the time and
data transfer needed for elasticity by 80% or more com-
pared to tenant-oblivious approaches.

1 Introduction

In recent years, online applications have increasingly mi-
grated to cloud platforms, which use data centers to pro-
vide computing and storage resources to these applica-
tions. Databases are no exception to this trend, and many
services have been built on the idea of the “database
cloud.” Examples include Amazon RDS [1] and Google
Cloud SQL [19], which expose cloud-based relational
databases to client applications, and Salesforce, which
employs a shared database used by many independent
customers. There are numerous advantages to the cloud-
based model, such as the pay-as-you-go model, where
resources are billed and paid for on a fine-grain usage
basis, and flexible resource allocation, where computing

∗This work was performed while the author was at NEC Labs Amer-
ica. This research was supported in part by NSF grant CNS-1117221
and a gift from NEC Labs America.
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Figure 1: Provisioning for peak demand (left) may result in
lower utilization and higher costs versus an elastic approach
(right) requiring fewer dedicated resources.

and storage can be dynamically increased or decreased
based on an application’s changing workload needs.

The key to realizing many of these benefits is elasticity
– the ability of the cloud platform to adjust an applica-
tion’s resource allotment on the fly when responding to
long-term workload growth, seasonal variations, or sud-
den load spikes. Since workload peaks tend to be tran-
sient in nature, a priori static provisioning for the peak re-
sults in substantial waste as resources sit unused at non-
peak times—typical server utilization in real data centers
has been estimated at only 5-20% [4]. An example of this
issue is shown in Figure 1. Figure 1(a) shows an exam-
ple workload serviced by traditional dedicated resources.
However, if the system is elastic, as shown in Figure 1(b),
we can simply shift load to a new server during peak de-
mand, and thus reduce the dedicated resources needed to
service the workload.

Database Elasticity. Despite their widespread use,
databases present some of the greatest difficulties in sup-
porting elasticity. These difficulties largely stem from
the specific requirements of relational databases, such as
transactions and ACID compliance, and have led some
to label the SQL database as the “Achilles heel of cloud
elasticity” [20]. While most modern databases support
clustering and replication (e.g., products such as MySQL
Cluster), these systems are seldom designed to dynami-
cally grow or shrink, and often introduce configuration,

1



34 11th International Conference on Autonomic Computing USENIX Association

management, or performance overhead [15].
While it is possible to encapsulate databases into vir-

tual machine containers and use “standard” VM-based
cloud elasticity mechanisms such as VM migration or
VM replication (e.g., Amazon’s auto-scaling [2]), the
approach does not work well for many database cloud
scenarios. For example, shared hosting scenarios (e.g.,
Salesforce cloud) are designed to collocate large num-
bers of (small) database tenants on single servers, which
is not well suited to a VM-per-tenant elasticity model. If
multiple tenants share single VMs to counteract the im-
pact of hosting many VMs, then elasticity of the server
is limited when using VM-level techniques, since in-
dividual tenants can no longer be migrated or repli-
cated. VM-level mechanisms may also be unnecessar-
ily heavyweight [24] for a “standard” application such
as a database server that may not require significant cus-
tomization of the underlying system.

Alternatives to VM-based black-box elasticity for
databases include NoSQL systems (e.g., key-value stores
such as BigTable [10] or Dynamo [16]), or augment-
ing the database engine itself to support elasticity (e.g.,
Zephyr [18], Albatross [14], and RemusDB [23]). How-
ever, these approaches introduce significant added com-
plexity within the database itself and may change the
behavior observed by client applications (e.g., the pos-
sibility of transaction failures during migrations [18]).
In some ways, however, multitenant databases are well
suited to application-level elasticity; for example, each
database tenant may be viewed as a lightweight con-
tainer, in the same way that a single VM is the unit of
elasticity in VM migration.

Ideally, database elasticity should be based on migra-
tion and replication—like VM elasticity—and be trans-
parent to the application and database engine, just as VM
elasticity is transparent to the application and the OS.

Contributions. In this paper, we present ShuttleDB, a
flexible system combining virtual machine elasticity with
lower-level, database-aware elasticity to provide efficient
database elasticity both within and across cloud data cen-
ters. Our primary contributions are threefold:

1. We examine the dichotomy between high-level
VM migration and low-level DB-aware migration to de-
cide when each approach is more appropriate. In par-
ticular, we identify two primary system dimensions de-
termining what type of elasticity is appropriate—tenant
type/size (i.e., collocated vs dedicated) and network type
(i.e., LAN vs WAN). On this basis, for each database ten-
ant that requires to be elastically scaled, ShuttleDB de-
termines (a) whether to use high-level VM elasticity or
low-level DB-aware elasticity, and (b) whether to scale
up, scale out or scale back.

2. We present a specific technique for database-aware
live migration, allowing migration of individual database

tenants among servers without incurring the full cost of
virtual machine migration. In contrast to most existing
work, our technique requires no changes to the database
engine, relying only on the presence of standard hot
backup tools, and can be done live without any database
down time. Additionally, performance optimizations en-
able efficient operation across wide-area networks.

3. We present a prototype implementation of Shut-
tleDB as a elasticity middleware that uses an off-the-
shelf DBMS and virtualization platform. We empirically
evaluate our system and demonstrate that it automatically
achieves efficient elasticity under a variety of system
conditions. In particular, we find that it provides tenant
migration with minimal client workload delays and can
reduce the time and data transfer needed for elasticity by
80% or more compared to tenant-oblivious approaches.

2 Database Clouds and Elasticity

Database Clouds. We assume the environment of a
cloud providing a “database as a service” to its cus-
tomers. In a database cloud, each customer rents a
database from the cloud and manages it as a normal rela-
tional database, while the cloud is responsible for ensur-
ing high performance. In particular, we assume that the
cloud has a pool of physical, virtualized servers spread
across one or more data centers. Each server houses one
or more virtual machines (VMs), and each VM in turn
houses one or more database tenants. In our work, a ten-
ant is defined simply as an independent consumer of re-
sources — most likely a single user or customer servic-
ing a particular application. Multiple tenants may reside
on individual servers so as to maximize server utilization
and minimize hardware costs.

Small tenants (those with little data and/or small work-
loads) may be co-located within a single VM to avoid in-
curring the memory overhead of housing many VMs with
individual OSes. Within a VM, all collocated tenants
are assumed to share the same database process, which
has been advocated in order to maximize resource shar-
ing [13]. As a illustrative example, we executed a simple
workload across 10 tenants on a server, first sharing an
instance between all tenants (single-process), then with
10 separate processes with equal resource shares (multi-
process). Transaction latencies as we scale the aggregate
workload in both cases are shown in Figure 2. As the
server becomes heavily loaded, we see that the multi-
process model quickly falls behind, eventually showing
3x higher latency than the single-process model.

Large tenants, on the other hand, are housed in a ded-
icated virtual machine, which enables them to use all of
the CPU and storage resources allocated to the VM. This
model is analogous to EC2 compute clouds or shared
hosting scenarios such as Salesforce [26].
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Figure 2: Single-process multitenancy outperforms multi-
process multitenancy under load.

Tenant workloads are dynamic and can exhibit tempo-
ral variations or sudden spikes. In response to such vari-
ations, an important function of the cloud is to elastically
scale the resources available to tenants. The mechanisms
for providing this elasticity can be divided into two pri-
mary categories: VM-level or database-level approaches.

VM-level mechanisms: In the simplest case, when
a tenant is about to experience an overload, its virtual
machine can be migrated to a larger physical server and
the VM can be allocated additional resources as needed.
Such VM migration can be performed on-demand, trans-
parently, and without noticeable downtime [11]. Al-
though widely supported by virtualization platforms,
however, VM migration is is wasteful for small tenants.
Since many small tenants share a single virtual machine,
moving the underlying VM and its disk moves all resi-
dent tenants, even if only one tenant is experiencing the
increased workload. The simplicity of VM migration
is, however, useful for large tenants housed in dedicated
VMs – in this case, although the migration moves both
the OS and the database, the extra overhead of moving
the OS state gets increasingly amortized as the database
size grows. VM mechanisms may also be used to repli-
cate tenants onto different servers. In this case, a snap-
shot of the virtual machine disk is taken and copied over
to the new server, which is started as a new VM instance
containing a replica of the tenant Scale out via replica-
tion is best suited for large database tenants where the
capacity required to service the tenant workload exceeds
that of a single physical server.

Despite the simplicity and application-agnostic nature
of VM-level elasticity, the VM-based approach is not
without drawbacks. First, since VM migration and repli-
cation are black-box techniques, we cannot exploit use-
ful application-specific properties, such as the presence
of a database query log (which allows for query ship-
ping instead of only data shipping as done in VM mi-
gration). Second, since most VM migration designs as-
sume a shared, network-attached storage system, the tar-
get scenario is shipping memory state rather than disk
state as in a database. Recent versions of Xen support
migration of both VM memory and disk state in shared-

Dedicated Tenant Colo Tenant
(large) (small)

LAN scale-up VM migrate DB migrate
LAN scale-out DB or VM replicate
WAN scale-up DB migrate DB migrate
WAN scale-out DB replicate

Table 1: Elasticity mechanisms in ShuttleDB are intelligently
chosen on tenant size and network characteristics.

nothing servers, but this still assumes a LAN environ-
ment. WAN-oriented extensions to VM migration have
been proposed [29] but are not yet natively supported by
off-the-shelf VM platforms.

Database-level mechanisms: A different approach is
to implement elasticity at the application (i.e., database)
level. Many such systems have been previously pro-
posed [14, 18, 23], but operate largely by modifying
the internals of the database itself. Such modifications
complicate usage by end-users, as the operational guar-
antees of the database may change—e.g., the possibil-
ity of unpredictable transaction failures during migration
in [14]. To be practical, database enhancement should
retain transactional (ACID) semantics when implement-
ing migration. Similarly, traditional master-slave repli-
cation allows us to implement a basic form of scale-
out elasticity by adding or removing slave instances.
However, many replication environments are oriented to-
wards heavily manual configuration, and simply moving
a database to a new server without downtime often in-
volves more overhead than necessary if using replication.

Database-level elasticity has several advantages when
used in cloud environments. Since replication and migra-
tion can be performed on a per-tenant basis, it is particu-
larly useful for small tenants that share a virtual machine
(as overloaded tenants can be individually migrated). For
large tenants, these differences are less important and the
benefits of database-level elasticity may not outweigh the
downsides of added complexity. For cross-data center
WAN elasticity, however, database-level mechanisms are
still preferable due to the current limitations of VM-level
mechanisms over WAN migration.

ShuttleDB approach. From the previous discussion,
it follows that neither VM-level nor database-level elas-
ticity works well in all scenarios. Consequently, Shut-
tleDB incorporates both VM-level and DB-level elas-
ticity and automatically chooses the “best” elasticity
mechanism for each elastic operation on a given tenant
(e.g, VM-level or DB-level, and scale-out or scale-up).
In addition, ShuttleDB provides its own technique for
database live migration that does not require any modifi-
cation to the internals of a database and works with most
off-the-shelf database platforms. We also show how this
approach can be used to implement database replication
in multi-tenant master-slave settings.
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The ShuttleDB approach is summarized in Table 1.
For small, co-located tenants within a VM, scale up is the
best elasticity option, since tenant requirements are less
than the capacity of a single server. Further, database-
level mechanisms are more efficient since they enable
a single tenant to be migrated independently of others,
while a VM-level mechanism would need to move the
entire VM and all resident tenants. For large dedicated
tenants, the choice depends on other factors. If the ten-
ant is still smaller than a single machine, scaling up by
migration to a larger machine is a feasible option. Within
a LAN, VM migration is the simplest approach. When
the tenant requirements exceed the capacity of a single
server, it must be scaled out by replicating onto multiple
machines. Within a LAN, this can be achieved by ei-
ther VM- or DB-replication. Across cloud data centers,
however, DB-level migration or replication is preferable
to VM-level mechanisms, due to the premium placed on
bandwidth usage in such scenarios.

3 Database-Aware Elasticity

Elasticity requires both migration for scaling up and
replication for scaling out. Replication is actually a spe-
cific case of migration where the original database does
not have to be stopped at the end of migration. Virtual
machine migration is built-in to modern hypervisors, and
as such is relatively simple to employ. Database-aware
migration, on the other hand, is not part of off-the-shelf
DBMSes. To address this issue, ShuttleDB provides its
own database migration technique, which also serves as
the building block for replication elasticity. Our tech-
nique draws inspiration from live VM migration [11] and
database migration [6] methods, but has important dif-
ferences from both. While VM migration uses “black
box” data shipping to transfer state to the target machine,
our DB migration technique combines query log ship-
ping and data shipping for greater efficiency. “Process-
level” techniques used in previous work such as [6] mi-
grate all database state managed by a database server
process, while our method can perform “tenant-level”
migration where individual tenant databases within a
database server can be live migrated. ShuttleDB’s elas-
ticity protocol is ‘live’, with minimal downtime regard-
less of data size, and is fully transparent to clients of the
database. Our database-agnostic migration protocol is
described below, while our database-specific prototype
implementation is detailed in Section 5.

3.1 Migration Protocol
DB-aware migration in ShuttleDB employs a three-phase
database migration protocol, which is shown in Figure 3.
For a given migration, we have three logical machines to

consider: the source server on which the migrating tenant
currently resides, the target server to which the tenant is
migrating, and the client(s) currently issuing requests to
the migrating tenant.

Phase 1 – Hot Backup. In the first phase, we cre-
ate a live snapshot of the tenant database by employing
an off-the-shelf hot backup tool and streaming the re-
sulting backup image to the target server. Suitable hot
backup tools are available for most well-known database
systems (MySQL, Postgres, Oracle, etc.). Since the ten-
ant may have a large amount of data, taking this snap-
shot may take minutes to hours. However, as the server
is not blocked during this period, it continues to service
all client workloads as usual. At the completion of the
first phase, the target server contains a copy of the tenant
database up to some position in the binary log.

Phase 2 – Live Deltas. Once phase 1 completes, a
consistent snapshot of the tenant exists on the destination
server, but may be out of date, since the local server con-
tinues to execute queries during the backup. If replica-
tion has to be performed, the slave replica can be started
right away at the destination, letting the database replica-
tion mechanisms bring the replica up to date.

In case of migration, the second phase proceeds as a
series of delta rounds in which the source server replays
queries from the binary log and streams them across the
network to bring the target server up to date. This is anal-
ogous to memory deltas used in VM migration, but ap-
plied to a query log instead of the contents of memory.

Let ps be the log position of the source server and pt
be the log position of the target server. At the start of
each round, the target server sends pt to the source. The
source then reads from pt to ps in the log and sends this
delta to the target, which is applied to the target database
after filtering queries not pertaining to the migrating ten-
ant. Once the delta is applied to the target, the next round
begins by again sending pt to the source.

Delta rounds continue until the duration of the most re-
cent round is either (a) less than a small threshold (e.g., a
few seconds) or (b) greater than the round before it. This
approach guarantees termination of phase 2. In typical
circumstances, each delta round is shorter than the last
(since the number of write queries in the next delta round
is proportional to the duration of the previous round),
which will ultimately result in satisfying condition (a). If
this is not the case – i.e., delta rounds are getting longer –
then this is an indication that the target server is actually
falling further behind the source and will trigger condi-
tion (b). In either case, migration proceeds to phase 3.

Phase 3 – Handover Delta. Once delta rounds are
completed, the two copies of the database are nearly in
sync, and we are ready to hand off the tenant workload
from the source to the target. To do this, a final han-
dover delta is performed to complete migration. The lo-
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Figure 3: Three-phase live migration protocol for database ten-
ants used in ShuttleDB.

cal server first freezes the tenant workload by queueing
all new incoming transactions directed at the migration
tenant (but without blocking existing transactions), then
waits to finish servicing the tenant’s outstanding transac-
tions prior to the freeze. Once all such transactions are
completed, the local server sends a final delta, bringing
the target server fully in sync with the source (since new
transactions are frozen in the meantime). Once the final
delta is applied, previously queued transactions are for-
warded to the target server, clients are redirected to the
new server, and the tenant workload is unfrozen. This
completes the handover and switches the ‘authoritative’
tenant copy to the target server. Note that while phase
3 necessarily imposes a degree of effective downtime
while the final delta is applied, this duration is not depen-
dent on the size of the database and is typically a second
or two at most, as demonstrated in Section 6. Down-
time may be longer if phase 2 was terminated by length-
ening delta rounds, but this case is unlikely except with
extremely write-intensive workloads.

To adjust this migration protocol for replication, we do
not need to freeze the workload at the master. Instead,
the slave connects to the master and receives a continu-
ous stream of updates from the master. Queries can be
directed to the new slave as soon as it has caught up.

3.2 Performance Optimizations

We employ two notable performance optimizations dur-
ing the migration process. First, we consider the fact that

T2T2
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Server A Server B
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(5)  handover

(3) extract(4) deltas
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Database Client
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(4) patch
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(7) handover

(b) Returning Migration

Server A Server B

Figure 4: Saving a tenant archive during migration allows
transferring small diffs instead of the full tenant database dur-
ing subsequent migrations.

since migration itself imposes some degree of overhead
(e.g., streaming the migrating tenant), local performance
may be degraded. To address this issue, we employee
an automated technique previously proposed [6] that au-
tomatically and dynamically rate-limits migration (de-
pending on performance) to avoid excessive interference.
Second, we consider the case when a migration is per-
formed to a server containing an old version of the ten-
ant (e.g., when migrating to a server containing a backup
or returning from a cloud server following a temporary
workload spike). Here, we do not need to migrate the
entire tenant, but can transmit only the (small) delta be-
tween the old tenant copy and the up-to-date version.

This process, which we term ‘delta migration’, is illus-
trated in Figures 4(a) and (b) for an outgoing and return-
ing migration, respectively. During the initial hot snap-
shot (phase 1) of the outgoing migration, we save a copy
of the snapshot on both the source server (a local copy) in
addition to the usual streaming copy to the target server.
The remainder of phases 2 and 3 then proceed as normal.
During phase 1 of the return migration, however, rather
than streaming the database back to the source server,
we re-use the older snapshot already present locally. We
then generate a patch from the original database snapshot
and stream only this patch back to the source. Since the
source still has a copy of the original snapshot, it then ap-
plies the patch to generate the up-to-date snapshot, then
proceeds phases 2 and 3 of bursting as usual.

In performing this optimization, we are able to skip
the most expensive part of migration (the full data stream
in phase 1). The net result is a major reduction in the
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amount of network data that must be transferred to mi-
grate between machines. This reduction in network traf-
fic is of particular interest when migrating over the wide-
area, e.g., between a local cluster and Amazon EC2,
since such transfers are likely to be over relatively low-
bandwidth links.

Note that pre-copying can also be employed to reac-
tively spawn slave replicas in case of a sudden load spike.
Previously terminated replicas can be quickly restarted
by sending the small diff patch containing the updates
that occurred since they were stopped.

4 Automated Elasticity

ShuttleDB employs an intelligent algorithm that com-
bines VM-level elasticity with the database-level tech-
niques described in the previous section to automatically
scale the capacity of each tenant as needed by the work-
load. The algorithm involves four key steps: (i) when
to invoke the scaling algorithm, (ii) who (i.e., which ten-
ant(s)) to choose for optimization, (iii) where to migrate
or replicate the tenant(s), and (iv) which mechanisms to
use for scaling: i.e., scale-up, scale-out or scale-back and
whether to use VM-level or DB-level techniques. The al-
gorithm involves the following steps:
Step 1: When to initiate elastic scaling: ShuttleDB
monitors the current query latency of tenants in the
database server (computed as a smoothed average over
a sliding window) and also tracks the resource usages
at the underlying virtual machine to determine when to
initiate the scaling algorithm. ShuttleDB uses an upper
threshold on latency and resource utilization as well as
a lower threshold on these values to initiate scale-up/out
and scale-back, respectively. Further, in addition to re-
actively triggering the algorithm when the thresholds are
breached, it is also possible to use time series based load
forecasting that uses past trend history to predict future
values and use these predictions to proactively initiate the
algorithm. Currently, we use a standard ARIMA time-
series forecasting method, which smooths the observed
latencies and utilization over recent time periods to pre-
dict future values [28].
Step 2: Which tenants to choose for scaling: In most
cases, the tenant that is experiencing the overload (or
is about to, as per predictions) is chosen for scaling
(or for scaling back if it is under-loaded and below the
low threshold). However the choice of which tenants
to choose may not always be staightforwad. In certain
shared co-location scenarios, for example, no single ten-
ant may be experiencing an overload but each tenants
may be experiencing small increases in load so that they
all collectively exceed the higher threshold. A more in-
teresting scenario is one where one tenant is overloaded,
but it may be cheaper to move out a different tenant and

give the freed resources to the overloaded tenant. For
example, if two tenants equally share a VM’s CPU and
memory and have database sizes of 5GB and 10GB, and
if latter experiences overload, it is cheaper to move the
first tenant and give all of the VM’s resources to the lat-
ter. To intelligently choose the “correct” tenants, Shut-
tleDB performs a simple cost-benefit analysis. The cost
of moving a tenant is estimated as the amount of disk
state (and possibly memory state when using VM-level
migrations) that must be transferred. The benefit of mov-
ing a tenant is the amount of load it offloads to a differ-
ent server (measured as CPU or disk load, depending on
the bottleneck resource on that VM). ShuttleDB greedily
chooses the tenants with the greatest benefit to cost ratio
– that is, those that offload the most load at the lowest
data transfer cost.
Step 3: Where to move a tenant: Whenever possible
ShuttleDB attempts to move tenants to servers in the
same cloud data center. In scenarios where local re-
sources are stressed, ShuttleDB will then choose to move
tenants to servers in the nearest cloud site. Note that such
WAN-level migrations or replication must be done care-
fully since there will be an impact on the front-end tiers
of the application, which may experience WAN laten-
cies if the backend tenant moves to a different site. Typ-
ically such moves would be done in consultation with
the elasticity mechanisms of the front-tier as well, but
such coordinated elasticity mechanisms are beyond the
scope of this paper, and here we assume that the scal-
ing of database cloud is done independently.1 Typically
for scale out and scale up, ShuttleDB chooses any server
with sufficient idle resources. Scale back for shared ten-
ants involves a consolidation and ShuttleDB chooses a
virtual machine that hosts other shared tenants but has
sufficient resources to house more.
Step 4: Which mechanisms to choose: The final step
involves determining which elasticity mechanism to
choose. Table 1 depicts the preferred DB or VM-level
mechanism used in each case. For shared (small) tenants,
scaling up is the preferred option and DB-level mech-
anisms are used to move only the desired tenants and
avoid needless data copying. The only scenario where
scale out is used for a small tenant is when it experi-
ences a very large workload growth - in this case, a DB
migration is first performed to extract the tenant out of
the shared VM and it is given its own VM, which is
then replicated, like in the large dedicated tenant case.
For large dedicated tenants, ShuttleDB attempts to scale
up (migrate to bigger server) when possible and then
uses scale out (replicate to other servers) when no single
server can service the incoming workload. LAN mecha-
nisms are always preferred over WAN.

1Amazon’s S3 storage also performs such geographic replication
independently, although latency issues are more critical for databases.
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Figure 5: ShuttleDB consists of three tiers: a database/tenant
tier (using an off-the-shelf DBMS), a database elasticity tier
(using VM or DB-aware migration), and a top-level manager
(e.g., to facilitate elasticity).

5 Prototype Implementation

Our current implementation of ShuttleDB uses a three-
tier design as depicted in Figure 5. End-users (or appli-
cation servers) talking to the databases interact with the
lowest level of the system, which are standard database
processes running within VMs (e.g., mysqld). Above
the database servers is the elasticity layer, which pro-
vides the automated mechanisms to dynamically grow,
shrink, or relocate the resources allocated to any given
database tenant, using either VM-level or DB-level elas-
ticity. At the highest level is the elastic database man-
ager, which employs the simple API exposed by the elas-
ticity layer to manage server and tenant workloads. The
manager may implement simple or sophisticated algo-
rithms for automatically administrating a database server
cluster. While many database managers are possible, we
present an example in Section 6 for automating the pro-
cess of ‘cloud bursting’, in which tenants are migrated to
remote servers to alleviate workload spikes.

Each physical server in our prototype runs a single in-
stance of the ShuttleDB daemon on the domain0 VM,
which runs Xen Cloud Platform 1.6 on top of CentOS
6 to manage all VMs on the server. Multiple daemons
communicate in a peer-to-peer fashion to facilitate mi-
grations. Separate daemons runs within each domainU
VM to manage the database-aware elasticity layer.

VM elasticity. To allow for shared-nothing live mi-
gration of virtual machines, we make use of the Storage
XenMotion feature, which allows for moving disk, mem-
ory, and virtual devices to a remote host. To clone an
active VM, we snapshot the VM (a live operation), then
export the snapshot to a new VM on the local or remote

host. We then start the cloned VM and update its network
settings to result in a suitable VM for replication.

DB elasticity. We implemented our technique for
database-aware migration on top of MySQL, using the
Percona XtraDB [25] database engine (effectively Inn-
oDB with a few useful extensions pertaining to tak-
ing backups) provided by the Percona Server package.
The database elasticity implementation is loosely cou-
pled from the database engine itself, as follows. For mi-
gration phase 1 (streaming backups), we use a hot backup
tool (Percona xtrabackup [30] in the current proto-
type) to snapshot and extract the data for the migrat-
ing tenant, which is compressed and streamed across the
network to the target server. On completion, the target
server imports the tenant database into the already run-
ning database server (this functionality is provided both
by XtraDB and bleeding-edge versions of InnoDB [5]).
We perform phase 2 (live deltas) by reading from the
database transaction log and streaming updates to the tar-
get server. The queries executed since the initial snap-
shot or last delta round are filtered to remove extraneous
queries pertaining to non-migrating tenants, then shipped
to the target server and executed. For simplicity, once
the handover of phase 3 begins, we employ a client-
side proxy to freeze the workload and temporarily queue
transactions, then release those transactions to the tar-
get server once the handover completes. This approach
avoids having to make any modifications to the database
engine itself.

Delta migrations. Our implementation handles the
delta migration optimization described in Section 3.2 at
a disk block level. During the initial outgoing migration,
the local copy of the tenant is saved as a single binary
archive file, which is also transferred to the target server.
When the return migration is initiated, the database patch
is simply generated as a disk-level patch between the
original archive file and the up-to-date archive file us-
ing rdiff. Since this approach is oblivious to any ac-
tual data formats used by the database, it relies on block-
level similarities between the archives to generate a com-
pact diff – however, our experiments in Section 6 demon-
strate that this is generally sufficient and results in a small
patch file. One issue we encountered during testing was
workload interference resulting from the archiving pro-
cess, since saving a local copy of the archive required
substantial I/O resources. To counteract this, we added
the option to dedicate either a spare disk or a RAM-based
volume for archiving operations. Local archiving may
also be disabled entirely, which removes much of the
I/O overhead of migration but prevents use of the delta
migration optimization – effectively trading off between
disk and network resource consumption.
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Figure 6: LAN migration of a large (dedicated) tenant.

6 Experimental Evaluation

To evaluate our prototype, we first consider the indi-
vidual elasticity mechanisms employed by ShuttleDB
(from Table 1), then consider two scenarios demonstrat-
ing ShuttleDB’s utility – first, in automating database
cloud bursting, and second, in leveraging DB-aware elas-
ticity to increase the efficiency of VM replication.

We use a heavily modified version of the Yahoo Cloud
Serving Benchmark (YCSB) [12] to generate the work-
load for our system. While YCSB was originally de-
signed exclusively for key-value stores, we begin with
an extended, transactional version used in prior work
[17, 14, 6] and further extend it to generate a closed
workload with Poisson-distributed arrival times. Each
workload consists of replaying a trace of workload ‘in-
tensities’, which determine the number of transactions
issued to the tenant per time unit.

6.1 LAN Elasticity

We first compare the efficiency of VM and DB-aware mi-
gration when operating over a LAN, in order to substan-
tiate our earlier arguments about when each technique
is preferable. We configure a VM with 30 GB of stor-
age and 2 GB of RAM. The size of the base system is
roughly 1.6 GB, while all additional space is used by the
database server. We first consider moving a large (i.e.,
dedicated) database tenant by configuring a 20 GB ten-
ant and moving it to a second server while servicing a
workload. Figure 6 shows the duration of migration for 3
cases: a no-tenant baseline (i.e., only the OS), VM-based
tenant migration, and DB-aware tenant migration. We
see that the benefit of employing DB-aware elasticity in
this case is minimal and likely does not justify the added
migration complexity versus simply using VM elasticity.

Next, we configure the VM with twenty 1 GB tenants
instead of a single 20 GB tenant, and evaluate four sce-
narios: VM migration, DB-aware migration, DB-aware
migration with precopying (i.e., preparation for future
delta migrations), and DB-aware delta migration (i.e.,
migrating to a server with a local precopy). In each sce-
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Figure 7: LAN migration of a small (collocated) tenant.

nario, we transfer a single tenant from the shared server
to a separate, dedicated server. In this case, as shown
in Figure 7, the differences are striking. VM migration,
which simply transfers the entire VM, results in nearly
20x slower migration than DB-aware migration. Adding
precopying to DB-aware migration adds a small amount
of overhead, but still greatly outperforms VM elasticity.
Finally, using a previous precopy to perform a delta mi-
gration takes somewhat longer on account of processing
the database delta, but results in transferring less than
200 MB total of data – roughly one fifth of the already
reduced amount in the base DB-aware case.

Result: With large tenants, the simplicity of VM mi-
gration is preferable. With small tenants, however, DB-
aware elasticity greatly outperforms VM elasticity. The
use of precopying can even further reduce the amount of
network data required.

6.2 DB-Aware Live Migration

Next, we evaluate the ‘liveness’ of our DB-aware migra-
tion technique by considering the amount of downtime
incurred. We configured two ShuttleDB servers over a
LAN, and a single tenant with 1.5 GB of data servic-
ing 80 read and 20 write queries per second. We then
moved the tenant from the source server to the target us-
ing DB-aware elasticity, observing the transaction laten-
cies shown in Figure 8. Migration begins at event (a), at
which point ShuttleDB begins streaming the tenant to the
target server (phase 1). As seen, this operation has little
to no visible impact on tenant performance. Less than
3 minutes later, at event (b), the initial streaming copy
is completed, and the target server begins preparing the
copy to service the workload. Once complete, two copies
of the tenant are running, and the original copy begins
applying deltas to the new copy (phase 2). Delta rounds
take roughly 15 seconds, at which point the workload is
frozen and the handover (phase 3) is performed.

The inset of Figure 8 shows a plot of transaction la-
tencies over time around the time of the handover. La-
tency just following the handover spikes, owing to the
frozen workload (during which transactions are queued
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Figure 8: Live migration of a tenant servicing 10 transactions
(100 queries) per second.

at the source). However, this period lasts only 2 sec-
onds, after which queued transactions are released to the
target. Here, the queued transactions are delayed by an
average of 2-3 seconds, but only 25 transactions in total
are affected, and the entire duration of possible delays
lasts less than 5 seconds. Finally, we note that this re-
sult is conservative, since the migrating tenant is servic-
ing many queries during the handover; less active tenants
will experience a shorter handover period, and thus will
observe lesser delays. As seen, the only notable work-
load impact occurs during this handover period, whose
duration is dependent only on the write workload inten-
sity, and is not related to data size. Migrating a larger
tenant simply extends the harmless duration of phase 1.

Result: DB-aware elasticity in ShuttleDB provides ro-
bust migration capabilities with near-zero downtime and
minimal query delays, even for highly active tenants.

6.3 Wide-Area Elasticity

Elasticity between data centers (i.e., over a WAN) is
challenging due to lower bandwidth and higher laten-
cies. To evaluate this scenario, we configured a source
server on the west coast of the US with ten 512 MB
database tenants handling 50 queries per second, and a
target server in an Amazon EC2 data center located on
the east coast of the US. As shown in Figure 9, we then
shifted one of the ten tenants to the EC2 server using DB-
aware elasticity, then back from the EC2 server using a
delta migration after waiting several minutes. As shown,
nearly 90% of the elapsed time of the initial migration is
spent transferring the initial snapshot (unsurprising given
the limited available bandwidth). Importantly, the entire
period in which the workload is not serviced (during the
handover phase) lasts only a single second.

On the returning migration, we again observe the ef-
fectiveness of DB-aware delta migrations. While pro-
cessing deltas increases the time spent in phase 2, the
decrease in phase 1 more than compensates, and the total
migration duration on the return is less than half that of

 0

 50

 100

 150

 200

Snapshot Deltas Handover

D
u
r
a
t
i
o
n
 
(
s
)

Migration Stage

Outgoing (full snapshot)
Returning (delta snapshot)

Figure 9: DB-aware delta migrations significantly reduce band-
width and time requirements across wide-area networks.

the outgoing migration. Furthermore, the amount of data
transferred during the delta migration is only 97 MB, as
compared to 776 MB during the outgoing migration –
over an 87% reduction.

We could not easily perform a companion experiment
using VM elasticity, as public data centers such as EC2
do not expose their hypervisor infrastructure. Despite
this, however, we would not expect VM elasticity to per-
form well given the limitations demonstrated in the pre-
vious experiment. Moreover, over a lower-bandwidth
network such as a WAN, we would expect the differences
to be even more significant than before.

Result: ShuttleDB elasticity can effectively span mul-
tiple networks and data centers and minimizes the data
transfers necessary.

6.4 Defusing a Hotspot

Here, we present end-to-end experiments demonstrat-
ing how ShuttleDB responds to a server hotspot by mi-
grating and replicating tenants. We use the World Cup
soccer trace [3] to generate the workload for our ex-
periments. This trace contains an end-to-end workload
hotspot, starting with a stable (low) arrival rate, rising to
a peak, then falling back to the baseline.

We configured our local server with 10 tenants, each
with 1 GB of data. The query arrival rate of a tenant is
driven by the world cup trace, while the other tenants run
a standard arrival rate – initially, all arrival rates are iden-
tical. We set the bursting threshold latencies to 300 ms
(upper) and 200 ms (lower). The multi-query transac-
tions executed by all tenants include a mix of read, write,
sort, and join operations, with specific arrival times given
according to a Poisson distribution. Finally, the duration
of the world cup trace is scaled to 90 minutes.

First, we run the workloads with ShuttleDB disabled,
to observe the effects of the hotspot on tenant perfor-
mance. We then re-run the same experiment with tenant
migration on LAN and WAN. All the results are sum-
marized in Figure 10. The increase in workload around
t = 50, results in a sharp latency increase that exceeds
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Figure 11: Database-aware elasticity with two workload spikes.
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with replication before scaling back.

4x baseline performance without ShuttleDB. When run-
ning with ShuttleDB, however, a migration is initiated
around t = 70, once the ARIMA prediction determines
that latency will exceed the threshold value of 300 ms.
Whether the tenant is migrated to another database on
the same LAN or over WAN, the latency remains within
reasonable bounds with an average latency increase of
100ms for the LAN case. Once the peak has passed and
latency begins to fall to normal levels (around t = 150),
the tenant is returned to the local server.

In a second experiment, shown in Figure 11, we put
the tenant under a series of two workload spikes, exceed-
ing the capacity of the multitenant server. Following the
spikes, the workload on the tenant gradually reduces to
normal. To address the workload spikes, we provisioned
two spare servers for ShuttleDB to use.

After the first spike, ShuttleDB migrates the single
tenant out of the multitenant server to the first dedicated
server, stabilizing performance. Note that although la-
tency spikes briefly immediately following this migra-
tion due to a cold cache, this issue may be mitigated by
executing read queries on both machines to warm the tar-
get cache prior to the handover. After the second spike,
latency increases yet again, and so ShuttleDB replicates
the entire VM to the second spare server. However, note

that the primary reason we can effectively employ VM
replication is because of the migration, which extracts
the single tenant. Following the spikes and gradual de-
crease of the workload, the database is able to scale back,
first by deleting the VM replica, then by performing a
DB-aware delta migration back to the original server.

Result: Migration and replication can be combined in
ShuttleDB to maximize elasticity in multitenant servers.

7 Related Work

Elastic cloud platforms have been proposed for many
useful applications, such as video streaming ser-
vices [32] and medical image registration [21]. The gen-
eral concept of ‘cloud bursting’ [7, 22] has become pop-
ular as a way to merge existing infrastructure with newly
available cloud resources. Systems such as Dolly [9]
have considered cloud systems for databases through the
use of cost models governing database provisioning.

Live migration has been extensively studied in the
context of virtual machines [11, 8, 29], where the key
challenge is migrating a dynamic memory image with
minimal downtime. Live migration has been extended to
the domain of databases in the context of both shared-
nothing systems [17, 18] and systems with networked at-
tached storage [14]. Our own prior work has addressed
performance interference when migrating databases [6].

Multitenant databases have also attracted significant
attention due to the rise of cloud computing, at vary-
ing levels of multitenancy [17, 27, 31]. Prior work
has demonstrated that purely VM-based multitenancy
may result in high overhead and low tenant consolida-
tion [13], a conclusion supported by our own studies.

8 Conclusions

In this paper, we presented techniques to imple-
ment database-aware elasticity in multi-tenant database
clouds. We proposed a database-aware live migration
and replication approach that is designed to work with
common off-the-shelf databases without requiring any
database engine modifications. ShuttleDB combines
database-aware techniques with VM-level mechanisms
to implement a flexible approach to achieving efficient
scale up, scale out or scale back for diverse scenarios
ranging from different tenants sizes to inter- and intra-
data center elasticity. We implemented a prototype of
ShuttleDB and experimentally demonstrated the benefits
of ShuttleDB’s database-aware elasticity mechanisms
and intelligent elasticity algorithm. As future work, we
plan to study the interplay between ShuttleDB’s decision
making and the elasticity mechanisms employed by other
application tiers.
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SHENOY, P. ‘cut me some slack’: latency-aware live migration
for databases. In EDBT (2012).

[7] BARR, J. Cloudbursting—hybrid application host-
ing. http://aws.typepad.com/aws/2008/08/
cloudbursting-.html, 2008.

[8] BRADFORD, R., KOTSOVINOS, E., FELDMANN, A., AND
SCHIÖBERG, H. Live wide-area migration of virtual machines
including local persistent state. In VEE (2007).

[9] CECCHET, E., SINGH, R., SHARMA, U., AND SHENOY, P. J.
Dolly: virtualization-driven database provisioning for the cloud.
In VEE (2011).

[10] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH, W. C., WAL-
LACH, D. A., BURROWS, M., CHANDRA, T., FIKES, A., AND
GRUBER, R. E. Bigtable: a distributed storage system for struc-
tured data. In OSDI (2006).

[11] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live migration
of virtual machines. In NSDI (2005).

[12] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In SoCC (2010).

[13] CURINO, C., JONES, E. P. C., MADDEN, S., AND BALAKR-
ISHNAN, H. Workload-aware database monitoring and consoli-
dation. In SIGMOD (2011).

[14] DAS, S., NISHIMURA, S., AGRAWAL, D., AND ABBADI, A. E.
Albatross: Lightweight elasticity in shared storage databases for
the cloud using live data migration. PVLDB 4, 8 (2011), 494–505.

[15] DATASTAX. Why migrate from mysql to cassandra. White paper,
Datastax, 2012.

[16] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI,
G., LAKSHMAN, A., PILCHIN, A., SIVASUBRAMANIAN, S.,
VOSSHALL, P., AND VOGELS, W. Dynamo: amazon’s highly
available key-value store. In SOSP (2007).

[17] ELMORE, A. J., DAS, S., AGRAWAL, D., AND EL ABBADI, A.
Who’s driving this cloud? towards efficient migration for elastic
and autonomic multitenant databases. Tech. Rep. CS-2010-05,
UCSB, 2010.

[18] ELMORE, A. J., DAS, S., AGRAWAL, D., AND EL ABBADI,
A. Zephyr: live migration in shared nothing databases for elastic
cloud platforms. In SIGMOD (2011).

[19] GOOGLE. Google cloud sql. https://developers.
google.com/cloud-sql/, 2013.

[20] HOGAN, M. Cloud elasticity and databases.
http://scaledb.blogspot.com/2011/08/
cloud-elasticity-databases.html, 2011.

[21] KIM, H., PARASHAR, M., FORAN, D. J., AND YANG, L. In-
vestigating the use of autonomic cloudbursts for high-throughput
medical image registration. In GRID (2009).

[22] MELL, P., AND GRANCE, T. The NIST definition of cloud com-
puting, September 2011.

[23] MINHAS, U. F., RAJAGOPALAN, S., CULLY, B., ABOULNAGA,
A., SALEM, K., AND WARFIELD, A. Remusdb: transparent high
availability for database systems. VLDB J. 22, 1 (2013), 29–45.

[24] OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. The
design and implementation of zap: a system for migrating com-
puting environments. SIGOPS Oper. Syst. Rev. (Dec. 2002).

[25] PERCONA. The percona xtradb storage engine. http://www.
percona.com/docs/wiki/Percona-XtraDB:start,
2013.

[26] SALESFORCE. Salesforce crm and cloud computing. http:
//salesforce.com, 2013.

[27] SOROR, A. A., MINHAS, U. F., ABOULNAGA, A., SALEM, K.,
KOKOSIELIS, P., AND KAMATH, S. Automatic virtual machine
configuration for database workloads. ACM Trans. Database
Syst. 35, 1 (Feb. 2010), 7:1–7:47.

[28] WEI, W. W. S. Time series analysis - univariate and multivariate
methods. Addison-Wesley, 1989.

[29] WOOD, T., RAMAKRISHNAN, K. K., SHENOY, P., AND
VAN DER MERWE, J. Cloudnet: dynamic pooling of cloud re-
sources by live wan migration of virtual machines. SIGPLAN
Not. (2011).

[30] Percona XtraBackup. http://www.percona.com/
software/percona-xtrabackup/, 2013.

[31] XIONG, P., CHI, Y., ZHU, S., MOON, H. J., PU, C., AND
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Abstract
The success of cloud computing builds largely upon
on-demand supply of virtual machines (VMs) that pro-
vide the abstraction of a physical machine on shared re-
sources. Unfortunately, despite recent advances in virtu-
alization technology, there still exists an unpredictable
performance gap between the real and desired perfor-
mance. The main contributing factors include contention
to the shared physical resources among co-located VMs,
limited control of VM allocation, as well as lack of
knowledge on the performance of a specific VM out
of tens of VM types offered by public cloud providers.
In this work, we propose Matrix, a novel performance
and resource management system that ensures the de-
sired performance of an application achieved on a VM.
To this end, Matrix utilizes machine learning methods -
clustering models with probability estimates - to predict
the performance of new workloads in a virtualized en-
vironment, choose a suitable VM type, and dynamically
adjust the resource configuration of a virtual machine on
the fly. The evaluations on a private cloud, and two pub-
lic clouds (Rackspace and Amazon EC2) show that for
an extensive set of cloud applications, Matrix is able to
estimate application performance with average 90% ac-
curacy. In addition, Matrix can deliver the target per-
formance within 3% variance, and do so with the best
cost-efficiency in most cases.

1 Introduction
In private and public clouds, the so-called Infrastruc-
ture as a Service (IaaS) model offers on-demand cre-
ation of virtual machines (VMs) for different users and
applications, and enables dynamic management of VMs
for maximizing resource utilization in the data centers.
Ideally, a VM shall have three properties: 1) efficiency,
where a significant portion of the program runs without
any intervention from the hypervisor that manages the
VMs; 2) resource control that prevents any program from
gaining the full control of the system resources; and 3)
equivalence, where any program running in a VM “per-
forms in a manner indistinguishable” from an equivalent
real machine [34]. Although virtualization technology
has been improved greatly (its pervasive use in cloud
computing is strong evidence), we have not yet achieved
the vision of “an efficient, isolated duplicate of a real ma-
chine”, that is, a VM shall be able to provide the perfor-
mance close to the desired one.

Take a real world example, before buying a new tablet
computer from an online retailer, one may shop a lo-
cal store like BestBuy to test drive and compare various

products. Nevertheless, any product that the customer
eventually receives from the online retailer will be the
same as what is presented locally. Unfortunately, when
one purchases a VM in the cloud, little guarantee is pro-
vided to ensure an application hosted by the VM would
keep the desired performance, not even mentioning to
achieve the best cost-efficiency.

In this paper, we propose the concept of Relative Per-
formance (RP) as the “equivalence” metric that measures
the ratio between the desired performance and that of
running in a VM. For a workload w, the RP can be for-
mally defined as

RPw =
PVM

Pd
, (1)

where PVM is the performance of the workload w when
running on a VM, and Pd is the desired performance.
The performance is workload dependent and can be mea-
sured as the runtime (e.g., sequence alignment), through-
put (e.g., video streaming), latency (e.g., webpage serv-
ing), etc. The RP that is equal to one means that the
workload delivers the desired performance on the VM.
The goal of Matrix is to deliver the desired performance
while minimizing the resource cost.

In a cloud, many factors such as limited control of
VM allocation and competition from co-located VMs to
shared resources (e.g., CPU and I/O devices) contribute
to hard-to-predict VM performance. To illustrate the
problems on expected performance and operating cost,
we run three benchmarks ranging from I/O intensive,
memory intensive to CPU intensive workloads, both lo-
cally and on Amazon EC2. There are two local physical
machines in this test: PM1 has a 2.93 GHz Intel Core2
Duo processor and 4 GB memory, and PM2 has a 3 GHz
Intel Pentium4 processor with 2 GB memory. The de-
sired performance Pd1 and Pd2 are the performance of
running a given benchmark on PM1 and PM2 respec-
tively. Fig. 1 shows the RPs (in runtime/latency for three
benchmarks) for Pd1 and Pd2 on four EC2 instances1.
Our tests show that the RP for these three benchmarks
can vary dramatically from 18% of the target perfor-
mance to more than three times. Clearly, it is challenging
to know ahead of time for each application which VM
instance provides a good tradeoff between the cost and

1For Amazon EC2 instances, m1.small type equips with 1.7
GB memory and 1 EC2 Compute Unit priced at six cents per hour,
m1.medium 3.75 GB memory and 2 Compute Units at 12 cents per
hour, m1.large 7.5 GB memory and 4 Compute Units at 24 cents per
hour, and the t1.micro has the smallest amount of memory (613 MB)
and CPU resource.
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Figure 1: The performance for various EC2 instances ranges
from 27% to 3.7 times of the desired performance Pd1 and Pd2.
Each column shows an average of ten runs

performance. Benchmarking an application in the cloud
may alleviate the problem, but it becomes cumbersome
as public cloud providers offer dozens of VM types.

In this work, we propose a performance and re-
source management system, Matrix, that targets at de-
livering predictable VM performance with the best cost-
efficiency. To achieve this goal, Matrix utilizes clustering
models with probability estimates to predict the perfor-
mance of new workloads in a virtualized environment,
chooses a suitable VM type, and dynamically adjusts the
resource configuration of a VM on the fly.

The first contribution is that Matrix can predict ac-
curately how a new workload will perform on different
cloud VM instances. To this end, Matrix first constructs
performance models of a set of representative workloads
that define common application “genes”. Given perfor-
mance models for these applications, we leverage the
support vector clustering (SVC) to quickly classify a
new workload, using soft boundary probability estimates
to infer its “gene” composition. A number of studies
[28, 46, 22, 45] have worked on service-level agreement
(SLA), performance prediction, and anomaly detection
in virtualized environments. The major differences of
Matrix lie in the understanding of the dynamic relation-
ship between resource allocation and the new workload
performance.

The second contribution is that Matrix allocates VM
resource to application in a way that minimizes the cost
while achieving good performance. To this end, Ma-
trix applies an approximate optimization algorithm and
makes use of the characteristics of the kernel functions
of support vector machine (SVM) to find the optimized
resource allocation. More specifically, the support vec-
tor regression (SVR) is used to develop our RP models.
By exploiting gene composition knowledge, Matrix can
do so without knowing a priori application information
within guest VMs.

Third, Matrix is able to handle different cloud envi-
ronments and applications. We conduct a large set of ex-
periments with real cloud applications and ranging from
a single machine, a local cluster, and a virtual cluster, to
evaluate Matrix on both our private cloud and the public
cloud of Amazon EC2 and Rackspace.

In this work, we present three use cases of Matrix:

• Automatic VM configuration. Matrix can adapt
VM settings to the changes in workload, while
maintaining a desired performance and achieving
good cost-efficiency in the cloud.

• VM instance recommendation. With workload
performance models, Matrix recommends the VM
instance that is best suited for specific applications.

• Cloud provider recommendation. Given a new
application, Matrix can also help users to choose an
appropriate VM from different cloud providers.

2 Related Work
Performance Modeling and Analysis has been exten-
sively studied, both in non-virtualized environments [29,
44], and virtualized environments [16, 36, 21, 54, 7].
There are also performance models which target spe-
cific applications or system components. For example,
Li et. al [25] model the performance of parallel ma-
trix multiplication in virtualized environments, and Wat-
son et al. build probability distribution models of re-
sponse time and CPU allocations in virtualized environ-
ments [50]. While we share the same idea on exploiting
machine learning techniques, we further explore the abil-
ity of classification with probability estimates to model
the performance of new workloads.

Automatic Resource Configuration is an important
issue in parallel and distributed systems [24, 38, 15] and
performance monitoring tools [23]. Similarly, various
machine learning techniques have shown promising re-
sults for VM provision and configuration, e.g., cluster-
ing [35], classification [26], reinforcement learning [37].
Also, several works have focused on minimizing oper-
ation cost, for example, Niehörster et al. [31] applies
fuzzy control at runtime, and Kingfisher [41] formulates
the problem as an integer linear program (ILP) and im-
plements a heuristic ILP solver. Most related to our
work are several existing resource configuration frame-
works such as DejaVu [48], JustRunIt [55], and [43]. The
key differences of Matrix lie in a comprehensive frame-
work to predict and maintain the desired performance
of a new workload while minimizing the operating cost.
While DejaVu also handles new applications and adapts
resources to suit new demands, DejaVu uses dedicated
sandbox machines to clone and profile VMs. In contrast,
Matrix utilizes representative models to construct new
workload’s model in an online fashion. Many works aim
to predict resource requirements for cloud applications,
e.g., [13, 14, 18, 49, 51]. Most of them either focus on
single application or ignore the cost-efficiency. On the
other hand, Matrix is able to adapt to new applications
and minimize the operating cost. Also, Matrix deals with
the problem of multi-cloud resource management, which
is shown to be critical in [5]. Performance interference
in virtualized environments is another critical barrier to
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provide predictable performance. DeepDive [32] utilizes
mathematical models and clustering techniques to detect
interference. DeepDive requires comparing the perfor-
mance from VM clones in dedicated machines. Similar
to [7, 19, 30], Matrix removes this need by including the
interference factors into the performance models.

3 Matrix Architecture
The goal of Matrix is to predict and configure VMs in an
automatic manner so that the applications running within
the VMs would achieve the performance with a close
vicinity of a specific one. We present the architecture of
Matrix in Fig. 2. On the left, Matrix builds both cluster-
ing and RP models of representative workloads and this
task is done offline. There are three steps in this phase:
1) profiling the training set of representative workloads
(presented in Sec. 3.1); 2) tuning the SVM parameters
to find the best model configuration; and 3) training the
classifier and the basic RP models, for later use of the
online module (Sec. 3.2 and 3.3). This offline training
stage builds RP models from our generic benchmarks,
but it can be repeated periodically to include data from
newly added workloads.
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Figure 2: Matrix Architecture

When a new application is moved to the cloud, Ma-
trix requires only the workload signature when running
on its current infrastructure, which could be either phys-
ical or virtual machines. As shown in the right hand
side of Fig. 2, Matrix can classify these workload signa-
tures compared to the previously trained models. Then,
the system calculates a runtime RP model based on ad-
justed performance estimates and outputs the predicted
RP to the resource allocation module. Next, Matrix will
search for the VM configurations with the minimum cost
to maintain a desired performance (Sec. 3.4). To provide
automatic resource management, we formulate an opti-
mization problem with nonlinear inequality constraints.
For fast response time, Matrix utilizes the Lagrange mul-
tipliers to provide an approximate solution and a bound
to the minimum resource cost.

3.1 Workload Signatures
Matrix first must profile a set of workload “genes” that
indicate how different types of applications will perform
when moved into cloud platforms.

A group of representative applications are firstly se-
lected as “genes” to construct an expert system. Our
selection principle, similar to [2], is to have the ref-
erence workloads as diverse as possible - the result-
ing collection shall cover from CPU-intensive to data-
intensive, and their problem sizes also shall vary from
small to large data volumes. Table 1 summarizes the rep-
resentative applications selected from a few widely used
benchmark suites, e.g., FileBench [27], SysBench [20],
SPEC2006 [10], PARSEC[1], and Cloud9 [4, 8]. Note
that while this set of applications is not optimal by all
means, they provide, as we will see in evaluations, a good
basis for RP modeling. We leave the exploration of dif-
ferent gene applications as future work.

Table 1: Summary of representative applications

Name Description
video server serving a set of video files
web server retrieving web contents and updating log files
file server a mixture of various file I/O operations
OLTP query and update database tables
mcf running simplex algorithm
hmmer pattern searching of gene database
soplex linear program solver
canneal evolutionary algorithm
DS01 to DS15 15 distributed data serving workloads
C01 to C15 15 parallel CPU-intensive workloads

For parallel application, we select a training set that
consists of 15 data-intensive workloads (DS01 to DS15)
and 15 CPU-intensive workloads (C01 to C15). The first
five DS series workloads run Apache Cassandra, a dis-
tributed key-value store, with read/write ratios of 100/0,
75/25, 50/50, 25/75, and 0/100 where the record popu-
larity is in uniform distribution. For DS6 to DS10, they
access Cassandra with same read/write ratios but in the
Zipfian distribution of record popularity. For the number
11 to 15 training workloads, they share the same pattern
and order of read/write ratios in both the first and the
second five groups, but the record popularity is in the lat-
est distribution. The last 15 representative applications
in the training set are CPU-intensive parallel workloads
from Cloud9, a scalable parallel software testing service.
The training set for CPU-intensive parallel workloads are
randomly selected out of 98 different utility traces from
the GNU CoreUtils 6.10 for running Cloud9.

For a basic signature, we take the arithmetic means of
three system parameters - CPU utilization, the amount
of data read and written per second. Since it is insuf-
ficient to use the mean alone to represent a workload
when there is a large variability in the observed data,
we choose the coefficient of variation (C.O.V) as part of

3
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the signatures to describe the variability. As prior work
[17, 2] has already shown that the resource allocation of
VMs greatly affects the observed system parameters, we
include the number of VCPUs and the size of memory
in the workload signatures because these two parameters
are frequently used knobs for tuning VM performance.
Furthermore, we also take into account the interference
from co-located VMs. For simplicity, all workload signa-
tures from other VMs are summed up as one background
VM and included in the modeling process.

Dealing with applications running on multiple ma-
chines poses more challenges. The traffic in and out of
each node is critical to data-intensive applications’ per-
formance. The number of nodes is also important for
modeling workload concurrency. In other words, Ma-
trix needs to scale resources horizontally (increasing and
decreasing the number of nodes), as well as vertically
(scaling up and down resources on each node). Thus,
Matrix includes the amount of data flow of each node
and the number of nodes in a cluster as additional pa-
rameters when modeling an application performance on
a set of machines.

3.2 Clustering Method
Matrix needs a workload classifier to identify new work-
loads that are running in the guest VMs. Most of pre-
vious works use a “hard” classifier. That is, the classi-
fier outputs a certain workload without ambiguity. That
method, however, provides little help when dealing with
new workload, which can be very different from any
workload in the training set. To address this problem, we
explore “soft” classifiers in this work, which have soft
boundary and output probability estimates of being each
component in the model. These probability estimates can
be utilized as weights to infer the “gene” composition
of new workloads. Specifically, we utilize a multiclass
SVC with likelihoods provided by a pairwise coupling
method [6]. We use a rigorous procedure to tune and
train classifiers. Our classifiers are built as follows:

Data Scaling avoids the features in larger numeric
ranges dominating those in smaller ranges. In addition,
scaling data into a restricted range can avoid numerical
difficulties during the kernel value calculation [6]. We
scale each attribute in the range of [0, 1].

Parameter Selection: Choosing the optimal parame-
ter values is a critical step in the SVC design. The grid
search method is a common practice in finding the best
configuration of a SVC. That is, the parameter selection
is usually done by varying parameters and comparing ei-
ther estimates of generalization error or some other re-
lated performance measure [11]. When the search ap-
proaches a grid point, it calculates the value of ten-fold
cross validation (CV). In order to save the searching
time, the search firstly starts with a loose grid to iden-

tify regions with good CV values. Then, the search uses
a finer grid to further approach the best configuration.
We conduct the grid search on the following parameters:
1) SVC types: C-SVC [3] and ν-SVC [40, 39]. 2) Ker-
nel functions: Polynomial, sigmoid, and Gaussian radial
basis function (RBF). 3) Constraint violation cost C to
avoid overfitting. C ∈ R+. 4) Kernel width coefficient
γ, which affects the model smoothness. γ ∈ R+. 5)
Variable ν in ν-SVC provides an upper bound on train-
ing errors ν ∈ (0, 1].

Training: Once the best parameter configuration is
decided, the final classifier is trained by using the best
configuration with the whole training data.

In terms of SVC types and kernel functions, the grid
searching results suggest that ν-SVC with RBF ker-
nel outperforms other classifiers and kernel functions.
Therefore, Matrix uses ν-SVC with RBF kernel as the
classifier. ν-SVC has been proved to provide an up-
per bound on the fraction of training errors and a lower
bound of the fraction of support vectors.

3.3 Performance Modeling
The performance modeling has two main procedures:
1) Constructing the building block: Matrix utilizes
the SVR to construct the basic RP models of each
training application. A popular version of SVR is ν-
SVR [40, 39]. Matrix uses ν-SVR with the RBF ker-
nel for the basic RP modeling because the grid searching
results suggest it is better than others. 2) Generating
the performance model: The performance modeling of
representative workloads completes one part of the story.
Our goal is to capture new workloads’ RP models in an
online fashion.

Suppose there are n representative workloads wi, i ∈
{1, . . . , n}. The corresponding performance models are
fi(R), where rj = {x ∈ R | 0 ≤ x ≤ 1} and
R = {r1, . . . , rm} are resource configurations and sys-
tem statistics, j ∈ {1, . . . ,m}. Because all performance
models are built by SVR, the performance models can be
represented as: fi(R) = θ · φ (ri) + θ0, where φ (ri) are
kernel functions, θ0 is the offset vector to the origin, and
θ is the separating vector.

Our classifier then analyzes a new workload wnew and
generates an output {p1, . . . , pn}, where pi are the prob-
ability estimates of being workload wi, i ∈ {1, . . . , n}.
The final performance model of workload wnew is

fnew(R) =

n
∑

i=1

pi · fi(R),

where
n
∑

i=1

pi = 1.

(2)

In other words, the likelihood pi acts as a weight to con-
trol the fraction of fi in the final model fnew.
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3.4 Automatic Resource Configuration
Once we obtain a performance model of a new workload
wnew, configuration module starts to find the minimum
allocation for keeping the desired performance.

Let Cj be the cost of resource j, j ∈ {1, . . . ,m}.
Resources are, e.g., the memory size and the number
of VCPUs and VMs. rj is the ratio of resource j on a
physical server that is allocated to the VM. We formulate
the resource configuration problem as an optimization
one with a nonlinear equality constraint:

minimize
R

Fc(R) =

m
∑

j=1

Cj × rj

subject to fnew(R) =

n
∑

i=1

pi · fi(R) = 1,

n
∑

i=1

pi = 1,

rj = {x ∈ R|0 ≤ x ≤ 1},
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}

Because both the objective and constraint function are
continuously differentiable2, we utilize the Lagrange al-
gorithm for solving this problem.

Note that the above problem is formulated under the
assumption that rj is the ratio of resource j on a phys-
ical server that is allocated to the VM. However, real
systems usually can not partition resources at an arbi-
trary granularity. For example, the memory allocation
for VMs is usually done in the unit of one megabyte.
If a system has 2 GB memory, the finest possible Rj

values will be {1/2000, 2/2000, . . . , 2000/2000}. As a
result, the system would not be able to use the optimal
resource configuration R∗. Instead, the system needs
to take (�r∗1�, . . . , �r∗m�) as the resource configuration,
where the ceiling operation of ri here is defined as tak-
ing the smallest value r′i in the finest possible granularity,
such that r′i ≥ ri. Let the granularity of resource i be di,
i ∈ {1, . . . ,m}. In other words, the miss allocation on
resource i is at most di. Therefore, the upper bound on

the extra resource allocation cost is
m
∑

i=1

Ci × di.

4 Implementation
We have implemented and tested Matrix on both a lo-
cal private cloud and two public clouds, namely Amazon
EC2 and Rackspace cloud servers. Fig. 3 summarizes the
work flow of the prototype.

The preparing data block includes parsing, formatting,
and scaling collected traces. The clustering model and
RP models are previously built by the training set offline.
The Matrix online module is controlled by a Linux bash

2One of the properties of the RBF kernel.

shell script combined with a SVM module written in C
and an optimization problem solver in MATLAB. The
tasks of this online module are to 1) collect traces, 2)
analyze workload compositions, and 3) predict current
RP and suggest a configuration to obtain desired perfor-
mance with less cost.

Preparing Data 

Traces 

SVC-predict 

Workload 
signatures 

Clustering 
model 

Basic RP 
models 

Constraint 
function & RP 

Min resource 
Resource 
Recommendation 

Adjust VM 
resources 

Performance 
modeling 

Workload 
composition 

Sleep till 
next 

interval 

Offline Online 

Figure 3: Matrix prototype

The online module is running as a background process
in the host domain, which collects workload signatures
of VMs every second by using xentop. At every minute,
a parser will parse collected data and scale all values
in the range of [0, 1]. The online module then feeds
the scaled trace and clustering model to the SVC-predict
module which outputs the workload composition in pos-
sibilities of representative workloads. These probability
estimates along with the basic RP models become the
running workload’s performance model (Eq. 2). Then,
Eq. 2 is served as the constraint function of the optimiza-
tion problem in Sec. 3.4. Finally, the online module ad-
justs resource allocations and repeats the same procedure
for the next interval.

There are three main differences between the two Ma-
trix prototypes on private and public clouds. First, Matrix
in public clouds can not use xentop to collect traces be-
cause we have no access to the host domain. Instead, we
run top and iostat in every guest domain to collect traces.
Second, Matrix can not arbitrarily adjust resources of an
instance in the public cloud. And, instance types can
only be changed when it is not running. To address this
problem, we adapt Xen-blanket [53] nested virtualization
for some tests.

Prototype performance. The measured running time
from parsing collected trace to output the minimum re-
source recommendation is around 0.6 second where the
optimization solver takes about 70% in the whole pro-
cess. As future work, the running time of the online mod-
ule can be further reduced by implementing the solver in
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native system without using MATLAB. In addition, Ma-
trix may also be integrated with Monalytics [23] to re-
duce overheads.

5 Evaluations
Testing scenarios. We evaluate Matrix in three scenar-
ios: a single machine, a cluster of physical machines,
and of VMs. Three virtualized environments are used in
our experiments: local Xen virtualized servers, Amazon
EC2 instances3 and Rackspace cloud servers4. We label
Rackspace cloud servers from smallest to the largest as
RS1 to RS7. For example, RS1 has 1 VCPU and 512 MB
memory and RS7 has 8 VCPUs and 30 GB memory. All
tests on public clouds are conducted for at least 30 runs,
with multiple batches that run at different times of day
and on various weekdays and weekends.

In Sec. 5.1, we start the experiments with the single
machine case, which aims to accommodate the testing
applications in a VM such that the workloads perform
closely to the desired one. We mainly use PM1, which
is described in Sec. 1, as the target performance. We have
two local servers for hosting VMs: V S1 and V S2 are
two six-core Intel Xeon CPUs at 2.67 GHz and 2 GHz,
and with 24 and 32 GB memory, respectively. Both ma-
chines are running Linux 2.6.32, Xen 4.0, and NFS over
a Gigabit Ethernet.

In Sec. 5.2, Matrix aims to accommodate the testing
applications in a set of VMs such that the workloads per-
form closely to the desired one. We use a four-node phys-
ical cluster (PC) as the target performance, each of which
has a 1.80 GHz Intel Atom CPU D525 (two physical
cores with hyper-threading) and four GB memory con-
nected on a Gigabit Ethernet. In the local private cloud,
we use the V S2 to host a virtualized cluster (VC). Simi-
lar to the single machine case in Sec. 5.1, the public VCs
are hosted on the Amazon EC2 and Rackspace.

In Sec. 5.3, Matrix targets at accommodating the test-
ing applications in a set of VMs in public clouds such
that the workloads perform closely to the desired one in
a local cloud. We use VCs of 32 and 64 VMs in a local
cloud as the target performance, and study how to config-
ure VCs in Amazon EC2 and Rackspace cloud servers to
achieve similar performance. Each VM has one VCPU
and 1.5 GB memory. This way, we examine the feasibil-
ity of migrating a VC from a private to public cloud while
providing the desired performance with minimized cost.

Cloud applications that are used in this work consist
of Cloudstone, a performance measurement framework
for Web 2.0 [42]; Wikipedia with Database dumps from
Wikimedia foundation [52] and real request traces from
the Wikibench web site [47]; Darwin, an open source

3A full list of Amazon EC2 instance types and prices can be found
at http://www.ec2instances.info/

4A full list of Rackspace cloud servers can be found at
http://www.rackspace.com/cloud/servers/.

version of Apple’s QuickTime video streaming server;
Cloud9 makes use of cloud resources to provide a high-
quality on-demand software testing service; and YCSB
(Yahoo! Cloud Serving Benchmark), a performance mea-
surement framework for cloud serving systems [9].

For YCSB, the experiments use two core workloads:
YCSB1 and YCSB2, both send requests following a Zip-
fian distribution. The major difference between YCSB1
and YCSB2 is the read:write ratio: YCSB1 is an up-
date heavy workload with the read:write ratio of 50:50,
and YCSB2 reproduces a read mostly workload with the
read:write ratio of 95:5. Note that after Sec. 5.2, YCSB1
and YCSB2 are served from multiple nodes. In addition,
YCSB3, YCSB4, and YCSB5 will be added into the test-
ing set as well. YCSB3 is a 100% read workload. 95%
requests of YCSB4 are read operations and mostly work
on the latest records. 95% requests of YCSB5 are also
read operations but it scans within 100 records.

Evaluation metrics. We use three metrics to evalu-
ate the performance of Matrix. To measure the accu-
racy of the models, we define the prediction accuracy as
1− (|predicted value − actual value|/actual value).
That is, the closer to 1 the better.

The goal of Matrix is to achieve a desired VM per-
formance with minimum cost. To this end, we define
two additional metrics: the RP-Cost product (RPC) as
|RP − 1| · (VM Cost), and the Performance Per Cost
(PPC) as RP/VM Cost. In this test, we measure the
cost for purchasing instances on public clouds in dollars.
For RPC, a smaller value is preferred as it indicates small
performance difference and cost, and for PPC, a larger
value is better because of indicating better performance
for the same cost.

5.1 Single Machine Case
Model Composition. We first present how Matrix an-
alyzes applications and composes performance models.
Fig. 4 demonstrates the snapshots taken by Matrix while

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Cloudstone 
Wiki 

YCSB1 
YCSB2 

Darwin 
Cloud9 

video server web server file server OLTP mcf hmmer soplex canneal 

Figure 4: Application composition examples

applications are running. Let’s take Darwin as an ex-
ample. Darwin is about 67% like video server, 22% like
mcf, 10% like soplex, and the possibilities to be others are
very small. Although Darwin is a video streaming server,
it is not 100% like the video server from the FileBench
in the representatives. The reason is that the video server
only emulates I/O operations and omits many CPU tasks
on a video streaming server, which can be captured by

6



USENIX Association  11th International Conference on Autonomic Computing 51

Matrix with suggestion of including mcf and soplex as
part of the Darwin’s workload signature. Therefore,
Darwin’s estimated performance by the composition in
Fig. 4 will be 0.67·fvideo server+0.22·fmcf+0.1·fsoplex+...
(Recall Eq. 2). Similarly, the sample composition of
YCSB1 has a large portion of file server, OLTP, and hm-
mer. Note that these are just sample snapshots, and the
composition ratio depends on the workload intensity and
datasets, and may change over time.

Model Accuracy. We examine Matrix’s accuracy on
predicting new workloads’ RP across different settings
on our local VMs, the Amazon EC2 instances, and the
Rackspace cloud servers. To train the RP models on the
local VMs, we run the training set on PM1 and VMs for
the RPs and training data. We collect 1,000 data points
for each training workload’s performance model. Each
data point is generated by running the workload with a
uniformly randomly configured thread (worker) count (2
to 32), working set size (5 to 32 GB), and resource allo-
cation (1 to 8 VCPUs and 1 to 8 GB memory). Because
hardware heterogeneity potentially affects performance
of cloud applications [12, 33], Matrix also trains models
for working on Amazon and Rackspace, instead of sim-
ply using those trained on the local VMs. The training
process on the public clouds is almost identical to the
one on local VMs, except the part of dynamically con-
figuring resources. Because we can not arbitrarily adjust
resources on the public clouds, the training data are col-
lected from running them on each instance type for 100
times. Note that Matrix needs only a one time training
process for modeling the gene workloads in the VMs.

For the tests on local VMs, we run each configura-
tion for five times, five minutes per run. In Fig. 5, each
column shows the average prediction accuracy and stan-
dard deviation of 30 runs (five runs for six testing ap-
plications). The same testing process is repeated on the
Amazon and Rackspace at three different times and days.
Thus, the public cloud results are averages of 90 runs.

Most of prediction accuracies are higher than 85% and
the average value across all cases is 90.15%. The lo-
cal VM tests on V S2 have a slightly higher accuracy
(91.1%) than those on V S1 do (90%). On the Amazon
EC2, t1.micro has the lowest prediction accuracy due to
big variances on its performance. In general, larger in-
stance types are more stable and usually lead to higher
accuracies. The experiments on Rackspace also show
that larger instances tend to have higher accuracy. Given
the same instance type, HVM instances have lower accu-
racy than paravirtualized VMs, partly due to virtualiza-
tion overheads. The average prediction accuracies across
all Amazon and Rackspace instance types are 89.8% and
90.3% respectively.

All results pass the two-sample t-tests and are stable
across all test environments. Note that we also conduct

the same tests on the training set. The results show that
the training applications can be identified correctly over
95% and their performance estimations have accuracy
higher than 94% across all training applications.

Automatic Resource Configuration. Here, we as-
sume a user wants to keep a desired performance of a
YCSB VM with the minimum resources allocated. We
run YCSB2 for one hour and change workload intensities
every ten minutes. In the first ten minutes, two threads
work on two millions records; The workload intensity is
increased to four threads and eight millions records in
the second period; eight threads and 16 millions records
in the third period; Then, workload intensity is decreased
to four threads and 16 millions records in the fourth pe-
riod; two threads and 16 millions records in the fifth pe-
riod; two threads and two millions records in the last ten
minutes. Fig. 6a shows the corresponding resources and
RPs as the workload intensity changes. Over the hour,
the average resource savings are 37% on CPU and 55%
on memory, when compared to a baseline VM which
keeps using two VCPUs and four GB memory to imi-
tate PM1’s setting. The average performance is 1.06
(closer to the target value) compared to 1.56 provided by
the baseline VM.

In Amazon EC2, we can only change the type of an
instance when it is not running. As a workaround, we
use the Xen-blanket (nested virtualization) in an Ama-
zon EC2 HVM instance (m3.2xlarge). In the one hour
test, the average resource saving is about 5% on mem-
ory, compared to a baseline VM which keeps using one
VCPUs and two GB memory. There is no resource sav-
ing numbers for CPU because the minimum VCPU num-
ber is one in this test. The average RP shown in Fig. 6b
is about 0.95 compared to the one of 0.83 by the base-
line VM. In other words, with the ability of adjusting
resources to accommodate demands, Matrix can keep a
desired performance with as few resources as possible.

Choosing instances among cloud providers. In this
test, Matrix is used to recommend instances for running
a certain workload as close to the desired performance
as possible. The light, medium, and heavy workloads
used here are defined as 4, 16, and 32 threads (or work-
ers) with 8, 16, and 32 GB working set respectively. We
conduct the same tests on Amazon EC2 and Rackspace
cloud servers. Then, we list the most recommended in-
stance types in Table 2 such that running certain work-
loads would be close to the desired performance with
less cost. If the recommended instances on both sides
have the same price, e.g., RS2 vs. m1.small, the one pro-
vides a higher RP will be selected. For the light work-
load intensity, RS3 is the most recommended type to
use, which has the same price as m1.medium at $0.12
per hour. RS3 is chosen because it provides higher RP
with the same price. The performance of YCSB work-
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Figure 6: RP changes as resources and workload intensity
change. Intensities are changed every ten minutes

load is sensitive to the heap size because it affects the
amount of cached contents and the frequency of flushing
the cached requests in Cassandra. This effect would be
more obvious if there are more write operations. There-
fore, the recommendation for light YCSB1 is m1.small
against RS2 because its memory space is larger.

Table 2: Most recommended instance types for running certain
workloads with desired performance and less cost

Applications Light Medium Heavy
Cloudstone RS3 RS3 m1.large

Wiki RS3 m1.medium m1.large
YCSB1 m1.small m1.medium m1.medium
YCSB2 RS2 m1.medium m1.medium
Darwin RS3 RS3 m1.medium
Cloud9 RS3 RS3 RS3

For the medium workload intensity, the recommended
Rackspace instances for YCSB1 and YCSB2 are both
RS4, where the recommended Amazon instances are
m1.medium. Although RS4 provides higher perfor-
mance than m1.medium for these workloads, RS4 is
more expensive and its RPs here are more than one than
m1.medium. Therefore, the recommended instances for

medium YCSB1 and YCSB2 are both m1.medium. For
the rest of the applications with medium workload inten-
sity, we mostly select the one with higher RP between
RS3 and m1.medium.

For the heavy workload intensity, Cloudstone and
Wiki choose m1.large against RS4 because of the higher
performance with the same price. The situation for the
heavy YCSB is the same as its medium case. The case
of Darwin chooses m1.medium because Darwin does
not need more CPU cores but more memory would be
helpful. On the other hand, the heavy Cloud9 desires
more CPU cores than memory. Thus, the heavy Cloud9
chooses RS3 over m1.medium.

Choosing the right instance types to minimize cost and
optimize performance for a certain workload requires so-
phisticated analysis on application and platform charac-
teristics. Such processes could be very time consuming
without the help of Matrix.

5.2 Multi-Machine Case
Many cloud applications are designed to work on multi-
ple computers and communicate via a network. In this
section, we first start the tests on a local VC. For pro-
filing the system under different resource configurations,
the number of VMs in a VC ranges from one, two, four to
eight; the VCPU numbers on one VM is varied from one
to four; and the size of memory on one VM is also varied
from one to four GB. In other words, we have 64 VC set-
tings in terms of the VM numbers, VCPUs, and memory
sizes. We assume all VMs in a cluster are identical and
leave the heterogeneous or asymmetric clusters as future
work. We collect required profiling statistics from five
runs of each representative application on all 64 VC set-
tings. In order to capture the dynamics of various work-
load intensities, training applications will be uniformly
randomly configured with thread/worker numbers from
2 to 128 and working set sizes from 20 to 100 GB in
each run, in total 9,600 data points.

For our tests on the public cloud, the instance types
included as the Amazon VC instances for training and
testing are t1.micro, m1.small, m1.medium, m1.large,
m1.xlarge, and m2.xlarge. Similar to the local VC test,
the number of VMs in an Amazon VC ranges from one,
two, four to eight. Thus, we have 24 VC settings on EC2.
The workload intensity is changed for profiling in the
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same way as it is in profiling local VCs. We also profiled
VCs on Rackspace. The instance types used are RS1 to
RS5. The rest processes and settings on Rackspace are
similar to what we did on Amazon.

Prediction Accuracy. We first explore the accuracies
on predicting RPs at clusters with different VM types and
various numbers of VMs. Because of the space limit, we
omit some figures. In general, the mean accuracy across
all cases is 90.18% with a standard deviation of 2.55,
where the mean accuracies on Amazon and Rackspace
are 90.05% and 90.3% respectively.

From the accuracy tests, we found that Matrix has rel-
atively good prediction accuracies on some applications,
e.g., YCSB3 and YCSB4. Take the YCSB3, a read only
testing workload in Zipfian distribution, as an example.
Matrix effectively identifies this as an 100% read work-
load with an over 95% possibility. Among three possible
distributions for pure read requests, Matrix recognizes
this workload has an over 75% possibility to follow Zip-
fian distribution. This contributes to a relatively high ac-
curacy for YCSB3.

To further analyze influences of representative appli-
cations in the training set, we remove five workloads at
a time from the training set. Then, all models are rebuilt
from the new training set. Next, we examine the accura-
cies on predicting RPs of applications in the testing set
on a four-VM cluster whose VMs identically have four
VCPUs and four GB memory. This test is repeated three
times and the average accuracies are reported in Fig. 7.
We remove CPU-intensive training applications first, the
YCSB5 shows larger degradation than the others in the
beginning because it consumes more CPU in scanning
records when processing requests. When we start to re-
move data-intensive training workloads (the training set
size is less than 15), all three testing applications drop
dramatically. When we reduce the training size from ten
to five, YCSB1 and YCSB5 both drop more than 20%
because key genes (the 50/50 and 100/0 workload in the
Zipfian distribution for YCSB1 and YCSB5 respectively)
are removed. YCSB4 holds higher than the others at the
training size of five because the 100/0 workload in the
latest distribution, which represents most of the YCBS4,
is still kept in the final five.
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Figure 7: Accuracies on predicting RP decrease as the size of
training set shrinks

VC in Private Cloud. We also verified automatically
configuring a VC’s resources to maintain the desired per-
formance. The test is similar to the one in Fig. 6a, but
has more dimensions in resources, e.g., number of ma-
chines, and workloads, e.g., changing workload types.
Due to the space limit, we omit some figures of this test.
In brief, Matrix tracks workload activities closely and is
able to change VM configuration quickly and keep RPs
on track.

VC in Public Clouds. Here we will only change the
type of instance. We did not use Xen-blanket here due
to concern over the overhead of nested virtualization. In
this case, we run the tests in three steps: 1) Each applica-
tion in the testing set is executed for ten minutes on a VC
with a randomly uniformly selected type and the number
of VMs from one to eight. 2) Matrix collects required
system statistics, and recommends a configuration. 3)
The same application then runs on a cluster of instances
closest to the recommended configuration. We repeat the
above steps at the weekday daytime, the weekday night-
time, and the weekend. In addition, we change workload
intensity from light, medium, and heavy for each testing
application.

Fig. 8 shows the average RPs and standard deviations
when we re-run testing cases with the recommended con-
figurations as well as three fixed size VCs. Each column
shows the average RP of 45 runs. Fig. 8a and Fig. 8b are
results from Amazon and Rackspace respectively. All the
RPs from Matrix spread between 0.88 and 1.16 with the
mean of 1.02 across all cases. As it is shown in Fig. 8, us-
ing configurations suggested by Matrix makes the aver-
age RPs closer to one and smaller in variance than using
the three static configurations. It leads to a low average
RP value of 0.82 when using 4×m1.small or 4×RS2
all the time because the medium and the heavy work-
loads are too intensive for it. In general, Matrix uses
4 × m1.small or 4 × RS2 at light workloads but uses
more powerful instances when workload is heavier. The
average RP of all 4 × m1.medium and 4 × RS3 cases
is close to one but its standard deviation is 0.1, which is
more than twice of the one of Matrix (0.04). The large
variance in RPs of the 4 × m1.medium and 4 × RS2
case comes from over-provisioning at the light workload,
inadequacy at the heavy one, and the difference in the
workload mix, even at the appropriate intensity. For ex-
ample, Matrix uses 3 × m1.medium for YCSB1 and
2×m1.large for YCSB5 at the medium workload which
makes RPs closer to one than the 4×m1.medium does.
When the workload is heavy, Matrix uses 2×m1.large
or 2 × RS4 most of the time. Thus, although statically
using 4×m1.large and 4×RS4 has small variance val-
ues, the average RP in this case increases to 1.14.

Cost Efficiency. Here we examine the RPC and PPC
values to see the cost-efficiency of each configuration.
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Figure 8: RPs when using Matrix and three static cluster set-
tings on Amazon and Rackspace

To ease comparison, the RPC and PPC values in Ta-
ble 3 are normalized to Matrix’s . A smaller RPC means
more cost-efficient while keeping desired RPs, and on
the other hand, a higher PPC means more RP can be
achieved for the same cost. In both the tests on Amazon
and Rackspace, Matrix outperforms other static settings
in both metrics.

Table 3: Cost efficiency (RPC and PPC) of Matrix and three
static configurations on Amazon and Rackspace respectively

Amazon EC2
Matrix 4 × m1.small 4 × m1.medium 4 × m1.large

RPC 1.00 24.00 20.41 143.02
PPC 1.00 0.84 0.47 0.33

Rackspace cloud servers
Matrix 4 × RS2 4 × RS3 4 × RS4

RPC 1.00 25.33 18.67 90.54
PPC 1.00 0.78 0.68 0.52

5.3 Private to Public Cloud
In this case, we evaluate the case of migrating a virtual
cluster from private to public cloud. We make the num-
ber of VMs per cluster larger than previous tests in order
to test the scalability. Because our Rackspace account
has a limitation on memory size at 64 GB, the results of
public cloud here are all obtained from the Amazon EC2.
We use 32- and 64-VM local VCs (VC32 and VC64)
in this case. These local VCs are hosted on four V S2
servers. Each VM in one local VC has one VCPU and 1.5
GB memory, and each V S2 hosts 16 VMs. The training
procedure on EC2 is almost the same as the previous one
in Sec. 5.2, except that we extend the number of VMs to
32 and 64 in the procedure. We then verify the predic-
tion accuracies in Amazon VCs. Because of the space
limit, we omit some figures of this test. The average ac-
curacy across different clusters is 0.89 with the standard
deviation of 0.03.

We also make Matrix to recommend EC2 configu-
rations comparable to the 32- and 64-VM local VCs
for running the light, medium, and heavy testing work-
loads, which have 8, 32, and 64 threads and 80, 160,
and 320 GB working set size respectively. We run each
testing application and intensity for 30 times on a VC
with 32 × m1.xlarge instances for Matrix to find the
matched configurations. In general, Matrix mostly uses
30×m1.medium, 24×m1.large, and 20×m1.xlarge
instances for the VC32 at the light, medium, and heavy
workloads respectively. When the cluster size increases
from 32 to 64, Matrix makes the EC2 cluster to use
more instances correspondingly. The configuration for
the light workload is changed from 30×m1.medium to
64 × m1.medium. The configurations for the medium
and heavy workloads become 44 × m1.large and 36 ×
m1.xlarge respectively. Using the suggested configura-
tions gives average RPs of 1.02 with the standard devi-
ations of 0.07 across different workload intensities. The
RPs for all the cases spread between 0.88 and 1.16 with
the mean of 1.03.

We also verified the PPC and RPC values of Matrix in
this test. Due to the space limit, we omit a table here. Ac-
cording to the RPC values, Matrix costs much less than
the static EC2 VC settings, especially at the VC64 tests.
Further, Matrix demonstrates better PPC values than the
static settings, which indicates a good performance-cost
efficiency. The PPC values also show that using power-
ful instances may be not cost-efficient although they do
provide better performance.

6 Conclusion
In this paper, we have presented Matrix, a performance
prediction and resource management system. Matrix uti-
lizes clustering methods with probability estimates to
classify new cloud workloads and provide advice about
what instance types will offer the desired performance
level and the lowest cost. Matrix uses machine learning
techniques and an approximation algorithm to build per-
formance models, and uses them for managing on-line
resources when applications are moved to the cloud. We
demonstrated that our models have high accuracy, even
when transitioning a distributed application from a clus-
ter of physical machines to a set of cloud VMs. Matrix
helps to keep a desired performance in the cloud while
minimizing the operating cost.

As future work, Matrix may be extended to study the
mapping from a local storage to a cloud one, such as the
Amazon EBS. The cost model in Matrix could be more
complete by including the charge on data usage. Also,
we may expand the load balancing ability of Matrix to
handle heterogeneous or asymmetric cluster machines
and workload intensities.
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Abstract
Applications with a dynamic workload demand need
access to a flexible infrastructure to meet performance
guarantees and minimize resource costs. While cloud
computing provides the elasticity to scale the infrastruc-
ture on demand, cloud service providers lack control and
visibility of user space applications, making it difficult to
accurately scale the underlying infrastructure. Thus, the
burden of scaling falls on the user.
In this paper, we propose a new cloud service, Depend-
able Compute Cloud (DC2), that automatically scales the
infrastructure to meet the user-specified performance re-
quirements. DC2 employs Kalman filtering to automati-
cally learn the (possibly changing) system parameters for
each application, allowing it to proactively scale the in-
frastructure to meet performance guarantees. DC2 is de-
signed for the cloud - it is application-agnostic and does
not require any offline application profiling or bench-
marking. Our implementation results on OpenStack us-
ing a multi-tier application under a range of workload
traces demonstrate the robustness and superiority of DC2
over existing rule-based approaches.

1 Introduction
With the advent of cloud computing, many application
owners have started moving their deployments into the
cloud. Cloud computing offers many benefits over tradi-
tional physical deployments including lower infrastruc-
ture costs and elastic resource allocation. These benefits
are especially advantageous for applications with a dy-
namic workload demand. Such applications can be de-
ployed in the cloud based on the current demand, and
the deployment can be scaled dynamically in response to
changing workload demand.
While cloud computing is a very promising option for ap-
plication owners, it is not easy to take full advantage of
the benefits of the cloud. Specifically, while cloud com-
puting offers flexible resource allocation, it is up to the
customer (application owner) to leverage the flexible in-
frastructure. That is, the user must decide when and how
to scale the application deployment to meet the changing
workload demand.
Dynamically sizing a deployment is challenging for
many reasons (see, for example, the recent survey pa-
per [15]). From the perspective of the user, who is also
the application owner, some of the specific hurdles that
complicate the dynamic sizing of the application are: (i)

Requires expert knowledge about the dynamics of the ap-
plication, including the service requirements of the appli-
cation at each tier, and (ii) Requires sophisticated mod-
eling expertise to determine when and how to resize the
deployment. For small and medium businesses (SMB),
which comprise the targeted customer base for many
cloud service providers (CSPs) [8,24], these hurdles are
non-trivial to overcome. SMB users would much rather
contract a cloud service that manages their dynamic siz-
ing than invest in employing a team of experts. The pur-
pose of this research is to provide this exact service -
an application-agnostic cloud offering that will automat-
ically, and dynamically, resize user applications to meet
performance requirements in a cost-effective manner.
Many CSPs today offer monitoring services to users (not
necessarily for free) for tracking resource usage. While
such monitoring services provide valuable information,
the user still requires expert knowledge about the appli-
cation and the performance modeling expertise to con-
vert the monitored information into scaling actions.
Some CSPs also offer rule-based triggers to help users
scale their applications. These rule-based triggers allow
the users to specify some conditions on the monitored
metrics which, when met, will trigger a pre-defined scal-
ing action. Even with the help of rule-based triggers,
however, the burden of determining the threshold condi-
tions for the metrics still rests with the user. For example,
in order to use a CPU utilization based trigger for scal-
ing, the user must determine the CPU threshold at which
to trigger scale-up and scale-down, and the number of
instances to scale-up and scale-down.
Note that CSPs cannot gather all the necessary
application-level statistics without intruding into the
user-space application. Given the lack of control and vis-
ibility into the application, CSPs cannot leverage most
of the existing work (see, for example, [7,25,26]) on dy-
namic scaling of applications since these works typically
require access to the application for measurement and
profiling purposes. Further, most of the existing work
is not application-agnostic, which is a requirement for a
practical cloud service. A detailed discussion of the re-
lated work can be found in Section 5
We propose a completely automated cloud service, De-
pendable Compute Cloud (DC2), that proactively and
dynamically scales the application deployment based on
user-specified performance requirements. DC2 leverages
resource-level and application-level statistics to infer the
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Figure 1: System architecture for DC2.

underlying system parameters of the application(s), and
determines the required scaling actions to meet the per-
formance goals in a cost-effective manner. A detailed
discussion of our approach is presented in Section 2,
along with details of our implementation.
At the heart of DC2 lies the modeling and execution en-
gine that internalizes the monitored statistics and infers
the necessary system parameters. While this engine can
employ any grey-box or black-box modeling approach,
in this paper we use Kalman filtering to infer the sys-
tem parameters. Kalman filtering is a robust feedback
control algorithm that combines monitoring information
with a user-specified system model to create accurate
estimations of the system state. In this paper we em-
ploy Kalman filtering by specifying a generic queueing-
theoretic model (details of our modeling engine can be
found in Section 3). Fortunately, since Kalman filtering
leverages monitored statistics to come up with estima-
tions, the underlying system model need not be accurate,
as is often the case when using queueing theory (or any
other mathematical modeling technique) to model com-
plex systems.
We evaluate DC2 via implementation on OpenStack. We
employ the three-tier bidding benchmark, RUBiS, as the
user application and experiment with various workload
traces. Our results demonstrate that DC2 successfully
scales the application in response to changing workload
demand without any user input and without any offline
profiling. Importantly, we compare with existing rule-
based triggers and show that DC2 is superior to such ap-
proaches. A detailed evaluation of our DC2 implementa-
tion is presented in Section 4.

2 Implementation
Figure 1 shows the proposed system architecture for the
DC2 service environment. The Application Owner (cus-
tomer) is responsible for providing the initial deployment
model consisting of the multi-tier topology for the ap-
plication (in the form of a graph or a configuration file)

and the performance SLA requirements. The Applica-
tion Deployer customizes the image for deployment and
ties up the endpoints for the application during installa-
tion and configuration. We leverage Chef [18] to auto-
mate the installation of software on VMs during boot.
We use OpenStack [17] as the underlying scalable cloud
operating system. The VMs for the application are cre-
ated on an OpenStack managed private cloud deploy-
ment on SoftLayer [23]. The CloudPool component in
Figure 1 is a logical entity that models the application
and issues the directives (such as VM scale up/down) re-
quired to maintain the performance SLA for the appli-
cation. The Monitoring Agent is responsible for retriev-
ing the resource-level metrics from the hypervisor and
the application-level metrics from the application. The
Modeling + Optimization Engine (described in detail in
Section 3) takes as input the monitored metrics and out-
puts a list of directives indicating the addition or removal
of VMs, migration of VMs, or a change in the resources
allocated to VMs. These directives are passed on to the
Policy-based Execution Engine that issues commands to
OpenStack API, that in turn performs the scaling.

2.1 Application
We use the open source multi-tier application, RU-
BiS [2], for our experiments. RUBiS is an auction site
prototype modeled after eBay.com supporting different
classes of web requests such as bid, browse, buy, etc. Our
RUBiS implementation employs Apache as the frontend
web server, Tomcat as the Java servlets container, and
MySQL as the backend database. In our experiments we
focus on scaling the Tomcat application tier. We employ
RUBiS’s benchmarking tool to generate load by defining
sessions consisting of a sequence of requests. The think
time between requests is exponentially distributed with a
mean of 1 second. We fix the number of clients for each
experiment and vary the load by dynamically changing
the composition of the workload mix.

2.2 Experimental setup
We employ multiple hypervisors with 8 CPU cores and 8
GB of memory each. The Apache and MySQL tiers are
each hosted on a 4 CPU VM. The Tomcat application
tier is hosted on multiple 2 CPU VMs. The provisioning
time for a new Tomcat VM is about 30-40 seconds. Once
the new VM is online, our automated scripts configure
the JDBC with the IP address of the MySQL database
and update the load balancer on Apache web server to
include the new Tomcat VM.

2.3 Monitoring agent
We use virt-top (part of the libvirt [1] package) to col-
lect VM CPU utilization statistics from each hypervisor
periodically. For the application-level metrics, we peri-
odically analyze the request URLs directed at the RU-
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BiS application to compute the request rate and response
time. Note that the user can choose to provide these met-
rics to us directly (for example, using a REST call). The
monitoring interval is set to 10s. The collected statistics
are then provided as input to the modeling engine.

2.4 Execution engine
The execution engine is primarily responsible for issuing
commands for VM scaling based on the scaling direc-
tives received from the modeling engine. For robustness,
the execution engine issues the VM scaling commands
to OpenStack only after two successive scaling directives
from the modeling engine. The execution engine is also
responsible for placing the new VMs on specific hypervi-
sors. We use host aggregates (which are essentially log-
ical cloud partitions) to place the Apache and MySQL
VMs on one hypervisor and Tomcat VMs on a different
set of hypervisors.

3 Modeling
The modeling engine lies at the heart of our DC2 ap-
proach. We use a queueing-network model to approxi-
mate our multi-tier cloud application. However, since we
cannot access the user application to derive the parame-
ters of our model, we use a Kalman filtering technique to
infer these unobservable parameters. We now describe
our queueing model and Kalman filtering technique, fol-
lowed by an analysis of our modeling engine, and finally,
an explanation of how our modeling engine determines
the required scaling actions for SLA compliance.

3.1 Queueing-network model
Figure 2 shows a queueing-network model of a generic
three-tier system with each tier representing a collection
of homogeneous servers. We assume that the load at each
tier is distributed uniformly across all the servers in that
tier. The system is driven by a workload consisting of i
distinct request classes, each class being characterized by
its arrival rate, λi, and end-to-end response time, Ri. Let
n j be the number of servers at tier j. With homogeneous
servers and perfect load-balancing, the arrival rate of re-
quests at any server in tier j is λi j := λi/n j. Since servers
at a tier are identical, for ease of analysis, we model each
tier as a single representative server. With some abuse
of terminology, we refer to the representative server at
tier j as tier j. Let u j ∈ [0,1) be the utilization of tier
j. The background utilization of tier j is denoted by u0 j,
and models the resource utilization due to other jobs (not
related to our workload) running on that tier. The end-to-
end network latency for a class i request is denoted by di.
Let Si j(≥ 0) denote the average service time of a class i
request at tier j. Assuming we have Poisson arrivals and
a processor-sharing policy at each server, the stationary
distribution of the queueing network is known to have a

Figure 2: Queueing model for our system.

product-form [28], for any general distribution of service
time at servers. Under the product-form assumption, we
have the following analytical results from queueing the-
ory:

u j = u0 j +∑
i

λi jSi j, ∀ j (1)

Ri = di +∑
j

Si j

1−u j
, ∀i (2)

While u j, Ri and λi, ∀i, j, can be monitored easily
and are thus observable, the parameters Si j, u0 j, and di
are non-trivial to measure and are thus unobservable.
While existing work on auto-scaling (see, for example,
[25,26]) typically obtains these values by directly ac-
cessing or modifying the application software (for ex-
ample, by parsing the log files at each tier), our proposed
application-agnostic cloud service cannot encroach the
user’s application space. Instead, we employ a parameter
estimation technique, Kalman filtering (see Section 3.2
below), to derive estimates for the unobservable param-
eters. Further, since the system parameters can dynami-
cally change during runtime, we employ the Kalman fil-
ter as an on-line parameter estimator to continually adapt
our parameter estimates.
It is important to note that while the product-form is
shown to be a reasonable assumption for tiered web ser-
vices [5], we only use it as an approximation for our com-
plex system. By employing the Kalman filter to lever-
age the actual monitored values, we minimize our de-
pendence on the approximation.

3.2 Kalman filtering
For a three-class, three-tier system (i.e., i = j = 3),
let z := (u1,u2,u3,R1,R2,R3)

T = h(x) and x =
(u01,u02,u03,d1,d2,d3,S11,S21,S31,S12,S22,S32,S13,S23,S33)

T .
Note that z is a 6-dimensional vector whereas x is a
15-dimensional vector. The problem is to determine the
unobservable parameters x from measured values of z
and λ = (λ1,λ2,λ3).
We use Kalman filtering to estimate the unobservable pa-
rameters (for a detailed explanation of Kalman filters, we
refer the reader to [22]). The dynamic evolution of sys-
tem parameters can be described through the following

3
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Kalman filtering equations [22]:

System State x(t) = F(t)x(t −1)+w(t),

Measurement Model z(t) = H(t)x(t)+v(t),

where F(t) is the state transition model and H(t) is
the observation model mapping the true state space into
the observed state space. In our case, F(t),∀t, is the
identity matrix. The variables w(t) ∼ N (0,Q(t)) and
v(t) ∼ N (0,R(t)) are process noise and measurement
noise which are assumed to be zero-mean, multi-variate
Normal distributions with covariance matrices Q(t) and
R(t) respectively. The matrices Q(t) and R(t) are
not directly measurable but can be tuned via best prac-
tices [14].
Since the measurement model z is a non-linear function
of the system state x (see Eqns. (1) and (2)), we use the
Extended Kalman filer [22] with H(t) =

[

∂h
∂x

]

x(t)
, which

for our model is a 6×15 matrix with H(t)i j =
[

∂hi
∂xj

]

x(t)
.

Since x(t) is not known at time t, we estimate it by x̂(t|t−
1), which is the a priori estimate of x(t) given all the
history up to time t−1. The state of the filter is described
by two variables x̂(t|t) and P(t|t), where x̂(t|t) is the a
posteriori estimate of state at time t and P(t|t) is the a
posteriori error covariance matrix which is a measure of
the estimated accuracy of the system state.
The Kalman filter has two phases: Predict and Update.
In the predict phase, a priori estimates of state and error
matrix are calculated. In the update phase, these esti-
mates are refined using the current observation to get a
posteriori estimates of state and error matrix. The filter
model for the predict and update phases for our 3-class,
3-tier model is given by:
Predict:

x̂(t|t −1) = F(t)x̂(t −1|t −1)
P(t|t −1) = F(t)P(t −1|t −1)FT (t)+Q(t)

Update:
y(t) = z(t)−h(x̂(t|t −1))

H(t) =

[

∂h
∂x

]

x̂(t|t−1)

S(t) = H(t)P(t|t −1)HT (t)+R(t)

K(t) = P(t|t −1)HT (t)S−1(t)

x̂(t|t) = x̂(t|t −1)+K(t)y(t)
P(t|t) = (I−K(t)H(t))P(t|t −1)

We employ the above filter model by seeding our initial
estimate of x̂(t|t −1) and P(t|t −1) with random values,
then applying the Update equations by monitoring z(t) to
get x̂(t|t) and P(t|t), and finally using the Predict values
to arrive at the estimated x̂(t|t − 1) and P(t|t − 1). We
continue this process iteratively at each 10 second moni-
toring interval to derive new system state estimates.

Figure 3: Accuracy and convergence of our Kalman fil-
tering technique when employed in our experiments.

3.3 Performance analysis
The Kalman filtering technique described above gives us
estimates of the unobservable system parameters Si j, u0 j,
and di. We then use these estimates, along with Eqns. (1)
and (2), to predict the future values of u j and Ri. Figure 3
demonstrates our Kalman filtering technique in action.
The solid line with crosses shows the monitored values of
response time for a specific class of requests in our three-
tier application (see Section 2 for details of our applica-
tion setup). Here, the monitoring interval is 10 seconds.
The dashed line with circles shows our estimated values
for the predicted response time based on our Kalman fil-
tering technique. It initially takes about a minute for our
estimates to converge. After convergence, our estimated
values are in very good agreement with the monitored
values, thus validating our technique and highlighting
its accuracy. Since we leverage the current monitored
values of z and λ , our estimated system parameters can
adapt to changes in the application. In order to demon-
strate this ability, we trigger a change in our workload
at about the 10-minute mark (shown in Figure 3) which
causes the response time to increase. The change in the
workload causes a change in the service time of the re-
quests. Our Kalman filter detects this change based on
the monitored values, and quickly adapts (in about 2 min-
utes) its estimates to converge to the new system state.

3.4 Scaling directives
The estimated values of the system state are used to com-
pute the required scaling actions for DC2. Specifically,
given the response time SLA, we use Eqns. (1) and (2) to
determine the minimum n j required to ensure SLA com-
pliance. Note that λi j = λi/n j in Eqn. (1). We demon-
strate the auto-scaling abilities of the Kalman filtering-
based DC2 approach in Section 4.

4 Evaluation
We now evaluate our DC2 scaling policy in various
settings using the RUBiS application. We use traces
from the WITS traffic archive [29] and the WorldCup98
dataset from the Internet Traffic Archive (ITA) [11] to
drive our load generator. The WITS archive contains a
large collection of recent internet traces from ISPs and
University networks. The WorldCup98 dataset contains
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(a) Bursty trace (source:WITS [29]) (b) Rampdown trace (source:ITA [11]) (c) Hill trace (source:WITS [29])

Figure 4: Traces (normalized) used for our experiments.

3 months worth of requests made to the 1998 World Cup
Web site. We scaled the traces to fit our deployment. The
normalized traces are shown in Figure 4. The workload
we use for evaluation is a mix of different RUBiS request
classes that together stress the application tier more than
the other tiers.
In our experiments, we focus on the response time of
browse requests since customers often base their web ex-
perience based on how long it takes to browse through
online catalogues. We want the response time for the
browse requests to be less than 40ms, on average, for ev-
ery 10s monitoring interval. Note that this goal is much
more challenging than requiring the response time be
less than 40ms over the entire length of the experiment.
We set the response time SLA for all other classes to be
100ms. The secondary goal is to minimize the number
of application tier VMs employed during the experiment.
We consider the following two metrics: V, the percent-
age of time that the response time SLA was violated, and
K, the average number of application tier VMs used dur-
ing the experiment. For each experiment, we compare
DC2 with the following class of policies:
THRES(x,y) is a family of rule-based provisioning poli-
cies that adds one application VM when the average ap-
plication tier utilization exceeds y% for successive inter-
vals and removes one application VM when the average
utilization falls below x% for successive intervals. In
practice, it suffices to consider two successive intervals
for the scaling decisions, just as in the case of DC2.

4.1 Comparison of different policies
Figure 5(a) shows our experimental results for DC2 un-
der the Bursty trace. The figure shows the monitored
(black solid line) and estimated (green line with dots) re-
sponse time under DC2, along with the response time
SLA (dashed line). We only show the response time for
the browse requests. We see that the monitored response
time under DC2 is below the SLA throughout the exper-
iment. The up and down triangles represent the points
in time when a scale-up and scale-down action was trig-
gered, respectively. As mentioned in Section 2, a scaling
is triggered based on two successive recommendations
from the Kalman filter. Observe that the estimated re-
sponse time is typically in agreement with the monitored

response time. This indicates the accuracy of our Kalman
filtering technique. However, there is a difference be-
tween the estimated and monitored response time for the
first few intervals. This is because it takes some time
for the Kalman filter to calibrate its model based on the
monitored data, as discussed in Section 3.
Using the THRES(x,y) policy in practice is tricky since
it requires finding the right values for x and y. To find
the optimal THRES policy, we start with x = 20% and
y =70%, and then iterate via trial-and-error till we find
the optimal values. Our results indicate that y = 60%
results in the lowest K with V = 0. We then experi-
ment with different x values with y = 60%. Based on our
results, we conclude that THRES(30,60) is the optimal
THRES policy for the Bursty trace.
Table 1 shows the performance of different policies for
the Bursty trace. While both DC2 and THRES(30,60)
result in zero SLA violations and low resource consump-
tion, THRES requires a lot of experimentation and cali-
bration to achieve the desired performance.

4.2 Comparison under different traces
We now consider the Hill trace and the Rampdown
trace. Figures 5(b) and 5(c) show our experimental re-
sults for DC2 under these traces. We again see that the
(monitored) response time under DC2 is below the SLA
throughout the experiment for both traces. It is impor-
tant to note that we do not change our DC2 algorithm
between experiments. DC2 automatically adapts (based
on the Kalman filtering technique discussed in Section 3)
to the different traces and takes corrective actions to en-
sure that the SLA is not violated.
Unfortunately, the THRES(30,60) policy is no longer op-
timal for the Hill or Rampdown traces. For the Hill trace,
we find that THRES(30,50) is optimal. This is because
the Hill trace exhibits a steep rise in load, requiring more
aggressive scaleup. For the Rampdown trace, we find
that THRES(40,60) is optimal. This is because the Ram-
pdown traces exhibits a gradually lowering request rate,
allowing for more aggressive scaledown. Not using the
right THRES policy for each trace can result in expen-
sive SLA violations or increased resource consumption
(see Table 1). We thus conclude that DC2 is more robust
to changes in arrival patterns than THRES.
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(a) DC2 under Bursty trace (b) DC2 under Hill trace (c) DC2 under Rampdown trace

Figure 5: Performance of DC2 for all traces.

Trace Bursty Hill Rampdown
��������Policy

Metric V K V K V K

THRES(30,60) 0% 2.50 6.66% 2.56 0% 6.00
THRES(30,50) 0% 2.79 1.21% 2.72 0% 6.00
THRES(40,60) 2.02% 2.19 15.87% 2.13 0% 4.62

DC2 0% 2.50 0% 2.44 0% 4.76
Table 1: Comparison of policies for all traces. For each
trace, the optimal policies’ values are displayed in bold.

5 Related Work
Auto-scaling approaches: Prediction models [6,20,21]
use historical data to predict future demand and proac-
tively allocate resources. In most cases, however, some
information about the application is required to convert
predicted demand into resource requirements. Control-
theoretic techniques [6,7,9,13] react to the current sys-
tem state and adjust the resource allocation accordingly.
However, these approaches typically rely on system pro-
filing to convert the system state into scaling actions.
Queueing-based models [19,25,26] also require infor-
mation about the application to make informed scaling
decisions. Black-box models do not require informa-
tion about the application, and instead leverage statistical
techniques [16] or machine learning [4] to infer system
parameters. DC2 uses a grey-box approach by modeling
the system as a queueing network, and then leverages
Kalman filtering to infer the parameters of the queue-
ing model. Grey-box approaches typically require less
time to converge and infer the system state as opposed to
black-box models.
Kalman filtering approaches: An Extended Kalman
filter (EKF) based approach was proposed in [31,33]
where the system was modeled using a queueing net-
work. The authors in [14] study a three-class, single-
tier system and conduct an extensive experimental eval-
uation of EKF. Recently, [32] applied the EKF approach
to track resource usage for a three-class, two-tier system.
In this work, we generalize EKF to a three-class, three-
tier system, and specifically use EKF for auto-scaling,
as opposed to the above works that focus on modeling
and offline analysis. The authors in [12] use Kalman fil-

tering for allocating CPU resources to VMs by modeling
the application performance as a function of CPU utiliza-
tion. Our work leverages application-level metrics in ad-
dition to resource usage metrics, and employs queueing-
theoretic models to capture the interaction between the
resources, application load, and performance.
Rule-based approaches: Auto-scaling features are now
offered by almost every major CSP including Amazon
(AWS) [3], VMware [27], Windows Azure [30], and
Google [10]. However, to the best of our knowledge, ex-
isting CSP-offered auto-scaling solutions are rule-based
and typically require the user to specify the threshold val-
ues on the resource usage (e.g., CPU, memory, storage).
Further, such rule-based approaches have to be tuned to
the specific demand pattern for best results, as demon-
strated by the THRES policy in Section 4. By contrast,
DC2 does not require the user to specify scaling rules.

6 Conclusion
In this paper we present the design and implementa-
tion of a new cloud service, Dependable Compute Cloud
(DC2), that automatically scales user applications in a
cost-effective manner to provide performance guaran-
tees. Since cloud service providers (CSPs) do not have
complete control and visibility of a user’s cloud deploy-
ment, we designed DC2 to be application-agnostic. In
particular, unlike most of the existing auto-scaling re-
search, DC2 does not require any offline profiling or
application benchmarking. Instead, DC2 employs a
Kalman filtering technique in combination with a queue-
ing theoretic model to proactively determine the right
scaling actions for an application deployed in the cloud.
An overarching goal behind the conception of DC2 is to
make a case for a CSP-offered auto-scaling service that is
superior to existing rule-based offerings. Since the cloud
is marketed as a platform designed for all levels of ten-
ants, we believe that users who do not have expert knowl-
edge in performance modeling and system optimization
should be able to easily scale their applications. Existing
auto-scaling research has ignored this segment of users.
We hope that DC2 motivates further research in the area
of easy-to-use, application-agnostic auto-scaling.
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[15] LORIDO-BOTRÁN, T., MIGUEL-ALONSO, J.,
AND LOZANO, J. A. Auto-scaling Techniques
for Elastic Applications in Cloud Environments.
Tech. Rep. EHU-KAT-IK-09-12, University of the
Basque Country, 2012.

[16] NGUYEN, H., SHEN, Z., GU, X., SUBBIAH, S.,
AND WILKES, J. AGILE: Elastic Distributed Re-
source Scaling for Infrastructure-as-a-Service. In
Proceedings of the 10th International Conference
on Autonomic Computing (San Jose, CA, USA,
2013), pp. 69–82.

[17] OPENSTACK.ORG. OpenStack Open Source Cloud
Computing Software. http://www.openstack.

org.
[18] OPSCODE INC. Chef. http://www.opscode.

com/chef.
[19] PACIFICI, G., SPREITZER, M., TANTAWI, A.,

AND YOUSSEF, A. Performance management
for cluster-based web services. Selected Areas in
Communications, IEEE Journal on 23, 12 (2005),
2333–2343.

[20] ROY, N., DUBEY, A., AND GOKHALE, A. Ef-
ficient Autoscaling in the Cloud Using Predictive
Models for Workload Forecasting. In IEEE Inter-
national Conference on Cloud Computing (2011),
pp. 500–507.

[21] SHEN, Z., SUBBIAH, S., GU, X., AND WILKES,
J. CloudScale: Elastic resource scaling for multi-
tenant cloud systems. In Proceedings of the 2nd
ACM Symposium on Cloud Computing (Cascais,
Portugal, 2011), pp. 1–14.

[22] SIMON, D. Optimal State Estimation: Kalman, H
Infinity, and Nonlinear Approaches. John Wiley &
Sons, 2006.

[23] SOFTLAYER TECHNOLOGIES, INC. http://

www.softlayer.com.
[24] SP HOME RUN INC. Cloud Service

Provider (CSP) and Inbound Market-
ing. http://www.sphomerun.com/

cloud-service-provider-csp, 2013.
[25] URGAONKAR, B., AND CHANDRA, A. Dynamic

Provisioning of Multi-tier Internet Applications.
In Proceedings of the 2nd International Confer-
ence on Automatic Computing (Seattle, WA, USA,
2005), pp. 217–228.

7



64 11th International Conference on Autonomic Computing USENIX Association

[26] URGAONKAR, B., PACIFICI, G., SHENOY, P.,
SPREITZER, M., AND TANTAWI, A. An analyti-
cal model for multi-tier internet services and its ap-
plications. In Proceedings of the 2005 ACM SIG-
METRICS International Conference on Measure-
ment and Modeling of Computer Systems (Banff,
Alberta, Canada, 2005), pp. 291–302.

[27] VMWARE, INC. VMware vFabric AppInsight.
http://pubs.vmware.com/appinsight-5/

index.jsp.
[28] WALRAND, J. An Introduction to Queueing Net-

works. Prentice Hall, 1988.
[29] WAND NETWORK RESEARCH GROUP. WITS:

Waikato Internet Traffic Storage. http://www.

wand.net.nz/wits/index.php.
[30] WINDOWSAZURE. How to Scale an Appli-

cation. http://www.windowsazure.com/

en-us/manage/services/cloud-services/

how-to-scale-a-cloud-service.
[31] WOODSIDE, M., ZHENG, T., AND LITOIU, M.

Service system resource management based on a
tracked layered performance model. In Proceed-
ings of the 2006 IEEE International Conference
on Autonomic Computing (Washington, DC, USA,
2006), IEEE Computer Society, pp. 175–184.

[32] ZHANG, L., MENG, X., MENG, S., AND TAN, J.
K-scope: Online performance tracking for dynamic
cloud applications. In Proceedings of the 10th In-
ternational Conference on Autonomic Computing
(2013), pp. 29–32.

[33] ZHENG, T., WOODSIDE, M., AND LITOIU, M.
Performance model estimation and tracking using
optimal filters. Software Engineering, IEEE Trans-
actions on 34, 3 (2008), 391–406.

8



USENIX Association  11th International Conference on Autonomic Computing 65

Exploring Graph Analytics for Cloud Troubleshooting

Chengwei Wang, Karsten Schwan, Brian Laub, Mukil Kesavan, Ada Gavrilovska
College of Computing, Georgia Institute of Technology

{flinter, karsten.schwan, brian.laub, mukilk, ada}@cc.gatech.edu

Abstract
We propose VFocus, a platform which uses streaming
graph analytics to narrow down the search space for trou-
bleshooting and management in large scale data centers.
This paper describes useful guidance operations which
are realized with graph analytics and validated with rep-
resentative use cases. The first case is based on real
data center traces to measure the performance of trou-
bleshooting operations supported by VFocus. In the sec-
ond use case, the utility of VFocus is demonstrated by
detecting data hotspots in a big data stream process-
ing application. Experimental results show that VFocus
guidance operations can troubleshoot Virtual Machine
(VM) migration failures with accuracy of 83% and with
delays of only hundreds of milliseconds when tracking
migrations on 256 servers hosing 1024 VMs. Such suc-
cesses are achieved with negligible runtime overheads
and low perturbation for applications, in comparison to
brute-force approaches.

1 Introduction

Troubleshooting large scale distributed sys-
tems/applications in data centers is important and
challenging. There can be millions of entities (e.g.,
cores) running a large variety of applications across
complex software stacks (e.g., hypervisors, guest VMs,
middleware). With such complexity, variety, and large
numbers, brute-force approaches logging all possible
performance-relevant events, at all levels of abstraction,
and for all entities, do not scale.

An emerging research area is to build systems that
combine online monitoring with online data analytics
– Monalytics [12]. As a representative solution, the
VScope system developed in our previous work offers
useful approaches to capture the ‘most relevant’ perfor-
mance data about performance issues observed in large-
scale data center applications [17]. Specifically, VS-

cope uses lightweight, continuous, and global monitor-
ing to detect performance anomalies, then ‘zooms in’
on those anomalies, by dynamically deploying more de-
tailed methods for data capture and online data anal-
ysis. Results obtained from representative data center
applications demonstrate clearly the advantages of VS-
cope, compared in performance and accuracy to logging
approaches capturing all performance-relevant events.
Lacking from VScope, however, were the techniques
needed to ‘guide’ the analyses being performed on cap-
tured monitoring information. VScope was not able to
capture important relationships among the entities being
monitored, nor did it provide structured ways to then an-
alyze those relationships. Such a ‘guidance’ framework
for monitoring data analysis is the key contribution of the
VFocus system presented in this paper, which offers the
following novel functionalities.
1. Interaction snapshot as a general representation for
interactions among the software/hardware entities that
present in data centers,
2. Streaming graph analytics as the online methods
used to evaluate the continually evolving interactions
represented in dynamically constructed snapshots.

With VFocus, data center administrators can create
diverse interaction tracking methods, and the resulting
‘guidance’ methods can efficiently troubleshoot perfor-
mance problems, by ‘zooming-in’ with both the data col-
lection being performed and the analyses applied to such
data. VFocus makes following novel contributions:
1. Graph-based analytics framework: a platform on
which interaction graphs are constructed via online mon-
itoring and analyzed using graph analytics, with the
choice of graphs and analytics depending on the inter-
actions that users wish to track.
2. Guidance operations using graph analytics: using
VFocus guidance operations including sort, group, and
explore, users can build various troubleshooting methods
to reduce the search space for troubleshooting.
3. Validation with data center traces and use cases:

1
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VFocus and its functionalities are evaluated with use
cases to identify VM migration failures and to diagnose
‘data hotspots’ in the HBase key value store. Experi-
mental results show that VFocus can troubleshoot VM
migration failures with an accuracy of 83%, and with low
overheads and interference with the applications.

2 VFocus Design and Implementation

2.1 System Overview

The VFocus system realizes the two-phase guidance
mechanism illustrated in Figure 1. In the snapshot con-
struction phase, VFocus collects metric data from mon-
itored entities and builds interaction snapshots, realtime
graphs in which vertices are software/hardware compo-
nents and edges are interactions among the components.
Interaction snapshots are updated continuously, to reflect
the latest activities in the system. The second phase is
snapshot analysis, for which VFocus exposes three prim-
itive operations: sort, group, and explore, explained in
more detail in Section 2.2. Data center operators use
those operations to track and analyze interactions in the
system, and to identify the entities to the performance
issue being observed.

Figure 1: Guidance Framework

VFocus leverages the DPG (Distributed Processing
Graphs) introduced in [17]. A DPG is an overlay net-
work consisting of processing nodes called VNodes that
each collects and analyzes monitoring data at realtime,
in a streaming manner. DPG topologies can vary, to
match monitoring needs (e.g., scale [18], and they can
be deployed at runtime and on-demand, as described in
more detail in [17]). On this basis, the system archi-
tecture of VFocus depicted in Figure 2 enables users to
interact with it via two interfaces, an analysis console
and an archive console, both of which are integrated in
the VMaster, a controller process for DPG manipula-
tions. The analysis console takes users’ input as opera-
tion commands to analyze interaction snapshots and pro-
vides users with guidance results. The archive console is
used to manage snapshots persisted in the VFocus back-
end store. In some troubleshooting scenarios, e.g., when

analyzing snapshots spanning a time duration too long
to fit all snapshots in memory, the realtime analysis may
query the archiving system for history data.

Figure 2: VFocus Architecture

The system operates as follows. The VMaster starts
the guidance process by deploying a hierarchical DPG
on the monitored machines1. Raw monitoring data col-
lected periodically by the DPG’s leaves are processed to
extract vertices and edges for forwarding to parent nodes.
Parents aggregate vertices and edges into edge lists that
represent partial snapshots of the machines monitored by
those parents’ leaves. Partial snapshots are passed up the
tree to the root for aggregation into a global snapshot.

2.2 Guidance Operations

The primitive graph analysis functions provided by VFo-
cus are listed in Table 1. There are functions to calcu-
late the basic properties of a graph, such as the degree of
some specific vertex or the number of vertices and edges
in the snapshot. For instance, the degree of a vertex is
used in Section 3.1 to find the candidate servers that are
most likely to have VM migration failures. There are also
functions for tracking the relationships among vertices,
e.g., Search Neighbor and Clique Analysis. Section 3.2
outlines a use case in which neighbor analysis is used to
determine the HBase region server with a data hotspot.
As stated earlier, all such analysis functions are executed
on VNodes at runtime, at the same time as monitoring
metrics are being collected. This results in repeated in-
cremental snapshots suitable for rapid analysis and sub-
sequent problem troubleshooting. Finally, some analyt-
ics are run concurrently and in a distributed manner. For
example, an aggregation tree is used to implement the

1The DPG runtime is installed on those machines.
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Table 1: Functions.CC(Connected Components),
C(Centralized), H(Hierarchical)

Graph Function Description Mode
Search Vertex/Edge Search vertex/edge C
Search Neighbor (In)direct neighbors C
Count Vertex Get number of vertices H
Count Edge Get number of edges H
Get Degree Get degree of a vertex H
Get Attribute Get vertex/edge attr. C
Clustering/Clique/CC Grouping vertices C

Table 2: Operations.CC(Connected Components)
Operation Basic Option Supporting Fun.

Sort
Vertices by degree Get Degree

Edges/Vertices by attr. Get Vertex/Edge

Explore
(In)direct neighbors Search Neighbors

Vertices/Edges by attr. Search Vertex/Edge

Group
Vertices by attr. Clustering

Vertices by connection Clique/CC

Count Degree function. Others operate in a centralized
manner, e.g. the Search Neighbor function.

Analysis results are used by guidance operations to
narrow down the search space of vertices and edges. To-
ward this end, VFocus provides three primitive guidance
operations listed in Table 2: sort, group, and explore.
They are implemented with different snapshot analysis
functions listed in Table 1. Data center operators access
and execute the operations in analysis console as com-
mand lines.

The Sort operation, supported by the Get Degree and
Get Vertex/Edge functions, orders vertices or edges by
their attributes (or by other aggregated properties like
‘degree’) and returns the top entities in the sorted list.

The Explore operation, supported by the Search Ver-
tex/Edge and the Search Neighbors functions, can search
the neighbors of some specified vertex at different dis-
tances (measured by the number of hops) or it can search
the vertices/edges with some specified attribute. An ex-
ample of its use appears in Section 3.2, where the explore
operation is used to track the data connectivities between
the HBase region servers and the HBase clients, in order
to troubleshoot the data hotspot issue.

The Group operation places closely related vertices
into a shared group, returning the group as the entity
subsequently manipulated. ‘Grouping’ style analysis has
also been used in previous troubleshooting research [10],
e.g., where VMs are clustered by their similarity in terms
of their computation behavior. One such similarity is
a group of VMs are interacting frequently, a fact that
can give rise to optimizations in which the migration of
one such VM triggers the migrations of others, to avoid

unnecessarily high levels of machine cross-talk in the
data center. Finally, the Group operation has two op-
tions: grouping by attributes using clustering algorithm,
or grouping by the connections between vertices, using
clique analysis and connected components, etc..

3 Use Cases

3.1 VM Migration Analysis
In virtualized data centers, VM migration moves a VM
running on a source host to a different destination host.
Performed for consolidation and resource management
purposes, migration is a ‘heavyweight’ management op-
eration both in terms of its effect on the VM itself, the
network and machine resources consumed. Migration
failures, therefore, have substantial performance impli-
cations. A cause for migration failure is the inappro-
priate choice of destination machines, one reason being
an overloaded host with insufficient capacity to rapidly
complete the migration. Migration methods, therefore,
will not select targets with high internal workloads, as
indicated by their CPU or memory utilization. A remain-
ing issue, however, is the external workload surround-
ing target hosts, an example being insufficient current
network capacity to move the VM’s substantial internal
states quickly to the target machine.

VFocus can assist in VM migration management (1)
via online tracking of host interactions, scaling to hun-
dreds of server systems, and then (2) by using guidance
operations to identify overloaded hosts not only based
on their internal workloads but also based on their inter-
actions with other hosts. We demonstrate the utility of
VFocus for identifying overloaded hosts by ‘replaying’ a
VM management operation trace recorded from a virtu-
alized data center. The trace is collected from 256 servers
in the Techway virtualized data center at Georgia Tech,
a ‘green computing’ facility run jointly by the CERCS
and CEETHERM research centers. The servers host a
total of 1024 VMs running enterprise workloads, includ-
ing (1) Nutch: a data analytics benchmark, (2) Volde-
mort: a key-value store [16] with YCSB [9] as load gen-
erator, (3) Cloudstone: a cloud web-serving benchmark,
(4) Linpack: a high performance computing workload.
The VM migration traces are collected from October 05,
2012 8:23:15 AM to October 12, 2012 12:04:20 PM.
These 172 hours of data document 31790 successful and
2845 failed migrations.

VFocus is used as follows. A centralized DPG with
one master VNode and 8 slave VNodes is driven by at-
taching to each slave log record generators. Each genera-
tor runs 1/8th of the log describing successful migrations,
injecting log records into the slave VNodes. These leaf
VNodes, then, periodically process log records to gener-
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ate local snapshots and perform local snapshot analysis,
the results of which are then sent to the master VNode to
create global snapshots for guidance operations. We use
an adjustable sliding window storing 1000 migrations in
these experimental evaluations, in order to make statis-
tically sound predictions, and slide the window after ev-
ery new migration. In each snapshot, the vertices are the
hosts, and the edges are migrations from source to des-
tination host. There are approximately 256 vertices and
1000 edges in every snapshot, and there can be multiple
edges between two vertices due to multiple migrations
between two hosts in the same time period.

The troubleshooting process has following steps. In
the first step, we use group operation to divide the global
interaction snapshot, which consist of partial snapshots,
into sub-graphs in each of which there is at least one path
between two vertices. The hypothesis behind using this
operation is that the load of a host does not come from
the other host which it does not interact with.

When there is a new migration observed on a host,
VFocus first checks which group this host belongs to, and
then uses the sort operation on degrees of all the vertices
(hosts) in that group and ranks the hosts in a descend-
ing order. The reason behind this operation is that the
top hosts on the list are having/or had most migrations,
and hence are more likely to have resource scarcity issue
when new migration requests take place. In the trace, any
two migrations happen at different time, therefore there
is only one group chosen when the sort operation is ex-
ecuted. The sort operation will provide the top n hosts
as candidates which may potentially have VM migration
failures in the future. n is tunable and in our experiment,
we find that n=45 gives us a good performance.

After replaying the trace in VFocus, it produces a se-
ries of candidate lists. To validate the guidance method-
ology, we match the list to the respective error log record
at each failure point. If the actual host with migration
failure is in the list, then we consider VFocus as a ‘hit’
as the predicted list contains the actual failure node, oth-
erwise we consider it as a ‘miss’. In this paper we only
study the failures due to overloaded hosts which are in-
dicated as ‘operation timed out’ in the failure log.

Table 3 shows the performance of VFocus guidance.
We can see in the table that, the overloaded host er-
rors have a significant percentage of all the errors (over
50%). As a guidance approach, VFocus reduces the
search space from 256 servers to 45 servers, with an
overall hit rate of over 83%. We further study the ‘po-
sition’ of a hit which is essentially the actual number of
candidates needed to be checked before reaching the real
failure node. The distribution of hit position is shown in
Figure 3. About 70% of hits happen within 30 hosts and
nearly 40% is within 15 hosts, which means for the ma-
jority of time, size of search space can be further reduced

Table 3: VFocus Guidance Accuracy
# Overload Errors # Overload Found Hit Rate

1441 (51% of all errors) 1195 83%

from 45 to 30.
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Figure 3: Distribution of Hit Positions

3.2 On-line Data Hotspot Analysis
HBase, a distributed key-value store system, is widely
used as an infrastructure to support big data applica-
tions. HBase consists of multiple region servers which
serve the read/write requests (mostly through memory
cache) concurrently to reduce the latency and increase
the throughput. One of the annoying performance issues
in this platform is that some region servers in HBase
become data hotspots which receive significantly more
read/write requests than other region servers. As a ma-
jority portion of requests go to the hotspot region servers,
their cache in main memory is filled up quickly. Those
region servers then become the bottleneck and bring
down the overall read/write performance of the HBase.
One of the common reasons for the hotspot issue is
the imbalanced accessing pattern on the row key space.
Which region server each read/write request goes to is
decided by the row key value in the request, and in HBase
the total row key space is evenly divided, as equal regions
managed by region servers. Therefore, if the row keys in
the requests, either from one application or from multi-
ple applications, concentrate on some of the key regions,
the according region servers become hotspots.

VFocus addresses this challenge in two aspects. First
the interaction snapshots can track the runtime commu-
nications among HBase region servers online. Secondly,
the hotspots can then be easily spotted by using guidance
operations.

We validate VFocus’ effectiveness in our virtualized
data center supported by OpenStack. We started over 100
VMs on 30 physical servers running Xen hypervisor. We

4



USENIX Association  11th International Conference on Autonomic Computing 69

(a) Normal Interactions (b) Interactions with Hotspots

Figure 4: Interaction Snapshots in Hotspot Analysis

deployed two applications (1) GTStream [2], a big data
streaming processing platform using FlumeNG [1], (2)
traditional read/write clients using YCSB [9], a widely
used cloud benchmark. The two applications share the
same HBase infrastructure though they access different
tables in the HBase. In GTStream application, each
Flume Agent writes at a rate of 100 requests per sec-
ond to HBase accessing a table named ‘test’. We use a
mix of 50/50 reads and writes workload in YCSB clients
and each client send 100 requests per second to HBase
accessing a table named ‘usertable’. Both tables’ key re-
gions are divided evenly across all the region servers. We
deploy VFocus on all the VMs and create a hierarchical
DPG with 10 parent VNodes on 10 dedicated VMs. We
use Libpcap [3] to sniff the network traffic on every VM.

We showcase VFocus’ guidance functionalities in two
scenarios. The first scenario represents a normal work-
load of HBase where there is no hotspot. In this scenario,
both the YCSB clients and Flume agents assign row key
value in a balanced way. For every request, YCSB cre-
ates a key value as a combination of a string and a hash
value randomly selected from the key value space. In
Flume, a key value is assigned as a combination of an ar-
bitrary web url which the flume agent is processing and
a timestamp. Figure 4(a) illustrates one of the snapshots
constructed by VFocus online. Yellow dots are all the
region servers. Green dots represent zookeeper servers.
Blue dots represent HBase clients including Flume agent
and YCSB clients. The edges among vertices are the
network communications and the thickness of an edge
indicates the traffic intensity between the two VMs. The
snapshot tracks the network interactions among zookeep-
ers, HBase clients (YCSB clients and Flume agents), and
region servers. By using explore operation on vertices
representing region servers to find its neighbors, we can
easily find that all the region servers are being accessed
by all the YCSB clients and Flume agents with approxi-
mately equal traffic between any two edges.

In the second scenario, both the YCSB clients and
Flume agents assign row key value as a combination of
a fixed string and current timestamp, which monoton-

ically increases instead of randomly distributed in the
key space. Therefore, the key values will condense in
a limited range and the requests from both YCSB and
Flume will go to a subset of region servers, making them
hotspots. Figure 4(b) illustrates one of the snapshots
constructed in this hotspot scenario, where red dots are
hotspot region servers. Besides tracking the interactions
among VMs according to their roles in the applications,
running explore operation on all the region servers fig-
ures that only three region servers are communicating
with HBase clients, indicating the three hotspots.

4 Performance Evaluation

4.1 VFocus Overhead
To test the overhead of VFocus on a VM, we run the net-
work interaction tracking used in Section 3.2 on VFocus
and change the durations of sniffing. We measure the
VM’s CPU and Memory utilization increase as the over-
heads.The overhead for VFocus is within 2% in CPU uti-
lization while the memory consumption is no more than
0.2%. The CPU utilizations increase slightly as the du-
ration increases as the network sniffing consumes more
CPU cycles as it continuously runs for a longer time.

The interferences of VFocus and brute-force approach
to the application are shown in Figure 5(a). It shows that
as the monitoring duration increases, VFocus’ interfer-
ence to the application increases, while the interferences
are within 30% when the duration increases from 50 sec-
onds to 200 seconds. By contrast, the always-on brute-
force approach has a considerably higher interference at
around 58%. To further study the breakdown of the over-
heads, we turned off the Libpcap-based data collection
function on all the Flume agents, and instead stored net-
work connection metrics, which are pre-recorded in file
using Libpcap, in memory. VFocus reads the memory
and processes data in the same way as we did when us-
ing Libpcap. The black bar in Figure 5(a) indicates that
the VFocus itself does not play the major role in the to-
tal overheads because it only incurs 7.06% slowdown,
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Figure 5: VFocus Performance Results

compared to over 20% slowdown when Libpcap-based
monitoring is enabled.

4.2 Snapshot Construction Performance

We test the snapshot construction performance by gen-
erating VM migration snapshots in VM migration use
case with different sliding window sizes, and compare
two construction strategies, centralized and parallel. In
the centralized strategy, we send all the migration data
to a central node and generate a global snapshot; while
in the parallel strategy, we create a snapshot in a dis-
tributed way by which 8 VNodes create partial snapshots
which are aggregated at the root VNode. Each snapshot
has up to 256 vertices and 1000 edges. As shown in Fig-
ure 5(b), parallel construction outperforms centralized
strategy and as the size of sliding window increases the
construction time increases as well. However the max-
imum construction time is within 700 milliseconds, and
the parallel construction strategy increases much slower
than the centralized strategy does. Validated by real data
center monitoring traces, the results show than the snap-
shot construction in VFocus is fast, hence VFocus is
capable of tracking online, runtime interactions respon-
sively. Parallel construction strategy used by VFocus is
more scalable and faster than the centralized strategy.

4.3 Graph Analysis Performance

We evaluate the VFocus’ performance on snapshot anal-
ysis by measuring the computation time of analysis
listed in Table 1. Clique analysis has two functions
(1) Clique Number function that counts the number of
cliques in the snapshot and (2) Max Clique function that
yields the largest clique in the snapshot. The monitoring
data is the trace used in Section 3.1. We measure com-
putation time at different sliding window sizes.

As shown in Figure 5(c), the computation time is
within 10000 microseconds when the sliding window
size changes from 100 to 1000, which means for VM
migration use case, the graph analysis can be conducted

in a timely manner. As the sliding window enlarges, the
time just increases slightly because all the computation
are processed in memory, which make it suitable for real-
time graph analysis. Among different analysis functions,
the two clique analyses have longer computation time
because they have higher computation complexities than
degree analysis and neighbor analysis.

5 Related Work

VFocus is similar to previous research on dependency
inference.[8, 5, 4] use network traffic and signal pro-
cessing methods to infer dependencies. [7] leverages
application-level knowledge along with network traffic
information, to infer dependencies. The fundamental
difference between VFocus and dependency inference is
that the latter does not provide a general framework for
graph abstraction and analysis on dependencies. In re-
quest path diagnosis research, [13, 6] highlight perfor-
mance differences between application activities by com-
paring their request execution paths. VFocus is differ-
ent because it focuses on creating continuous snapshots
of the interactions on-line while request path diagnosis
are off-line approaches. VScope [17] is a flexible mid-
dleware which can dynamically deploy monitoring and
analysis functions on any monitored entities at any time.
VFocus leverages VScope’s flexible architecture but it is
a graph analysis system aiming to track and analyze the
interactions among entities in data centers on-line at real-
time. VScope has built-in guidance mechanism using ad-
hoc approaches, which lacks extensibility and generality
while VFocus provides a guidance framework and primi-
tive guidance operations by which different troubleshoot-
ing approaches can be implemented.

References

[1] Apache flume. http://flume.apache.org/.

[2] Gtstream. https://github.com/chengweiwang
/GTStream.

[3] Libpcap. http://www.tcpdump.org/.

6



USENIX Association  11th International Conference on Autonomic Computing 71

[4] S. Agarwala, F. Alegre, K. Schwan, and J. Mehalingham.
E2EProf: Automated End-to-End Performance Manage-
ment for Enterprise Systems. In IEEE Conference on De-
pendable Systems and Networks (DSN), 2007.

[5] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds,
and A. Muthitacharoen. Performance debugging for dis-
tributed system of black boxes. In ACM Symposium on
Operating Systems Principles (SOSP), 2003.

[6] M. Attariyan, M. Chow, and J. Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in pro-
duction software. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012.

[7] P. Bahl, R. Chandra, A. G. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang. Towards Highly Reliable En-
terprise Network Services via Inference of Multi-level
Dependencies. In ACM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM), 2007.

[8] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automat-
ing Network Application Dependency Discovery: Experi-
ences, Limitations, and New Solutions. In USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), 2008.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM Symposium on Cloud
Computing, 2010.

[10] L. Hu, K. Schwan, A. Gulati, J. Zhang, and C. Wang.
Net-Cohort: Detecting and Managing VM Ensembles in
Virtualized Data Centers. In ACM International Confer-
ence on Automatic Computing (ICAC), 2012.

[11] M. Kesavan, A. Gavrilovska, and K. Schwan. Elastic Re-
source Allocation in Datacenters: Gremlins in the Man-
agement Plane. In VMware Technical Journal, 2012.

[12] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Tal-
war, and M. Wolf. Monalytics: Online Monitoring and
Analytics for Managing Large Scale Data Centers. In
ACM International Conference on Automatic Computing
(ICAC), 2010.

[13] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat,
S. Whitman, M. Stroucken, W. Wang, L. Xu, and G. R.
Ganger. Diagnosing Performance Changes by Comparing
Request Flows. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2011.

[14] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar,
and R. N. Chang. vpath: precise discovery of request pro-
cessing paths from black-box observations of thread and
network activities. In USENIX Annual Technical Confer-
ence (ATC), 2009.

[15] R. Van Renesse, K. P. Birman, and W. Vogels. Astrolabe:
A Robust and Scalable Technology for Distributed Sys-
tem Monitoring, Management, and Data Mining. ACM
Transactions on Computer Systems, 2003.

[16] Voldemort. Project voldemort - a distributed database.
http://project-voldemort.com/.

[17] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Tal-
war, M. Wolf, and C. Huneycutt. VScope: Middleware
for Troubleshooting Time-Sensitive Data Center Appli-
cations. In ACM/IFIP/USENIX International Conference
on Middleware (Middleware), 2012.

[18] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu,
and M. Wolf. A Flexible Architecture Integrating Moni-
toring and Analytics for Managing Large-Scale Data Cen-
ters. In ACM International Conference on Automatic
Computing (ICAC), 2011.

[19] P. Yalagandula and M. Dahlin. A Scalable Distributed
Information Management System. In ACM Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), 2004.

[20] Z. Zhang, J. Zhan, Y. Li, L. Wang, D. Meng, and B. Sang.
Precise Request Tracing and Performance Debugging for
Multi-Tier Services of Black Boxes. In IEEE Conference
on Dependable Systems and Networks (DSN), 2009.

7





USENIX Association  11th International Conference on Autonomic Computing 73

Inferring Origin Flow Patterns in Wi-Fi with Deep Learning

Youngjune L. Gwon
Harvard University

H. T. Kung
Harvard University

Abstract

We present a novel application of deep learning in net-
working. The envisioned system can learn the original
flow characteristics such as a burst size and inter-burst
gaps conceived at the source from packet sampling done
at a receiver Wi-Fi node. This problem is challenging be-
cause CSMA introduces complex, irregular alterations to
the origin pattern of the flow in the presence of compet-
ing flows. Our approach is semi-supervised learning. We
first work through multiple layers of feature extraction
and subsampling from unlabeled flow measurements. We
use a feature extractor based on sparse coding and dic-
tionary learning, and our subsampler performs overlap-
ping max pooling. Given the layers of learned feature
mapping, we train SVM classifiers with deep feature
representation resulted at the top layer. The proposed
scheme has been evaluated empirically in a custom wire-
less simulator and OPNET. The results are promising
that we achieve superior classification performance over
ARMAX, Naı̈ve Bayes classifiers, and Gaussian mixture
models optimized by the EM algorithm.

1 Introduction

Machine learning plays an increasingly important role
in the complex, data-intensive tasks required by today’s
sensing and computing systems. A flow is a sequence of
data packets sharing the same context (e.g., TCP connec-
tion, media stream) sent from a source to its destination.
Accurate knowledge about the flow characteristics such
as a burst size (in number of packets or bytes) and inter-
burst gap, as were originated at the source, can be used
beneficially to manage scarce networking resources. One
motivating example would be software-defined network-
ing (SDN) [3], which can leverage detailed flow knowl-
edge to program routers and access points (APs) for
scheduling a congested data traffic or mitigating wireless
interferences more intelligently.

This paper describes our first work in developing in-
ference schemes to learn the original properties of a flow
from packet sampling at a receiver that is not necessarily
the destination of the flow. We focus on the case where
the source and the receiver are Wi-Fi nodes, and there are
other Wi-Fi nodes that transmit their own flows. In par-
ticular, the receiver for our case is a network node such as
a Wi-Fi AP that forwards or broadcasts packets, being a
spot of aggregating different flows. The key challenge is
how to unravel the work of CSMA that introduces a com-
plicated mixture of competing flows. We believe that the
approach of this paper can be extended for various other
wireless and wired networks.

1.1 The Problem

Figure 1 explains our origin flow inference problem. Wi-
Fi node A is the source of flow fA transmitted to Node B,
a Wi-Fi AP. We denote xA|B a sample of fA measured
by B. We use vector notation f to represent an origin
flow pattern over time, and x its measurement. (Section 2
will explain how we describe patterns of a flow in detail;
for now, consider f and x finite sequences of numbers.)
Notice that there are other Wi-Fi nodes in the channel,
namely nodes C, D, E, F, and G, that transmit own flows,
creating contentions.

Distributed Coordination Function (DCF) provides the
fundamental mechanism to access wireless media for
the IEEE 802.11 Wi-Fi [1]. DCF employs Carrier Sense
Multiple Access (CSMA) with a random backoff drawn
from an exponentially growing window. Mixed with
other transmissions, the sample xA|B could hardly pre-
serve the original patterns in fA. For example, the re-
ceived packet burst lengths and gaps between bursts can
be altered significantly. The exactness of such alteration
is difficult to estimate, but there are both linear (e.g., ge-
ometric increase of burst lengths) and nonlinear (e.g.,
packet loss, retransmission, timeout) distortions. Among
all possible causes, the main culprit should be CSMA.
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Figure 1: Flow inference problem illustrated

We aim to solve the following.

1. Classify received frame/packet pattern sampled at a
receiver Wi-Fi node to the origin flow pattern;

2. Infer the original properties of a flow such as burst
sizes and inter-burst gaps originated at the source.

We clarify several points. First, the origin flow pat-
tern conveys context of application-level data. This is
depicted under node A in Figure 1. fA instantiates a pat-
tern of the data formation mostly passed from the appli-
cation layer (and the lesser from Transport/IP/MAC) to
the transmit unit. Thus, our inference problem can lead
to important understanding of application context min-
ing. Secondly, our primary work domain is the MAC
layer. We deduce observable patterns of a conventional
TCP/UDP/IP flow from measuring directly the 802.11
MAC frames over time. Lastly, a sampled flow pattern at
best is the origin flow pattern shifted (delayed) in time.
For our inference to be effective, it is crucial to learn in-
variance such as some preserved original burst lengths
that can spread widely over time.

1.2 Motivating Applications

Traffic monitoring capabilities are crucial for network
management and security. Wireless bandwidth is among
the most precious networking resources. Accurate origin
flow inference can help derive efficient scheduling for
wireless channels. The inferred information can also be
used to classify legitimate traffic from malicious attacks.
Programming network nodes. Software-defined net-
working (SDN) is an emerging paradigm to build highly
dynamic networks. Inferred origin traffic information can
help program SDN nodes. For example, we can improve
transmit-receive scheduling and avoid interferences.
Resource provisioning. The state-of-the-art networks
can provision almost all networking resources elastically.
The origin traffic inference will reveal the original prop-
erties of a flow that resource provisions such as com-
munication bandwidth, flow cache, and compute cycles
should strive to satisfy.

Queue management. A network node (e.g., router, AP,
switch) can leverage the source sending rates of large
flows to manage its receive buffers and scheduling mech-
anisms dynamically. With knowledge on origin charac-
teristics of a flow, networks can improve overall fairness.

1.3 Our Contributions
The main contribution of our work is to demonstrate the
effectiveness of learning algorithms applied to an im-
portant networking problem mostly studied under para-
metric, model-based frameworks. Our approach is semi-
supervised learning. We set up and train deep, unsuper-
vised feature learning that constitutes multiple layers of
sparse coding and pooling units. Given the learned fea-
ture mapping, we train classifiers in supervised learn-
ing. We have identified the key attributes for success-
ful learning approaches to enhance our baseline such
as forcing incoherency for sparse coding dictionary to
extract more discriminative features, dense arrangement
of sparse coding units, and max pooling on overlap-
ping intervals. We have also explored and experimented
with other learning methods from classical autoregres-
sive time-series prediction and Naı̈ve Bayes classifiers
to the EM-optimized Gaussian mixtures. Our evaluation
empirically confirms superior performance of the pro-
posed learning methods in recovering the original prop-
erties of a flow.

1.4 Related Work
There is considerable work in model-based estimation
for origin flow properties. Basu and Mukherjee [5] dis-
cuss numerous time-series models for Internet data traf-
fic, including the autoregressive moving average process
helpful for some of our formulation in Sections 2 and 3.
Claffy et al. [9] present one of the earliest work to in-
fer the original packet size distribution of a flow from
packet sampling at routers. Duffield et al. [12] analyze
methods to infer the original frequencies of flow lengths
from sparse packet sampling.

The way sparse representations are used in computer
vision and pattern recognition has inspired our method.
Wright et al. [27] have developed a face recognition sys-
tem that performs classification with sparse representa-
tion of features, which is based on a similar idea as ours.
The idea of pooling sparse representations of features
provides an important primitive to construct higher-level
features as studied by Raina et al. [22], although pooling
techniques date back to Riesenhuber and Poggio [24].
Coates and Ng [10] propose to pool over multiple fea-
tures for deep learning.

Heisele, Ho, and Poggio [14] explain useful tech-
niques of applying SVM for multi-class classification,
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which is inherent in our origin flow pattern inference
problem. There are a number of existing techniques to
learn incoherent dictionary atoms. Ramirez et al. [23],
Zhang & Li [28], and Lin et al. [18] have proposed
similar ideas that force orthonormal dictionary columns
as we maximize incoherency among dictionary columns
in §5.1. Our idea of accompanying sparsity relaxation
(§5.2) for sparse coding with forced incoherent dictio-
nary atoms is new.

1.5 Outline
Section 2 explains the time-series representation and pro-
cessing of a flow. In Section 3, we explore supervised
learning methods for the origin flow inference. Section 4
describes our baseline semi-supervised learning method.
We propose several enhancements to the baseline method
in Section 5 and evaluate the learning methods with a
custom simulator and OPNET in Section 6. The paper
concludes in Section 7.

2 Time-series Representation of Flow

The runs-and-gaps model [16] gives a concise way to de-
scribe a flow. In Figure 2, characteristic patterns of an
example flow are captured by packet runs and gaps mea-
surable over time. As indicated earlier, we perform our
flow measurements directly at the MAC layer rather than
at the transport or IP layers by sampling and processing
Wi-Fi frames.
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Figure 2: Runs-and-gaps model

Let w = [w1 w2 . . . wt . . . wN ] be a vector contain-
ing the number of packets in a flow measured over N
time intervals. Here, an important parameter is the unit
interval Ts or sampling period during which each ele-
ment wt is sampled and recorded. The total measurement
time or observation window is N ×Ts. Alternatively, we
have vector x = [x1 x2 . . . xt . . . xN ] for w where xt is the
corresponding byte count of the total payload at time t.
Hence, a zero in x (or w) indicates a gap. If w7 = 3 and
x7 = 1,492, we have 3 packets for the flow at t = 7, and

the sum of the payloads from the 3 packets is 1,492 bytes.
We will call either w or x a measurable input vector
for inference, which contains extractable features. While
both w and x carry unique information, we mainly work
with x throughout this paper.

We designate an origin flow (pattern) with another
vector f. Just like x, f is a sequence of byte counts uni-
formly sampled, but the difference is that f reflects the
initial pattern (or signature) originated at its source. Note
f ∈ RM whereas x ∈ RN , and M and N are not necessar-
ily equal. We use notation xi,k to refer kth measurement
on flow i since there can be many measurements on fi.
We also use fi,k to designate the kth instance of origin
flow i because there could be many origin patterns, or
the pattern can be a stochastic process and changes dy-
namically over time. In summary, f,w, and x are all finite
time-series representations of a flow.

Consider sampling and processing of three example
flows in Fig. 3 at a receiver. The receive buffer first times-
tamps each arriving data frame and marks with flow ID.
At t = 1, the received frame for flow 1 contains 2 pack-
ets whose payload sizes are 50 and 50 bytes, denoted in
(2, 50/50B). At t = 6, flow 3 has two received frames.
The first frame contains 2 packets with sizes 100 and 400
bytes whereas the second frame contains only one packet
with 1,000 bytes. The example results in the following:

1. w1 = [2 1 2 0 1 2], x1 = [100 80 110 0 80 100]
2. w2 = [1 0 1 0 1 0], x2 = [600 0 600 0 600 0]
3. w3 = [4 0 0 0 0 3], x3 = [1500 0 0 0 0 1500]
With Ts = 10 msec, each time series take 60 msec to

measure. Flow 1 has 133.3 packets/sec, Flow 2 with
50 packets/sec, and Flow 3 with 116.7 packets/sec. In
bit rates, they are 62.7, 240, and 400 kbps, respectively.

Figure 3: Time-series processing example

3 Origin Flow Inference with Supervised
Feature Learning

The core of an inference system comprises a feature ex-
tractor (FE) and a classifier (CL) that need to be trained.
Figure 4 describes the supervised learning frame-
work. Supervised learning requires a labeled training
dataset that consists of training examples {x1, . . . ,xT}
with corresponding desired output values (i.e., labels)
{l1, . . . , lT}. There are two mappings, FE : x → y that
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Figure 4: Supervised learning framework

maps an input x to its feature y and CL : y → l̂ that per-
forms classification on extracted features of the input.
The inference system learns the mappings FE and CL
from training examples and their labels. Once trained,
when an unknown data x comes in, the system makes an
inference by classifying it to a class l̂.

Supervised learning for the origin flow inference prob-
lem considers a training dataset {xi,�fli , li�}T

i=1 collected
at the Wi-Fi receiver of interest. xi is a time-series rep-
resentation of flow li sampled at the receiver. We also
make fli available, the corresponding origin flow time-
series representation. So, when a measured sample x is
classified as l j, we can infer the original flow properties
from looking up fl j ’s.

We now explore supervised learning methods. We note
that most of these methods naturally lead to binary clas-
sifiers. Our origin flow inference problem, however, is
a multi-class classification. We will revisit this issue in
§4.3. For clarity of explanation, this section accompanies
binary classification.

Autoregressive moving average with exogenous in-
puts (ARMAX) [19] is a widely-studied model for lin-
ear system identification. ARMAX models the current
output of a system with the previous (delayed) output
and input values. With ARMAX, we can directly esti-
mate the origin flow time-series f = [ f1 f2 . . . ft−1 ft ]
from the measurement x = [x0 x1 . . . xt−2 xt−1] in a
linear difference equation: ft + a1 ft−1 + . . .+ an ft−n =
b1xt−1 + . . .+ bmxt−m + ε . Note that ε gives the model
error, which itself can be written elaborately over time,
i.e., c1εt−1 + . . .+ cmεt−m. The ARMAX matrix form is

⎡
⎢⎢⎢⎢⎣

ft
ft−1

...
f1

⎤
⎥⎥⎥⎥⎦

� �� �
f

=

⎡
⎢⎢⎣

ft−1 · · · ft−n xt−1 · · · xt−m

...
...

...
...

f0 · · · f1−n x0 · · · x1−m

⎤
⎥⎥⎦

� �� �
ΦΦΦ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1

...
−an

b1

...
bm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� �� �
θθθ

Under supervised learning, if we have many training ex-
amples {xi,�fli , li�}T

i=1, we will have a massively over-

constrained system for our inference problem. Least
squares can train θθθ . However, when the normal equation
θ̂θθ = (ΦΦΦTΦΦΦ)−1ΦΦΦTy becomes unstable, the recursive least
squares via Kalman filtering [8] can be used instead.

Naı̈ve Bayes Classifier. The key for Naı̈ve Bayes is to
define a good feature extractor for a flow measurement
x. We use a feature y =

�
μ̂run size μ̂gap length

�
by com-

puting the sample mean values of run size (bytes) and
gap length (unit intervals) from x. The classifier is con-
structed from computing empirical conditional distribu-
tion p(y|li) of the train dataset. In runtime, the trained
classifiers infer the origin flow: li if p(li|y) ≥ p(l j|y)⇔
p(y|li)p(li)/p(y|l j)p(l j) ≥ 1. Here, we use a simple de-
cision rule that compares the learned likelihood ratios
p(y|li) and p(y|l j) for binary classification.

Support vector machine (SVM). Boser, Guyon &
Vapnik [6] first proposed SVM. SVM is a binary clas-
sification model searching for a hyperplane that maxi-
mizes separation between two classes. The hyperplane
is orthogonal to the shortest line connecting the convex
hulls of the classes. Support vectors are the data points
along the shortest line. The hyperplane has the form
h(x) = ∑T

i=1 αilixi ·x+b, where xi is a training example
for flow i, and αi, b the solution of a quadratic program-
ming (QP) problem. Class label li ∈ {−1,1} for each xi
must be provided during the training. Classification of a
runtime input x computes sign(h(x)).

The SVM kernel trick can work with nonlinearity of
data. A kernel function K(.) (e.g., radial basis, sigmoid)
maps the input x to a higher dimensional feature space
where a better margin is possible. The hyperplane with
the kernel trick becomes hkern(x) = ∑T

i=1 αiliK(xi,x)+b.
Gaussian mixture model (GMM). Strictly speaking,

GMM is an unsupervised feature learning method that is
later paired with supervised classifier training. GMM as-
sumes the probability density of input data as a weighted
sum of K Gaussian distributions. GMM can be thought
as a model-based version for K-means clustering. Param-
eterized by {w j,μ j,Σ j}K

j=1, the feature for an input x is a
combination of posterior membership probabilities eval-
uated by the Gaussians. For jth Gaussian, we have

p j(x) =
1

(2π)N/2|Σ j|1/2 · exp
�
−1

2
(x−μ j)

�Σ−1
j (x−μ j)

�

Expectation maximization (EM) [11] trains GMMs it-
eratively. In E-step, EM creates a function evaluating the
expected log-likelihood with the current estimate of the
parameters. M-step computes new parameter values that
maximizes the expected log-likelihood of the E-step.

4 Origin Flow Inference with Deep Learning

Deep learning refers to multiple layers of extracting fea-
tures and nonlinear aggregation of the extracted features.
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This section presents our deep learning approach for the
origin flow inference problem.

4.1 Overview
We propose an inference system based on semi-
supervised learning. At the first stage, the system per-
forms unsupervised feature learning over multiple layers.

1. Do sparse coding and dictionary learning with un-
labeled training dataset

2. Pool sparse representations of the training dataset to
reduce the number of features

3. Pass the resulting features (i.e., pooled sparse repre-
sentations) to next layer and repeat by treating cur-
rent layer’s features as input data for next layer

Given multiple layers of the learned dictionaries and
features, the system next performs supervised learning.

1. Do multi-layer sparse coding and pooling with la-
beled training dataset

2. Train (linear) SVM classifiers with the final form of
feature vector resulted at the top layer

At runtime, the system takes a sample measurement
of a flow, performs the multi-layer inference (i.e., sparse
coding and pooling), and predicts the origin flow pattern
and properties.

4.2 Unsupervised Feature Learning
4.2.1 Sparse coding

We use sparse coding [20] as the primary means to ex-
tract features from the sampled time-series data. Con-
sider unlabeled dataset {xk}T

k=1 with each xk ∈ RN . We
pack {xk}T

k=1 to the columns of X =
[
x�1 x�2 . . . x�T

]
.

Note X ∈ RN×T . Sparse coding requires a dictionary
D ∈ RN×P learned from X. We adopt K-SVD [4] that
learns D in the following optimization

min
D,Y

�X−DY�2
F s.t. �yk�0 ≤ K ∀k (1)

Here, the columns of Y ∈ RP×T or {yk}T
k=1, are the

sparse representations of {xk}T
k=1. (Note yk ∈ RP.)

K-SVD is a fast iterative algorithm and requires to
compute sparse code yk for each xk with current D. We
use orthogonal matching pursuit (OMP) [21] for com-
puting sparse codes. Our choice of OMP is merely based
on its computational efficiency, and there are other al-
gorithms such as LASSO [26] and LARS [13] that also
work well.

The columns of D, {d j}P
j=1, are dictionary atoms.

Hence, each element in vector y reflects a degree of

membership to the corresponding dictionary atom. To
represent unbiased membership, dictionary atoms are
normalized such that

∥∥d j
∥∥2
�2

= 1. To make every d j

meaningful, we need more training samples than dictio-
nary atoms, so T ≥ P. For discriminative convenience,
D is overcomplete—i.e., P > N. This means that sparse
code y has a higher dimensionality than x, but y is K-
sparse, that is, only K � N entries of y are nonzero.

4.2.2 Max pooling

Every input vector xk is mapped to the corresponding
feature vector yk via sparse coding. If all feature vec-
tors were used straightforwardly, we could overwhelm
the unsupervised feature learning process. It is custom-
ary to reduce the number of extracted features by sub-
sampling (or summarizing over) feature vectors—note,
this is by no means to discard any useful information.

Pooling, popular in convolutional neural networks
[17], operates over multiple (sparse) feature repre-
sentations and aggregates to a higher level of fea-
tures in reduced dimension. An important property of
pooled feature representation is translation invariance
[24]. We use max pooling [7] that takes the maxi-
mum value for the elements in the same position over
a group of feature vectors. For example, consider max
pooling of L sparse codes {y1,y2, . . . ,yL} that yields
z = max pool(y1,y2, . . . ,yL) in Figure 5. Noting yk =
[yk,1 . . . yk,P] and z = [z1 . . . zP], max pooling results
in z j = max(y1, j,y2, j, . . . ,yL, j).

 

Figure 5: Max pooling of L sparse codes

4.2.3 Multi-layer deep learning

Figure 6 presents our multi-layer deep learning. We use 2
layers. Each layer trains own dictionary and has separate
sparse coding and pooling units. Assuming input vector
xk has a moderate size N, we perform batch processing of
multiple xk’s concatenated in series. Figure 6 showcases
4 input vectors with pooling unit configured at L = 2. If
xk has a very large N on the other hand, xk can be divided
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Figure 6: Baseline 2-layer deep learning with sparse coding and
max pooling

into subpatches, and we perform sparse coding on each
subpatch. The input vector length for sparse coding is an
important system parameter for deep feature learning.

Max pooling is performed over sets of two consecutive
sparse representations {y(1)1 ,y(1)2 } and {y(1)3 ,y(1)4 }. We
use notation y(1)k for kth sparse code at layer 1. The in-

termediate pooled features, z(1)1 and z(1)2 , are sent to layer
2 for another round of sparse coding and max pooling.
At the top, z(2)1 —obtained by pooling the layer 2 sparse
codes y(2)1 and y(2)2 —gives the final feature representation
for {x1,x2,x3,x4} in this 2-layer deep learning.

In general, a depth or the number of layers reflects the
coverage of deep learning. Layer 1 extracts small, local
features over multiple intervals spanned by consecutive
input vectors. The resulting feature representations are
subsampled with max pooling before passed to layer 2.
Layer 2 builds larger features using its own dictionary.
Because the feature coverage by layer 1 coding and pool-
ing is over a subregion for the layer 2 coverage, the fea-
tures aggregated at layer 2 are novel and could not be
seen at layer 1.

4.3 Supervised Learning
We embrace the supervised learning that largely con-
sists of training SVM classifiers. The SVM classification
framework is generic and can directly work on x without
any feature extraction or pooling. SVMs could be trained
with a single-layer sparse representation y(1) subject to
x = D(1) y(1). Under our 2-layer deep learning setup, we
train linear SVM classifiers using the final pooled feature
vectors z(2).

Considering there are many data patterns generated
by applications, the origin flow inference is a multi-
class classification problem. There are two approaches
for SVM, which is inherently a binary classifier, to clas-

sify q origin flow patterns. The first approach is to train
all q(q−1)

2 1-vs-1 SVMs exhaustively. Each SVM is ded-
icated to distinguish between any pair out of q origin
flows and infers the original flow properties mapped by
the classification result.

The second approach is to train q 1-vs-all SVMs. For
flow i, training 1-vs-all SVM will require two datasets
Xi with label li = 1 consisting of measured patterns of
flow i only and X\i with label l j = −1 containing mea-
surements for all other flows j ∀ j �= i. Ideally, X\i should
contain unbiased mix of the other flows. Our empirical
evaluation in Section 6 considers the 1-vs-all approach.

5 Enhancements

5.1 Incoherent Dictionary Learning

Dictionary learning algorithms address the performance
of sparse coding in two aspects: 1) reconstructive accu-
racy and 2) discriminative ability of the learned dictio-
nary atoms (i.e., the column vectors of D). We emphasize
the latter aspect because our primary objective is clas-
sification rather than compressing data. Discriminative
ability of a dictionary is related to making its atoms as
incoherent as possible. Sparse coding with a dictionary
consisting of more incoherent column vectors should im-
prove the margin of an SVM, which results in a better
classification performance.

The maximally incoherent D is constrained such that
DTD= I. In other words, an incoherent dictionary matrix
has orthonormal columns. This is equivalent to minimiz-
ing

∥∥DTD− I
∥∥2

F . We can also think of having the two
conditions dT

k d j = 0 ∀k �= j (orthogonal columns) and∥∥dT
k dk

∥∥
2 = 1 (normalized).

Since we use K-SVD, we add the incoherence opti-
mization term to Equation (1)

min
D,Y

�X−DY�2
F + γ

∥∥DTD− I
∥∥2

F s.t.�yk�0 ≤ K ∀k

(2)

The new optimization here, however, is not a trivial task.
For the time being, we propose a two-stage algorithm
presented below instead.

In the outer for loop, we run K-SVD unmodified. The
resulting D then enters the inner while loop that imple-
ments the gradient descent algorithm [25] to regularize
the incoherence term in Eq. (2). γ is the step size for gra-
dient search and decayed by 0 < δ < 1 within the inner
loop until initialized back to the default value γ0 in the
outer loop after running K-SVD with the next training
vector.

6



USENIX Association  11th International Conference on Autonomic Computing 79

Algorithm 1 Two-stage incoherent dictionary learning

Require: training dataset X =
[
x�1 . . . x�T

]
1: initialize D := I
2: for i = 1 to T
3: D := ksvd(D,xk,K)
4: initialize γ := γ0

5: while
∥∥DTD− I

∥∥2
F > ε

6: D := D− γD(DTD− I)
7: D := normalize columns(D)
8: γ := γ ·δ
9: end

10: end

5.2 Sparsity Relaxation

Strictly speaking, the way we force the dictionary inco-
herence is flawed. The gradient descent takes over after
K-SVD, but K-SVD and the gradient descent regulariza-
tion have to take place jointly as Equation (2) suggests.
For this reason, the resulting effect of the outer loop
computation perturbs the K-SVD optimization. In other
words, improving the dictionary incoherence comes with
the cost of reconstructive accuracy.

As a result, using the same value of K for sparse cod-
ing may be too tight to meet the minimal error crite-
rion. Therefore, we must relax the original sparsity K
for sparse coding to K� such that K� > K. We do spar-
sity relaxation as follows. Let D� represent the incoherent
dictionary resulted from Algorithm 1. We repeat sparse
coding with D� to find Y�

min
Y�

∥∥X−D�Y�∥∥2
F s.t.

∥∥y�k
∥∥

0 ≤ K� ∀k

5.3 Dense Sparse Coding and Overlapping
Pooling

The baseline deep learning scheme in Figure 6 does
batch sparse coding of {x1,x2,x3,x4} and max pooling
of {y1,y2} and {y3,y4}. We can enhance this baseline by
performing sparse coding on shifted xk’s and max pool-
ing over the resulting, overlapping sparse codes. This
is illustrated in Figure 7. The overlapping intervals are
formed by shifting (i.e., delaying) the elements in xk’s al-
together by τ . Note that τ = 1 gives the fully overlapped
intervals while there is no overlapping for τ = 4 · N,
which equals the baseline. (In our evaluation, we use
a 95% overlap between consecutive x’s.) Dense sparse
coding can substantially reduce chances to miss a fea-
ture with increased cost of computing. Overlapping pool-
ing further improves on the translational invariance of a
feature. Also, according to Krizhevsky et al. [15], over-
lapping pooling reduces overfit in classifiers.

Figure 7: Enhanced 2-layer deep learning with dense sparse
coding and overlapping max pooling

6 Evaluation

We evaluate the proposed baseline and enhanced infer-
ence schemes in comparison to classical machine learn-
ing approaches described in Section 3. We have imple-
mented a simple setup featuring three Wi-Fi nodes in a
custom MATLAB simulator and used OPNET Modeler
to test more elaborated, seven Wi-Fi node scenario.

6.1 Methodology

6.1.1 Flow generation

We generate flows based on the runs-and-gaps model ex-
plained in Section 2. The triplet �tr,sr, tg� describes the
generative pattern of a flow, where tr and tg are the run
and gap lengths in number of unit intervals (Ts), and
sr denotes the size of payload in bytes generated per
each unit interval of a run. A flow type can be con-
stant, stochastic, or mixed. A constant flow has deter-
ministic tr, sr, and tg values. For example, flow 1 with
�2,100,4� creates the origin flow pattern (time series)
f1 = [100 100 0 0 0 0 100 100 0 0 . . . ]. For a stochastic
flow, tr, sr, and tg are random variables. For example,
flow 6 with �Exp(0.5), Pareto(40,1), Exp(0.25)� has ex-
ponentially distributed run and gap lengths (with mean of
1/0.5 and 1/0.25 unit intervals, respectively), and Pareto-
distributed payload sizes. An instance of flow 6 could be
f6 = [518 97 0 0 0 0 0 0 32 0 . . . ].

We consider 10 origin flows summarized in Table 1.
Notice we also use the normal (N) and uniform (U) dis-
tributions. We round fractions, discard negative numbers
drawn from a normal distribution and regenerate. Using
Ts = 10 msec, we generate 2,000 instances of time series
for each flow. We use the first 1,000 instances for training
and the other 1,000 for testing. Each instance is a vector

7
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Table 1: Origin flows used for evaluation

Flow Type Generative triplet �tr,sr, tg�
Flow 1 Constant �2,100,4�
Flow 2 Constant �2,500,2�
Flow 3 Constant �5,200,5�
Flow 4 Constant �10,200,10�
Flow 5 Stochastic �Exp(1), Pareto(100,2), Exp(0.1)�
Flow 6 Stochastic �Exp(0.5), Pareto(40,1), Exp(0.25)�
Flow 7 Stochastic �U(4,10), Pareto(100,2), Exp(0.5)�
Flow 8 Stochastic �N(10,5), Pareto(40,1), N(10,5)�
Flow 9 Mixed �1, Pareto(100,2), 1�
Flow 10 Mixed �1, Pareto(100,2), Exp(0.25)�

of 500 elements.

6.1.2 Preprocessing generated origin flow patterns

We precompute the mean run and gap lengths from the
generated origin flow patterns in the training dataset.
This is convenient because we enable simple lookup
(of the precomputed values) based on the classifi-
cation result of a measured flow in order to esti-
mate the origin run and gap properties. In Figure 8,
we have

[
s1

1 s1
2 0 0 0 s2

1 0 0 0 0 0 s3
1 s3

2 s3
3 0 0 . . .

]
, where

s1 = ∑2
k=1 s1

k , s2 = ∑1
k=1 s2

k , s3 = ∑3
k=1 s3

k give total bytes
of the three bursts. We can then compute the mean burst
size for this pattern. We also compute {t1

r , t
2
r , t

3
r , . . .},

{t1
g , t

2
g , t

3
g , . . .}, and their mean values.

Figure 8: Computing generated flow statistics

6.1.3 Evaluation metrics

We are foremost interested in the accuracy of classifying
a measured pattern x to its ground-truth origin flow pat-
tern f. We compute two metrics, recall (true positive rate)
and false alarm (false positive rate), to evaluate classifi-
cation performance:

Recall =
∑True positives

∑True positives + ∑False negatives

False alarm =
∑False positives

∑False positives + ∑True negatives

Without false alarm rate, we cannot truly assess the
probability of detection for a classifier using a computed
recall value because the classifier can be configured to
declare positive only, automatically achieving to guess
all positives correctly. Classification leads to inferring

Table 2: Wi-Fi parameter configuration for Scenario 1

Parameter Description Value
aSlotTime Slot time 20 μsec
aSIFSTime Short interframe space (SIFS) 10 μsec
aDIFSTime DCF interframe space (DIFS) 50 μsec
aCWmin Min contention window size 15 slots
aCWmax Max contention window size 1023 slots
tPLCPPreamble PLCP preamble duration 16 μsec
tPLCP SIG PLCP SIGNAL field duration 4 μsec
tSymbol OFDM symbol duration 4 μsec

other important properties of a flow from its training
dataset records. As our secondary evaluation metrics, we
calculate errors in estimating the original mean burst size
and mean gap length of the flow.

6.2 Scenario 1: Three Wi-Fi Nodes
Figure 9 depicts Scenario 1. In this simple scenario, we
infer the origin time series fA sent by source node A, us-
ing xA|B measured at receiver node B. Node C, another
source, contends with node A by transmitting its own
flow fC. We carry out cross-validation with all 10 flow
datasets by setting fA = fi ∀i ∈ {1, . . . ,10}, flow by flow
at once. When fA = fi, we randomly set fC = f j ∀ j �= i.
Node C can change its flow pattern from f j to fk, while
node A still running fi, but fk is chosen such that k �= i.

Node A 
(source) 

Node B 
(receiver) 

Node C 

xA|B 
IEEE 802.11 Wi-Fi 

(DCF/CSMA) 

fA = fi  

fC = fj    

Figure 9: Scenario 1

Wi-Fi setup. We have implemented a custom discrete-
event simulator in MATLAB, assuming the IEEE
802.11g our baseline Wi-Fi system. At its core, our
CSMA implementation is based on an open-source wire-
less simulator [2]. The backoff mechanism works as
follows. The contention window CW is initialized to
aCWmin. In case of timeout, CSMA doubles CW, other-
wise waits until the channel becomes idle with an ad-
ditional DCF interframe space (DIFS) duration. CSMA
chooses a uniformly random wait time between [1, CW].
CW can grow up to aCWmax of 1,023 slots. CW is decre-
mented only when the media is sensed idle. RTS and
CTS are disabled. The Wi-Fi configuration is summa-
rized in Table 2.

Inference schemes. We have implemented all of the
inference schemes in MATLAB. We consider ARMAX-
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Table 3: Errors to estimate original mean burst size and mean
gap length with 5-sec observation window (error percentages
in parenthesis are for Scenario 2)

Scheme Origin burst size Origin gap length
estimation error estimation error

ARMAX 39.3% (45.9%) 28.1% (36.7%)
Naı̈ve Bayes 31.4% (37.5%) 15.8% (24.6%)
GMMs 23.2% (31.3%) 11.7% (18.1%)
DL (baseline) 18.7% (28.3%) 9.3% (16.2%)
DL (enhanced) 12.2% (22.8%) 6.8% (11.4%)

least squares, Naı̈ve Bayes classifiers, Gaussian mixture
models (GMM), and the two deep learning methods we
proposed. The baseline deep learning method has 2 lay-
ers implemented as described in Section 4. The enhanced
deep learning method also has 2 layers, but we addi-
tionally have implemented incoherent dictionary train-
ing, dense sparse coding, and overlapping max pooling
as described in Section 5. We call the size of vector x ob-
served length or observation window size and have varied
100, 200, 300, and 500.

Training. As mentioned in §6.1.1, the training dataset
for each flow has 1,000 instances. For flow i, we transmit
training examples {fi,k}1000

k=1 serially. (Note the notation
fi,k for kth instance of flow i.) We consider 1-vs-all linear
SVM classifiers for all inference schemes.

We train ARMAX with n previously transmitted ori-
gin flow patterns and m previous inputs—i.e., for flow
i, we feed {fi,k−1, . . . , fi,k−n} and {xi,k−1, . . . ,xi,k−m}—
at time k. After trying out various configurations, we
choose n = 2 and m = 3. The least squares directly es-
timate f̂ given x. SVMs for ARMAX are trained with f̂s.

For Naı̈ve Bayes, we extract the statistic y =[
μ̂run size μ̂gap length

]
from x by averaging run burst sizes

and gap lengths and use y as a feature with label li for
flow i to build empirical distributions p(y|x, li). Note
training Naı̈ve Bayes yields classifiers, so we do not need
to train any SVMs for Naı̈ve Bayes.

We use K = 10 GMMs. Like Bayes, we use the same
static y from x as a feature to train GMMs via the EM
algorithm. However, unlike Bayes, GMMs do not yield
classifiers. We train SVMs with the membership prob-
abilities from the trained K Gaussians evaluated on y
given li.

The proposed deep learning methods produce a max-
pooled sparse representation z(2) at the top of layer 2 for
given x. We use labeled z(2)’s to train SVMs.

Results. Figure 10 presents classification recall and
false alarm rate of each inference scheme for Scenario
1. Overall, deep learning (DL) yields consistently higher
recall at lower false alarm. When using a small observa-
tion window length to sample x, the recall gap between
the enhanced and baseline deep learning methods is no-
ticeably larger than the case of using a large observa-

tion window. This is because dense sparse coding and
overlapping max pooling in the enhanced deep learning
scheme substantially reduce the probability of missing a
feature. A possible explanation for poor ARMAX perfor-
mance could be that CSMA introduces significant non-
linear distortions. GMMs are on par with our baseline
deep learning. If optimized to their limits, GMMs seem
to be a reasonable alternative to deep learning for clas-
sification. This is not surprising since GMMs are really
a form of K-SVD. (Note also that our effort to fine-tune
GMMs was only fair as our focus in this paper was on
deep learning.)
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Figure 10: Classification recall and false alarm rate for Scenario 1

After classification, we predict the original mean burst
size and gap length of a flow based on lookup of the pre-
computed values from the training dataset (see explana-
tion in §6.1.2). The estimation errors in Table 3 are the
best case, obtained with the maximum observation win-
dow size of 5 seconds that we have tried.

6.3 Scenario 2: Wi-Fi Nodes in OPNET
Figure 11 illustrates Scenario 2 featuring seven Wi-Fi
nodes simulated in OPNET. This scenario is important
for several reasons. First, we can configure more realis-
tic application profiles for simulated nodes. We can also
scale the simulation. Lastly, we can validate our schemes
with OPNET’s built-in Wi-Fi protocols, particularly the
IEEE 802.11g, which should be more complete than our
MATLAB simulator. Scenario 2 preserves nodes A, B,
C and their activities the same as Scenario 1. There are
five additional Wi-Fi nodes that communicate in typical
Internet styles as summarized in Table 4.

9
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Figure 11: Scenario 2

Table 4: Configuration summary of Scenario 2

Node Role Main networking activity
A Flow source Transmits fi
B Receiver Intercepts flows as Wi-Fi router/AP
C Flow source Transmits f j ∀ j �= i
D Flow source Multimedia streaming over RTP/UDP/IP
E Flow dest. HTTP with page size ∼ U[10,400]B
F Flow dest. ftp file transfer with size 50000B
G Flow dest. DB access with inter-arrival ∼ Exp(3)sec

We test the same inference schemes and keep the
training methodology of Scenario 1. In Figure 12, we
plot classification recall and false alarm rate of each
scheme evaluated under Scenario 2. With more nodes
and increased traffic, the overall classification perfor-
mance is worse. Again, we can clearly see the benefits
of dense sparse coding and overlapping pooling for en-
hanced deep learning that consistently outperforms the
other schemes over various observation window sizes.
For a small observation window in particular, recall for
enhanced deep learning is substantially higher while
achieving the lowest false alarm rate. Table 3 shows
the estimation errors (in parenthesis) to predict original
properties of the flows, the mean burst size and mean gap
length, after classification.

7 Conclusion

We have addressed the problem of inferring the origi-
nal properties of a flow sampled from a received Wi-Fi
traffic mix. This inverse problem is challenging because
CSMA significantly changes the origin pattern of the
flow while scheduling with other flows in competition.
Machine learning can provide tools to harness complex-
ity and nonlinearity, but it requires to apply adept domain
knowledge or application-specific insights to configure
the overall learning pipeline and fine-tune all model pa-
rameters to their meticulous detail.
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Figure 12: Classification recall and false alarm rate for Scenario 2

Learned from our initial, unsuccessful attempt to
straightforwardly integrate sparse coding and dictionary
learning into SVM classification, we have set up multiple
layers of sparse feature extraction and max pooling that
enable deep learning from received flow patterns. Multi-
layer sparse coding allows us to learn local, atomic fea-
tures such as run and gap sizes of a flow accurately at
the lowest layer and global features such as periodicity
in traffic patterns at higher layers. Max pooling summa-
rizes often too many extracted features while providing
translation invariance. We have explained how the pro-
posed approaches incorporate these ideas and validated
their superior performance.

In summary, contributions of this paper include a
novel formulation of an inverse problem to recover ori-
gin flow patterns in Wi-Fi, identification of the key at-
tributes for successful machine learning approaches to
solve such inverse problems (i.e., the use of sparse rep-
resentation of features, multi-layer inference, and pool-
ing), and demonstration of the sound working of these
methods in recovering original flow properties. We have
chosen not to discuss possible applications of this paper
in security and network anomaly detection. We plan to
address such applications in our future work.
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Abstract

When a virtual machine monitor (VMM) provides code
that executes in the context of a guest operating system,
allowing that code to have privileged access to specific
hardware and VMM resources can enable new mecha-
nisms to enhance functionality, performance, and adapt-
ability. We present a software technique, guarded ex-
ecution of privileged code in the guest, that allows the
VMM to provide this capability, as well as an implemen-
tation for Linux guests in the Palacios VMM. Our sys-
tem, which combines compile-time, link-time, and run-
time techniques, provides the module developer with the
following guarantees: (1) A kernel module will remain
unmodified and it will acquire privilege only when un-
trusted code invokes it through developer-chosen, valid
entry points with a valid stack. (2) Any execution path
leaving the module will trigger a revocation of privilege.
(3) The module has access to private memory. The sys-
tem also provides the administrator with a secure method
to bind a specific module with particular privileges im-
plemented by the VMM. This lays the basis for guaran-
teeing that only trusted code in the guest can utilize spe-
cial privileges. We give two examples of guarded Linux
kernel modules: a network interface driver with direct
access to the physical NIC and an idle loop that uses in-
structions not usually permitted in a guest, but which can
be adaptively selected when no other virtual core shares
the physical core. In both cases only the guarded module
has these privileges.

This project is made possible by support from the United States Na-
tional Science Foundation (NSF) via grant CNS-0709168 and the De-
partment of Energy (DOE) via grant DE-SC0005343.

1 Introduction

By design, a virtual machine monitor (VMM) does not
trust the guest operating system and thus does not allow
it access to privileged hardware or VMM state. How-
ever, such access can allow new or better services for the
guest, such as the following examples.

• Direct guest access to I/O devices would allow existing
guest drivers to be used, avoid the need for virtual
devices, and accelerate access when the device could be
dedicated to the guest. In existing systems, the VMM
limits the damage that a rogue guest could inflict by only
using self-virtualizing devices [14, 19] or by operating in
contexts such as HPC environments, where the guest is
trusted and often runs alone [10].

• Direct guest access to the Model-Specific Registers
(MSRs) that control dynamic voltage and frequency
scaling (DVFS) would allow the guest’s adaptive control
of these features to be used instead of the VMM’s
whenever possible. Because applications running on the
guest enjoy access to more rich information than the
VMM does, there is reason to believe that guest-based
control would perform better.

• Direct guest access to instructions that can halt the
processor, such as monitor and mwait, would allow
more efficient idle loops and spinlocks when the VMM
determines that such halts can be permitted given the
current configuration.

Since we cannot trust the guest operating system, to
create such services we must be able to place a compo-
nent into the guest operating system that is both tightly
coupled with the guest and yet protected from it. In prior
work [5], we presented GEARS, a framework for allow-
ing the implementation of a service to span the guest and
the VMM, even without guest cooperation. GEARS pro-
vides the ability to inject modules into the guest, but the
injected code runs with the same privilege and the same
hardware access as other, untrusted guest code. In this
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paper, we extend this functionality to allow for the in-
jected code to be endowed with privileged access to hard-
ware and the VMM that the VMM selects, but only un-
der specific conditions that preclude the rest of the guest
from taking advantage of the privilege. We refer to this
privileged injected code as a guarded module, and it is
effectively a piece of the VMM running in the guest con-
text.

Our technique leverages compile-time and link-time
processing which identifies valid entry and exit points
in the module code, including function pointers. These
points are in turn “wrapped” with automatically gener-
ated stub functions that communicate with the VMM.
Our current implementation of this technique applies to
Linux kernel modules. The unmodified source code of
the module is the input to the implementation, while the
output is a kernel object file that includes the original
functionality of the module and the wrappers. Concep-
tually, a guarded module has a border, and the wrapper
stubs (and their locations) identify the valid border cross-
ings between the guarded module, which is trusted, and
the rest of the kernel, which is not.

A wrapped module can then be injected into the guest
using the existing GEARS framework, or added to the
guest voluntarily. The wrapper stubs and other events de-
tected by the VMM drive the second component of our
technique, a state machine that executes in the VMM.
An initialization phase determines whether the wrapped
module has been corrupted and where it has been loaded,
and then protects it from further change. Attempted
border crossings, either via the wrapper functions or
due to interrupt/exception injection, are caught by the
VMM and validated. Privilege is granted or revoked on
a per-virtual core basis. Components of the VMM that
implement privilege changes are called back through a
standard interface, allowing the mechanism for privilege
granting/revoking to be decoupled from the mechanism
for determining when privilege should change. The priv-
ilege policy is under the ultimate control of the adminis-
trator, who can determine the binding of specific guarded
modules with specific privilege mechanisms.

Our contributions are as follows:

• We describe the design of the joint compile-time
and run-time guarded module mechanism.

• We describe the implementation of the design for
supporting guarded Linux modules in the context of
the Palacios VMM [11, 9]. Our implementation is
publicly available within the Palacios codebase.

• We evaluate the performance of our implementa-
tion, independent of the service and the privilege.

• We extend Palacios with a privilege mechanism, a
PCI device passthrough capability that can dynami-
cally acquire and release privilege, and then demon-
strate passthrough NIC access using a guarded mod-
ule that drives this mechanism. Only the module has
access to the NIC.

• We extend Palacios with a second privilege mecha-
nism, selectively-enabled access to the monitor
and mwait instructions, and then demonstrate
adaptive use of these instructions in a guarded mod-
ule. Only the module has access to the instructions
and can halt the physical core using them.

2 Related work

Process Isolation Protecting trusted applications from
an untrusted OS has recently become an active area of
research. Overshadow [3] first showed that hardware vir-
tualization techniques can be used to ensure control-flow,
data, and address space integrity for a process running in
the guest. TrustVisor [17] extended this idea with a much
smaller trusted computing base (TCB). Flicker [18] uses
nascent hardware support to effectively protect trusted
applications. XOMOS [13] achieves the same goal, al-
beit with a new ABI and an ISA that has not yet been
implemented in real hardware. InkTag [6] and Virtual
Ghost [4] both aim to further defend these trusted appli-
cations from a small subset of potential Iago attacks [2],
a new class of attacks in which a malicious kernel crafts
return values from system services to trick a trusted ap-
plication into following a code path intended by the at-
tacker. However, these systems not only lack support
for trusted kernel components, they also leverage exist-
ing protection domains and do not consider the protec-
tion of a trusted component from attacks originating in
the same address space.

Kernel-space Isolation A large portion of previous
work on kernel-space isolation is intended for isolating
an entire kernel from untrusted, external components.
LeVasseur’s work on using virtual machines as vehicles
for commodity driver reuse and fault isolation [12] shows
promise, but these techniques involve using driver code
residing in a completely separate virtual machine.

Swift showed, with Nooks [22], that code wrappers
can isolate faulty code in Linux kernel extensions, im-
proving the reliability of the core kernel. While Nooks
provides an illustrative example of defining boundaries
between driver and kernel code, it requires modifications
to the kernel in which the drivers reside. Our system re-
quires no such modifications. Further, Nooks does not
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consider the situation in which a trusted module/exten-
sion requires protection from an untrusted kernel—our
primary area of concern.

Both LXFI [16] and SecVisor [20] explore isolation in
terms of guaranteeing kernel integrity. LXFI mitigates
the potential for privilege escalation attacks against ker-
nels by requiring that programmers annotate their mod-
ules. SecVisor insulates kernels from untrusted code by
only allowing VMM-authorized code to execute, pre-
venting a broad class of code-injection attacks against
the kernel. Protecting the kernel against both malicious
attacks and faulty software components are important
problems, but they are orthogonal to our concerns. Our
system guarantees the integrity of kernel modules that
enjoy both a higher level of trust and privilege than the
rest of the OS.

VM Introspection There have been several examples
of leveraging the guest-host relationship to improve VM
monitoring and resource management, especially in the
context of autonomic computing [26, 15, 23, 7]. How-
ever, as far as we are aware, the only existing use case for
trusted, isolated components within a guest kernel is for
security monitors in which the only protected state is the
code and data of the monitor itself, not higher-privilege
state such as that required to access the hardware such as
we outlined in Section 1.

IntroVirt [8] allows a VMM to invoke code in the
guest, but does not deal with enforcing separate levels
of trust within the same guest.

SYRINGE [1] provides a mechanism by which secure
monitoring code can leverage functions in an untrusted
guest. This system employs a secure VM along with
an untrusted VM. When the monitoring code in the se-
cure VM needs to call a function in the untrusted VM,
the hypervisor forwards the call, managing control-flow
and data integrity such that the secure VM is not com-
promised. However, this system is more akin to a se-
cure, cross-core RPC facility that does not address bor-
der crossings within the same address space—a major
component of our work.

Secure in-VM monitoring, or SIM [21], addresses per-
formance issues raised by previous VM introspection
techniques by allowing monitoring code to run directly
in the guest while ensuring the monitor’s integrity. While
SIM touches on the border crossings that are our focus,
it largely sidesteps the issue by using a completely sep-
arate address space for the trusted monitor code. We do
not have this option as we seek to guard modules that
reside in the same address space as the untrusted kernel.

As far as we are aware, the guarded module system

we present is the first of its kind that guarantees both
control-flow and data integrity for modules that share the
same address space as an untrusted OS kernel. Guarded
modules require no specialized hardware and no modifi-
cations to the guest OS in which they execute.

3 Trust and threat models; invariants

We assume a completely untrusted guest kernel. A de-
veloper will add to the VMM selective privilege mech-
anisms that are endowed with the same level of trust as
the rest of the core VMM codebase. A module devel-
oper will assume that the relevant mechanism exists. The
determination of whether a particular module is allowed
access to a particular selective privilege mechanism is
made at run-time by an administrator. The central rela-
tionship we are concerned with is between the untrusted
guest kernel and the module. A compilation process
transforms the module into a guarded module. This then
interacts with run-time components to maintain specific
invariants in the face of threats from the guest kernel.

Control-flow integrity The key invariant we provide
is that the privilege on a given virtual core will be en-
abled if and only if that virtual core is executing within
the code of the guarded module and the guarded mod-
ule was entered via one of a set of specific, agreed-upon
entry points. The privilege will be disabled whenever
control flow leaves the module, including for interrupts
and exceptions.

The guarded module boasts the ability to interact
freely with the rest of the guest kernel. In particular, it
can call other functions and access other data within the
guest. A given call stack might intertwine guarded mod-
ule and kernel functions, but the system guards against
attacks on the stack as part of maintaining the invariant.

A valid entry into the guarded module is not checked
further. Our system does not guard against an attack
based on function arguments or return values, namely
Iago attacks. The module author needs to validate these
himself. Note, however, that the potential damage of per-
forming this validation incorrectly is limited to the spe-
cific privilege the module has.

Code integrity Disguising the module’s code is not a
goal of our system. The guest kernel can read and even
write the code of the guarded module. However, any
modifications of the code by any virtual core will be
caught and the privilege will be disabled for the remain-
der of the module’s lifetime in the kernel. The identity
of the module is determined by its content, and module
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insertion is initiated external to the guest with a second
identifying factor, guarding against the kernel attempting
to spoof or replay a module insertion.

Data integrity Data integrity, beyond the registers and
the stack, is managed explicitly by the module. The mod-
ule can request private memory as a privilege. On a valid
entry, the memory is mapped and is usable , while on
departing the module, the memory is unmapped and ren-
dered invisible and inaccessible to the rest of the kernel.

4 Design and implementation

The specific implementation of guarded modules we de-
scribe in this paper applies to Linux kernel modules. Our
implementation fits within the context of the Palacios
VMM and takes advantage of code generation and link-
ing features of the GCC and GNU binutils toolchains.
The VMM-based elements leverage functionality com-
monplace in modern VMMs, and thus could be readily
ported to other VMMs. The code generation and linking
aspects of our implementation seem to us to be feasible
in any C toolchain that supports ELF or a similar format.
The technique could be applicable to other guest kernels,
although we do assume that the guest kernel provides
runtime extensibility via some form of load-time linking.

In our implementation, a guarded Linux kernel module
can either be voluntarily inserted by the guest or invol-
untarily injected into the guest kernel using the GEARS
framework. The developer of the module needs to target
the specific kernel he wants to deploy on, exactly as in
creating a Linux kernel module in general.

The guarded module is a kernel module within the
guest Linux kernel that is allowed privileged access to
the physical hardware or to the VMM itself. The nature
of this privilege, which we will describe later, depends on
the specifics of the module. We refer to the code bound-
ary between the guarded module and the rest of the guest
kernel as the border.

Border crossings consist of control flow paths that tra-
verse the border. A border-out is a traversal from the
module to the rest of the kernel, of which there are three
kinds. The first, a border-out call occurs when a ker-
nel function is called by the guarded module, while the
second, a border-out ret, occurs when we return back to
the rest of the kernel. The third, a border-out interrupt
occurs when an interrupt or exception is dispatched. A
border-in is a traversal from the rest of the kernel to the
guarded module. There are similarly three forms here.
The first, a border-in call consists of a function call from
the kernel to a function within the guarded module, while

the second, a border-in ret consists of a return from a
border-out call, and the third, a border-in rti consists
of a return from a border-out interrupt. Valid border-
ins should raise privilege, while border-outs should lower
privilege. Additionally, any attempt to modify the mod-
ule should lower privilege.

The VMM contains a new component, the border con-
trol state machine, that determines whether the guest has
privileged access at any point in time. The state machine
also implements a registration process in which the in-
jected guarded module identifies itself to the VMM and
is matched against validation information and desired
privileges. This allows the administrator to decide which
modules, by content, are allowed which privileges. After
registration, the border control state machine is driven by
hypercalls from the guarded module, exceptions that oc-
cur during the execution of the module, and by interrupt
or exception injections that the VMM is about to perform
on the guest.

The VMM detects attempted border crossings jointly
through its interrupt/exception mechanisms and through
hypercalls in special code added to the guarded module
as part of our compilation process. Figure 1 illustrates
how the two interact.

4.1 Compile-time
Our compilation process, Christoization1, automatically
wraps an existing kernel module with new code needed
to work with the rest of the system. Two kinds of wrap-
pers are generated. Exit wrappers are functions that in-
terpose on the calls from the guarded module to the rest
of the kernel. An exit wrapper, added using link-time
processing, signals the VMM by a hypercall to lower
privilege just before the underlying function call is made.
When the function returns, it signals the VMM to val-
idate the stack and raise privilege. Entry wrappers are
functions that interpose on calls from the kernel into
the guarded module. Entry wrappers, which are intro-
duced by source preprocessing, use hypercalls to signal
the VMM to raise privilege when called, and then lower
privilege when the call returns to the kernel. The precise
positions of the hypercall instructions in the wrappers are
used by the VMM to validate the requests.

We designed our compile-time tool chain so that mod-
ule developer effort is minimized when generating a
guarded module. The requisite knowledge and materials
are the same as what would be required of a developer
writing a Linux kernel module. The necessary inputs to
our toolchain are the guest Linux Makefile and kernel

1Named after the famed conceptual artist, Christo, who was known
for wrapping large objects such as buildings and islands in fabric.
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Figure 1: Guarded modules, showing operation of wrappers and interaction of state machine on border crossings.

headers, as well as the source and Makefile for the mod-
ule to be Christoized. Additionally, the privilege names
required by the module are passed as command-line pa-
rameters. Access to the guest Linux source tree may also
be required if the developer wishes to use external func-
tions that use non-standard calling conventions.

The first stage of the Christoization process is module
source analysis. We scan the source files of the mod-
ule, looking for functions that are assigned as callbacks.
These functions represent entry points into the module,
as the kernel will invoke them asynchronously. In order
to effectively identify all of these functions, we must run
a preprocessing pass over the module to make sure that
external inlined functions and macros are accounted for.
Once the entry callbacks are identified, we must search
the source for the function that the module developer reg-
isters using Linux’s module_init macro. This func-
tion will serve as the initial gateway into the module and
must be intercepted by the VMM.

In the source annotation stage, each entry callback as-
signment in the source is changed to a macro that will
expand to an entry wrapper function particular to that
callback. These wrappers are added to the source file
automatically and are depicted in Figure 2. The key idea
here is that a hypercall is inserted both before and after
the call to the original entry point. The remaining in-
structions are there to preserve the environment in such
a way that the original function is not aware that it has
been wrapped. The module_init routine is then sim-

ilarly wrapped with a registration hypercall that notifies
the VMM when it has been inserted into the guest kernel.

The linker wrapping stage takes the output of the anno-
tation stage (a compiled object) and identifies undefined
function references. These represent exits to the kernel.
They are wrapped with exit wrappers, which are assem-
bly stubs similar to entry wrappers. Exit wrappers lower
privilege before the original call and raise it on return.
They are added using ld’s function wrapping capability.
The result of this linking step is that the module’s origi-
nal unresolved external references are resolved to the exit
wrappers, while the exit wrappers contain references to
the original unresolved symbols. As a result, any exter-
nal call from the original module goes through an exit
wrapper.

The final stage of the Christoization process is meta-
data generation. Here, information collected in the previ-
ous stages is aggregated into a formatted file with which
the administrator can later register the guarded module.
The essential metadata consists of the module’s name, its
required privileges, and the offsets in the compiled object
of the identified valid entry points. This list can later be
further restricted or expanded by the module developer.
Additionally, to ensure module integrity at load-time, a
cryptographic content hash of the code segment is per-
formed and recorded. This metadata is later passed by
the administrator to the VMM during the guarded mod-
ule registration process, and it is used from then on by
the border control state machine to validate the hyper-
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entry_wrapped:
popq %r11
pushq %rax
movq $border_in_call, %rax

(a) vmmcall
popq %rax
callq entry
pushq %rax
movq $border_out_ret, %rax

(b) vmmcall
popq %rax
pushq %r11
ret (to rest of kernel)

Figure 2: An entry wrapper for a valid entry point. Exit
wrappers are similar, except they invoke border out on a
call, and border in after returning.

calls and other events it receives.

4.2 Run-time

The run-time element of our system is based around the
border control state machine. As Figure 1 illustrates, the
state machine is driven by hypercalls originating from the
guarded module, and by events that are raised elsewhere
in the VMM. As a side-effect of the state machine’s exe-
cution, it generates callbacks to other components of the
VMM that implement specific privilege changes, notify-
ing them when valid privilege changes occur. The state
machine also handles the initialization of a guarded mod-
ule and its binding with these other parts of the VMM.
We now describe guarded module execution with respect
to the state machine.

Module initialization The guarded module is injected
into the guest, either voluntarily by the user, or involun-
tarily by the administrator using GEARS’s code injec-
tion facility. The module’s initialization code immedi-
ately calls the guarded module registration function that
was generated by Christoization. This function makes an
initialization hypercall, providing a claimed hash as its
argument. In response, the state machine validates the
module using the metadata associated with the claimed
hash. First, the address of the initialization hypercall in-
struction, combined with the known offset of the instruc-
tion in the text segment stored in the metadata, allows us
to determine the load address of the module’s text seg-
ment. The metadata includes the length of the text sec-
tion. With this information, the state machine then marks
the text segment as unwritable in the shadow or nested

page tables, making it impossible for the guest to change
it. The next step is to compute the hash over the text
segment memory and compare it to the hash stored in the
metadata.2 If the hashes match, the state machine notifies
the selective privilege-enabled component that privilege
should be raised, transitions to the privileged state, en-
ables interception of exceptions, and returns to the guest.
At this point, the guarded module can complete the re-
mainder of its initialization. In effect, module initializa-
tion is treated as the first border-in call.

Border-in call to border-out ret A valid entry into
the guarded module results in a hypercall from the en-
try wrapper (Figure 2(a)) that requests a privilege raise.
The address of this hypercall instruction is then validated
against the list of addresses where such instructions were
placed, which is stored in the metadata. If it is in the list,
the state machine invokes a privilege-raising callback,
and transitions to the privileged state. Before returning,
it also enables interception of exceptions. Before exiting
from a valid entry, the entry wrapper similarly invokes
another hypercall (Figure 2(b)), which requests a lower-
ing of privilege. When privilege is lowered, exception
interception is returned to its nominal state.

Border-out call to border-in ret A call from the
guarded module to the rest of the kernel results in a hy-
percall from the exit wrapper that requests a lowering of
privilege. As a side-effect of lowering privilege, excep-
tion interception is returned to its nominal state. When
the call returns, a second hypercall requests a raising of
privilege. After sanity checking the address against the
metadata, privilege is raised, and exception and interrupt
interception are again enabled.

Border-out int to border-in rti The purpose of inter-
cepting exceptions that occur when executing with priv-
ilege is to assure that we can lower privilege when these
events trigger an interrupt handler dispatch and raise it
once execution resumes in the guarded module. More
generally, we must trap any switch from the guarded
module code to kernel context. When the guest is not
executing in the guarded module, nominal exception
handling is sufficient. Our handler for exception inter-
cepts simply causes the VMM to re-inject the exceptions
alongside its normal injection of interrupt events.

Because we need to be aware of every interrupt/ex-
ception dispatch, we have modified the Palacios VM en-
try code so that, just before such an entry, if the guest
is executing with privilege, we determine if an interrupt

2A direct comparison of the text segment content is also possible.
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or exception injection will occur on the entry. If so, we
lower privilege, switch back to nominal interception of
exceptions, and enable interception of the rti instruc-
tion, which will be executed when the interrupt or excep-
tion handler completes. We also note the current %rip
and other information related to this interrupt dispatch.

At this point, we allow the VM entry to complete, and
interrupt dispatch ensues. We emulate rti instructions
when they occur, looking for any rti that will return
control to the instruction at which the original interrup-
t/exception was injected. When we discover a match, we
raise privilege, re-enable exception interception, disable
rti interception, and resume execution with privilege in
the guarded module.

We note that one privilege that could be granted to a
module is the ability to disable interrupts while it ex-
ecutes. In this case, this code path could be entirely
avoided.

Internal calls The entry wrapper shown in Figure 2
and the exit wrappers are linked such that they are
only invoked on border crossings. Calls internal to the
guarded module do not have any additional overhead.
The same applies for calls internal to the kernel.

Nesting and stack checking Although it is convenient
to think of (and generate code for) border-crossings in
matched pairs, it is important to realize that an execution
path may involve multiple border-crossings. For exam-
ple, the kernel might invoke a callback function on the
module, which requires privilege, but which in turn calls
a kernel function, which should not have privilege, and
that subsequently makes another callback into the mod-
ule, which should. The sequence of events for that exam-
ple would be: border-in call, border-out call(*), border-
in call, border-out ret, border-in ret(**), border-out ret.
While border-ins and border-outs must eventually all be
matched, they can nest. This nesting of border crossings
introduces an opportunity to subvert the guarded module
through the stack. Our primary concern is the protection
of the ret in the border-out wrapper. If the border-out
call(*) had its return address modified on the stack, the
border-in ret(**) would return to that address with privi-
lege raised!

To address this, the border control state machine tracks
the nesting level and the stack state, and validates the
stack state on any border-in. When a border-in occurs
with a nesting level of zero, the state machine captures
the starting point of this “first border-in” stack frame
(i.e., %rsp and %rbp). When a border-out occurs,
the state machine captures the ending point of this “last
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Figure 3: Privilege change cost with stack integrity
checks.

border-out” stack frame, and computes and stores a hash
of the stack content from the first entry to this last exit.
On any border-in whose nesting level is greater than zero,
the actual stack is again hashed and compared with the
last border-out hash. If they do not match, privilege is
not granted.

Deinitialization The Christoization processing inserts
a deinitialization hypercall as the last thing the module
executes. After validating the hypercall’s location, the
state machine lowers privilege, removes any special in-
terception that is active, and remaps the module with
guest-specified writability. Privilege will not change
again unless the initialization hypercall is executed.

Suspicious activity The state machine detects suspi-
cious activity by noting privilege changing hypercalls at
invalid locations, shadow or nested page faults indicating
attempts to write the module code, and stack hash mis-
matches. Our default behavior is simply to lower priv-
ilege when these occur, and continue execution. Other
reactions are, of course, possible.

5 Evaluation

We now consider the costs of the guarded module sys-
tem, independent of any specific guarded module that
might drive it, and any selective privilege-enabled VMM
component it might drive. We focus on the costs of bor-
der crossings and their breakdown. The most important
contributors to the costs are VM exit/entry handling and
the stack validation mechanism.

All measurements were conducted on a Dell Pow-
erEdge R415. This is a dual-socket machine, each socket
comprising a quad-core, 2.2 GHz AMD Opteron 4122,
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giving a total of 8 physical cores. The machine has
16 GB of memory. It runs Fedora 15 with a stock Fe-
dora 2.6.38 kernel. Our guest environment uses a single
virtual core that runs a BusyBox environment based on
Linux kernel 2.6.38. The guest runs with nested paging,
using 2 MB page mappings, with DVFS control disabled.

Figure 3 illustrates the overheads in cycles incurred
at runtime. All cycle counts were averaged over 1000
samples. There are five major components to the over-
head. The first is the cost of initiating a callback to lower
or raise privilege. This cost is very small at around 100
cycles. The second cost, labeled “hypercall handling”,
denotes the cycles spent inside the hypercall handler it-
self, not including entry validations, privilege changes,
or other processing involved with a VM exit. This cost
is also quite small, and also typically under 100 cycles.
“entry point lookup” represents the cost of a hash table
lookup, which is invoked on border-ins when the instruc-
tion pointer is checked against the valid entry points that
have been registered during guarded module initializa-
tion. The cost for this lookup is roughly 240 cycles. “exit
handling” is the time spent in the VMM handling the exit
outside of guarded module runtime processing. This is
essentially the common overhead incurred by any VM
exit. Finally, “stack checking” denotes the time spent
ensuring control-flow integrity by validating the stack.
This component raises the cost of a border crossing by
5000 cycles, mostly due to stack address translations and
hash computations. Border-in calls are less affected due
to the initial translation and recording of the entry stack
pointer, while border-out rets are unaffected. Reducing
the cost of this validation is the subject of on-going work.

The guarded module codebase consists of the compile-
time tools, which comprise 223 lines of Perl, 260 lines of
Ruby and the run-time elements added to the VMM. The
latter are generally concentrated in an optional extension
of 1007 lines of C that could be ported to other VMMs.
Some changes to the VMM core were made to facili-
tate interrupt and exception interception and dispatch to
the GEARS guarded module system. These include 178
lines of C.

6 Examples

We now consider two examples of using the guarded
module functionality, drawn from the list in the intro-
duction. In the first example, selectively-privileged PCI
passthrough, the guarded module, and only the guarded
module, is given direct access to a specific PCI device.
We illustrate the use of this capability via a guarded ver-
sion of a NIC driver. In our second example, selectively-

privileged mwait, the guarded module, and only the
guarded module, is allowed to use the mwait instruc-
tion. We illustrate the use of this capability via guarded
module that adaptively replaces the kernel idle loop with
a more efficient mwait loop when it is safe to do so.

We conducted all measurements in this section with
the configuration described in Section 5.

6.1 Selectively privileged PCI passthrough
Like most VMMs, Palacios has hardware passthrough
capabilities. Here, we use its ability to make a hard-
ware PCI device directly accessible to the guest. This
consists of a generic PCI front-end virtual device (“host
PCI device”) , an interface it can use to acquire and re-
lease the underlying hardware PCI device on a given host
OS (“host PCI interface”), and an implementation of that
interface for a Linux host.

A Palacios guest’s physical address space is contigu-
ously allocated in the host physical address space. Be-
cause PCI device DMA operations use host physical ad-
dresses, and because the guest programs the DMA en-
gine using guest physical addresses it believes start at
zero, the DMA addresses the device will actually use
must be offset appropriately. In the Linux implemen-
tation of our host PCI interface, this is accomplished us-
ing an IOMMU: acquiring the device creates an IOMMU
page table that introduces the offset. As a consequence,
any DMA transfer initiated on the device by the guest
will be constrained to that guest’s memory. A DMA can
then only be initiated by programming the device, which
is restricted to the guarded module. This restriction also
prevents DMA attacks on the module that might origi-
nate from the guest kernel.

A PCI device is programmed via control/status regis-
ters that are mapped into the physical memory and I/O
port address spaces through standardized registers called
BARs. Each BAR contains a type, a base address, and
a size. Palacios’s host PCI device virtualizes the BARs
(and other parts of the standardized PCI device config-
uration space). This lets the guest map the device as
it pleases. For a group of registers mapped by a BAR
into the physical memory address space, the mapping is
implemented using the shadow or nested page tables to
redirect memory reads and writes. For a group of regis-
ters mapped into the I/O port space, there is no equivalent
to these page tables, and thus the mappings are imple-
mented by I/O port read/write hooks. When the guest
executes an IN or OUT instruction, an exit occurs, the
hook is run, and the handler simply executes an IN or
OUT to the corresponding physical I/O port. If the host
and guest mappings are identical, the ports are not inter-
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cepted, allowing the guest to read/write them directly.
Direct guest access to network hardware is not a new

idea. However, the focus of recent work in this area is on
providing protection between guests [25, 24]. We allow
protection of a VMM-provided driver within a guest.

We extended our host PCI device to support selective
privilege; in the terminology of Section 4.2, it is now
a selective privilege-enabled VMM component. In this
mode of operation, virtualization of the generic PCI con-
figuration space of the device proceeds as normal. How-
ever, at startup, BAR virtualization ensures that the ad-
dress space regions of memory and I/O BARs are ini-
tially hooked to stub handlers. The stub handlers sim-
ply ignore writes and supply zeros for reads. This is
the unprivileged mode. In this mode, the guest sees the
device on its PCI bus, and can even remap its BARs
as desired, but any attempt to program it will simply
fail because the registers are inaccessible. In selectively
privileged operation, the host PCI device also responds
to callbacks for raising and lowering privilege. Raising
privilege switches the device to privileged mode, which
is implemented by remapping the registers in the manner
described earlier, resulting in successful accesses to the
registers. Lowering privilege switches back to unprivi-
leged mode, and remaps the registers back to the stubs.
Privilege changes happen on a per-core basis.

While the above description is complex, it is important
to note that only about 60 lines of code were needed to
add selectively privileged operation to our existing PCI
passthrough functionality. Combined with the rest of the
guarded module system, the selectively privileged host
PCI device permits fully privileged access to the underly-
ing device within a guarded module, but disallow it oth-
erwise.

Making a NIC driver into a guarded module As an
example, we used the guarded module system to generate
a guarded version of an existing NIC device driver within
the Linux tree, specifically the Broadcom BCM5716 Gi-
gabit NIC. No source code modifications were done to
the driver or the guest kernel. We Christoize this driver,
creating a kernel module that we can later inject into
the untrusted guest. The border control state machine in
Palacios pairs this driver with the selectively privileged
PCI passthrough capability. Recall that Christoization is
almost entirely automated, so the result is an unmodified
device driver, executing in the guest, having direct access
to the NIC, while nothing else in the guest does.

The NIC uses exactly one BAR to define a 32 MB re-
gion of the memory address space. Raising and lowering
privilege amounts to editing the shadow or nested page

Packet Sends
Border-in 1.06
Border-out 1.06
Border Crossings / Packet Send 2.12

Packet Receives
Border-in 4.64
Border-out 4.64
Border Crossings / Packet Receive 9.28

Figure 4: Border crossings per packet send and receive
for the NIC example.

tables to remap these addresses. Assuming 2 MB super-
pages and suitable alignment, the system will adjust 16
page table entries when changing privilege.

Overheads Compared to simply allowing privilege for
the entire guest, a system that leverages guarded modules
incurs additional overheads. Some of these overheads are
system-independent, and were covered in Section 5. The
most consequential component of these overheads is the
cost of executing a border-in or border-out, each of which
consists of a hypercall or exception interception (requir-
ing a VM exit) or interrupt/exception injection detection
(done in the context of an in-progress VM exit), a lookup
of the hypercall’s address, a stack check or record, con-
ducting a lookup to find the relevant privilege callback
function, and then the cost of invoking that callback.

We now consider the system-dependent overhead for
the NIC. There are two elements to this overhead: the
cost of changing privilege and the number of times we
need to change privilege for each unit of work (packet
sent or received) that the module finishes. The cost of
raising privilege for the NIC is 4800 cycles (2.2 μs),
while lowering it is 4307 cycles (2.0 μs).

Combining the system-independent and system-
dependent costs, we expect that a typical border cross-
ing overhead, assuming no stack checking will consist of
about 3000 cycles for VM exit/entry, 4000 cycles to ex-
ecute the border control state machine, and about 4500
cycles to enable/disable access to the NIC. These 11500
cycles comprise 5.2 μs on this machine. Stack checking
would add an average of about 4500 cycles, leading to
16000 cycles (7.3 μs).

To determine the number of these border crossings per
packet send or receive, we counted them while running
the guarded module with a controlled traffic source (ttcp)
that allows us to also count packet sends and/or receives.
Dividing the counts gives us the average. There is vari-
ance because the NIC does interrupt coalescing.

Figure 4 shows the results of this analysis for the NIC.
Sending requires on the order of 2 border crossings (priv-
ilege changes) per packet, while receiving requires on the
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order of 9 border crossings per packet. Note that many
of the functions that constitute border crossings are actu-
ally leaf functions defined in the kernel. This indicates
that we could further reduce the overall number of bor-
der crossings per packet by pulling the implementations
of these functions into the module itself.

6.2 Selectively privileged mwait
Recent x86 machines include a pair of instructions,
monitor and mwait, that can be used for efficient
synchronization among processor cores. The monitor
instruction indicates an address range that should be
watched. A subsequent mwait instruction then places
the core into a suspended sleep state, similar to a hlt.
The core resumes executing when an interrupt is deliv-
ered to it (like a hlt), or when another core writes into
the watched address range (unlike a hlt). The latter al-
lows a remote core to wake up the local core without the
cost of an inter-processor interrupt (IPI). One example of
such use is in the Linux kernel’s idle loop.

In Palacios, and other VMMs, we cannot allow an
untrusted guest to execute hlt or mwait because the
guest runs with physical interrupts disabled. A physi-
cal interrupt is intended to cause a VM exit followed by
subsequent dispatch of the interrupt in the VMM. If an
mwait instruction were executed in the guest under un-
controlled conditions, it could halt the core indefinitely.
This precludes the guest using the extremely fast inter-
core wakeup capability that mwait offers.

Under controlled conditions, however, letting the
guest run mwait may be permissible. When no other
virtual core is mapped to the physical core (so we can
tolerate a long wait) and we have a watchdog that will
eventually write the memory, the guest might safely run
an mwait. To achieve these controlled conditions re-
quires that we limit the execution of these instructions to
code that the VMM can trust and that this code only ex-
ecute mwait when the VMM deems it safe to do so.
A malicious guest could use an unrestricted ability to
execute mwait to launch a denial-of-service attack on
other VMs and the VMM. We enforce this protection and
adaptive execution by encapsulating the mwait func-
tionality within the safety of a guarded module.

Adding selectively-privileged access to mwait to
Palacios was straightforward, involving only a few lines
of code. We then implemented a tiny kernel module that
interposes on Linux’s default idle loop, specifically mod-
ifying pm_idle, a pointer to the function that points
to the idle implementation. Our module points this to
a function internal to itself that dispatches either to an
mwait-based idle implementation within the module or

to the original idle implementation, based on a flag in
protected memory that is shared with Palacios. Palacios
sets this flag when it is safe for the module to use mwait.
In these situations, the guest kernel enjoys much faster
wake-ups of the idling core.

To assure that only our module can execute mwaitwe
transform it into a guarded module using the techniques
outlined earlier in the paper. A border-in to our module
occurs when Linux calls its idle loop. If the border-in
succeeds, Palacios stops intercepting the use of mwait.
When control leaves the module, a border-out occurs,
and Palacios resumes intercepting mwait. If code else-
where in the guest attempts to execute these instructions,
they will trap to the VMM and result in an undefined op-
code exception being injected into the guest.

This proof-of-concept illustrates how the VMM can
use guarded modules to safely adapt the execution envi-
ronment of a VM to changing conditions.

7 Conclusions and future work

We presented the design, implementation, and evalua-
tion of a system for guarded modules. The system al-
lows the VMM to add modules to a guest kernel that
have higher privileged access to physical hardware and
the VMM while protecting these guarded modules and
access to their privileges from the rest of the guest ker-
nel. Our system is based on joint compile-time and run-
time techniques that bestow privilege only when control
flow enters the guarded module at verified locations. We
demonstrated two example uses of the guarded module
system. The first is passthrough access to a PCI de-
vice, for example a NIC, that is limited to a designated
guarded module (a device driver). The guest kernel can
use this guarded module just like any other device driver.
We further demonstrated selectively privileged use of the
monitor and mwait instructions in the guest, which
could wreak havoc if their use was not constrained to a
guarded module that cooperates with the VMM.

Our ongoing and future work lies along two lines.
First, we will explore methods that can further enhance
the performance of this system. Building upon the anal-
ysis of Section 6, we plan to further study methods by
which we can reduce the cost and number of border
crossings needed for a specific module. As previously
mentioned, we are investigating an expansive linking
process in which kernel functions invoked by the guarded
module are incrementally incorporated into the module
itself. Our second line of investigation is in designing
other virtualization services that could be simplified or
enabled by employing guarded modules.
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Abstract
A controller is implemented to manage memory as an
elastic resource similar to computing cycles for Java ap-
plications. The controller actively arbitrates constrained
memory between collocated JVMs in response to de-
mand. A key aspect of the work is that JVM metrics are
used as proxies for application KPIs so that application
performance instrumentation and modeling are not re-
quired. A metric corresponding to the allocation rate of
memory is derived from the JVM metrics and established
as the measure of application performance and is used as
the effective feedback mechanism to the controller. The
controller is based on a fair share policy in which mem-
ory is distributed to equalize the marginal performance
value to all JVMs. The design is tested for effective-
ness and stability using the suite of SPECjvm2008 and
SPECjbb2005 benchmarks.

1 Introduction

Matching real memory and CPU resources to the time
varying memory-processor demand footprint of applica-
tions is an important element in systems performance
management. Active sharing of processors between ap-
plications within and across virtual machines (VMs) in
response to demand is a mature feature of the operat-
ing systems and hypervisors. Active sharing of mem-
ory (ASM) is the analogous capability where physical
memory pages move seamlessly between applications
and across virtual machines to satisfy demand. This im-
proves system wide memory utilization, or alternatively
increases the application density or workload intensity
hosted on a compute system. ASM is sometimes referred
to as logical memory overcommit as it reduces the total
amount of memory necessary in a system with time vary-
ing workloads from the sum of the maximum demand of
each workload to the maximum of the sum of the work-
loads. ASM is distinguished from paging which requires

saving and restoring state in order to reuse pages from
processes or VMs. Exploiting ASM requires the ability
to identify unused memory in applications and operat-
ing systems and (re)map those pages to collocated ap-
plications, or move them to another VM on a common
hypervisor. This function is widely available at the VM-
hypervisor layer in the commercial space. But support at
the application layer has been lagging as traditional ap-
plication design and coding practice has not emphasized
the need to dynamically return memory from the process
space to the OS.

Widespread use of the Java Virtual Machine (JVM)
as a server application platform creates an opportu-
nity to extend the scope of ASM into the application
layer. Emerging JVM technologies such as heap balloon-
ing [2, 3] and dynamic heap sizing [4] provide mech-
anisms to release committed memory from the virtual
heap space. Given these advances it is an appropriate
time to visit the architecture and control functions re-
quired for an automatic ASM solution that focuses on
Java applications.

This paper describes two novel aspects of JVM mem-
ory management: JVM metrics are shown to be suitable
proxies for application based key performance indica-
tors (KPI); and JVM heap memory is actively sized in
response to resource changes and workload variability
by equalizing the value of memory as indicated by the
JVM metrics. Memory intensive benchmarks from the
SPECjvm2008 [7] suite and SPECjbb2005 [6] are used
to correlatefJVM metrics and application KPIs, and to
evaluate the control system.

2 Background and Related Work

Figure 1 shows the platform used to investigate active
memory sharing (AMS) in a virtual environment. From
a logical perspective, the figure is a tree with applica-
tion JVMs at the top, and the hypervisor memory pool
of a physical machine (PM) at the root. One or more
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collocated JVMs is hosted by an operating system (OS).
Each OS apportions its memory pool to processes (JVMs
and other applications), free pools, and system cache. In
turn, the operating systems share the common physical
platform memory in the hypervisor pool. Memory flows
slowly down the tree to the OS and hypervisor pools on
the non-critical path, while the flow of memory up the
tree is on the critical path. This paper focuses on the
upper layer, fairly apportioning memory between collo-
cated JVM based applications in response to workload
changes, memory demand, and changes in OS memory.

Commercial methods are becoming available to re-
lease unused pages backing the JVM heap memory:
VMWare’s EM4J [8] applies a balloon mechanism that
plugs into the JVM and is leveraged in the memory con-
trol work of Ginko [2]. Direct heap resizing is available
in the IBM J9 JVM since version 7.0 [4]. Section 3.2 de-
scribes in detail how we leverage this JVM control knob,
MaxHeapSize to actively control heap memory.

Recent work has studied active JVM memory sizing.
Ginkgo [2] implements an application driven memory
overcommitment system. Salomie [3] designs an ap-
plication level ballooning controller in Xen-based envi-
ronment. CRAMM [9] enables dynamically choosing of
JVM heap sizes to meet workload demand, while avoid-
ing latency in paging. QoE-JVM [5] uses an economic
model for active heap sizing in the Jikes research JVM.

3 Approach

3.1 JVM metrics as proxies for application
performance

There are several reasons to use JVM metrics as proxies
for application performance as developed in Section 4.
Most Java processes and applications do not maintain in-
ternal measures of their rate of progress. When available
the interpretation of the KPI’s often requires domain spe-
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Figure 1: System view of elastic memory

cific knowledge. Processing services often support a mix
of incoming request types each with its own resource re-
quirements. A shift in workload composition can change
KPI’s in a way that needs to be understood by the con-
troller logic.

End-to-end application performance depends compo-
nents other than the JVM. For example, the database tier
may be slowed because of insufficient OS system buffers.
Note that the effect of a slow database on a Java applica-
tion tier is manifest in JVM metrics such as rate of ob-
ject allocation since the application can’t make progress.
Here, the local controller gives the JVM less memory
than if the JVM tier is running at full load. This released
memory makes its way to the database server via the flow
of Figure 1.

3.2 JVM direct page releasing mechanism

The JVM memory control knob leveraged in this work is
the MaxHeapSize parameter of IBM’s J9 JVM. At startup
J9 reserves a contiguous region of virtual process space
for its heap sized by the command line argument -Xmx
which is exposed through JMX as the immutable Max-
HeapSizeLimit . The J9 JVM maintains a second, soft,
heap maximum setting called the MaxHeapSize whose
operation is described in Sciampacone [4]). Basically,
MaxHeapSize can be set via JMX at any time during
JVM execution to a value less than MaxHeapSizeLimit.
When actual heap used drops below MaxHeapSize the
JVM attempts to resize the heap using MaxHeapSize as
the new limit.

4 JVM Metrics and Application Perfor-
mance

This section analyzes the correlation between JVM met-
rics and workload intrinsic performance (e.g., busi-
ness operations per second-bops) for memory in-
tensive benchmarks culled from SPECjvm2008 and
SPECjbb2005. The goal is to utilize the JVM metrics as
proxies for application KPI’s to correctly size or arbitrate
JVM memory.

4.1 Metrics collected from the JVM

Several JVM metrics are exposed through the JMX API,
providing a measure of how the application benefits from
memory.

• Mem-freed - Cumulative number of bytes collected
by the GC since a JVM startup.

• Heap-inuse - Current amount of the heap memory
containing objects with live references.

2
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Benchmark Commit(MB) Alloc Rate(MB/s)
SPECjbb2005 2000 2400
compiler.compiler 5000 400
derby 2000 1300
scimark.lu.large 2000 20
scimark.sort.large 1000 7
scimark.sparse.large 2000 20
scimark.fft.large 1800 20
crypto.aes 400 300
xml.validation 150 600
xml.xform 200 600
serial 420 300

Table 1: Max memory and allocation rate in benchmarks

• Heap-committed (hpCom) - Physical memory
mapped to the virtual heap.

• GC CPU - The fraction of the system CPU cycles
spent in GC. A decrease in GC CPU often provides
an indication of whether adding memory is benefit-
ing the application.

• Collection rate (coll-rate) - The number of GCs re-
ported by the JVM over the sampling interval. The
algorithm that determines when GC occurs is inter-
nal to the JVM.

• Allocation rate (alloc-rate) - This measure is is de-
rived from the inuse-heap and mem-freed metrics.
It is the rate of memory allocated during an interval
and is computed in the sample interval [t1, t2] using
the allocated bytes;
alloc-rate = [ heap-inuse(t2) - heap-inuse(t1) + mem-
freed(t2) - mem-freed(t1) ] / [( t2 − t1]

Allocation rate depends jointly on application de-
mand, and the ability to satisfy the demand. Further-
more, it is a complementary measure to the GC CPU
and GC collection rate metrics. If the JVM heap alloca-
tor is slowed down because of low memory, that latency
translates at the application code to time spent in the Java
’new’ memory allocation operator.

4.2 Memory intensive workloads
Two benchmark groups are used to establish the corre-
lation of the JMX metrics and workload performance.
SPECjvm2008 contains over 20 individual benchmarks
that cover a wide range of applications. Of these, the 10
which use more than 128MB of committed heap are con-
sidered memory intensive. The excluded set in this group
use less than 50MB opt committed heap. SPECjbb2005
is representative of a traditional transactional workload.

The benchmarks selected are summarized in Table 1.
They cover a range of committed heap size from 128MB
to 5GB, and allocation rates from 10MB/s to over 1GB/s.
All benchmarks are CPU intensive and multithreaded.

4.3 Results

The correlation between the SPECjvm2008 benchmark
KPIs and the JVM metrics is explored as a function of
the MaxHeapSize (MB) parameter as the JVM control
knob. Figures 2, 3, 4, and 5, are representative data sets
the workloads. In each figure, the SPECjvm2008 perfor-
mance number (bops) recorded during the runs is shown
in (a). The corresponding JVM metric averages are dis-
played in subplots: (b) - GC CPU (%); (c) - collection-
rate (ct/s); (d) - allocation rate (MB/s); and (e) - commit-
ted physical memory (MB). These data also indicate the
open loop response the MaxHeapSize input control.

The derby database benchmark of Figure 2(a) typi-
fies workloads exhibiting the threshold memory pattern.
Here, most of the gain in application performance oc-
curs within a critical heap size, after which the value of
adding memory is low.

Derby also illustrates an interesting behavior with re-
spect to committed memory within the threshold pattern.
The region at the right hand side of Figure 2(e) shows
that as the heap maximum is increased beyond the critical
region, the JVM continues to commit real memory and
grow the heap well into the low benefit region. Doubling
the memory by incrementing the MaxHeapSize control
value 1GB provides less than 2% performance improve-
ment. This memory greedy pattern is also observed in the
scientific benchmarks grouped together in Table 1. For
example, in the large FFT benchmark of Figure 3, the
JVM commits about 1GB of memory beyond the point
of improving performance. Systems executing this work-
load pattern benefit from limiting MaxHeapSize to avoid
consuming physical memory.

The xml.validation benchmark (Figure 4(a)) also typi-
fies the threshold pattern, but is not memory greedy. Fig-
ure 4 shows that the JVM only committed 150MB.

In contrast, the compiler benchmark of Figure 5 ben-
efits proportionally to the maximum heap memory con-
trol parameter. The behavior is monotonic, but there is

Figure 2: The SPECjvm derby workload typifies the
threshold pattern and is memory greedy

3



100 11th International Conference on Autonomic Computing USENIX Association

Figure 3: Scientific benchmarks such as this FFT tend to
fit the memory greedy pattern.

a region of less performance gain between around 1GB
and 3GB sandwiched between larger slopes of the per-
formance - heap memory relation. The compiler perfor-
mance plateaus at about 4.8GB from our experiments,
just beyond the right end of the plot.

Additional insight is obtained by correlating the JVM
metrics with the SPECjvm2005 and SPECjvm2008 KPI
(e.g.bops). The correlation coefficients are shown in Fig-
ure 6 for the alloc-rate, gc-cpu, and coll-rate measures.
The weakest correlations for all three JVM metrics are
observed for the scientific benchmarks typified in the
FFT benchmark of Figure 3. The lower correlation does
not imply that the JVM metrics are not suited as input
data to the active memory control system. In the case
of the scimark.fft.large benchmark, the data of Figure 3
are flat and so the jitter contributes significantly to the
correlation calculation.

These experiments suggest that decisions about the
benefit to the application of additional memory be made
on the basis of the observed change in JVM metrics as
memory is added to the JVM, rather than on the met-
ric values themselves. Consider the threshold pattern of
Figure 2. Adding memory clearly benefits the applica-
tion, as indicated by the concurrent improvement in allo-
cation rate.

Figure 4: The SPECjvm2008 xml.validation benchmark
exhibits a threshold pattern, but is not memory greedy

Figure 6 suggests the allocation rate is the single
most consistent indicator of workload performance. The
only benchmark where its correlation is significantly de-
pressed relative to the other metrics is for the sci.lu.lg
benchmark. Closed loop studies in Section 5 further val-
idate the choice of allocation rate as the best single proxy
for application performance.

5 Active JVM Memory Control

The objective of the memory controller is to leverage
the JVM performance metrics of the prior section (esp.
allocation-rate) to fair share the available memory be-
tween collocated JVMs. The fair sharing condition de-
fines the distribution of memory between JVMs at a
given workload so that: equal changes in the MaxHeap-
Size of each JVM result in equal changes in the rela-
tive performance of each JVM. The relative performance
slope (S) for each JVM (j) is defined as the slope of the
curve of the application performance (Pj) against Max-
HeapSize, normalized by the performance value:

S j =
ΔPj

ΔMaxHeapSize j
× 1

Pj
.

The controller attempts to actively set MaxHeapSize j
such that S j is the same for all j.

JVM metrics are used to measure the application per-
formance Pj. Section 4 identified allocation rate as a
strong candidate for an application performance proxy.
The open loop and offline data are now used to evaluate
the JVM metrics in our slope equalizing algorithm. For
example, the Specjvm2008 benchmark KPI data in Fig-
ures 5(a) and 4(a) is compared against the JVM metrics
of Figures 5(b-d) and 4(b-d) in the algorithm to estab-
lish which single metric compares best to the fair sharing
point given by the actual benchmark KPI numbers.

Figure 7 illustrates the equalization of relative per-
formance slopes using data from the SPECjvm2008
xml.validation and compiler.compiler benchmarks (Fig-
ures 4 and 5). The horizontal and vertical axes are the

Figure 5: SPECjvm2008 compiler.compiler benefits up
to about 5GB of memory

4
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Figure 6: Correlation between SPEC performance and
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Figure 7: Memory balancing results using measured data
for 3 JVM metrics and the SPECjvm performance values.

target value of the MaxHeapSize control parameter com-
puted by the algorithm for each application JVM. Each
data point represents the MaxHeapSizes that equalize
the S j for a given total memory. The total memory
varies from 200MB on the left to 800MB on the right.
The solid line labeled SPEC KPI is the reference curve
showing the ideal apportionment using the application
(i.e.SPECjvm2008) KPIs. The three other lines corre-
spond to the GC-CPU, collection rate, and allocation
rate metrics. The data show that the allocation-rate met-
ric produces the closest agreement with the SPEC KPIs.
This result supports the correlation analysis of Figure 6.
Similar results are achieved using other workloads of Ta-
ble 1.

5.1 Controller architecture
Figure 8 is a component diagram of the measure-analyze-
control cycle that tracks workload memory demand and
actively sets the MaxHeapSize parameter of each JVM.
On the right of the figure is the data collector which uses
JMX to poll the data from the JVM. The typical polling
interval is 5 seconds.

The JVM metrics are fed into the control module on
the left which has three logical components: the slope
evaluator; the Compute Next MaxheapSize module that
estimates the next MaxHeapSize value based on the cur-
rent state; and the dither function. The data collec-
tor and controllers for collocated JVMs run in a single
lightweight JVM process use less than 0.1% CPU and
20MB of memory.
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Figure 8: Main components of the memory controller.

5.2 Evaluating relative performance

A key function of the controller is to measure the slope
of the allocation rate against the MaxHeapSize parame-
ter at the current workload. To accomplish this, the con-
troller modulates the MaxHeapSize parameter about its
current target value. In this Dithering [10] technique, the
MaxHeapSize is varied faster than the system response
through a range about the target MaxHeapSize. The
JVM metrics are sampled at limit points of this dithering
range. Expanding the dither range too far results in os-
cillations in JVM performance, while reducing it yields
a slower control speed. Empirically, a reasonable trade-
off is achieved with the lower point at 80% of the current
target MaxHeapSize, and the upper point at 120%.

Figure 9 illustrates operation of the collection of data
using dithering when running the derby benchmark as
memory is removed from the system. Each subfigure is
a snapshot showing the allocation rates measured at the
ends of the dither range, and at the current MAxHeap-
SizeTarget. The three dither points are acquired on se-
quential measurement cycles about 5 seconds apart. This
means that in a snapshot the three points are not necessar-
ily at 80%, 100% , and 120% of the target MaxHeapSize
as the target may have changed at each measurement cy-
cle. Consequently, the three measured dither-points in
the curve window may not lie on a locally convex curve.
This situation is improved by relying more on the latest
measurements than on older ones.

Figure 9 shows there are critical and noncritical re-
gions of control. In the critical region, at the bottom of
the figure, the slope is steep indicating the high value of
additional memory to the application. In the noncritical
region at the top of the figure, memory is not as valuable.
Fortunately, the main difficulties caused by noise and jit-
ter in measuring slope occur in the noncritical region of
controller operation where the slope is low.

5
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5.3 Memory balancing methodology
The ’Compute next MaxHeapSize’ module of Figure 8
determines the next set of target MaxHeapSize values to
input into the JVMs based on the current system state
based on the following procedure:

1. Check the available OS memory - If it has been
modified, that memory is apportioned to the JVMs
according the principle of equalizing the slopes.

2. Adjust the target MaxHeapSize - The current algo-
rithm uses an iterative, greedy procedure to estimate
the new set of HeapSizeMax values that equalize
the slopes. At each step, memory is moved from
the JVM with the lowest slope to the JVM with the
steepest slope. The iterative computation is ended
under either of two conditions: i) for any JVM,
memory is only changed when within the upper and
lower dither points; ii) the deviation from the equal
slope condition no longer improves.

3. Select the dither points for each JVM- The direction
and value of the dither is chosen for each JVM so
that at any time the sum does not exceed the total
available memory. Figure 11 shows the phase offset
between the dithering pattern two located JVMs.

4. Execute the new MaxHeapSize target for each JVM.

5.4 Experimental results
The controller is evaluated using collocated JVMs run-
ning the SPECjvm2008 derby and the SPECjbb2005
transactional benchmarks. Figure 10 shows the alloca-
tion rate of each benchmark. The total memory con-
straint for the two JVMs is 1.5 GB.

The system state is held constant for 580 seconds
with SPECjbb2005 using 10 warehouses. The variabil-
ity in allocation rate during this period is due to different
phases in the underlying workload. At 580s, the number
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Figure 9: Snapshots of the dithering points.
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Figure 10: The allocation rate metric for collocated
Derby and SPECjbb workloads.
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Figure 11: The MaxHeapSize control parameter includ-
ing dithering for the Derby and SPECjbb workloads.

of SPECjbb2005 warehouses doubles to 20, introducing
a step like change in the demand for memory. An 80s
period of exponentially decaying oscillatory behavior in
the control system occurs during the transition to the new
operating point. The process CPU followed a similar pat-
tern (not shown in the figure), with about a 13% shift
from Derby to SPECjbb2005.

Figure 11 shows the corresponding control signal of
MaxHeapSize sent to JVMs during runs. The dither sig-
nal is clearly seen imposed on the average MaxHeapSize
control signal. Comparing the strength of the dither to
the allocation rate data, Figure 10 indicates the dither
does not affect the application performance, as desired.
Experiments using the SPECjvm2008 compiler.compiler
and SPECjbb2005 yielded comparable results.

6 Conclusion

JVM metrics are shown to work well as proxies for appli-
cation KPIs so that application performance instrumenta-
tion and modeling are not required. This expands the ap-
plicability and ease of resource arbitration between col-
located Java applications.

The control system of Section 5 is successfully applied
in actively apportioning memory between collocated
Java applications whose internal functions are largely un-
known. Results show the response time to a step in work-
load intensity is of order of 80 seconds.
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Abstract

An important, if not very well known, problem that af-

flicts many web servers is duplicate client browser re-

quests due to server-side problems. A legitimate request

is followed by a redundant request, thus increasing the

load on the server and corrupting state at the server end

(such as, the hit count for the page) and at the client

end (such as, state maintained through a cookie). This

problem has been reported in many developer blogs and

has been found to afflict even popular web sites, such

as CNN and YouTube. However, to date, there has not

been a scientific, technical solution to this problem that

is browser vendor neutral. In this paper, we provide

such a solution which we call GRIFFIN. We identify

that the two root causes of the problem are missing re-

source at the server end or duplicated Javascripts em-

bedded in the page. We have the insight that dynamic

tracing of the function call sequence creates a signature

that can be used to differentiate between legitimate and

duplicate requests. We apply our technique to find unre-

ported problems in a large production scientific collabo-

ration web service called HUBzero, which are fixed upon

reporting the problems. Our experiments show an aver-

age overhead of 1.29X for tracing the PHP-runtime on

HUBzero across 60 unique HTTP transactions. GRIFFIN

has zero false-positives (when run across HTTP transac-

tion of size one and two) and an average detection accu-

racy of 78% across 60 HTTP transactions.

1 Introduction
The affliction of duplicated web requests: A duplicate

web request occurs when the client web browser sends

two requests for the same web page, the second being

a redundant duplicate request. This affliction does not

affect poorly run web sites alone. It afflicts two of the

top 10 most visited sites — CNN and YouTube [15].

Our tests (with Chrome) show that at least 22 out of

top 98 (on April 4, 2014) globally ranked Alexa [1] web

sites give a duplicate request on accessing their home-

pages. On the academic side, we found that it affects

HUBzero, a widely used open source software platform

(originating from Purdue) for building powerful Web

sites that support scientific discovery, learning, and col-

laboration [14].

Why do duplicate web requests happen? There are

two root causes for the problem of duplicate web re-

quests, which have been separately pointed out in many

developer forums and blog posts [3, 4, 17]. The first

cause is the incorrect way in which browsers handle

missing component names, or empty tags, such as, <img

src="">, <script src="">, and <link href="">.

Equivalently, this could be caused by JavaScript which

dynamically sets the src property on either a newly cre-

ated image or an existing one: The most readable and

comprehensive treatment of this first cause can be found

in [3]. We will refer to this first root cause as missing re-

source cause. The second cause is the same Javascript

being included in the page twice, or more number of

times [15]. This is the root cause behind the duplicate

web requests in CNN and YouTube. Two main factors

increase the odds of a script being duplicated in a sin-

gle web page: team size and number of scripts. It takes

a significant amount of resources to develop a web site,

especially if it is a top destination. In addition to the

core team building the site, other teams contribute to the

HTML in the page for things such as advertising, brand-

ing, and data feeds. With so many people from different

teams adding HTML to the page, it is easy to imagine

how the same script could be added twice, e.g., CNN and

YouTube’s main pages have 11 and 7 scripts respectively.

We will refer to this second root cause as duplicate script

cause.

How to fix the problem? The “missing resource cause”

happens because the HTML specification, version 4 [5]1

is silent on this seemingly esoteric aspect. Even though

the specification indicates that the src attribute should

1HTML4 is the latest version of the specification, except for a W3C

“Candidate Recommendation” for HTML5 dated 04 February, 2014.
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contain a Uniform Resource Identifier (URI), it fails

to define the behavior when src does not contain a

URI. Consequently, different browsers behave in differ-

ent ways. For example, Internet Explorer (IE) sends the

duplicate request to the directory of the page rather than

the page itself, while Firefox and Chrome send the du-

plicate request to the page itself. Further, the behavior

of different browsers for handling different missing re-

sources is different, e.g., IE does not initiate a duplicate

request with missing script while Firefox and Chrome

do. The overall approach to handling this could be to

write server-side code that will catch a similar request

arising close in time to the original request and corre-

lated with finding a missing URI in a tag. However, due

to the differences in browser behaviors and for different

tags, this would lead to ungainly code, with case state-

ments for a large number of different cases. An indirect

evidence comes from the fact that though this problem

has been known for a while (since at least 2009), this so-

lution is seldom deployed. The “duplicate script cause”

of course has no easy solution available currently. The

solution is mainly process-based — enabling better com-

munication and coordination between developers writing

or using scripts to create web pages.

Our solution approach: In this paper, we present a

general-purpose solution to the above problem, in a sys-

tem called GRIFFIN2. By “general-purpose”, we mean

that the solution applies unmodified to all kinds of re-

sources and browsers. The solution has at its heart the

observation that the duplicate web requests cause a re-

peated signal, for some definition of “signal”. The sig-

nal should be defined such that it can be easily traced

in a production web server, without impacting compu-

tation or storage resources and without needing special-

ized code insertion. We find that the function call depth is

the signal that satisfies these conditions, while preserving

enough fidelity that the repeated sequence can be easily

and automatically discerned. To automatically discern

the repeated pattern, we use the simple-to-calculate au-

tocorrelation function for the signal and at a lag, equal

to the size of the web request (in terms of number of

HTTP commands), GRIFFIN sees a spike in autocorrela-

tion which it uses to flag the detection.

When tested over a wide range of buggy and non-

buggy behavior, we find that GRIFFIN performs well with

respect to both the detection and the false positive. We

find that GRIFFIN has no false positive and an 80% de-

tection accuracy. To make GRIFFIN feasible in real pro-

duction settings, we adopt a mix of synchronous and

asynchronous approaches, both without modifying the

application’s source code, or even needing access to the

2GRIFFIN is a mythical creature with the front legs, wings, and head

of a giant eagle, and the body, hind legs, and tail of a lion. It is often

used to guard treasures.

Figure 1: Duplicate bug-manifestation (with missing im-

ages) before and after the fix

source code. Synchronously we capture the call stack

depth, using a built-in functionality, in the tracing tool

called SYSTEMTAP. Then, asynchronously, GRIFFIN

calculates the autocorrelation function for various lags,

filters the values, and flags a detection when the value

exceeds a threshold. In addition to detection, GRIFFIN

also provides some diagnostic insight, i.e., gives an idea

of the module where the root cause lies.

2 Example Bug Case

Here we present a bug-case that was observed for the

beta release of the main web portal of our NSF center

called NEEScomm, meant for providing a cyberinfras-

tructure for earthquake engineers and scientists through-

out the US www.nees.org. GRIFFIN was able to de-

tect it before the code update made it to the produc-

tion site, and thus avoided the duplicate request problem.

On accessing the homepage, the images that appear as

part of background were missing (Figure 1). Listing 1

presents the code modifications that fixed the problem

(no duplicate requests seen from client). In Listing 1,

$slide->mainImage variable does not resolves to the

image XYZ.jpg location. Instead, it resolves to the NUL

character. Manual inspection revealed that the images

were missing. To verify, we hard-coded a valid image

location and it fixed the duplicate problem. Listing 2

shows the runtime state of the rendered HTML in Firefox

browser. On lines 3 and 10, the empty url() is observed,

while on line 4, the src field in <img> tag having a value

of “/” pinpoints the root cause for the duplicate request

to the base URL.

To understand how current browser versions (Chrome

32, Firefox 26) behave under unexpected input,

we did a synthetic injection in HTML tags: <span

style:background=X>, <img src=X>, <script

src=X>, <iframe src=X>, <link href=X>. Here

X, the injected character, had ASCII codes in the range

32-126 excluding alphanumeric characters. We found

that, in addition to duplicate requests due to empty

strings which have been reported before [3], the char-

acters ’?’ and ’#’ also resulted in duplicate requests.

2
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<span style:background=SPACE,EMPTY> resulted

in a duplicate request for both browsers. For Firefox,

<img src=SPACE>, <script src=SPACE,EMPTY>,

and <link href=SPACE> created duplicate requests.

These injections provide evidence that browsers do

behave differently and erroneously under unexpected

special characters for URIs.

1 −−− a / modules / mo d fp ss / t mp l / Movies / d e f a u l t . php

2 +++ b / modules / mo d fp ss / t mp l / Movies / d e f a u l t . php

3 −<sp an s t y l e =” b ack g ro u n d : u r l (<?php echo $ s l i d e−>mainImage ; ?>) no−
r e p e a t ; ”>

4 + <sp an s t y l e =” b ack g ro u n d : u r l ( media / sy s t em / i mag es /XYZ . j p g ) no−r e p e a t ; ”>

5 −<img s r c =”<?php echo $ s l i d e−>mainImage ; ?>” a l t =”<?php echo $ s l i d e−>
a l t T i t l e ; ?>” />

6 + <img s r c =” media / sy s t em / i mag es /XYZ . j p g ” a l t =”<?php echo $ s l i d e−>
a l t T i t l e ; ?>” />

7 −<sp an c l a s s =” n a v i g a t i o n −t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l (<?php echo

$ s l i d e−>t h u mb n ai l Imag e ; ?>) no−r e p e a t ; ”>&nbsp ;</ span>

8 + <sp an c l a s s =” n a v i g a t i o n −t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l ( media / sy s t em /

i mag es /XYZ . j p g ) no−r e p e a t ; ”>&nbsp ;</ span>

Listing 1: Code modification to fix unnecessary

duplicate requests

1 <d i v c l a s s =” s l i d e ” s t y l e =” p o s i t i o n : a b s o l u t e ; o p a c i t y : 0 ; z−i n d ex : 8 9 ; ”

>

2 <a c l a s s =” s l i d e− l i n k ” h r e f =” / f p s s / t r a c k / 3 5 / L3Jlc291 , , ”>

3 <sp an s t y l e =” b ack g ro u n d : u r l ( ) no−r e p e a t ; ”>

4 <img a l t =”NEEShub R e l e a s e 5 . 0 ” s r c =” / ”>

5 </ sp an>

6 </ a>

7 .

8 .

9 .

10 <sp an c l a s s =” n a v i g a t i o n −t h u m b n a i l” s t y l e =” b ack g ro u n d : u r l ( ) no−r e p e a t ; ”>
</ sp an>

Listing 2: Runtime state of generated HTML as

observed by Firebug

3 Design
Here we detail the design of GRIFFIN to detect duplicate

web requests. At a high level, it comprises three steps:

model application behavior at the web server (in terms

of the function calls and returns), create a signal of the

function call depths, and compute the auto-correlation of

the signal to trigger detection. Figure 2 shows these steps

in GRIFFIN.

3.1 Synchronous Tracing
We leverage SYSTEMTAP [12], a tracing/probing frame-

work that can provide synchronous tracing data on Linux

hosts. To enable tracing, SYSTEMTAP allows to write

probe-point scripts. Probe-point scripts tell SYSTEM-

TAP two things. (1). What event do you want to

trace? (2). What do you want to print at the traced

event-location?. GRIFFIN logs both function-entry and

function-return events and prints timestamp, thread-id,

function call depth, funcation name, file name, line num-

ber, and class name, if available. Further tracing imple-

mentation details are available in [7].

3.2 Modeling Application Behavior
For modeling purposes, we define a numeric metric

called function call-depth that represents the runtime

function call-depth. At every function-call, the call-

depth is incremented and at every return, it is decre-

mented. Our foundational intuition for modeling appli-

cation behavior is that the flow of an application can be

roughly represented by how function call depth changes.

The function call depth sequence for a given high-level

web operation can be considered as a fingerprint of the

high-level operation. For further exploration of this in-

tuition, let us first define some terms: web-request, web-

click, http-transaction. Starting from the lowest level,

a web request is the HTTP request sent by the web

browser, such as, GET and POST. A web click is a hu-

man user clicking in the browser to send web requests.

A single web click can generate multiple web requests.

A set of web clicks done in a particular sequence, as per-

mitted by the workflow in the website, is called an http

transaction. An http transaction can consist of one or

more web clicks; in typical usage this will be more than

one web click. An example of an http-transaction of size

two is going to the homepage followed by going to the

login page (HomePage→Login).

Now coming back to our intuition for detecting du-

plicate web requests, consider that a duplicate web re-

quest will create a duplicated signal of the function call

depths. It is easy to concoct a synthetic example where

this intuition is violated. For example, consider two le-

gitimate consecutive web clicks and the corresponding

web requests: (a (b (c c’) b’) a’) (d (e (f f’) e’) d’) giv-

ing a call-depth sequences of (1 2 3 3 2 1) (1 2 3 3 2 1).

This would give the appearance to GRIFFIN of duplicated

web requests. However, we find that for real web pages,

the length of web clicks in terms of the number of func-

tion calls and returns tends to be much larger. This kind

of accidental matching of the function call depth signal

happens only very rarely for these real situations.

To get the call-depth at runtime, we add a function

called thread indent depth(long) to SYSTEMTAP

’s native scripts. This function returns a number cor-

responding to the depth of nesting. We call this func-

tion thread indent depth(1) in the probe-point SYS-

TEMTAP script. Here, the argument one means that at

every function-call, increment the depth by one. We sub-

mitted this function to the SYSTEMTAP repository and it

has been merged into SYSTEMTAP ’s master-branch and

is available out-of-the-box after SYSTEMTAP is installed

[6].

3.3 Duplicate Detection Algorithm

With the function call-depth sequence captured, the next

goal is to detect whether the sequence has a repetitive

pattern and to do this efficiently with respect to time.

To do this, we use a common signal analysis technique

to detect repeating patterns, auto-correlation [19] of the

function call-depth signal. Auto-correlation of a signal x

is defined by Rxx (Equation 1) as a function of lag-value

t, where t varies from zero (perfect signal match with

Rxx=1) to n, the sequence length in terms of the number

3
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Figure 2: Overview of the duplicate-detection workflow.

of function calls and exits. Ideally for GRIFFIN to de-

tect duplicate web requests resulting from a single user

web click, it would be possible to segment the web re-

quests for each web click. But that is not always pos-

sible in practice, as we discuss in [7]. Auto-correlation

can be viewed as a sequences of shift, multiply, sum op-

erations for all lag values on function call-depth signal.

Intuitively, we are using auto-correlation to estimate the

similarity between the signal and its time shifted versions

for various values of the time shift. If the function-depth

signal is exactly repeated twice, we expect to see a peak

of 0.5 around the lag value of n/2.

Rxx[t] =
Ct

C0
where t=0,. . . ,n

Ct =
1

n

min(n−t,n)

∑
s=max(1,−t)

[Xs+t − X̄ ][Xs − X̄]

(1)

After auto-correlation computation for all lag-values,

we find the index at which the auto-correlation first

becomes negative, call this t0. For values of auto-

correlation beyond t0, we find if there is any value greater

than a threshold value τ . If yes, we flag a duplicate-

detection. For the duplication of a set of web requests

once, we expect ideally an auto correlation peak of 0.5.

But to tolerate the normal variation in function call-depth

signal, we set the threshold τ to be a little lower than

0.5. We report on our sensitivity empirical study in Sec-

tion 5.3. The reason for starting the search beyond t0 is

that then we eliminate the high values of autocorrelation

that we will see due to the original signal being corre-

lated with itself with small time lags. The pseudocode

for GRIFFIN’s detection algorithm is available in [7].

3.4 Usage Modes
We envision GRIFFIN to work in two scenarios, pre-

production testing and in-production. In testing, devel-

oper’s have control of the environment and trace seg-

mentation is not an issue. Here, a possible concern by

developers could be GRIFFIN’s detection latency, which

is in order of seconds. For in-production mode, oper-

ators’ main concern could be the overhead of configur-

ing and tuning GRIFFIN and the application tracing over-

head, which is incurred in the critical path of all web

requests and responses. GRIFFIN’s configuration is min-

imal with only one threshold parameter for which we

provide a recommendation (threshold=0.4) with our sen-

sitivity analysis. To further minimize the tracing over-

head, an operator can run GRIFFIN in time intervals of

low load on the web server .

4 Experimental Setup

4.1 Configurations: Hardware, Software,

Tracing

NEEShub infrastructure is running Apache/2.2.16 (De-

bian) web server in Prefork MPM (Multi-Processing

Module) [2] mode, i.e., with multiple processes and one

thread per process, on a VM with Intel(R) Xeon(R)

CPU E5-2643 0 @ 3.30GHz with 6GB RAM. The PHP-

runtime (libphp5.so) version is 5.3.3 and is compiled

with --enable-dtrace option in order for SYSTEM-

TAP (ver 2.4) to be able to intercept PHP-function calls

and returns with its probes.

4.2 Evaluation Metrics

We evaluate GRIFFIN’s detection performance with tradi-

tional definitions of accuracy and precision. Accuracy is

defined as the percentage of true positives and true nega-

tives. Precision is defined as the percentage of true posi-

tives out of all detections. We establish the ground truth

through manual verification, at client-end, by checking

duplicate requests for each web-click using browser de-

bugging tools, Firebug and Chrome-dev-tools. We mea-

sure the overhead of GRIFFIN in two areas, tracing over-

head and detection overhead. Tracing-overhead is the

fraction of total time, taken by SYSTEMTAP ’s probes

while processing a given web-click. Detection overhead

or detection latency is measured in the standard way as

the time elapsed for all the detection steps.

4
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5 Evaluation

5.1 Experimental Workload

GRIFFIN’s testing was conducted on a replica of the pro-

duction site (www.nees.org), technically referred to as a

“staging machine” where developers merge their code af-

ter doing the unit testing on their own development box.

We made no modifications or synthetic error injections.

Therefore, we expected to find few, if any, problems with

the website.

We tested GRIFFIN’s duplicate-detection performance

by sending a total of 60 HTTP transactions of varying

sizes. The size of a transaction is measured by the num-

ber of web clicks incorporated within the transaction.

Thus, the transaction HomePage→Login has a size of

two. Also, for the analysis (autocorrelation computa-

tion), the signal is considered the entire transaction. We

used 20 transactions for each of the sizes 1,2,3. These

60 HTTP transactions were executed following different

possible user workflows as enabled by the web portal.

We tried to cover all the workflows that a typical user

would follow while visiting the website.

Ideally, the analysis in GRIFFIN will consider the

traces corresponding to a single web click from a sin-

gle user. Within a single user, we expect that different

web clicks are handled by threads of different IDs. We

empirically validated that this is always the case for all

our transactions.

5.2 Accuracy and Precision Results

Out of the 7 duplicate request problems (among the

60 HTTP transactions), GRIFFIN was able to correctly

find 4 duplicated requests i.e., HomePage, Topics-page,

SimulationWiki-page and Wiki-page. SimulationWiki

page was due to a Javascript-based duplication, while

the other three were due to missing-resources. GRIF-

FIN missed 3 cases of duplicated requests, warehouse,

simulation and education pages.

GRIFFIN’s accuracy and precision with different

HTTP transaction sizes is presented in Table 1. GRIF-

FIN provides an average accuracy of 80% across HTTP

transactions of size one and two with no false posi-

tives. With three web clicks, GRIFFIN’s performance

degrades– here 0% precision is misleading in the sense

that out of the 20 HTTP transactions of size three,

only one (HOMEPAGE→LOGIN→LOGGINGIN (Fig-

ure 3)) had a duplicate request which GRIFFIN did

not detect. GRIFFIN falsely flagged 4 out of 20

transactions giving a false positive rate of 20% for

HTTP transactions of size three. The reason why

GRIFFIN did not detect HOMEPAGE web-click within

HOMEPAGE→LOGIN→LOGGINGIN transaction is

due to the significant difference of LOGGGINGIN func-

tion call-depth signal from the signals of HOMEPAGE
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Figure 3: HOME→LOGIN→LOGGINGIN: Function

call-depth signal for three web clicks from browser

and LOGIN web clicks (see the increase in function call-

depth signal between index 100K to 150K in Figure 3).

Here, HOME and LOGIN web clicks have an average

function call-depth of 15.61 and 15.47 respectively while

LOGGINGIN has an average of 32.42 making it signifi-

cantly different. With HTTP transaction of size 3, GRIF-

FIN is performing its analysis after combining these three

signals into one. Thus, the divergence in the single com-

bined signal means that the autocorrelation values, even

with one duplication, tend to be low, and stay below the

threshold. In practice, the HTTP transactions of size 3

will be very rare because of the discrimination that GRIF-

FIN will be able to do using the thread ID [7].

Accuracy Precision

one-click 90% =
18

20
100% =

3

3

two-clicks 70% =
14

20
100% =

4

4

three-clicks 75% =
15

20
0% =

0

4

Table 1: Summary of Performance results

With the ideal (and practically common) case of anal-

ysis over HTTP transaction of size 1, GRIFFIN shows

90% accuracy and 100% precision. As an example, the

function call-depth and autocorrelation for HOME web-

transaction is presented in Figure 2. We see that the au-

tocorrelation has a clear peak value of 0.4998 near a lag-

value of 40,000 which is detected by GRIFFIN (with a

threshold set at 0.4). Manual checking, both at user-end

and at server-end revealed that HOME web-request (”/”)

is being sent twice by the user’s browser. Further inspec-

tion on the server revealed that a field called hits in the

back-end database is incremented on every HOME web-

transaction. We reported this hitherto unknown problem

to the web developer at NEES, and it was subsequently

fixed and not pushed into the production environment.

Testing GRIFFIN with HTTP transactions of size 2, we

observe a drop in accuracy (to 70%). This happens due

to the significant variability in the basic signal due to the

very different nature of the function call invocations in

the two web clicks. Expectedly, autocorrelating a diver-

gent signal gives low autocorrlation values, which some-

time fall below the GRIFFIN threshold (0.4).

5



110 11th International Conference on Autonomic Computing USENIX Association

(a) One-click (b) Two-click

Figure 4: Sensitivity of GRIFFIN for one and two-clicks

Tracing Over-

head (Avg)

Tracing Over-

head (Std.

Dev)

Sequence

Length (Avg)

Sequence

Length (Std.

Dev)

one-click 24.0% 6.6% 67,071 54,165

two-clicks 32.8% 11.6% 131,511 76,630

three-clicks 29.1% 9.1% 141,427 33,727

Table 2: Tracing Overhead

5.3 Sensitivity and Overhead
GRIFFIN’s sensitivity to different parameters, sequence

length, threshold and number of traced contiguous web

clicks is critical from a usability perspective. With an

increasing number of contiguous web clicks, GRIFFIN’s

accuracy and precision drop. The pattern of accuracy

decreasing with increasing number web clicks holds true

with increasing sizes of the traces. We present GRIFFIN’s

sensitivity with different thresholds in Figure 4.We set

GRIFFIN threshold to 0.4 as the default value for GRIF-

FIN to provide us zero false positives, i.e., 100% preci-

sion. The user can decrease the threshold for fine tuning

her system, but we suggest to not go below 0.35 (based

on Figure 4b) as that can result in possible false positives.

The detection latency as a function of the sequence

length (i.e., the number of trace events due to SYSTEM-

TAP probes) shows the expected behavior of greater la-

tency with increasing sequence length [7]. This is due

to a larger number of autocorrelation computations for a

longer trace length. However, the upper range of the se-

quence length is typically about 100K and with that we

have a detection latency of about half a minute, which

should be fast enough to be useful for the subsequent

manual process of fixing the problem. The average trac-

ing overhead across the 60 tested HTTP transactions is

28.6% with a standard devitation of 10.0%. The over-

head for HTTP transactions for each size is presented

in Table 2. The tracing overhead is independent of the

length of the sequence and the differences seen are due

to statistical variations.

5.4 Diagnostic-context
When GRIFFIN detects duplicate web-requests, a

diagnostic-context about the detection would help the de-

velopers as a starting point for debugging. At detection-

time, in addition to the autocorrelation value, we also

have the lag when this autocorrelation value exceeded

the threshold, call this tmax. We use tmax alongwith the in-

formation provided by an additional SYSTEMTAP probe

that records the HTTP-request going from apache-core

to PHP-runtime, to provide the diagnostic-context. With

the tmax, we get the nearest next fired apache-core

to PHP event. We then extract a high-level component

(module name) from the file name. For the duplicate bug

of Figure 1, this simple scheme is able to correctly flag

mod fpss module in Joomla, the Content Management

System, on which HUBzero is built.

6 Related Work
Most of the existing approaches to handle duplicate re-

quests are not at the application-level. TCP [9] is the

classic example that uses sequence numbers along with a

windowing-based mechanism to do duplicate detection

of IP packets. Stateless protocols like HTTP have to

deal with the request-response nature and maintain state

at the application-level. Application-level works include

similarity detection [16] deployed at web-proxy caches

to eliminate redundant network traffic, duplicate-content

detection [18] with clustering and similarity metrics [11].

These are directed at generic payloads and are therefore

less accurate than GRIFFIN in general.

Finding relevant system events to detect and diag-

nose failures is often equated to the problem of finding

a needle in a haystack. Over the last decade, several

researchers have proposed solutions to this challenging

problem [10, 20, 8, 13]. The high-level objective here is

to mine vast amounts of system data to find relevant sig-

natures for failures. Our work falls within this broad um-

brella. We automate the process of detecting duplicated

web requests by looking at a compressed signal from sys-

tem events, specifically function calls and returns.

7 Conclusion
In this paper, we have presented a systematic method and

an automated tool called GRIFFIN for detecting an im-

portant problem that afflicts many web servers, namely,

duplicate client browser requests. This causes an artifi-

cially high load on servers and corrupts server and client

state. Culling together many blog posts and developer fo-

rum reports, we identify the two fundamental root causes

of the problem and come up with a solution that han-

dles both, without needing special case logic for the two

root causes or for different browsers. We use GRIF-

FIN for detecting the problem in a production web portal

for an NSF center at Purdue and identify that the prob-

lem is more widespread than previously identified. Our

evaluation on the production site revealed no false posi-

tive. The dynamic system tracing using SYSTEMTAP is

lightweight and the detection latency small enough (less

than half a minute) as to be useful in practice. Our contri-

butions were considered significant enough that the prob-

lem was fixed in the web portal and our addition to the

dynamic tracing facility was accepted in its official re-

lease.

6
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Abstract

Efficient namespace metadata management is increas-

ingly important as next-generation storage systems are

designed for peta and exascales. New schemes have been

proposed; however, their evaluation has been insuffi-

cient due to a lack of an appropriate namespace metadata

benchmark. We describe MimesisBench, a novel names-

pace metadata benchmark for next-generation storage

systems, and demonstrate its usefulness through a study

of the scalability and performance of the Hadoop Dis-

tributed File System (HDFS).

1 Introduction

There are no metadata-intensive benchmarks with re-

alistic workloads for next-generation storage systems [1,

13]. A few existing tools [7, 9] are useful as microbench-

marks, but do not reproduce realistic workloads.

The storage community has long-acknowledged the

need for benchmarks based on realistic workloads, and

programs like SPECsfs2008 [12] and Filebench [6] are

extensively used for this purpose in traditional storage

systems. However, emerging Big Data workloads like

MapReduce [2] have not been properly synthesized yet.

We present MimesisBench, a novel metadata-intensive

storage benchmark suitable for Big Data workloads.

MimesisBench consists of a workload modeling tool, a

workload generator, and a workload profile from a large

cluster at Yahoo. More workloads will be added in the

future.

The model on which MimesisBench is based [3] al-

lows it to generate type-aware workloads, in which spe-

cific types of file behavior can be isolated or modified

for ‘what-if’ and sensitivity analysis. These types of

files are modeled autonomically, using unsupervised sta-

tistical clustering. The model also supports multidimen-

sional workload scaling.

MimesisBench’s Hadoop-based implementation al-

lows it to be used in any storage system that is compatible

with Hadoop (e.g., HDFS, Ceph, CassandraFS, Lustre).

We have released the benchmark and workloads as open

source so that other researchers can benefit from it1.

This paper makes two contributions. First, we extend

1Available: http://sites.google.com/site/cristinaabad

a model for temporal locality and popularity in object re-

quest streams [3] to: (1) include other operations in ad-

dition to regular accesses to objects (opens), (2) support

pre-existing files (created before the benchmark), and (3)

support a realistic hierarchical namespace. Second, we

use this model to implement a metadata-intensive stor-

age benchmark to issue realistic workloads on distributed

storage systems. This benchmark can be used to evalu-

ate the performance of storage systems without having to

deploy a large cluster and its applications.

2 Model

We extend a model we proposed for generating ac-

cesses to objects (e.g., opens to files) [3], which is able to

reproduce temporal correlations in object request streams

that arise from the long-term popularity of the objects

and their short-term temporal correlations. This model

is suitable for Big Data workloads because it supports

highly dynamic populations, it is fast and scalable to mil-

lions of objects, and it is workload-agnostic so it can be

used to model emerging workloads.

Objects or files in a stationary segment of a request

stream are modeled as a set of delayed renewal pro-

cesses [11] (one per object). Each object in the stream

is characterized by its time of first access, its access

interarrival distribution, and its active span (time dur-

ing which an object is accessed). With this approach,

the system-wide popularity distribution asymptotically

emerges through explicit reproduction of the per-object

request arrivals and active span [3]. However, this model

is unscalable, as it models each object independently.

To reduce the model size, a lightweight version uses

unsupervised statistical clustering (k-means) to identify

groups of objects with similar behavior and significantly

reduce the model space by modeling “types of objects”

instead of individual objects. As a result, the clustered

model is suitable for synthetic workload generation.

2.1 Extensions to the model

The model described above cannot be used directly to

test a storage system since it only reproduces accesses

(e.g., opens) to an object (i.e., file) and not other opera-

tions that are also critical in a storage system like creates

and deletes. We propose the following extensions to the
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original model to make it suitable for namespace meta-

data benchmarking: (1) additional storage system opera-

tions, (2) pre-existing files, and (3) realistic namespaces.

2.1.1 Extension 1: Additional operations

We first extend our model to include file creations,

deletions and list operations in addition to regular opens.

We focus on these operations because together they con-

stitute more than 95% of the namespace metadata opera-

tions in MapReduce clusters [2], thus accounting for the

vast majority of the workload.

The list operations are like opens and only read or ac-

cess the namespace. Thus, we model both list and opens

together as accesses to files. A parameter keeps track of

the percentage of read operations that constitute opens

and those that are list.

On the other hand, creates and deletes write or modify

the namespace, and are characterized independently.

(a) Original model

(b) Extended model

Figure 1: Operations on a single file, with the original and the extended

model. The file’s activation time is given by its creation time plus the

delay to its first access; the deactivation time is given by its activation

time plus its active span.

Figure 1 shows how the original and extended models

generate operations on a file of a particular type (clus-

ter). The extended model requires the following addi-

tional per-cluster statistical information: distribution of

create interarrivals, distribution of delay to deletion (rel-

ative to the object’s last access in the stream, which is

given by the time of first access + active span), and per-

centage of accesses that are open operations (list are the

remaining percentage). In addition, the activation time is

relative to the creation stamp of a file (or to the beginning

of the test, for files that already exist at t0).

Table 1 lists the parameters required by the extended

model to generate events to files.

This extension does not affect the access patterns pre-

served by the original model, which are characterized

by the per-cluster access interarrival distribution and the

per-cluster distribution of active spans.

2.1.2 Extension 2: Pre-existing files

When benchmarking storage systems, we must con-

sider that their performance depends on the state of the

underlying file system [1, 4], namely the pre-existing

files and the structure of the hierarchical namespace (the

latter is discussed in the next subsection).

We extend our model to keep track of the number of

Table 1: Parameters used to generate events on files; Oi is the object or

file i, i ∈ {1, ...,n}; Kj is the cluster or file type j, j ∈ {1, ...,k}.

Symbol Description

n number of files in the trace or request stream

k number of clusters or types of files

Fj interarrival distribution of accesses to an object in Kj

Cj interarrival distribution of creations for objects in Kj

G j distribution of delay to first access to objects in Kj

(relative to creation or t0); Cj +G j = Activation j

Hj active span distribution ∀Oi ∈ Kj;

Activation j +Hj = Deactivation j

D j distribution of delay to delete event of objects in Kj;

Deactivation j +D j = Deletion j

p percentage of accesses that are opens (1− p: list)

w j percentage of objects in Kj ; ∑k
j=1 w j = 1

tend duration of request stream (in milliseconds)

pre j number of pre-existing files in Kj

PN Pre-existing namespace conf. file (generated with NGM)

FD Array with percentage of files at each depth in hierarchy

files (within each file type) that were created sometime

before the beginning of the modeled trace.

We could infer if a file exists prior to the captured trace

of namespace events by making the assumption that any

file accessed in the trace, but not created during it, is a

pre-existing file. However, this approach would lead to

an inaccurate model if the trace contains many operations

on files that do not exist (e.g., due to users incorrectly

entering the name of a file).

To avoid this problem we can use a namespace meta-

data trace that contains a snapshot of the namespace (file

and directory hierarchy), in addition to the set of events

that operate atop that namespace (e.g., open a file, list

directory contents) [1]. The traces we analyzed consist

of access logs obtained by parsing the name node audit

logs, plus namespace snapshots obtained with Hadoop’s

Offline Image Viewer tool.

2.1.3 Extension 3: Realistic namespaces

Earlier, we proposed [1] a statistical model for gener-

ating realistic namespace hierarchies, and implemented

a namespace generation module (NGM) based on it. To

the best of our knowledge, this is the only available tool

that can generate large realistic namespaces2.

Prior to issuing the workload, the NGM is used to gen-

erate a realistic directory structure, which preserves the

following statistical properties of the original: number of

directories, distribution of directories at each depth, and

distribution of subdirectories per directory.

To integrate the files to this directory structure, we add

a parameter to the model, the percentage of files at each

depth of the hierarchy, and proportionally assign files to

each depth according to this parameter.

2We tested the only other alternative system, the Impressions frame-

work [4], and were not able to generate the large namespaces observed

in Big Data storage deployments since it was designed to model smaller

(more traditional) namespaces. Furthermore, at the time of this writing,

the Impressions framework is no longer available for download.

2
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2.2 Assumptions and limitations

Our model can be used to generate realistic syn-

thetic workloads to evaluate the namespace metadata

management subsystems. Dimensions related to data

input/output behavior—like a correlation between file

size and popularity or the length of data read/write

operations—are out of the scope of our model.

We model stationary segments of object request

streams. Workloads consisting of a few stationary seg-

ments can be divided using the approach in [15]. How-

ever, in practice, benchmark runs tend to issue the work-

load of a period of one hour or less, so the need to con-

sider non-stationary segments is not critical.

We represent arrivals with a sequence of interarrival

times X =(X1,X2, ...), where X is a sequence of indepen-

dent, identically distributed random variables. In prac-

tice, there could be autocorrelations in the arrival pro-

cess, leading to bursty behavior at different timescales.

In [3] we briefly discuss how ON/OFF processes can be

used to capture burstiness.

We assume that each arrival process of the accesses to

a file in the storage system is ergodic, so its interarrival

distribution can be deduced from a single realization of

the process (i.e., the trace of events representing the seg-

ment being modeled). In addition, instead of forcing a

fit to a particular interarrival distribution, we use the em-

pirical distribution of the interarrivals inferred from the

arrivals observed in the trace being modeled.

Finally, there may be unknown, but important, behav-

ior in the original workloads that our model does not cap-

ture. Some of these dimensions, like spatial locality, may

be added to our model in the future. However, there is a

trade-off of increased complexity due to adding these di-

mensions.

3 Design

Similar to Hadoop’s DFSIO [16] and S-live [9], Mime-

sisBench is a MapReduce job in which a set of mappers

simultaneously issue requests to the storage layer. Each

mapper is in charge of issuing the operations on files of

a particular type (as encapsulated by the model). The

cluster used to run MimesisBench must have at least k

nodes available to run a mapper task each, so that the full

workload can be issued simultaneously and the mappers

do not interfere with each other during their operation.

A run of MimesisBench has two phases: First, the pre-

existing files are created; next, the workload is issued.

In each phase, a job coordinator parses the parameters

and generates configuration files for each worker. In ad-

dition, the job coordinator of the first phase creates the

hierarchical namespace based on an input parameter file

that has been pre-generated with the Namespace Gener-

ation Module (NGM).

In the first phase, the workers create the target num-

ber of files for each type. A parameter tells the workers

to use a flat namespace (create all files in a single, con-

figurable path) or a hierarchical one. Files of each type

are created at different levels of the namespace hierarchy,

proportionally to the configuration parameter of files at

each depth (which indicates what percentage of files are

located at each depth). The subdirectories at each depth

are assigned to a file type, proportionally to the weight

of the cluster (w j) to which the file belongs.

In the second phase, the workers issue the load. Each

load generator worker reads the configuration for the

specific file type that it has been assigned and waits in a

time-based barrier3 to start issuing the load correspond-

ing to the files that belong to the type it is in charge of.

Two data structures are used to keep track of the files

and events: a PriorityBlockingQueue of files (sorted

by the timestamp of the next event—create, open, etc.—

of that file) and a FIFO BlockingQueue of events to be

issued4. Three threads coordinate access to these data

structures: a file introduction thread adds files to the pri-

ority queue (using the cluster’s create interarrival distri-

bution)5, another thread continuously polls the priority

queue and adds details of the next event to be issued to

the back of the FIFO queue. Finally, a consumer thread

pulls the information of the next event to be issued from

the FIFO queue and schedules it to be issued at the proper

time, using Java’s ScheduledExecutorService.

All file create operations create files of size zero. This

allows us to ignore the effect of writing bytes to a file,

handled by the data nodes, and concentrate on evaluat-

ing the namespace metadata server (name node in HDFS)

performance.

A configurable maximum allowed drift is used to abort

a run of the benchmark if the events are falling behind

from their original schedule. In that case, more mappers

would be needed to issue the workload.

A collector reducer task gathers the stats from the

workers and generates aggregate results (see Table 2).

Table 2: Statistics reported by MimesisBench.
Description Unit

Throughput ops/sec

Active time (workers) msecs

Operations issued ops

Successful creates/deletes/opens/list ops

Average latency: create/delete/open/list msecs

3.1 Scaling workloads

A workload can be scaled across several dimensions:
3The clocks of the nodes in a Hadoop cluster are typically synchro-

nized to support Kerberos authentication.
4The size of these queues in the current implementation is set to be

the number of files of that particular type for the former, and 1500000

for the latter.
5Pre-existing files of a type are added to the queue upon loading.

3
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Number of files. A workload profile comes with a con-

figured number of files, n, as observed in the original

trace on which the model is based. One can increase or

decrease the number of files to emulate a larger load.

Number of files of a particular type. The user can

increase the number of files of only one particular type

by increasing n and doing a transformation on the w j

weights. For example, to double the number of ob-

jects of type 1 while keeping the number of objects of

types 2 to k unchanged, we can obtain the values of nnew

and {w1new ,w2new , ...,wknew} by solving:

nnew = n+w1 ×n (1)

w1new ×nnew = 2(w1 ×n) (2)

w jnew ×nnew = w j ×n, j ∈ {2, ...,k} (3)

Time. Interarrivals can be accelerated by multiplying

the random variable by a scaling factor between 0 and 1.

A scaling factor of 1 reproduces the original workload,

while a scaling factor of 0 provides maximum stress on

the system by issuing all the operations as fast as pos-

sible (0 millisecond wait between operations). Interar-

rivals can also be slowed down by multiplying the ran-

dom variable by a constant greater than 1.

Active span. The active span random variable can also

be multiplied by a user-defined constant. Modifying the

active span has the effect of modifying the number of

accesses of the files, thus modifying their popularity.

3.2 Isolating workloads

The user can choose to isolate the workload of a par-

ticular file type or cluster (i.e., turn-off the other types of

files). This can be used to analyze how a particular type

of file affects the performance of the system.

Summary Table 3 shows a summary of the features of

MimesisBench and other related tools.

4 Evaluating a Big Data storage system

We demonstrate the usefulness of MimesisBench by

using it to evaluate the performance and scalability of

the HDFS name node across several dimensions.

We modeled a 1-day (12/1/2011) namespace meta-

data trace from a Hadoop cluster at Yahoo. The trace

came from a 4100-node production cluster [10]. It con-

tains 60.9 million opens events that target 4.3 million

distinct files, and 4 PB of used storage space. For a de-

tailed workload characterization of this cluster see [2].

We modeled the trace using 30 file types or clusters (i.e.,

k = 30 for the k-means clustering algorithm). We chose

this value of k because it was the smallest for which we

could obtain a close approximation of the file popularity
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Figure 2: Left: Operation latency for varying interarrival speeds, av-

eraged across five runs. In each run, the interarrival random variable,

X , was multiplied by a constant, c, shown in the x-axis. When c = 0,

the operations are issued as fast as possible. When c = 1 the opera-

tion interarrival mimics the interarrivals of the original trace. For all

data points, the standard deviation is very small (< 0.7 msecs). Right:

Throughput vs. operation (open) latency.

distribution (Kolmogorov-Smirnov distance between the

real and synthetic CDFs < 4%).

Our performance testbed had 32 nodes, each with 2

Xeon 2.4GHz quad-core processors and 24GB RAM.

4.1 Latency of opens, creates and deletes

Figure 2 shows the effect on the operation latency as

interarrivals are accelerated. In general, read operations

are faster than write operations because acquiring an ex-

clusive lock is not necessary to read the namespace.

The latency of the operations is not initially affected

by issuing them faster. This shows, that the performance

of the name node is not degraded as more operations are

issued per second. However, when the clients issue more

than 16,800 operations per second (c ≥ 0.2), the name

node’s performance starts degrading rapidly. This infor-

mation can be used to determine whether the name node

can properly support an increased workload in the future.

4.2 Flat versus hierarchical namespaces

Figure 3 shows the impact a hierarchical namespace

(versus a flat one) has on the name node. The perfor-

mance degrades significantly faster on a flat namespace

than on a hierarchical one. The hierarchical namespace

can serve up to 19,696 ops/sec versus 10,284 ops/sec for

the flat namespace.

These results show that using benchmarks that create

files in a flat namespace (see Table 3) is not desirable as

they place a heavier and unrealistic burden on the lock-

ing mechanisms of the metadata server. In this case, the

problem is with the locking used to log namespace write

operations used for auditing purposes.

4.3 Isolating workloads

We isolated the workload of two file types with differ-

ent access patterns and observe the effects on latency and

throughput (see Table 4). We chose these two clusters

because they represent two extreme, read-mostly (cluster

29) and write-heavy (cluster 17), yet realistic, workloads.

We ran several tests with events issued at normal speed

4



USENIX Association  11th International Conference on Autonomic Computing 117

Table 3: Features of MimesisBench and other related tools. See Section 5 for a description of these tools.

Feature NNBench DFSIO S-live Filebench SPECsfs mdtest MimesisBench

For next-generation storage � � � �

Metadata-intensive � � �

Realistic workloads � � �

Type-aware workload � �

Autonomic type-awareness �

Hierarchical namespace Semi-flat+ Semi-flat+ Limited∗ Fixed �

Issues I/O load � � � �

+ Only multiple directories at depth 1 are supported.
∗ Creates hierarchies with a given depth and width. Characteristics like subdirectories per directory and directories per depth, are not supported.
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Figure 3: Throughput vs. open latency in a hierarchical and a flat

namespace. Five runs; standard deviation < 1.5 msecs.

(interarrival scaling factor = 1) and at full speed (inter-

arrival scaling factor = 0). To ensure a fair comparison,

we adjusted the number of mappers issuing the workload

so that the total number of operations issued in both tests

was roughly the same. At 30 mappers for cluster 17, and

12 mappers for cluster 29, the number of operations is-

sued in the tests was 3559101±0.9%.

Figure 4 shows the latency of open events. The la-

tency of the open events degrades significantly more in

a write-heavy workload: When operations are issued at

full speed, the latency of opens in the write-heavy work-

load increases 3.9x in cluster 17 versus 1.4x in cluster

29. In addition, at maximum issuing speed (interarrival

scaling = 0) the name node can serve 8 times more oper-

ations when the workload constitutes only reads: 53,233

vs. 6,453 ops/sec for clusters 29 and 17, respectively.

Table 4: Characteristics of the two clusters whose workload was iso-

lated. We chose these two clusters because they represent two extreme,

read-mostly and write-heavy, workloads.

Cluster 17 Cluster 29

Mean interarrivals (regular accesses) 179.61 msecs 4.92 msecs
Mean creates interarrivals 40.64 msecs 87,355.00 msecs
Mean active span 3.33 mins 8.33 mins
Percentage of read operations 69% ≈ 100%
Percentage of write operations 31% ≈ 0%

4.4 Evaluating a proposed enhancement

A common use for benchmarks is to evaluate a new

design against an old design. In this subsection, we show

the results of one example of this type of evaluation.

The HDFS-5239 [8] Jira allows the namespace lock

fairness to be changed from fair (default) to unfair. This
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Figure 4: Latency of open events, with two interarrival scaling factors

(0 or operations at full speed, and 1 or operations issued at their orig-

inal speed), averaged across five runs, for two clusters with different

read/write ratios (see Table 4). Standard deviation < 0.5 msecs.

change may be desirable in large clusters, as an unfair

lock has a higher throughput than a fair lock.

Table 5: Throughput improvement obtained when using an unfair

namespace lock (HDFS-5239), for four different workloads.

Fair lock Unfair lock Improvement

Hierarchical 19 696 ops/sec 21 899 ops/sec 11%
Flat 10 255 ops/sec 11 299 ops/sec 10%
Read-mostly 53 324 ops/sec 103 331 ops/sec 94%
Write-heavy 8 694 ops/sec 8 701 ops/sec 1%

Table 5 shows the name node throughput improvement

for the following scenarios: full workload on a hierar-

chical namespace, full workload on a flat namespace, a

realistic read-mostly workload (cluster 29), and a realis-

tic write-heavy workload (cluster 17). The improvement

when the full workload is issued is around 10%. How-

ever, for a read-mostly workload, the improvement is as

high as 94%. This is a result of the bottleneck that exists

in the logging mechanism used for write operations.

4.5 Stability of the results

Benchmarks are often used to evaluate new designs

against an old design, or against another competing new

design. An improvement of 10% in performance may be

desirable to push in a large system, as long as we can

trust the results of the benchmark. For this reason, it is

important to have a small variability in the results pro-

duced by a benchmark. For example, it is not reasonable

to trust a 10% performance improvement if the coeffi-

cient of variation, cv, of the results is 8%.

Our experiments had a very small standard deviation

and corresponding coefficient of variation (or the ratio

5
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of the standard deviation to the mean). For all the sets

of experiments we ran, the greatest observed coefficient

of variation was 2.38%, with an average coefficient of

variation of 1.08%. These results suggest that Mimesis-

Bench is suitable as a tool to evaluate expected perfor-

mance improvements of new designs.

5 Related work

Some prior tools provide a subset of the features of

MimesisBench, as summarized in Table 3.

Mdtest issues metadata intensive workloads. However,

it does not support realistic workloads or namespaces. In

addition, mdtest interfaces with the storage system via

system calls and has not been ported to the interfaces of

next-generation storage systems, nor does it allow dis-

tributed workload generation.

Filebench [6] uses a POSIX-compliant interface and

includes traditional workloads like web server, file

server, and database server. Emerging Big Data work-

loads have not been included as pre-defined workloads.

SPECsfs2008 [12] is used as a standard to enable

comparison of file server throughput and response times

across different vendors and configurations. It supports

NFSv3 and CIFS APIs and comes with a pre-defined

workload based on enterprise NFS and CIFS workloads.

For HDFS, the Hadoop developer community has de-

signed two benchmarks that can test I/O operations and

do simple stress-tests on storage layer: DFSIO [16] and

S-live [9]. However, these benchmarks do not reproduce

realistic workloads and can only be used as microbench-

marks. Another Apache tool, NNBench [7] was created

to benchmark the HDFS name node; however, it can only

issue one type of operation at a time, and does not work

atop a realistic namespace.

Tarasov et al. [14] found that traditional workloads,

like those provided with Filebench, are a poor replace-

ment for virtual machine workloads. We consider an-

other emerging workload: MapReduce clusters.

Impressions [4] generates realistic file system images;

however, it is not readily coupled with a workload gen-

erator to easily reproduce workloads that operate on

the generated namespace. Furthermore, the generative

model used by Impressions to create the file system hier-

archy is not able to reproduce the distributions observed

in our analysis, nor is it able scale to the large hierarchies

observed in the Big Data systems we have studied.

Chen et al. [5] proposed the use of multi-dimensional

statistical correlation (k-means) to obtain storage system

access patterns and design insights in user, application,

file, and directory levels. However, the clustering was

not leveraged for workload generation or benchmarking.

In earlier work, we developed Mimesis [1], a synthetic

trace generator for namespace metadata traces. However,

it was too CPU-intensive to issue operations at real-time

and as such is inapplicable for benchmarking real sys-

tems (though its synthetic traces could be used in trace-

based evaluations). In addition, its model does not repro-

duce file popularity.

6 Conclusions

We presented MimesisBench, a metadata-intensive

storage benchmark suitable for Big Data workloads.

MimesisBench consists of a workload-generating soft-

ware and a workload from a Yahoo Big Data cluster.

MimesisBench is extensible and more workloads can

be added in the future. It is based on a novel model that

allows it to generate type-aware workloads, in which spe-

cific type of file behavior can be isolated or modified for

‘what-if’ and sensitivity analysis. In addition, it supports

multi-dimensional workload scaling.

MimesisBench is implemented on top of the Apache

Hadoop framework, which allows it to be used in any

storage system that is compatible with Hadoop. We have

released the benchmark and workload as open source.

A study of the performance and scalability of HDFS

was presented to show the usefulness of metadata-

intensive benchmarking using MimesisBench.
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Abstract
Traditional data center monitoring systems focus on col-
lecting basic metrics such as CPU and memory usage, in
a centralized location, giving administrators a summary
of global system health via a database of observations.
Conversely, emerging research systems are focusing on
scalable, distributed monitoring capable of quickly de-
tecting and alerting administrators to anomalies. This
paper outlines VStore, a system that seeks to combine
fast online anomaly detection with offline storage and
analysis of monitoring data. VStore can be used as a
historical reference to help guide administrators towards
quickly classifying and fixing anomalous behavior once
a problem has been detected. We demonstrate this idea
with a distributed big streaming data application, and ex-
plore three common fault scenarios in this application.
We show that each scenario exhibits a slightly different
monitoring history, which may be undetectable by online
algorithms that are resource-constrained. We also offer
a discussion of how historical data captured by VStore
can be combined with online monitoring tools to improve
troubleshooting efforts in the data center.

1 Introduction

Today’s data center applications are increasingly con-
cerned with fast and efficient processing of huge amounts
of data. Web companies use data analytics to track and
analyze user actions and provide real-time business deci-
sions to improve user experience. Applications that store
and process such vast amounts of data are no longer com-
posed of single codes running on a few machines, but
rather a complex set of many interconnected distributed
systems, often across hundreds of machines in a data cen-
ter. With cost savings and flexibility afforded by services
like Amazon’s EC2 and Elastic MapReduce [1, 2], these
applications are now being deployed in virtualized envi-
ronments as well.

As data scale increases and the push towards real-time
data analytics continues, efficient monitoring and trou-
bleshooting of these systems has become more impor-
tant. Each component of a system may have different
performance characteristics and failure scenarios. In tra-
ditional data centers, the scale of machines required to
process data fast enough means hardware failures are
common [10]. In cloud environments, performance can
often be erratic due to virtualized resource contention
with other cloud tenants [9]. To combat these issues,
monitoring is often used as a tool for administrators to
detect, diagnose, and fix failures quickly.

This paper outlines a method for combining fast and
scalable monitoring of distributed applications with a
scalable database backend for offline storage and anal-
ysis of monitoring data. Traditional monitoring appli-
cations use polling interfaces and centralized collection,
providing a snapshot of overall system health via metrics
collected over some period of time. However, these sys-
tems can have scalability issues, and lack fast anomaly
detection required for real-time streaming data applica-
tions that are deeply ingrained in business logic. In
our previous work, VScope [17], we developed a sys-
tem that scales to thousands of machines and allows dy-
namic, real-time monitoring using online analytics for
fast anomaly detection. In this paper we outline an ex-
tension to VScope, which we call VStore, that enables
offline archiving of monitoring data gathered by VScope
for historical analysis. This approach allows for online
algorithms to be deployed dynamically to quickly detect
problems, and to compare current observations to a rich
set of historical data for targeted debugging.

The remainder of this paper is organized as follows:
section 2 discusses problems with current solutions; sec-
tion 3 outlines our system design; section 4 explores use
cases from three common anomaly scenarios in a dis-
tributed weblog application, and discusses how VStore
can aid troubleshooting efforts; and in section 5 we con-
clude and discuss future work.
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2 Problem Description

Traditional data center monitoring systems such as such
as Ganglia [5], Nagios [6], and OpenTSDB [8] provide
for basic collection of simple metrics like CPU, memory,
and network utilization from machines in a datacenter.
These metrics offer a summary of global system health,
but sometimes this view can be limited. In the case of
Ganglia, for instance, a round-robin database limits the
amount of data stored in a centralized place. OpenTSDB
provides a scalable data storage backend, but still relies
on simple polling of metrics. Although Nagios supports
alerting, methods are typically based on heuristics such
as pre-defined thresholds for each monitored metric.

Conversely, emerging methods for monitoring systems
in the research literature such as Monalytics [15] and VS-
cope [17] use a more targeted approach by aggregating
data over a very large scale of machines, and performing
online analysis for rapid detection of anomalies. These
systems provide an opportunity to dynamically adjust the
monitoring and analysis functions within the datacenter,
but lack support for a rich history of monitoring data to
compare against.

Each of these monitoring systems provides an invalu-
able set of information to data center administrators.
System-wide monitoring applications provide a global
overview of application and system health over longer
time windows, whereas online algorithms provide ex-
tremely fast detection of anomalies and targeted debug-
ging when problems arise. However, we lack a coherent
bridge between these two paradigms. An administrator
working on troubleshooting an issue in a complex dis-
tributed system would like to not only know when an
anomaly is detected, but what type of anomaly the ap-
plication is experiencing. Consider a distributed system
like HBase, which is composed of other complex com-
ponents (namely Hadoop and ZooKeeper). As noted in
[14, 4], a number of different fault types can lead to ir-
regular behavior in an HBase cluster. These range from
a failing disk causing excessive I/O wait times at HDFS
nodes, imbalanced key spaces causing ”hot spots” at re-
gion servers, or a failing NIC causing network requests
to be delayed. Each scenario may exhibit subtly differ-
ent anomalies at each tier, making classification difficult
if data has been aggregated or summarized.

Bridging this gap will allow for faster detection and
correction of faults in large, distributed systems. Anoma-
lous behavior can first be detected with an online algo-
rithm, then classified by gathering enough data from a
set of monitored nodes and comparing it with historical
data. This comparison guides the administrator down the
right path for further debugging.

3 System Overview

We are working on integrating both offline storage and
analysis of monitoring data with fast, scalable, online
monitoring. We have built an extension to VScope
[17] which adds a scalable database backend built on
OpenTSDB [8], which we call VStore. This database al-
lows us to bridge the gap between VScope’s targeted, on-
line analytics over short time windows, and the extended
view of long-term interactions between application tiers
provided by a database. An administrator can use VS-
tore to draw upon a rich history of monitoring data to
fine-tune online algorithms, and uncover anomalies that
otherwise might be missed by VScope.

VStore integrates with VScope by hooking in to the
online monitoring and analysis performed by Distributed
Processing Graphs (DPG). First outlined in our previous
works [19, 17], DPGs are essentially scalable overlay
networks capable of being dynamically deployed and re-
configured with customized monitoring functions. For
example, a ”watch” DPG may be deployed across all
nodes to coarsely track low level metrics such as CPU
and memory utilization, while a ”query” DPG might
deploy on a subset of nodes to perform fine-grained
application-level monitoring. To scale monitoring func-
tions, DPGs support arbitrary aggregations, such as trees
that aggregate values observed from child nodes in the
monitoring graph. Additionally, VScope can run fast
analytics on data aggregated in a DPG, which can be
used to detect anomalies over a short time window. For
instance, a DPG may gather 5 minutes worth of data
and perform an entropy calculation (see [16, 20, 21]) to
quickly identify CPU spikes or other anomalies, and alert
an administrator of an impending fault.

To complement this, VStore can be deployed at the
root of a DPG, where values are aggregated and ana-
lyzed. The root uses VStore to archive each individual
observation before aggregation. Whereas an online pro-
cess will throw away data after aggregating and analyz-
ing over a short time window, VStore saves this history
completely for later analysis. As a simple example, con-
sider a DPG that aggregates CPU utilization at a number
of nodes. The root of the DPG collects observations (per-
haps once per second) from each node and buckets them
over a sliding time window to perform an online analy-
sis. At the same time, when each observation is received
at the root, it sends it to VStore for archiving.

VStore acts as an OpenTSDB client, and provides a
communications layer between custom monitoring code
running inside DPGs and a scalable key-value store using
HBase, the backbone of OpenTSDB. Monitoring code
executing within a DPG that uses VStore can store any
type of numeric metric that is being collected. To scale
archiving at different points in the DPG, VStore can be

2
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(a) CPU usage at HBase Region Servers (b) CPU usage at HDFS nodes (c) Network traffic at HDFS nodes

Figure 1: A periodic, high-CPU background task running at the HBase tier. The top graph shows a normal workload, while the bottom shows a
periodic process starting and stopping every 5 minutes. A periodic high-CPU load at the HBase tier has relatively low impact on HDFS, making
this type of anomaly more difficult to detect using a global online algorithm.

integrated at multiple levels. Each aggregation point in a
DPG can thus use VStore to archive observations before
either forwarding them or collapsing into a single value.
Because it is backed by HBase, VStore can scale well to
concurrent clients archiving a large amount of monitored
data. This is critical to integrating with VScope’s goal of
providing low-overhead and scalable troubleshooting for
over 1000 nodes.

4 Use Cases

To demonstrate how collection and offline analysis can
be combined with online monitoring systems, we ex-
perimented with three typical scenarios seen in modern,
multi-tiered data center applications: a periodic back-
ground process that interferes with normal processing, a
misconfiguration in the software application itself, and a
fault or misconfiguration at the network level. Our ex-
periments are designed around a big data application,
similar to that of [17], to collect and analyze web logs
for micro-marketing purposes. We constructed a dis-
tributed log collection workload using Hadoop, HBase,
and Apache Flume [3, 18].

Our experimental testbed is deployed on a local re-
search cloud at Georgia Tech using the OpenStack plat-
form [7], with virtual machines running Ubuntu Linux
12.10. We run an HDFS tier containing a Hadoop Mas-
ter server, plus 10 VMs running data and task tracker
processes. The HBase tier contains a Master server, plus
10 VMs acting as region servers, and is not colocated
with HDFS nodes. 3 VMs are dedicated to a ZooKeeper
quorum. Finally, 70 VMs serve as workload generators
and aggregators for Flume. A workload generator runs a
simple log generation process simulating a web server
processing requests. These log records are sent via a
Flume pipeline to sinks that connect directly to HBase
to archive log records.

Each of the graphs in our results show two plots: the

top plot shows data collected by VStore under normal
conditions, while the bottom shows data for the same ex-
periment with an anomaly introduced.

4.1 Periodic Processes
A common task for multi-functional servers in a data
center is to periodically perform some short-lived opera-
tion. For example, a cron job may be used to clean up and
archive system logs or application data once per day. In
the case of our weblog application, HBase may be manu-
ally configured to perform major compactions on a peri-
odic basis. Such tasks can be resource-intensive, and are
typically scheduled at off-peak hours so as not to disturb
other running applications. However, a misconfiguration
or other fault may lead to such processes running at in-
correct times.

Unfortunately, online monitoring algorithms may not
detect and easily classify such cycles. As mentioned be-
fore, an online algorithm might only observe a short pe-
riod of time during which a periodic process is not run-
ning. Furthermore, the observed window may not fully
classify periodic behavior, for instance if only the begin-
ning or end of a spike is observed.

To simulate a periodic process, we used the Linux
”stress” utility to impose a load on certain servers, and
measured the impact on metrics collected during this
time. Each such stress test process runs every 5 minutes,
for a duration of 2 minutes. We run 2 concurrent ”stress”
processes for a single resource, such as CPU or disk I/O.

4.1.1 CPU-intensive Periods

The first experiment simulates a periodic, high-CPU
workload at the HBase tier. This is potentially common
for major compactions which require frequent commu-
nication with HDFS nodes. Figure 1a shows the CPU
utilization for each HBase region server. Each period of
high-CPU activity is clearly identified, but only over a

3
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(a) CPU usage at HDFS nodes (b) Network traffic at HDFS nodes (c) CPU usage at HBase Region Servers

(d) Avg write reqs at HBase Region Servers (e) CPU usage at Workload Generators (f) Network traffic at Workload Generators

Figure 2: A periodic, I/O intensive background task running on HDFS nodes. High disk I/O on HDFS nodes tends to starve many resources, and
leads to anomalous behavior at all tiers

brief period of time. To properly correlate this behav-
ior, an online algorithm would need an extended time
window to distinguish between periodic spikes (such as
those under normal load), and a deterministic process.
Additionally, we can see from figures 1b and 1c that CPU
and network utilization at other tiers remains relatively
unaffected. Thus, an online algorithm that aggregates
monitoring data across tiers may not efficiently detect the
problem at the HBase tier alone.

4.1.2 Intense Disk I/O

We also experimented with periods of high disk I/O at the
Hadoop tier. This may be triggered by an external pro-
cess (such as a periodic MapReduce Job), or an internal
process (such as log cleanup). Additionally, as suggested
in [13], anomalies in disk I/O could be caused by ”limp-
ware,” failing or degraded hardware that causes excessive
I/O latencies or a higher amount of disk reads compared
to normal operation. For this test, we find that high disk
I/O on HDFS nodes has a more drastic effect across tiers
on different metrics.

Figures 2a and 2b compare CPU utilization and net-
work flows at HDFS nodes. A spike in CPU utilization
is visible during the period of high disk usage, but is diffi-
cult to distinguish from HDFS’s normal CPU workload.
However, we see a significant drop in packets sent and
received during this time, indicating other tiers are being
affected by the spike. Figures 2c and 2d show a signif-

icant change in CPU utilization and requests fielded by
each region server, respectively, while figures 2e and 2f
show a corresponding change at workload servers them-
selves. An online algorithm would need to observe both
an extended time window and multiple metrics across
tiers to detect this type of anomaly.

4.2 Software Misconfigurations

Another typical scenario involves a misconfigured or
buggy software application which leads to load imbal-
ance, crashes, or other anomalous behavior. In the case
of HBase, one source of load imbalance stems from re-
gion splitting. By default, a client request is sent to the
region server hosting the region that falls within a key
range for the requested row. Tables are ”split” based on
contiguous ranges of row keys. Although HBase will do
this automatically, it is sometimes advantageous to pre-
split tables to maintain a uniform distribution of requests
across the cluster. For instance, if the row key is based
on a hash function, each region server can be assigned
portions of the hash space for balanced load distribution.

To emulate a misconfiguration under this scenario,
we constructed a pre-split table in HBase using the
HexStringSplit algorithm, which assumes that row
keys are a uniformly distributed hexadecimal string.
Flume agents write log records to HBase using a random
UUID as the row key, providing even row key distribu-
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(a) CPU Utilization at HBase Region Servers (b) Avg write reqs at HBase Region Servers (c) Network traffic at HDFS nodes

Figure 3: A software misconfiguration at the Flume tier. The HBase table is pre-split using HexStringSplit, and agents use a random hexadecimal
string for row keys. Misconfigured agents use a timestamp instead, causing unbalanced regions.

tion. An anomalous configuration uses a timestamp in-
stead, leading to load imbalance as keys increase mono-
tonically.

Figures 3a and 3b compare CPU utilization and write
requests at HBase region servers, respectively. These fig-
ures show a clear imbalance among region server load
when timestamps are used as the row key. From fig-
ure 3c, we also see how this can have a drastic effect
on HDFS communications. This type of anomaly is dis-
tinct from periodic process interruptions, but could be
missed by an algorithm that aggregates observations (for
instance, calculating an average). However, the individ-
ual data captured by VStore clearly distinguishes the two
scenarios.

4.3 Network Faults

A faulty or misconfigured network interface is a com-
mon problem in data centers. Such a fault may stem
from a variety of issues, such as a physical NIC incor-
rectly negotiating a link speed with a switch (see [4]), or
a software-defined networking layer misconfiguring the
bandwidth provisioned to a VM. As noted in [13], net-
work hardware can also suffer ”limpware” anomalies - a
faulty adapter may drop or corrupt packets periodically,
forcing error correction mechanisms to be used and re-
ducing overall bandwidth on the link. Sustained network
bandwidth is important for a variety of applications. For
instance, many web applications run realtime analytics
on incoming requests at a high speed (such as calculat-
ing ”trending” topics). Faults at the network layer can
thus directly affect an application’s business logic.

To simulate this, we configured 60 flume agents to
generate an 8KB JSON object 5000 times per second
(simulating web server requests). These requests are for-
warded to 10 aggregator Flume agents, which count the
number of records processed. Each server has a 1Gbps
LAN connection; we simulate an anomaly by limiting
bandwidth to 100Mbps at the 10 aggregation nodes.

(a) Network traffic at Flume agents

(b) Avg rate of records processed by Flume ag-
gregation agents

Figure 4: Simulating a network misconfiguration. A real-time stream-
ing aggregation application counts requests collected from a front-end
tier. A VLAN misconfiguration or other network fault may limit band-
width to a critical set of nodes, leading to reduced throughput through-
out the application.

Figure 4a shows the network traffic for each server.
With a faulty network link, there is a precipitous drop-off
in network traffic across the cluster, as other agents be-
come limited in the amount of work they can send to the
aggregation tier. This situation also highlights how mon-
itoring application metrics can provide useful anomaly
classification information. Figure 4b shows the rate of
records processed per second at each aggregation Flume
agent. When bandwidth is scarce, agents are severely
limited in the amount of records they can process.

5
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4.4 Discussion

The data collected in our experiments indicate that there
are uses for combined online and offline monitoring in
a number of real-world debugging scenarios. Ideally,
an operator troubleshooting a problem should be able to
leverage both current and past data efficiently to rapidly
identify and fix problems when the occur. Some oppor-
tunities for VStore to assist in these efforts include:

• Targeted debugging with full history: A strength
of VScope is the ability to guide troubleshooting
and monitoring efforts to the right servers when
an anomaly is detected. VStore can integrate with
VScope to offer automatic snapshots of historical
data to aid in the troubleshooting process. A base-
line watch DPG runs continuously in the datacenter
and uses VStore to capture basic performance met-
rics, such as CPU and network utilization. When
a problem occurs, the operator may use a combi-
nation of VScope’s watch, scope, and query opera-
tions to locate the affected machines (refer to sec-
tion 4.1 of [17] for an example). A new watch DPG
is deployed on these machines to capture data about
the current scenario. The VShell running this new
watch presents the operator with current data, and
automatically pulls snapshots of historical data from
OpenTSDB for comparison - for instance data from
the same time period for the past 10 days. The end
result is that the operator has quickly gained knowl-
edge about how a current problem relates to past
events, which can help guide debugging efforts.

• Detecting ”limplock”: The authors of [13] suggest
that efficient detection through monitoring is one
method of mitigating ”limplock” - a situation where
failing or degraded hardware causes systems to slow
considerably, but does not trigger normal fail-stop
mechanisms. VStore and VScope could be used
as tools to detect limplock by providing a histori-
cal reference to help distinguish between overload-
induced slowdown and failing hardware. VScope
DPGs can be used to target monitoring on nodes and
metrics known to cause limplock (such as HDFS
write performance at Hadoop reducers). The online
monitoring is then compared with historical data
collected by VStore to determine if the system is
limplocked, or simply experiencing a higher-than-
usual load.

• Classification of anomalies: The rich set of histor-
ical data collected by VStore could be analyzed to
help automatically classify anomalies, for instance
using support vector machines [12] or statistical ap-
proaches like that of [11]. When combined with the

targeted debugging approach outlined above, VS-
cope could then query this data to attempt to auto-
matically identify the type of anomaly currently tak-
ing place. If the current fault scenario can be clas-
sified using historical data, this helps the operator
identify a debugging approach much more rapidly.

5 Conclusion and Future Work

In this paper we described VStore, an extension to our
previous work VScope, which aims to bridge the gap be-
tween fast and flexible online monitoring systems with
large-scale data collection for historical analysis. Our
experiments show that VStore’s capabilities in archiv-
ing fine-grained monitoring data across a large cluster
of systems can help pinpoint hard-to-find anomalies that
an online anomaly detection algorithm might miss. We
have evaluated three common fault scenarios, and dis-
cussed how VStore’s data archiving capabilities can be
combined with VScope’s online monitoring to comple-
ment debugging efforts for real-world scenarios.

A main goal of our future work involves a more com-
plete integration of VStore with VScope’s DPGs and on-
line algorithms, to allow historical data to be captured
dynamically at different points in the graph. This in-
tegration will allow us to begin exploring some of the
use cases for fully integrated online and offline moni-
toring outlined in the discussion in section 4.4. In addi-
tion to monitoring and detecting application-level perfor-
mance anomalies, we are also exploring ways to use VS-
tore to detect infrastructure faults in cloud systems, such
as a misconfigured SDN causing performance anomalies
across cloud tenant applications.

A thorough performance evaluation of VStore is also
needed. Results from [17] indicate that VScope can scale
well to thousands of nodes, and we believe VStore also
scales well as it is backed by HBase. Our experience
with the experiments in this paper suggest the overhead
of our system is small, but a detailed evaluation of VS-
tore’s scalability and perturbation when run along side
real-time streaming data applications is required to quan-
tify this.
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Abstract— We demonstrate an enterprise Dynamic Thresholding 
System for data-agnostic management of monitoring flows. The 
dynamic thresholding based on data historical behavior enables 
adaptive and more accurate control of business environments 
compared to static thresholding. We manifest the main blocks of 
a complex analytical engine that is implemented in VMware 
vCenter Operations Manager as a principal foundation of the 
company’s data-driven anomaly detection.  

Keywords - monitoring; time series data; dynamic thresholding; 
data categorization; parametric and non-parametric statistics. 

I. INTRODUCTION 
Modern enterprise IT management becomes increasingly 
smart to proactively respond to the performance issues that 
complex infrastructures necessarily encounter. The manage-
ment based on expert knowledge utilization is no longer 
efficient. Monitoring and data measuring of the processes go-
verning the entire IT is a fundamental approach to gain 
insights from those sophisticated environments with compli-
cated interrelation between the constituent components. The 
history of this approach goes back to statistical process control 
[1]. Since contemporary business infrastructures are highly dy-
namic (and out of classical Gaussian normalcy domain [2]), 
static thresholding of processes and performance indicators 
become inadequate. Hence problem diagnostics dictates a soft 
control of IT environments ([3-14]). In this paper, we follow a 
path where anomaly detection is based on prediction of upper 
and lower dynamic thresholds (normalcy range) of categorized 
data that vary over time [15-19]. 

VMware’s vCenter Operations Manager (vC Ops) [20] is 
an industry-leading enterprise solution in area of IT 
management that encodes the bunker of monitoring data from 
customer IT system into a real knowledge for anomaly 
detection and problem root cause identification, as well as 
capacity planning for modern virtualized and cloud computing 
ecosystems. In this paper we introduce an enterprise data-
agnostic dynamic thresholding system (EDTS) that enables vC 
Ops to act as an atomistic anomaly detection and forecasting 
of monitoring flows. The data-agnosticism (indicates that data 
analysis and determination of its normalcy behavior is 
performed without knowing the essence of the underlying 
physical and business service processes) enables an universal 
platform for processing of very large data sets, at the same 
time, it can lead to a deadlock if the statistical methods are not 
sufficiently powerful to handle diversity of monitored data 
types. Our analysis of customer data over several years show 
that deficiency of data-agnosticism can be compensated by 
appropriate data categorization, since a specific data category 
statistically characterizes the underlying process and 

empowers an efficient construction of relevant normalcy 
bounds (dominant behavior) thus reliably controlling the flow. 
This concept leads to an EDTS based on data categorization 
realized in vC Ops. A simplified and specific realization of 
EDTS adjusted for IT environments is presented in Flowchart 
1. Although selection of the categories is adapted to some IT 
customer preferences, the overall approach is applicable 
widely (also out of the IT interests) with appropriate 
modification of categories and their definition parameters.  

Experimental results justify EDTS’s potential to 
effectively handle large infrastructures in terms of both 
accuracy and complexity. All ideas described in the sequel are 
filed as a patent [21]. 

 

 
Flowchart 1. A simplified principal scheme of EDTS. 

 
  EDTS sequentially utilizes different data categorization 
detectors that allow choosing the right algorithm for 
determination of data dynamic thresholds (DT’s). The 
categorization order or the hierarchy is important as different 
orders of iterative checking and identification will lead to 
different categories with differently specified normalcy states. 
The system presented in Flowchart 1 categorizes data as 
Multinomial, Transient, Semi-constant, Trendy, Sparse, High-
Variability or Low-Variability. In each of those cases the 
normalcy determination method is different. In all catego-
rization scenarios the data additionally is verified against 
periodicity for efficient construction of its normalcy bounds. 
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Moreover, in each of the majority of categorization scenarios 
data is processed by category-specific change detection 
procedures.  The functional meanings of the above mentioned 
detectors are as follows: 

Multinomial Data Detector searches for Multinomial 
data which takes only integer values after checking errors 
introduced by the monitoring apparatus. If data is identified as 
multinomial then DT determination module calculates specific 
for this category DT’s otherwise data transmits to the next 
detector. 

Transient Data Detector looks for Transient Data which 
can be characterized as multimodal data. If data is identified as 
transient then DT calculation module performs DT calculation 
separately for each mode.  

Semi-Constant Data Detector checks the data against its 
“almost constant” behavior. If data is not semi-constant but its 
latest portion satisfies the category specifications after a global 
change, then DT construction module performs DT calculation 
for the latter. Piecewise constant data is from this category. 

Trendy Data Detector performs trend identification. If 
data is trendy then detector classifies trend as linear or non-
linear and DT determination module executes a special DT 
calculation algorithm. If data is not trendy but its latest portion 
can be selected as trendy (change occurred), then DT 
determination module performs calculations for that portion.  

Sparse Data Category Detector explores data gaps, their 
amount, and distribution in time. Data goes to the next 
detector for further analysis if overall gap duration is 
negligible. Data is classified as Sparse if gaps have uniform 
distribution in time. If gaps have some accumulation and 
remaining data is acceptable for further analysis then the 
selected portion goes to the next detector.    

Variability Detector categorizes data either High-
Variability or Low-Variability with specific DT calculation 
procedures. Before final categorization data passes through a 
change detection procedure for selection of the latest 
statistically stable portion for final DT determination.   

II. DATA CATEGORIZATION 
Multinomial Data Detector. This detector calculates some 
statistical parameters for comparison with the predefined 
measures. If the check is positive then data is classified as 
Multinomial Data. It is assumed that Multinomial data takes 
only integer values. Let    be the frequency of occurrences of 
the integer    

   
  
             

where   is the total number of integer values and   is the 
number of different integer values. Data is multinomial if it 
takes less than   different integer values and at least   of them 
have frequencies greater than parameter   .  

Some integer values with small cumulative percentages 
can be discarded. This can be done by sorting the percentages 
   in descending order and by defining the cumulative sum     

                        . 
Then, if             ,         the integer values 
             can be discarded.  

Transient Data Detector. Transient Data is categorized by 
multimodality, modal inertia, and randomness of modes 
appearing along the time axis. Transient Data must have at 
least two modes. Modal inertia means that data points in each 
mode must have some inertia and they can’t oscillate from one 
mode to the other “quickly”. Actually the inertia can be 
associated with the time duration that data points remain in the 
selected mode. Categorization is performed by calculation of 
some transition probabilities. We omit the relevant details 
from [21]. A similar technique is applied in Sparse Data 
Detector (see below).   

Figure 1 shows an example of a Transient Data. 

 
Figure 1. Example of a Transient Data. 

Semi-Constant Data Detector. Data is categorized as Semi-
Constant if  

            
where     stands for the interquartile range of data. If data is 
not from the required category but the latest enough long 
portion satisfies the condition then it is selected for further 
dynamic threshold determination as Semi-Constant Data. 

Figure 2 shows an example of Semi-Constant Data. 

 
Figure 2. Example of Semi-Constant Data. 

Trendy Data Detector. Different classical methods are 
known for trend determination. Mann-Kendall [22,23] test is 
appropriate for our purposes although other known tests are 
also possible to apply. The test categorizes data either Trendy 
or Non-Trendy. In case of Trendy Data further analysis 
categorizes the trend into linear and non-linear. Linearity can 
be checked by the well-known linear regression. If data is 
Linear-Trendy then DT determination module performs a 
specific DT calculation. If data is not Linear-Trendy but the 
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latest rather long portion of data has linear trend, then we 
select it for further DT determination. 
Sparse Data Detector explores data in terms of gaps. If the 
total percentage of gaps is higher than some limit and they 
have non-uniform distribution in time (it means that gaps have 
some localization in time) then gap clean up (data selection) 
procedure will return a regular data for further categorization. 
If gaps in data have uniform distribution in time then data 
belongs to a Sparse Data category. If gaps in data have 
extremely high percentage that further analysis is impossible. 
Data categorization is based on the following measures: 1) 
percentage of gaps, 2) transition probabilities for gap-to-gap, 
data-to-data, gap-to-data and data-to-gap. Probability cal-
culation is starting with data monitoring time (  ) estimation 
              ,            . Time intervals with  
          are normal data intervals while           are 
gaps.   is a parameter for gap definition. Let     be duration 
(in milliseconds, seconds, minutes, etc., but in the same 
measures as the monitoring time) of the  -th gapless data 
portion. For data without gaps we have only one such portion 
and         . The sum    ∑   

  
     is the duration of 

gapless data where    is the count of gapless data portions. 
Let    be duration (in the same measure as   ) of the  -th 
gap. The sum   ∑   

  
    is the duration of all gaps in data 

and    is the count of gap portions. Obviously        
  . By   we define the percentage of gaps in data     

    
       . 

Now, by                 we define the probabilities of data-
to-data, data-to-gap, gap-to-gap and gap-to-data transitions, 
respectively  

        
 
  

 ,           ,  

        
     ,             

Data with gaps non-uniformly distributed in time can be 
specified by the condition 

{
    
     
     

                                                                                                                      

where the following values of parameters can be reasonably 
chosen        and         . The main reason for 
smallness of     and     is the smallness of the numbers    
and    while   and   are as big as   is assumed. Data from 
this category can be further processed via data selection 
procedure that will eliminate (if possible) concentration of 
gaps. This can be done as follows: calculate the total 
percentage of gaps in the series of data {  }   

     
                           and select the portion for which 
    . The selected data is ready for further analysis by 
sequential detectors.   

Data with gaps uniformly distributed in time (Sparse 
Data) can be specified by the condition (      ) 

{
        

     
     

 

The second and third conditions mean that gaps are uniform in 
time and technical cleanup is impossible. 

Data is useless for further analysis if             .   
Figure 3 shows an example of Sparse Data with the 

corresponding measures for categorization. 

 
Figure 3. Sparse Data. Here                       

                            . 
Variability Detector calculates variability indicators and 
categorize data into High-Variability or Low-Variability. 
Based on the absolute jumps   

  of data points  
  

            
the following measure   of variability is considered 

      {  
 }   

    
    {  }   

               {  }   
        

Then, if     then data is Low-Variability, otherwise High-
Variability. Figure 4 shows an example of Low-Variability 
data with    . 

 
Figure 4. Low-Variability data with     . 

III. CATEGORY-SPECIFIC DT DETERMINATION 
As we mentioned above, each data category preliminary 
passes through some period determination procedure which 
additionally categorizes data into Periodic and Non-Periodic.  
Details of this procedure are presented in [21]. We describe 
only a high level concept. The period determination is seeking 
similar patterns in the historical behavior of time series for 
setting the DT’s based on the discovered cyclical information. 
The algorithm consists of two main steps:  

1) Data Footprint calculation which provides with two-
dimensional distribution of time series based on some 
predefined frame. First, we calculate percentages of data in 
each cell of the frame and then we get the corresponding 
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distribution by taking cumulative sums of those percentages 
for each column of the frame. More specifically, the range of 
data (or the range of preliminary smoothed data) is divided 
into non-uniform parts by quantiles    with          , 
           , with some   and   . Evidently, the 
grid lines are dense where data is dense. For division of data 
into parts along the time axis two parameters             and 
                  are used.             is a basic 
parameter that defines the minimal length of possible cycle 
that can be found. Moreover, any cycle can be a factor only of 
the length of the            . Usual setting is           
       Parameter                   shows the number of 
subintervals (columns in the frame) that             must be 
divided. Actually this parameter is the measure of resolution. 
The bigger the value of                 , the more sensitive 
is the footprint of the historical data.  

2) Pattern recognition procedure which provides with 
Cyclochart of data by comparing different columns of the 
Footprint in terms of similarity. Figure 5 shows an example of 
a Cyclochart where y-axis shows the measure of confidence 
that data has some  -days cycle.  

 
Figure 5. Example of a Cyclochart. 

Further investigation of the Cyclochart categorizes data into 
Periodic or Non-Periodic. If data classifies as Periodic then 
the method provides with information on cycle length and 
outputs the frame columns in terms of similarity that are 
finally employed to quantify the time-based DT values.  
Figure 6 shows an example of a Periodic Data (blue curve) 
with the corresponding upper (red curve) and lower (green 
curve) DT’s. 

 
Figure 6. DT’s of a Periodic Data.  

Now we describe several category-specific DT 
construction mechanisms:   
DT’s of Multinomial Data. As mentioned, period 
determination investigates the cyclicality of data and classifies 
it into periodic and non-periodic categories. The general 
scheme for period determination in this case is specialized 
with the following modification while constructing the 
Footprint of data: instead of the percentages of data in every 
cell we are taking the values of    (see categorization of the 
Multinomial Data) in every column of the frame. If data is 
claimed Periodic then the normalcy set for similar columns 
are calculated as follows. Data points in similar columns are 
collected together and corresponding new values of the 
numbers    are calculated. If       ,      then the 
values            constitute the most probable set (normalcy 
set) of similar columns. If Multinomial Data is determined as 
Non-Periodic then the numbers    are calculated for all data 
points and normalcy set is determined similarly.  
DT’s of Semi-Constant Data.  For Semi-constant data every 
data point greater than       (quantile) or less than        is an 
outlier. If the percentage of outliers is greater than    
(     ), then we check for periodicity in outlier data by 
the procedure described above. For periodicity analysis data 
points equal to the median are excluded from the analysis. 
DT calculation for Non-Periodic Semi-Constant Data is 
performed separately for upper (for data points that are greater 
or equal to median) and lower (for data points that are less 
than or equal to median) parts of data. Since the process of 
obtaining of both upper and lower bounds are similar, we’ll 
explain the method only for the upper DT. The main principle 
is maximization of an objective function 

           
    

 

where     is a sensitivity parameter, for example      ; 
  is the percentage of data points within the median of data 
and any upper line higher than the median (see Figure 7);  

                                           
and   is the square of the area within data points and data 
median.  
 

 
Figure 7. Auxiliary drawing for the objective function. 
We consider two different approaches for determination of 

DT’s via maximization of the objective function: data range 
and data variability based. In the data-range-based analysis, 
we divide the range within median and maximum of data 
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(while determining the upper bound) into   parts and for each 
level calculate the values             of the objective 
function. Then, the level that corresponds to         gives 
the appropriate upper bound. Instead of dividing the range into 
equal parts it is reasonable also to divide the range of data by 
corresponding quantiles that will give unequal division 
according to the density of data points along the range. Here 
preliminary abnormality cleaning of data can be performed. 
For this, removal of data points with abnormal concentration 
in the given time window is performed. Abnormal 
concentration can be detected by the following procedure. For 
the given time window (for example     of data length), we 
calculate the percentage of data points with values higher than 
    -quantile. Then by moving this window along data, we 
calculate the corresponding percentages. Any percentage 
higher than the upper whisker indicates abnormal 
concentration and must be discarded from further calculation. 
We repeat the same abnormality cleaning procedure for data 
points lower than     -quantile.  

In the data-variability-based approach, we calculate the 
variability of data points    against median of data   

  (  
   ∑       

 

   
)
   

 

and consider the following set of upper lines  
[      ]            

For each level, we calculate the corresponding values    of the 
objective function as described above and, we take the level 
that corresponds to          as the appropriate upper DT. The 
following values can be used for    

                            
In case of periodic data the same procedure is applicable for 
each periodic column of the Footprint of data.  
DT’s of Transient Data can be obtained by similar procedure 
for each mode separately based on maximization of the 
objective function as we do it for      below.   
DT’s of Linear-Trendy Data. In case of Linear-Trendy Data, 
we perform decomposition of the original data       into the 
following form  

                
and perform DT calculation for     based on the following  
objective function 

             
     

 
    

 

where   is the square of the area limited by            and 
some lower and upper lines (see Figure 8),  

                   
and    is the fraction of data within upper and lower lines and 
  is a user defined parameter. Then we calculate standard 
deviation  of      and consider the following set of lower and 
upper lines 

[                   ]           
Next we calculate    and take the level corresponding to 
        . We use the following values for    

                            
 

 
Figure 8. Auxiliary drawing for definition of the objective 

function. 
 
Figures 9 shows an example of Linear-Trendy Data with the 
corresponding DT’s. 

 
Figure 9. Linear-Trendy Data with the corresponding DT’s.  

DT’s of Sparse Data. For period determination procedure, we 
put                   [            

                     
] . If data is 

classified as Periodic then DT calculation is performed 
according to the found cycles otherwise DT’s can be 
determined based on the utilization of the objective function. 
DT’s of High- and Low-Variability Data. First data is 
checked for periodicity by setting different preliminary para-
meters while calculating the Footprint of data – less sensitive 
for High-Variability data, then DT determination is performed 
based on cycles or objective function utilization.  
Figure 10 shows an example of Low-Variability Data with the 
corresponding normalcy bounds. 

 
Figure 10. Data from Figure 4 with upper and lower DT’s. 
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IV. SYSTEM VALIDATION  
The results obtained for a specific customer data by EDTS are 
presented below. Note that Figures 6, 9, and 10 are also real 
enterprise examples. We selected some 3215 monitoring 
metrics with one month length and applied the categorization 
procedures. Table 1 shows the distribution along different data 
categories and Table 2 indicates the count of periodic and non-
periodic data. In particular, for semi-constant data we observe 
the following picture. From 532 metrics (see Table 1) 267 
have percentage of outliers less than 15% and they are claimed 
as non-periodic without any further checking. The remaining 
235 metrics are checked for periodicity and in 212 cases 
periods are found. It is worth noting that results obtained for 
the specific customer data can’t be in any manner generalized 
to other cases. The graphs below demonstrate several 
snapshots from the product with monitored time series data 
and their adaptively updated DT’s by EDTS. We observe 
reliably detected DT’s, data changes, periods, and relevant 
out-of-normal areas (yellow) reported as alarms. 

Table 1. Distribution along the categories. 
Data Category Count (Percentage) 

of Metrics in the  
Category 

Multinomial 724 (22.5%) 
Trendy 165 (5.1%) 
Semi-Constant 532 (16.5%) 
Transient 102 (3.2%) 
Sparse 88 (2.7%) 
Low-Variability 826 (25.7%) 
High-variability 669 (20.8%) 
Corrupted 109 (3.4%) 

Table 2. Count of periodic and non-period data. 
Periodic Non-Periodic Corrupted Overall  

1511 1595 109 3512 
 

V. RELATED WORK 
In terms of our application, the performance of EDTS is 
estimated according to users experience on indicative and 
missed alarms, as well as the generated noise level that the 
useful information is embedded in. In this context, our 
categorization techniques allow achieving essentially better 
trade-off between the produced recommendation (alarm) noise 
and its accuracy in problem indication. That  would not be 
possible with classical parametric approaches including 
Fourier transform, discrete Fourier transform [24-28], Prony’s 
method [29,30]) as well as with other common purpose 
enterprise algorithms (including our algorithm of Section III 
that produces DT’s based on data footprint even when cyclical 
patterns are not discovered). Moreover, the categorization in 
terms of those specific classes enables an efficient root cause 
analysis [31,32] based on the abnormality events (DT 
violation alarms) space that our system outputs. Furthermore, 
[19] reports about reliably predicted root causes of suddenly 
occurring influential outages at large enterprise infrastructures. 
This method relies on historically analyzed mutual impact 
factors of out-of-DT events. 

Note that EDTS handles only structured monitoring data. 
For the unstructured data sets (like log files) we have 
developed a graph-based approach [33,34] that extracts the 
dominating correlation pattern between the main event types 
in data as dynamic normalcy structure and applies it to 
identification of “large”/abnormal deviations from that 
structure to determine  performance anomalies.   

Finally, we refer the reader to the papers [35,36] which 
outline the approaches and trends of the area of anomaly 
detection up to the recent days. 
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Abstract
Cloud datacenters are becoming increasingly heteroge-
neous with respect to the hardware on which virtual ma-
chine (VM) instances are hosted. As a result, ostensibly
identical instances in the cloud show significant perfor-
mance variability depending on the physical machines
that host them. In our case study on Amazon’s EC2
public cloud, we observe that the average execution time
of Hadoop MapReduce jobs vary by up to 30% in spite
of using identical VM instances for the Hadoop cluster.
In this paper, we propose and develop U-CHAMPION,
a user-centric middleware that automates job provision-
ing and configuration of the Hadoop MapReduce frame-
work in a public cloud to improve job performance and
reduce the cost of leasing VM instances. It addresses
the unique challenges of hardware heterogeneity-aware
job provisioning in the public cloud through a novel
selective-instance-reacquisition technique. It applies a
collaborative filtering technique based on UV Decompo-
sition for online estimation of ad-hoc job execution time.
We have implemented U-CHAMPION on Amazon EC2
and compared it with a representative automated MapRe-
duce job provisioning system. Experimental results with
the PUMA benchmarks show that U-CHAMPION im-
proves MapReduce job performance and reduces the cost
of leasing VM instances by as much as 21%.

1 Introduction

Today, big data processing frameworks such as Hadoop
MapReduce [1] are increasingly deployed in public
clouds. However, due to the absence of automation tools,
currently end users are forced to make job provisioning
decisions manually. Recent studies [16, 28, 29, 31] have
focused on improving Hadoop job performance through
automated resource allocation and parameter configura-
tion. However, most research has been done on small
private clusters, which tend to be homogeneous with re-
spect to the hardware configuration and performance.

One of the foremost challenges of MapReduce job
provisioning in a public cloud is imposed by the hetero-
geneity of the underlying hardware infrastructure [10,21,
27]. Cloud datacenters usually upgrade their hardware
infrastructure over time, resulting in multiple genera-
tions of hardware with widely varying performance [25].
Such hardware heterogeneity has a significant impact on
Hadoop job completion time [21]. However, the VM in-
stances offered by public cloud providers do not indicate
the performance implications of the heterogenous hard-
ware that hosts them. Furthermore, there is no guaran-
tee that one VM will always be provisioned on the same
type of hardware. Our motivational case study on Ama-
zon EC2 public cloud shows that the average execution
time of Hadoop MapReduce jobs varies by up to 30% de-
spite using identical VM instances for the Hadoop clus-
ter. Hence, there is an urgent need for user-centric ap-
proaches that can address these challenges without re-
quiring explicit control of the cloud environment.

In this paper, we present U-CHAMPION, a user-
centric heterogeneity-aware middleware approach that
automates Hadoop job provisioning and configuration in
a public cloud to improve job performance and reduce
the cost of leasing VM instances. However, there are
several challenges in achieving heterogeneity-aware job
provisioning in a public cloud.

It is challenging to develop accurate performance
models for diverse Hadoop jobs running on a heteroge-
nous cloud environment. Recent studies focused on in-
tensive profiling of routinely executed jobs in the Hadoop
environment in order to estimate their performance for
various input data sizes [28]. However, such an approach
is not feasible for ad-hoc jobs submitted to the system,
which have unpredictable execution characteristics. To
address this challenge, U-CHAMPION performs two-
phase job profiling and performance modeling. In the
offline phase, it applies support vector machine (SVM)
regression modeling to estimate the completion time of
various Hadoop jobs for different input data sizes, re-

1
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source allocations, CPU models, and configuration pa-
rameters. In the online phase, it performs a lightweight
profiling of ad-hoc jobs submitted to the system by using
only a subset of possible configurations. Then, it applies
the UV Decomposition technique to quickly estimate the
job performance for all possible configurations.

U-CHAMPION’s job performance models provide the
foundation for making heterogeneity-aware resource al-
location and configuration decisions for Hadoop jobs.
However, it is significantly challenging to provision
Hadoop jobs with the desired resource configurations in
a public cloud. This is due to the fact that cloud providers
do not allow the end-users to decide where their VM in-
stances should be hosted. In addition, there are impor-
tant cost/performance trade-offs inherent in cloud sys-
tems, which rent VM instances to users by the hour.
U-CHAMPION addresses these challenges through a
novel selective-instance-reacquisition technique. The
main idea is to acquire new VM instances from the cloud
whenever there is an expectation that doing so will result
in more cost savings.

We have implemented U-CHAMPION on Amazon
EC2 and evaluated its impact on Hadoop job per-
formance and cost efficiency by using the PUMA
benchmarks [3]. For comparison, we implemented
AROMA [16], an automated MapReduce job provi-
sioning system proposed recently. Experimental re-
sults demonstrate U-CHAMPION’s improved accuracy
in predicting ad-hoc Hadoop job performance. This is
mainly due to its hardware heterogeneity awareness, and
the effectiveness of the UV Decomposition approach.
Furthermore, U-CHAMPION improves MapReduce job
performance and reduces the cost of leasing VM in-
stances by as much as 21%.

2 The Case Study and Motivations

Modern public clouds, such as Amazon EC2, routinely
run large numbers of applications simultaneously on
huge datacenters. In settings such as parallel data pro-
cessing jobs, the MapReduce framework has become in-
valuable, allowing a relatively easy setup. However, the
changing conditions within large datacenters have led to
significant difficulties that are most visible in the public
cloud.

2.1 Heterogeneity Characterization

Inside of a commercial datacenter, hardware is in con-
stant flux. Servers are upgraded in sections, since fully
upgrading a datacenter at once is prohibitively expensive.
This has given rise to the current state, where several gen-
erations of hardware inhabit a single datacenter.

Table 1: Hardware heterogeneity in Amazon EC2.
CPU Type (Small VMs) # of VMs Percent of Total
US West-2 Datacenter
E5-2650 101 82.79
E5645 21 17.21
US East Datacenter
E5-2650 10 7.46
E5430 20 14.93
E5645 32 23.88
E5507 72 53.73
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Figure 1: Impact of hardware heterogeneity on Hadoop
job execution time.

We conducted a study on Amazon EC2 cloud data-
centers in the US West and US East regions to measure
the extent of their hardware heterogeneity. The US East
datacenter in Virginia was created in 2006, while the US
West-2 datacenter in Oregon started serving customers in
2011. We focused on analyzing CPU heterogeneity due
to the evidence for it being the most significant source of
performance variability [10, 21], and due to the ease and
speed of determination (via the cpuid command).

The US East region shows a greater degree of hard-
ware heterogeneity. This can be explained through the
general observation that datacenters tend to grow more
heterogeneous as they grow older, with newer servers be-
ing brought in to replace the older systems. Table 1 sum-
marizes the results of our survey of the US West-2 and
US East datacenters. The data was obtained by check-
ing the CPU type of several hundred m1.small instances
created on these datacenters on EC2. We report the num-
ber and the percentage of the VM instances running on
various CPU types.

2.2 Impact of Hardware Heterogeneity
Next, we analyze the impact of Amazon EC2 hardware
heterogeneity on the performance of Hadoop jobs. In this
experiment, we ran three Hadoop benchmark programs
(RandomWriter, Grep and Terasort) on Hadoop clus-
ters of various CPU types. Each cluster consists of two
VMs with the same CPU type. We ran each trial at least
five times and reported the average completion times.
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Figure 2: The system architecture of U-CHAMPION.

Figure 1 shows the job execution times of sev-
eral benchmark applications running on clusters of two
m1.small VMs. We observe that the average job execu-
tion times can vary by as much as 30% between a cluster
running E5430 CPUs and one running E5-2650 CPUs.
However, cloud users can not determine what CPU types
will be associated with their VM instances. This mo-
tivates us to propose a user-centric heterogeneity-aware
MapReduce job provisioning in the public cloud.

3 U-CHAMPION Design

3.1 Architecture

We aim to create an automated job provisioning system
which integrates cluster setup optimization (cost aware-
ness and instance selection) with heterogeneity-aware
provisioning (parameter configuration, resource alloca-
tion) to improve Hadoop job performance and reduce the
cost of leasing Cloud resources. The U-CHAMPION Ar-
chitecture is shown in Figure 2. End users submit jobs to
U-CHAMPION through a command-line interface, and
our system provides appropriate configuration parame-
ters, VM types, and underlying hardware types in or-
der to minimize cost. With this information, a cluster
is started on Amazon EC2 and the job is submitted to the
master node of the cluster along with the results of the
parameter optimization.

U-CHAMPION consists of three major components;
the modeler, the estimator, and the optimizer.

3.2 Job Performance Modeling

In order to build accurate performance models of Hadoop
jobs, we run various Hadoop benchmarks on several
clusters on Amazon EC2 off line. We mine the Hadoop
logs of executed jobs for execution time, input size, and
various Hadoop configuration parameters. We use the
cpuid package to obtain the node CPU configuration.
This enables the creation of a database from which we
can create our own performance models.

3.2.1 Support Vector Machine Models

Our system applies a powerful supervised machine learn-
ing technique to learn the performance model for each
job. It constructs a support vector machine (SVM) re-
gression model to estimate the completion time of jobs
for different input data sizes, resource allocations, CPU
models, and configuration parameters. SVM method-
ology is known to be robust for estimating real-valued
functions (regression problem) from noisy and sparse
training data having many attributes [7, 26]. This prop-
erty of SVM makes it a suitable technique for perfor-
mance modeling of complex Hadoop jobs in the Cloud
environment.

We conduct stepwise regression on the data sets col-
lected from our test-bed of virtualized Amazon EC2 In-
stances. For data collection, we measured the execu-
tion times of various Hadoop jobs with different input
data sizes in the range of 1 GB to 50 GB, using var-
ious Hadoop parameter configurations and running on
different cluster sizes of Hadoop nodes comprising of
m1.small instances on Amazon EC2. Due to the inher-
ent cost of running instances on EC2, we limit ourselves
to m1.small instances in order to stretch our resources
further.

U-CHAMPION incorporates hardware heterogeneity
by mining data clusters for CPU type during the re-
gression modeling. As shown in our case study, differ-
ences in CPU cause large differences in performance be-
tween seemingly identical m1.small instances in Ama-
zon EC2. U-CHAMPION accounts for these differences,
thereby directly increasing estimation accuracy.

3.3 Online Matrix Estimation

For ad-hoc jobs, U-CHAMPION performs a lightweight
online profiling on a small portion of the input dataset
with various Hadoop configuration parameters. This pro-
filing is performed on two different CPU configurations
in parallel to provide a seed of heterogeneity information.
U-CHAMPION relies on online matrix estimation to ob-
tain the complete performance model with heterogeneity
information.

We apply UV Decomposition [23], a collaborative fil-
tering technique used for matrix estimation for extremely
sparse data, and which was used in the Netflix Chal-
lenge [2]. We apply it here to a similar problem, where
we need to estimate the response of a job to new config-
uration and cluster conditions in terms of execution time
by estimating based on previously collected data. UV
Reconstruction has been shown to be effective for matri-
ces where less than 5% of values are known [23].
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3.4 Cost Optimization
U-CHAMPION improves the job execution time by
searching for the optimal configuration and underlying
hardware. It tries to provision the Hadoop cluster on
the CPU type that leads to the best performance. The
user has no control of VM placement in the public cloud.
Thus, the optimization in U-CHAMPION has to consider
both the cost of job execution and the cost of acquiring
the desired CPU type.

3.4.1 Cost Estimation

The costs associated with Amazon EC2 instances are
well-known and published on their website. Users are
charged by the hour, and are charged for a full-hour for
each partial hour used. Therefore, the cost of running a
job in EC2 can be estimated as

c job = t job ·ninst · cinst

where t job is the number of hours a job takes to complete
with the current cluster (rounded up to the nearest inte-
ger due to the discrete charging intervals on EC2), ninst
represents the number of instances, and c job is the total
cost of one job execution. Note that neither ninst nor cinst
changes as a result of CPU type, so that the estimated
execution time of the job is the only variable which can
be optimized for a cluster of a specific size and instance
type (i.e. small, medium or large standard instances).

The cost of acquiring a VM that is provisioned on a
specific CPU type can be estimated by

ecpu =
cinst

pcpu
(1)

where ecpu is the expected cost of obtaining a VM with
given CPU type, cinst is the cost of the VM instance per
hour, and pcpu is the probability of obtaining an instance
with that CPU type from Amazon (Here we use the data
provided in Table 1). We represent ecpu as the expected
number of VMs needed to find a certain CPU type (which
is simply 1/pcpu) multiplied by the cost/hour, since Ama-
zon charges one hour of cost upon requesting a VM.

3.4.2 Cost Saving by VM Reacquisition

Here we provide our logic for an algorithm which pro-
vides cluster optimization through selective instance
reacquisition. We acquire new instances wherever we
have an expectation that doing so will result in more cost
savings through predicted execution time improvement
than cost overhead involved in requesting additional in-
stances and closing under-performing ones.

This leads to the examination of our tradeoff for each
VM, which is

t job · cinst ≥
t job · cinst

α
+ ecpu

where α is the speedup from changing CPU type. Here
we state that if the total estimated cost of a VM is greater
than the estimated cost of the VM with a new CPU plus
the estimated cost of obtaining that CPU, then it is advan-
tageous for us to look for higher-performing instances.
The speedup α is obtained through previous results for
jobs run on the various CPU types. By performing this
examination on all VM instances, we are able to optimize
the cost saving for the Hadoop cluster.

4 Implementation and Evaluation

4.1 Testbed
We build our testbed using Amazon EC2 service. We
use the US East datacenter due to the large amount of
observed hardware heterogeneity. The datacenter has
four different CPU types: Intel Xeon E5-2650, Intel
Xeon E5645, Intel Xeon E5507, and Intel Xeon E5430.
We provisioned multiple m1.small virtual machine in-
stances. Each of them have one vCPU and 1.7 GB mem-
ory. The VMs are created using the standard Amazon
Machine Image (AMI) provided by alestic.com and in-
stalled with Ubuntu Linux 10.04.

We build Hadoop clusters using Hadoop version 1.1.2,
and provision with sizes ranging from 2 to 10 slave nodes
for the experiments. Each slave node is configured with
one map slot and one reduce slot.

We use the PUMA benchmark suite [3] to test
the performance of U-CHAMPION with representative
MapReduce jobs. The PUMA benchmark contains var-
ious MapReduce benchmarks and real-world test in-
puts. In the experiments, we performed offline pro-
filing on Grep, Wordcount, Inverted Index, and
RandomWriter benchmarks, then performed online pro-
filing and model estimation for the Terasort bench-
mark.

For comparison, we implemented AROMA [16].
AROMA is an automated configuration system for
Hadoop parameters using machine learning to profile
jobs and clustering of profiles to optimize job execution
time and cost. It is hardware heterogeneity agnostic.

The output of our job models is the job execution time
for a set of inputs. We used the LIBSVM library [7] to
explore appropriate kernel functions and implement the
SVM regression technique.

4.2 Execution Time Estimation Accuracy
First, we study the accuracy of job execution time esti-
mation. We create a Hadoop cluster with two slave nodes
on Amazon EC2. We use the Terasort benchmark with
20 GB input data that is generated by RandomWriter.
We create job performance models for U-CHAMPION

4
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Figure 3: Estimated vs actual execution times.

and AROMA and use them to estimate the job execu-
tion time of Terasort on various CPU types. We com-
pare the estimated execution time by U-CHAMPION and
AROMA to the actual execution time of the job.

Figure 3 shows the estimated job execution time of
the Terasort benchmark on different hardware. The es-
timated job execution time by U-CHAMPION is 9.9%,
9.7%, 15.7%, and 13.7% different from the actual value
on the E5507, E5430, E5645, and E5-2650, respectively.
U-CHAMPION is able to accurately estimate execution
time for different CPU types. AROMA is profiled us-
ing E5-2650 CPUs, and it provides the same estimated
job execution time for different CPU types. As a re-
sult, the worst-case estimation error for U-CHAMPION
is less than 16%, whereas AROMA’s worst case estima-
tion error is 35%.

4.3 Improving Job Execution Time
In this section, we evaluate U-CHAMPION’s ability to
reduce the overall job execution time. We build a Hadoop
cluster with two slave nodes and run several PUMA
benchmarks with 20 GB of input data. We use the job
execution time of Hadoop with a default configuration as
the baseline and compare the normalized job execution
time of U-CHAMPION and AROMA. The default con-
figuration uses heterogeneity-blind resource provision-
ing, meaning that we simply use whichever instances are
assigned to us by Amazon.

Figure 4 shows the normalized job execution time of
all benchmarks using these three approaches. The re-
sults show that U-CHAMPION outperformed the de-
fault configuration, with up to 21% shorter job execution
times. U-CHAMPION provides the optimized config-
uration and cluster for each job, leading to this signif-
icant improvement in job execution time. In the pub-
lic clouds, users are charged for VM instances by the
hour. Thus, a reduction in job execution time directly re-
sults in cost savings. U-CHAMPION also outperformed
AROMA, achieving up to 20% job execution time sav-
ings. U-CHAMPION achieves better performance than
AROMA due to its ability to exploit the heterogeneity in
the underlying hardware. U-CHAMPION not only pro-
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Figure 4: PUMA benchmark job execution time.

Table 2: Cost Optimization for RandomWriter Bench-
mark Workload.

Before Optimization After Optimization
E5-2650 × 1 E5-2650 × 3
E5430 × 2
E5645 × 2 E5645 × 7
E5507 × 5
Execution time improvement 14.5%
Execution cost improvement 14.5%
Cost overhead $1.68

vides an optimized job configuration, but also provisions
better VM instances through selective instance reacqui-
sition.

4.4 Cluster Optimization vs Cost
U-CHAMPION estimates the cost of finding better-
performing VM instances for a cluster, and compares
it with cost-savings achieved via lower execution time
due to said instances. The cost of m1.small VM in-
stance is Cinst = $0.06/h and approximately 7.46% of
our instances will be E5-2650 instances to start (see
Table 1). The approximate cost of finding the best-
performing CPU type (E5-2650) for RandomWriter is

0.06
0.0746 = 0.804 dollars (Eq. 1). As the execution time of
our RandomWriter task approaches infinity, we can ob-
tain an average of 13% and a maximum of 30% (ie, we
started with only the worst-performing VM instances)
cost savings by using only the best-performing VM in-
stances.

Table 2 shows example results of our cost algorithm
for a Hadoop cluster of 10 slave nodes running the Ran-
domWriter with 40 GB input data. The underlying CPUs
of the node before and after the algorithm is run are
shown. U-CHAMPION creates 28 new VM instances
to obtain the VMs with desired CPU type, therefore the
cost overhead of this cluster performance enhancement
is $1.68 (28 ∗Cinst ). Keep in mind that this provides ex-
ecution time and cost improvement as long as the cluster
is running. The cost will be amortized across all jobs
run on this cluster until it is shut down by the user. For
this example, we assume that the instances opened follow
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Figure 5: Prediction accuracy for an ad-hoc job for dif-
ferent Hadoop configurations.

the distribution which we observed in Table 1 in order to
show expected results.

4.5 Adaptiveness to Ad-Hoc Jobs

Previously we showed that ad-hoc jobs submitted to the
U-CHAMPION system were predicted with reasonable
accuracy even in the absence of similar jobs. Here we
evaluate the performance under more reasonable condi-
tions. And, we show that the model generated for the
Terasort benchmark by UV Decomposition remains
useful under a variety of job configurations.

This experiment assumes that a Terasort workload
with 20GB of input data (generated by TeraGen) has
been submitted to the system. We also assume an 8 VM
cluster, and that several other benchmarks (Wordcount,
Grep, Inverted Index, etc) have been profiled offline.
In this case, we use the methodology described in section
3.3 to create a model for Terasort. Figure 5 shows the
prediction accuracy for 20 different Hadoop configura-
tions using the new model. We see prediction error here
of less than 17%.

5 Related Work

Recent studies have focused on improving the perfor-
mance of applications in clouds [5, 6, 8, 12, 14, 24]
through elastic resource allocation and VM schedul-
ing. Paragon [8] implements a heterogeneity-aware job
scheduling system using a Singular Value Decompo-
sition (SVD) technique similar to U-CHAMPION, but
considers scheduling only single-node applications and
requires full control of the cloud environment, making it
very hard to use for a user in the public cloud.

Users of the public cloud only have limited informa-
tion about the cloud environment and have no control of
the hardware their VMs run on. U-CHAMPION, along
with other user-centric research [16,19], uses the limited
information that is available in order to improve the de-
cisions made by one user.

Hardware heterogeneity is a prevalent issue in public

clouds [10,17,21]. Recent studies show that it is feasible
to leverage the hardware heterogeneity to improve the
performance of applications [9–11, 20, 21].

There are also some works focusing on improving
Hadoop performance by reducing the delay due to shuf-
fle and straggler tasks [13, 18, 30]. Park et al. proposed
a novel VM reconfiguration approach that is aware of
the data locality of Hadoop [22]. Guo et al. proposed
and implemented iShuffle [13], a user-transparent shuf-
fle service that pro-actively pushes map output data to
nodes via a novel shuffle-onwrite operation and flexibly
schedules reduce tasks considering workload balance.

There is a rich set of research focused on the pa-
rameters and performance of Hadoop clusters. Jiang
et al. [15], conducted a comprehensive performance
study of Hadoop and summarized the factors that can
significantly improve Hadoop performance. Verma et
al. [28, 29], proposed a cluster resource allocation ap-
proach for Hadoop. AROMA [16] provides a novel
framework for automated parameter estimation and clus-
ter resource provisioning in order to maximize job per-
formance in a given cluster.

6 Conclusion

U-CHAMPION is proposed and developed to enable
a user-centric and heterogeneity-aware MapReduce job
provisioning in the public cloud. It addresses the unique
challenges imposed by the public cloud environment
through a novel selective-instance-reacquisition tech-
nique. This technique applies our proposed optimiza-
tion algorithm to acquire new VM instances if it results
in more cost savings. Furthermore, U-CHAMPION is
able to make accurate performance prediction of ad-hoc
Hadoop jobs through its UV Decomposition technique
and by the incorporation of hardware heterogeneity-
awareness in job performance modeling. Extensive eval-
uation of U-CHAMPION on Amazon EC2 Cloud with
representative benchmark applications demonstrated its
improved performance prediction accuracy as compared
to a heterogeneity-unaware approach. Furthermore, the
results showed its ability to improve Hadoop job perfor-
mance and reduce the cost of leasing the Cloud resources
by up to 21%.

Our future work will extend U-CHAMPION to a
multi-user environment for mitigating performance inter-
ference.

Acknowledgement

This research was supported in part by U.S. NSF
CAREER award CNS-0844983, research grants CNS-
1320122 and CNS-1217979.

6



USENIX Association  11th International Conference on Autonomic Computing 143

References
[1] Apache Hadoop Project. http://hadoop.apache.org.

[2] Netflix Prize. http://www.netflixprize.com.

[3] PUMA: Purdue mapreduce benchmark suite. http://web.ics.
purdue.edu/~fahmad/benchmarks.htm.

[4] AHMAD, F., CHAKRADHAR, S. T., RAGHUNATHAN, A., AND
VIJAYKUMAR, T. N. Tarazu: Optimizing mapreduce on hetero-
geneous clusters. In Proc. of the ACM Int’l Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS) (2012).

[5] BEN-YEHUDA, O. A., BEN-YEHUDA, M., SCHUSTER, A.,
AND TSAFRIR, D. The resource-as-a-service (raas) cloud. In
Proc. of the USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud) (2012).

[6] BU, X., RAO, J., AND XU, C. Interference and locality-aware
task scheduling for mapreduce applications in virtual clusters. In
Proc. of the ACM Symposium on High-Performance Parallel and
Distributed Computing (HPDC) (2013).

[7] CHANG, C.-C., AND LIN, C.-J. LIBSVM: A library for sup-
port vector machines. ACM Trans. Intelligent System Technology
(2011).

[8] DELIMITROU, C., AND KOZYRAKIS, C. Paragon: Qos-aware
scheduling for heterogeneous datacenters. In Proc. of the ACM
Int’l Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2013).

[9] DELIMITROU, C., AND KOZYRAKIS, C. Quasar: Resource-
efficient and qos-aware cluster management. In Proc. of the ACM
Int’l Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS) (2014).

[10] FARLEY, B., JUELS, A., VARADARAJAN, V., RISTENPART, T.,
BOWERS, K. D., AND SWIFT, M. M. More for your money:
exploiting performance heterogeneity in public clouds. In Proc.
of the ACM Symposium on Cloud Computing (SoCC) (2012).

[11] GUEVARA, M., LUBIN, B., AND LEE, B. C. Market mecha-
nisms for managing datacenters with heterogeneous microarchi-
tectures. ACM Trans. on Computer Systems 32, 1 (Feb. 2014),
3:1–3:31.

[12] GUO, Y., LAMA, P., RAO, J., AND ZHOU, X. V-cache: Towards
flexible resource provisioning for clustered applications in iaas
clouds. In Proc. IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS) (2013).

[13] GUO, Y., RAO, J., AND ZHOU, X. iShuffle: Improving hadoop
performance with shuffle-on-write. In Proc. of the USENIX Int’l
Conference on Autonomic Computing (ICAC) (2013).

[14] JALAPARTI, V., BALLANI, H., COSTA, P., KARAGIANNIS, T.,
AND ROWSTRON, A. Bridging the tenant-provider gap in cloud
services. In Proc. of the ACM Symposium on Cloud Computing
(SoCC) (2012).

[15] JIANG, D., OOI, B. C., SHI, L., AND WU, S. The perfor-
mance of MapReduce: an in-depth study. Proc. VLDB Endow-
ment (2010).

[16] LAMA, P., AND ZHOU, X. AROMA: automated resource allo-
cation and configuration of mapreduce environment in the cloud.
In Proc. of the ACM Int’l Conference on Autonomic computing
(ICAC) (2012).

[17] LEE, G., CHUN, B., AND RANDY, H. Heterogeneity-aware re-
source allocation and scheduling in the cloud. In Proc. of the
USENIX Workshop on Hot Topics in Cloud Computing (Hot-
Cloud) (2011).

[18] LI, X., WANG, Y., JIAO, Y., XU, C., AND YU, W. CooMR:
Cross-task coordination for efficient data management in mapre-
duce programs. In Proc. of the Int’l Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC)
(2013).

[19] LIM, S.-H., HUH, J.-S., KIM, Y., SHIPMAN, G. M., AND DAS,
C. R. D-factor: a quantitative model of application slow-down
in multi-resource shared systems. In Proc. ACM SIGMETRICS
(2012).

[20] MARS, J., AND TANG, L. Whare-map: Heterogeneity in “homo-
geneous” warehouse-scale computers. In Proc. of the ACM Int’l
Symposium on Computer Architecture (ISCA) (2013).

[21] OU, Z., ZHUANG, H., NURMINEN, J. K., YLÄ-JÄÄSKI, A.,
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Abstract

Data centers, which include both cyber (e.g., servers)
and physical (e.g., cooling units) assets, are notorious for
their energy consumption and carbon footprint. Nonethe-
less, a less-known fact about data centers is that they are
extremely “thirsty” (for cooling), consuming millions of
gallons water each day and raising serious concerns amid
extended droughts. To curtail the surging water footprint,
we adopt a holistic cyber-physical approach and incorpo-
rate the inherent physical characteristic of data center —
time-varying water efficiency — into server provision-
ing and workload management. Specifically, we propose
an online batch job scheduling algorithm, called WACE
(minimization of WAter, Carbon and Electricity cost),
which dynamically adjusts server provisioning to reduce
the water consumption by deferring delay-tolerant batch
jobs to water-efficient time periods. We demonstrate
the effectiveness of WACE via trace-based simulation-
s, showing that WACE reduces 27% water consumption
compared to state-of-the-art scheduling algorithms.

1 Introduction
Ubiquitous Internet services and explosive IT demand
have led to a new wave of constructing gigantic data cen-
ters, accounting for 1.7-2.2% of the total electricity us-
age in the United States as of 2010 [13]. Data centers
consist of both cyber assets (e.g., servers, networking e-
quipment) and physical assets (e.g., cooling systems, en-
ergy storage device). While data centers are notorious for
huge energy consumption due to power-hungry servers,
cooling systems — data centers’ physical assets — are
very “thirsty”, evaporating millions of gallons of water
each day for rejecting server heat. For example, cooling
towers in AT&T’s large data center facilities consume 1
billion gallons of water in 2012, approximately 30% of
the entire company’s water consumption [3]. In addi-
tion, just as they are accountable for carbon emissions
via electricity usage, data centers also consume a vast
amount of offsite water remotely embedded in electric-

Figure 1: Water consumption in data center.

ity generation: e.g., in the U.S., an average of 1.8 liter
of water is evaporated, or “lost”, into the air for just one
kilowatt-hour electricity generation, even excluding the
water-consuming hydropower [29, 32]. A typical water-
cooled data center is illustrated in Fig. 1.

Why is water critical to data centers? As shown in
a recent survey by Uptime Institute [34], cooling towers
are widely employed by large data centers (over 40%),
even though there exist various types of cooling systems
and data centers in low-temperature regions may use cold
outside air for cooling. Water conservation has been be-
come essential for green certifications (being sought by a
majority of large data centers [34]), tax credits [36], and
corporate social responsibility [3]. On the other hand,
water is also crucial for electricity generation (e.g., ther-
moelectricity, nuclear power) [29, 32], which is undeni-
ably essential for data center operation.

Water is not equal to energy. Despite the nexus be-
tween water and energy [29, 32], the existing studies for
minimizing data center energy consumption cannot min-
imize water footprint, because when optimizing for ener-
gy efficiency, they neglect the physical characteristic (in
particular, time-varying water efficiency, details provided
in Section 3) of data center cooling systems and electric-
ity generation. In fact, for reducing water footprint, it is

1
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not only important to minimize energy, but also crucial
to consider “when” to consume energy.

Prior studies on minimizing electricity cost [26] and
carbon emissions [9] do not lead to water minimization
solutions either, because water efficiency is not in pro-
portion to electricity cost-/carbon-efficiency (e.g., nucle-
ar power incurs little carbon emission but can consume
more than 2L of water per kWh [20, 23]). While using
air economizer (i.e., “free” cooling) and recycled/sea wa-
ter can reduce potable water consumption [10, 21], these
techniques, however, focus on improved “engineering”
and do not apply to all data centers, because they typi-
cally require high upfront costs and/or suitable location-
s/climate conditions.

Software-based approach to water conservation.
We incorporate water footprint as an integral metric into
data center operation. For water conservation, the high-
level intuition is to exploit the inherent physical charac-
teristic of data center onsite cooling towers and offsite
electricity generation (i.e., temporal diversity of water
efficiency): we would like to defer batch workloads to
time periods with better water efficiency while shutting
down some servers during time periods with low water
efficiency. To turn this intuition into reality, a notable
challenge is that it is difficult to determine which time
periods are water-efficient without foreseeing far future
information, due to the time-varying nature of water effi-
ciency, job arrivals, carbon emission rate and electricity
price. A straw man technique can be setting a thresh-
old on water efficiency: process batch jobs only when
data center water efficiency is better than the threshold.
Nonetheless, setting a too high threshold may degrade
the delay performance too much, whereas setting a too
low threshold may unnecessarily waste water.

To address the challenge, we propose a new online
delay-tolerant batch workload management algorithm,
called WACE (minimization of WAter, Carbon and Elec-
tricity cost), to reduce water footprint, while also includ-
ing electricity cost and carbon footprint as an integral
part of the optimization objective. A remarkable feature
of WACE is that it can be implemented online based on
the currently available information, yet we demonstrate
its effectiveness through a traced-based simulation. Our
simulation results show that, compared with state-of-the-
art scheduling algorithms, WACE can reduce the cost by
approximately 20%, while reducing the water consump-
tion by approximately 27%.

2 Model
We consider a discrete-time model by equally dividing
the entire time horizon of interest (e.g., one year) into
K time slots. The duration of each time slot may range
from minutes up to an hour. We focus on facility-level
server provisioning and workload management. Next,

we provide modeling details, which are consistent with
the literature (e.g., [16, 38]).

2.1 Workload

In general, there are two types of workloads in data cen-
ters: delay-tolerant batch workloads (e.g., back-end pro-
cessing, scientific applications) and delay-sensitive inter-
active workloads (e.g., web services or business trans-
actional applications). We focus on scheduling batch
workloads and denote by a(t) = [0,amax] the amount of
batch workload arrivals at time t, quantified in terms of
machine-time [17,35]. Although this widely-used model
cannot capture all the low-level details (e.g., parallelis-
m), it provides a good guidance for dynamically “sizing”
the data center (i.e., how many servers can be turned off)
and hence suffices for our purpose.

2.2 Data center

The data center has r(t) amount of on-site renewable
energy, e.g., by solar panels [1]. There are a total of
M(t) homogeneous servers that are available for process-
ing batch jobs at time t. Servers may run at differen-
t processing speeds and incur different power [18]: we
consider an array of finite processing speeds denoted by
S = {s1, · · · ,sN}, from which a speed s is chosen for
processing batch workloads. Following [8, 18], we ex-
press the average power consumption of a server at time
t as α · s(t)n + p0 , where α is a positive factor and re-
lates the processing speed to the power consumption, n
is empirically determined (e.g., between 1 ∼ 3), and p0
represents the power consumption in idle or static state.
We model the server energy consumption by interactive
workloads as an exogenously-determined value pint(t).
We write the energy consumption by batch workloads as
pbat(t) = m(t) · [α · s(t)n + p0]. Hence, the total server
energy consumption can be formulated as

p(t) = pbat(t)+ pint(t). (1)

Next, given the available on-site renewable energy
r(t), the data center’s electricity usage at time t is
[γ(t)p(t)− r(t)]+, where [ · ]+ = max{·,0} and γ(t) is
the factor of Power Usage Effectiveness (PUE) captur-
ing the non-IT energy consumption.

3 Online Batch Job Scheduling: WACE
In this section, we formulate the cost, present problem
formulation and develop an online algorithm, WACE, to
minimize the total cost via online batch job scheduling.

3.1 Cost

Our work aims to address three “costs”: water consump-
tion, electricity cost and carbon emission.

• Water consumption. As illustrated in Fig. 1, water
is consumed in data center’s onsite physical asset (i.e.,
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Figure 2: Water-carbon efficiency and workload trace.
(a) EWIF and carbon emission rate in California. (b)
Workload trace [12, 16].

cooling tower) and also offsite power plants. To assess
water usage efficiency, an emerging metric, called Wa-
ter Usage Effectiveness (WUE), was recently developed
by The Green Grid [32]. WUE is the ratio of water con-
sumption to IT equipment energy, where water consump-
tion includes both direct and indirect water consumption
(i.e., onsite water for data center cooling and offsite wa-
ter for electricity production).

Direct water: Cooling towers directly consume onsite
fresh water, and direct WUE at time t, denoted by εD(t),
is affected by various factors, such as non-stationary out-
side wet bulb temperature [31]. Hence, as an inheren-
t characteristic of cooling tower, direct WUE exhibits
a time-varying nature. In practice, direct WUE can be
monitored in real-time [7].

Indirect water: Indirect water efficiency is quantified
in terms of Energy Water Intensity Factor (EWIF), which
measures the amount of water consumption per kWh
electricity. Different energy fuel types (e.g., thermal, nu-
clear, hydro) have different EWIFs [19]. As the energy
fuel mixes vary over time due to varying peak/non-peak
demand [9], the resulting average EWIF exhibits a tem-
poral diversity. Fig. 2(a) demonstrates the time-varying
EWIF for California, calculated based on [19] and Cali-
fornia energy fuel mixes [2]. In our study, we calculate
the average EWIF as follows:

εI(t) =
∑k bk(t)× εk

∑k bk(t)
(2)

where bk(t) denotes the amount of electricity generated
from fuel type k, and εk is the EWIF for fuel type k.

Now, we formulate the water consumption at time t as

w(t) = εD(t) · p(t)+ εI(t) · [γ(t) · p(t)− r(t)]+, (3)

where p(t) is the server power, γ(t) is PUE and r(t) is
available on-site renewable energy.
• Electricity cost. We denote the electricity price at

time t by u(t), and hence the electricity cost is e(t) =
u(t) · [γ(t)p(t)− r(t)]+, where [γ(t)p(t)− r(t)]+ is the

data center electricity usage. Note that with the emer-
gence of smart grid, large data centers may have the
market power to influence real-time electricity price, and
if so, the electricity price u(t) can be modeled follow-
ing [37, 39].

• Carbon emission. We calculate the (average) car-
bon emission rate following [9], and Fig. 2(a) demon-
strates the time-varying carbon emission rate for Cali-
fornia. An interesting observation is that carbon emis-
sion efficiency does not align with EWIF (i.e., indirec-
t water efficiency). The difference between carbon ef-
ficiency and water efficiency becomes even greater if
we factor in the time-varying direct WUE for cooling
towers. The same observation also holds for electricity
cost efficiency versus water efficiency. Next, we express
the total carbon footprint of the data center at time t as
c(t) = ϕ(t) · [γ · p(t)−r(t)]+, where we neglect the small
carbon emission by the on-site renewable energy.

3.2 Problem formulation

In this subsection, we first describe our objective and
constraints, and then present the problem formulation.

Objective. We aim to minimize the electricity cost
while incorporating carbon emission and water con-
sumption. We construct a parameterized total cost func-
tion as follows

g(t) = e(t)+hw ·w(t)+hc · c(t), (4)

where hw ≥ 0 and hc ≥ 0 are weighting parameters for
water consumption and carbon emission relative to the
electricity cost. Such a multi-objective formulation is
common in the literature Our optimization objective is
to minimize the long-term average cost expressed as

ḡ = 1
K

K−1
∑

t=0
g(t), where K is the total number of time s-

lots in the period of interest.
Constraints. First, the number of servers to process

batch jobs needs to satisfy

0 ≤ m(t)≤ M(t), (5)

where M(t) is the maximum available number of servers.
The server can only select one of the supported speeds:

s(t) ∈ S = {s0,s1, · · · ,sN}. (6)

We also need to guarantee that batch jobs will be pro-
cessed (without dropping):

ā < b̄, (7)
b(t) = m(t) · s(t), (8)

where ā=
K−1
∑

t=0
a(t) and b̄=

K−1
∑

t=1
b(t) are the long-term av-

erage workload arrival and allocated server capacity, re-
spectively. The constraint (8) states the relation between
processed batch jobs and server provisioning.
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Algorithm 1 WACE
1: At the beginning of each time t, observe the data

center state information r(t), εD(t), εI(t), ϕ(t) and
pB(t), for t = 0,1,2, · · · ,K −1

2: Choose s(t) and m(t) subject to (5)(6)(8) to mini-
mize

V ·g(t)−q(t) ·b(t) (12)

3: Update q(t) according to (11).

Problem formulation. We present an offline problem
formulation for batch job scheduling as follows

P1 : min
D

ḡ =
1
K

K−1

∑
t=0

g(s(t),m(t)) (9)

s.t., constraints (5), (6), (7), (8). (10)

Clearly, finding the optimal offline solution to P1 re-
quires complete offline information (i.e., workload ar-
rivals, direct WUE, EWIF, carbon emission rate, on-site
renewables and electricity prices) throughout the entire
time period, which is very challenging, if not impossible,
to obtain in practice. Therefore, we develop an online al-
gorithm below.

3.3 WACE

To enable an online algorithm, we remove (7) and main-
tain a batch job queue that stores unfinished batch jobs.
Specifically, assuming that q(0) = 0, we write the job
queue dynamics as

q(t +1) = [q(t)−b(t)]+ +a(t), (11)

where [·]+ =max{·,0}, a(t) quantifies batch job arrivals,
and b(t) indicates the amount of processed jobs.

Intuitively, when the queue length becomes large, the
data center should increase the number of servers and/or
server speed to reduce the queue backlog to avoid too
much delay. Hence, we incorporate the queue length in-
to the objective function, as described in Algorithm 1. In
(12), the queue length determines how much emphasis
the optimization gives on the resource provisioning b(t)
for processing batch jobs. WACE is purely online and
only requires the currently available information. The
parameter V ≥ 0 in line 2 of Algorithm 1, referred to
cost-delay parameter, acts as a tradeoff control knob: the
larger V , the smaller impact of the queue length on opti-
mization decisions.

While Algorithm 1 appears simple, it is provably-
efficient, even compared to the optimal offline algorith-
m that has future information. In particular, one can
show based on the recently-developed Lyapunov tech-
nique [22] that the gap between the average cost achieved

by WACE and that by the optimal offline algorithm is
bounded, while the batch job queue length is also up-
per bounded, translating into a finite queueing delay. We
omit the proof details due to space limitations.

4 Performance Evaluation
This section presents trace-based simulation studies of a
data center to evaluate WACE.

4.1 Data Sets

We consider a large data center consisting of 300,000
homogeneous servers with a peak power of 64MW. Each
server has 15 discrete speed levels, uniformly ranging
from 1.6GHz to 3GHz. The duration of each time slot is
set to 1 hour and the total simulation period is 1 year. The
default weighting parameters for water consumption and
carbon emission are hw = 15 and hc = 0.15, respectively,
and the PUE is set to 1.2.

• Workloads: We consider that the data center serves
both interactive and batch jobs, which are taken from the
literature [12, 16], respectively. The maximum arrival
rate for the batch jobs and interactive jobs are scaled to
be 80% and 30% of the data center maximum capaci-
ty, respectively, while the maximum combined workload
arrival rate still satisfies the peak data center capacity.
Fig. 2(b) illustrates a snapshot of the traces for 3 days,
normalized with respect to the maximum data center ca-
pacity.

• Others: We use the demand-responsive electricity
prices modeled by the fitted function shown in [37]. We
collect the temperature data in Mountain View, CA, and
fuel mix data of California ISO [2,5] from October, 2012
to September, 2013. We use the EWIF and carbon emis-
sion rates for different electricity generation methods p-
resented in [19,30,33] to calculate the EWIF and carbon
emission rate for the data center. The first 3-day data
for EWIF and carbon rate are shown in Fig. 2(a). Direct
WUE is modeled based on empirical measurement [31].

4.2 Simulation Results

We now compare the performance of WACE with three
benchmarks.

Benchmarks

The three benchmarks are described as follows.
• SAVING: SAVING only optimizes the electricity

cost of the data center and is water- and carbon-oblivious.
It applies WACE with zero weights for water and carbon.

• CARBON: CARBON only optimizes the carbon e-
mission of the data center and is electricity- and water-
oblivious. Essentially, it applies WACE with an “infinite”
weight for carbon.

• ALWAYS: ALWAYS does not use any optimization
and tries to process jobs as soon as possible. This is the
de-factor algorithm used in many data centers.

4
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Figure 3: Comparison between WACE and benchmarks.

Performance comparison

Here, by fixing the cost-delay parameter V , we compare
the performance of WACE with the three benchmark al-
gorithms and show the results in Fig. 3, where the av-
erage value at any time slot t represents the cumulative
average from 0 to t. In Fig. 3(a), we see that WACE
achieves the lowest average total cost among all the algo-
rithms. Compared to WACE, the other three algorithms,
i.e., SAVING, CARBON and ALWAYS, incur a 20%,
24% and 36% higher cost, respectively. The delay per-
formance comparison shows that ALWAYS has the low-
est delay of 1 (due to its greedy nature), both SAVING
and CARBON have an average delay around 3 time s-
lots (i.e., hours), while WACE has a delay close to 4
time slots. The delay figure identifies that WACE is tak-
ing more advantage from the delay tolerance of batch
jobs and hence achieves a lower average total cost by
opportunistically processing batch jobs when the com-
bined cost factor is relatively lower. The water consump-
tion and carbon emission results show that compared to
WACE, the benchmark algorithms, i.e., SAVING, CAR-
BON and ALWAYS, incur more water consumption by
27%, 25% and 38.5% and higher carbon emission by
23%, 7.4% and 39%, respectively. This highlights the
benefit of WACE in terms of sustainability (while the de-
lay performance is compromised to a small and tolerable
extent).

Impact of water and carbon weights

Now, we will study the impact of water weight (hc) and
carbon weight (hw) on the performance of WACE. For
both weighting factors, we start from zero and go up to
the value which makes the water/carbon cost equal to
90% of the total cost, while keeping the other weight at

(a) Average electricity consump-
tion

(b) Electricty Cost

(c) Water Consumption (d) Carbon Emission

Figure 4: Impact of water and carbon weights.

its default value (i.e., hw = 15, hc = 0.15). We show a set
of 3-dimension figures to capture all the possible com-
binations of water and carbon weights within the above
mentioned range, and compare WACE with ALWAYS
(which is the de factor reference algorithm, as current-
ly many data centers are still performance-driven). In all
cases, V is appropriately chosen for WACE to achieve an
average delay equal to 4 hours.

Fig. 4(a) shows that the average electricity consump-
tion remains almost same with varying water and carbon
weights. This is because, the actual energy consump-
tion for processing a fixed amount of workloads remain-
s relatively the same, no matter WACE is trying to re-
duce carbon emission (i.e., high value of carbon weight)
or water consumption (i.e., high value of water weight).
The small variation in electricity consumption, however,
can be attributed to the effect of discrete speed settings,
which let servers run with variable dynamic energy con-
sumption (but still fixed static energy as long as a serv-
er is turned on). From Fig. 4(b), we see that increase
in either water or carbon weight increases the electric-
ity cost. We have already seen that the weighting fac-
tors have little effect on the actual energy consumption,
and hence the increased electricity cost implies the fol-
lowing fact: with increased water and/or carbon weight,
WACE schedules batch jobs to find low water consump-
tion and/or carbon emission due to sustainability con-
siderations, not solely caring about the electricity cost.
Fig. 4(c) and Fig. 4(d) show the decreasing trend of wa-
ter consumption and carbon emission as the correspond-
ing weighting factor is increased. The effect is straight-
forward, as increased weighting factor means a higher
priority in the optimization algorithm.

5
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Figure 5: Impact of average delay constraint.

Next, we note that WACE has a lower electricity cost,
carbon emission and water consumption compared to
ALWAYS for a wide range of water and carbon weight-
s, although no algorithms (including WACE) can possi-
bly outperform SAVING/CARBON in terms of electric-
ity cost/carbon emissions, as they solely minimize their
respective metric. Nonetheless, Fig. 4 shows that, by ap-
propriately choosing water and carbon weights, we will
get a better performance from WACE than the widely-
employed ALWAYS scheduling algorithm in terms of
electricity cost, water consumption and carbon emissions
(at the expense of increasing delay for batch jobs).

Impact of average delay constraint

Now, we study the relation of total cost and water with
average delay performance. For this purpose, we vary
the delay constraint from 2 to 12 time slots and show the
corresponding cost and water consumption in Fig. 5. We
see in Fig. 5(a) that the average total cost decreases for
all algorithms with increased delay constraint (i.e., a less
stringent delay requirement). In particular, given any de-
lay constraint, WACE has the lowest average total cost.
The performance gap between WACE and other two al-
gorithms (i.e., SAVING and CARBON) increases with
more relaxed delay constraint. ALWAYS is not shown
as its delay is constantly 1 time slot. Fig. 5(b) shows a
similar pattern of the change in water consumption with
varying delay constraints. We can see that WACE has
the lowest water consumption as it incorporates time-
varying water efficiency when making scheduling deci-
sions. Fig. 5 provides us with an important guidance for
choosing an appropriate set of water and carbon weights
so that the data center can run in low cost and/or reduced
water footprints without much impact on the average de-
lay performance.

We also conduct sensitive studies to demonstrate the
robustness of WACE, and interested readers are referred
to the technical report [12].

5 Related Work
In this section, we discuss the related work.
• Data center optimization: Several prior studies

have focused on identifying methods of cost cutting

while ensuring the quality-of-service. For example, find-
ing a balance between energy cost of data center and per-
formance loss through dynamically provisioning server
capacity has been the primary focus of many recent stud-
ies [11, 16]. Other approaches include, but are not lim-
ited to, exploiting the spatio-temporal variation of elec-
tricity prices [15, 25, 26]. Cyber-physical approaches to
optimizing data center cooling system and server man-
agement are also investigated [14, 24]. Electricity cost
can be further reduced when the advantage of geograph-
ical load balancing is combined with the dynamic capac-
ity provisioning approach [?, 26]. Nonetheless, none of
these studies address water consumption in data centers.

• Water reduction in data center: Most of the exist-
ing efforts on water efficiency have been focusing on im-
proved “engineering”: for example, installing advanced
cooling system [4], and using recycled water [10]. Our
study focuses on integrating physical characteristic of
time-varying water efficiency with control of data cen-
ter’s cyber asset (i.e., servers and workloads). More re-
cent study [28] aims at optimizing water efficiency for
delay-sensitive interactive workloads, but it does not ap-
ply to our study, because it neglects carbon footprints and
does not exploit the temporal diversity of water efficien-
cy. Another work [27] preliminarily minimizes water
footprint via resource management, but it neglects many
important factors, such as carbon emissions, demand-
responsive electricity prices, discrete server speed selec-
tion and interactive jobs. Other research that is remote-
ly related to data center water consumption includes [6],
which develops a dashboard to visualize the water effi-
ciency. To our best knowledge, holistically minimizing
electricity cost, carbon emission and water footprint by
leveraging the delay tolerance of batch jobs and temporal
diversity of water efficiency has not been studied by any
prior work.

6 Conclusions
In this paper, we studied water consumption in data cen-
ters and proposed an efficient online batch job schedul-
ing algorithm, WACE, for minimizing the operational
cost (incorporating electricity cost, water consumption
and carbon emission) while bounding the average queue
length. WACE exploits and integrates the physical char-
acteristic of time-varying water efficiency with data cen-
ter’s cyber asset management (i.e., server provisioning
and workload scheduling). We demonstrated the effec-
tiveness of WACE via trace-based simulations, showing
that WACE reduces the water consumption by over 27%
compared to the state-of-the-art solutions, with a negli-
gible delay increase.

6
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Abstract

There is a movement in many practical applications of
Cyber-Physical Systems to push processing to the edge.
This is particularly important were the CPS is carry-
ing out monitoring and control, where the latency be-
tween the decision making and control message recep-
tion should be minimal. However, CPS are limited by
the capabilities of the typically battery powered low re-
sourced devices. In this paper we present a self-adaptive
scheme that both reduces the amount of resources re-
quired to store high sample rate data at the edge and
at the same time carries out initial data analytics. Us-
ing out Smart Water datasets, plus a selection from other
real world CPS applications, we show that our algorithm
reduces computation by 98%; data volumes by 55%;
while requiring only 11KB of memory at runtime (in-
cluding the compression algorithm). In addition we show
that our system supports self-tuning and automatic re-
configuration which means that manual tuning is allevi-
ated and the scheme can be both applied to any kind of
raw data automatically and is able self-optimize as the
nature of the incoming data changes over time.

1 Introduction
The work presented in this paper is part of a Smart Wa-
ter project that both monitors water distribution networks
(WDN) and controls its valves to optimize water net-
work performance and lifetime over varying demands.
ICT to support WDN typically consist of remote or on-
line battery-powered telemetry units (data loggers) that
record water data such as flow and pressure etc period-
ically over numbers of minutes and aggregate this data
and send to a server periodically; typically via the mo-
bile phone networks or 3G. Contemporary approaches
use Wireless Sensor Network (WSN) [1], [2], [3], [4],
[5] technologies to monitor the status of the water net-
work and detect leakage or water bursts. The main draw-
backs of these approaches are: (a) the analysis of the data

takes place off-line, in base stations or servers meaning
that optimal real time decision-making for control would
be unrealistic and (b) the sensor nodes require a lot of
energy, which places upper bounds on the amounts of
data that can be sensed and relayed for analysis. There
is a move to make WDN more dynamic and intelligent
using wireless sensors and actuation effecting a CPS to
monitor and optimally control the water network in real
time, by pushing analytics to the edge and increasing the
decision-making capacities of energy-constrained sensor
nodes.

Typically such CPS projects monitor the dynamical
conditions of the water distribution network. Tradition-
ally this data is sensed at the edge of the network then
sent to off-line servers to identify potential failures. Here
further analysis via fusion with other data sets, such as
customer data may take place. To do this, high pre-
cision pressure and flow data, at rates that can exceed
100 samples a second per sensor which can equate to
high-precision data averaging at over 512bytes per sec or
0.45Mbytes per 15 minutes. If the system has to trans-
mit this amount of data in 15-minute intervals then the
communication process alone will drain the battery of the
sensor node rapidly. Therefore, our aim is to reduce the
energy cost related to the communication without sacri-
ficing the precision of the data. To this end we evaluated
a number of lossless compression algorithms.

During this evaluation, using real data, we observed
a correlation between compression rate and data value
fluctuation, and from this derived a scheme that enables
the identification of transients or failures in the WDN.
This means that instead of compressing raw sensor data
and sending it to servers to be decompressed and then
analyzed for anomalies, we can use the compression rate
to detect anomalies and outliers directly on the sensor
node. This is faster, more lightweight and provides early
indications of an issue, which can be fed directly into
the control function without having to communicate via
servers saving time and energy. Furthermore, we have
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expanded the system using ideas inspired from active
learning to support optimal selection of the algorithms
input parameters to enable self-tuning and automatic re-
configuration.

This paper is organized as follows: Section 2 con-
tains our evaluation setup of the compression algorithm
and presents our correlation observations. Section 3 de-
scribes our anomaly detection algorithm showing that the
compression rate can be used in the indirect analysis of
raw data. Section 4 presents the cross-evaluation system
for the selection of optimal parameters. Section 5 de-
scribes the execution of the system using other kind of
datasets, and section 6 discusses future work and con-
cludes the paper.

2 Compression Rate and Raw Data Corre-
lation

Figure 1: Compression algorithms evaluation.

In order to reduce the energy consumption that would
be consumed by high data rate transmissions, while
maintaining a high data precision, each sensor node uses
lossless compression. Our choice takes memory and en-
ergy constraints of our devices into account, so computa-
tion and memory intensive algorithms are inappropriate,
in spite of their potentially better compression rates. For
example, current ultra low power MCUs have 64Kbytes
memory[6], therefore we limit compression to 10K.

MiniLZO [7] (coding method is sliding window -
LZ77), requires 8.192KB memory at runtime, and S-
LZW-MC [8] (coding method is dictionary - LZ78), re-
quires 3.250KB of memory (Figure 1). We evaluated the
compression rate of each algorithm which we adapted to
use in embedded platforms. Three different real datasets
(Datasets A, B, and C - Figure 2 black line), provided
by a large UK water company from their loggers were
used 1. Each data set consists of 5.5 million data pairs.
In the evaluation the input stream is converted into 512-
byte packets with the following structure: (a) timestamp
(8-byte double data type), (b) 62 measurements (8-byte
double * 62 = 469 bytes), and (c) CRC (8-byte double
data type).

1We anonymize the company and dataset names for privacy reasons.

Figure 2: Compression rate & raw data comparison of
Dataset A, B, and C.

Using the miniLZO compression algorithm, the re-
sults of the compression rate per packet can be seen in
the three charts of Figure 2. Note that the original wa-
ter pressure data is also overlaid on the same graphs in
black. It is clear from Figure 2, that these traces high-
light data anomalies as indicated by the orange arrows.
From this, we formed the hypothesis that we could use
the correlation of the compression rate and raw data.

We verified offline that the anomalies indicated on our
graphs were true. From water technician logs we ob-
served that they were valve position changes which were
used to simulate water bursts, causing significant pres-
sure data fluctuation. At these points the compression
algorithm is unable to compress the data so the compres-
sion rate falls to 0%. In Figure 2, the drop in compression

2
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rate isolates the areas of raw data where the fluctuation
pattern is changeable. The Dataset C is more problem-
atic and the water pressure fluctuation is quite high (see
Figure 2c) resulting in the compression rate averaging at
16%. Further, in the same dataset a great drop in water
pressure occurs (because the local valve was closed for
a small period) which impacts compression rate, which
increases to 70%.

Confident that our hypothesis was confirmed and we
could use compression rate fluctuation to detect insta-
bilities in high sample rate data, we derived an analyt-
ics algorithm that is performed at the end of the com-
pression stage. This has the added advantage that the
analytics cost m times less in terms of scale and com-
plexity, where m is the number of measurements per
packet. Because each packet contains 62 measurements
(m = 62), the produced compression rates are approxi-
mately 89,000 (5,518,000 total measurements / 62 mea-
surements per packet). Thus, the analysis is applied to
98% less values.

3 Anomaly Detection Algorithm
We produce a scheme to automatically detect significant
changes in compression rate and therefore identify the
timestamps of anomalies. To maximize the anomaly de-
tection while minimizing the number of false-positive re-
sults, noise is removed from the compression rate stream
using a one-dimensional Kalman Filter [9], [10] indi-
cated in Figure 3b with a blue line. The use of Kalman
filters is motivated by: (a) its support of streaming analy-
sis using only the current input measurement (and there-
fore is memory efficient), (b) no matrix calculations are
required (therefore it is computationally efficient), (c)
ease of the algorithm tuning process, and (d) implemen-
tation simplicity.

For every new data value input, the Kalman Filter al-
gorithm uses and updates the Kalman state. The Kalman
state consists of the process noise covariance q, the mea-
surement noise covariance r, the actual value x after
noise removal, the estimation error covariance p, and the
Kalman gain k. During the initialization process the pa-
rameters which need tuning are the noise q, the sensor
noise r, the initial estimated error p and the initial value
of x. The Kalman filter was manually initialized using
the following parameters: q = 0.005, r = 25, p = 0, and x
= the first compression rate measurement. In every new
measurement, the algorithm updates the Kalman state us-
ing the following steps:

1: x = x

2: p = p + q

3: k = p / (p + r)

4: x = x + k * (measurement x)

5: p = (1 k) * p

After noise removal, the anomalies can be detected ac-
curately because according to Figure 3b (which presents

Figure 3: Apply Kalman Filter to Dataset A and drop
detection - (w = 128, q = 0.005, r = 25).

the x value of Kalman Filter state and raw data) the
anomalies are presented as great drops (orange arrows).
The drops are being detected by using the average and the
standard deviation of the compression rate moving aver-
age for a predefined window size w. We use this because
it smoothes the states for easier analysis and reduces
threshold computation to window sizes. Specifically, the
algorithm computes the moving average of compression
rate data with a window size w = 128 Kalman Filter x
measurements, with the average avg and the standard de-
viation std of the moving average. In every Kalman state
update, the algorithm checks if:

(Kalman state x) > (avg + std * l) ||

(Kalman state x) < (avg - std * l)

Where l represents the elasticity of the outlier detec-
tion (smaller values mean that the system is more sensi-
tive - in Figure 4a l=3 and in b l=1.5). As can be observed
in Figure 4a (Dataset C), the algorithm suffers from a
cold start effect (it identifies the first values to be outliers
because the moving average is not calculated). To solve
this problem, the algorithm initializes the avg and com-
putes std by using the current compression rate value.
Furthermore, another problem occurs when a significant
variation of compression rate data is detected (Figure 4a).
In that case, because the standard deviation has a high
value, the algorithm needs more intervals for the moving
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average calculations to detect the outliers or anomalies.
The solution is to reset the values, that is to initialize the
avg and std, every time the distance between the bound-
aries created by the standard deviation become greater
than a specific threshold t (in our system the threshold t
= 35).

Figure 4: Dataset C - (a) ”Cold Start”, Large Variation
and unelastic outliers detection (l = 1.5), and (b) fixed
algorithm results (l=3) - (w = 128, q = 0.005, r = 25).

Figure 4b shows that this solves the cold start and large
variation problems and illustrates the anomalies based on
normalized data (green arrows). Furthermore, another
benefit is that the algorithm can be adapted to changes in
the behavior of the data stream. For example, Figure 4b,
the algorithm detected the anomaly (red markers x value
= timestamp) when the compression rate changes from
10% to 70% as there is no immediate drop (State A to
new State B), the algorithm recognizes that the system
has a new steady state (B) until the next drop from 70%
to 10%. Therefore, this shows that the algorithm adapt
extremely fast to new conditions/states.

We applied this approach to Dataset A and B, and Fig-
ure 4 presents the results for Dataset A(raw data = black
line). The red x markers are the anomalous values de-
tected; the green arrows illustrate the process of match-
ing the timestamps between compressed and raw data.

Figure 5: Algorithm results (l=3) for (a) Dataset A and
(b) Dataset B - (w = 128, q = 0.005, r = 25).

4 Input Parameters Optimal Tuning
According to the above analysis, by tuning the input
parameters, our algorithm can be applied to any case
of high sample rate anomaly detection in hardware-
constrained sensor nodes. However, to maximise the per-
formance of this, an element of tuning is required as ob-
served in the previous section. Table 1 aggregates all the
tuning parameters required by our algorithm.

Table 1: Algorithm input parameters

Process Parameters
Input stream split Packet size m

Input stream data precision Measurement bytes

Kalman Filter initialization

Noise q
Sensor noise r

Initial estimated error p
Moving average computation Window size w

Boundaries creation Elasticity l
Great variation threshold Threshold t

The initialization of input parameters using a manual
approach is inappropriate because it requires permuta-
tions of all the different combinations of parameters val-
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Figure 6: Sensor node re-configuration process.

ues. In order to optimize the algorithms tuning process,
we borrow ideas from active learning techniques [11].
This approach requires feedback from real users or an
offline system to identify true anomalies, but this is not
onerous2. Here true anomalies for a single representative
training dataset are labeled.

For the results that we present here, we applied the
active learning idea by asking water data technicians to
manually label anomalies on a subset of our evaluation
data. Then, we created an offline cross-evaluation sys-
tem of Figure 6, which uses our algorithm and calculates
the correct, false/positive (FP), and true/negative (TN)
anomaly detections based on the initial labeling. This
establishes the optimal input parameters as the combina-
tion that maximizes the following distance:

Distance D = [Correct - (FP + TN)] Detections

Using this, one can imagine that a system would up-
date parameters to re-configure the in-node anomaly de-
tection algorithm over time. The data analysis com-
ponent could recognize that the system requires re-
configuration using customer complains (anomalies are
being missed) and system alarms (which increase when
the water network is unstable).

Before the creation of the cross-evaluation system, the
algorithm’s input parameters for datesets were selected
manually. In the previous section we show that correct
anomalies were identified however here we show that the
cross-evaluation system further improves the algorithms
accuracy significantly. The reason is that manual obser-
vation of high sample rate data is difficult because the
high density data. For example, Figure 7 presents the re-
sults of the Distance D of each different combination of
the following parameter sets for Dataset A:

w = {64, 128, 512, 1024}

q = {0.001, 0.005, 0.05}

2Data anomaly detection can be confirmed off-line automatically by
correlating candidate stream data anomalies with other data sets such
as customer or water technician records.

Figure 7: Cross evaluation distance calculation results -
Dataset A.

r = {10, 15, 20, 25}

The orange arrow on Figure 7 are showing input pa-
rameters we derived manually, which were w = 128, q =
0.005, r = 25 (Figure 7 orange combinations). The initial
selection of parameters was made on a moving average
window w = 128 because our intuition was that a smaller
window used to calculate the thresholds, would provide
greater accuracy. However, the cross-evaluation system
shows that the optimal combination would have a win-
dow of w = 512, q = 0.005, r = 20 (Figure 7 green arrow)
where the distance D indicates that accuracy will be in-
creased by 15%. Because the cross-evaluation system
uses an exhaustive approach, it always returns the opti-
mal combination of input parameters reducing the effort
and time to find the optimal combination manually.

5 Using Different Datasets

Figure 8: Cross evaluation distance calculation results -
Temperature Dataset.

To understand the generality of the work beyond wa-
ter applications, we applied our cross-evaluation system
to datasets from St Bernard Mountain Pass sensor nodes

5
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Figure 9: Temperature data anomaly detection results -
(w = 128, q = 0.5, r = 10).

in Switzerland [12] reporting temperature, soil moisture
and watermark measurements.

Figure 8 and Figure 9 illustrates the results of our
cross-evaluation system for the temperature dataset. Dur-
ing the labeling process, we defined two periods as
anomalies and we executed our cross evaluation process
which was initiated using the following:

w = {8, 16, 32, 64, 128}

q = {0.005, 0.01, 0.05, 0.1, 0.5}

r = {10, 13, 15, 17, 20}

Figure 8 presents the results of distance D per combi-
nation of input parameters, where the optimal combina-
tion (w = 128, q = 0.5, r = 10) with 170 correct and 21
error anomaly detection (D = 151). Furthermore, from
Figure Figure 9 we can infer that the anomalies are de-
tected precisely and in order to verify our results we man-
ually checked 125 cross evaluation runs. We repeated
the same process for soil moisture, and watermark sen-
sor measurements from ten different sensor nodes and we
achieved similar results, but due to lack of space we do
not include them in this paper.

6 Future Work & Conclusion
This paper presents a scheme that combines lightweight
compression and anomaly detection for Cyber-Physical
Systems. The work has been developed as part of a Smart
Water project and we show that it not only significantly
reduces the amount of communications between sensor
devices and the cloud, but also that early transient or
event (such as water bursts) detection can run on low-
resourced sensor nodes meaning that local control func-
tions can occur with minimal latency. The main contribu-
tion is the innovative approach to analyzing high sample
rate data by using compression rate rather than raw data.
The main benefits of our system are: (a) the size of the
program at run time, which can be applied in embedded

systems, (b) data reduction (and proportional communi-
cation and energy costs) by 55%, (c) computation reduc-
tion by 98%, (d) the algorithm can be applied indepen-
dently of the content of the raw data with an appropriate
initial tuning, (e) the adaptation of our method to match
trend/state changes in the raw data. We extend the sys-
tem to be able to derive initialization parameters for self-
configuration and to adjust said parameters as the nature
of the underpinning data changes over time thus show-
ing significant performance improvements over manual
tuning by a further 15%.

Future work of our approach is to examine the ef-
fect of changes in data precision (e.g. by using float in-
stead of double values), to test our algorithm with other
lightweight compression algorithms.
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Abstract

In this paper, we develop a novel networking scheme
that supports both real-time and delay-tolerant ur-
ban sensing applications. This maintains optimal-
ity through self-adapting its communications strat-
egy using either inexpensive short-range opportunis-
tic transmissions or reliable long-range cellular ra-
dios. Core to this scheme is the trading of mobile
sensor data in a virtual market where we demonstrate
that our scheme can incentivize phone users to par-
ticipate. We show that the scheme can optimise net-
work throughput while minimising total phone costs,
in terms of 3G and battery costs.

1 Introduction
The integration of sensing, computing and communi-
cation capabilities in mobile devices has turned them
to a powerful computing and sensing platform. The
ubiquity of these sensor-rich smart-phones is begin-
ning to play an increasingly important role in the
evolution of cyber-physical systems (CPS) in urban
scenarios.
Sensing is a crucial component for CPS, which pro-

cess and react to the data gathered from the phys-
ical environment autonomously. The sheer numbers
of mobile phone users combined with the relatively
powerful computing and communication capabilities
of modern phones, make mobile sensing a much more
flexible and cost-effective paradigm than traditional
CPS such as Wireless sensor Networks. Furthermore,
the inherent phone owner mobility enables increased
sensing coverage both spatially and over time; provid-
ing opportunities to collect data at a higher granu-

Work carried out in this paper has been funded by the EIT
ICTLabs - Cyber Physical Systems Action Line, I3C project
and the ICRI-Cities Institute

larity and with broader coverage. Mobile sensing can
exploit the social structures of the physical world to
improve the performance of cyber world and in doing
so provides better services to the users in the physical
world by optimising the organization of the available
resources in cyber world. This paves the way towards
large-scale citizen-centric urban sensing applications
for smart cities [12].

Figure 1 illustrates a typical Mobile Urban Sensing
System (MUSS). According to the demands of spe-
cific sensing applications, mobile phones can produce
sensing data such as available parking places, traf-
fic congestion, noise levels, air pollution, and smart
meter readings. The sensor data can be sent to the
MUSS server through cellular communication or be
multi-hopped via short-range radios such as WiFi di-
rect, Bluetooth, and LTE direct.


































Figure 1: Conceptual illustration of the mobile urban
sensing system.
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A MUSS has the following distinguishing charac-
teristics:

1. Large Sensing Coverage and huge volume
of data: MUSS has the potential to monitor every
interesting element in a city, and then relay sensed
data to the Internet. As a result, it is predicted to
be one of the major sources of big data.
2. Self-organization/Self-healing: In MUSS, mo-
bile phone users can join and leave the network very
frequently. Similarly disasters and the dynamic na-
ture of urban environments can cause network fail-
ure. Therefore, MUSS should adapt autonomously
to current network states such as channel conditions
and evolving logical network topologies.
3. Heterogeneous data types: Due to the diver-
sity of MUSS applications and their potential to re-
quire large sensing coverage, sensor data formats will
vary considerably; from simple physical readings such
as ambient light to video frames. In turn this data
would differ in lifetime, monetary value, and privacy
level, etc.
4. Social/Economic Concerns of Self-Interest
Phone UsersMobile phone users may not be willing
to fulfil a MUSS task, due to privacy concerns and
the potential costs that would be incurred impacting
battery usage and the amount of money they pay for
communications 3/4G. Therefore, taking account of
the social and economic behaviours of phone users is
vital to the success of MUSS.

In this paper, we show how to provide autonomic
and cost-effective networking services for MUSS con-
sidering all the features discussed above. We firstly
present a brief review of mobile phone sensing re-
search, and examine the main communication tech-
niques designed to support MUSS. We develop a joint
pricing and data routing scheme aiming to support
both real-time and delay-tolerant MUSS applications
by seamlessly combining cellular communication [9]
and opportunistic networking [2]. Off-loading com-
munication to low cost(free), short range communi-
cations releases the burden on traditional communi-
cations technologies which will reach upper physical
bounds if all future city CPS systems use them.

2 Background

In this section, we present a brief review of current
mobile sensing research and communication support
for mobile phone sensing. For recent comprehensive
surveys, we refer the reader to [8, 7, 4].

2.1 Mobile Phone Sensing

According to different sensing scales, mobile phone
sensing applications can be categorized into personal
sensing, community sensing, and public sensing; Hy-
perFit [6], CenceMe [10],CarTel [5] are examples of
personal, community and public sensing deployments
respectively. Community and public sensing can play
significant role in the development of CPS in smart
cities where one wishes to better understand large-
scale phenomena through citizens collaboration.

Defined by awareness of phone users, mobile phone
sensing can be classified into two different sens-
ing paradigms: Participatory Sensing requires ac-
tive participation from the phone users in terms of
collecting and sampling the data. e.g., manual en-
try of lowest prices or deals for goods or taking a
picture.Opportunistic Sensing shifts the burden of
MUSS tasks from the phone users to the background
sensing system, which makes it more suitable for com-
munity/public sensing.

Currently, the majority of mobile sensing appli-
cations send sensing data directly to the server
through single-hop 3/4G cellular radio communica-

tions. However, due to limitations such as 3/4G costs
to the phone users [9] and cellular system’s capac-
ity bounds [3], using cellular communication solely
would not be a feasible solution for the potential huge
volume of urban sensing data.

With the increase in the short-range communica-
tion capabilities of smart phones, such as in WiFi
Direct for Android OS 4.0+, efficient neighbour dis-
covery [1], and the development of smart Device-to-
Device (D2D) communications [3]; it becomes more
and more promising to use opportunistic networking

[2] for delay-tolerant MUSS applications [1, 13, 14].
By leveraging inherent human mobility and low-cost
short-range communication, sensor data can be sent
to base-stations (e.g. WiFi routers) in a carry-and-
forward fashion by relaying the data in short hops via
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different mobile phones.

This opportunistic networking can significantly re-
duce energy and telephony costs for phone users and
at the same time mitigate sensor data traffic load over
cellular communication channels.

3 A Citizen-centric Network-

ing Scheme for MUSS

In this section, we present our lightweight and fully
distributed networking scheme to support both real-
time and delay-tolerant MUSS applications in a cost-
effective way, through the combination of cellular
communication and WiFi direct. Specifically, we con-
sider a MUSS network that consists of three types
of nodes: smart phones, static WiFi routers, and
a cellular base-station as shown in Figure 2 Each
phone can report sensed data to the mobile sensing
server through 3G cellular radio directly, or through a
WiFi router nearby. In addition, two nearby phones
have the opportunity to communicate directly to each
other through WiFi Direct during their contact du-
ration, such as phones B and C shown in Figure 2.
In our model, each data packet produced by a smart
phone has a monetary value (e.g. which can be rep-
resented in terms of a national currency or tokens to
be traded in other ways such as to purchase mobile
phone apps). Further, each packet is has a lifetime
e.g., 10 minutes, and its duration is tightly coupled
to the worth specific applications attribute to the
packet. The MUSS operates in discrete time with
a unit time slot t =1, 2, ... . Every phone x main-
tains a data buffer that stores the sensor data packets
generated by its own sensors, and the data received
from other phones.

3.1 Algorithm Description

At every time slot t =1, 2, ..., our scheme operates
as follows:

Sensor Data Sampling

1. According to the requirements of the MUSS ap-
plication (e.g. the demands of external MUSS users),
each phone x generates sensor data packet(s), and
then assigns its monetary value and initial Time-To-
Live (TTL) value to each packet. Then, x inserts the

Figure 2: Example of MUSS network to describe the
proposed scheme.

sensor data packets into its phone data buffer.
Instantaneous Neighbour Discovery

2. Each node x builds a one-hop neighbour ta-
ble NEI(x, t), consisting of the cellular base-station,
and all phones and WiFi routers that can connect to
x through WiFi radios at current slot t. Neighbour
discovery schemes such as [1] can be used. Take Fig-
ure 2 for instance, the instantaneous one-hop neigh-
bour table of phone C, NEI(C, t), consists of three
nodes: B, D, and E.
Transmission Quality Estimation

3. Each node x estimates its transmission capac-
ity, ratex,y(t), between itself and each of its instanta-
neous neighbours y in NEI(x, t), i.e. the maximum
number of packets that x can transmit to y, based
on the data rates of their wireless radios and WiFi
duty-cycle settings of x and y [1].

4. Each node x estimates the monetary costs of
sending and receiving a packet, denoted as scostx(t)
and rcostx(t) respectively, based on its remaining en-
ergy, system resource usage, and 3G bills costs. It
worth noting that if x is a WiFi router or the cellular
base-station, its receiving cost, rcostx(t), is equal to
zero.
Pricing

5. Each phone x sets its current data selling price,
sellx(t), as the total monetary value of the data pack-
ets in its data buffer multiplied by a positive sys-
tem parameter α, set by the server. For instance,
if α = 0.1 and x’s data packets are worth 10 cents,

3



164 11th International Conference on Autonomic Computing USENIX Association

therefore sellx(t) = 1 cent per packet. Then phone
x communicates the selling price sellx(t) to all nodes
in NEI(x, t). Recall, the selling prices of any cellular
base-station and WiFi router are set as zero for every
slot.
Profits computing

6. Each phone x computes the potential individual
profits, profitsx,y(t), it could obtain by selling data
to each of its neighbours y inNEI(x, t). profitsx,y(t)
is computed as a function of the cost (that would be
incurred in this potential data trading) and selling
price differences between x and y

profitsx,y(t)

= (sellx(t)− selly(t)− scostx(t)

−rcosty(t))ratex,y(t) (1)

Data Trading

7. Denote y∗ as the neighbour that can currently
give phone x maximum profits if it sells on its data.
If profits∗

x,y
(t) > 0, then x sells rate∗

x,y
(t) number

of packets to y. Note that the number of packets
are a function of the communications rate so as to
not overload that link. A data packet with a smaller
TTL will be forwarded with a higher priority. Packets
which have reached a 0 TTL value will be dropped as
they are deemed no longer useful to the application.
8. Upon receiving data packets from the

seller x, the buyer y∗ pays (sellx(t) − selly(t) −
rcosty(t))ratex,y(t) total amount of money to x,
which means that the cost incurred in this trade is
paid by the seller x.
In this scheme, devices can seamlessly switch be-

tween short range and long-range communication. At
a moment in time each seller node selects the neigh-
bour node with the minimal price and minimal trans-
mission cost as the potential buyer (The node to re-
cieve the data). It encourages system to transmit
data to other neighbours using short-range communi-
cation due to high cost of long-range communication
(3G).
The above scheme is very lightweight, as it imple-

ments simple arithmetic calculations and does not re-
quire any historic information to be maintained. Also
it does not require future knowledge of mobile phones
and their trajectory to be speculated.

3.2 Throughput Optamality and
Self- *

Since the total value of the data carried by each
phone in its buffer is proportional to its queue back-
log, it can be verified that the proposed scheme im-
plicitly solves a stochastic optimization problem (i.e.
we minimize the total transmit and receive costs for
all phones) in a fully distributed way, by using the
Lyapunov “drift-plus-penalty” method [11]. Ac-
cording to Lyapunov optimization theory, optimal
throughput and long-termminimization of global sys-
tem costs can be achieved, by controlling the weight
between queue backlogs and communications costs
[11]. In our scheme, this weight is controlled by the
price scaling parameter α. Based on the Lyapunov
“drift-plus-penalty” method, it is not difficult to ver-
ify that as α decreases, the global system costs (total
cost of all phone users) also decrease, but the average
queue backlogs increase resulting an increase in end-
to-end transmission delays. Therefore, by controlling
the pricing parameter α it is not difficult to prove that
the proposed scheme can not only achieve throughput
optimality, which is highly desirable when transmit-
ting large volumes urban sensing data; but it can also
minimize the total cost incurred by the phone users
[14, 11].

Besides achieving throughput optimality, our
scheme exhibits the following autonomic behaviours.

1. Self-optimization Since the neighbour table on
each phone can include a cellular base-station, and
all WiFi routers and other phones nearby, the phones
can optimize their profit by automatically switching
data transmission between WiFi radio and cellular
radio, according to selling prices and transmission
costs.

2. Self-organization This scheme is fully dis-
tributed, because it requires only the local infor-
mation of each mobile phone and its current one-
hop neighbours. This enables MUSS to self-organize
based on current network state and topology. More-
over it is flexible enough to cope with partial failure
of communication infrastructure e.g., by natural dis-
asters and can scale across urban space.
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4 Evaluation

4.1 Simulation Settings

To evaluate the performance of our scheme, we con-
structed extensive simulations using the realistic sim-
ulator Castalia (http://castalia.npc.nicta.com.au/).
We randomly deployed a 151-node MUSS in a 800m×
800m geographic area, consisting of 10 WiFi routers,
140 mobile phones, and one cellular base-station. We
set the duration of a slot to 1 second and each sim-
ulation lasts for 106 seconds (around 12 days). The
transmission ranges of the WiFi direct radio was set
to 50 meters i.e. the typical WiFi direct transmis-
sion range in practice (http://www.wi-fi.org). The
time-varying transmission capacities of all cellular
and WiFi radios were randomly set between 1 and
50 packets per second. We used a realistic human
mobility model, Heterogeneous Human Walk (HHW)
[15], to simulate the mobility of smart phones. The
movement speed of each phone was randomly dis-
tributed between 1 and 10m/s (i.e. representing
walking speeds and typical urban vehicular speeds).

Each sensor and mobile phone produces sensor
packets with a random monetary value of 10 credits
at a rate of one packet per second. For every mobile
phone, the receiving and transmitting costs of WiFi
radios were randomly set between 0.1 and 1 credits
per packet, while that of the cellular communications
were set between 1 and 10 credits per packet.

4.2 Impact of Packet Lifetime and
Pricing Parameter α

In this set of simulations, we study the impact of
different packet lifetimes and the pricing parameter
α on the global system cost and global social prof-
its. The lifetime (i.e. the initial TTL value) of each
generated packet was randomly set between 5 seconds
and the max−lifetimeminute, this latter parameter
is a simulation variable ranging from 10 to 50 min-
utes. The randomness of the packet lifetime assign-
ment can reflect the heterogeneity of mobile sensing
data. The simulation results are shown in Figure 3a
and Figure 3b. In all simulations, around 10%-65% of
the sensor data traffic is sent through cellular radios,
and the rest is sent over WiFi direct radios.
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(b) Global Profits

Figure 3: Impact of sensor data lifetime and param-
eter α on System Cost and Global Profits.

We use time-average global system costs and global
social profits (both in credits per second) to measure
the performance of our scheme. Here the global sys-
tem cost is measured as the sum of both the trans-
mission and reception costs of all phones, and global
social profits is computed as the total value of all the
successfully received packets (by the MUSS server)
minus the total system cost.

As illustrated in Figure 3a, the total system cost
shows a monotonically decreasing trend as the pric-
ing parameter α decreases; this verifies our optimal
throughput discussion in Subsection 3.2. By setting a
sufficiently small α, the global system cost can be ar-
bitrarily close to the minimal, according to Lyapunov
optimization theory. However, the end-to-end delay
becomes large as α decreases, resulting a higher risk
of a packet being dropped, taking TTL into account.
This is reflected in Figure 3b, where the global so-
cial profit shows a concave curve as α decrease when
the packet life time is large. This is caused by the
joint effects of decreased system cost and increased
in dropped packets. When max-lifetime is sufficiently
large, global social profits exhibit a monotonically in-
creasing function of α. This is because the impact of
packet loss caused by expired TTL on the global so-
cial profits can be ignored. It is worth noting that ev-
ery phone obtained positive profit in all simulations.
This means that our scheme manages to incentivize
phone users to participate in the MUSS because they
receive a fair reward.
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Figure 4: Impact of Dynamic environment on System
Cost and Global Profits.

4.3 Self-Configuration in Dynamic
Environment

To study the ability of our proposed scheme to adapt
to changing scenarios, we constructed experiments by
dividing the total simulation time into five periods of
equal duration of 2× 105 secs. In first period, MUSS
operates normally with operational cellular and Wifi
communication. In the second period, we disabled
the cellular communication of all nodes so that data
packets can only be transmitted and received directly
through Wifi direct radios (simulating cellular failure
similar to what has occured in disaster situations).
MUSS returns back to normal (mixed) state in the
third period. In fourth period we disabled Wifi di-
rect communication between all the nodes in the net-
work, so that nodes can only transmit data packets
through cellular communication. Finally, network re-
turns again to normal state in the fifth period.

Here we used global system costs and global so-
cial profits in every slot (both in credits) to measure
the effect of changing topology over time. Here the
global system cost is measured as the sum of both
the transmission and reception costs of all phones in
a slot. Global social profits is computed as the total
value of all the successfully received packets (by the
MUSS server) minus the total system cost in a slot.

In Figure 4, we can see that in the second pe-
riod, the global system cost decreases when we cel-

lular communication is disabled. This is due to all
the transmissions being relayed through Wifi direct
only, which is cheaper than cellular communication.
However, global phone user profits also decrease in
spite of the decrease in cost. This is due to the
large delay in multi-hop transmission which results
in increased number of dropped packets with smaller
TTL. In the fourth period, system costs increase sig-
nificantly whenWifi direct communication is disabled
due to the high cost of cellular communication. This
is also reflected by the decrease in global profits of the
MUSS. We can also see that the network self-adjusts
very quickly to the changing conditions of the net-
work. When the network returns to normal operation
in third and fifth period, the data buffer of the phones
contain large numbers of data packets that are sent
instantly after availably of alternate option. This is
the reason behind sudden spikes in system cost and
global profits at the start of these periods. Once the
backlog reduces, the system becomes stable.

5 Conclusion

In this paper, we study how to provide a cost-
effective networking service for real-time and delay
tolerant applications in Mobile Urban Sensing Sys-
tem (MUSS). We first highlight the challenges of
MUSSs and review current mobile sensing research.
Then we propose a joint pricing and routing scheme
to support both real-time and delay-tolerant MUSS
applications through seamless integration of cellular
and short-range communications of mobile phones.
The proposed scheme is not only lightweight and fully
distributed, but can also achieve optimal through-
put, which is highly suitable to deliver large amount
of mobile sensing data. Through simulations, we
demonstrate that our scheme can minimize global
system costs, as well as effectively incentivize phone
users to participate in the MUSS. We also show that
our scheme self adapts to dynamic network condi-
tions. To support future complex MUSSs, many open
research challenges remain including faithful sensor
data market design for discouraging phone users to
subvert the market through misinformation, network-
ing schemes with social privacy awareness, as well as
joint sensor data analysis, filtering and networking.
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Abstract

Gait signals detectable by sensors on ubiquitous per-
sonal devices such as smartphones can reveal charac-
teristics unique to each individual, and thereby offer a
new approach to recognizing users. Conventional pat-
tern matching approaches use inner-product based dis-
tance measures which are not robust to common varia-
tions in time-series analysis (e.g., shifts and stretching).
This is unfortunate given that it is well understood that
capturing such variations is paramount for model perfor-
mance. This work shows how machine learning methods
which encode gait signals into a feature space based on a
dictionary can use convolution and Dynamic Time Warp-
ing (DTW) similarity measures to improve classification
accuracy in a variety of situations common to gait recog-
nition. We also show that data augmentation is crucial
in gait recognition, as diverse training data in practical
applications is very limited. We validate the effective-
ness of these methods empirically, and demonstrate the
identification of user gait patterns where shift and stretch
variations in measurements are substantial. We present a
new gait dataset that contains a complete representation
of the variations that can be expected in real-world recog-
nition scenarios. We compare our techniques against the
current state of the art gait period detection and normal-
ization schemes on our dataset and show improved clas-
sification accuracy under all experimental scenarios.

1 Introduction

The Internet of Things (IoT) has created an explosion
of sensor data due to the increased number of devices
with embedded sensors, ranging from smart watches and
phones to healthcare wearables and head-mounted de-
vices. These devices, combined with new environments
such as connected consumer smart homes, have opened
a new set of applications and scenarios directly enabled
by sensor data. Novel techniques that utilize and extract

meaningful information from this vast stream of data are
the key to success in this new area.

Much of this new sensor data is measured over time.
The analysis of time-series data is a well studied subject
explored in the signal processing community for appli-
cations such as networking, computer vision and speech
recognition. More recently, there has been substantial
interest in individual motion tracking and personalized
gesture recognition for improved human and machine in-
teraction with applications in user interface design and
gaming. These efforts leverage the recent growth in the
number and type of devices containing sensors for mo-
tion, audio, and video, yet there remains much work to
be done in how to make best use of such a diverse set of
sensors.

Gait recognition is one form of motion tracking that
has been studied for a variety of reasons including fall de-
tection, locomotion for robotics, and health/fitness mon-
itoring. Human gait is the result of the cyclic motion
of a set of human limbs [2]. Gait has also been used
to uniquely identify a human using visual sensors (video
cameras) as well as motion sensors. Using biometrics
such as gait or fingerprints for identifying users is an
important approach that will become increasingly use-
ful in IoT. Gait is an ideal target as it can be obtained
passively, monitored using a variety of sensors, and pro-
vides a fairly robust indicator of identity. Gait is also
promising as a user identification mechanism that could
improve the usability and security provided by current
authentication schemes.

Machine learning techniques have achieved great suc-
cesses in the fields of computer vision and speech recog-
nition. In this paper, we adapt the same framework and
propose a representation encoding method tailored to
gait recognition, and report improved performance over
the best published results.

1
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2 Related Work

User identification using gait patterns with motion-based
sensors has been the subject of much study over the past
decade. Most of the approaches regarding gait recogni-
tion utilize accelerometers attached to subject for gath-
ering data. In many cases, the accuracy of these sys-
tems are fairly high, but require multiple commercial
sensors with several fixed points and extensive config-
uration [5, 10]. Recently, due to the integration of ac-
celerometers and gyroscopes into smart phones, several
new approaches have been proposed to reduce the num-
ber of sensors and relax the constrains on sensor place-
ment [7, 4, 8, 9]. The most common technique for deal-
ing with time-series data is through gait period detection,
which involves locating the strike points of a subjects’
gait signal. A strike point corresponds to a subject’s heel
striking the ground.

The work by Juefei-Xu et. al. is on recognizing
a user’s gait pattern recorded from off the shelf An-
droid devices with users walking down a hallway [7].
Their technique relies heavily on normalization around
the strike points. Their two normalization methods are:
1) centering measurements around a strike-point and 2)
measurements between consecutive strike-points, inter-
polated to get uniform segment lengths. This approach
attempts to address shift and stretch variance that natu-
rally occurs in a human’s gait between steps. Frank et.
al. proposes the use of nonlinear dynamic systems to
form a geometric time delay embedding per subject [4].
After training, they classify each new sample by select-
ing the nearest-neighbor using Euclidean distance. Their
model has high accuracy but requires large segments of
data to be able to perform classification accurately.

Our approach uses a general machine learning model
coupled with traditional signal processing similarity
measures. Specifically, we utilize a dictionary/encoding
framework and use convolution and Dynamic Time
Warping (DTW) measures for encoding to provide more
robust representations for classification in a scenario
with large intra-class variation. We contribute a unique
dataset that was captured by a smart phone under a wide
variety of conditions including different paces, phone
orientations, and over different days. We report the high-
est accuracy compared with the traditional gait period de-
tection and normalization methods.

3 Problem Definition

Utilizing accelerometer and gyroscope measurements of
users’ gait for recognition is fundamentally a time-series
analysis problem. As previously mentioned, time-series
analysis is a well-studied area explored mostly by the sig-
nal processing community, one of the key applications

being voice recognition and speech translation. While
gait recognition involves similar problems, it has sev-
eral unique properties and challenges that need to be ad-
dressed. Unlike audio data captured from speech, gait
pattern data captured by motion sensors is periodic in
nature. Periodicity in the data provides both benefits in
terms of recognition and challenges in determining the
appropriate unit to perform recognition (a single step or
an ensemble of steps). Additionally, measured gait pat-
terns for a single user can have large variations between
days due to factors such as phone placement on a user’s
body and terrain differences. Another source of variation
stems from different paces, as humans rarely maintain
a single pace while walking and between walks due to
an assortment of variables including mood, environment
and destination.

Past research has shown the feasibility of gait pattern
recognition using data captured from accelerometers and
gyroscopes. However, it remains a challenging problem
due to several reasons: (1) lack of public datasets, (2)
the recognition scheme needs to work with a very small
amount of training data, (3) high degree of signal varia-
tions (pace/phone placement, etc).

We have identified several imperative criteria for any
system that attempts gait recognition:

1. robust under different phone placement

2. robust under different walking speed

3. robust between different days

4. requiring only a small amount of training data

Our approach utilizes conventional machine learning
techniques coupled with traditional time-series similarity
measures to address each of these necessary conditions.

4 Methodologies

With sufficient samples, we can separate classes well us-
ing our feature representations, as demonstrated by the
99% accuracy for the complete training case in Table 2.
We have observed the same phenomena in another public
dataset [3], of which more than 98% of the samples are
linearly separable if trained on the entire dataset.1 In the
following section we describe our approach of address-
ing the situation where only limited amount of samples
are available. Specifically, we need to handle large vari-
ations in gait signals of the same user over different days
and at different paces using the very few samples avail-
able during the training phase for better handling of vari-
ations such as shifts and stretches.

1This is generally not true in most other applications.
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We propose a pipeline that includes (1) preprocessing,
(2) feature encoding, (3) linear Support Vector Machine
(SVM) classification, and (4) data augmentation. Prepro-
cessing is a fixed process that makes our method insen-
sitive to sensor orientation. Feature encoding deals with
more variations, and requires (unlabeled) data for train-
ing. We use a linear Support Vector Machine (SVM) to
classify samples in their feature representations. Finally,
data augmentation is used to increase sample diversity.

4.1 Preprocessing
Gyroscopes and accelerometers both report readings for
3 directions (or axes). Let a segment xraw be a 3 × T
matrix, where T is the length of the signal. We com-
pute the 3×1 principal eigenvector v from xraw, and then
compute x = vT xraw. This makes x insensitive to sensor
orientation.

4.2 Feature Encoding
We use a dictionary/coding framework for representation
encoding. In particular, we consider the simplest setting:
random patch dictionary and distance encoding. We con-
struct the random patch dictionary D by selecting ran-
dom samples from the training set. In distance encoding,
a feature vector f for a given sample x is computed by
fi = dist(x,di) with components fi where {di} are the
entries in the dictionary, and dist is some distance mea-
sure. By encoding we mean the process of computing
the feature vector f for a given sample x. As we will see,
samples corresponding to gait signals of different users
are readily separable with linear SVM when samples are
expressed in their feature representations.

• Encoding with Convolutional Distance Measure
The most obvious variation in gait signal is perhaps
the shift. A shift is a change translation in time of
a gait signal. When a gait signal is captured from a
user, the alignment for comparison with other sig-
nals is unknown and must be accounted for. There-
fore, we want the feature encoding to be shift in-
variant, so that shifted versions of the same pattern
would be transformed to the same feature vector. To
this end, we use the distance measure defined as fol-
lows:

distconv(a,b) =max(|conv(ar,b)|)

where ar is a in the reverse order. This finds the
offset that gives maximum correlation. We will use
Encconv to denote encodings with distconv.

• Encoding with DTW Distance Measure
Another classical measure for evaluating similar-
ity between time series is dynamic time warping

(DTW) [11]. DTW finds an optimal “path” that can
morph one signal to another. For gait signal, this
means DTW will likely consider x and x′ similar
if they are compressing/stretching variations of one
another. Figure 2 shows a cartoon that demonstrates
the flexibility of this measure. The DTW distance
measure is defined as follows:

distdtw(a,b) = DTWcost(a,b)

We will use Encdtw to denote encodings with
distdtw. Note that in the DTW algorithm, one may
specify the largest matching range, which in our
case can be conveniently set to half of the largest
step size.

Figure 2: DTW alignment between two segments of the
same subject. Blue is sampled from a normal pace ses-
sion, and red is from a fast pace session. Note that distdtw
for this pair of signals would be small because DTW
found an optimal way to align them.

In Figure 1(a), we illustrate how our encoding meth-
ods can make data more separable. This visualization is
made by projecting encoded samples from 3 randomly
selected classes onto 2D. One can see that the training
data is very separable and form tight clusters for Encconv.
However, the test examples do not necessarily fall into
the correct clusters and may be on the wrong side of the
decision boundary. We alleviate this problem with data
augmentation.

4.3 Data Augmentation

Besides designing variation-tolerant encodings, data
augmentation is another way to deal with variations in
samples. For example, applying a shift-invariant en-
coding corresponds to augmenting the data with shifted-
variations of observed data in terms of improving the
match between the training and testing distributions.

We identify three major natural variations in gait pat-
terns: shifts, stretching, and compression. Stretching
and compression corresponds to scaling the signal in the

3
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(a) Encconv (b) Encconv with data augmentation

Figure 1: Samples projected onto decision planes trained on encoded representations in the feature space with and
without augmentation. Transparent plus signs (+) represent samples from the training set, and opaque dots are samples
from testing set. Note that data augmentation reduces the amount of overlap between classes.

time axis. We can acquire these variations in the train-
ing set by sampling a session in the following way: (1)
select a random starting point, (2) select random win-
dow size and re-sample signal within the window into a
fixed length. Samples generated this way have all three
types of variations. In Figure 1(b), we show the advan-
tage of data augmentation using convolution as the simi-
larity measure.

5 Dataset Generation

In this section, we will describe how our dataset is gen-
erated and collected. We also provide a brief overview
of accelerometers and gyroscopes in terms of what they
measure.

5.1 Devices
IoT devices, specifically wearables, are becoming preva-
lent and most include some form of motion sensing
chip. For example, wearables such as the Pebble Watch
and Nike+ FuelBand contain 3-axis accelerometers [1].
These sensors are prevalent in smart phones including
Apple’s iPhone and most Android devices. Our exper-
imental device is an Android HTC Droid DNA placed
in the subject’s front left pocket. The Android smart
phone captures both accelerometer and gyroscope data
and records it locally before it is uploaded as a batch for
processing. We were able to sample at 50 Hz for both
the accelerometer and gyroscope, which should be suf-
ficient for capturing the necessary characteristics unique
to a subject’s gait.

5.2 Accelerometer
An accelerometer measures the change of position of a
test mass. Accelerometers react to a large number of ex-

day 1 day 2
P=1, O=1, Pace=1 P=1, O=1, Pace=1
P=2, O=1, Pace=1 P=1, O=1, Pace=2

- P=1, O=2, Pace=1

Table 1: Experimental configurations recorded for each
subject. Each cell is a single session corresponding to
50 seconds sensor data. For day 1 we collect 2 sessions
for each setting. P=path (1,2), O=orientation (1,2), Pace
(1=normal, 2=fast)

ternal forces including linear motion, gravity, centripetal
force, and other motions [6]. The measurement taken
from an accelerometer is the sum of all these forces in
terms of acceleration. A 3-axis accelerometer provides
measurements along 3 orthogonal axes, x,y,z.

5.3 Gyroscope

Gyroscopes are sensors that measure the angular veloc-
ity of an object. They measure the rate of rotation around
a single axis. Smart phones and wearables often contain
3-axis gyroscopes capable of extremely accurate, low-
latency measurements. These sensors provide a good
balance to the accelerometer as the measurements are
not biased by gravity or magnetic forces and are less
noisy [6].

5.4 Data Collection and Description

Gait measurements were collected under a variety of de-
vice orientations, paces, over different paths and days.
We define a session of gait measurements as a single
walk around our pre-defined course by a subject. Each
session is between 40 and 50 seconds in duration where
a smart device is placed in the subjects front left pocket

4
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Figure 3: Subjects walk on two paths: counterclockwise
and clockwise around the hallway Each subject walks
each path twice for a total of 4 recorded walks.

and the watch placed on their left wrist. The orientation
of the device is always vertical, with the device’s z-axis
pointed upward, and we alter whether the device screen
faces outward, either away from or facing the subject.
We have two different paces, one normal corresponding
to 3 to 5 feet per second and one brisk at 4 to 6 feet per
second. The two paths can be seen in Figure 3. The paths
correspond to a loop around an office hallway, one clock-
wise and the other counter-clockwise. We recorded all
of the subjects on two separate days. The break-down of
session configurations is listed in Table 1. We recorded
31 different subjects from our office building, an assort-
ment of students and staff. We have full data for 31 sub-
jects under the basic walk experimental configuration.
Our dataset is robust in the sense that we have 9 sub-
jects with multiple days and variations including phone
orientation and pace.

6 Experiments

We describe 5 different experiments using our gait
dataset. The complete training set serves as a baseline
for evaluating the capability of our model and confirm-
ing our intuition described in Section 4. The other 4 ex-
periments are designed to observe increasing levels of
variance between training and testing data. We consider
the following settings:

1. Complete Training Set: We take all sessions from
the dataset, break them down into segments, and
split the set of segments into training and testing
sets. The training set is complete because it contains
samples from every session. Note that the testing set
is still using disjoint set of samples.

2. Different Sessions: We take sessions from the same
day under the same orientation and pace setting, and
split them into training and testing sessions.

3. Different Orientation: Sessions are taken from the
same day under same pace, and then split by orien-
tation into training and testing sessions.

4. Different Days: Sessions are taken under same
pace and same orientation, and then split by days
into training and testing sessions.

5. Different pace: Sessions are taken from the same
day under same orientation, and then split by pace
into training and testing sessions.

Each training and testing segment contains 300 samples,
which roughly correspond to 6 to 7 seconds.

6.1 Evaluation of Data Augmentation and
Feature Encoding

We explore the intra-class variations under different set-
tings, and show how different schemes performs under
these variations. The reported performance is the multi-
class classification accuracy in each of the described set-
tings. Classification accuracy is the number of correctly
labeled predictions over the number of total examples in
the test set. We discuss the impact of data augmenta-
tion and the empirical results of two similarity measures,
convolution and DTW.

6.1.1 Data Augmentation

We extract segments of randomized length from train-
ing sessions, and then re-sample them with bi-cubic
interpolation into segments of a fixed length. In
these experiments, the window size is sampled from
Gaussian(300,30), where the standard deviation (30) is
selected empirically to give the best result. The resulting
segments are of length 300.

The performance of the convolution encoding with
and without data augmentation is shown in the first 2
columns of Table 2. For the complete training set, clas-
sification is near perfect because there is little variation
within the same session (as shown earlier in Section 4).
The convolution measure captures most of the variations
between different sessions with the larger number of sub-
jects. It is also able to capture most of the variations
under changes in orientations with 88% accuracy. It is
important to note that this is with a lower number of sub-
jects.

For sessions over different days we see a larger accu-
racy drop, implying a more significant change in gait pat-
tern over days. The lower accuracy for different pace is
expected, because the convolve-transform is not intended
to be scale invariant. With data augmentation, the accu-
racy is comparable in the first three setting because the
variation introduced by our synthetic data is not necessar-
ily important for the testing set. On the other hand, we
get significantly better results by having synthetic data
for predicting sessions of different pace. This suggests

5
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setting (# subjects) Encconv Encconv+aug Encdtw α β
complete training set (31) .99 .99 .99 .94 .90
different sessions (31) .88 .88 .99 .90 .88
different orientation (9) .88 .92 .73 n/a n/a
different days (9) .69 .77 .76 .48 .53
different pace (9) .48 .70 .79 .75 .76

Table 2: Comparison across different methods. It shows a significant improvement of Encconv by data augmentation.
Data augmentation does not change the outcome of Encdtw much and is therefore not listed on the table. α and β are
normalization-based methods proposed by Juefei-Xu et. al. Note the first two experiments consist of 31 subjects while
the others are only 9.

that our data augmentation captures some variation be-
tween different pace and over days.

6.1.2 Encoding Gains with Encconv and Encdtw

As described in Section 4, it is important for the transfor-
mation to capture legitimate variances related to pace. In
Section 4 we hypothesize that the purpose for encoding
in our case is to generalize training data. We demon-
strate the performance of Encdtw and Encconv in Table 2
(column 2 and 4) in order to empirically validate these
claims.

Our method outperforms the state-of-art for general,
individual sessions, and inter-day sessions. Many exist-
ing approaches rely on normalization techniques to re-
duce intra-class variations. While they can achieve rea-
sonable accuracy with normalized data, the normaliza-
tion process has two drawbacks. The process requires
a a long sequence to capture the periodicity necessary
for determining gait cycles. Secondly, the normalization
process is based on heuristics that require parametric tun-
ing per sensor.

Juefei-Xu et. al. proposes two normalization schemes,
α and β , that consist of gait period detection via using
peak finding heuristics [7]. The normalization method α
places the strike point in the center of each segment. The
normalization method β uses sampled data between two
strike points, using interpolation and re-sampling to yield
equal length sequences. Their β normalization provides
stretch invariance due to re-sampling the measurements
between pairs of steps to yield segments of equal length.

We implemented both of their normalization methods
and performed parameter screening to yield the best pos-
sible performance on our dataset using their approach
(their dataset was not publicly available at the time of
this writing).

Table 2 provides a comparison of our encoding
schemes versus their gait period detection and normal-
ization methods. We are able to provide improved accu-
racy on our dataset in all settings for Encdtw and all but
pace under Encconv with data augmentation. The pace
scenario shows that the normalization methods α and β

do provide some stretch invariance whereas Encconv does
not. However, we have shown in the previous section that
the gap can be bridged by data augmentation. We also
show that Encdtw outperforms the normalization-based
technique by being more tolerant to variation.2

We have observed that insufficient training data is a
challenge for gait recognition — segments within a ses-
sion are practically identical, so most gait datasets have
effectively less than 5 samples from each class. However,
if given enough samples, gait signals seem linearly sepa-
rable without involving complex non-linear transforma-
tions typical of many machine learning techniques (see
first row in Table 2). Unlike most machine learning prob-
lems, the task in gait signal recognition is not about find-
ing a non-linear transformation such that classes become
linearly separable, but should instead be focused on gen-
eralizing the available training data.

7 Conclusion

We have shown that gait signals are readily separable
using our encoding which requires almost no data pre-
processing. This is observed in our dataset as well as
other public gait datasets. The implication is that unlike
many other classical classification problems (e.g., com-
puter vision), there is no need to learn a complicated non-
linear transform to make the data easily separable.

We identify that the main challenge in gait pattern
classification is the disparity (e.g., different pace) be-
tween training and testing data, due to a small number
of effective samples. We discuss the characteristics of
gait signals, and show how feature encoding and data
augmentation alleviates the this problem. Our encoding
based method outperforms the best published result in
terms of short-segment gait signal classification.

2We attempted to introduce our orientation transformations to their
normalization schemes but it significantly degraded their performance
in all scenarios.
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Abstract
Cloud computing provides an attractive computing
paradigm in which computational resources are rented
on-demand to users with zero capital and maintenance
costs. Cloud providers offer different pricing options
to meet computing requirements of a wide variety of
applications. An attractive option for batch computing
is spot-instances, which allows users to place bids for
spare computing instances and rent them at a (often) sub-
stantially lower price compared to the fixed on-demand
price. However, this raises three main challenges for
users: how many instances to rent at any time? what
type (on-demand, spot, or both)? and what bid value to
use for spot instances? In particular, renting on-demand
risks high costs while renting spot instances risks job in-
terruption and delayed completion when the spot market
price exceeds the bid. This paper introduces an online
learning algorithm for resource allocation to address this
fundamental tradeoff between computation cost and per-
formance. Our algorithm dynamically adapts resource
allocation by learning from its performance on prior job
executions while incorporating history of spot prices and
workload characteristics. We provide theoretical bounds
on its performance and prove that the average regret of
our approach (compared to the best policy in hindsight)
vanishes to zero with time. Evaluation on traces from a
large datacenter cluster shows that our algorithm outper-
forms greedy allocation heuristics and quickly converges
to a small set of best performing policies.

1 Introduction

This paper presents an online learning approach that al-
locates resources for executing batch jobs on cloud plat-
forms by adaptively managing the tradeoff between the
cost of renting compute instances and the user-centric
utility of finishing jobs by their specified due dates.
Cloud computing is revolutionizing computing as a ser-

Figure 1: The variation in Amazon EC2 spot market prices
for ’large’ computing instances in the US East-coast region:
Linux (left) and Windows (right). The fixed on-demand price
for Linux and Windows instances is 0.34 and 0.48, respectively.

vice due to its cost-efficiency and flexibility. By allow-
ing multiplexing of large resources pools among users,
the cloud enables agility—the ability to dynamically
scale-out and scale-in application instances across host-
ing servers. Major cloud computing providers include
Amazon EC2, Microsoft’s Windows Azure, Google Ap-
pEngine, and IBM’s Smart Business cloud offerings.

The common cloud pricing schemes are (i) reserved,
(ii) on-demand, and (iii) spot. Reserved instances offer
users to make a one-time payment for reserving instances
over 1-3 years and then receive discounted hourly pric-
ing on usage. On-demand instances allow users to pay
for instances by the hour without any long-term commit-
ment. Spot instances, offered by Amazon EC2, allow
users to bid for spare instances and to run them as long as
their bid price is above the spot market price. For batch
applications with flexibility on when they can run (e.g.,
Monte Carlo simulations, software testing, image pro-
cessing, web crawling), renting spot instances can sig-
nificantly reduce the execution costs. Indeed, several en-
terprises claim to save 50%-66% in computing costs by
using spot instances over on-demand instances, or their
combination [3].
Reserved instances are most beneficial for hosting

long running services (e.g., web applications), and may
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also be used for batch jobs, especially if future load can
be predicted [19]. The focus of this work, however, is on
managing the choice between on-demand and spot in-
stances, which are suitable for batch jobs that perform
computation for a bounded period. Customers face a fun-
damental challenge of how to combine on-demand and
spot instances to execute their jobs. On one hand, al-
ways renting on-demand incurs high costs. On the other
hand, spot instances with a low bid price risks high de-
lay before the job gets started (till the bid is accepted),
or frequent interruption during its execution (when the
spot market price exceeds the bid). Figure 1 shows the
variation in Amazon EC2 spot prices for their US east
coast region for Linux and Windows instances of type
’large’. We observe that spot market prices exhibit a
significant fluctuation, and at times exceed even the on-
demand price. For batch jobs requiring strict comple-
tion deadlines, this fluctuation can directly impact the re-
sult quality. For example, web search requires frequent
crawling and update of search index as the freshness of
this data affects the end-user experience, product pur-
chases, and advertisement revenues [2].

Unfortunately, most customers resort to simple heuris-
tics to address these issues while renting computing in-
stances; we exemplify this observation by analyzing sev-
eral case studies, reported on the Amazon EC2 web-
site [3]. Litmus [16] offers testing tools to marketing
professionals for their web site designs and email cam-
paigns. Its heuristic for resource allocation is to first
launch spot instances and then on-demand instances if
spot instances do not get allocated within 20 minutes.
Their bid price is set to be above the on-demand price
to improve the probability of their bid getting accepted.
Similarly, BrowserMob [7], a startup that provides web-
site load testing and monitoring services, attempts to
launch spot instances first at a low bid price. If in-
stances do not launch within 7 minutes, it switches to on-
demand. Other companies manually assign delay sensi-
tive jobs to on-demand instances, and delay-tolerant ones
to spot instances. In general, these schemes do not pro-
vide any payoff guarantees or how far do they operate
from the optimal cost vs. performance point. Further,
as expected, these approaches are limited in terms of ex-
plored policies, which account for only a small portion
of the state space. Note that a strawman of simply wait-
ing for the spot instances at the lowest price and pur-
chasing in bulk risks delayed job completion, insufficient
resources (due to limit on spot instances and job paral-
lelism constraints), or both. Therefore, given fluctuat-
ing and unpredictable spot prices (Fig. 1), users do not
have an effective way of reinforcing the better perform-
ing policies.

In this paper, we propose an online learning approach
for automated resource allocation for batch applications,

which balances the fundamental tradeoff between cloud
computing costs and job due dates. Intuitively, given a
set of jobs and resource allocation policies, our algo-
rithm continuously adjusts per-policy weights based on
their performance on job executions, in order to rein-
force best performing policies. In addition, the learning
method takes into account prior history of spot prices and
characteristics of input jobs to adapt policy weights. Fi-
nally, to prevent overfitting to only a small set of policies,
our approach allows defining a broad range of param-
eterized policy combinations (based on discussion with
users and cloud operators) such as (a) rent on-demand,
spot instances, or both; (b) vary spot bid prices in a pre-
defined range; and (c) choose bid value based on past
spot market prices. Note that these policy combinations
are illustrative, not comprehensive, in the sense that ad-
ditional parameterized families of policies can be defined
and integrated into our framework. Likewise, our learn-
ing approach can incorporate other resource allocation
parameters being provided by cloud platforms e.g., Vir-
tual Machine (VM) instance type, datacenter/region.

Our proposed algorithm is based on machine learning
approaches (e.g., [8]), which aim to learn good perform-
ing policies given a set of candidate policies. While these
schemes provide performance guarantees with respect to
the optimal policy in hindsight, they are not applicable
as-is to our problem. In particular, they require a payoff
value per execution step to measure how well a policy
is performing and to tune the learning process. How-
ever, in batch computing, the performance of a policy
can only be calculated after the job has completed. Thus,
these schemes do not explicitly address the issue of delay
in getting feedback on how well a particular policy per-
formed in executing jobs. Our online learning algorithm
handles bounded delay and provides formal guarantees
on its performance which scales with the amount of de-
lay and the total number of jobs to be processed.

We evaluate our algorithms via simulations on a job
trace from a datacenter cluster and Amazon EC2 spot
market prices. We show that our approach outperforms
greedy resource allocation heuristics in terms of total
payoff – in particular, the average regret of our approach
(compared to the best policy in hindsight) vanishes to
zero with time. Further, it provides fast convergence
while only using a small amount of training data. Fi-
nally, our algorithm enables interpreting the allocation
strategy of the output policies, allowing users to apply
them directly in practice.

2 Background and System Model

In this section we first provide a background on the on-
line learning framework and then describe the problem
setup and the parameterized set of policies for resource
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allocation.
Regret-minimizing online learning. Our online learn-
ing framework is based on the substantial body of work
on learning algorithms that make repeated decisions
while aiming to minimize regret. The regret of an al-
gorithm is defined as the difference between the cumu-
lative performance of the sequence of its decisions and
the cumulative performance of the best fixed decision in
hindsight. We present only a brief overview of these al-
gorithms due to space constraints.

In general, an online decision problem can be for-
mulated as a repeated game between a learner (or deci-
sion maker) and the environment. The game proceeds in
rounds. In each round j, the environment (possibly con-
trolled by an adversary) assigns a reward f j(a) to each
possible action a, which is not revealed beforehand to
the learner. The learner then chooses one of the actions
a j, possibly in a randomized manner. The average payoff
of an action a is the average of rewards 1

J ∑J
j=1 f j(a) over

the time horizon J, and the learner’s average payoff is
the average received reward 1

J ∑J
j=1 f j(a j) over the time

horizon. The average regret of the learner is defined as
maxa

1
J ∑J

j=1 f j(a)− 1
J ∑J

i=1 f j(a j), namely the difference
between the average payoff of the best action and the
learner’s sequence of actions. The goal of the learner is
to minimize the average regret, and approach the average
gain of the best action. Several learning algorithms have
been proposed that approach zero average regret as the
time horizon J approaches infinity, even against a fully
adaptive adversary [8].

Our problem of allocating between on-demand and
spot instances can be cast as a problem of repeated deci-
sion making in which the resource allocation algorithm
must decide in a repeated fashion over which policies
to use for meeting job due dates while minimizing job
execution costs. However, our problem also differs from
standard online learning, in that the payoff of each policy
is not revealed immediately after it is chosen, but only af-
ter some delay (due to the time it takes to process a job).
This requires us to develop a modified online algorithm
and analysis.
Problem Setup. Our problem setup focuses on a single
enterprise whose batch jobs arrive over time. Jobs may
arrive at any point in time, however job arrival is moni-
tored every fixed time interval of L minutes e.g., L = 5.
For simplicity, we assume that each hour is evenly di-
vided into a fixed number of such time intervals (namely,
60/L). We refer to this fixed time interval as a time slot
(or slot); the time slots are indexed by t = 1,2, . . . .

Jobs. Each job j is characterized by five parame-
ters: (i) Arrival slot A j: If job j arrives at time ∈
[L(t ′ − 1),Lt ′), then A j = t ′. (ii) Due date d j ∈ N (mea-
sured in hours): If the job is not completed after d j time
units since its arrival A j, it becomes invalid and further

execution yields zero value. (iii) Job size z j (measured
in CPU instance hours to be executed): Note that for
many batch jobs such as parameter sweep applications
and software testing, z j is known in advance. Otherwise,
a small bounded over-estimate of z j suffices. (iv) Paral-
lelism constraint c j: The maximal degree of parallelism
i.e., the upper bound on number of instances that can be
simultaneously assigned to the job. (v) Value function:
Vj : N → R+, which is a monotonically non-increasing
function with Vj(τ) = 0 ∀τ > d j.

Thus, job j is described by the tuple {A j,d j,z j,c j,Vj}.
The job j is said to be active at time slot τ if less than
d j hours have passed since its arrival A j, and the total
instance hours assigned so far are less than z j .

Allocation updates. Each job j is allocated computing
instances during its execution. Given the existing cloud
pricing model of charging based on hourly boundaries,
the instance allocation of each active job is updated ev-
ery hour. The i-th allocation update for job j is formally
defined as a triplet of the form (oi

j,si
j,bi

j). oi
j denotes

the number of assigned on-demand instances; si
j denotes

the number of assigned spot instances and bi
j denotes

their bid values. The parallelism constraint translates to
oi

j + si
j ≤ c j. Note that a NOP decision i.e., allocating

zero resources to a job, is handled by setting oi
j and si

j to
zero.

Spot instances. The spot instances assigned to a job
operate until the spot market price exceeds the bid price.
However, as Figure 1 shows, the spot prices may change
unpredictably implying that spot instances can get ter-
minated at any time. Formally, consider some job j;
let us normalize the hour interval to the closed inter-
val [0,1]. Let yi

j ∈ [0,1] be the point in time in which
the spot price exceeded the i-th bid for job j; formally,
yi

j = infy∈[0,1]{ps(y)> bi
j}, where ps(·) is the spot price,

and yi
j ≡ 1 if the spot price does not exceed the bid. Then

the cost of utilizing spot instances for job j for its i-th al-

location is given by si
j ∗ p̂i

j, where p̂i
j =

∫ yi
j

0 p j(y)dy, and
the total amount of work carried out for this job by spot
instances is si

j ∗ yi
j (with the exception of the time slot in

which the job is completed, for which the total amount
of work is smaller). Note that under spot pricing, the
instance is charged for the full hour even if the job fin-
ishes earlier. However, if the instance is terminated due
to market price exceeding the bid, the user is not charged
for the last partial hour of execution. Further, we assume
that the cloud platform provides advance notification of
the instance revocation in this scenario.1 Finally, as in

1[23] studies dynamic checkpointing strategies for scenarios where
customers might incur substantial overheads due to out-of-bid situa-
tion. For simplicity, we do not model such scenarios in this paper.
However, we note that the techniques developed in [23] are comple-
mentary, and can be applied in conjunction to our online learning
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Amazon EC2, our model allows spot instances to be per-
sistent, in the sense that the user’s bid will keep being
submitted after each instance termination, until the job
gets completed or the user cancels it .

On-Demand instances. The price for an on-demand
instance is fixed and is denoted by p (per-unit per time-
interval). As above, the instance hour is paid entirely,
even if the job finishes before the end of the hourly inter-
val.

Utility. The utility for a user is defined as the differ-
ence between the overall value obtained from executing
all its jobs and the total costs paid for their execution.
Formally, let Tj be the number of hours for which job
j is executed (actual duration is rounded up to the next
hour). Note that if the job did not complete by its lifetime
d j, we set Tj = d j + 1 and allocation aTj

j = (0,0,0).
The utility for job j is given by:

Uj(a1
j , . . . ,a

Tj
j ) =Vj(Tj)−

Tj

∑
i=1

{

p̂i
js

i
j + p ·oi

j
}

(1)

The overall user utility is then simply the sum of job util-
ities: U(a) = ∑ j Uj(a1

j , . . . ,a
Tj
j ). The objective of our

online learning algorithm is to maximize the total user
utility.

For simplicity, we restrict attention to deadline value
functions, which are value functions of the form Vj(i) =
v j, for all i ∈ [1, . . . ,d j] and Vj(i) = 0 otherwise, i.e.,
completing job j by its due date has a fixed positive value
[12]. Note that our learning approach can be easily ex-
tended to handle general value functions.

Remark. We make an implicit assumption that a user
immediately gets the amount of instances it requests if
the “price is right” (i.e., if it pays the required price for
on-demand instances, or if its bid is higher than mar-
ket price for spot instances. In practice, however, a user
might exhibit delays in getting all the required instances,
especially if it requires a large amount of simultaneous
instances. While we could seamlessly incorporate such
delays into our model and solution framework, we ignore
this aspect here in order to keep the exposition simple.
Resource Allocation Policies. Our algorithmic frame-
work allows defining a broad range of policies for allo-
cating resources to jobs and the objective of our online
learning algorithm is to approach the performance of the
best policy in hindsight. We describe the parameterized
set of policies in this section, and present the learning
algorithm to adapt these policies, in detail in Section 3.

For each active job, a policy takes as input the job
specification and (possibly) history of spot prices, and
outputs an allocation. Formally, a policy π is a mapping
of the form π : J ×R+ ×R+ ×R

n
+ → A , which for

every active job j at time τ takes as input:

framework.

(i) the job specification of j: {A j,d j,z j,c j,Vj}

(ii) the remaining work for the job zτ
j

(iii) the total execution cost Cj incurred for j up to time
τ (namely, Cτ

j
△
= ∑τ−1

t′=A j
st′

j p̂t′
j + p ·ot′

j , and

(iv) a history sequence ps(·) of past spot prices.

In return, the policy outputs an allocation.
As expected, the set of possible policies define an ex-

plosively large state space. In particular, we must care-
fully handle all possible instance types (spot, on-demand,
both, or NOP), different spot bid prices, and their expo-
nential number of combinations in all possible job execu-
tion states. Of course, no approach can do an exhaustive
search of the policy state space in an efficient manner.
Therefore, our framework follows a best-effort approach
to tackle this problem by exploring as many policies as
possible in the practical operating range e.g., a spot bid
price close to zero has very low probability of being ac-
cepted; similarly, bidding is futile when the spot market
price is above the on-demand price. We address this is-
sue in detail in Section 3.

An elegant way to generate this practical set of poli-
cies is to describe them by a small number of control
parameters so that any particular choice of parameters
defines a single policy. We consider two basic families
of parameterized policies, which represent different ways
to incorporate the tradeoff between on-demand instances
and spot-instances: (1) Deadline-Centric. This family of
policies is parameterized by a deadline threshold M. If
the job’s deadline is more than M time units away, the
job attempts allocating only spot-instances. Otherwise
(i.e., deadline is getting closer), it uses only on-demand
instances. Further, it rejects jobs if they become non-
profitable (i.e., cost incurred exceeds utility value) or if
it cannot finish on time (since deadline value function
Vj will become zero). (2) Rate-Centric. This family of
policies is parameterized by a fixed rate σ of allocating
on-demand instances per round. In each round, the pol-
icy attempts to assign c j instances to job j as follows:
it requests σ ∗ c j instances on-demand (for simplicity,
we ignore rounding issues) at price p. It also requests
(1 − σ) ∗ c j spot instances, using a bid price strategy
which will be described shortly. The policy monitors the
amount of job processed so far, and if there is a risk of
not completing the job by its due date, it switches to on-
demand only. As above, it rejects jobs if they become
non-profitable or if it cannot finish on time. A pseudo-
code implementing this intuition is presented in Algo-
rithm 1. The pseudo-code for the deadline-centric family
is similar and thus omitted for brevity.

We next describe two different methods to set the bids
for the spot instances. Each of the policies above can

4



USENIX Association  11th International Conference on Autonomic Computing 181

use each of the methods described below: (i) Fixed bid.
A fixed bid value b is used throughout. (ii) Variable
bid. The bid price is chosen adaptively based on past
spot market prices (which makes sense as long as the
prices are not too fluctuating and unpredictable). The
variable bid method is parameterized by a weight γ and
a safety parameter ε to handle small price variations.
At each round, the bid price for spot instances is set as
the weighted average of past spot prices (where the ef-
fective horizon is determined by the weight γ) plus ε .
For brevity, we shall often use the terms fixed-bid poli-
cies or variable-bid policies, to indicate that a policy (ei-
ther deadline-centric or rate-centric) uses the fixed-bid
method or the variable-bid method, respectively. Ob-
serve that variable bid policies represent one simple al-
ternative for exploiting the knowledge about past spot
prices. The design of more “sophisticated” policies that
utilize price history, such as policies that incorporate po-
tential seasonality variation, is left as an interesting di-
rection for future work.

ALGORITHM 1: Ratio-centric Policy
Parameters (with Fixed-Bid method): On-demand rate
σ ∈ [0,1]; bid b ∈ R+

Parameters (with Variable-Bid method): On-demand
rate σ ∈ [0,1]; weight γ ∈ [0,1]; safety parameter ε ∈ R+

Input: Job parameters {d j,z j,c j,v j}
If c j ∗d j < z j or p∗σ ∗ z j > v j, drop job //Job too large or
expensive to handle profitably
for Time slot t in which the job is active do

If job is done, return
Let m be the number of remaining time slots till job
deadline (including the current one)
Let r be the remaining job size
Let q be the cost incurred so far in treating the job
// Check if more on-demand instances needed to ensure
timely job completion
if (σ +m−1)min{r,c j}< r then

// Check if running job just with on-demand is still
worthwhile
if p∗ r+q < v j then

Request min{r,c j} on-demand instances
else

Drop job
end if

else
Request σ ∗min{r,c j} on-demand instances
Request (1−σ)∗min{r,c j} spot instances at price:
• Fixed-Bid method: Bid Price b
• Variable-Bid method: 1

Z
∫

y ps(y)γτ−ydy+ ε , where
Z =

∫

y γτ−ydy is normalization constant
end if

end for

Note that these policy sets include, as special cases,
some simple heuristics that are used in practice [3]; for

example, heuristics that place a fixed bid or choose a
bid at random according to some distribution (both with
the option of switching to on-demand instances at some
point). These heuristics (and similar others) can be im-
plemented by fixing the weights given to the different
policies (e.g., to implement a policy which selects the
bid uniformly at random, set equal weights for policies
that use the fixed-bid method and zero weights for the
policies that use the variable-bid method). The learn-
ing approach which we describe below is naturally more
flexible and powerful, as it adapts the weights of the dif-
ferent policies based on performance. More generally,
we emphasize that our framework can certainly include
additional families of parameterized policies, while our
focus on the above two families is for simplicity and
proof of concept. In addition, our learning approach can
incorporate other parameters for resource allocation that
are provided by cloud platforms e.g., VM instance type,
datacenter/region. At the same time, some of these pa-
rameters may be set a priori based on user constraints
e.g., an ’extra-large’ instance may be fixed to accommo-
date large working sets of an application in memory, and
a datacenter may be fixed due to application data stored
in that location.

3 The Online Learning Algorithm

In this section we first give an overview of the algorithm,
and then describe how the algorithm is derived and pro-
vide theoretical guarantees on its performance.
Algorithm Overview. The learning algorithm pseudo-
code is presented as Algorithm 2. The algorithm works
by maintaining a distribution over the set of allocation
policies (described in Section 2). When a job arrives,
it picks a policy at random according to that distribu-
tion, and uses that policy to handle the job. After the
job finishes execution, the performance of each policy
on that job is evaluated, and its probability weight is
modified in accordance with its performance. The up-
date is such that high-performing policies (as measured
by f j(π)) are assigned a relatively higher weight than
low-performing policies. The multiplicative form of the
update ensures strong theoretical guarantees (as shown
later) and practical performance. The rate of modifi-
cation is controlled by a step-size parameter η j, which
slowly decays throughout the algorithm’s run. Our algo-
rithm also uses a parameter d defined as an upper bound
on the number of jobs that arrive during any single job’s
execution. Intuitively, d is a measure of the delay in-
curred between choosing which policy to treat a given
job, till we can evaluate its performance on that job.
Thus, d is closely related to job lifetimes d j defined in
Section 2. Note that while d j is measured in time units
(e.g., hours), d measures the number of new jobs arriv-
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ing during a given job’s execution. We again emphasize
that this delay is what sets our setting apart from stan-
dard online learning, where the feedback on each pol-
icy’s performance is immediate, and necessitates a mod-
ified algorithm and analysis. The running time of the
algorithm scales linearly with the number of policies and
thus our framework can deal with (polynomially) large
sets of policies. It should be mentioned that there exist
online learning techniques which can efficiently handle
exponentially large policy sets by taking the set structure
into account (e.g. [8], Chapter 5). Incorporating these
techniques here remains an interesting direction for fu-
ture work.

We assume, without loss of generality, that the payoff
for each job is bounded in the range [0,1]. If this does
not hold, then one can simply feed the algorithm with
normalized values of the payoffs fi( j). In practice, it
is enough for the payoffs to be on the order of ±1 on
average for the algorithm to work well, as shown in our
experiments in Section 4.

ALGORITHM 2: Online Learning Algorithm
Input: Set of n policies π parameterized by {1, . . . ,n},
upper bound d on jobs’ lifetime
Initialize w1 = (1/n,1/n, . . . ,1/n)
for j = 1, . . . ,J do

Receive job j
Pick policy π with probability w j,π , and apply to job j
if j ≤ d then

w j+1 := w j
else

η j :=
√

2log(n)/d( j−d)
for π = 1, . . . ,n do

Compute f j(π) to be the utility for job j−d,
assuming we used policy π
w j+1,π := w j,π exp

(

η j f j(π)
)

end for
for π = 1, . . . ,n do

w j+1,π := w j+1,π/∑n
r=1 w j+1,r

end for
end if

end for

Derivation of the Algorithm.Next we provide a formal
derivation of the algorithm as well as theoretical guaran-
tees. The setting of our learning framework can be ab-
stracted as follows: we divide time into rounds such that
round j starts when job j arrives. At each such round,
we make some choice on how to deal with the arriving
job. The choice is made by picking a policy π j from a
fixed set of n policies, which will be parameterized by
{1, . . . ,n}. However, initially, we do not know the utility
of our policy choice as future spot prices are unknown.
We can eventually compute this utility in retrospect, but
only after ≤ d rounds have elapsed and the relevant spot

prices are revealed.
Let f j(π j−d) denote the utility function of the policy

choice π j−d made in round j−d. Note that according to
our model, this function can be evaluated given the spot
prices till round j. Thus, ∑J+d

j=1+d f j(π j−d) is our total
payoff from all the jobs we handled. We measure the
algorithm’s performance in terms of average regret with
respect to any fixed choice in hindsight, i.e.,

max
π

1
J

J+d

∑
j=1+d

f j(π)−
1
J

J+d

∑
j=1+d

f j(π j−d).

Generally speaking, online learning algorithms attempt
to minimize this regret, and ensure that as J increases
the average regret converges to 0, hence the algorithm’s
performance converges to that of the single best policy in
hindsight. A crucial advantage of online learning is that
this can be attained without any statistical assumptions
on the job characteristics or the price fluctuations.

When d = 0, this problem reduces to the standard set-
ting of online learning, where we immediately obtain
feedback on the chosen policy’s performance. However,
as discussed in Section 1, this setting does not apply here
because the function f j does not depend on the learner’s
current policy choice π j, but rather on its choice at an
earlier round, π j−d . Hence, there is a delay between the
algorithm’s decision and feedback on the decision’s out-
come.

Our algorithm is based on the following randomized
approach. The learner first picks an n-dimensional dis-
tribution vector w1 = (1/n, . . . ,1/n), whose entries are
indexed by the policies π . At every round j, the learner
chooses a policy π j ∈ {1, . . . ,n} with probability wj,π j . If
j ≤ d, the learner lets w j+1 = w j. Otherwise it updates
the distribution according to

wj+1,π =
wj,π exp(η j f j(π))

∑n
π=1 wj,i exp(η j f j(i))

,

where η j is a step-size parameter. Again, this form of
update puts more weight to higher-performing policies,
as measured by f j(π).
Theoretical Guarantees. The following result quanti-
fies the regret of the algorithm, as well as the (theoreti-
cally optimal) choice of the step-size parameter η j. This
theorem shows that the average regret of the algorithm
scales with the jobs’ lifetime bound d, and decays to
zero with the number of jobs J. Specifically, as J in-
creases, the performance of our algorithm converges to
that of the best-performing policy in hindsight. This be-
havior is to be expected from a learning algorithm, and
crucially, occurs without any statistical assumptions on
the jobs characteristics or the price fluctuations. The per-
formance also depends - but very weakly - on the size
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n of our set of policies. From a machine learning per-
spective, the result shows that the multiplicative-update
mechanism that we build upon can indeed be adapted to a
delayed feedback setting, by adapting the step-size to the
delay bound, thus retaining its simplicity and scalability.

Theorem 1 Suppose (without loss of generality) that
f j for all j = 1, . . . ,J is bounded in [0,1]. For
the algorithm described above, suppose we pick η j =
√

1log(n)/2d( j− d). Then for any δ ∈ (0,1), it holds
with probability at least 1− δ over the algorithm’s ran-
domness that

max
π

1
J

J

∑
j=1

f j(π)−
1
J

J

∑
j=1

f j(π j−d) ≤ 9
√

2d log(n/δ )
J

.

The proof of the theorem is omitted here due to space
constraints, and can be found in [18].

4 Evaluation

In this section we evaluate the performance of our learn-
ing algorithm via simulations on synthetic job data as
well as a real dataset from a large batch computing clus-
ter. The benefits of using synthetic datasets is that it
allows the flexibility to evaluate our approach under a
wide range of workloads. Before continuing, we would
like to emphasize that the contribution of our paper is be-
yond the design of particular sets of policies - there are
many other policies which can potentially be designed
for our task. What we provide is a meta-algorithm which
can work on any possible policy set, and in our exper-
iments we intend to exemplify this on plausible policy
sets which can be easily understood and interpreted.

Throughout this section, the parameters of the differ-
ent policies are set such that the entire range of plausible
policies is covered (with limitation of discretization). For
example, the spot-price time series in Section 4.2 ranges
between 0.12 and 0.68 (see Fig. 6(a)). Accordingly, we
allow the fixed bids b to range between 0.15 and 0.7 with
5 cents resolution. Higher than 0.7 bids perform exactly
as the 0.7 bid, hence can be excluded; bids of 0.1 or lower
will always be rejected, hence can be excluded as well.

4.1 Simulations on Synthetic Data
Setup: For all the experiments on synthetic data, we use
the following setup. Job arrivals are generated accord-
ing to a Poisson distribution with mean 10 minutes; job
size z j (in instance-hours) is chosen uniformly and in-
dependently at random up to a maximum size of 100,
and the parallelism constraint c j was fixed at 20 instance-
hours. Job values scale with the job size and the instance
prices. More precisely, we generate the value as x∗ p∗z j,
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Figure 2: Total payoff for processing 20k jobs across each of
the 408 resource allocation policies (while algorithm’s payoff
is shown as a dashed black line). The first 204 policies are
rate-centric, and the last 204 policies are deadline-centric.

where x is a uniform random variable in [0.5,2], and p is
the on-demand price. Similarly, job deadlines also scale
with size and are chosen to be x ∗ z j/c j, where x is uni-
formly random on [1,2]. As discussed in Section 3, the
on-demand and spot prices are normalized (divided by
10) to ensure that the average payoff per job is on the or-
der of ±1. The on-demand price is 0.25 per hour, while
spot prices are updated every 5 minutes (the way we gen-
erate spot prices varies across experiments).
Resource allocation policies. We generate a parameter-
ized set of policies. Specifically, we use 204 deadline-
centric policies, and a same number of rate-centric poli-
cies. These policy set uses six values for M (M ∈
{0, . . . ,5}) and σ (σ ∈ {0,0.2,0.4,0.6,0.8,1}), respec-
tively.

For either policy set, we have policies that use
the fixed-bid method (b ∈ {0.1,0.15,0.2,0.25}), and
policies that use the variable-bid method (weight
γ ∈ {0,0.2,0.4,0.6,0.8}, and safety parameter ε ∈
{0,0.02,0.04,0.06,0.08,0.1}).
Simulation results: Experiment 1. In the first experi-
ment, we compare the total payoff across 10k jobs of all
the 408 policies to our algorithm. Spot prices are cho-
sen independently and randomly as 0.15+ 0.05x, where
x is a standard Gaussian random variable (negative values
were clipped to 0). The results presented below pertain
to a single run of the algorithm, as they were virtually
identical across independent runs. Figure 2 shows the to-
tal payoff for the 408 policies for this dataset. The first
204 policies are rate-centric policies, while the remain-
ing 204 are deadline-centric policies. The performance
of our algorithm is marked using dashed line. As can be
seen, our algorithm performs close to the best policies in
hindsight. Further, it is interesting to note that we have
both deadline-centric and rate-centric policies among the
best policies, indicating that one needs to consider both
sets as candidate policies.

We perform three additional experiment with similar

7
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Figure 3: Evaluation under stationary spot-price distribution
(mean spot price of 0.1): Probability assigned per policy after
executing 500, 1000, 2500 and 5000 jobs.

setup to the above, in order to obtain insights on the prop-
erties and inner-working of the algorithm. To be able to
dive deeper into the analysis, we use only the 204 rate-
centric policies. The only element that we modify across
experiments is the statistical properties of the spot-prices
sequence.
Experiment 2. Spot prices are generated as above, except
that we use 0.1 as their mean (opposed to 0.2 above).
After executing 1000 jobs, our algorithm performs close
to that of the best policy as it assigns probability close
to 1 for that policy, while outperforming 199 out of total
204 policies. Further, its average regret is only 1.3 as
opposed to 7.5 on average across all policies. Note that
the upper bound on the delay in this experiment is d =
66, i.e., up to 66 jobs are being processed while a single
job finishes execution. This shows that our approach can
handle significant delay in getting feedback, while still
performing close to the best policy.

In this experiment, the best policy in hindsight uses a
fixed-bid of 0.25. This can be explained by considering
the parameters of our simulation: since the on-demand
price is 0.25 and the spot price is always relatively lower,
a bid of 0.25 always yields allocation of spot instances
for the entire hour. This result also highlights the easy in-
terpretation of the resource allocation strategy of the best
policy. Figure 3 shows the probability assignment for
each policy over time by our algorithm after executing
500, 1000, 2500 and 5000 jobs. We observe that as the
number of processed jobs increase, our algorithm pro-
vides performance close to the best policy in hindsight.
Experiment 3. In the next experiment, the spot prices is
set as above for the first 10% of the jobs, and then the
mean is increased to 0.2 (rather than 0.1) during the ex-
ecution of the last 90% jobs. This setup corresponds to
a non-stationary distribution: a learning algorithm which
simply attempts to find the best policy at the beginning
and stick to it, will be severely penalized when the dy-
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Figure 4: Evaluation under non-stationary distribution (mean
spot price of 0.2): (a) Total payoff for executing 10k jobs across
each of the 204 policies (while algorithm’s payoff is shown as
a dashed black line) and (b) the final probability assigned per
policy by our learning algorithm.

namics of spot prices change. Figure 4 shows the eval-
uation results. We observe that our online algorithm is
able to adapt to changing dynamics and converges to a
probability weight distribution different from the previ-
ous setting; Overall, our algorithm attains an average re-
gret of only 0.5, as opposed to 4.8 on average across 204
baseline policies.

Note that in this setting, the best policies are those
which rely purely on on-demand instances instead of
spot instances. This is expected because the spot prices
tend to be only slightly lower than the on-demand price,
and their dynamic volatility make them unattractive in
comparison. This result demonstrates that there are in-
deed scenarios where the dilemma between choosing on-
demand vs. spot instances is important and can signifi-
cantly impact performance, and that no single instance
type is always suitable.
Experiment 4. This time we set the spot price to alternate
between 0.3 for one hour and then zero in the next. This
variation is favorable for variable-bid policies with small
γ , which use a small history of spot prices to determine
their next bid. Such policies quickly adapt when the spot
price drops. In contrast, fixed-bid policies and variable-
bid policies with large γ suffer, as their bid price is not
sufficiently adaptive. Figure 5 shows the results. We
find that the group of highest-payoff policies are those
for which γ = 0 i.e., they use the last spot price to choose
a bid for the current round, and thus quickly adapt to
changing spot prices. Further, our algorithm quickly de-
tects and adapts to the best policies in this setting. The
average regret obtained by our algorithm is 0.8 compared
to 4.5 on average for our baseline policies. Moreover, the
algorithm’s overall performance is better than 192 out of
204 policies.

4.2 Evaluation on Real Datasets
Setup: Workload data. We use job traces from a large
batch computing cluster for two days consisting of about
600 MapReduce jobs. Each MapReduce job comprises
multiple phases of execution where the next phase can
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Figure 5: Evaluation under highly dynamic distribution (hourly
spot prices alternate between 0.3 and zero): (a) Total payoff for
processing 10k jobs across each of the 204 policies (algorithm’s
payoff is shown as a dashed black line), and (b) the final prob-
ability assigned per policy by our learning algorithm.
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Figure 6: Evaluation on real dataset: (a) Amazon EC2 spot
pricing data (subset of data from Figure 1) for Linux instances
of type ’large’. The fixed on-demand price is 0.34; (b) To-
tal payoff for processing 20k jobs across each of the 504 re-
source allocation policies (while algorithm’s payoff is shown
as a dashed black line)

start only after all tasks in the previous phase have
completed. The trace includes the runtime of the job
in server CPU hours (totCPUHours), the total num-
ber of servers allocated to it (totServers) and the max-
imum number of servers allocated to a job per phase
(maxServersPerPhase). Since our job model differs from
the MapReduce model in terms of phase dependency,
we construct the parallelism constraint from the trace as
follows: since the average running time of a server is
totCPUHours

totServers , we set the parallelism bound c j for each job
to be c j = maxServersPerPhase ∗ totCPUHours

totServers . Note that
this bound is in terms of CPU hours as required. Since
the deadline values per job are not specified, we use the
job completion time as its deadline. For assigning val-
ues per job, we generate them using the same approach
as for synthetic datasets. Specifically, we assign a ran-
dom value for each job j equal to its total size (in CPU
hours) times the on-demand price times B = (α + Nj)
where α = 5 and Nj ∈ [0,1] is drawn uniformly at ran-
dom. The job trace is replicated to generate 20k jobs.

Spot Prices. We use a subset of the historical spot
price from Amazon EC2 as shown in Figure 1 for ’large’
Linux instances. Figure 6(a) shows the selected sample
of spot price history showing significant price variation
over time. Intuitively, we expect that overall that policies
that use a large ratio of spot instances will perform bet-
ter since on average, the spot price is about half of the

on-demand price.
Resource Allocation Prices. We generated a total of

504 policies, half rate-centric and half deadline-centric.
In each half, the first 72 are fixed-bid policies (i.e. poli-
cies that use the fixed-bid method) in increasing or-
der of (on-demand rate, bid price). The remaining
180 variable-bid policies are in increasing order of (on-
demand rate, weight, safety parameter). The possi-
ble values for the different parameters are as described
for the synthetic data experiments, with the exception
that we allow more options for the fixed bid price, b ∈
{0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7}.

Evaluating our online algorithm on the real trace
poses several new challenges compared to the synthetic
datasets in Section 4.1. First, jobs sizes and hence their
values are highly variable, to the effect that the difference
in size between small and large jobs can be of six orders
of magnitude. Second, spot prices can exhibit high vari-
ability, or alternatively be almost stable towards the end
as exemplified in Figure 6(a).
Simulation results: Figure 6(b) shows the results for
a typical run of this experiment. Notably, the payoff
of our algorithm outperforms the performance of most
of individual policies, and obtains comparable perfor-
mance to the best individual policies (which are a sub-
set of the rate-centric policies). We repeated the ex-
periment 20 times, and obtained the following results:
The average regret per job for our learning algorithm is
2071± 1143, while the average regret across policies is
70654± 12473. Note that the average regret of our al-
gorithm is around 34 times better (on average) than the
average regret across policies.

Figure 7 shows the evolution of policy weights over
time for a typical run, until converging to final policy
weights (after handling the entire 20000 jobs). We ob-
serve that our algorithm evolves from preferring a rel-
atively large subset of both deadline-centric and rate-
centric policies (at around 150 jobs) to preferring only
rate-centric policies, both fixed-bid and variable-bid (at
around 2000 jobs). Eventually, the algorithm converges
to a single rate-centric policy with fixed bid. This behav-
ior can be explained based on spot pricing data in Fig-
ure 6(a): Due to initially high variability in spot prices,
our algorithm “alternates” between fixed-bid policies and
variable-bid policies, which try to learn from past prices.
However, since the prices show little variability for the
remaining two thirds of the data, the algorithm progres-
sively adapts its weight for the fixed-bid policy, which is
commensurate with the almost stable pricing curve.

5 Related literature

While there exist other potential approaches to our prob-
lem, we considered an online learning approach due to its

9



186 11th International Conference on Autonomic Computing USENIX Association

0 100 200 300 400 500 600
0

1

2

3

4

5

6
x 10−3

Pr
ob

ab
ilit

y

Distribution after 150 jobs

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

Pr
ob

ab
ilit

y

Distribution after 1000 jobs

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

0.03

Pr
ob

ab
ilit

y

Policy Number

Distribution after 3000 jobs

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y

Policy Number

Distribution after 5000 jobs

Figure 7: Evaluation on real dataset: The probability assigned
per policy by our learning algorithm after processing 150, 1000,
3000 and 5000 jobs. The algorithm converges to a single policy
(fixed-bid rate-centric policy) marked by an arrow.

lack of any stochastic assumptions, its online (rather than
offline) nature, its capability to work on arbitrary policy
sets, and its ability to adapt to delayed feedback. The
idea of applying online learning algorithms for sequen-
tial decision-making tasks is well known ([9]), and there
are quite a few papers which study various engineering
applications (e.g., [10, 5, 11, 15]). However, these efforts
do not deal with the problem of delayed feedback as it
violates the standard framework of online learning. The
issue of delay has been previously considered (see [14]
and references therein), but are either not in the context
of the online techniques we are using, or propose less-
practical solutions such as running many multiple copies
of the algorithm in parallel. In any case, we are not aware
of any prior study of delay-tolerant online learning pro-
cedures for our application domain.

The launch of commercial cloud computing offerings
has motivated the systems research community to inves-
tigate how to exploit this market for efficient resource
allocation and cost reductions. Some solution concepts
are borrowed from earlier works on executing jobs in
multiple grids (e.g., [20] and references therein). How-
ever, new techniques are required in the cloud comput-
ing context, which directly incorporate cost considera-
tions and a variety of instance renting options. The have
been numerous works in this context dealing with dif-
ferent provider and customers scenarios. One branch of
papers consider the auto-scaling problem, where an ap-
plication owner has to decide on the right number and
type of VMs to be purchased, and dynamically adapt re-
sources as a function of changing workload conditions
(see, e.g., [17, 6] and references therein).

We focus the reminder of our literature survey on
cloud resource management papers that include spot in-

stances as one of the allocation options. Some papers
focus on building statistical models for spot prices which
can be then used to decide when to purchase EC2 spot
instances (see, e.g., [13, 1]). Similarly, [24] examines
the statistical properties of customer workload with the
objective of helping the cloud determine how much re-
sources to allocate for spot instances.

In the context of large-scale batch applications, [4]
proposes a probabilistic model for bidding in spot prices
while taking into account job termination probabilities.
However, [4] focuses on pre-computation of a fixed (non-
adaptive) bid, which is determined greedily based on ex-
isting market conditions; moreover, the suggested frame-
work does not support an automatic selection between
on-demand and spot instances. [22] uses a genetic algo-
rithm to quickly approximate the pareto-set of makespan
and cost for a bag of tasks; each underlying resource
configuration consists of a different mix of on-demand
and spot instances. The setting in [22] is fundamen-
tally different than ours, since [22] optimizes a global
makespan objective, while we assume that jobs have in-
dividual deadlines. Finally, [21] proposes near-optimal
bidding strategies for cloud service brokers that utilize
the spot instance market to reduce the computational cost
while maximizing the profit. Our work differs from [21]
in two main aspects. First, unlike [21], our online learn-
ing framework does not require any distributional as-
sumptions on the spot price evolution (or the job model).
Second, our model may associate a different value and
deadline for each job, whereas in [21] the value is only
a function of job size, and deadlines are not explicitly
treated.

6 Conclusion

In this paper we design and evaluate an online learning
algorithm for automated and adaptive resource allocation
for executing batch jobs over cloud computing platforms.
Our basic model can be extended to solve other resource
allocation problems in cloud domains such as renting
small vs. medium vs. large instances, choosing com-
puting regions, and different bundling options in terms
of CPU, memory, network and storage. We expect that
the learning framework developed here would be useful
in addressing these extensions. An interesting direction
for future research is incorporating reserved instances,
for long-term handling of multiple jobs. This makes the
algorithm stateful, in the sense that its actions affect the
payoffs of policies chosen in the future. This does not ac-
cord with our current theoretical framework, but may be
handled using different tools from competitive analysis.
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learning under delayed feedback. In ICML, 2013.

[15] B. Kveton, J. Y. Yu, G. Theocharous, and S. Man-
nor. Online learning with expert advice and finite-
horizon constraints. In AAAI, 2008.

[16] Litmus. https://aws.amazon.com/

solutions/case-studies/Litmus.

[17] M. Mao and M. Humphrey. Auto-scaling to mini-
mize cost and meet application deadlines in cloud
workflows. In Proceedings of 2011 International
Conference for High Performance Computing, Net-
working, Storage and Analysis, page 49. ACM,
2011.

[18] I. Menache, O. Shamir, and N. Jain. On-demand,
spot, or both: Dynamic resource allocation for
executing batch jobs in the cloud. Technical
report, Microsoft Research, May 2014. Avail-
able from http://research.microsoft.com/

apps/pubs/default.aspx?id=217154.

[19] S. Shen, K. Deng, A. Iosup, and D. Epema.
Scheduling jobs in the cloud using on-demand and
reserved instances. In Euro-Par 2013 Parallel Pro-
cessing, pages 242–254. Springer, 2013.

[20] M. Silberstein, A. Sharov, D. Geiger, and A. Schus-
ter. Gridbot: execution of bags of tasks in multiple
grids. In Proceedings of the Conference on High
Performance Computing Networking, Storage and
Analysis, page 11. ACM, 2009.

[21] Y. Song, M. Zafer, and K.-W. Lee. Optimal bidding
in spot instance market. In INFOCOM, pages 190–
198, 2012.

[22] A. Vintila, A.-M. Oprescu, and T. Kielmann. Fast
(re-)configuration of mixed on-demand and spot in-
stance pools for high-throughput computing. In
Proceedings of the first ACM workshop on Opti-
mization techniques for resources management in
clouds, pages 25–32. ACM, 2013.

[23] S. Yi, A. Andrzejak, and D. Kondo. Monetary
cost-aware checkpointing and migration on Ama-
zon cloud spot instances. IEEE Transactions on
Services Computing, 5(4):512–524, 2012.
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Abstract

Supporting real-time jobs on MapReduce systems is par-
ticularly challenging due to the heterogeneity of the en-
vironment, the load imbalance caused by skewed data
blocks, as well as real-time response demands imposed
by the applications. In this paper we describe our ap-
proach for scheduling real-time, skewed MapReduce
jobs in heterogeneous systems. Our approach comprises
the following components: (i) a distributed scheduling
algorithm for scheduling real-time MapReduce jobs end-
to-end, and (ii) techniques for handling the data skew-
ness that frequently arises in MapReduce environments
and can lead to significant load imbalances. Our detailed
experimental results using real datasets on a truly hetero-
geneous environment, Planetlab, illustrate that our ap-
proach is practical, exhibits good performance and con-
sistently outperforms its competitors.

1 Introduction

Today, we are experiencing increased demand for pro-
cessing large amounts of data-intensive tasks. Systems
such as IBM’s InfoSphere BigInsights [20], Amazon’s
DynamoDB [2] and Google’s MapReduce [10], have
rapidly become de facto big data processing frameworks.
These systems need to be fast, scalable and highly avail-
able. In particular, Google’s MapReduce [10] framework
has been proposed as a powerful and cost-effective ap-
proach for massive-scale processing. It has been utilized
by some of the major computing companies, including
Amazon, eBay, Facebook, IBM, LinkedIn, Twitter and
Yahoo!, via its open-source implementation Hadoop [17]
in a wide variety of application domains including real-
time analysis of sensor data streams, real-time stock mar-
ket data analysis and financial trading applications.

The MapReduce model breaks intense processing jobs
into smaller tasks that run in parallel on multiple ma-
chines. Jobs are split into two stages of processing, map
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Figure 1: Impact of skewed partitions on reduce tasks’
execution times

and reduce: input data are processed by tasks comprising
the map phase, generating intermediate (key, value) pairs.
Different values corresponding to the same key are then
aggregated, and each key along with its associated values
are transmitted to the reduce phase for further data pro-
cessing. The partitioning of the intermediate (key,value)
pairs to the reduce tasks is based on a partitioning func-
tion, which in most cases is a simple hash function. How-
ever, partitions (i.e., the set of intermediate (key,value)
pairs that will be processed by the same reduce task) can
be of varying size, leading to significant data skewness
challenges and critical delays on the execution times of
the corresponding reduce tasks.

We use the following example to illustrate the load
imbalances that can occur due to skewness (i.e., parti-
tions of varying sizes) as well as the effect on the exe-
cution times of the tasks, when processing skewed data-
intensive MapReduce tasks. Figure 1 illustrates the dis-
tribution of the partitions’ sizes and the corresponding
execution times of the reduce tasks for a MapReduce job
that processes a Youtube social graph (detailed informa-
tion about the experiment can be found in the experimen-
tal evaluation section). The experiment run on Planetlab,
using 82 processing cores and applying the hash function
(hashcode(key)modR, where R is the number of reduce
tasks) proposed in the original MapReduce framework
[10]. The figure clearly depicts that the exhibited skew-
ness of the partition sizes affects the execution time of
reduce tasks due to the uneven distribution of the data.

1
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The problem is further exacerbated by the fact that
jobs often have real-time response requirements, in the
form of deadlines. As was pointed out by a recent study
on Facebook’s and Yahoo!’s production workload traces,
95% percentage of their production jobs are short run-
ning with an average real-time response requirement of
30 seconds [6], [30]. Timely execution of the tasks is a
challenging problem due to the large heterogeneity and
resource sharing in the nodes; in a shared processing en-
vironment, the execution times of the jobs are greatly af-
fected by multiple tasks invoked concurrently and asyn-
chronously by many jobs that are executed on the same
computing resources. Conditions such as slow or misbe-
having tasks (i.e., due to hardware failures or misconfig-
uration), can severely affect the performance of the entire
jobs [10]. Nevertheless, to make the deployment of these
systems practical, the jobs must be able to operate au-
tonomously in highly dynamic environments, and meet
real-time demands, even under load spikes and unpre-
dictable initiation of new tasks.

Current scheduling techniques in the Hadoop MapRe-
duce framework (the most widely used MapReduce im-
plementation) are not adequate, as they either adopt Fair
scheduling [19] or Capacity scheduling [18]. These
strive to balance the load across the resources rather
than meeting real-time demands of the jobs. Recent
approaches for scheduling MapReduce jobs include the
LATE [42] and EDF [39] schedulers, however both ap-
proaches focus on scheduling and do not examine the im-
pact of skewed data on the execution time of jobs. With
respect to the skewed partitions problem, work has been
mainly done by [14] and [27]. The first aims at distribut-
ing similar sized partitions among the available reduce
tasks, but in heterogeneous environments this approach
can lead to the assignment of large-size partitions to slow
nodes. Skewtune [27] on the other side, proposes the
repartitioning of heavily skewed partitions, however the
overhead of such schemes can degrade the performance
of short running jobs. It is clear that none of the exist-
ing works offers a unified solution for the two problems
but rather examines them separately without taking into
account their interaction.

In this work, we present DynamicShare, our sys-
tem for supporting the execution of real-time, skewed
MapReduce jobs in heterogeneous environments. Our
goal is to address the joint problem of: (a) scheduling
MapReduce jobs dynamically to maximize the proba-
bility of meeting their real-time response requirements,
and (b) effectively handle the issue of data skewness.
We focus on the execution of short running jobs, simi-
lar to Facebook Corona [37], (typical queries are: iden-
tify common friends in Facebook), which execute in the
order of seconds. To our knowledge this is the first pro-
posal towards a unified solution to the stated problem.

Our approach makes the following contributions:

1. We present a distributed scheduling algorithm for
scheduling jobs end-to-end. DynamicShare uses
measurements of laxity values of the tasks, pro-
jected latencies and measurements of resource loads
to adjust their scheduling order to compensate for
queuing delays, estimates the execution times of the
tasks using a non-parametric regression technique
and identifies overloaded nodes early on through a
Local Outlier Factor algorithm.

2. To handle the data skewness that arises in the reduce
phase, we design two algorithms, a simple but effi-
cient Simple Partitions’ assignment algorithm that
considers the sizes of the partitions and the variable
processing capabilities of the nodes to make an ap-
propriate placement, and a Count-Min sketches al-
gorithm that enables an even better distribution of
the partitions but at the expense of additional execu-
tion time for the partitions’ assignment procedure.

3. We have implemented and evaluated DynamicShare
on Planetlab, a truly heterogeneous environment,
using 82 processing cores in total. Our experi-
mental results utilizing two different datasets, from
Youtube and Twitter networks, illustrate that our ap-
proach is practical, meets jobs’ real-time response
demands, effectively addresses the issue of highly
skewed data, and outperforms its competitors.

2 System Model and Architecture

2.1 System Model
A MapReduce job is modelled as a sequence of invoca-
tions of M map and R reduce tasks (shown in Figure 2).
Tasks are modelled as follows: map(k1,v1)⇒ [k2,v2] and
reduce(k2, [v2])⇒ [k3,v3] . Map tasks take as input (k1,v1)
pairs and return a list of (key,value) pairs of possibly dif-
ferent types, k2 and v2. The values associated with the
same key k2 are grouped together into a list and passed
as input to the appropriate reduce task, which emits ar-
bitrary (key,value) pairs of a final type, k3 and v3. All
(k2, [v2]) pairs processed by the same reduce task on a
cluster’s node, are considered a partition. Recent works,
such as [14], suggest the usage of a larger number of par-
titions compared to the number of reduce tasks to mini-
mize the skewness of the intermediate data. Our frame-
work follows this approach.

We consider soft real-time MapReduce jobs that are
aperiodic and, thus, their arrival times are not known a
priori. We focus on applications with intensive reduce
phase and limited network transfers. Each job j is as-
sociated with a number of parameters: Deadline j is the

2
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Figure 2: MapReduce Computation Model

time interval, starting at job initiation, within which job j
must complete (deadline values are typically assigned by
a system administrator based on the real-time demands
of the jobs, determining the appropriate deadline for the
job is outside the scope of the paper). Pro j exec time j is
the estimated amount of time required for the job to com-
plete, this includes communication and queueing times
at the system resources. Every job j should execute
within its Deadline j, that is, the sum of the computation
times and the corresponding communication times of all
tasks invoked by the job (denoted as projected end-to-end
execution time) should be smaller than the Deadline j.
MapReduce jobs are data-intensive jobs, thus, the end-
to-end execution time is mainly attributed to the execu-
tion times of the tasks and the communication times are
negligible. Laxity j is defined as the difference between
the Deadline j and Pro j exec time j, and is considered as
a measure of urgency for the j job. The laxity value for
each job is updated dynamically during execution; and
determines the order with which the job’s tasks will be
scheduled at the system resources. Finally, split size j is
the user-defined size of a split input file for job j.

Each task t of job j is described with the following
metrics: cpui,t and memoryi,t represent the average per-
centage of CPU and memory required for task t to exe-
cute on Worker i. mi,t is the estimated mean execution
time of a map task on Worker i. This includes the re-
quired time to read the total amount of input data, execute
the map method and transmit the intermediate pairs to the
reduce tasks. Similarly, ri,t depicts the estimated execu-
tion time of a reduce task, this corresponds to the time
required for grouping (key,value) pairs with the same
key into a single (key,list o f values) pair, plus the re-
quired time for executing the reduce method. Finally
partitions sizei,t holds the total size of the partitions that
are assigned on Worker i for a reduce task t.

2.2 DynamicShare Architecture
The DynamicShare architecture (shown in Figure 3)
comprises a single Master node and multiple Worker
nodes. The Master receives MapReduce jobs, along with
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Figure 3: DynamicShare Architecture

their corresponding deadline requirements. It is respon-
sible for the assignment of the map and reduce tasks to
Workers and the monitoring of the currently executing
jobs. For each submitted job, the Master estimates the
execution times of the map and reduce tasks in order to
compute the execution time of the whole job and its cor-
responding laxity value. This value will be used by the
TaskScheduler component at each Worker when schedul-
ing the job’s tasks (Section III). The Master is responsi-
ble to keep track of current resource usage statistics (i.e.,
CPU, memory) along with their respective laxity values,
as reported by the Monitor components at the individ-
ual Worker nodes during task execution. This informa-
tion will also be used by the anomaly detection algorithm
to identify overloaded nodes. The Master invokes the
partitions’ assignment algorithm to decide how to dis-
tribute the generated partitions to the available reduce
tasks (Section IV). Finally, the input data file for each
job is uploaded to the cluster and distributed as equal
sized split files to the Workers for processing by the map
tasks; the size of the split file is typically user-defined.
Techniques such as the one proposed in [22] can further
enhance our framework to distribute the split files based
on the processing capabilities of the nodes in the cluster.

3 Dynamic Real-Time Scheduling of
MapReduce Jobs

We develop a distributed scheduling approach that dy-
namically adjusts the execution of jobs on the system re-
sources and measures the impact of overloaded nodes on
meeting their end-to-end real-time demands. It consists
of the following components: (a) A model for estimating
the execution times of tasks based on a commonly used
non-parametric regression technique, k-Nearest Neigh-
bor (k-NN) smoothing. (b) A distributed least laxity
first scheduling algorithm for scheduling jobs end-to-
end, that uses measurements of the laxity values of the
tasks to adjust their scheduling order to compensate for
queuing delays at Workers. (c) Early detection of over-
loaded nodes via a Local Outlier Factor algorithm.

3
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3.1 Estimating Execution Times of Tasks

To estimate the execution times of the entire jobs, the
fundamental idea is to compute an approximation of the
execution times of the map and reduce tasks and use this
approximation in the computation of the execution time
of the entire job. Techniques for estimating the execution
time of MapReduce jobs, such as building job profiles
based on previous execution times [38] or using debug
runs before the actual execution [29] have been proposed
for homogeneous environments, but without examining
the implications of the problem in a heterogeneous set-
ting, where the execution times of the tasks may vary.

We propose an estimation model that considers both
the resource requirements of the newly submitted tasks
and the previous task runs. There are two main ap-
proaches to address this: with parametric or non-
parametric techniques [40]. For each map task we main-
tain a vector −→x of the task parameters as follows: −→x =
(split size j,cpui,t ,memoryi,t) Similarly, for reduce tasks
we have: −→x = (partitions sizei,t ,cpui,t ,memoryi,t)
The cpui,t ,memoryi,t requirements of a newly submitted
task are estimated via a histogram based approach similar
to [25]. This approach is based on past runs. It distributes
the processing requirements of previous tasks into his-
togram bins and utilizes the mean of the most populated
bin for estimating the requirements of the newly issued
task. If we model the execution time using parametric
regression, the functional form of the m(−→x ) is assumed
known and a technique like Least Squares can be ap-
plied for the calculation of the polynomial coefficients.
However, in the case of a highly dynamic environment,
like our setting, computing the execution time of tasks
via a polynomial function is not efficient [21]. Thus, in
such environments non-parametric techniques are more
appropriate.

In non-parametric regression no assumption can be
made about the functional form of m(−→x ), therefore the
estimation is regarded as data driven because it depends
only on previous task runs. All non-parametric regres-
sion techniques are modelled by the following equation:

m̂(−→x ) =
1
n

n

∑
i=1

Wi(
−→x )yi (1)

where Wi(
−→x ) is a weighting sequence and yi the exe-

cution time of a previously issued task. Essentially, the
m̂(−→x ) can be considered as the weighted average of n
previous task runs. Special care must be given to the
number of previous runs that will be used. Too many
past runs can lead to overly biased results, on the other
hand few examples make the curve too ”noisy”. In our
previous works [4], [23] we have shown that the number
of runs to use depends on the job’s characteristics.

The non-parametric regression technique we decided
to implement for our estimation problem was k-Nearest
Neighbor (k-NN) smoothing. In k-NN smoothing, the es-

timation of m̂(−→x ) is based on the k past runs that are clos-
est to the given vector −→x . Utilizing a subset of the past
runs, instead of all n past runs, is important because only
those that have similar resource requirements with the
currently examining task are considered in the estima-
tion, and thus a better prediction is possible. We use the
Euclidean distance of vectors to identify the closest past
runs. In order to achieve better estimations, the impact
of the previous runs on the estimation is weighted based
on their distance from the examining vector, with the
ones being closer receiving higher weights. A weight-
ing function with several optimality properties is the
Epanechnikov kernel K(d), where: K(d) = 3

4 (1− d2),
with |d| < 1. The d parameter, in our case is the calcu-
lated Euclidean distance of the vectors. The choice of
the kernel function is not significant for the results of the
approximation [33]. The Epanechnikov kernel function
gives more weight to previous runs that are closer to the
examining task’s vector parameters. In order to be uti-
lized by the estimator, the function must be scaled and
normalized. We used the following weighting function:

Wi(
−→x ) =

{KR(|−→x −−→xi |)
f̂ (−→x )

if i ∈ N−→x

0 otherwise
(2)

where N−→x = {i: −→xi is one of the k nearest neighbors of
−→x }, KR(d) is the scaled Epanechnikov kernel function

and is given by the following equation: KR(d) =
1
R

K( d
R ).

The kernel is scaled by the factor R which is defined as:
R = max(|−→x −−→xi |), i ∈ N−→x . Finally the f̂ (−→x ) factor in
equation (2) is a normalized factor, and is given by the
following formula: f̂ (−→x ) = 1

k ∑−→xi ∈N−→x
KR(|−→x −−→xi |).

One important aspect of the algorithm is the choice
of the value for k that will determine the number of
past runs to be taken into account during the estimation.
Too many examples can cause an increase on the bias
E{m̂(−→x )−m(−→x )}, while few previous runs may lead to
large variance E{m̂2(−→x )}. The value of k depends on
the number n, so it must be adjusted accordingly. It has
been proven [40] that by increasing k in proportion to n

4
5 ,

the k-NN technique achieves a constant balance between
the variance and the bias.

3.2 Least Laxity First Scheduling

We develop a dynamic, distributed least laxity first
scheduling scheme that determines the order of execu-
tion of the tasks based on their urgencies and timing con-
straints. The Least Laxity First Scheduling (LLF) algo-
rithm has been successfully employed in distributed and
mobile real-time systems such as in [12], [24]. In LLF
each job is associated with a laxity value, that represents
a measure of urgency for the job and is used to order the
execution of the tasks on the Workers. Given the dead-
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line Deadline j and Pro j exec time j for job j, we com-
pute Laxity j as:

Laxity j = Deadline j −Pro j exec time j, (3)

The projected execution time of j job is computed
based on its estimates of the execution times of the
map and reduce tasks, as follows: Pro j exec time j =
max{mi,t , ...,mk,t} + max{rz,t , ...,rl,t}, where we con-
sider the maximum execution times of the map and re-
duce tasks in the above computation since all tasks of
the same phase run in parallel. The laxity value for each
job is computed initially by the Master node and is used
when scheduling the tasks of the job at each node. The
closer the Laxity j value to zero, the more probable is for
the job to miss its deadline; a negative value indicates
that the deadline will be missed.

Tasks are ordered in the TaskScheduler at each node,
based on the laxity values of the jobs that invoke them.
The advantage of LLF compared to other scheduling ap-
proaches such as Earliest Deadline First (EDF) [39] and
Hadoop’s FIFO and FAIR scheduler, is, that, LLF is a dy-
namic scheduling algorithm that allows for compensat-
ing for queueing delays often experienced in distributed
settings or that were mis-calculated at previous nodes.
In LLF the task with the smallest laxity value has the
higher priority. The laxity value of a job is adjusted as the
tasks invoked by the job execute on the system resources.
To avoid constantly updating the laxity values for a job,
they are adjusted only when new tasks are inserted into
the TaskScheduler’s queue or when tasks finish execu-
tion or miss their deadlines. As the laxity values of the
jobs are updated, the task belonging to the job with the
smallest laxity value will execute next; if a job has neg-
ative laxity value this job has been estimated to miss its
deadline and thus its tasks will be processed only when
the TaskScheduler has pending tasks that all have missed
their deadlines. That means a task with negative laxity
will never preempt tasks with positive laxity values.

3.3 Identifying Overloaded Nodes

Because nodes’ resource capacities are not directly cor-
related to the amount of data they are assigned for pro-
cessing, it is possible that the data blocks are distributed
unproportionally to the nodes. This may result in Work-
ers becoming overloaded and not capable of completing
their assigned tasks within the jobs’ deadlines.

To identify overloaded Workers early on, we use the
Local Outlier Factor (LOF) algorithm [5] on the lax-
ity values of tasks of the same job that run on different
Workers. LOF is a metric of anomaly detection that can
be applied to a set and identify possible outliers. We
consider as outliers, laxity values that significantly differ
from the rest. Our goal is to proactively identify over-

loaded Workers before the laxity value of the correspond-
ing job becomes negative.

The main idea of the LOF algorithm is to compare
the local density of a point’s neighbourhood with re-
spect to the local density of its neighbours, seeking one
or more points with significant difference from the rest.
Thus, we compare the laxity values for the same job
on the different Workers that execute the tasks of the
job. More formally: Let l distance(laxA) be the dis-
tance of a laxA to the l nearest neighbour, laxA will be
the laxity value of a job j that runs on a Worker that
can possibly be overloaded. We denote the l nearest lax-
ity values as Nl(laxA). This distance is used to define
the reachability distance metric: reach dl(laxA, laxB) :=
max{l distance(laxB),d(laxA, laxB)}, where laxB will
be the laxity value of the same j job on a different
Worker. The reachability distance of a value laxA
from laxB depicts the true distance of the two values
(d(laxA, laxB)), but also at least the l distance of laxB.
The usage of this distance achieves more stable results
as shown on [5]. The local reachability density of laxA
is defined by:

lrdl(laxA) :=
|Nl(laxA)|

∑
laxB∈Nl(laxA)

reach dl(laxA, laxB)
(4)

and intuitively is the inverse of the mean reachability dis-
tance of laxA from its neighbouring laxity values. The
local reachability density is then compared with those of
the neighbours using the following equation:

LOFl(laxA) :=

∑
laxB∈Nl(laxA)

lrdl(laxB)

|Nl(laxA)| ∗ lrdl(laxA)
(5)

which is the average reachability density of the neigh-
bours divided by laxA’s own local density. A LOF value
below 1 indicates a denser region, which would dictate
an inlier, while values significantly greater than 1 indi-
cate outliers.

The Master utilizes formula (5) to compare the laxity
values of the jobs running in the system, based on the
laxity values reported by the Workers. If a value greater
than 1 is detected, the corresponding node is marked as
overloaded, giving the option to execute some of its tasks
on a different Worker.

4 Skewed data

As described earlier, the MapReduce framework is sus-
ceptible to severe load imbalances caused due to the
skewness exhibited in the partitions. Recall, that in the
original MapReduce framework [10], a partition consists
of all the intermediate pairs that give the same result
when the partitioning function is applied to them. Each
partition is then assigned to a different reduce task. The
most commonly used partitioning function, utilized also

5
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in Hadoop, is hashcode(key) mod R. In our system two
types of skewness frequently occur:
Skewed Key Frequencies. This occurs when some
keys appear more frequently in the intermediate pairs,
thus the partition they are part of becomes extremely
large. This issue can be solved by putting more work
on the map tasks, by aggregating the values of the same
key, and creating intermediate pairs in the form of (key,
list of values).
Skewed Tuple Sizes. This applies to (key, value) pairs
with complex processing structures on the value field.
For example in the Twitter social network there is a large
assymetry in the types of users and their friendship lists,
as a result, pairs have varying sizes, depending on the
number of objects that occupy their lists. So this case
applies to partitions for which the (key, list of values)
pairs contain lists with large amount of data.

We focus on the Skewed Tuple Sizes problem, as it has
the most significant impact on the execution time of re-
duce tasks. Recent works [14], [15], [26] have shown
that solving this problem is not trivial; these primarily
aim at partitioning the data in such a way so that all re-
duce tasks finish their processing in similar times.

We propose an approach that uses more partitions than
the number of reduce tasks and takes into account the
partitions’ sizes and our estimates on the task execution
times on Worker nodes, assigning the partitions in such
a way that all reduce tasks contribute to the data pro-
cessing, according to their processing capabilities. We
propose an approach that puts more work on powerful
nodes, assigning multiple partitions on them, while ex-
ploiting the slower nodes by assigning them light-sized
partitions.

4.1 Partition Size Calculation

We exploit two approaches to calculate the size of the
partitions, the first utilizes the amount of values cor-
responding to the keys of a partition (similar to [14]),
while the second uses the Count-Min Sketches [9] data-
structure which enables the usage of more hash functions
in the calculations.
Simple Partitions. Assume we have p partitions, with
p ≥ R. Let sm(k) be the number of values in the
list of values that corresponds to key k, on a map task
m, m ∈ {0, ...,M}. We define as Pm(i), i ∈ {0, ..., p} the
set that contains the keys of the i-th partition on the m-th
map task. Then the total size for this partition on map
task m will be: Sm(i) = ∑

k∈P(i)
sm(k).

Each map task calculates the sizes of all generated parti-
tions and sends them to the Master node, who is responsi-
ble to aggregate these values for each partition in order to
calculate its total size. So the Master computes for each

partition the following value: S(i) = ∑
m∈{1,...,M}

Sm(i), i =

{0, ..., p}. These values will be the partitions’ sizes and
will be utilized in the dynamic partitioning assignment
algorithm (discussed in the next section).
Count-Min Sketches. Our second technique for es-
timating the partitions’ sizes is based on the use of
sketches. A sketch is a synopsis data-structure utilized
extensively in query-optimization [11]. It provides the
capability of capturing the basic features of a dataset by
monitoring a significant subset. We use a special type
of sketch, called Count-Min Sketch [9], which is mainly
used for frequency counting in data streams [8].

Each map task creates a local sketch which can be seen
as a two-dimensional array, sketchm[i, j], that stores in-
formation regarding the generated key-value pairs. Each
row of the array corresponds to a different hash function
that can be used for the distribution of the intermediate
key-value pairs to the partitions, and each column cor-
responds to a different partition. So, suppose that we
have d rows, H = {hi, i = 1, ...d} be the set of the cho-
sen hash functions, and p columns, the same number as
the partitions that will be used. It is recommended in
[9] that the chosen hash functions need to be pairwise-
independent, so we generate d hash functions in the form
of f (x) = (a ∗ x+ b) mod pr, where a,b are random in-
tegers and pr a prime number.

When a new key-value pair has been generated,
then each of the d hash functions are applied to it,
and for the j corresponding position in the array, a
counter increases by one, because one more value will
be added to this partition. Initially: sketchm[i, j] =
0,∀i ∈ {1, ...,d}, j ∈ {1, ..., p}. So when all the interme-
diate pairs have been generated, we have:

sketchm[i, j] = ∑
∀k:hi(k)= j

sm(k),∀i ∈ {1, ...,d}, j ∈ {1, ..., p}

(6)
When all map tasks have finished, the generated sketches
are emitted to the Master for the creation of the global
sketch array. The global sketch will be also a d× p array,
and will be populated using the following equation:

sketch[i, j] =
M

∑
m=1

sketchm[i, j],∀i ∈ {1, ...,d}, j ∈ {1, ..., p}

(7)
This global sketch holds all the information about the
partitions’ sizes, and will be utilized from the partitions’
assignment algorithm.

4.2 Dynamic Partitioning Algorithm

Once the partitions sizes have been estimated, the goal of
the dynamic partitioning algorithm is to decide the place-
ment of the partitions to the corresponding reduce tasks
in a way that minimizes the execution time of the re-
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duce phase, thus increasing the possibility of jobs meet-
ing their deadlines.
Simple Partitions. In the Simple Partitions scheme, we
estimate the execution time of each partition assigned on
a specific reduce task, via the k-NN estimator (discussed
in Section 3.1). So, we sort the partitions with respect
to their sizes in descending order and try to find the re-
duce task with the smaller execution time. As a reduce
task might have some partitions already assigned to it,
we estimate whether the new assignment will still allow
the end-to-end execution times of the currently sched-
uled tasks to be within their deadline constraints, even if
we added the new partition. The sorting of the partitions
ensures that the most heavy-sized will be assigned to re-
duce tasks which run on Workers that exhibit the best
performance. Finally the Master returns the correspond-
ing assignment to the map tasks, in order to know where
to emit the generated partitions.
Sketch-based approach. In the Sketch-based approach,
the same procedure is applied only this time for each
row of the global sketch array. The idea is to generate
a partitions’ assignment for each of the possible hash
functions and then choose the function that achieves the
least execution time. The function’s assignment plan
will be utilized for the actual distribution of the parti-
tions. This approach is applicable because each row of
the global sketch table can be seen as a Simple Parti-
tions sizes model. The sketch-based approach adds an
additional cost in the partitions’ assignment procedure
because the partitions’ assignment algorithm must be ap-
plied for each row of the sketch array. On the other hand,
it increases the possibility of achieving a better parti-
tions’ assignment, with respect to the execution time, be-
cause more assignment plans are considered.

5 Evaluation

We have performed an extensive experimental study of
our approach on Planetlab, a fully distributed heteroge-
neous environment, using 82 processing cores in total;
one dedicated node was utilized as Master and the others
were Worker nodes executing map and reduce tasks. We
assume that the Master is failure-free.

Two different jobs were used for the evaluation of our
DynamicShare framework. The first job was a Twitter
friendship request query on 2GB of available data dur-
ing the period of Jan 1, 2013 to April 30, 2013, ex-
tracted using the Streaming API 2 of Twitter [36], where
the goal of each MapReduce job was to identify the
unique friends of each user, by examining the tagged
and mentioned parts of a tweet. We used a total of
5,900,000 tweets, distributed to fifty-nine available pro-
cessing cores, each holding about 100,000 tweets. Thus
the job consisted of 59 map and 23 reduce tasks. The

job was issued with two different deadlines, the first with
15,000 ms (strict deadline) and the second with 20,000
ms (relaxed deadline). The map tasks read the available
tweets and for each tweet a (user id, list o f f riends)
pair is emitted to the appropriate reduce tasks. The latter
receive this input and create for each user id the set that
contains his unique friends.

The second job was a friends counting application for
a 39MB Youtube [41] social graph. The goal of the
job was to calculate the number of unique friends per
user, that is, the degree of each node in the social graph.
The dataset contained 2,987,628 edges, which were dis-
tributed to the available map slots leading to approxi-
mately 45,000 edges per map task. We used the same
number of map and reduce tasks as in the Twitter job, in
order to have a fair comparison between the two applica-
tions. Youtube jobs were also issued with two different
deadlines, to take into account two different type of ur-
gencies strict and relaxed, specifically as strict deadline
we used 2000 ms, while as relaxed 4000 ms. These jobs
represent commonly issued jobs on Facebook and Ya-
hoo! [6], [30] and thus demonstrate the applicability of
our framework in a production workload.
Accuracy of Estimation Model. In the first set of ex-
periments we evaluated the accuracy of our estimation
model. In Figure 4 we illustrate the accuracy of our
model by comparing the estimated and the actual exe-
cution time of a task running on a Worker, as a function
of different numbers of previous runs used for the esti-
mation. The results are from the execution runs of one
Worker, but similar results were observed for all Work-
ers. As the figure shows, initially when we do not have
any previous run of the job’s task, the estimated execu-
tion time is larger than the actual execution time of the
task. However, as tasks execute and more observations
become available, the estimates from the k-NN estimator
are close to the real one.
Laxity Based Scheduling. In the second set of exper-
iments we evaluate the benefit of the least laxity first
scheduling (LLF) approach by measuring its ability to
meet the deadlines of the jobs. We compared our ap-
proach with the following algorithms: (i) Earliest Dead-
line First (EDF) scheduling as was proposed in [39],
where the scheduling criteria is the deadline value, tasks
with smaller deadlines will run first. (ii) First In First Out
(FIFO) scheduling, where the tasks are ordered based
on their arrival order (this is the default scheduling ap-
proach used of Hadoop), and (iii) Fair Scheduling (FAIR)
scheduling where all tasks are scheduled round-robin so
that they get equal time on the available slots. Similarly
to [30] we utilized Poisson job arrivals for simulating the
assignment of jobs to the framework. A fixed 70% per-
centage of the assigned jobs had strict deadlines, while
the rest had relaxed. This workload mix was used for the
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Figure 4: Comparison of real and estimated execution
time
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Figure 5: Comparison of percentages of deadline misses
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Figure 8: Comparison between Hadoop, DP and Skewtune
under varying skewness

evaluation of all four algorithms.
We evaluated the ability of the scheduling algorithms

to meet the job deadlines, for varying number of concur-
rently running jobs. As shown in Figure 5, for a small
number of concurrent jobs, all algorithms are able to
meet their deadlines. The experiment shows that at all
times LLF maintains the smaller percentage of deadline
misses. LLF achieves good results even for higher num-
ber of jobs, for example when 6 jobs were issued, there
was a significant increase on the deadline misses on all
the other algorithms due to the increase of the required
execution times on some Workers, however, LLF took
into account this situation and scheduled the tasks ap-
propriately, thus maintaining few deadline misses.
LOF Evaluation. We now illustrate the working of our
anomaly detection algorithm. Due to lack of space we
present only the results for the Youtube jobs (as was ex-
pected, Twitter jobs had similar results). In Figure 6
we display a snapshot of the LOF’s execution. The al-
gorithm identifies overloaded nodes by examining each
task’s estimated laxity value, under normal operation
tasks of the same job in different Worker nodes would
have similar laxity values. In Figure 6 you see that the
majority of the tasks have laxity values close to 1650 ms.
However, five tasks have significant lower laxity values
resulting to an increase of their lo f values and the char-
acterization of the corresponding Workers as overloaded.

We also examine the overhead of the LOF algorithm
in terms of its execution time. The execution time is
mainly affected by the number of tasks that report their
laxity values and need to be examined. So we run multi-
ple Youtube jobs with varying number of tasks and report
LOF’s required execution times (shown in Figure 7). As
expected, the execution time increases with the number

of tasks. However, the figure shows that the algorithm
takes only a few milliseconds to execute, even when it
examines 84 tasks.
Dynamic Partitioning. In the last set of experiments we
point out the benefits of our proposed partitions’ assign-
ment algorithm, Dynamic Partitioning (DP), with respect
to handling skewed intermediate data on the Twitter and
Youtube jobs. To avoid the key frequencies skewness,
map tasks merge for each key all the values into a sin-
gle (key, list o f values) intermediate pair. We calculate
the skewness between the generated partitions with the

following equation: skewness = 100−100∗

p

∑
i=1

S(i)

p∗max{S(i)}
The closer the ratio is to 1 the less skewed are con-
sidered the generated intermediate pairs. Let Pr be the
set that contains the partitions processed by reduce task
r, then the total size of data processed by r will be:
S(Pr) = ∑

i∈Pr

S(i). The achieved balance in regards to the

data processed by the reduce tasks is given by the fol-

lowing formula: Balance = 100∗

R

∑
r=1

S(Pr)

R∗max{S(Pr)}
The larger the ratio, the more balanced is considered the
distribution of the partitions, because all reduce tasks
will process approximately the same amount of data.

We compare the DP algorithm utilized by our Dy-
namicShare framework to two schemes: (i) the default
Hadoop approach where the number of partitions is
fixed, and equals the number of reduce tasks, and (ii)
Skewtune [27] (Hadoop’s most popular enhancement for
the skewness issue) that uses the same setting as Hadoop
but also monitors the execution of reduce tasks. When it
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Figure 9: Comparison between LB and DP in regards to
execution time
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Figure 10: Comparison between LB and DP in terms of
balance
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Figure 11: Comparison of DP with and without sketches
in regards to execution time
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Figure 12: Comparison between LB and DP in regards to
execution time when sketches are enabled

detects a task which significantly lacks behind the other
normally running, it orders the slow task to repartition its
assigned data to the faster reduce tasks.

Figure 8 shows the comparison between our algorithm
(Simple Partitions schema) with the Hadoop MapReduce
approach and Skewtune. DP maintains the execution
time of the reduce phase low even when the skewness
reaches 80%. Skewtune fails to meet the performance of
our algorithm due to the extra overhead of the repartition-
ing. Although it detects the tasks that suffer from skewed
data it requires the repartitioning of their assigned data to
the other normally running tasks, a procedure that is ben-
eficial in case of long running jobs as was pointed out in
[27], but for short running jobs, such the ones we exam-
ine in our work, leads to performance degradation. We
do not consider Skewtune in case of variable number of
partitions because it works at reduce task level. Regard-
less of the chosen number of partitions to use, some of
them will be assigned in a task running on a slow node.
These partitions will have to be repartitioned thus the
overhead will be similar with the presented case.

In the previous experiment we evaluated DP with fixed
number of partitions equal to the reduce tasks, in order
to have a fair comparison with Skewtune and Hadoop.
To examine the impact of extra partitions, we compared
our algorithm with the Load Balance (LB) algorithm pro-
posed for MapReduce in [14] which also proposes the
usage of more partitions. The LB algorithm strives to
maximize the Balance metric via a fair distribution of the
generated partitions. For a fair comparison with our DP
algorithm when sketches are utilized, we enhanced LB
with sketches for the estimation of the partitions’ sizes.
In the partitions’ assignment, each hash function of the
global sketch is examined and the one that achieves the

best Balance is chosen.

The displayed results concern 80% skewness between
the partitions’ sizes. Having the same number of parti-
tions as Hadoop on LB does not offer any gain because
the partitions’ assignment will be same as Hadoop’s, so
we only consider larger values for the number of par-
titions. In Figure 9 you can see the execution time of
the reduce phase when we use different number of parti-
tions. LB achieves better results than the default Hadoop
approach but the reduce phase requires higher execution
time than our approach. This is mainly due to the fact
that our approach is more opportunistic and less ”fair” in
the work that will be executed from the different tasks.
Tasks on nodes with high processing capabilities will
process more heavy-sized partitions than those that run
on slower nodes.

This ”unfairness” between the partitions’ sizes that are
processed per reduce task, is illustrated in Figure 10. For
40 partitions, LB achieves approximately 90% Balance
in the partitions’ sizes that are processed by the reduce
tasks for the Twitter job, while our proposal reaches
64%. The difference in the execution times is significant
though, as our approach requires approximately 1900 ms
while LB 2800 ms. The results indicate that in heteroge-
neous environments, trying to achieve balance between
the work assigned on the nodes of the cluster, may not
be the right approach. An opportunistic algorithm, such
as DP, achieves better results as it considers the hetero-
geneity during the partitions’ assignment.

Finally we examined the benefit of using sketches
in the partitions’ assignment. Figure 11 shows that
sketches mitigate the required execution time of the re-
duce phase as the number of partitions increases. This
is the expected behaviour since the key-value pairs have

9
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more available partitions to be spread. The extra hash
functions used in the sketches can generate more bal-
ance sized partitions, thus better decisions are possible
for the DP algorithm to minimize the reduce phase ex-
ecution time. We examined the requirements of the two
approaches in regards to the time they require for decid-
ing the partitions’ assignment plan. For 45 partitions,
the no-sketches approach required approximately 80 ms,
while when we applied sketches, the assignment required
200 ms, so for cases such as the Twitter jobs where the
benefits of the sketches approach are larger than 500 ms
the extra overhead is negligible. However for very short
jobs such as Youtube, a no sketches approach is prefer-
able because the benefits of the sketch-based assignment
are overlapped by the extra overhead of the assignment
algorithm. In Figure 12, we display results concerning
the comparison between DP and LB when sketches are
enabled for both algorithms, although LB reduces the re-
quired execution time, DP still achieves better results.

6 Related Work

Zaharia et al [42] were the first to study the problem of
scheduling MapReduce jobs in heterogeneous environ-
ments. They proposed techniques for prioritizing and
scheduling backup copies of slow tasks. Contrary to
their work, our approach focuses on meeting real-time
response requirements for the tasks and identifies strag-
gling tasks via their laxity values. In [1], the authors
propose task-stealing solutions in the map phase. In an
heterogeneous environment like Planetlab, task-stealing
could degrade the performance due to the communica-
tion overhead between the nodes, and thus could aug-
ment the problem. A utility-driven task placement strat-
egy was proposed in [31] using extra processing slots
per node when possible. [39] propose the usage of EDF
scheduling of user submitted jobs. Our approach differs
from them because it does not only consider the real-time
demands of the jobs, but also effectively handles the is-
sue of data skewness.

Much work has been done with respect to estimating
the execution times of MapReduce tasks such as [29],
which utilizes debug runs to calculate the processing
speeds of the assigned job. [21] applied non-parametric
regression for tasks executing in heterogeneous environ-
ments, but not on a MapReduce framework, and also us-
ing only the input data size as the vectors’ value. We
were inspired by recent works in automatic anomaly de-
tection ([3], [13], [34], [35]) and adopted the usage of
machine learning techniques for the estimation of the
tasks’ execution times.

Focus on the skewed data impact on MapReduce was
mainly expressed by [14], [15], [27] and [28]. We com-
pared our approach with these proposals and displayed

results that indicate their inapplicability in our setting.
Techniques like [14] and [15] aim to equally distribute
the partitions to the available reduce tasks, however as
we pointed out in the experiments such decision is not
beneficial in a heterogeneous environment. [27] adds
the overhead of repartitioning the assigned partitions,
an overhead which deteriorates the performance of short
jobs and can lead to deadline misses. [32] requires a
pre-processing step for estimating the partitions’ sizes,
adding overhead in the calculations thus making the exe-
cution of short jobs impossible.

Authors in [16] propose a new abstraction on top of
Hadoop, the Shuffler component which is responsible for
keeping the received partitions in the node where the re-
duce tasks will run. The newly added component enables
intermediate data transmission between the map and re-
duce phase, reducing the cost of the shuffle phase. How-
ever, as it was pointed out in [7] when the intermediate
data to be emitted are rather small, as in our case, the
benefits of online transmission are negligible.

7 Conclusion

In this paper we study the problem of scheduling real-
time skewed MapReduce jobs in heterogeneous environ-
ments. We propose a holistic approach based on (a) a
non-parametric regression technique for estimating the
execution times of the tasks, (b) dynamic distributed least
laxity first scheduling algorithm for scheduling jobs end-
to-end, (c) techniques for identifying straggling nodes,
and (d) dynamic partitioning algorithms to handle the im-
pact of the data skewness on the execution times of the
tasks. Our experimental results on Planetlab indicate a
clear improvement in the system’s performance. In our
future work we aim at examining if it is possible to dy-
namically decide the number of partitions used per job.
This decision will enable us to balance the trade-off be-
tween reduce phase execution time and the computation
overhead of the partitions’ assignment algorithm.
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[3] BODÍK, P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN,
M., AND PATTERSON, D. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. HotCloud
(2009).

[4] BOUTSIS, I., AND KALOGERAKI, V. Resource Management
using Pattern-based Prediction to Address Bursty Data Streams.
ISORC 2013, Paderborn, Germany (2013).

[5] BREUNIG, M. M., KRIEGEL, H.-P., T.NG, R., AND SANDER,
J. LOF: Indentifying Density-Based Local Outliers. SIGMOD
(2000).

[6] CHEN, Y., GANAPATHI, A., GRIFFITH, R., AND KATZ, R. The
Case for Evaluating MapReduce Performance Using Workload
Suites. MASCOTS (2011).

[7] CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M.,
ELMELEEGY, K., AND SEARS, R. MapReduce Online. No.
UCB/EECS-2009-136 (2009).

[8] CORMODE, G., AND HADJIELEFTHERIOU, M. Finding Fre-
quent Items in Data Streams. Proceedings of the VLDB Endow-
ment Volume 1 Issue 2, August, Pages 1530-1541 (2008).

[9] CORMODE, G., AND MUTHUKRISHNAN, S. An Improved Data
Stream Summary: The Count-Min Sketch and its Applications.
Journal of Algorithms Volume 55, Issue 1, April 2005, Pages 5875
(2005).

[10] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. OSDI, San Francisco, CA (2004).

[11] DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI,
R. Processing Complex Aggregate Queries over Data Streams.
SIGMOD (2002).

[12] DOU, A. J., KALOGERAKI, V., GUNOPULOS, D., MIELIKI-
NEN, T., AND TUULOS, V. Scheduling for real-time mobile
mapreduce systems. DEBS 2011, New York, New York (2011).

[13] FOX, A., KICIMAN, E., AND PATTERSON, D. Combining Sta-
tistical Monitoring and Predictable Recovery for SelfManage-
ment. WOSS (2004).

[14] GUFLER, B., AUGSTEN, N., REISER, A., AND KEMPER, A.
Handling Data Skew In MapReduce. CLOSER (2011).

[15] GUFLER, B., AUGSTEN, N., REISER, A., AND KEMPER, A.
Load Balancing in MapReduce Based on Scalable Cardinality Es-
timates. ICDE (2012).

[16] GUO, Y., RAO, J., AND ZHOU, X. iShuffle: Improving Hadoop
Performance with Shuffle-on-Write. Presented as part of the 10th
International Conference on Autonomic Computing (2013).

[17] HADOOP. http://lucene.apache.org/hadoop.

[18] HADOOP CAPACITY SCHEDULER. http://hadoop.apache.

org/common/docs/r0.19.2/capacity_scheduler.html.

[19] HADOOP FAIR SCHEDULER. http://hadoop.apache.org/

mapreduce/docs/r0.21.0/fair_scheduler.html.

[20] IBM INFOSPHERE BIGINSIGHTS. http://www-01.ibm.com/
software/data/infosphere/biginsights/.
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Abstract

Data centers are promising participants in demand re-
sponse programs (i.e., reducing a large electricity de-
mand upon utility’s request), making power grid more
stable and sustainable. In this paper, we focus on en-
abling colocation data center demand response. Colo-
cation is an integral yet unique segment of data cen-
ter industry, where multiple tenants house their server-
s in one shared facility. Nonetheless, differing from
owner-operated data centers (e.g., Google), colocation
data center suffers from “split incentive”: colocation op-
erator desires demand response for financial incentives
but has no control over tenants’ servers, while tenants
who own the servers may not desire demand response
due to lack of incentives. To break “split incentive”, we
propose a first-of-its-kind incentive mechanism, called
iCODE (incentivizing COlocation tenants for DEmand
response), based on reverse auction: tenants, who vol-
untarily submit energy reduction bids to colocation op-
erator, will be financially rewarded if their bids are ac-
cepted. We formally model how each tenant decides its
bids and how colocation operator decides winning bids.
We perform a trace-based simulation to evaluate iCODE.
We show that iCODE can reduce colocation energy con-
sumption by over 50% during demand response periods,
unleashing the potential of colocation demand response.

1 Introduction
Demand response program has been adopted as a nation-
al strategic plan for power grid innovation [12]. In a typ-
ical demand response program, participating customers,
who reduce electricity demands upon requests by utili-
ty/load serving entity (LSE), receive financial compensa-
tion.1 Demand response is also favorably recognized as
an effective market-based mechanism for increasing the
incorporation of renewables into the grid, via the provi-
sioning of economic incentives for reshaping customers’

1A comprehensive survey of various demand response programs
can be found in [3].

real-time electricity demand subject to time-varying sup-
ply availability [16, 40].

Mega-scale data centers are ideal participants in de-
mand response programs and can reduce a large electric-
ity demand upon LSE’s request, because of their huge
yet flexible energy demand [15, 16, 28]. Nonetheless,
the existing efforts [4,5,15,16,28,29] have only focused
on owner-operated data centers (e.g., Google and Ama-
zon), while neglecting another important yet distinctly
different type of data center — colocation data center,
sometimes simply called “colocation” or “colo”. In sharp
contrast with owner-operated data center whose operator
owns and has full control over the servers, colocation is
a multi-tenant facility where multiple tenants put their
own servers in one shared facility while the data center
operator (i.e., facility manager) provides reliable power
supply, cooling, and network access.

What makes colocation demand response challeng-
ing? A major hurdle for colocation demand response
is “split incentive”: while colocation provider may de-
sire demand response for incentives from LSE, its tenants
may not, because tenants are typically charged based on
their subscribed peak power and their bills are not sub-
ject to how much energy they consume or when they con-
sume it [11, 35, 39].2 LSE’s incentive programs are not
directly open to tenants either, since tenants only have
interactions with colocation operator [39]. While coloca-
tion operator may manage the non-IT energy consump-
tion (e.g., cooling) for demand response, such actions
often have limited energy reduction (as corroborated by
real-life field tests [16]) as well as possible detrimental
effects on tenants’ servers, which may not be as robust as
state-of-the-art servers (such as Google’s). Using on-site
diesel generators to offset electricity usage for demand
response is uneconomical for the colocation operator.

How to enable colocation demand response? This

2Energy-based pricing may also also available (especially for large
wholesale tenants), but typically a flat electricity price is used, thereby
making tenants “blind” to demand response opportunities.
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Figure 1: Timing of iCODE in colocation data center.

paper takes the first step to break “split incentive” hurdle
for colcation demand response by properly incentivizing
tenants. Specifically, we propose a first-of-its-kind mar-
ket mechanism based on reverse auction that financially
compensates tenants who are willing to shed their en-
ergy consumption (e.g., by turning off unused servers)
for demand response. The proposed mechanism, called
iCODE (incentivizing COlocation tenants for DEmand
response), is fully voluntary and works in the following
steps, as illustrated in Fig. 1. First, when demand re-
sponse signals/requests are received by colocation oper-
ator and passed down to tenants, tenants can submit bid-
s that include how much energy consumption they are
willing to reduce and how much payment they want to
receive as a compensation. Then, colocation operator se-
lects winning bids that provide large energy reduction yet
ask for reasonable payment, such that the energy reduc-
tion can be maximized while the total payment to the ten-
ants does not exceed that received by the colocation oper-
ator from LSE. Finally, demand response is executed as
planned, and payments are made accordingly. The prac-
tical implementation of iCODE is lightweight, requiring
no manual efforts during execution.

We perform a trace-based simulation study to validate
the effectiveness of iCODE in terms of energy reduction
for demand response. Compared to the baseline case
in which tenants are oblivious to demand response, i-
CODE can successfully incentivize tenants to reduce en-
ergy consumption by more than 50%, demonstrating a
promising potential for colocation demand response.

2 Why colocation demand response?
We show two reasons that motivate our study of coloca-
tion demand response.
• Colocation is an essential and critically importan-

t business model in data center industry, offering a
“halfway” solution for companies that do not want to
build their own data centers or completely outsource their
IT requirements to public cloud providers (e.g., for pri-
vacy concerns). Tenants in colocations include not only
small and medium businesses for which building wholly-

owned data centers is out of the question, but also content
distribution providers (e.g., Akamai) and many of the
top-branded IT companies (e.g., Amazon and Microsoft)
that desire global footprints for their last-mile service la-
tencies. Cloud computing also finds its physical home in
colocations: e.g., medium-scale cloud providers, such as
Salesforce and Box.com, provide their public cloud ser-
vices in colocations, as building self-operated data cen-
ters is still uneconomical for them [34]. It is estimated
that in the U.S. there are over 1,000 colocation data cen-
ters. With the explosive IT demands across all sectors,
many colocation providers are also expanding their data
center space [21], and recent analysis shows that colo-
cation market is expected to grow at a compound annual
growth rate of 11%, reaching US$ 43billion by 2018 [1].

• Colocations are even more suitable than owner-
operated data centers for demand response. First, colo-
cations have huge power demands, and the peak pow-
er demand of colocations in New York region exceeds
400MW (comparable to aggregate demand of Google’s
global data centers) [2, 9, 36]. As noted by a recen-
t Google study [20], “most large data centers are built to
host servers from multiple companies” (i.e., colocations).
Second, even more importantly, many large colocations
are often located in densely-populated metropolitan areas
(e.g., Los Angeles [9]) where demand response is partic-
ularly desired for peak load shaving, whereas mega-scale
owner-operated data centers (e.g., Google) are almost all
located in rural areas with very low population densities
where the need for demand response is less urgent.

3 Incentivizing colocation tenants for
demand response

In this section, we first present an overview of iCODE,
formalize the models for tenants and colocation operator,
and then present the algorithms underlying iCODE (i.e.,
deciding tenants’ bids and deciding winning bids).

3.1 Overview of iCODE

We begin by presenting an overview of the proposed i-
CODE mechanism framework to highlight its founda-
tions and why we choose reverse auction.

Foundations of iCODE

iCODE relies the following foundations.
Technology. Turning unused servers off is one of the

most extensively studied control knobs for energy sav-
ing [20, 25]. While tenants remotely house their server-
s in colocation, switching servers between active and
sleep/off modes can be easily automated without manual
efforts [20]. Thus, “turning off unused servers” without
noticeably affecting tenants’ business is technologically
feasible.

2
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Economics. Server energy reduction for demand re-
sponse clearly requires cooperation from multiple ten-
ants via non-technological mechanisms. Market knobs,
such as pricing and incentives, have been leveraged to
address various engineering issues [30, 32], and recent
research has shown that owner-operated data centers are
willing to shut down some servers for demand response
incentives [15, 28]. Hence, we take the liberty that the
proposed iCODE is worth investigating and promising
for enabling colocation demand response.

Why reverse auction?

We first note that dynamically pricing energy usage for
demand response, a widely-studied market mechanism
(e.g., in smart grid [32]), may not be as plausible as it
appears in the context of colocation. First, directly “re-
selling” energy and modifying energy price may be sub-
ject to strict government regulations [38]. Second, dy-
namically pricing tenants will implicitly enforce all ten-
ants to face uncertain colocation costs, causing business
reluctance and/or psychological concerns [30, 46]. Fi-
nally, we note that registering tenants to power utility’s
pricing is not feasible either, since tenants cannot plug
their servers into utility’s grid directly [39]; instead, ten-
ants need colocation operator’s combined facility support
(e.g., secured access, reliable power, cooling, network),
not only facility space [18].

We advocate a reverse auction-based incentive mecha-
nism, as illustrated in Fig. 1. By “reverse”, we mean that
in our mechanism, it is not the colocation operator who
proactively offers rewards to tenants for energy reduc-
tion; instead, it is the tenants who, at their own discre-
tion, submit bidding information (including how much
energy reduction and how much payment requested) up-
on receiving a demand response signal. iCODE is “non-
intrusive” and tenants are not enforced for demand re-
sponse or entitled any penalties if they do not participate
in demand response.

3.2 Model

As in [15, 16, 28], we ignore the time index and focus on
one-time demand response, whose duration T is deter-
mined by LSE (e.g., 15 minutes to one hour). Next, we
present the models for tenants and colocation operator.

Tenants

We consider N tenants housing their servers in one colo-
cation. Tenant i owns Mi homogeneous servers, while
a tenant having multiple heterogeneous types of servers
can be viewed as multiple virtual tenants each having ho-
mogeneous servers. Each server belonging to tenant i has
a static/idle power of pi,s, dynamic power pi,d , and ser-
vice rate of µi (measured in terms of the amount of work-
loads that may be processed in a unit time) [25]. During
the demand response period, the workload arrival rate is

denoted by λi which can be predicted to a fairly reason-
able accuracy using, e.g., regression techniques [25, 37].
Our simulation will also investigate the robustness of i-
CODE against inaccurate knowledge of λi.

Server energy reduction. The baseline case is that
tenants do not participate in demand response (e.g., due
to lack of incentives, or even not knowing the demand
response requests). In this case, all servers are active and
workloads are evenly distributed across servers for opti-
mized performance. Thus, the average power consump-
tion of tenant i’s servers is pi = Mi ·

[
pi,s + pi,d · λi

Mi·µi

]
=

Mi · pi,s + pi,d · λi
µi

, where λi
Mi·µi

is the server utilization.
If tenant i decides to participate in demand response

by turning off mi ≥ 0 servers, then its average power will
be p′i = (Mi − mi) · pi,s + pi,d · λi

µi
. Hence, energy/load

reduction by tenant i will be

∆ei(mi) = (pi − p′i) ·T = mi · pi,s ·T, (1)

where pi,s is the static power and T is the demand re-
sponse duration.

Tenant cost. Turning off some servers will result
in “costs”. As an example, we consider switching cost
and delay cost [25], while other costs (e.g., management
costs) can also be factored in.

Switching cost: Turning servers into sleep/off mod-
e and bringing them back to normal operation incur
switching/toggling costs, such as wear-and-tear [25]. We
denote tenant i’s switching cost for one server by αi
(quantified in monetary units), and thus the total switch-
ing cost for tenant i is αi ·mi.

Delay cost: We model the workload serving process at
each server as an M/M/1 queue. Thus, the average delay
for tenant i’s workload is 1

µi−
λi

Mi−mi

. The queueing model

has been widely used as an analytic vehicle to provide
a reasonable approximation for the actual service pro-
cess [13, 27]. Note further that delay cost is incurred
only when the average delay exceeds a soft threshold
di,th: further reducing delay below the threshold makes
no difference to human perception, and hence incurs
no performance penalty. A large soft delay threshold
means the tenant’s workloads are more delay-tolerant.
Next, we can express the total delay cost as di(mi) =

λi ·

[
1

µi−
λi

Mi−mi

−di,th

]+
, where [ · ]+ = max{0, ·}.

Colocation operator

Colocation operator provides reliable cooling and pow-
er supplies to tenants. Here, we capture the colocation’s
non-IT energy reduction (e.g., cooling, power distribu-
tion, etc.) using the PUE factor γ , which typically ranges
from 1.1 to 2.0 [20]. That is, with a total IT energy re-
duction of ∑i ∆ei by tenants, the facility-level energy re-
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duction will be γ ·∑i ∆ei. To procure a load reduction
from customers (including colocation), LSE announces
a price denoted by q. Thus, the rewards provided by LSE
to colocation operator will be q · γ ·∑i ∆ei.

3.3 Reverse auction in iCODE

Below, we specify these two elements of iCODE, as
highlighted in Fig. 1.

Deciding tenants’ bids. In order to participate in de-
mand response, tenants need to be properly incentivized.
Below, we denote tenant i’s requested payment for turn-
ing off mi servers by

ci(mi) = wi · [αi ·mi +βi ·di(mi)] , (2)

where wi ≥ 1 is referred to as greediness of tenant i,
and βi ≥ 0 converts delay cost to monetary values (i.e.,
the larger βi, the more tenant i cares about its delay
performance) [25]. Tenant i may submit multiple bid-
s (∆ei,ci), each corresponding to one value of mi ≥ 0
(i.e., the number of servers turned off). Moreover, ten-
ant i may only choose to turn off up to m̄i servers such
that the delay performance is still tolerable. For conve-
nience, we denote the set of tenant i’s bids as bi ⊆ Bi =
{(∆ei,ci) |(∆ei(mi),ci(mi)), mi = 0,1, · · · ,Mi −1}, such
that bi only contains valid bids (e.g., those bids satisfying
tenant i’s tolerable delay performance or equivalently, mi
is below a threshold m̄i).

We note that in iCODE, each tenant decides its bid
purely at its own discretion. Tenants may ask for ar-
bitrarily high payments, but doing so is not of tenants’
interests because their bids will be less likely accepted
and tenants will receive less payment without noticeably
improving their delay performance (see Section 4.2).

Deciding winning bids. In our study, we consider the
objective of maximizing the total energy reduction sub-
ject to the constraint that colocation operator does not
need to compensate tenants out of its own pocket. Math-
ematically, the problem of deciding winning bids (DWB)
can be formalized as:

DWB : max
(∆ei,ci),∀i∈I

γ ·∑
i∈I

∆ei (3)

s.t. ∑
i∈I

ci ≤ q · γ ·∑
i∈I

∆ei, (4)

(∆ei,ci) ∈ bi ∪{(0,0)}, ∀ i ∈ I, (5)

where I is the set of tenants who submit their bids to colo-
cation operator, (3) specifies the objective of maximizing
energy reduction, (4) indicates that the total compensa-
tion paid to tenants will not exceed the value received
from the LSE (i.e., colocation operator will not lose prof-
its due to active participation in demand response), and
(5) specifies that colocation operator can only select “en-
ergy reduction, payment” pairs out of the bids submitted

by tenants to honor their requests. We add {(0,0)} in (5)
to indicate that not necessarily all tenants’ energy reduc-
tion requests will be accommodated (e.g., when they ask
for very high payments).

The objective of energy reduction maximization ben-
efits all parties involved: LSE can reduce peak power
supply, tenants receive their requested monetary incen-
tives if their bids are accepted, and colocation operator
can reduce its energy bill and/or seek green certification-
s (e.g., LEED [41]) due to lower energy consumption.
Note that iCODE can also be adapted for other purposes
(e.g., maximizing colocation profit, if permitted by regu-
lations).

While DWB is NP-hard and there exist various ap-
proximate solutions [31], we note one approach to solv-
ing DWB based on branch and bound technique that
can yield a sub-optimal solution with a reasonably low
complexity [6]. A sketch is provided below for brevity.
Specifically, if we make a relaxation and allow ei to take
continuous values, then the requested payment in (2) is
convex in ei, and DWB becomes convex programming,
for which there exists time-efficient methods [7]. The
resulting energy reduction is an upper bound on the op-
timal value of DWB. On the other hand, if we choose
a greedy-based approach (e.g., select the bids in ascend-
ing order of ∆ei/ci), then we will obtain a lower bound
on the optimal value of DWB. If the obtained upper and
lower bounds are sufficiently close, then we can choose
the greedy solution, because its energy reduction is close
to the upper bound (and hence optimum, too). Other-
wise, we can recursively solve DWB by fixing some bids
to be selected and solving a smaller-scale sub-problem.
To solve the sub-problem, we find lower/upper bound-
s via greedy/relaxation approach; if the bounds are still
far apart, we further decompose the sub-problem into an
even smaller-scale sub-problem. Repeat this process un-
til the gap between the two bounds are sufficiently small
or the maximum iteration number is reached. Finally,
note that the computational complexity of solving DWB,
although interesting by itself, is not a major bottleneck,
as colocation operator receives demand response signal
from LSE well beforehand and there is no need to solve
DWB in real time [15, 28].

Remark. In this paper, we focus on how the coloca-
tion operator decides winning bids out of those submitted
by tenants, while leaving the possibly strategic bidding
process (e.g., tenants strategically place bids to maximize
their own benefits) as a future study.

4 Performance evaluation
This section presents trace-based simulation studies to
evaluate iCODE. We first present our settings, and then
show the simulation results.
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Table 1: Default model parameters.
Tenant #1 #2 #3
Service rate µ (Jobs/hour) 360,000 180,000 30
Delay cost β (¢/ms/106jobs) 30 20 0.4
Switching cost α (¢/server) 0.5 0.5 0.5
Greediness factor w 1 1 1
Soft avg. delay threshold 12 ms 25 ms 175 s
Avg. delay constraint 20 ms 40 ms 300 s
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Figure 2: Traces of workload and compensation rate for
energy reduction. Each time slot is 15 minutes.

4.1 Settings

We consider a colocation facility located in New York,
NY (a major market of colocation satisfying financial
institution needs [9]), with a PUE of 1.6. The colo-
cation participates in hour-ahead demand response pro-
gram: when needed, LSE sends demand response request
one hour ahead, while each demand respond period is 15
minutes. Nonetheless, due to figure space constraints,
we consolidate four 15-minute time slots and show the
hourly values for better presentation. Fig. 2 shows a s-
napshot of the LSE’s one-day compensation rate for en-
ergy reduction on Feb. 24, 2014, obtained from [33].

There are three tenants, each possibly representing
multiple tenants in practice and having 10,000 homoge-
neous servers with 150W static and 100W dynamic pow-
er. Tenant #1 and #2 process delay-sensitive workload,
while tenant#3 processes delay-tolerant workload. The
default settings for tenant models are shown in Table 1.
In particular, we note that the delay constraint (within a
server) for tenant #1 is consistent with the existing inter-
active service requirement (e.g., web search [19]). More-
over, the switching cost of 0.5 cents for turning one serv-
er off for 15 minutes is already higher than the corre-
sponding electricity cost saving achieved by tenants had
they run servers in their own data centers (assuming a
fair electricity price of 10 cents/kWh). In other words,
because of higher cost savings, tenants should be more
willing to turn off unused servers in colocation, than
they would if they had in-house data centers (which has
been extensively studied [37]). We obtain the three ten-
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Figure 3: Comparison between iCODE and NDR. (a)
Energy reduction by iCODE. (b) Energy consumption.
(c) Incentives received. No incentives are provided in
NDR. (d) Average delay exceeding the soft threshold in
iCODE.

ants’ workload traces from [25] (“Hotmail” and “MSR”)
and [42] (“Wikipedia”). Fig. 2 illustrates a snapshot of
the traces, where the workloads are normalized with re-
spect to the maximum service capacity of each tenant’s
servers (with an average utilization of 15%).

4.2 Simulation results

In this subsection, we first compare our proposed iCODE
with benchmark, called NDR. Next, investigate iCODE
under various settings to demonstrate its effectiveness.

Benchmark: We choose the scenario in which no ten-
ants participate in demand response as our benchmark,
called NDR (Non-Demand Response), which is the sta-
tus quo in colocation.

Comparison between iCODE and NDR. We now
compare iCODE with NDR in Fig. 3. We first show
the energy reduction by iCODE compared to NDR in
Fig. 3(a). It can be seen that more than 4MWh ener-
gy reduction per hour can be achieved, which is a fair-
ly significant energy reduction (equivalent to thousand-
s of households) and demonstrates the big potential of
colocation demand response. Next, we show the hourly
energy consumptions by iCODE and NDR in Fig. 3(b),
indicating that more than 50% energy can be slashed in
some hours due to the low server utilization in colocation
(e.g., 6-12% [17]). Fig. 3(c) shows the monetary incen-
tive received by different tenants. We notice that there
is some “residual” incentive paid to colocation operator
by LSE, because sometimes tenants do not seek as high
incentives as LSE provides. Fig. 3(d) shows the barely-
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Figure 4: Impact of workload overprediction. (a) Energy
reduction. (b) Tenant #1’s delay over soft threshold.

noticeable performance degradation experienced by ten-
ants compared to their soft delay thresholds. There is
an up to around 1.5ms increase in average delay beyond
the threshold for delay sensitive tenants #1 and 0.5ms
for tenant #2. Tenant #3 has 30s delay, which is accept-
able for delay tolerant workloads. If tenants cannot toler-
ate any delay exceeding their thresholds, they can easily
remove those bids resulting in intolerable delay perfor-
mance (see Section 3.3).

Impact of workload overprediction. To cope with
unexpected possible traffic spikes, tenants can either turn
on more servers as a backup or deliberately overestimate
the workload arrival rate by a certain overprediction fac-
tor ϕ ≥ 0: the higher ϕ , the more overpredicts. We
choose the later approach. Intuitively, when tenants are
more conservative and tend more to overpredict work-
loads, fewer number of servers will be turned off. How-
ever, Fig. 4 shows that even when tenants overestimate
the workloads by 30%, the energy reduction for demand
response is not significantly compromised. We choose
30% because recent studies have shown that the work-
load prediction error is typically within 30% [26].

Impact of greediness. Tenants may be greedier in the
sense that they desire more than their true costs for turn-
ing off servers. Here, we increase the greediness factor
wi for tenants. Equivalently, this captures the scenarios
that tenants are less willing to participate in demand re-
sponse unless they are provided sufficiently large incen-
tives. Fig. 5 shows that as tenants are becoming more
greedy, the performance becomes better and the energy
reduction decreases. Nonetheless, we note that asking
for higher payments than actual costs may not be of ten-
ants’ interests, because doing so will reduce tenants’ fi-
nancial rewards yet without improving their delay perfor-
mances (as seen by comparing Fig. 3(d) and Fig. 5(b)).

5 Related work
In this section, we discuss the related work from the fol-
lowing perspectives.
• Data center optimization: Optimizing data cen-

ter operation has received a surging interest recently
[8,10,22]. Notably, turning on/off servers based on time-
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Figure 5: Impact of greediness. (a) Energy reduction.
(b) Tenant #1’s delay over soft threshold.

varying incoming workloads is a promising approach to
enabling “power proportionality” and reducing energy
consumption/cost of data centers [20, 25, 45]. By ex-
ploring geographic diversities, optimizing load balanc-
ing among multiple data centers can minimize electricity
cost [36] and reduce carbon footprint [14]. These studies,
however, are all intended for owner-operated data centers
and hence cannot be directly applied to colocation unless
tenants are properly incentivized.

• Data center demand response: Data centers are
promising participants in demand response programs.
For example, [16] conducts field tests, showing that da-
ta centers can reduce energy consumption by 10-25%
upon receiving demand response signals. Focusing on
owner-operated data centers, [4, 15, 23] study resource
management optimization for demand response and fre-
quency regulation in power grid, and [24,28,44] consider
the interactions between data centers and utilities and s-
tudy pricing strategies by utilities. [5] addresses frequen-
cy regulation by controlling facility energy consumption
via battery charging/discharging, but this technique is d-
ifficult to scale due to limited battery size in practice [43].

To our best knowledge, our study makes the first step
towards unifying interests of colocation operator and ten-
ants to unleash the promising potential of colcation de-
mand response.

6 Conclusions
In this paper, we studied colocation demand response and
proposed an reverse auction-based incentive mechanis-
m, iCODE, which offers tenants with financial rewards
for energy reduction. iCODE just requires a lightweight
and “non-intrusive” control module that can be automat-
ed during run time. We performed a trace-based simu-
lation study to show that iCODE can reduce the hourly
energy consumption by over 50%, which is a fairly large
amount of energy reduction for demand response pro-
grams. iCODE is a first-of-its-kind mechanism to break
“split incentive” between colocation operator and ten-
ants, and can also be extended to address other issues
in colocation (e.g., energy inefficiency).
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Abstract
Transactional Memory was recently integrated in Intel
processors under the name TSX. We show that its perfor-
mance can be significantly affected by the configuration
of its interplay with the software-based fallback: in fact,
there does not seem to exist a single configuration that
can perform best independently of the application and
workload. We address this challenge by introducing an
innovative self-tuning approach that exploits lightweight
reinforcement learning techniques to identify the opti-
mal TSX configuration in a workload-oblivious manner,
i.e. not requiring any off-line/a-priori sampling of the ap-
plication’s workload. To achieve total transparency for
the programmer, we integrated the proposed algorithm
in the GCC compiler. Our evaluation shows improve-
ments up to 2× over state of the art approaches, while
remaining within 5% from the performance achievable
using optimal static configurations.

1 Introduction

Multi-core and many-core processors are nowadays
ubiquitous. The consequence of this architectural evolu-
tion is that programmers need to deal with the complexity
of parallel programming to fully unveil the performance
potential of modern processors.

Transactional Memory (TM) [15] is a promising
paradigm for parallel programming, that responds pre-
cisely to the need of reducing the complexity of build-
ing efficient parallel applications. TM brings to parallel
programming the powerful abstraction of atomic trans-
actions, thanks to which programmers need only to iden-
tify the code blocks that should run atomically, and not
how atomicity should be achieved [22]. This is in con-
trast with the conventional lock-based synchronization
schemes, where the programmer has to specify how con-
current accesses to shared state are synchronized to guar-
antee isolation. The TM runtime implements this with
optimistic transactions, whose correctness is checked to
ensure an illusion of serial executions (possibly aborting
and rolling back the transaction), even though transac-
tions run concurrently.

Recently, the maturing of TM research has reached an
important milestone with the release of the first main-
stream commercial processors providing hardware sup-
port for TM. In particular, Intel has augmented their in-

struction set for x86 with Transactional Synchronization
Extensions (TSX), which represents the first generation
of mainstream and commodity Hardware Transactional
Memory (HTM): TSX is available in the 4th generation
Core processor, which is widely adopted and deployed
ranging from tablets to server machines.

One important characteristic of this hardware support
is its best-effort nature: due to inherent architectural lim-
itations, TSX gives no guarantees as to whether trans-
actions will ever commit in hardware, even in absence
of conflicts. As such, programmers must provide a soft-
ware fallback path when issuing a begin instruction, in
which they must decide what to do upon the abort of a
hardware transaction. One solution is to simply attempt
several times before giving up to software. However, un-
der which circumstances should one insist on using TSX
before relying on software to synchronize transactions?
We show that the answer to this question is clear: there
is no one-size fits all solution that yields the best perfor-
mance across all possible workloads. This means that the
programmer is left with the responsibility of finding out
the best choices for his application, which is not only a
cumbersome task, but may also not be possible to achieve
optimally with a static configuration. In fact, also Intel
has recently acknowledged the importance of developing
adaptive techniques to simplify the tuning of TSX [18].

1.1 Contributions and Outline
We study, to the best of our knowledge for the first time
in literature, the problem of automatically tuning the
policies used to regulate the activation of the fallback
path of TSX. We first highlight the relevance of this self-
tuning problem, and then present a solution that com-
bines a set of lightweight reinforcement learning tech-
niques designed to operate in a workload-oblivious man-
ner. This means that we do not require any a priori
knowledge of the application, and execute only runtime
adaptation based on the online monitoring of applica-
tions’ performance. We integrated the proposed self-
tuning mechanisms within libitm, the TM library of the
well-know GCC compiler. This allows achieving trans-
parency to the programmers: a property of paramount
importance that allows preserving the most compelling
motivation of TM, namely its ease of use [14].

To assess our contributions we used the C++ TM spec-
ification [1] and relied on a comprehensive set of bench-
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marks (most of which had to be ported to use this stan-
dard interface). More in detail, our evaluation study in-
cludes the well-known STAMP benchmark suite [21],
which comprehends several realistic transactional appli-
cations with varying contention levels, size of transac-
tions and frequency of atomic blocks. Besides STAMP,
we also used a recent TM-based version of the popu-
lar Memcached [27], an in-memory web cache used to
help scale web page servicing, which is widely used at
Facebook. Finally we consider an example of a concur-
rent data-structure synchronized with TM, namely, a red-
black tree. This is representative of important building
blocks that are very hard to parallelize efficiently with
locks, while generating typically short transactions (un-
like some STAMP benchmarks).

In this large set of benchmarks our contributions al-
lowed an average improvement of 2× over existing ap-
proaches, including both static heuristics and a state of
the art adaptive solution [29] (although devised for soft-
ware implementations of TM, and not HTM). We orga-
nized the rest of the paper as follows. Section 2 provides
background on HTM and Intel TSX, whereas Section 3
motivates the relevance of devising self-tuning mecha-
nisms for TSX. Then, in Sections 4 and 5 we present our
learning techniques to self-tune TSX, as well as their in-
tegration in GCC in Section 6. Finally, we evaluate our
proposals in Section 7, describe the related work in Sec-
tion 8 and conclude in Section 9.

2 Background on Intel TSX

Intel TSX was released as part of the 4th generation of
Core processors (Haswell family). It has two main in-
terfaces, called Hardware Lock Elision (HLE) and Re-
stricted Transactional Memory (RTM). To support HLE,
two new prefixes (XACQUIRE and XRELEASE) were cre-
ated, which can be placed in LOCK instructions. In older
processors these prefixes are ignored, and the instruc-
tions are executed normally, meaning that locks are ac-
quired and released normally. However, in Haswell pro-
cessors these prefixes allow to elide the lock, such that
it is only read but not written, effectively allowing con-
current threads to execute the same critical section at
the same time. To ensure correctness, namely prevent
data races in such optimistic executions, the hardware
keeps track of the footprint accessed speculatively and
rolls-back the execution if such footprint is invalidated
by cache coherency. In such event, the thread re-executes
the critical section but this time acquires and releases the
lock normally. Such acquisition aborts concurrent eli-
sions of the same lock, because these hardware specula-
tions had read the lock and as such the lock state became
part of their transactional footprint.

RTM leverages on the same hardware but accom-
plishes better flexibility because it exposes new instruc-
tions, namely, XBEGIN and XEND. This interface maps

directly to the usual constructions of transactional pro-
gramming of beginning and committing a transaction.
Additionally, the XBEGIN instruction requires the pro-
grammer to provide a software handler to deal with trans-
action aborts. This has the advantage of allowing other
strategies rather than giving up immediately on hardware
transactions, which is the strategy followed by HLE.

The reason for requiring such software fallback is the
best-effort nature of Intel TSX. Due to the inherently
limited nature of HTMs [7, 16], TSX cannot guarantee
that a hardware transaction will ever succeed, even if
run in absence of concurrency. Briefly, TSX uses the
L1 cache (private to each physical core) to buffer trans-
actional writes, and on the cache coherence protocol to
detect data conflicts. A plausible reason for a transaction
never to succeed is because its data footprint does not fit
in the L1 cache. Hardware transactions are also subject
to abort due to multiple reasons that are not justified by
concurrency alone, such as page faults and system calls.

In Alg. 1 we illustrate how GCC compiles transac-
tional applications to use TSX (in the latest stable version
4.8.2 of GCC). In this approach (that we refer as GCC)
transactions are attempted in hardware at most twice; if a
hardware transaction aborts, the flow of execution reverts
back to line 2 with an error code (the transaction can be
aborted at any point between lines 3-15). This means that
if TSX was always successful, then lines 4-8 would not
be executed. When all attempts are exhausted, the execu-
tion falls through the fallback and acquires a global lock
to execute normally, i.e., without hardware speculation.

To ensure correctness, a hardware transaction reads
the lock (line 9) and aborts, either immediately if it finds
it locked, or if some concurrent pessimistic thread ac-
quires it before the hardware transaction commits. This
mechanism safeguards the correctness of pessimistic ex-
ecutions that run without any instrumentation [4].

Note that HLE can be seen as a degenerate case of
Alg. 1 in which the variable attempts is initialized with
the value 1. In Fig. 1 we use a concurrent red-black tree

Algorithm 1 TSX in GCC
1: int attempts ← 2
2: int status ← XBEGIN
3: if status �= ok then
4: if attempts = 0 then
5: acquire(globalLock)
6: else
7: attempts−−
8: goto line 2
9: if is locked(globalLock)

10: XABORT
11: � ...transactional code
12: if attempts = 0 then
13: release(globalLock)
14: else
15: XEND

1

4

1 2 3 6 7 8

sp
ee

du
p

#threads

RTM
HLE

Fig. 1: Red-black tree syn-
chronized with TSX.

Abort code
retry: Transient failure

conflict: Contention to data
capacity: Exceeded cache
explicit: XABORT invoked
other: Faults, preemption, ...

Fig. 2: Error codes in TSX.

2



USENIX Association  11th International Conference on Autonomic Computing 211

synchronized with both interfaces of Intel TSX and show
the speedup relatively to a sequential execution without
synchronization. All the experimental results shown in
this paper were obtained using an Intel Haswell Xeon
E3-1275 processor with 32GB RAM, which has 8 virtual
cores (4 physical, each with hyper-threading). Note that,
for the time being, this is the maximum number of cores
available in a machine with Intel TSX. We ran our ex-
periments in a dedicated machine running Ubuntu 12.04,
by using a minimum of 10 trials to obtain statistically
meaningful results.

We focus our attention on the significant discrepancy
in the performances in Fig. 1. This difference stems from
the importance of insisting on the hardware support even
when it fails (transiently). Since HLE gives up after one
failed attempt, this creates a chain of failed speculations
that acquire the lock and prevent concurrent speculations
from proceeding via hardware — naturally, this occurs
more often with higher concurrency, as the plot shows.

These considerations motivate the use of RTM over
HLE (unless there are backwards compatibility con-
cerns). However, as we shall discuss next, the use of
RTM raises concerns of different nature, in particular re-
lated to the difficulty of properly tuning it.

3 Static Tuning of TSX

So far, we have motivated the usage of RTM, but only
presented the simple approach that is implemented cur-
rently in GCC, which, as we shall see, is far from op-
timal. Indeed, in the light of recent findings [8, 17, 31],
and based on the experience that we gathered after ex-
perimenting extensively with TSX, more effective mech-
anisms can be used to regulate the activation of the fall-
back path of TSX. We describe such mechanisms (which
we call HEURISTIC) in Alg. 2.

The first point that we raise is that GCC (in Alg. 1)
ignores the error codes returned by TSX’s begin opera-
tion. The error codes available are briefly described in
Fig. 2. Taking this into account, we consider that RETRY
and CONFLICT codes represent ephemeral aborts, and as
such we do not consume the attempts’ budget in those
cases (line 9). Furthermore, we consider CAPACITY er-
rors to be permanent, and drop all attempts left (line 11).
The objective is to avoid trying fruitlessly to use the hard-
ware when it is not able to complete successfully, and
short-cut right away to the fallback path.

Secondly, we set the attempts to 5 as that was reported
by recent works as the best all-around figure [17, 31].
Choosing a given number is always going to be sub-
optimal in some scenario, as it depends tremendously on
the workload. Thirdly, we perform a lazy check for the
global lock, which safely allows some concurrency with
a pessimistic thread and hardware transactions [4].

Finally, we note that GCC suffers from the so-called
lemming effect [8], in which one thread proceeding to the

Algorithm 2 HEURISTIC based approach for TSX.
1: int attempts ← 5

� avoid the lemming effect
2: while(is locked(global-lock)) do pause � x86 instruction
3: int status ← XBEGIN
4: if status �= ok then
5: if attempts = 0 then
6: acquire(global-lock)
7: else
8: if status = explicit ∨ status = other then
9: attempts ← attempts - 1 � skipped if transient

10: else if status = capacity then
11: attempts ← 0 � give up, likely that it always fails
12: goto line 2
13: � ...code to run in transaction
14: if attempts = 0 then
15: release(global-lock)
16: else
17: if is locked(global-lock) then
18: XABORT � check for concurrent pessimistic thread
19: XEND

fallback (by acquiring the global-lock) causes all other
concurrent transactions to do so too. This chain reaction
can exhaust the attempts, and make it difficult for threads
to resume execution of transactions in hardware. One
way to avoid it, is by checking the lock before starting
the transaction, and waiting in case it is locked (line 2).

An alternative way to deal with the lemming effect is
to use an auxiliary lock [2]. Briefly, the idea is to guard
the global lock acquisition by another auxiliary lock.
Aborted hardware transactions have to acquire this auxil-
iary lock before restarting speculation, which effectively
serializes them. However, this auxiliary lock is not added
to the read-set of hardware transactions, which avoids
aborting concurrent (and successful) hardware transac-
tions. If this procedure is attempted some times before
actually giving up and acquiring the global lock, then
the chain reaction effect can be avoided, as the auxil-
iary lock serves as a fallback manager preventing hard-
ware transactions from continuously acquiring the fall-
back lock and preventing hardware speculations.

3.1 No One-size Fits All
The previous algorithms have a number of tuning knobs
that needs to be properly configured. Summarizing: 1)
How many times should a transaction be retried in hard-
ware? 2) Should we trust the error codes to guide the
decision to give up? and 3) What is the best way to man-
age the contention on the fallback path?

In order to assess the performance impact that these
configuration options can have in practice, we conducted
an experimental study in which we considered a config-
uration’s space containing all possible combinations of
feasible values of the following three parameters:
• Contention management — wait uses the simple wait
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and pause approach of Alg. 2; aux uses the auxiliary
lock [2]; none allows transactions to retry freely.
• Capacity aborts — giveup exhausts all attempts upon
a capacity abort; half drops half of the attempts on a ca-
pacity abort; stubborn decreases one attempt only.
• Budget of attempts — varying from 1 to 16.

We tested all these combinations in our suite of bench-
marks, with varying concurrency degrees, reaching the
conclusion that there is no one-size fits all solution. In
Table 1 we show some of the results from these exper-
iments. Naturally, it is impossible to show all the 144
combinations for each benchmark and workload of our
suite. We focus only on experiments with 4 threads, one
workload per benchmark, and show only the best variant
together with GCC (Alg. 1) and HEURISTIC (Alg. 2).

In general, the HEURISTIC algorithm yields some con-
siderable improvements over GCC (notice Genome and
Yada, with over 50% reduction in time), although in the
other benchmarks it performs either similarly or slightly
worse (notice Vacation, with 30% increase in time).
However, the most important results are on the rightmost
column, where we can see that the best performing vari-
ant varies a lot in its characteristics. Furthermore, the
best result obtained is also typically better than those ob-
tained by the algorithms seen so far: the geometric mean
loss (i.e., additional time) of using GCC or HEURISTIC
is of 30% and 21% (respectively) when compared to the
best variant that we experimented with. These losses can
extend up to 4× and 2× (e.g., Yada). To complement
those results, we also show the performance of different
TSX configurations in Genome when varying the num-
ber of threads, in Fig. 3: we can see that the best perfor-
mance is obtained with widely different settings, and that
even GCC and HEURISTIC can perform better than each
other at different concurrency degrees.

The bottom line here is that static configurations of
TSX can deliver suboptimal performance as a conse-
quence of the high heterogeneity of the workloads gen-
erated by TM applications. The numbers above illustrate
how much we could win in this set of benchmarks, work-
loads and concurrency degree, if we had a dynamic ap-
proach that adapts to the workload. Naturally, it is unde-
sirable to require the programmer to come up with an op-
timal configuration for each workload, in particular be-
cause they may be unpredictable or even vary over time.

Another interesting result highlighted by this study is
that the parameters’ search space can be reduced by one
dimension, i.e. contention management, as the wait or
aux had in the vast majority of the cases similar speedups
over none; whereas, whenever none reported to be the
best, it was only by a very small margin. This finding
suggests therefore to focus on the tuning of two main
tuning knobs: i) the policy used to cope with capacity
aborts and ii) the settings of the maximum number of
attempts for a hardware transaction.

Table 1: Completion time (seconds, less is better) when
using different RTM variants (described in Section 3.1).

Benchmark GCC HEURISTIC Best Variant
genome 3.46 1.69 1.59 wait-giveup-4
intruder 7.06 7.92 4.79 wait-giveup-4

kmeans-h 0.41 0.42 0.37 none-stubborn-10
rbt-l-w 6.25 6.40 5.27 aux-stubborn-3
ssca2 5.92 5.97 5.72 wait-giveup-6

vacation-h 6.81 8.99 5.83 aux-half-5
yada 28.5 11.6 6.96 wait-stubborn-15

4 Self-Tuning TSX

The proposed self-tuning solution for TSX adopts an on-
line, feedback based design, which performs lightweight
profiling of the applications at runtime. This allows to
better fit the workloads of typical irregular applications
that benefit most from synchronization facilities such as
TSX [14], for which fully offline solutions are likely to
fall prey of the over-approximations of solutions based
on static analysis techniques. Another appealing char-
acteristic of the proposed approach is that it does not
necessitate any preliminary training phase, unlike other
self-tuning mechanisms for Software TM (STM) based
on off-line machine-learning techniques [10, 24].

Clearly, keeping the overhead of our techniques very
low is a crucial requirement, as otherwise any gain is eas-
ily shadowed, for instance due to profiling inefficiencies
or constant decision-making. Another challenge is the
constant trade-off between exploring alternative configu-
rations versus exploiting the current one, with the risk of
getting stuck in a possibly sub-optimal configuration.

The proposed technique pursues overhead minimiza-
tion in a twofold way. It employs efficient and con-
currency friendly profiling techniques, which infer sys-
tem’s performance by sampling the x86’s TSC cycle
counter (avoiding any system call) and relying solely on
thread-local variables to avoid inter-thread synchroniza-
tion/interference. Besides that, it employs a combina-
tion of lightweight techniques, borrowed from the liter-
ature on reinforcement learning and gradient descent al-
gorithms, which were selected, over more complex tech-
niques, precisely because of their high efficiency.

Another noteworthy feature of the proposed self-
tuning mechanism is that it allows for individually tun-
ing the configuration parameters of each application’s
atomic block, rather than using a single global config-
uration. This feature is particularly relevant in programs
that include transactions with heterogeneous character-
istics (e.g., large vs small working sets, are contention-
prone or not, etc.), which could benefit from using radi-
cally different configurations.

Before detailing the proposed solution, we first
overview a state of the art solution [3] for a classical
reinforcement learning problem, the multi-armed ban-
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Figure 3: Speedup in Genome (higher is better).

dit [28]. This reinforcement learning technique is the
key building block of the mechanism that we use to adapt
the capacity abort management policy, which will be de-
scribed in Section 4.2. We then explain the adaptation of
how stubborn should one be in using TSX, i.e. the bud-
get of attempts, in Section 4.3. The combination of those
techniques is presented in Section 5.

4.1 Bandit Problem and UCB

The ”bandit” (a.k.a. ”multi-armed bandit”) is a classic
reinforcement learning problem that states that a gam-
bling agent is faced with a bandit (a slot machine) with
k arms, each associated with an unknown reward distri-
bution. The gambler iteratively plays one arm per round
and observes the associated reward, adapting its strategy
to maximize the average reward. Formally, each arm i
(0 ≤ i ≤ k) is associated with a sequence of random vari-
ables Xi,n representing the reward of the arm i, where n
is the number of times the lever has been used. The goal
is to learn which arm i maximizes the average reward :

µi =
∞
∑

n=1

1
n Xi,n. To this purpose, the learning algorithm

needs to try different arms to estimate their average re-
ward. On the other hand, each suboptimal choice of an
arm i costs, on average, µ∗ −µi, where µ∗ is the aver-
age obtained by the optimal lever. Several algorithms
have been studied to minimize the regret (defined as

µ∗n−µi
K
∑

i=1
E[Ti(n)], where Ti(n) is the number of times

arm i has been chosen).
Building on the idea of confidence bounds, the tech-

nique of Upper Confidence Bounds (UCB) creates an
overestimation of the reward of each possible decision,
and lowers it as more samples are drawn. Implement-
ing the principle of optimism in the face of uncertainty,
the algorithm picks the option with the highest current
bound. Interestingly, this allows UCB to achieve a log-
arithmic bound on the regret value not only asymptoti-
cally, but also for any finite sequence of trials. More in
detail, UCB assumes that rewards are distributed in the

[0,1] interval, and associates each arm with a value:

µ̄i = x̄i +

√

2
logn

ni
(1)

where µ̄i is the current estimated reward for lever i; n is
the number of the current trial; x̄i is the reward for lever
i; and ni is the number of times the lever i has been tried.
The right-hand part of the sum is an upper confidence
bound that decreases as more information is acquired.
By choosing, at any time, the option with maximum µ̄i,
the algorithm searches for the option with the highest re-
ward, while minimizing the regret along the way.

4.2 Using UCB learning
We applied UCB to TSX by considering that each atomic
block of the application has a slot machine (in the
nomenclature of the previous Section 4.1), i.e., a corre-
sponding UCB instance. With it, we seek to optimize
the consumption of the attempts upon capacity aborts.
In some sense, this models a belief on whether the ca-
pacity aborts witnessed are transient or deterministic,
which cannot be assessed correctly based only on the er-
ror codes returned by aborted transactions. How many
capacity aborts should we have to consider that an atomic
block is failing deterministically? It is not obvious one
can explicitly model such belief in that way; hence why
UCB becomes appealing in this context.

We consider the three options identified in Section 3.1
with respect to capacity aborts. This creates three levers
(0 ≤ i < 3) in each UCB instance. We then use Eq. (1),
for which we recall n is the number of the current trial
(i.e., number of decisions so far for the atomic block),
and ni is the number of times the UCB instance chose
lever i. We now specify the reward function for the levers
(represented by x̄i). For this we used the number of pro-
cessor cycles that it takes to execute the atomic block for
each configuration. Hence we keep a counter ci for each
lever with the cycles that it consumed so far, and com-
pute the reward x̄i for lever i with:

x̄i =
1

ci/ni
(2)

which means that we normalize the cycles of lever i, giv-
ing us a reward in the interval [0,1].

4.3 Using Gradient Descent Exploration
In order to optimize the number of attempts configured
for each atomic block, we use an exploration technique,
similar to hill climbing/gradient descent search [25]. The
alternative of using UCB was dismissed because the pa-
rameter has a large space of search that does not map well
to the lever exploration. This optimization problem is il-
lustrated by the experiments in Fig. 4, where we show the

5
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performance improvement at 8 threads in Kmeans when
varying the number of attempts for the configuration that
yielded the best results. In the plot we show both low and
high contention workloads of Kmeans, for which there
are significantly different number of attempts yielding
maximum values of improvement (namely, 6 and 11).

For this decision we also use the processor cycles that
it takes to execute the atomic block, and at the end we
execute gradient descent exploration. We augment it
with probabilistic jumps to avoid getting trapped in a lo-
cal maximum during the exploration. Furthermore, we
memorize the best configuration seen so far to recover
from unfortunate jumps.

For this, we store: the best configuration and perfor-
mance seen so far (best); the last configuration and cor-
responding performance (last); and the current configu-
ration (current). Note that here the configuration means
simply the number of attempts. Then we use the follow-
ing rules to guide exploration (strategy called GRAD):

1) with probability 1-p jump play according to classic gra-
dient descent; if performance improved along the current
direction of exploration, keep exploring along that direc-
tion; otherwise reverse the direction of exploration.
2) With p jump probability, select randomly the attempts
with uniform probability for the next configuration. If
after the jump performance decreased by more than
maxLoss, then revert to the best known configuration.

Further, in order to enhance stability and avoid useless
oscillations once identified the optimal solution, if, after
a configuration change, performance did not change by
more than min∆, we block the gradient descent explo-
ration and allow only probabilistic jumps (to minimize
the risk of getting stuck in sub-optimal configurations).

Concerning the settings of the p jump, maxLoss, and
min∆, we set them respectively to 1%, 40% and 5%,
which are typical values for this type of algorithms [28]
and whose appropriateness in the considered context will
be assessed in Section 7.

5 Merging the Learning Techniques

So far we have presented: 1) UCB to optimize the con-
sumption of attempts upon capacity aborts (Section 4.2);
and 2) GRAD to optimize the allocation of the budget of

attempts (Section 4.3). We now present their integration
in our algorithm called TUNER.

The concern with the integration in TUNER is that the
two optimization strategies overlap slightly in their re-
sponsibilities. The advantage is that this allows to si-
multaneously optimize the configuration accurately for
atomic blocks that sometimes exceed capacity in a de-
terministic way, whereas, in other scenarios, can execute
efficiently using TSX. This may be, for instance, depend-
ing on the current state of shared memory, or some in-
put parameter used in the atomic block. It is possible to
achieve this because UCB shall decide to short-cut the at-
tempts when capacity aborts happen, whereas GRAD can
keep the attempts’ budget high to allow successful TSX
execution when capacity aborts are rare.

One problematic scenario arises when an atomic block
is not suitable for execution in hardware: either GRAD
can reduce the attempts to 0, or UCB can choose the
giveup mode. However, we may be unlucky and get an
inter-play of the two optimizers such that they affect each
other and prevent convergence of the decisions.

To solve this problem with their integration, we cre-
ate a hierarchy among the two optimizers, in which UCB
can force GRAD to explore in some direction and avoid
ping-pong optimizations between the two. For this, we
create a rule that is activated when the attempts’ budget
is exhausted: in such event we trigger a random jump to
force GRAD to explore in the direction that is most suit-
able according to UCB, that is, explore more attempts if
the UCB belief is stubborn and less attempts otherwise.

We compute the extension of the random jump for
GRAD (based on the direction decided by UCB), by tak-
ing into account information about the types of aborts
incurred so far. Namely, we collect the number of aborts
due to capacity (ab-cap) and due to other reasons (ab-
other). Then, if UCB suggests exploring more attempts
(i.e., UCB belief is stubborn), we choose the length
of the jump, noted J, proportionally to the relative fre-
quency of ab-other:

J =
ab-cap

ab-cap+ab-other
· (maxTries− cur)

where cur is the current configuration of the budget of
attempts and maxtries = 16. If UCB is different from
stubborn, the jump has negative direction, and length:

J =
ab-other

ab-cap+ab-other
· cur

We now assess the efficiency of each of the optimiza-
tion techniques alone, and their joint approach described
above as TUNER. In this joint strategy we seek to un-
derstand if the two optimization techniques work well
together: Fig. 5 shows the speedup of TUNER relatively
to UCB and GRAD individually — we average the results
across benchmarks since they yielded consistent results.

6
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Figure 5: Geometric mean speedup of TUNER over UCB
and GRAD across benchmarks and threads.

We can see from our experiments that the joint strat-
egy provided average results that are always better than
at least one of the approaches alone. More than that, for
most cases TUNER improved over both individual strate-
gies, which shows that employing them in synergy pro-
vides better results than the best approach alone. This
is an encouraging result because tuning the attempts and
dealing with capacity aborts is not entirely a disjoint con-
cern. Overall, the results show that the joint approach
yielded up to 20% improvement. Notice that each tech-
nique individually already improves over the baselines
presented earlier, so any improvement when merged fur-
ther reduces the gap with respect to the optimal result.

6 Integration in GCC

In this section we detail our implementation of TUNER,
which we have integrated in the latest stable version of
the Gnu C Compiler (GCC version 4.8.2), inside its li-
bitm component. This component is responsible for im-
plementing the C++ TM Specification [1] in GCC, which
allows programmers to write atomic constructs in their
programs that are compiled to calls to the TM runtime.

One important aspect of libitm is that it defines an
interface that can be implemented by external libraries
to plug in different TM runtimes and replace the im-
plementations available inside GCC. Our initial expec-
tation was that we could craft a TSX based runtime re-
lying on TUNER as an external library. However, libitm
does not completely delegate its work to such external
library; it still keeps control on matters such as irrevoca-
bility (atomic blocks that cannot execute optimistically;
e.g. those with I/O operations). This may cause per-
formance loss because a single-lock TSX benefits from
merging the irrevocability lock with the fallback lock.
Furthermore, the choice of integrating TUNER into GCC
allows achieving total transparency and maximum ease
of use for the programmer.

We begin by laying out a high-level description of
TUNER in Fig. 6. The flow starts every time a thread
enters an atomic block. Since TUNER uses per atomic
block statistics and configurations, we use the program
counter as an identifier of the atomic block and retrieve
the corresponding metadata kept by our algorithm. Ev-
ery per block metadata is maintained in thread-local vari-

atomic_begin
fetch atomic
block's stats yes

no

fetch last
configuration

Profile cycles

Begin Tx
procedure

atomic_end

execute
atomic block

End Tx
Procedure

Re-optimize?

application
logic

Profile cycles
Run grad()
Run ucb()

changes next
configurationyes

no

continue
program

govern retry
management

abort

retry

Re-optimize?

gcc libitm

gcc libitm

Figure 6: Workload-Oblivious tuning of TSX.

ables: hence threads perform self-tuning in an indepen-
dent fashion. This has the advantage of avoiding syn-
chronization and allowing threads to reach different con-
figurations, which can be useful in case the various ap-
plication threads are specialized to process different tasks
(and generate different workloads).

After fetching the metadata, we check whether it is
time to re-optimize the configuration for that atomic
block. This condition is a result of the sampling that we
use to profile the application. For this, we keep a counter
of executions in the metadata of the atomic block (recall
that it is thread local) so that we only re-optimize peri-
odically. This classic technique allows to keep the over-
heads low without missing noticeable accuracy in the de-
cisions taken [19, 29, 30]. Hence we place the check for
re-optimization in the begin and end of the atomic block.
In the negative case, we simply execute the atomic block
with the last configuration set up for it and proceed with-
out any extra logic or profiling.

In the case that we re-optimize, this enables profiling
of the cycles that it takes to execute the atomic block. For
this, we use the RDTSC instruction in x86, which we use
as a lightweight profiling tool to measure the relative cost
of executing the block in different configurations. After
this we attempt to start the transaction itself, which is
better described in Alg. 3. Lines 8-16 describe the retry
management policy. During a re-optimization period, if
the attempts’ budget is exhausted, this triggers the forced
random jump over GRAD according to the description of
TUNER in Section 5 (line 9), before proceeding to the
fallback path. Note also that upon a capacity abort we
adequately reduce the available budget according to the
belief of UCB set in the current configuration (line 13).

After the application executed the atomic block, it
calls back to libitm, and TUNER executes the usual pro-
cedure to finish the transaction. After this, it checks
whether it is re-optimizing the atomic block, and in the
positive case it runs GRAD and UCB to adapt the con-
figuration for the next executions. To do so, it uses

7
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Algorithm 3 TUNER adaptive configuration.
1: int ucbBelief ← � last configuration used
2: int attempts ← � last configuration used
3: if reoptimize() then
4: long initCycles ← obtainRDTSC()
5: while is locked(global-lock) do pause
6: int status ← XBEGIN
7: if status �= ok then
8: if attempts = 0 then
9: if reoptimize() then tuneAttempts(ucbBelief)

10: acquire(global-lock)
11: else
12: if status = capacity then
13: � set attempts according to ucbBelief
14: else if status = explicit ∨ status = other then
15: attempts ← attempts - 1
16: goto line 5
17: � ...code to run in transaction
18: if attempts = 0 then
19: release(global-lock)
20: else
21: if is locked(global-lock) then XABORT
22: XEND
23: if reoptimize() then
24: long totalCycles ← obtainRDTSC() - initCycles
25: ucbBelief ← UCB(totalCycles) � rules of Section 4.2
26: attempts ← GRAD(totalCycles) � rules of Section 4.3

the processor cycles consumed, and applies the rules de-
scribed throughout Section 4 to configure the budget and
consumption of attempts in the metadata of the atomic
block. Similarly to other metrics, assessing performance
via processor cycles is also subject to thread preemp-
tion, which may inflate the actual cost of executing the
atomic block. We mitigate this by binding threads to log-
ical cores, and evaluating scenarios with up to as many
threads as logical cores, as more than those typically de-
teriorates performance anyway.

7 Evaluation

We now present our final set of experiments, in which we
compare TUNER with the following baselines:

• GCC - corresponding to Alg. 1, which is the imple-
mentation available in libitm in GCC 4.8.2.
• HEURISTIC - corresponding to Alg. 2 for which we
tried to use static heuristics to better tune TSX.
• ADAPTIVELOCKS - proposed to decide between locks
and TM for atomic blocks [29]; an analytical model is
used and fed with statistics sampled at run-time (simi-
larly to TUNER). We adapted their code (using CIL) to
our environment integrated in GCC.
• TUNER - our contribution described in Alg. 3.
• Best Variant - an upper bound on the best result pos-
sible, obtained by picking the best settings of the con-
sidered parameters among all possible configurations for

each benchmark and degree of parallelism. As such,
this alternative does not correspond to a real tuning al-
gorithm, but rather to an optimal, static configuration.

We used the standard parameters for the STAMP
benchmarks and show workloads for low and high con-
tention when available. For the red-black tree we used
two workloads: low contention with 1 million items
and 10% transactions inserting/removing items whereas
the rest only performs fetch operations; and high con-
tention with 1 thousand items and 90% transactions mu-
tating the tree. For these benchmarks we present the
speedup of each variant relatively to a sequential, non-
synchronized execution. Finally we use a balanced work-
load for Memcached, configured with 50% gets and sets,
and always set an equal number of worker and client
threads. For this, we used the memslap tool in a simi-
lar fashion to [27]. In Memcached there is no sequential
execution since there is always concurrency due to main-
tenance threads. As such, we use speedups relative to
GCC at 1 thread, by having each execution last 60 sec-
onds and measuring its throughput.

In general this set of experiments (Fig. 7) shows a typi-
cal gap in performance between the static configurations
and the best possible variant. This gap is usually more
noticeable as the concurrency degree increases — as we
can see for instance in Kmeans-l — which is expected,
since that is when the configuration parameters matter
most to decide when it is profitable to insist on the hard-
ware transactions of TSX. In short, these gaps in perfor-
mance between the static alternatives and the best variant
possible is exactly the room of improvement that we try
to explore with TUNER in this paper.

In fact, TUNER is able to achieve performance im-
provements in all benchmarks with the exception of
Labyrinth and SSCA2, in which it yields the same per-
formance as the static approaches. In Labyrinth trans-
actions are always too large to execute in hardware, and
the benchmark executes about five hundred such large
operations, which means the length of the transaction
dominates the benchmark and no noticeable performance
changes exist with regard to different configurations that
do not insist too much on the hardware. In SSCA2 there
is little time spent in atomic blocks, and some barriers
synchronizing the phases of the workload, resulting in
bottlenecks that are independent of the atomic blocks and
that make all configurations perform similarly.

Table 2: Geometric mean speedup (across benchmarks)
of each algorithm relatively to sequential executions.

Algorithms threads
2 4 6 8

GCC 1.25 1.74 1.51 1.29
HEURISTIC 1.46 2.01 1.37 1.28
ADAPTIVELOCKS 1.26 1.19 1.10 1.11
TUNER 1.46 2.25 2.34 2.54
Best Variant 1.51 2.35 2.41 2.66
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Figure 7: Speedup of different approaches to tune TSX relative to sequential executions in all benchmarks.
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Figure 8: Exploration and adaptation of TUNER on two different atomic blocks (left) and global throughput (right).

For all other benchmarks and workloads we find
TUNER typically close to the best variant. Table 2 sum-
marizes our findings across this extensive set of bench-
marks: at 8 threads, the maximum hardware parallelism
available for TSX, TUNER obtains an approximate im-
provement of 2× over GCC, HEURISTIC and ADAP-
TIVELOCKS, while remaining roughly 5% off the opti-
mal solution identified by means of the exhaustive, off-
line exploration of the parameters’ space.

We also note that the current hardware is limited in
terms of hardware parallelism: in fact, some times go-
ing over 4 threads is not profitable as hyper-threading is
not beneficial due to the extra pressure on L1 caches [13].

This, however, is an issue that has been tackled by related
work (e.g. [9]) and whose importance shall be relatively
diminished by the availability of new hardware to be re-
leased with more cores and without hyper-threading.

Finally, manual profiling and inspection revealed that
TUNER consistently converged to configurations simi-
lar to the ones that performed best in our extensive of-
fline testing. We present an example of the adaptation
performed by TUNER in Fig. 8 in the Yada benchmark
(we show the adaptation of one thread among 8 run-
ning concurrently). There, we can see the configuration
of two atomic blocks being re-optimized, and converg-
ing to two drastically different configurations: the left

9
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block executes efficiently with TSX whereas the right
one does not. This illustrates two advantages of our solu-
tion: 1) the adaptation allows heterogeneous threads and
atomic blocks to converge to different configurations; 2)
an atomic block, such as that in Fig. 8b, can still insist
moderately on using TSX as long as capacity aborts do
not occur, but react quickly in case they appear. As a re-
sult, we can see the significant performance increase of
our solution, depicted in Fig. 8c with the throughput of
each solution as the benchmark executes. We highlight
the steadiness of TUNER against the irregular and spiky
performance of the static solutions that can, at best, only
fit the workload for limited time periods.

8 Related Work

Transactional Memory was initially proposed as an ex-
tension to multi-cores’ cache coherence protocols [15].
Due to the inaccessibility of rapidly prototyping in such
environment, researchers resorted to software implemen-
tations (STM) to advance the state of the art [14]. These
STMs require instrumenting the code (either manually
or compiler-assisted) to invoke the TM software runtime
in every read and write to shared memory. As a result,
STMs impose some overhead in sequential executions,
but they are efficient enough to pay off with some mean-
ingful degree of parallelism [11, 12].

Recently, implementations in hardware (HTM) be-
came available in commercial processors delivered by
major industry players. Beyond Intel, IBM also provided
support for HTM [16], in processors mostly used on high
performance computing. We only had access to an Intel
machine, but we believe the techniques described here
should also be applicable to IBM’s HTMs due to their
similar nature. Furthermore, the mainstream nature of
Intel processors increases significantly the relevance of
works, like this, aimed to optimize its performance.

We are not aware of any work that self-tunes TSX
(or any similar HTM). Works that studied TSX’s perfor-
mance [17, 31] obtained promising results, but relied on
manual tuning and provided only brief textual insights as
to how the decisions to configure it were taken.

Given the best-effort nature of this first generation of
HTM in commodity processors, it is desirable to con-
sider an efficient solution for the fallback path in soft-
ware. One interesting idea is to use STMs combined
with HTM (HybridTMs), so that transactions that are not
successful in hardware can execute in software without
preventing all concurrency, as is the case of pessimistic
coarse locking-based schemes. In this scope, some work
has obtained promising results with a simulator for HTM
support from AMD [6,23]. However, there are no official
plans to integrate AMD’s proposal [5] in a commercial
processor. More recently, the Reduced TM technique has
been proposed for Intel TSX [20], but it was only evalu-
ated in an emulated environment. In this paper we take

a step back, and try to optimize as much as possible the
HTM usage, before trying to integrate it with more com-
plex fallback paths than that of a global lock. We believe
that for most common situations this should be enough,
as evidenced by the recent application of Intel TSX in
SAP Hana database [17].

Additionally, there have been other proposals for
adaptation in TMs in software. Adaptive Locks [29],
VOTM [19], and Dynamic Pessimism [26] adapt be-
tween optimistic (with STM) and pessimistic (via lock-
ing) execution of atomic blocks. Unfortunately, these
works do not map directly to best-effort HTMs, as
we showed in our evaluation (by considering Adaptive
Locks, as the authors kindly provided us with their code).
More complex adaptation schemes have been proposed
to self-tune the choice between different STM algorithms
in AutoTM [30]. The main drawback of these kind of
works, with regard to the HTM setting studied in this
paper, is that these self-tuning proposals require knowl-
edge that is not available from the HTM support that we
have, such as the footprint of transactions (their read-
and write-sets). That is, unless we instrument reads and
writes to obtain it, which would defeat the purpose of
HTM to lower the overhead of TM over STMs.

9 Conclusions

In this paper we studied the performance of the hardware
support available via Intel TSX in the latest generation
of x86 Core processors. This interface allows some flex-
ibility in the definition of the software fallback mecha-
nism triggered upon transactional aborts, with regard to
when and how to give up executing hardware transac-
tions. We showed that no single configuration of the soft-
ware fallback can perform efficiently in every workload
and application. Motivated by these findings, we pre-
sented TUNER, a novel self-tuning approach that com-
bines reinforcement learning techniques and gradient-
descent exploration-based algorithms to self-tune TSX in
a workload-oblivious manner. This means that TUNER
does not require a priori knowledge of the application,
and executes fully online, based on the feedback on
system’s performance gathered by means of lightweight
profiling techniques. We integrated TUNER in the well
known GCC compiler, achieving total transparency for
the programmer. We evaluated our solution against avail-
able alternatives using a comprehensive set of applica-
tions showing consistent gains.
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Abstract
In many data centers, server racks are highly underuti-
lized due to maintaining the sum of the server nameplate
power below the power provisioned to the rack. The root
cause of this rack underutilization is that the server name-
plate power is often much higher than can be reached in
practice. Although statically setting per-host power caps
can ensure the sum of the servers’ maximum power draw
does not exceed the rack’s provisioned power, it burdens
the data center operator with managing the rack power
budget across the hosts. In this paper we present Cloud-
PowerCap, a practical and scalable solution for power cap
management in a virtualized cluster. CloudPowerCap,
closely integrated with a cloud resource management sys-
tem, dynamically adjusts the per-host power caps for
hosts in the cluster to respect not only the rack power
budget but also the resource management system’s con-
straints and objectives. Evaluation based on an industrial
cloud simulator demonstrates effectiveness and efficacy
of CloudPowerCap.

1 Introduction

In many datacenters, server racks are as much as 40 per-
cent underutilized [7]. Rack slots are intentionally left
empty to keep the sum of the servers’ nameplate power
below the power provisioned to the rack, and the servers
that are placed in the rack cannot make full use of the
rack’s provisioned power. The root cause of this rack un-
derutilization is that a server’s peak power consumption
is in practice often significantly lower than its nameplate
power [5]. This server rack underutilization can incur
substantial costs. In hosting facilities charging a fixed
price per rack, which includes a power charge that as-
sumes the rack’s provisioned power is fully consumed,
paying a 40 percent overhead for rack underutilization is
nontrivial. And in a private datacenter, the amortized cap-
ital costs for the infrastructure to deliver both the racks’
provisioned power and the cooling capacity to handle the
racks’ fully populated state comprises 18 percent of a dat-
acenter’s total monthly costs [10]. If that infrastructure
is 40 percent underutilized, then 7 percent of the data
center’s monthly costs are wasted for this reason.

Due to the significant cost of rack underutilization,
major server vendors are now shipping support for per-
host power caps, which provide a hardware or firmware-
enforced limit on the amount of power that the server
can draw [12, 4, 13]. These caps work by changing
processor power states [11] or by using processor clock

throttling, which is effective since the processor is the
largest consumer of power in a server and its activity is
highly correlated with the server’s dynamic power con-
sumption [5, 12]. Using per-host power caps, data center
operators can set the caps on the servers in the rack to en-
sure that the sum of those caps does not exceed the rack’s
provisioned power. While this approach improves rack
utilization, it burdens the operator with manually man-
aging the rack power budget allocated to each host in a
rack. In addition, it does not lend itself to flexible allo-
cation of power to handle workload spikes or to respond
to the addition or removal of a rack’s powered-on server
capacity.

Many data centers use their racked servers to run vir-
tual machines (VMs). Several research projects have in-
vestigated power cap management for virtualized infras-
tructure [21, 18, 19, 16, 28, 3]. While this prior work has
considered some aspects of VM Quality-of-Service (QoS)
in allocating the power budget, it has not explored oper-
ating in a coordinated fashion with a comprehensive re-
source management system for virtualized infrastructure.
Sophisticated cloud resource management systems such
as VMware Distributed Resource Scheduler (DRS) sup-
port admission-controlled resource reservations, resource
entitlements based fair-share scheduling, load-balancing
to maintain resource headroom for demand bursts, and
respect for constraints to handle user’s business rules [9].
However the operations of cloud resource management
systems aforementioned can be compromised if coordina-
tion is not carefully considered in design of the integrated
power cap management system. For example, chang-
ing host power cap naively may affect resource to VMs,
impacting end-users’ Service-Level Agreements (SLAs),
fairness, robustness and peak performance. Similarly, if
the resource management system consolidates VMs and
powers off unneeded hosts to save power, the host power
cap setting system needs to be aware of that activity or it
may cause the power budget to be inefficiently allocated
to hosts, impacting the amount of powered-on computing
capacity available for a given power budget.

This paper presents CloudPowerCap, an autonomic
computing approach to power budget management in a
virtualized environment. CloudPowerCap manages the
power budget for a cluster of virtualized servers, dynami-
cally adjusting the per-host power caps for servers in the
cluster. It allocates the power budget in close coordina-
tion with a cloud resource management system, operating
in a manner consistent with the system’s resource man-
agement constraints and goal of ensuring VMs receive
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the resources to which they are entitled. To facilitate
interoperability between power cap and resource manage-
ment, CloudPowerCap maps a servers power cap to its
CPU capacity and coordinates with the resource manage-
ment system through well defined interfaces and proto-
cols. The integration of power cap and resource manage-
ment results in the following novel capabilities in cloud
management.

• Constraint satisfaction via power cap realloca-
tion: Dynamic power cap reallocation enhances the
system’s capability to satisfy VM constraints, in-
cluding resource reservations and business rules.

• Power-cap-based entitlement balancing: Power
cap redistribution provides an efficient mechanism
to achieve entitlement balancing among servers.
Power-cap-based entitlement balancing can reduce
or eliminate real migrations of VMs and associated
overhead.

• Power cap redistribution for power manage-
ment: CloudPowerCap can redistribute power caps
among servers to handle server power-off/on state
changes caused by dynamic power management.
Power cap redistribution reallocates the power bud-
get freed up by powered-off hosts, while reclaiming
budget to power-on those hosts when needed.

We have implemented and integrated CloudPowerCap
with VMware Distributed Resource Scheduler (DRS).
Evaluation based on an industrial cloud simulator demon-
strated the efficacy of integrated power budget and re-
source management in virtualized server clusters.

2 Motivation

In this section, we motivate the problem CloudPowerCap
is intended to solve. We first describe the power model
mapping a host’s power cap to its CPU capacity, which
enables CloudPowerCap to integrate power cap manage-
ment with resource management in a coordinated fash-
ion. We next discuss some trade-offs in managing a rack
power budget. After a brief introduction of the resource
management model, we then provide several examples
of the value of combining dynamic rack power budget
management with a cloud resource management system.

2.1 CloudPowerCap Power Model
The power model adopted by CloudPowerCap maps the
power cap of the host to the CPU capacity of the host,
which is in turn managed by a resource management sys-
tem directly. A host’s power consumption Pconsumed is
commonly estimated by its CPU utilization U and the
idle Pidle and peak Ppeak power consumption of the host
via a linear function, which is validated by real-world
workloads in previous measurements and analysis [17, 5],

Pconsumed = Pidle +(Ppeak −Pidle)U. (1)

The power Pidle represents the power consumption of the
host when the CPU is idle. Pidle intentionally includes the
power consumption of the non-CPU components, such as
networking and memory, whose power draw currently
does not vary significantly with utilization. We note that
in enterprise virtualized data centers, either the local disks
are kept busy enough not to spin down or (more typi-
cally) shared storage is employed. The power Ppeak repre-
sents the power consumption of the host when the CPU is
100% utilized at its maximum CPU capacity Cpeak, with
the CPU utilization U expressed as a fraction of the max-
imum capacity.

Equation (1) is an upper-bound estimation of Pconsumed
if a host power management technology such as dy-
namic voltage and frequency scaling (DVFS) is used
since DVFS can deliver amount of CPU capacity at a
lower power consumption. For example, DVFS could de-
liver the equivalent of 50 percent utilization of a 2 GHz
processor at lower power consumption by running the
processor at 1 GHz with 100 percent utilization. Com-
puting Pconsumed as an upper bound is desirable for the re-
source management use case, to ensure sufficient power
budget for worst case.

Considering upper-bound power estimation from Equa-
tion (1), for a host power cap Pcap set below Ppeak, we
could solve for the lower-bound of the CPU capacity
Ccapped corresponding to Pcap, i.e., the host’s effective
CPU capacity limit which we refer to as its power-capped
capacity. In this case, we rewrite Equation (1) as:

Pcap = Pidle +(Ppeak −Pidle)(Ccapped/Cpeak). (2)
and then solve for Ccapped as:

Ccapped =Cpeak(Pcap −Pidle)/(Ppeak −Pidle). (3)

2.2 Managing a Rack Power Budget
To illustrate some trade-offs in managing a rack power
budget, we consider the case of a rack with a budget
of 8 KWatt, to be populated by a set of servers. Each
server has 34.8 GHz CPU capacity comprising 12 CPUs,
each running at 2.9 GHz, along with the other parameters
shown in Table 1.

CPU Memory Nameplate Peak Idle

34.8 GHz 96 GB 400 W 320 W 160 W

Table 1: The configuration of the server in the rack.

Given the power model presented in the previous sec-
tion and the servers in Table 1, the rack’s 8 KWatt power
budget can accommodate various deployments includ-
ing those shown in Table 2. Based on the 400 Watts
nameplate power, only 20 servers can be placed in the
rack. Instead setting each server’s power cap to its peak
attainable power draw of 320 Watts allows 25 percent
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more servers to be placed in the rack. This choice maxi-
mizes the amount of CPU capacity available for the rack
power budget, since it best amortizes the overhead of the
servers’ powered-on idle power consumption. However,
if memory may sometimes become the more constrained
resource, setting each server’s power cap at 250 Watts
to allow 32 hosts to be placed in the rack significantly
increases the memory available for the given power bud-
get. By dynamically managing the host power caps of the
servers in Table 1, trade-offs between CPU and memory
capacity are illustrated in Table 2.

Power
Cap(W)

Servers
CPU Memory

Total(GHz) Ratio Total(GB) Ratio

400 20 696 1.00 1920 1.00
320 25 870 1.25 2400 1.25
285 28 761 1.09 2688 1.40
250 32 626 0.90 3072 1.60

Table 2: Trade-offs between CPU and memory with
different power caps

2.3 Powercap Distribution Examples
The cloud resource management system with which
CloudPowerCap is designed to interoperate computes
each VM’s entitled resources and handles the ongoing
location of VMs on hosts so that the VMs’ entitlements
can be delivered while respecting constraints, providing
fair resource allocation by entitlement balancing, and op-
tionally reducing power consumption.

In this section we use several scenarios to illustrate
how CloudPowerCap can redistribute host power caps to
support cloud resource management, including enabling
VM migration to correct constraint violations, provid-
ing spare resource headroom for robustness in handling
bursts, and avoiding migrations during entitlement bal-
ancing. In these scenarios, we assume a simple example
of a cluster with two hosts. Each host has an uncapped
capacity of 2x3GHz (two CPUs, each with a 3GHz ca-
pacity) with a corresponding peak power consumption of
600W (values chosen for ease of presentation).

Enforcing constraints: Host power caps should be re-
distributed when VMs are placed initially or relocated,
if necessary to allow constraints to be respected or con-
straint violations to be corrected. For example, a cloud
resource management system would move VM(s) from
a host violating affinity constraints to a target host with
sufficient capacity. However, in the case of static power
cap management, this VM movement may not be feasible
because of a mismatch between the VM reservations and
the host capacity. As shown in Figure 1a, host A and B
have the same power cap of 480 W, which corresponds
to a power-capped capacity of 4.8 GHz. Host A runs two

VMs, VM 1 with reservation 2.4 GHz and VM 2 with
reservation 1.2 GHz. And host B runs only one 3 GHz
reservation VM. When VM 2 needs to be colocated with
VM 3 due to a new VM-VM affinity rule between the two
VMs, no target host in the cluster has sufficient power-
capped capacity to respect their combined reservations.
However, if CloudPowerCap redistributes the power caps
of host A and B as 3.6 GHz and 6 GHz respectively, then
VM 2 can successfully be moved by the cloud resource
management system to host B to resolve the rule viola-
tion in the cluster. Note that host A’s capacity cannot be
reduced below 3.6 GHz until VM 1’s migration to host B
is complete or else the reservations on host A would be
violated.

Host A Host B

VM 1

VM 2
VM 3

CC CC

Host A Host B

VM 1
VM 3

VM 2CC

(a) Enable VMs movement

Host A

VM 1

Host B

VM 2

VM 3

CC CC

Host A

VM 1

Host B

VM 2

VM 3
CC

(b) Reduces overhead of entitlement balancing

Host A

VM 1

Host B

VM 2

CC CC

Host A

VM 1

VM 2

Host B

Stand-by

(c) Improves robustness after powering off a host

Figure 1: Power cap distribution scenarios. Left-
hand figures correspond to hosts’ status before dis-
tribution; right-hand figures show hosts’ status after.
Power-capped capacity is not shown when the power
cap of the host equals its peak power. (CC: Power-
capped capacity)

Enhancing robustness to demand bursts: Even
when VM moves do not require changes in the host power
caps, redistributing the power caps can still benefit the ro-
bustness of the hosts to handling VM demand bursts. For
example, suppose as in the previous example that VM 1
needs to move from host A to host B because of a rule. In
this case, a cloud resource management system can move
VM 1 to host B while respecting the VMs’ reservations.
However, after the migration of VM 1, the headroom be-
tween the power capped capacity and VMs’ reservations
is only 0.6 GHz on host B, compared with 2.4 GHz on
host A. Hence, host B can only accommodate as high as a
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15% workload burst without hitting the power cap while
host A can accommodate 100%, that is, host B is more
likely to introduce a performance bottleneck than host A.
To handle this imbalance of robustness between the two
hosts, CloudPowerCap can redistribute the power caps of
host A and B as 3.6 GHz and 6 GHz respectively. Now
both hosts have essentially the same robustness in term
of headroom to accommodate workload bursts.

Reduce overhead of VM migration: Before entitle-
ment balancing, power caps should be redistributed to
reduce the need for VM migrations. Load balancing of
the resources to which the VMs on a host are entitled is
a core component of cloud resource management since it
can avoid performance bottlenecks and improve system-
wide throughput. However, some migrations of VMs for
load balancing are unnecessary. As shown in Fig 1b, the
VM on Host A has an entitlement of 1.8 GHz while the
VMs on host B have a total entitlement of 3.6 GHz. The
difference in entitlements between host A and B are high
enough to trigger entitlement balancing, in which VM 3
is moved from host B to host A. After entitlement bal-
ancing, host A and B have entitlements of 3 GHz and
2.4 GHz respectively, that is, the workloads of both hosts
are more balanced. However, VM migration has an over-
head related to copying the VM’s CPU context and mem-
ory content between the hosts involved, inducing some
latency [23]. In contrast, changing a host power cap
only involves issuing a simple baseboard management
system command which completes in less than one mil-
lisecond [12]. Hence, instead of entitlement balancing,
CloudPowerCap can perform the cheaper action of redis-
tributing the power caps of hosts A and B, increasing host
B’s power capped capacity to 6 GHz after decreasing host
A’s power capped capacity to 3.6 GHz, which also results
in more balanced entitlements for host A and B. In gen-
eral, the redistribution of power caps before entitlement
balancing, called powercap based entitlement balancing,
can reduce or eliminate the number of VM migrations for
load balancing and the overhead of the migrations.

Adapting to host power on/off: Power caps should
be redistributed when cloud resource management pow-
ers on/off host(s) to improve cluster efficiency. A cloud
resource management system detects when there is ongo-
ing under-utilization of cluster host resources leading to
power-inefficiency due to the high host idle power con-
sumption, and it consolidates workloads onto fewer hosts
and powers the excess hosts off. In the example shown
in Figure 1c, host B can be powered off after VM 2 is
migrated to host A. However, after host B is powered-off,
it does not consume power and hence does not need its
power cap. Therefore the utilization of host A can be
increased due to migrated VM 2, which impacts the ca-
pacity headroom of host A. Power cap redistribution after
powering off host B can increase the power cap of host A
to 6 GHz, allowing the headroom of host A to increase to
3 GHz and hence increase system robustness and reduce

the likelihood of resource throttling. Similarly, power-
cap redistribution can improve robustness when resource
management powers on hosts.

3 CloudPowerCap Design

CloudPowerCap is designed to provide power budget
management to existing resource management systems,
in such a way as to support and reinforce such systems’
design and operation. Such resource management sys-
tems are designed to satisfy VMs’ resource entitlements
subject to a set of constraints, while providing balanced
headroom for demand increases and, optionally, reduced
power consumption. CloudPowerCap improves the op-
eration of resource management systems, via power cap
allocation targeted to their operation.

Existing resource management systems typically in-
volve nontrivial complexity. Fundamentally reimplement-
ing them to handle hosts of varying capacity due to power
caps would be difficult and the benefit of doing so is un-
clear, given the coarse-grained scales at which cloud re-
source management systems operate. In CloudPowerCap,
we take the practical approach of introducing power bud-
get management as a separate manager that coordinates
with an existing resource management system such that
the existing system works on hosts of fixed capacity, with
specific points at which that capacity may be modified by
CloudPowerCap in accordance with the existing system’s
operational phase. Our approach therefore enhances mod-
ularity by separating power cap and resource manage-
ment, while coordinating them effectively through well
defined interfaces and protocols, as described below. Due
to practical and modular design, CloudPowerCap is the
same scalablity of the clous resource management it inte-
grated with.

Since the aim of CloudPowerCap is to enforce the
cluster power budget while dynamically managing hosts’
power caps by closely coordinating with the cloud re-
source management system, CloudPowerCap consists of
three components, as shown in Figure 2, corresponding
to the three major functions of the cloud resource man-
agement system. The three components, corresponding
to main components in DRS, execute step by step and
work on two-way interaction with components in DRS.

Powercap Allocation: During the powercap alloca-
tion phase, potential resource management constraint cor-
rection moves may require redistribution of host power
caps. Because CloudPowerCap can redistribute the host
power caps, the cloud resource management system is
able to correct more constraint violations than would be
possible with statically-set host power caps.

Powercap-based Entitlement Balancing: If the re-
source management system detects entitlement imbal-
ance over the user-set threshold, powercap based entitle-
ment balancing first tries to reduce the imbalance, by re-
distributing power caps without actually migrating VMs
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Constraints Correction Powercap Allocation

Entitlement Balancing Powercap-based
Entitlement Balancing

Dynamic Power
Management

Powercap Re-
distribution

InteractionWorkflow

DRS CloudPowerCap

Figure 2: Structure and two-way interaction of
CloudPowerCap working with DRS and DPM.
between hosts. This is valuable because redistributing
power caps, which is less than 1 millisecond [12], is
much faster than VM migration [26]. Powercap-based
entitlement balancing may not be able to fully address im-
balance due to inherent physical host capacity limits. If
powercap balancing cannot reduce the imbalance below
the imbalance threshold, the resource management enti-
tlement balancing can address the remaining imbalance
by actual VM migration.

Powercap Redistribution: If the resource manage-
ment system powers on a host to match a change in
workload demands or other requirements, CloudPower-
Cap performs a two-pass power cap redistribution. First it
attempts to re-allocate sufficient power cap for that host
to power-on. If that is successful and if the system se-
lects the host in question after its power-on evaluation,
then CloudPowerCap redistributes the cluster power cap
across the updated hosts, to address any unfairness in the
resulting power cap distribution. Powered-off host pow-
ercap redistribution improves the availability of power
for the remaining powered-on hosts, allowing them to be
more responsive to workload bursts. And when powered-
on hosts can handle bursts without powering on addi-
tional hosts, this redistribution improves power efficiency.
We note that the effect of off/on a host due to fault and
recovery by high availability (HA) is similar to power-
ing on/off hosts by a power management system. Hence,
powercap redistribution can be adapted to work with HA.

4 CloudPowerCap Implementation

We implemented CloudPowerCap to work with the
VMware Distributed Resource Scheduler (DRS) [24]
along with its optional Distributed Power Management
(DPM) [25] feature. CloudPowerCap could also comple-
ment some other distributed resource management sys-
tems for virtualization environments. In this section, we
first present an overview of DRS and then detail the de-
sign of each CloudPowerCap component and its inter-
action with its corresponding DRS component. Due to
space restriction, the implementation of Powercap redis-

tribution is not presented in this paper. Please refer to the
technical report for details [6].

4.1 DRS Overview
VMware DRS performs resource management for a clus-
ter of ESX hypervisor hosts. By default, DRS is invoked
every five minutes. At the beginning of each DRS invo-
cation, DRS runs a phase to generate recommendations
to correct any cluster constraint violations by migrating
VMs between hosts. Examples of such corrections in-
clude evacuating hosts that the user has requested to enter
maintenance or standby mode and ensuring VMs respect
user-defined affinity and anti-affinity business rules. DRS
next performs entitlement balancing. The load metric of
each host in DRS is normalized entitlement, which is
defined as the sum of the per-VM entitlements for each
VM running on the host divided by the capacity of the
host. DRS chooses to migrate the VM that reduces im-
balance most and the move-selection step repeats until
either the load imbalance is below a user-set threshold or
the number of moves generated in the current pass hits a
configurable limit based on an estimate of the number of
moves that can be executed in five minutes. Finally DRS
optionally runs dynamic power management, which op-
portunistically saves power by dynamically right-sizing
cluster capacity to match recent workload demand, while
respecting the cluster constraints and resource controls.

4.2 Powercap Allocation
Powercap Allocation redistributes power caps if needed
to allow DRS to correct constraint violations. DRS’s abil-
ity to correct constraint violations is impacted by host
power caps, which can limit the available capacity on tar-
get hosts. However, as shown in Fig 1a, by increasing the
host power cap, the DRS algorithm can be more effective
in correcting constraint violations by redistributing the
cluster’s unreserved power budget.

CloudPowerCap and DRS work in coordination, as
shown in Figure 3, to enhance the system’s capability
to correct constraints violations.

1) Powercap Allocation first calls GetFlexiblePower to
get flexiblePower, which is a special clone of the
current cluster snapshot in which host power cap of
each host is set to its reserved power cap, i.e., the
minimum power cap needed to support the capacity
corresponding to the reservations of the VMs cur-
rently running on that host.

2) The flexiblePower is used as a parameter to call Con-
straintsCorrection function in DRS, which recom-
mends VM migrations to enforce constraints and
update hosts’ reserved power caps for the new VM
placements after the recommended migrations.

3) As a result of performing ConstraintsCorrection,
DRS generates VM migration actions to correct con-
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Constraints
Correction

Powercap
Allocation

DRS CloudPowerCap

Cluster Snapshot

1
GetFlexiblePower

2
ConstraintsCorrection3

MigrateVMs

4
RedivvyPowerCap

5
SetPowerCap

Figure 3: Coordination between CloudPowerCap
and DRS to correct constraints. Solid arrows indi-
cate invocations of CloudPowerCap functions while
dashed arrows indicate invocations of DRS functions.

straints. Note that when applying VMs migration
actions on hosts in the cluster, dependencies are re-
spected between these actions and any prerequisite
power cap setting actions generated by CloudPower-
Cap.

4) If some constraints are corrected by DRS, the power
caps of source and target hosts may need to be reallo-
cated to ensure fairness. For this case, RedivvyPow-
erCap of CloudPowerCap is called to redistribute
the power cap.

5) Finally Powercap Allocation generates actions to set
the power cap of hosts in the cluster according to the
results of RedivvyPowerCap.

The key function in Powercap Allocation is Redivvy-
PowerCap, in which the unreserved power budget is re-
distributed after the operations for constraint violation
correction. The objective of RedivvyPowerCap is to dis-
tribute the cluster power budget according to proportional
resource sharing [27] for maintaining fairness of unre-
served power budget distribution across hosts after the
constraint correction. RedivvyPowerCap may introduce
new opportunity to move VMs to correct constraints af-
ter redistributing the unreserved power budget. However,
for simplicity, Powercap Allocation stops after invoking
RedivvyPowerCap only once.

4.3 Entitlement Balancing
Entitlement balancing is critical for systems managing
distributed resources, to deliver resource entitlements and
improve the responsiveness to bursts in resource demand.
For resource management systems like DRS without the
concept of dynamic host capacity, entitlement balancing
achieves both of these goals by reducing imbalance via
migrating VMs between hosts. However, with dynamic
power cap management, CloudPowerCap can alleviate
imbalance by increasing the power caps of heavy loaded
hosts while reducing the power caps of lightly loaded

hosts rather than actually migrating VMs between those
hosts as shown in Figure 1b. Considering the almost neg-
ligible overhead of power cap reconfiguration comparing
to VM migration, Powercap-based Entitlement Balancing
is preferred to DRS entitlement balancing when the clus-
ter is imbalanced. However, because power cap adjust-
ment has a limited range of operation, Powercap-based
Entitlement Balancing may not fully eliminate imbalance
in the cluster.

Entitlement
Balancing

Powercap-based
Entitlement Balancing

DRS CloudPowerCap

Cluster Snapshot

1
GetBalanceMetric 2

BalancePowerCap

3
SetPowerCap

4
EntitlementBalancing

5
MigrateVMs

Figure 4: Work flow of Powercap-based Entitlement
Balancing and its interaction with DRS entitlement
balancing. Solid arrows indicate invocations of Cloud-
PowerCap functions while dashed arrows indicate in-
vocations of DRS functions.

The process of powercap based entitlement balancing
and its interaction with DRS load balancing are shown in
Figure 4.

1) To acquire the status of entitlement imbalance of the
cluster, Powercap-based Entitlement Balancing first
calculates the DRS imbalance metric for the cluster.

2) Then Powercap-based Entitlement Balancing tries
to reduce the entitlement imbalance among hosts by
adjusting their power caps in accordance with their
normalized entitlements.

3) If Powercap-based Entitlement Balancing is able to
impact cluster imbalance, its host power cap redis-
tribution actions are added to the recommendation
list, with the host power cap reduction actions being
prerequisites of the increase actions.

4) If Powercap-based Entitlement Balancing has not
fully balanced the entitlement among the hosts, DRS
entitlement balancing is invoked on the results of
Powercap-based Entitlement Balancing to reduce en-
titlement imbalance further.

5) DRS may generate actions to migrate VMs.
The key function BalancePowerCap was developed

along the lines of progressive filling to achieve max-min
fairness [2]. The function progressively increases the host
power cap of the host(s) with highest normalized entitle-
ment while progressively reducing the host power cap
of the host(s) with lowest normalized entitlement . This
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process is repeated until either the DRS imbalance metric
crosses the balance threshold or any of the host(s) with
highest normalized entitlement reach their peak capac-
ity and hence further reduction in overall imbalance is
limited by those hosts.

4.4 Powercap Redistribution
Powercap Redistribution responds to DPM dynamically
powering on/off hosts. When CPU or memory utilization
becomes high, DPM powers on hosts and Powercap Re-
distribution ensures that sufficient power cap is assigned
to the powering-on host. On the other hand, when both
CPU and memory utilization are low for a sustained pe-
riod, DPM may consolidates VMs onto fewer hosts and
powers off the remaining hosts to save energy. In this
case, Powercap Redistribution distributes the power caps
of the powered-off hosts among the active hosts to in-
crease their capacity.

DPM Powercap
Redistribution

DRS CloudPowerCap

Cluster Snapshot

1
GetUtilization

2
RedistributePowerCap

3
TryPowerOnHost 5

SetPowerCap

4
PowerOnHosts

Figure 5: Coordination between CloudPowerCap
and DRS and DPM in response to power on/off hosts.
Solid arrows indicate to invoke CloudPowerCap func-
tions while dashed arrows indicate to invoke DRS
functions.

The coordination between Powercap Redistribution
and DPM when DPM attempts to power on a host is de-
picted in Figure 5.

1) If there is sufficient unreserved cluster power budget
to set the target host’s power cap to peak, the host
obtains its peak host power cap from the unreserved
cluster power budget and no power cap redistribu-
tion is needed.

2) If the current unreserved cluster power budget is not
sufficient, RedistributePowerCap is invoked to al-
low the powering-on candidate host to acquire more
power from those hosts with lower CPU utilization.

3) DPM decides whether to power on the candidate
host given its updated power cap after redistribution
and its ability to reduce host high utilization in the
cluster.

4) If the host is chosen for power-on, the normal DPM
function is invoked to generate the action plan for
powering on the host.

5) If DPM decides to recommend the candidate power-
on, any needed host power cap changes are recom-
mended as prerequisites to the host power-on.

4.5 Implementation Details

We implemented CloudPowerCap on top of VMware’s
production version of DRS. Like DRS, CloudPowerCap
is written in C++. The entire implementation of Cloud-
PowerCap comprises less than 500 lines of C++ code,
which demonstrates the advantage of instantiating power
budget management as a separate module that coordi-
nates with an existing resource manager through well-
defined interfaces.

As described previously in this section, DRS operates
on a snapshot of the VM and host inventory it is man-
aging. The main change we made for DRS to interface
with CloudPowerCap was to enhance the DRS method for
determining a host’s CPU capacity to reflect the host’s
current power cap setting in the snapshot. Other small
changes were made to support the CloudPowerCap func-
tionality, including specifying the power budget, intro-
ducing a new action that DRS could issue for changing a
host’s power cap, and providing support for testability.

During CloudPowerCap initialization, for each host,
the mapping between its current power cap and its effec-
tive capacity is established by the mechanisms described
in Section 2.1. For a powered-on host, the power cap
value should be in the range between the host’s idle and
peak power. When computing power-capped capacity of
a host based on the power model (3), it is important to
ensure that the capacity reserved by the hypervisor on the
host is fully respected. Hence, the power-capped capacity
Cmcapped managed by the resource management system,
i.e., managed capacity, is computed as:

Cmcapped =Ccapped −CH , (4)
where the power-capped raw capacity Ccapped is com-
puted using Equation (1) and CH is the capacity reserved
by the hypervisor.

The implementation of Powercap Allocation entailed
updating corresponding DRS methods to understand that
a host’s effective capacity available for constraint cor-
rection could be increased using the unreserved power
budget, and adding a powercap redivvy step optionally
run at the end of the constraint correction step. Power-
cap Balancing, which leverages elements of the powercap
redivvying code, involved creating a new method to be
called before the DRS balancing method. Powercap Re-
distribution changed DPM functions to consider whether
to turn on/off hosts based not only on utilization but also
on the available power budget.
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5 Evaluation

In this paper we evaluate CloudPowerCap in the DRS
simulator under three interesting scenarios. The first ex-
periment evaluates CloudPowerCap’s capability to rebal-
ance normalized entitlement among hosts while avoiding
the overhead of VM migration. The second experiment
shows how CloudPowerCap allows CPU and memory ca-
pacity trade-offs to be made at runtime. This experiment
includes a relatively large host inventory to show the ca-
pacity trade-offs at scale. The third experiment shows
how CloudPowerCap reallocates the power budget of a
powered-off host to allow hosts to handle demand bursts.

In these experiments, we compare CloudPowerCap
against two baseline approaches of power cap manage-
ment: StaticHigh and Static. Both approaches assign
equal power cap to each host in the cluster at the be-
ginning and maintain those power caps throughout the
experiment. StaticHigh sets power cap of the host to its
peak power, maximizing throughput of CPU intensive ap-
plications. However for applications in which memory
or storage become constrained resources, it can be ben-
eficial to support more servers to provision more mem-
ory and storage. Hence in Static, the power cap of a
host is intentionally set lower than the peak power of the
host. Compared with StaticHigh, more servers may be
placed with Static to enhance the throughput of applica-
tions with memory or storage as constrained resources.
However both approaches lack the capability of flexible
power cap allocation to respond to workload spikes and
demand variation.

5.1 DRS Simulator
The DRS simulator [8] is used in developing and testing
all DRS algorithm features. It is a high-fidelity simulator
and provides a realistic execution environment, while al-
lowing much more flexibility and precision in specifying
VM demand workloads and obtaining repeatable behav-
ior close to the real hardware.

The DRS simulator simulates a cluster of hosts and
VMs. A host can be defined using parameters including
number of physical cores, CPU capacity per core, total
memory size, and power consumption at idle and peak.
A VM can be defined in terms of number of configured
virtual CPUs (vCPUs) and memory size. Each VM’s
workload can be described by an arbitrary function over
time, with the simulator generating CPU and memory
demand for that VM based on the specification.

Given the input characteristics of hosts and the VMs’
resource demands and specifications, the simulator mim-
ics CPU and memory schedulers, allocating resources to
the VMs in a manner consistent with the behavior of hosts
in a real DRS cluster. The simulator calculates VMs’ mi-
gration cost in accordance with several realistic factors,
for example, VMs’ read/write memory access and the

available I/O and network bandwidth. The simulator also
models the hypervisor CPU and memory overheads.

The simulator is able to estimate the power consump-
tion of the hosts based on the power model given in Equa-
tion (1) in Section 2.2. For this work, the simulator was
updated to respect the CPU capacity impact associated
with a host’s power cap.

5.2 Headroom Rebalancing
CloudPowerCap can reassign power caps to balance head-
room for bursts, providing a quick response to workload
imbalance due to VM demand changes. Such reassign-
ment of power caps can improve robustness of the clus-
ter and reduce or avoid the overhead of VM migration
for load balancing. To evaluate impact of CloudPower-
Cap on headroom balancing, we perform an experiment
in which 30 VMs, each with 1vCPU and 8GB memory,
run on 3 hosts with the configuration shown in Table 1.
Figures 6a and 6b plot the simulation results under Cloud-
PowerCap and Static with a static power cap allocation
of 250W per host, respectively. Initially, at time 0 sec-
onds, the VMs are each executing similar workloads of 1
GHz CPU and 2 GB memory demand, and are evenly dis-
tributed across the hosts. At time 750 seconds, the VMs
on one host spike to 2.4 GHz demand, thereby increasing
the demand on that host above its power-capped capacity.
When DRS is next invoked at time 900 seconds (running
every 300 seconds by default), its goal is to rebalance the
hosts’ normalized entitlements. Under the static power
cap, DRS migrates the VMs to balance the normalized
entitlements. In contrast, CloudPowerCap reassigns the
hosts’ power caps to reduce the caps on the light-loaded
hosts (to 215W) and increase them on the heavy-loaded
host (to 320W). This addresses the host overutilization
and imbalance without latency and overhead associated
with VM migration, which is particularly important in
this case, since the overhead further impacts the work-
loads running on the overutilized host. At time 1400 sec-
onds, the 2.4 GHz VM demand spike ceases, and those
VMs resume running at their original 1 GHz demand until
the experiment ends at time 2100 seconds. Again, Cloud-
PowerCap avoids the need for migrations by reassigning
the host power caps to their original values. In contrast,
Static performs two DRS entitlement balancing phases
and migrates several VMs at time 900 seconds and 1500
seconds.

CPU Payload Ratio Migration

CPC 0.99 0
Static 0.89 7

StaticHigh 1.00 0

Table 3: CloudPowerCap rebalancing without migra-
tion overhead
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Figure 6: Headroom balancing on a group of 3 hosts.
Hosts are grouped at each event time.

Table 3 compares the CPU payload ratio, which is the
ratio between actual CPU capacity and allocated CPU
capacity to the VMs, under CloudPowerCap, Static us-
ing 250W static host power caps, as well as StaticHigh
using the power caps equivalent to the peak capacity of
the host. For Static, the CPU overhead caused by VMs
migration has a significant overall impact on the CPU
payload delivered to the VMs because the cycles needed
for VMs migration directly impact VMs’ performance.
For CloudPowerCap, there is a relatively small impact
to performance after the burst and before DRS can run
CloudPowerCap to reallocate the host power caps. The
power cap setting can be executed by the host within 1
millisecond and introduces minor payload overhead.

5.3 Flexible Resource Capacity
CloudPowerCap supports flexible use of power to allow
trade-offs between resource capacities to be made dynam-
ically. To illustrate such a trade-off at scale, we consider
a cluster of hosts as described in Section 2.1. We model
the situation in which the cluster is used to run both pro-
duction trading VMs and production hadoop compute
VMs. The trading VMs are configured with 2 vCPUs
and 8 GB and they are idle half the day (off-prime time),
and they run heavy workloads of 2x2.6 GHz and 7 GB
demand the other half of the day (prime time). They
access high-performance shared storage and hence are
constrained to run on hosts with access to that storage,
which is only mounted on 8 hosts in the cluster. The
hadoop compute VMs are configured with 2 vCPUs and
16 GB and each runs a steady workload of 2x1.25 GHz
and 14 GB demand. They access local storage and hence
are constrained to run on their current hosts and cannot
be migrated. During prime time, the 8 servers running
the trading VMs do not receive tasks for the hadoop VMs
running on those servers; this is accomplished via an elas-
tic scheduling response to the reduced available resources
[29]. Figure 7 shows the simulation results of the clus-
ter under CloudPowerCap and the Static configuration of
power caps.

Table 4 compares the CPU and memory payload de-
livered for three scenarios, and shows the impact on the
trading VMs. The staticHigh scenario involves deploying
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Figure 7: Trade-offs between dynamic resource ca-
pacities. Trading indicates a group of servers run-
ning production trading VMs while Hadoop repre-
sents servers run production Hapdoop compute VMs.
25 servers with power caps of 320 W, which immediately
and fully supports the trading VMs prime time demand
but limits the overall available memory and local disks
in the cluster associated with the 25 servers. The Static
scenario instead involves deploying 32 servers with each
host power cap statically set to 250 Watts. This scenario
allows more memory and local disks to be accessed, in-
creasing the overall CPU and memory payload delivered
because more hadoop work can be accomplished, but lim-
its the peak CPU capacity of each host, meaning that the
trading VMs run at only 62 percent of their prime time de-
mand. With CloudPowerCap, the benefits to the hadoop
workload of the static scenario are retained, but the power
caps of the hosts running the trading VMs can be dynam-
ically increased, allowing those VMs’ full prime time
demand to be satisfied.

CPU Ratio Mem Ratio Trading Ratio

CPC 1.24 1.28 1.00
Static 1.21 1.28 0.62

StaticHigh 1.00 1.00 1.00

Table 4: CloudPowerCap enabling flexible resource
capacity. Trading ratio indicates the ratio that pro-
duction trading VMs demands in prime time are sat-
isfied.

5.4 Standby Host Power Reallocation
CloudPowerCap can reallocate standby hosts’ power cap
to increase the capacity of powered-on hosts and thereby
their efficiency and ability to handle bursts. To demon-
strate this, we consider the same initial setup in terms of
hosts and VMs as in the previous experiment. In this case,
all VMs are running a similar workload of 1.2 GHz and
2 GB memory demand. At time 750 seconds, each VM’s
demand reduces to 400 MHz, and when DRS is next in-
voked at time 900 seconds, DPM recommends that the
VMs be consolidated onto two hosts and that another host
is powered-off. After the host has been evacuated and
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powered-off at time 1200 seconds, CloudPowerCap reas-
signs its power cap to 0 and reallocates the rack power
budget to the two remaining hosts, setting their power
caps to 320W each. At time 1400 seconds, there is an un-
expected spike. In the case of statically-assigned power
caps, the host that was powered-off is powered back on to
handle the spike, but in the CloudPowerCap case, the ad-
ditional CPU capacity available on the 2 remaining hosts
given their 320 W power caps is sufficient to handle this
spike and the powered-off host is not needed.

CPU Payload Ratio Migration Power Ratio

CPC 1.00 10 1.00
Static 0.98 19 1.36

StaticHigh 1.00 10 1.00

Table 5: CloudPowerCap reallocating standby host
power

Table 5 compares the CPU payload in cycles delivered
to the VMs for CloudPowerCap, Static, and StaticHigh.
In this case, a number of additional vMotions are needed
for Static, but the overhead of these vMotions does not
significantly impact the CPU payload, because there is
plenty of headroom to accomodate this overhead. How-
ever, Static consumes much more power than the other
2 cases, since powering the additional host back on and
repopulating it consumes significant power. In contrast,
CloudPowerCap is able to match the power efficiency of
the baseline, by being able to use peak capacity of the
powered-on hosts.

6 Related Work

Several research projects have considered power cap man-
agement for virtualized infrastructure [21, 18, 16, 28, 19,
14]. Among them, the research most related to our work
is [19], in which authors proposed VPM tokens, an ab-
straction of changeable weights, to support power bud-
geting in virtualized environment. Like our work, VPM
tokens enables shifting power budget slack which corre-
sponds to headroom in this paper, between hosts. How-
ever the power cap management system based on VPM
tokens are independent of resource management systems
and may generate conflicting actions without coordina-
tion mechanisms.

In contrast, interoperating with a cloud resource man-
agement system like DRS also allows CloudPowerCap
to support interesting additional features: 1) CloudPow-
erCap accommodates consolidation of physical servers
caused by dynamic power management while previous
work assumed a fixed working server set, 2) CloudPower-
Cap is able to handle and facilitate VM migration caused
by correcting constraints imposed on physical servers and
VMs, 3) CloudPowerCap can also deal with and enhance

power cap management in the presence of load balancing.
In most previous work, only part of these features are
provided.

The authors of [21] describe managing performance
and power management goals at server, enclosure, and
data center level and propose handling the power cap
hierarchically across multiple levels. Optimization and
feedback control algorithms are employed to coordinate
the power management and performance indices for en-
tire clusters. In [28], the authors build a framework to
coordinate power and performance via Model Predictive
Control through DVFS (Dynamic Voltage and Frequency
Scaling). To provide power cap management through the
VMs management layer, [18] proposed throttling VM
CPU usage to respect the power cap. In their approach,
feedback control is also used to enforce the power cap
while maintaining system performance. Similarly, the
authors in [16] also discussed data center level power
cap management by throttling VM resource allocation.
Like [21], they also adopted a hierarchical approach to
coordinate power cap and performance goals. In [14],
authors proposed a relatively accurate model to estimate
power consumption of the VM based on not only CPU
utilization but also memory and disk usage. However
this work has no discussion of dynamical power budget
provisioning across a virtualized cluster.

While all of these techniques attempt to manage both
power and performance goals, their resource models for
the performance goals are incomplete in various ways.
For example, none of the techniques support guaranteed
SLAs (reservations) and fair share scheduling (shares).
Some build a feedback model needing application-level
performance metrics acquired from cooperative clients,
which is rare especially in public clouds [1].

Although power management in virtualized cluster is
extensively studied previously [20, 22, 15], which focus
on reducing power consumption while maintaining pre-
formance and is different to the goal of CloudPowerCap.

7 Conclusion

Many modern data centers have underutilized racks.
Server vendors have recently introduced support for per-
host power caps, which provide a server-enforced limit
on the amount of power that the server can draw, improv-
ing rack utilization. However, this approach is tedious
and inflexible because it needs involvement of human op-
erators and does not adapt in accordance with workload
variation. This paper presents CloudPowerCap to man-
age a cluster power budget for a virtualized infrastructure.
In coordination with resource management, CloudPow-
erCap provides holistic and adaptive power budget man-
agement framework to support service level agreements,
fairness in spare power allocation, entitlement balancing
and constraint enforcement.
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Abstract

This paper presents an autonomic resource management
solution that looks at the non-functional qualities of a
Web-based system, as well as at the characteristics of
the infrastructural resources it uses. It exploits a detailed
performance model of both these aspects to increase the
efficiency of resource allocation. The solution is eval-
uated on an auction and shopping benchmark web site,
and compared to a baseline approach and to an existing
solution from literature. Results show that, by jointly
taking into account the different software and hardware
facets of our application, we can reduce the amount of
resources allocated by up to 42.5% compared with an
existing work from the literature.

1 Introduction

Modern software systems are subject to continuous
change, such as changes in the stakeholder requirements,
evolutions in the software or resource components, and
variations in the execution context [4]. System design-
ers need refined runtime management techniques and
tools to cope with these changes, so that the systems
can continue to provide the required functional and non-
functional qualities.

In this paper we focus on complex Web-based sys-
tems. In these cases, change often manifests itself as sig-
nificant fluctuations in the system’s workload. Although
they may often follow historical and seasonal patterns,
multiple spikes may occur without warning (e.g., flash
crowds [2]). These situations can lead to frustrated cus-
tomers, and loss of online business. As a consequence,
service providers tend to over-allocate resources. The re-
sult is that the average server utilization, in a typical data
center, is around 30-40% [5]; some studies even estimate
the utilization level as low as 18% [20]. A better utiliza-
tion of resources would lead to more efficient systems.
Fortunately, the diffusion of dynamic resource allocation

techniques provide the flexibility needed to build systems
that can adapt their configurations based on the actual
workloads and acquire resources on demand.

These systems must embed fine-grained autonomic ca-
pabilities that cover all their facets, from their hardware
resources to their software. By introducing a MAPE
(Monitor, Analyze, Plan, and Execute) control loop [11]
that can estimate the application’s load and performance,
and help understand how many resources should be pro-
visioned, we can compute and apply anticipatory or cor-
rective actions on the fly.

Many different performance models have been pro-
posed in the past. Unfortunately, in their load estima-
tion they tend to only take into account the volume of
requests (e.g. [22, 23]). Regrettably, it has been shown
that this is not enough to estimate an application’s re-
source usage effectively [19, 21]. Some systems take a
further step and claim to be workload-mix aware, mean-
ing that they distinguish between different types of re-
quests, based on their aggregated response times. Yet,
these approaches still do not consider the hardware re-
source usage that these requests imply, and the resource
contention that can arise. Resource contention is one of
the main causes of performance degradation in systems
with high loads [9, 17, 12, 16]. Knowing the resource
usage profile of each of the different types of requests is
vital in defining an effective allocation strategy.

Our approach provides a comprehensive, innovative
solution for the autonomic management of complex
Web-based applications. We exploit and suitably ex-
tend ECoWare [3], a monitoring and adaptation frame-
work previously developed at Politecnico di Milano for
service-based systems. Thanks to these extensions we
are now able to perform fine-grained measurements of a
Web-based system’s behavior, by correlating the runtime
data that we retrieve from its hardware and its software.
To achieve this we included in ECoWare a completely
new performance model that takes into account both the
application’s workload mix and the hardware infrastruc-
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ture. It defines the resource footprint of the different ap-
plication requests in terms of CPU instructions, cache,
and main memory accesses. These metrics are then used
to profile the resource usage of the requests, and to in-
crease the accuracy of the performance predictions.

1.1 Running Example
To evaluate our approach, we used RUBiS [1], a well-
known benchmark that simulates a common auction and
shopping web site, and compared our results against a
baseline approach and an existing solution from liter-
ature [19]. RUBiS was developed using HTML, Java
Servlets, and SQL technology. It uses an Apache server
for its static content (e.g., the home page, images, etc.),
multiple JBoss Application Servers for its dynamic con-
tent (e.g., the user’s bidding history, the products avail-
able in a given geographical region, etc.), and a MySQL
Server for its backend data tier. A content-aware load
balancer routes the requests accordingly.

In this paper, we focus on how we can use ECoWare to
satisfy an SLA of the kind “the Xth percentile response
time should be within a fixed threshold over a period of
time”. The percentile response time was calculated tak-
ing into account the response times seen by ECoWare
over a two and a half minute window.

2 Approach Overview

The overarching goal of our ECoWare project is to em-
power system designers and maintainers in the develop-
ment of self-adaptive systems. ECoWare is a general-
purpose monitoring and adaptation framework that ex-
ploits the common MAPE (Monitoring – Analysis –
Planning – Execution) control loop approach. System
designers can tailor ECoWare to their needs by choosing
appropriate technology- and application-specific sensors
and actuators, and by choosing appropriate analysis and
planning techniques.

Figure 1 shows how ECoWare can be applied to a
complex Web-based system. The application uses mul-
tiple servers for each tier, and new servers can be added
from a Pool of Free Servers. The application is on the
left-hand side of the figure, and it interacts with ECoW-
are, which is on the right-hand side of the figure, through
an Event Bus. Light gray components represent previous
work, while white components are novel contributions of
this paper.

For the Monitoring step, ECoWare provides two
kinds of components: Key Performance Indicator (KPI)
Processors and Aggregators. The former use the low-
level events produced by the probes to calculate various
non-functional KPIs, such as average response times, ar-
rival rates, and throughputs. The latter correlate multiple
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Figure 1: Example of an application with ECoWare.

low-level events and/or KPIs to produce a holistic under-
standing of the application’s behavior. For the Analysis
step, ECoWare’s Analyzers listen to the bus for moni-
toring events (e.g., average response times) and evaluate
them against certain constraints. For the Planning step,
ECoWare provides a Resource Planner. This component
uses a workload-mix and hardware-aware performance
model to understand what changes should be made to the
resource provisioning. Finally, for the Execution step,
ECoWare provides the Plan Executor. This component
coordinates multiple actuators to accomplish the desired
adaptations.

ECoWare is extremely flexible; it can support multi-
ple kinds of management strategies, e.g., reactive, proac-
tive, and periodic. We can even mix different strate-
gies together, to differentiate how we up-scale (e.g., reac-
tively) from how we down-scale (e.g., periodically) our
resources. This flexibility allows us to be fast to provi-
sion new resources, yet cautious when un-provisioning
them; and it allows us to reduce instability.

3 The Resource Planner

The Resource Planner is responsible for identifying the
correct amount of resources to add or to remove from
the running system. In order to do this, it implements
the Compute Configuration Algorithm, shown in Algo-
rithm 1. Every decision that the algorithm makes is
checked against a hardware- and workload-mix aware
Performance Model. This allows us to avoid a trial-and-
error approach in which we deploy (or remove) hard-
ware, and then wait for the subsequent iteration of the
control loop to tell us if it solved the problem.

2
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Input: λ = (λ1, λ2, ..., λn), RSLA, and SysConfCurrent
Output: SysConfNew

if freeServerPool = ∅ then
   return SysConfCurrent
else
   select server S ∈ freeServerPool
   SysConfNew = SysConfCurrent U S
   RNew = AnalyzePerf(λ, SysConfNew)
   if RNew satises RSLA then
      return SysConfNew
   else
      return ComputeConguration(λ, RSLA, SysConfNew)
   end
end

Algorithm 1: Compute Conguration Algorithm

3.1 Compute Configuration Algorithm

Every time the Resource Planner is notified with a SLA
violation, it invokes the algorithm illustrated in Algo-
rithm 1. The algorithm takes the vector of arrival rates
per request type (λ ), the response time value defined
in the SLA (RSLA), and the current system configuration
(SysCon fCurrent ), and determines a new system configu-
ration (SysCon fNew) that satisfies the SLA. λ is provided
by ECoWare’s monitoring.

The algorithm takes a server S from the pool of free
servers ( f reeServerPool) and adds it to the current sys-
tem configuration to create SysConfNew. It then verifies
the new system configuration by running AnalyzePerf,
which solves a queuing network (QN) model, i.e., the
Performance Model, for SysConfNew and the actual work-
load λ . AnalyzePerf returns a vector of response times
RNew. If all the values of RNew are smaller than RSLA, the
algorithm terminates returning SysConfNew; otherwise,
the algorithm recursively calls itself with parameters λ ,
SysConfNew, and RSLA. In the worst case scenario, i.e.,
in which it continuously fails to satisfy the SLA, the al-
gorithm continues until all the available resources (i.e.
servers) are provisioned.

The autonomic system will also periodically check its
provisioning to see whether resources can be safely re-
moved. In this case, the Resource Planner invokes Al-
gorithm 1 passing a base configuration of one server as
SysConfCurrent. The algorithm recursively adds servers
till the queuing network (QN) solver validates the con-
figuration. By doing so, ECoWare guarantees that the
minimal set of servers is always allocated.

3.2 Performance Model
Algorithm 1 leverages a QN model to estimate the appli-
cation’s response times per request type, given a specific
workload and a specific system configuration, allowing
ECoWare to compare the estimated values with those re-
quired by the SLA.

In a QN model (e.g., [7]), each component is repre-
sented as a queue, called a service station. A model
can be closed, open, or mixed, depending on whether
the volume of requests is constant, fluctuating, or mixed.
Whenever the number of incoming requests is higher
than the computing capacity of a service station, the re-
quests are queued; the time spent in queue is called wait-
ing time. Each type of service request is defined by an
arrival rate process (i.e., how the arriving requests are
distributed in a unit of time) and a service demand dis-
tribution (overall time that a single request spends at
each of the service stations during a complete execu-
tion). This can be expressed using Kendall’s notation
in the form A/S/C −POLICY [7]. A describes the ar-
rival process, S describes the distribution of service time
of a job, C describes the number of servers at the node,
and POLICY describes the queuing discipline used at
that node (e.g., first come first served, processor shar-
ing, etc.). In Kendall’s notation, M stands for Markov or
memoryless, meaning that arrivals occur according to a
Poisson process; and G stands for general, meaning an
arbitrary probability distribution.

As the arriving traffic of the different types of requests
fluctuates over time, so does the mix of requests in exe-
cution. As a consequence, resource contention changes
over time. Figure 2 shows the performance model of our
running RUBiS example. To simplify the presentation,
the figure only shows one server (with two cores) for the
application tier. The model correctly captures the follow-
ing three aspects: the fact that the approach is workload
mix-aware, the fact that the system is composed of mul-
tiple tiers, and the fact that the application tier relies on
specific hardware resources.

JBoss Server 1

Load
Balancer

Database

CPU Cache

RAM 

DDB
λ

CPU Cache 

DRAM

DCacheDCPU

DCPU DCache

Figure 2: Performance Model in our experiments.

The intensity of the arriving flow of requests in in-
put to the queuing network, that is the workload-mix,
is described by λ , the vector of arrival rates per request
type. Regarding the fact that we have multiple tiers, the
model concentrates on the application tier (JBoss) and on

3
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the database tier (MySQL), and leaves out the web tier
(Apache). The reason for this is that, in RUBiS, system
performance is dominated by the application tier. The
web tier only serves static content and has a negligible
influence on the performance of the overall system. The
database also shows a very moderate load, but we could
not remove it entirely from the model since the JBoss
servers query it. However, given its low utilization and
resource contention, the role of the database was approx-
imated by a single queue in the performance model.

In the application tier, i.e., in the dominating tier,
we used a very fine-grained approach. We used multi-
ple M/G/1-FCFS stations for the main hardware com-
ponents of the application servers i.e., CPU, cache and
main memory. (These were configured using data taken
from our hardware probes through ECoWare monitor-
ing.) This means that not only do we consider the traf-
fic of incoming requests and their mix, we also consider
the resource usage footprint of each request. On the
other hand, we did not need this level of detail neither
for the database tier, nor for the incoming load balancer.
Therefore, we used a single M/G/1-FCFS station in both
cases, and configured them using information collected
by the Hibernate and Load Balancer probes, respectively.
The results of our experiments, which we will discuss in
the following section, show that these simplifications are
correct.

By modeling the service demands for the resources,
our model can estimate the waiting time of a request
at each service station. Whenever a resource becomes
congested, the waiting time at the corresponding service
station grows. Since each type of request has a differ-
ent response time and a different resource usage pro-
file, different workload mixes (i.e., requests mixes) will
use the hardware resources in a different way. As a re-
sult, the overall execution time is both mix- and volume-
dependent.

Let us use a simple example to further exemplify our
solution. Let us assume we have two types of requests,
A and B, and that request type A is CPU-intensive and
request type B is memory-intensive. If we mostly re-
ceive requests of type B, their total execution time, and
the overall system’s throughput, will suffer. The reason
for this is that the cache will start being used by a high
number of threads, and start becoming congested. When
this happens, RAM will be accessed more frequently, re-
sulting in longer waiting and execution times. A more
balanced load between requests A and B may cause less
contention, and the overall system’s throughput would
benefit.

Table 1 shows the increase in terms of response time,
and number of cache and main memory accesses, for a
memory intensive workload. Two different hardware ar-
chitectures are compared: although they have the same

CPU frequency and number of cores, HW1 has twice the
cache size per core than HW2. The table clearly shows
that the architecture with the larger cache size experi-
ences much smaller performance degradation. More-
over, at high load levels (about 80% CPU utilization), the
system with the smaller cache shows a 49% increase in
time spent to access the main memory because of the in-
creased cache conflicts. This demonstrates that reducing
resource contention between running tasks is an effective
way to improve a system’s throughput, without sacrific-
ing response times (this was also shown in [9, 8, 17]),
and that explicitly modeling both the hardware and the
resource usage profile of the requests can be an effec-
tive way to take resource contention into account, and to
improve the accuracy of our performance predictions.

Table 1: Increase of response time (RT), cache accesses
(CA), and memory accesses (MA) from low to high load
levels for different hardware architectures.

HW Conf. RT CA MA
HW1 6% ∼ 0% 19%
HW2 26% 3% 49%

4 Experimental Evaluation

For the evaluation of this work, we focused on assessing
ECoWare’s frugality in allocating resources while satis-
fying the SLA. We adopted the queuing network model
already illustrated in Figure 2. To create and solve the
model we used the Java Modeling Tool JMT [6]. For our
experiments we used seven servers equipped with Intel
Xeon processors running at 2.66 GHz. Each processor
was composed of two cores, each addressing a separate
6MB L2 cache; main memory was 32 GB on each ma-
chine.

During our initial evaluation of RUBiS, we loaded the
system to measure the servlets’ resource usage profiles.
These were then used to calibrate the queuing network
performance model. We focused on two servlets with
fixed queries: ViewUserInfo and ViewBidHistory.
Since the servlets’ average execution times were very
close, and often below 1ms, we decided to increase the
load for servlet ViewBidHistory, to make it more rep-
resentative of a real-case scenario. We also added a rou-
tine to ViewUserInfo that validates the content of the
comments that are left about a given user (as typically
done in many social web sites).

We evaluated the accuracy of ECoWare’s provisioning
strategy with multiple non-stationary workloads. Since
provisioning decisions are applied independently at each
tier, we focused on the application tier and over-provi-
sioned the others to ensure that they did not represent
bottlenecks.

4
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To validate our approach, we compared it with a base-
line solution that uses an M/M/K-FCFS queue as its per-
formance predictor, and with the approach presented by
Singh et al. in [19], where they use a closed formula ap-
proximation of a G/G/1 queue to predict server capacity
for a given workload mix1.

The first workload was designed to follow the struc-
ture of the workload used in [19]: it has a varying mix,
yet a constant volume of requests. Our results showed
that ECoWare used 13.75% fewer server-minutes (i.e.,
number of servers per allocation time) than the baseline
and 42.5% less than [19] 2. The second workload had
both a varying workload mix and a varying volume of
requests. The workload was executed several times and
showed consistent results. For the sake of simplicity, we
show here a randomly selected execution.

The Workload Figure 3 shows the workload mixes
and the different time lengths of the experiment’s steps.
The maximum total number of requests per second at
each step was limited to 22.5 in order to generate a work-
load that could be handled by the amount of servers at
our disposal. The same randomly generated workload
was used for all three solutions.

0 
20 
40 
60 
80 

100 

0 20 40 60 80 100 

W
or

kl
oa

d 
m

ix
 %

 

Time (m) 

ViewUserInfo % ViewBidHistory % 

Figure 3: Request mix.

Server Provisioning and SLA. The baseline ap-
proach shows a strong instability throughout the entire
workload. Figure 4 describes the provisioning decisions
for the workload. The baseline approach allocates two or
more servers every time the system experiences a transi-
tory phase. These phases typically happen right after a
steep variation in the workload and last for 1 or 2 min-
utes. After the transient phase is over, the baseline starts
reducing the number of allocated servers, often incur-
ring in SLA violations —see Figure 5. So the baseline
approach has a tendency to under-allocate, and conse-
quently experiences lots of SLA violations.

The solution from [19] exceeds the SLA limit twice
at the beginning of the workload. The reason for that
is the very high load that was selected by the random

1In order to perform our comparisons we implemented Singh et al.’s
approach according to the formulae presented in their paper.

2Due to lack of space, we cannot focus on this workload; a detailed
presentation can be found online at http://home.deib.polimi.

it/guinea/ICAC2014/experiments.pdf.

generator at the very beginning. Since we always be-
gin with one allocated server, which obviously cannot
satisfy the demand at the workload’s first step, the two
SLA violations are unavoidable and cannot be attributed
to an erroneous provisioning. Indeed, the provisioning
strategy completes the workload with no further viola-
tions, confirming its soundness. In terms of allocated
servers, the solution from [19] appears to be more gen-
erous, requesting up to four servers for extended peri-
ods of time. Even though only three servers are actu-
ally allocated even when four are requested, the 95%
percentile of the response time remains steadily well be-
low the limit. An almost flat line for the response time
throughout the workload shows that the servers are run-
ning at a very low utilization.
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Figure 4: Number of servers allocated.

ECoWare experiences the same SLA violations at the
beginning of the experiment as the previous two ap-
proaches. Similarly to [19], it does not incur in any fur-
ther violation for the remaining of the workload. ECoW-
are correctly adapts its provisioning decisions throughout
the experiment, allocating up to three servers in three dif-
ferent moments. ECoWare’s diagram in Figure 5 shows
wide fluctuations in the response time, proving that the
servers have a much higher utilization, hence a longer
execution and waiting time for the requests. However,
ECoWare is able to maintain those fluctuations under the
SLA limit, thus improving the overall utilization of the
allocated servers.

Result. For this experiment, the baseline approach
scored 302.5 server-minutes, but incurred in a signif-
icant amount of violations because of its tendency to
under-allocate. The provisioning strategy from [19] used
385 server-minutes, but with a perfect response time,
except for the two initial violations that could not be
avoided. Finally, ECoWare only allocated 255 server-
minutes, with no SLA violations except for the usual two
at the beginning. ECoWare also showed a higher fluctu-
ation in the response time, testifying a higher utilization
of the servers. Overall, ECoWare used 16% fewer server-
minutes than the baseline approach with less violations,
and 33% less than [19], with the same amount of viola-
tions.
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Figure 5: 95% Percentile response time.

4.1 Threats to Validity
A possible objection to our evaluation is that we only
focus on two servlets. We consider this to not be an
over-simplification (e.g. [19] uses three servlets). It is
quite common, when there are many different kinds of
requests, to use K-means clustering to group them into
fewer clusters with similar service demands [19]. Clus-
tering also allows us to mitigate a limit of queuing net-
works, i.e., that they do not scale well when the number
of classes of jobs significantly increases.

Table 2: Average solving time for the QN model for dif-
ferent numbers of classes.

# of classes 2 3 5 7 10
Solving time (s) 3 5 9 15 18

To evaluate the scalability of our approach we bench-
marked the QN solver with up to 10 classes (see Table 2),
a realistic top limit for the number of clustered request
types. The table shows that the solver still terminates
within a reasonable time frame. We also bound the com-
putational time to 20 seconds, at the cost of a possible
loss of accuracy. This does not impact our results, since
it takes the solver longer to terminate when the infras-
tructure is close to saturation. When this happens the
response time will violate any given SLA, since it will
grow unboundedly. Therefore, ECoWare’s strategy saves
time without losing any accuracy, by adding one server
and re-running the solver.

5 Related Work

Most existing approaches for achieving dynamic re-
source provisioning are mix un-aware; they only con-
sider the volume of arriving requests when determining
their provisioning. In their QN model Almeida et al. [2]
use the peak session arrival rate. Villela et al. [23] lever-
age QNs to model application servers and to solve an
optimization problem for profit maximization; however,
they only consider the aggregate number of requests gen-
erated by the clients. Kusic et al. [13] present an op-
timization framework for resource allocation, expressed

as a sequential decision making problem under uncer-
tainty, and solved using a limited look ahead control
scheme. The approach distinguishes between different
classes of clients with different SLA limits, but does not
consider the resource usage profile. He et al. [10] fo-
cus on dynamic allocation for interactive systems (e.g.
web search engines) where the quality of the results de-
pends also on the allocated time; they do distinguish be-
tween interactive and batch jobs. In [25] Zhou et al.
present a two-tier resource management framework that
focuses on optimizing resource allocation while provi-
sioning proportionality fairness to clients. They consider
different classes of clients, associated with different SLA
agreements. SPIRE [15] is an autonomous system for
service provisioning driven by a utility function: opti-
mize the average earned revenue over time, while sat-
isfying the SLA. SPIRE also assumes a uniform service
time for all the requests. As additional formulation of the
dynamic allocation problem we also mention the decen-
tralized control theory approach of [24] and the machine
learning technique proposed in [14].

As we have seen in our study, different types of re-
quests can have very different service times and resource
usage profiles. Among mix-aware approaches, we men-
tion Sharma et al. [18]. They use a network of M/G/1-PS
queues and an approximate model to compute response
time distribution. Their solution takes hardware configu-
ration into consideration. However, their approach dif-
fers from ours as they focus on dealing with a multi-
tude of hardware configurations in terms of service rates.
Our approach instead focuses on modeling the hardware
to achieve a higher accuracy in the performance predic-
tions. We plan to extend our approach to consider differ-
ent hardware configurations as well. Works in [17, 16]
also focus on mitigating performance degradation caused
by shared resource contention. Finally, Krebs et al. [12]
provides metrics to quantify performance isolation in the
context of shared resources.

6 Conclusions and Future Work
Allocation strategies that take into account the resource
usage profiles of the different requests help increases the
accuracy of our performance predictions, which in turn
allows us to improve the utilization of our infrastructure.
In the future we will continue to evaluate ECoWare in
the context of cloud technology, and evaluate the advan-
tages that could derive from the use of layered queuing
networks for our models.
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Abstract

Many computing systems are constrained by power bud-
gets. While they could temporarily draw more power,
doing so creates unsustainable temperatures and un-
wanted electricity consumption. Developing systems
that operate within power budgets is a constrained op-
timization problem: configuring the components within
the system to maximize performance while maintaining
sustainable power consumption. This is a challenging
problem because many different components within a
system affect power/performance tradeoffs and they in-
teract in complex ways. Prior approaches address these
challenges by fixing a set of components and designing a
power budgeting framework that manages only that one
set of components. If new components become avail-
able, then this framework must be redesigned and reim-
plemented. This paper presents PCP, a general solution
to the power budgeting problem that works with arbitrary
sets of components, even if they are not known at design
time or change during runtime. To demonstrate PCP, we
implement it in software and deploy it on a Linux/x86
platform.

1 Introduction

Modern computing systems are constrained by dark sil-
icon, the abundance of transistors enables processors to
draw more power than they can safely sustain [9, 39].
For example, the Exynos 5 processor (in the Samsung
Galaxy S4 phone) has a 5.5W peak power that is nearly
2× the maximum sustainable heat dissipation, limiting
peak speed to less than 1 second [36]. At the other end of
the spectrum, the next generation of exascale supercom-
puters is predicted to be constrained by an operating bud-
get of approximately 20 MW [2]. In addition, Microsoft
was recently fined for not using enough power and vio-
lating an agreement with a utility company [12]. Execut-
ing in these systems requires solving a constrained opti-

mization problem: maintaining the power budget, while
maximizing performance within the power constraint.

Many separate components contribute to total power
consumption and various techniques have been proposed
to manage individual components. For example, man-
agement systems exist for core allocation [27], dynamic
voltage and frequency scaling (DVFS) [30, 42], proces-
sor idling [11], cache [1], DRAM [7, 47], and disk [25].

Of course, different applications have different needs
and coordinated management of several components pro-
vides better performance within a power budget [19, 29].
Examples that coordinate components include those that
handle cores and DVFS [33, 45], DVFS and memory
speed [6, 10, 26], and thread scheduling and DVFS [44].
Unfortunately, prior multi-component management ap-
proaches are not general in terms of the components un-
der control. Instead, they fix a specific set of compo-
nents, whose interactions are known at design time and
they do not permit this set of components to change. If
new components become available or existing compo-
nents are disabled, these power management approaches
will either (1) deliver poor performance or (2) require re-
design and reimplementation. Thus, there is a need for
a general approach to multi-component power manage-
ment that continues to deliver maximum performance for
a given power budget even as new components become
available or existing components are disabled.

Challenges
A generalized power management system must ad-

dress three challenges:
Unknowns: Prior approaches rely on rigorous models
for either the specific machine under control (e.g., a par-
ticular smartphone [37]) or for a specific application and
platform (e.g., a web browser on a mobile device [38]). A
generalized power management system, however, must
either construct its models on the fly or compensate for
inaccuracies and unknowns in general models.
Interaction: System components interact to produce a

1
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complex (often nonlinear) effect on power and perfor-
mance. If individual components are controlled sepa-
rately, their interaction can lead to suboptimal behav-
ior, even when these separate controllers are individually
optimal [16]. Thus, a generalized power management
system must coordinate all available components even if
they are not known at design time or vary at runtime.
Optimization: A power manager must not exceed the
power budget, yet must also deliver the best possible per-
formance for a given budget. A generalized approach
must not sacrifice too much performance for generality.

Contributions
This paper addresses the above challenges to produce

PCP, short for Power Constraints with maximum Perfor-
mance, a machine-level power management system that
is general with respect to the components it manages.
PCP uses feedback control to ensure the power budget
is not exceeded. The controller is augmented with an es-
timator, which addresses the challenge of unknowns (see
Section 3.3), and a translator, which addresses the chal-
lenges of interaction and optimization (see Section 3.4).
The estimator dynamically tailors control to a particular
application, the controller then produces a generic con-
trol signal, and the translator turns this signal into a con-
figuration of available components that meets the power
budget while providing close to maximum performance.

We implement PCP and test it on a Linux/x86 system.
The results show that PCP is:
General: PCP has low overhead (as shown in Sec-
tion 4.2). Furthermore, components can be added and
removed at runtime and PCP automatically adapts to the
new conditions. (See Section 4.3).
Accurate: PCP meets the power budgets with low errors.
Across all machines and all benchmarks, PCP keeps the
average power within 2% of the budget. PCP maintains
good results across a range of power budgets from small
to large. For small budgets (5% of maximum power),
PCP’s average error is slightly over 1% of the budget.
For all other targets, PCP’s average error is less than 1%.
(See Section 4.4).
Efficient: Given a power budget, PCP achieves close to
the maximum possible performance. We compare PCP
to an oracle and find it achieves close to optimal per-
formance for a range of power targets. For the smallest
target, the average performance is 92% of the oracle. For
all other targets, performance is greater than 95% of the
oracle. (See Section 4.5).

The paper is organized as follows. Section 2 compares
PCP with prior research. Section 3 discusses PCP’s de-
sign. Section 4 evaluates PCP, providing experimental
evidence for our claims. Finally, Section 5 concludes the
paper.

2 Related Work

We describe related work building systems that solve
constrained optimization problems in the power and per-
formance dimensions.

Some approaches provide performance guarantees and
minimize power consumption. Examples exist at the
datacenter-level [21, 40], and machine-level. At the
machine-level, techniques provide performance and min-
imize power by managing DVFS in the processor [45],
assignment of cores to an application [27], caches [1],
DRAM [47], and disks [25]. Other approaches coor-
dinate multiple components within a machine. For ex-
ample, Li et al. manage memory and processor [26],
while Dubach et al. demonstrate a method for co-
ordinating a large collection of microarchitectural fea-
tures [8]. Bitirgen et al. coordinate DVFS, cache, and
memory bandwidth [4]. METE is an adaptive control
system which manages cores, DVFS, and off-chip band-
width to provide performance guarantees [35]. Gu and
Nahrstedt provide a general approach to guarantee per-
formance for multimedia applications in a distributed en-
vironment [14]. Hoffmann et al. provide a general tech-
nique for coordinating components to meet performance
constraints [20]. These solutions provide performance
guarantees, but do not guarantee power consumption.

Other approaches guarantee power consumption while
maximizing performance subject to this constraint. Such
techniques are important for avoiding power overload [9,
39]. Datacenter-level solutions include those proposed
by Wang et al. [41] and Raghavendra et al. [31]. These
solutions are hierarchical and require some machine-
level power management scheme. Machine-level sys-
tems for guaranteeing power have been developed to
manage DVFS for a processor [23], per-core DVFS in a
multicore [22], processor idle-time [11], and DRAM [7].
Other approaches coordinate management of multiple
components including processor and DRAM [6, 10], pro-
cessors and core allocation [33], and combining DVFS
and thread scheduling [32, 44].

Like many of the above approaches, PCP uses con-
trol theory to manage the dynamic behavior of the ma-
chine. Control theory is a general technique [15], but im-
plementations are often specific to a particular machine.
Some prior approaches provide generality by implement-
ing control systems at the middleware layer [13, 24, 46].
The middleware handles the complicated construction of
the control system, but the application writer must be
aware of the components on the system. PCP differs as
it does not require application programmer input at all.

PCP is a novel machine-level power control approach
that coordinates multiple components. PCP is distin-
guished by the fact that the components it manages are
not known at design time and may change during run-
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Figure 1: Block diagram representing the overall control and scheme.

time.

3 Runtime Control Framework

The PCP runtime is illustrated in Figure 1. The runtime
begins with a simple model of the System under control,
including the available components, or Knobs, affecting
power and performance. A Controller measures power
consumption and produces a generic control signal in-
dicating available overhead in the power budget. An
Estimator dynamically tunes the controller to the spe-
cific application and system under control and accounts
for approximations in the initial model. A Translator
turns the generic control signal into a performance-
optimal component configuration that achieves the power
budget. Each of these modules is described below.

3.1 System

The System block in Figure 1 describes available sys-
tem components, from the controller’s perspective. PCP
uses a discrete time, linear model of the system where
the index t measures time (in discrete intervals). The
system has n separate components, or knobs, that affect
power and performance. The system’s input is a config-
uration, or vector of values K(t) ∈ Rn, each of which
represents a setting for one of the knobs. The system has
a baseline power consumption b representing the low-
est possible power. We denote the system’s power con-
sumption as P(K(t)), measured as a proportion of b. The
speed of the system is S(K(t)). The system’s outputs are
the current power consumption P(t) and the current per-
formance measure s(t) (for speed). P(t) is the average
power consumption in the interval between t −1 and t:

P(t) = bP(K(t −1)) (1)

This simple linear model is used to derive a controller in
Section 3.2. The estimator (Section 3.3) compensates for
the inherent approximations in the model.

PCP requires power and performance feedback, but is
agnostic about the source. Power feedback can come
from a model or direct power measurements. Perfor-
mance feedback can come from any number of appropri-

ate hardware counters, the only requirement is that the
metric increase with increasing speed.

3.2 Controller

The Controller in Figure 1 eliminates the power error
Pe(t) = Pg(t)−Pm(t), between the power budget, or goal
Pg(t), and the actual measured power Pm(t). To do so,
the controller computes a control signal. In a typical con-
troller, this signal would directly specify settings for the
available knobs K; however, such an approach does not
generalize because it ties the controller’s design directly
to the system under control. Instead, PCP computes a
generic control signal u(t), independent of the specific
knobs in the system. u(t) represents an allowable power
consumption over the baseline b; i.e., u(t) = P(K(t)).
For example, u(t) = 1.5 indicates that the controller al-
lows 50% greater power consumption than baseline. The
translator maps this control signal into knob settings (see
Section 3.4). Therefore, given Pe(t) and b at time t, the
controller calculates a new signal u(t). This generic sig-
nal is derived following standard practice resulting in the
Integral controller:

u(t) = u(t −1)+Pe(t)/b (2)

3.3 Estimator

The b parameter has a profound effect on PCP’s behav-
ior. Although PCP models it as a constant, we know that
its true value varies as a function of the hardware and
the application (or even phases within the application).
Therefore, b represents a key unknown corresponding to
the first challenge listed in Section 1. The Estimator
in Figure 1 is responsible for overcoming this unknown
by continually estimating its true value as b̂(t). Adding
the estimator makes the control scheme adaptive, in the
sense that it automatically adjusts, not only to the feed-
back, but also to varying operating points and unknowns.

PCP estimates b using a Kalman filter [43] based on
the time-varying model:

b(t) = b(t −1)+δb(t)
P(t) = u(t −1)b(t −1)+δP(t) (3)
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which describes the variation of b and P subject to both
disturbance and noise (respectively δb and δP).

Denoting the system power variance and measurement
variance as qb(t) and rb, the Kalman filter formulation is

b̂−(t) = b̂(t −1)
e−b (t) = eb(t −1)+qb(t)

kb(t) =
e−b (t)u(t)

[u(t)]2 e−b (t)+ rb
b̂(t) = b̂−(t)+ kb(t) [P(t)−u(t)b̂−(t)]

eb(t) = [1− kb(t)u(t −1)]e−b (t)

(4)

where kb(t) is the Kalman gain for the system power con-
sumption, b̂−(t) is the a priori estimate of b(t) and b̂(t)
is the a posteriori one, and e−b (t) is the a priori estimate
of the error variance while eb(t) is the a posteriori one.
PCP uses a Kalman filter because it produces a statisti-
cally optimal estimate of the system’s parameters, and
is provably exponentially convergent [5]. Note that the
only required parameter is rb, the measurement noise,
which is a property of the feedback mechanism.

3.4 Translator

The Translator in Figure 1 converts the generic control
signal u(t) into a component configuration K(t) at time
t. The control signal is a continuous signal which must
be translated into discrete knob settings. This problem
is challenging because any given power signal may be
achieved by multiple combinations of components. The
Translator must find the combination that meets the bud-
get while maximizing performance.

PCP schedules configurations over the τ time units be-
tween now and the next power measurement. PCP as-
signs τc time units to each configuration where ∑c τc = τ.
The translator schedules these configurations to maxi-
mize performance while guaranteeing the power budget,
specified by the control signal, is not exceeded. Denot-
ing a configuration of knobs as Kc(t) with corresponding
speed S(Kc(t)) and power P(Kc(t)), then PCP solves the
following optimization problem:

maximize ∑c τc ·S(Kc(t)) (5)
subject to ∑c τc ·P(Kc(t))/b̂(t) ≤ u(t) (6)

∑c τc = τ (7)
t ≥ τc ≥ 0, ∀ c (8)

Equations 5–8 assign values for all τc to maximize per-
formance (Equation 5) subject to the constraints that the
power signal is not exceeded (Equation 6). The final two
constraints (Equations 7 and 8) ensure that the time spent
in all configurations is non-negative and does not exceed
the time of the next measurement. This type of opti-
mization problem is similar to others that have arisen for

real-time systems which minimize energy while meet-
ing a performance constraint. Several heuristic solutions
have been developed that apply to both performance and
power constraints and provide near-optimal behavior in
practice [17].

We note that as components enter and leave the sys-
tem, the power and performance of various configura-
tions may change. This is especially true if different
groups of components interact in non-linear ways. PCP
accounts for this variability by continually estimating
S(Kc(t)) and P(Kc(t)) online. Both quantities are esti-
mated using Kalman filter formulations similar to that of
Equation 4 (these formulations are omitted for space).
This estimation allows PCP to adapt to changing sets of
components at runtime. In practice, PCP first estimates
the performance and power consumption of the previ-
ous configuration using Kalman filters, and then solves
Equations 5–8 using the new estimate to determine the
resource allocation for the next time step.

3.5 Summary

PCP meets power budgets while optimizing perfor-
mance. Its generalized system model is independent of
any particular set of hardware components. PCP’s con-
troller ensures that power budgets are met. The estimator
overcomes the challenge of handling unknowns, while
the translator handles the challenges of component inter-
action and performance optimization. PCP can incorpo-
rate new knobs as they become available at runtime, and
it can be deployed on new systems without redesign.

4 Evaluation

4.1 Experimental Setup

We describe the systems and applications used in our
evaluation.

Systems
To demonstrate PCP, we deploy it on a real Linux/x86

system, a single socket Intel E5-1650 with 6 cores, 1
memory controller and 12 DVFS settings from 1.2 — 3.2
GHz. It supports hyper-threading and TurboBoost. In
addition, it allows suspension of the current application
to enter a low-power idle state. Idling consumes 85% of
the lowest measured active power (85W to 100W). The
highest measured power consumption is 235W. To mea-
sure power consumption the machine supports hardware
power measurement at 1 ms intervals [34].

Benchmarks
Our benchmarks consist of the 13 PARSECs [3] plus

Dijkstra and STREAM [28]. PARSEC has a mix of im-
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Figure 2: Experiment changing actuators.

portant, emerging multicore workloads. Dijkstra is a par-
allel implementation of single-source shortest paths on a
large, dense graph developed for this paper. STREAM
tests memory performance. These last two benchmarks
test PCP’s ability to handle resource limited applications.
Dijkstra has some parallelism, but does not scale well.
STREAM is generally memory limited, but needs suffi-
cient compute resources to saturate the available memory
bandwidth.

Although PCP supports a range of performance feed-
back metrics (see Section 3), in this paper we measure
application performance as instructions per second and
collect this data with hardware performance counters. In
general, however, PCP could work with any performance
metric that increases with increasing application speed
and decreases as application performance decreases; e.g.,
application specific performance metrics [18].

4.2 Overhead

We evaluate PCP’s overhead by running all benchmark
applications with PCP, but disabling its ability to actually
change component settings. Thus, the runtime executes
and consumes resources, but cannot have any positive ef-
fect. We compare execution time and power consump-
tion to the application running without our runtime. For
most applications, there is no measurable difference. The
largest difference in performance is 2.2%, measured for
the fluidanimate benchmark, while the power consump-
tion is within the run to run variation for all benchmarks
(< 1%). We find this overhead acceptable. All measure-
ments in this section include the overhead and impact of
the runtime system.

4.3 Changing Actuators

To demonstrate the claim of generality, we add and re-
move components at runtime and demonstrate that PCP
system automatically adapts to the new conditions. We
run the raytrace benchmark for 400 time units, where
each unit is a frame. During execution, the set of avail-

able knobs changes. We distinguish between four differ-
ent intervals of 100 time units. During the first interval,
PCP only adjusts the number of cores. During the second
interval, idle time becomes available. In the third inter-
val, DVFS is also available. In the last interval, DVFS
is disabled (causing the performance loss that occurs at
time 300).

Figure 2 shows the results. The power consumption is
very close to the setpoint (1 in the figure); the percent-
age difference is less than 1%. As different actuators be-
come available, PCP takes advantage of them to improve
performance without exceeding the power budget. The
figure shows performance normalized to the maximum
achievable for the power budget.

4.4 Stability and Accuracy

We demonstrate PCP’s stability and accuracy by running
each benchmark on our target system and telling PCP to
maintain a power budget. For this experiment, we set the
power budget halfway between the minimum and maxi-
mum achievable power. This middling power budget is
one of the toughest to meet in practice because there are
many combinations of components which can achieve
the same power. PCP must determine the highest per-
formance configuration at runtime.

We quantify the stability and accuracy of PCP by
measuring the power consumption at each control inter-
val and calculating the mean absolute percentage error
(MAPE):

MAPE =
1
n

n

∑
k=1
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(9)

Low MAPE (expressed as a percentage) indicates that
the power budget is stable and at or below the desired
value. Note that we do not penalize PCP for operating
below the power budget, but this may result in subopti-
mal performance. We quantify performance in the next
section. Finally, when calculating MAPE, we subtract
idle power from the measured power. Doing so quan-
tifies the contribution of the control system to accuracy
and stability. Leaving the idle power in the calculation
would result in lower MAPE values.

The results are illustrated in Figure 3. The figure
shows each benchmark on the x-axis and the MAPE (as
a percentage) on the y-axis. The measured errors are
quite low in general, and all are under 8%. These re-
sults indicate that PCP is stable and accurate across a
range of benchmark applications. Those benchmarks
with higher MAPE tend to have multiple phases of com-
putation and the errors occur when PCP is optimizing
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Figure 4: Error and performance sensitivity.

across phases. Even for these applications, however, PCP
produces good results, which are consistent with the low
observed error in Figure 2.

4.5 Error and Performance Sensitivity

We further test PCP’s efficiency by measuring the sensi-
tivity of performance to the power target. We run each
of our benchmarks with 5 different power targets. Each
power target is x% between the minimum and maximum
achievable where x ∈ {5,25,50,75,95}. For each power
target, we deploy the application on the machine and
PCP adjusts resource usage to keep power consumption
at or below the target. We measure the error and the per-
formance for each target and report results in Figure 4.

The figure shows the normalized performance (lower
plot) on the respective y-axes for each of the 5 power
targets. Benchmark name is shown on the x-axis. The
results demonstrate PCP’s efficiency across a range of
power targets. In general, the lowest performance is
achieved for the the 5% target; however, the average
performance of 0.92 is still close to optimal. All other
targets have an average performance greater than 0.95.
The worst single achieved performance comes from
STREAM at the 5% target, which has a normalized per-
formance of 0.77. This low result comes from the time
taken to learn to allocate STREAM the minimum re-
sources on this machine. The near-optimal performance

across a range of benchmarks and power targets demon-
strate PCP’s efficiency.

Although the accuracy results are omitted for space,
they are consistent with those reported in Figure 3. The
highest MAPE values are achieved for the 50% target.
All other targets are lower in general.

5 Conclusion

This paper presents PCP, a power budgeting system,
which guarantees power consumption while maximizing
performance subject to the power budget. PCP’s distin-
guishing feature is its generality; i.e., the design is inde-
pendent of any particular set of components that could
be used to manage power/performance tradeoffs. PCP
overcomes the four challenges of handling dynamics, ac-
counting for unknowns, managing component interac-
tion, and optimizing performance. We have implemented
PCP and deployed it on several hardware platforms and
demonstrated its generality, portability, accuracy, and
performance. Widespread adoption of PCP would make
it easy to quickly develop power management systems as
new hardware components become available.
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Abstract
Data centers are seeking more efficient cooling tech-
niques to reduce their operating expenses, because cool-
ing can account for 30-40% of the power consumption
of a data center. Recently, liquid cooling has emerged
as a promising alternative to traditional air cooling, be-
cause it can help eliminate undesired air recirculation.
Another emerging technology is free air cooling, which
saves chiller power by utilizing outside cold air for cool-
ing. Some existing data centers have already started
to adopt both liquid and free air cooling techniques for
significantly improved cooling efficiency and more data
centers are expected to follow.

In this paper, we propose SmartCool, a power op-
timization scheme that effectively coordinates differ-
ent cooling techniques and dynamically manages work-
load allocation for jointly optimized cooling and server
power. In sharp contrast to the existing work that ad-
dresses different cooling techniques in an isolated man-
ner, SmartCool systematically formulates the integration
of different cooling systems as a constrained optimiza-
tion problem. Furthermore, since geo-distributed data
centers have different ambient temperatures, SmartCool
dynamically dispatches the incoming requests among a
network of data centers with heterogeneous cooling sys-
tems to best leverage the high efficiency of free cool-
ing. A light-weight heuristic algorithm is proposed to
achieve a near-optimal solution with a low run-time over-
head. We evaluate SmartCool both in simulation and on a
hardware testbed. The results show that SmartCool out-
performs two state-of-the-art baselines by having a 38%
more power savings.

1 Introduction

In recent years, high power consumption has become
a serious concern in operating large-scale data centers.
For example, a report from Environmental Protection

Agency (EPA) estimated that the total energy consump-
tion from data centers in the US was over 100 billion
kWh in 2011. Among the total power consumed by
a data center, cooling power can account for 30-40%
[14][2]. As new high-density servers (e.g., blade servers)
are increasingly being deployed in data centers, it is im-
portant for the cooling systems to more effectively re-
move the heat. However, with the high-density servers
being installed, the traditional computer room air con-
ditioner (CRAC) system might not be efficient enough,
as its Power Usage Effectiveness (PUE) is around 2.0 or
higher. PUE is defined as the ratio of the total energy
consumption of a data center over energy consumed by
the IT equipment such as servers. With a high PUE, the
cooling power consumption of a data center can grow
tremendously as high-density servers being deployed,
which not only increases the operating cost, but also
causes negative environmental impact. Therefore, data
centers are in an urgent need to find higher-efficient cool-
ing techniques to reduce PUE.

Two new cooling techniques have recently been pro-
posed to increase the cooling efficiency and lower the
PUE of a data center. The first one is liquid cooling,
which conducts coolant through pipes to some heat ex-
change devices that are attached to the IT equipments,
such that the generated heat can be directly taken away
by the coolant. The second one, which is referred to as
free air cooling [7], exploits the relatively cold air out-
side the data center for cooling and thus saves the power
of chilling the hot air returned from the IT equipment.
Although both of the two cooling techniques highly in-
crease the cooling efficiency of data centers, each tech-
nique has its own limitations. The liquid cooling ap-
proach requires additional ancillary facilities (e.g., the
valves and pipes) and maintenance, which can increase
the capital investment when being deployed in a large
scale. The free air cooling technique requires a low out-
side air temperature, which might not be available all the
time in a year. In order to mitigate the problems, hy-
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brid cooling system, which is composed with the liquid
cooling, the free air cooling and the traditional CRAC
air cooling, can be used to lower the cooling cost and
ensure the cooling availability. Several hybrid-cooled
data centers have been put into production. For exam-
ple, the CERN data center located in Europe adopts a
hybrid cooling system with both liquid-cooling and tra-
ditional CRAC cooling systems, in which about 9% of
the servers are liquid-cooled [4].

However, efficiently operating such a hybrid cool-
ing system is not a trivial task. Currently, existing
data centers that adopt multiple cooling techniques com-
monly use some preset outside temperature thresholds
to switch between different cooling systems, regardless
of the time-varying workload. Such a simplistic solu-
tion can often lead to unnecessarily low cooling efficien-
cies. Although some previous studies [11][35] have pro-
posed to intelligently distribute the workload across the
servers and manage the cooling system according to the
real-time workload to avoid over-cooling, they address
only one certain cooling technology and thus the resulted
workload distribution might not be optimal for the hybrid
cooling system. To the best of our knowledge, no prior
research has been done for efficiently coordinating multi-
ple cooling techniques in a hybrid-cooled data center. In
addition, for a network of data centers that are geographi-
cally distributed, there exist some works focusing on bal-
ancing the workload or reducing the server power cost
[16][27], but none of them minimize the cooling power
consumption, especially when the data centers have het-
erogeneous cooling systems. In order to minimize the
power consumption of a hybrid-cooled data center, we
need to face several new challenges. First, the differ-
ent characteristics of these three cooling systems (liquid
cooling, free air cooling and the traditional CRAC air
cooling) demand for a systematic approach to coordinate
them effectively. Second, workload distribution in such
a hybrid-cooled data center needs to be carefully planned
in order to jointly minimize the cooling and server power
consumption. Third, due to the different local temper-
atures, a novel workload distribution and cooling man-
agement approach is needed for data centers that are ge-
ographically distributed at different locations, in order to
better utilize free air cooling in the hybrid cooling system
more efficiently.

In this paper, we propose SmartCool, a power opti-
mization scheme to optimize the total power consump-
tion of a hybrid-cooled data center by intelligently man-
aging the hybrid cooling system and distributing the
workload. We first formulate the power optimization
problem for a single data center, which can then be
solved with a widely adopted optimization technique.
We then extend the power optimization scheme to fit a
network of geo-distributed data centers. To reduce the

computational overhead, we propose a light-weight al-
gorithm to solve the optimization problem for the geo-
distributed data centers. Specifically, this paper has the
following major contributions:

• More and more data centers are on their way to
adopt high-efficient cooling techniques, but many
data centers heavily rely on simplistic solutions to
separately manage their cooling systems, which of-
ten lead to an unnecessarily low cooling efficiency.
In this paper, we propose to address an increas-
ingly important problem: Intelligent coordination
of cooling systems for jointly minimized cooling
and server power in a data center.

• We formulate the cooling management in a hybrid-
cooled data center with liquid cooling, free air cool-
ing, and traditional CRAC air cooling, as a con-
strained power optimization problem to minimize
the total power consumption. SmartCool features
a novel air recirculation model developed based on
computational fluid dynamics (CFD).

• To best leverage the high efficiency of free cooling
in geo-distributed data centers that have different
ambient temperatures, we extend our optimization
formulation to dynamically dispatch the incoming
requests among a network of data centers with het-
erogeneous cooling systems. A light-weight heuris-
tic algorithm is proposed to achieve a near-optimal
solution with a low run-time overhead.

• We evaluate SmartCool both in simulation and on
a hardware testbed with real-world workload and
temperature traces. The results show that Smart-
Cool outperforms two state-of-the-art baselines by
saving 38% more power consumption.

The rest of the paper is organized as follows. We re-
view the related work in Section 2, and introduce the
background of different cooling technologies in Section
3. Section 4 formulates power optimization problem for
a single hybrid-cooled data center, which is extended for
geo-distributed data centers in Section 5 with a light-
weight algorithm. We present our simulation results in
Section 6 and the hardware experiment results in Section
7. Finally, Section 8 concludes the paper.

2 Related Work

Minimizing the power consumption of data centers has
recently received much attention, such as [27, 11, 18,
29, 31, 32, 13, 28, 17]. In particular, a lot of work has
been done to optimize the traditional CRAC air cooling
in data centers. For example, Anto et al. [22] construct

2
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a model of a single CRAC unit which offers flexible se-
lection in different heat exchangers and coolants. Zhou
et al. [23] propose a computationally efficient multi-
variable model to capture the effects of CRAC fan speed
and supplied air temperature on the rack inlet tempera-
tures. Tang et al. [20] propose a workload scheduling
scheme to make the inlet temperatures of all servers as
even as possible. A holistic approach is proposed by
Chen et al. [30] that integrates the management of IT,
power and cooling infrastructures to improve the data
center efficiency. In our work, we adopt the modeling
process of traditional CRAC cooling system, but coor-
dinate its work with the liquid cooling and free cooling
systems as a hybrid-cooling system for the improvement
of data center cooling efficiency.

Free air cooling and liquid cooling have also attracted
wide research attentions. Christy et al. [9] study two pri-
mary free cooling systems, the air economizer and the
water economizer. Gebrehiwot et al. [3] study the ther-
mal performance of an air economizer for a modular data
center using computational fluid dynamics. Coskun et al.
[1] provide a 3D thermal model for liquid cooling, with
variable fluid injection rates. Hwang et al. [8] develop
an energy model for liquid-cooled data centers based on
the thermo-fluid first principles. Differently, our work
focuses on the power optimization of hybrid-cooled data
centers, by managing the cooling modes and workload
distribution.

For geo-distributed data centers, Adnan et al. [16] save
the cost of load balancing by utilizing the flexibility of
the Service Level Agreements. Related algorithms are
developed in [33][34][12] to minimize the total cost of
geo-distributed data centers and the environmental im-
pact. Our global workload dispatching strategy mini-
mizes the total power consumption of all the distributed
data center, by leveraging the temperature differences
among different locations and maximizing the usage of
free air cooling.

3 Different Cooling Technologies

Figure 1 illustrates the cooling system of a hybrid-cooled
data center, which includes traditional air cooling, liquid
cooling and free air cooling. The liquid cooling system
uses chiller and cooling tower to provide coolant. Either
the CRAC system or the free cooling system can be se-
lected for air cooling. The CRAC system also relies on
chiller and cooling tower to provide the coolant, which is
then used to absorb heat from the air in the data center.
The free cooling system draws outside air into the data
center through the Air Handling Unit (AHU) when the
outside temperature can meet the cooling requirement.

Traditional CRAC air cooling is the most widely
used cooling technology in existing data centers. This
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Figure 1: Cooling System of Hybrid-Cooled Data Cen-
ter. The cold plates used for liquid cooling are installed
inside the liquid-cooled servers. The air cooling mode is
decided based on the outside temperature.

system deploys several CRAC units in the computer
room to supply cold air. The cold air usually goes under
the raised floor before joining in the cold aisle through
perforated tiles to cool down the servers, as shown in
Figure 2. The hot air from the servers is output to the hot
aisle and returned to the CRAC system to be cooled and
reused. The deployment of cold aisle and hot aisle is used
to form isolation between cold and hot airs. However,
due to the existence of seams between servers and racks,
as well as the space close to the ceiling where there is no
isolation, cold air and hot air are often mixed to a certain
extent, which decreases the cooling efficiency. The PUE
of a data center using CRAC cooling is usually around
2.0 [6].

Liquid cooling technology usually uses coolant (e.g.,
water) to directly absorb heat from the servers. It can
be divided into three categories: direct liquid cooling
[19], rack-level liquid cooling [24] and submerge cool-
ing [26]. In direct liquid cooling, the microprocessor in a
server is directly attached with a cold plate that contains
the coolant to absorb heat of the microprocessor, while
the other components are still cooled by chilled air flow.
Direct liquid cooling improves the cooling efficiency by
enhancing the heat exchange process. Rack-level liquid
cooling and submerge cooling adopt some other heat ex-
change devices instead of the cold plate. In this paper,
we adopt the direct liquid cooling technology as an ex-
ample to demonstrate the effectiveness of our solution,
due to its low cost.

Free air cooling is a highly efficient cooling approach
that uses the cold air outside the data center and saves
power by shutting off the chiller system. It is usually uti-
lized within a range of outside temperature and humidity.

3
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Within this range, the outside air can be used for cooling
via an air handler fan. The traditional CRAC system is
employed by these data centers as the backup cooling
system.

4 Power Optimization for a Local Hybrid-
cooled Data Center

In this section, we introduce the power models and for-
mulate the total power optimization problem for a lo-
cal hybrid-cooled data center. We then present how we
solve the problem by using computational fluid dynamics
(CFD) modeling and optimization techniques.

4.1 Power Models of a Hybrid-cooled Data
Center

We use the following models to calculate the server and
cooling power consumption in the data center.

• Server Power Consumption Model

For a server i, we adopt a widely accepted server
power consumption model [11] as:

Pserver
i =Wi ×Pcompute

i +Pidle
i (1)

where Wi is the workload handled by server i, in terms
of CPU utilization. Pcompute

i is the maximum computing
power when the workload is 100%. Pidle

i represents the
static idle power consumed by the server. If the workload
is 0, the server can be shut down to save power and thus
the power consumption is 0. Therefore, the total server
power consumption of a data center with N server is

Pserver =
N

∑
i=1

Pserver
i (2)

• Air Cooling Power Model

In a hybrid-cooled data center, the components of a
liquid-cooled server except for the microprocessor, the
rest server components, such as disk and memory, are
cooled by the air cooling system, which contributes to
the hot air coming out of the server. To characterize this
relationship, we assume that in a liquid-cooled server, α
percent of the power is consumed by the microprocessor.
Therefore, assuming the first M servers among the total
N servers are liquid-cooled, we can calculate the total
power consumption of all the servers and components
that are cooled by the air cooling as:

Pserver
air =

N

∑
i=M+1

Pserver
i +

M

∑
i=1

(1−α)∗Pserver
i (3)

The power consumption of the traditional CRAC air
cooling system depends on the heat generation (i.e.,
Pserver

air ) and the efficiency of the CRAC system:
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Figure 2: Air circulation in an air-cooled data center.
Some hot air can be recirculated to the inlet and mixed
with the cold air, degrading the cooling efficiency.

Pair
CRAC =

Pserver
air

COPCRAC (4)

According to [11], the COP (coefficient of perfor-
mance, characterizing the cooling efficiency) of a CRAC
system can be calculated according to the supplied air
temperature Tsup:

COPair = 0.0068∗T 2
sup +0.0008∗Tsup +0.458 (5)

To avoid overheating the servers, the inlet air temper-
ature of an air-cooled server needs to be bounded by a
threshold. Based on a temperature model from [21], we
use Equation 6 to first calculate the outlet air tempera-
ture, and then get the inlet air temperature with Equation
7:

KiT i
out =

N

∑
j=1

hi jKjT
j

out +(Ki −
N

∑
j=1

hi jKj)Tsup +Pair
i (6)

T i
in =

N

∑
j=1

h ji ∗ (T j
out −Tsup)+Tsup (7)

Ki represents a multiplicative item, ρ fiCp, where Cp
is the specific heat of air. ρ represents the air density,
and fi is the air flow rate to server i. h describes the air
recirculation. In Equation 6, the first term characterizes
the impact of the air recirculation from server j to server
i and the second term models the cooling effect of the
supplied air. The third term is the power consumption
of server i that heats up the passing cold air. Equation 7
shows that inlet server temperature is determined by the
supplied air temperature and the recirculation heat. We
explain how to derive h using CFD in Section 4.3.

When the free air cooling method is chosen for the
hybrid-cooled data center, the air cooling power is calcu-
lated in a different way, according to [7]

Pair
f ree = (PUE f ree −1)∗Pserver

air (8)

In our experiment, the free cooling PUE is modeled to
be proportional to the ambient air temperature according

4
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to [10]. This is because when the outside air temperature
is relatively high, more air is needed to take away the
heat generated by the servers, and the fan speed of AHU
needs to be higher to draw more air.

In our paper, we assume that only one of the two air
cooling systems can run at one time in a hybrid-cooled
data center. Thus the total air cooling power consump-
tion can be expressed as:

Pair = βPair
CRAC +(1−β )Pair

f ree (9)

where β is a binary variable indicating which air cooling
system is activated.

• Liquid Cooling Power Model

With M liquid-cooled servers and the microprocessor
consuming α percent of the server power, we have the
liquid cooling power consumption as

Pliquid =
∑M

i=1 αPserver
i

COPliquid (10)

where COPliquid is the COP of the chiller used in the
liquid cooling system. Due to the high cooling capac-
ity of liquid medium, the changes of the liquid temper-
ature and the flow rate hardly affect the COP value, and
thus COPliquid can be viewed as a constant. To derive
a COP that can provide cooling guarantee for all the
liquid-cooled servers, we run simple experiments with
the worst-case setup by putting all servers to 100% uti-
lization, and adjust the chiller set point and flow rate of
the cold plate to ensure the microprocessor temperature
is below the threshold. We then use the COP gained in
this situation as a constant.

4.2 Power Minimization
We now formulate the power minimization problem of
the hybrid-cooled data center. N servers are deployed
in the data center and M of them are liquid-cooled. As-
suming that the total workload is Wtotal , we minimize the
total power consumption as:

min{Pserver +Pair +Pliquid} (11)

Subject to:
N

∑
i=1

Wi =Wtotal (12)

T mp
i < T mp

th 1 ≤ i ≤ M (13)

T in
i < T in

th M+1 ≤ i ≤ N (14)

Equation 12 guarantees that all the workload Wtotal is
handled by the servers. Equation 13 enforces that the
microprocessors’ temperatures of these M liquid-cooled
servers are below the required threshold T mp

th . Equation
14 enforces that the inlet temperatures of the (N −M)
air-cooled servers are below the required threshold T in

th .





















 





Figure 3: Data center model used in evaluation

4.3 CFD-based Recirculation Matrix and
Optimization Solution

We now explain how to get the CFD-based recirculation
matrix H. In Equation 6, hi j is an element of the matrix H,
indicating the percentage of heat flow recirculated from
server i to server j. To simulate the thermal environment
of the data center, we use Fluent [5], which is a CFD soft-
ware package. Figure 3 shows both the layout of the data
center model used in this paper and an example of the
thermal environment when all the servers are air-cooled.
We set the CRAC supply temperature in CFD and use it
to get the outlet temperature of each server, in different
workload distribution scenarios. After getting the power
consumption (Pair

i ), the outlet temperature of each server
(T i

out ,T
j

out ) and the CRAC supply temperature (Tsup) in all
the scenarios, we use them to solve the linear equation
shown in Equation 6 and get the recirculation matrix H.

To solve the optimization problems, we use LINGO
[15], a comprehensive optimization tool. LINGO em-
ploys branch-and-cut methods to break a non-linear pro-
gramming model down into a list of sub problems to en-
hance the computation efficiency. It is important to note
that our scheme performs offline optimization to deter-
mine workload distribution, server on/off and the cool-
ing mode of the data center at different outside temper-
atures. To dynamically determine those configurations,
our scheme can conduct the optimization for different
loading levels in an offline fashion and then apply the re-
sults online based on the current loading and the current
outside temperature.

5 Power Optimization for Geo-Distributed
Hybrid-cooled Data Centers

Some big IT companies may have multiple data centers
around the world. Although the power minimization for
a single hybrid-cooled data center is helpful, it might not
be efficient enough for geo-distributed data centers. It is
because data centers at different locations have different
outside temperatures which lead to different cooling ef-
ficiencies. Therefore, it is important to manage the geo-

5
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Figure 4: System diagram for geo-distributed data cen-
ters. The local optimizer optimizes the cooling configu-
ration and workload distribution locally. The global op-
timizer optimizes the global workload distribution based
on the data center power models.

distributed data centers together. In this section, we ex-
tend the total power optimization problem for a single
data center to fit geo-distributed data centers. We de-
velop a two-layer light-weight optimization algorithm to
lower the computation time.

5.1 Global Optimization
At first, we formulate a global optimization problem
for minimizing the total power consumption of geo-
distributed data centers, which is very similar to the opti-
mization problem for a single data center. To simplify
the notations, we assume that each data center has N
servers, which is not a hard requirement for the formu-
lation. We minimize the total power consumption of the
data center system that contains K data centers to handle
W geo

totalworkload as:

min
K

∑
j=1

PDC
j (15)

Subject to:
K

∑
j=1

N

∑
i=1

Wi, j =W geo
total (16)

T mp
i, j < T mp

th 1 ≤ i ≤ M 1 ≤ j ≤ K (17)

T in
i, j < T in

th M+1 ≤ i ≤ N 1 ≤ j ≤ K (18)

PDC
j is the total power consumption of data center j.

T mp
i, j is the microprocessor temperature of liquid-cooled

server and T mp
i, j represents the inlet temperature of air-

cooled server in a data center. Wi, j is the workload dis-
tributed to server i in data center j. Equation 16 guaran-
tees that all the workload for geo-distributed data centers

can be handled. Equation 17 and Equation 18 are the
temperature constraints of liquid-cooled and air-cooled
servers.

5.2 Two-layer Light-weight Optimization
To solve the global optimization problem for geo-
distributed hybrid-cooled data centers, a straightforward
solution is to use LINGO directly, as the solution for the
single data center power optimization in Section 4. How-
ever, as LINGO utilizes the branch-and-bound technique
to solve the problem, the computational complexity in-
creases significantly when LINGO solves the problem
with geo-distributed data centers. Therefore, we design
a two-layer light-weight optimization algorithm to lower
the computation complexity.

We first define cPUE for a single data center as

cPUE =
Pserver +Pcooling

Pcompute(W )
(19)

where Pcompute is the total dynamic computing power
consumed by the servers to handle a given workload W .
As shown in Figure 4, the local optimizer uses the power
optimization process of a single data center (discussed
in Section 4) to derive an optimal cPUE for a data cen-
ter with a given workload W and an outside temperature
Toutside as cPUEoptimal(Toutside,W ),

cPUEoptimal = f (Toutside,W ) (20)

In fact, with different amounts of workload and differ-
ent outside temperatures, cPUEoptimal has different val-
ues. To get the cPUEoptimal model for each data center,
we need to obtain a set of sample values of the optimal
power consumption with different workloads and outside
temperatures. We change the workload from 0% to 100%
with a 10% increment step each time, and also change
the outside temperature from 0 ◦C to 20 ◦C with an in-
crement of 1 ◦C. We get the power optimization solution
of each single data center with different workload and
outside temperature combinations. The obtained results
are a set of sampled triplets as (cPUEoptimal ,W,Toutside).
We then use the Levenberg Marquardt (LM) algorithm
to conduct the linear fitting to find out the cPUEoptimal
model:

cPUEoptimal = a∗Toutside +b∗W + c (21)

The coefficients a, b, c are determined by the data center
cooling configuration (e.g., the number of liquid-cooled
servers). We choose to do linear model fitting due to
the consideration of calculation complexity. Its accuracy
is adequate within the acceptable range as we will dis-
cuss in Section 6.4. With the cPUEoptimal model, we can
model the optimal power consumption of a single data
center by combining Equations 19 and 21 as:
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Figure 5: Total power consumption with Load-Unaware, Liquid-First and SmartCool at different loadings

a b c a b c a b c0

10

20

30

40

50

0 (Celsius)     10 (Celsius)     20 (Celsius)

C
oo

lin
g 

Po
w

er
 (k

W
)

Air Free
Air Chiller
Liquid Cooling

(a) Power break at 30% Loading

a b c a b c a b c0

20

40

60

80

100

120

0 (Celsius)    10 (Celsius)    20 (Celsius)

C
oo

lin
g 

Po
w

er
 (k

W
)

Air Free
Air Chiller
Liquid Cooling

(b) Power break at 50% Loading

a b c a b c a b c0

50

100

150

200

250

0 (Celsius)     10 (Celsius)     20 (Celsius)

C
oo

lin
g 

Po
w

er
 (k

W
)

Air Free
Air Chiller
Liquid Cooling

(c) Power break at 70% Loading

Figure 6: Cooling power breakdown for different schemes (x-axis: a is Load-Unaware, b is Liquid-First, c is Smart-
Cool)

PDC = Pcompute(W )∗ cPUEoptimal(Toutside,W ) (22)

Given a specific moment, the air temperature outside
a data center is a constant, and thus PDC only depends
on W. As shown in Figure 4, the local optimizer sends
the PDC(W ) model to the global optimizer, which opti-
mizes the total power consumption by manipulating the
workload assigned to each data center. This optimization
problem is also solved using LINGO.

Our algorithm successfully decouples the global
power optimization problem to a global workload dis-
tribution problem and a power optimization problem of
each local data center, and thus reduces the optimization
overhead significantly.

5.3 Maintaining Response Time

When the workload dispatching is managed by the global
optimizer in Figure 4, the request response time needs
to be maintained below a threshold. We consider two
components of response time: the queuing delay within
the data center, and the network delay outside the data
center.

A data center can be modeled as a GI/G/m queue [11].
Using the Allen-Cullen approximation for the GI/G/m
model, the queuing delay and the number of servers
needed to satisfy a given workload demand are related
as follows:

R =
1
µ
+

Pm

µ(1−ρ)
(
C2

A +C2
B

2m
) (23)

where R is the average queuing delay. 1
µ is the aver-

age processing time of a request. ρ is the average server
utilization. m is the number of servers. Pm = ρ

m+1
2 for

ρ < 0.7. Pm = ρm+ρ
2 for ρ > 0.7 and C2

A and C2
B repre-

sent the squared coefficients of the variation of request
inter-arrival times and request sizes, respectively. The
network delay di j between the source i and the data cen-
ter j is taken to be proportional to the geographical dis-
tances between them.

When dispatching workload among data centers, we
have the constraint that

W +di j < Ti j (24)

where Ti j is the response time threshold of the requests
dispatched from source i to data center j.

6 Simulation Results

In this section, we present our evaluation results from the
simulation.
6.1 Evaluation Setup
To evaluate different power optimization schemes in a
single hybrid-cooled data center, we use a data center
model that employs the standard configuration of alter-
nating hot and cold aisles, which is consistent with those
used in the previous studies [11]. Figure 3 shows both
the data center layout and a thermal environment exam-
ple when all the servers are air-cooled. The data center
consists of four rows of servers, where the first row is
composed of liquid-cooled servers. Each row has eight
racks, where each rack has 40 servers, adding up to 1,280
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servers in the entire data center. The server in our data
center model has a 100W idle power consumption and
a 300W maximum power consumption when fully uti-
lized. The volumetric flow rate of the intake air of each
server is 0.0068m3/s. Each of the four CRAC units in the
data center pushes chilled air into a raised floor plenum
at a rate of 9000 f t3/min [11]. There also exists a free
cooling economizer system that uses outside air when
suitable to meet the cooling requirements.

For the liquid-cooled servers we use the rack CDU
(coolant distribution unit), in which the CPU of every
server is cooled by cold plate and the other components
are cooled by the chilled air. We have two chiller sys-
tems, of which one is to supply cold water for the cold
plates and the other one is to supply the coolant to the
CRAC units.

To evaluate different power optimization schemes
among different data centers, we consider about three
data centers with different cooling configuration, a air-
cooled data center ( all the four rows of servers are
air-cooled), a hybrid-cooled data center ( one row of
servers are liquid-cooled as discussed in the previous
paragraphes ) and a liquid-cooled data center ( all the
servers are liquid-cooled ). The only difference between
these three data centers are the number of liquid-cooled
servers. Other settings of the data centers are the same.

6.2 Comparison of Cooling Schemes

In this section, we compare our SmartCool scheme with
two baselines: Load-Unaware and Liquid-First.

Load-Unaware determines the cooling mode by com-
paring the outside temperature to a fixed temperature
threshold, which is equal to the highest CRAC supply
temperature that can safely cool the servers when they
are all fully utilized. When the outside temperature is be-
low the threshold free air cooling is used, otherwise the
traditional air cooling system with chillers and pumps is
selected. Load-Unaware prefers to distribute the work-
load to the liquid-cooled servers. If they are fully uti-
lized, the remaining workload is then distributed to the
air-cooled servers. The servers in the middle of each row
and at the bottom of each rack are prior, as servers lo-
cated at those places have less recirculation impact and
lower inlet temperature [11].

In contrast, Liquid-First dynamically adjusts the tem-
perature threshold for free air cooling, based on the real-
time workload. It first distributes workload to the servers
in the same way as Load-Unaware, and then uses the
highest CRAC supply temperature that can safely cool
the servers as the temperature threshold.

Figure 5 shows the total power consumption of the
three different schemes at different loadings with differ-
ent outside temperature. We can see from the results that
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Figure 7: Power consumption and required time compar-
ison between Global Optimal and SmartCool

all the three cooling schemes achieve a low power con-
sumption when the outside temperature is low, because
all of them can use free air cooling. Compared with
Load-Unaware and Liquid-First, SmartCool shows the
lowest power consumption because it considers the heat
recirculation among air-cooled servers when distributing
workload.

When the outside temperature increases, we can see
that Load-Unaware is the first to have a jump in the
power consumption curve among the three schemes.
This is because Load-Unaware uses a fixed temperature
threshold to decide whether to use free air cooling or
not. The temperature threshold of Load-Unaware is de-
termined with the data center running a 100% percent
workload. Therefore, it is unnecessarily low for less
workload such as 30%. Liquid-First is the second one to
have a power consumption jump due to switching from
free air cooling to CRAC cooling. It can use free air cool-
ing more than Load-Unaware when the outside tempera-
ture is higher, because its temperature threshold is deter-
mined based on the real-time workload (e.g., 30%, 50%
or 70%) rather than the maximum workload (100%).
Hence Liquid-First saves power compared with Load-
Unaware. SmartCool scheme is the last one to have the
power consumption jump, because SmartCool optimizes
the workload distribution among liquid-cooled and air-
cooled servers, while the two baselines concentrate the
workload on a small number of air-cooled servers and
result in some hot spots when air cooling is necessary.
Those hot spots require a lower temperature of the sup-
plied air for cooling and thus increase the power con-
sumption. Therefore, SmartCool is the most power effi-
cient scheme.

6.3 Power Breakdown of Cooling Schemes
In Figure 6, we break the cooling power consumption
of the three schemes (including Load-Unaware,Liquid-
First and SmartCool) into Air Free (free cooling power
consumption), Air Chiller (traditional air cooling power
consumption) and Liquid Cooling (liquid cooling power

8
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Figure 8: Total Power Consumption comparison of different workload dispatching schemes

consumption). We choose three outside temperature
points, 0 ◦C, 10 ◦C and 20 ◦C to discuss the impact of
outside temperature.

Figure 6 (a) shows the cooling power under differ-
ent outside temperatures at 30% loading. We can see
that when the outside temperature is 0 (Celsius), Load-
Unaware and Liquid-First consume the same amount of
cooling power. SmartCool consumes less cooling power
than the two baselines because it distributes all the work-
load to the air-cooled servers, which are cooled by the
more efficient free air, while the baselines prefer to use
liquid-cooled servers.

When the outside temperature raises to 10 ◦C, Load-
Unaware switches to the traditional air cooling mode,
which starts to use the chiller system and leads to the
increase of the cooling power consumption. Differently,
the other two schemes show similar results as those at 0
◦C. When the outside temperature is 20 ◦C, all the three
schemes switch to traditional air cooling mode. How-
ever, SmartCool still consumes less cooling power be-
cause it considers the impact of air recirculation and op-
timizes the workload distribution.

Figures 6 (b) and 6 (c) show the breakdown of cooling
power consumption when the data center is at 50% and
70% loading. They show the same trends as 6 (a) though
the total cooling power increases due to the increase of
the workload.

6.4 Comparison between SmartCool and
Global Optimal Solution

In this section, we evaluate our two-layer power opti-
mization algorithm in the geo-distributed data center set-
tings and compare it with the global optimization scheme
in terms of optimization performance, including the op-
timized total power consumption and the time overhead.
The global optimal scheme solves the geo-distributed
power optimization problem as a whole including decid-
ing the global and local workload distribution as well
as the cooling mode management of each data center.
SmartCool uses a two-layer optimization algorithm as
discussed in Section 5. Due to the long computation
time of the global optimization scheme, we use three
smaller scale data centers in this set of experiments. Each
data center has two rows of racks. Each row contains 4
racks and each rack contains four blocks. There exists 10

servers in each block.
Figure 7(a) shows the total power consumption of

the two schemes at different loadings. We can see
that SmartCool has very close optimization result to the
global optimal solution. The performance difference is
due to the model fitting error introduced from the cPUE
modeling process as discussed in Section 5. However,
our SmartCool consumes much less time than the Global
Optimal solution according to Figure 7(b).

6.5 Results with Real Workload and Tem-
perature Traces

We now evaluate different power management schemes
on three geo-distributed data centers with real workload
and temperature traces. Each data center contains 1,280
servers. To show the diversity of different data centers,
we configure them with different cooling system, which
are air cooling, liquid cooling and hybrid cooling, re-
spectively. The outside temperatures are shown in Fig-
ure 8 (a) which are one week temperature traces of three
different locations, Geneva, Hamina and Chicago [25].

We compare the total power consumption under three
workload dispatching schemes: Liquid-First, Low-Temp-
First and SmartCool. Liquid-First dispatches workload
to the three data centers according to their cooling effi-
ciencies, which are ranked from high to low as the liquid-
cooled data center, the hybrid-cooled data center and the
air- cooled data center. Thus workload is first dispatched
to the liquid-cooled data center and if it can not handle
all the workload, the rest part is dispatched to the hybrid-
cooled data center and then the air-cooled data center.
For Low-Temp-First, workload is first distributed to the
data center with the lowest outside temperature since it
has the highest possibility to use free cooling system
which will consume the least cooling power. For Smart-
Cool, workload is distributed according to the approach
discussed in Section 5.

Figure 8 (b) shows a one week trace of the average
CPU utilization from an IBM production data center
[29]. We use this trace to generate the total workload
in our experiment. Figure 8 (c) shows the power con-
sumption of the three different schemes. We can see
that our SmartCool consumes the least power because
it considers the impacts of both the outside tempera-
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Figure 9: Hardware results under different ambient temperatures at different loadings (x-axis: a is Load-Unaware, b
is Liquid-First, c is SmartCool)

ture and the workload on the data center PUE. Liquid
First consumes more power than SmartCool but less than
the Low-Temp-First solution, because it first concentrates
workload on liquid-cooled data center, which has rela-
tively high cooling efficiency. Low-Temp-First consumes
the most power among the three schemes because when
the outside temperature is not low enough or the work-
load is relatively high, Low-Temp-First first dispatches
all the workload to the data center with the lowest out-
side temperature and then traditional air cooling system
with chiller and pump must be used to cool down the
servers, which will cause high cooling power.

7 Hardware Experiment

In addition to the simulations, we also conduct exper-
iments on our hardware testbed to evaluate SmartCool
by comparing it with the baselines, i.e., Load-Unaware
and Liquid-First. The testbed includes one liquid-cooled
server and three air-cooled servers. A heater is used to
set the ambient temperature to be 22◦C, 26◦C and 30◦C.

To compare the total power consumptions of the three
schemes, we use power meters to measure the power con-
sumed by the servers and the cold plate used for liquid
cooling. For the reason that we do not have an air han-
dler and just use the ambient air to take away heat gener-
ated by the server, we assume that the air cooling power
is zero under free cooling mode and use Equation 4 and
5 to estimate the power consumption of traditional air
cooling.

Figure 9 shows the power consumption of different
schemes with different ambient temperatures and load-
ings. We can see that when the ambient temperature
is 22◦C, the air cooling power of all the three schemes
are zero at different loadings, because they can all adopt
free air cooling. SmartCool consumes less cooling power
than Load-Unaware and Liquid-First, for it does not con-
sume liquid cooling power when the ambient tempera-
ture is at 22◦C as all the workload is distributed to the
air-cooled servers. In contrast, the two baselines prefer
to distribute workload to the liquid-cooled servers, no
matter how cold the ambient air is. When the ambient
temperature is 22◦C and the workload is at 30% or 50%,
Load-Unaware consumes the most cooling power, be-

cause it begins to use traditional air cooling since the am-
bient temperature exceeds its fixed temperature threshold
for cooling mode decision, and thus cause more cooling
power. Liquid-First still uses free cooling at 30% and
50% loadings, and begins to use traditional air cooling
when the workload is 70%. At 26◦C SmartCool still con-
sumes less cooling power than the other two schemes.
The results show the same trend when the outside tem-
perature is 30◦C.

8 Conclusion

In this paper, we have presented SmartCool, a power
optimization scheme that effectively coordinates differ-
ent cooling techniques and dynamically manages work-
load allocation for jointly optimized cooling and server
power. In sharp contrast to the existing work that ad-
dresses different cooling techniques in an isolated man-
ner, SmartCool systematically formulates the integration
of different cooling systems as a constrained optimiza-
tion problem. Furthermore, since geo-distributed data
centers have different ambient temperatures, SmartCool
dynamically dispatches the incoming requests among a
network of data centers with heterogeneous cooling sys-
tems to best leverage the high efficiency of free cool-
ing. A light-weight heuristic algorithm is proposed to
achieve a near-optimal solution with a low time over-
head. SmartCool has been evaluated both in simulation
and on a hardware testbed with real-world workload and
temperature traces. The results show that SmartCool out-
performs two state-of-the-art baselines by having a 38%
more power savings.
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Abstract 
The rapidly growing server energy expenditure and the 
warning of climate change have forced the IT industry 
to look at datacenters powered by renewable energy. 
Existing proposals on this issue yield sub-optimal per-
formance as they typically assume certain specific type 
of renewable energy sources and overlook the benefits 
of cross-source coordination. This paper takes the first 
step toward exploring green datacenters powered by 
hybrid renewable energy systems that include baseload 
power supply, intermittent power supply, and backup 
energy storage. We propose GreenWorks, a power 
management framework for green high-performance 
computing datacenters powered by renewable energy 
mix. Specifically, GreenWorks features a hierarchical 
power coordination scheme tailored to the timing and 
capacity of different renewable energy sources. Using 
real datacenter workload traces and renewable power 
generation data, we show that our scheme allows green 
datacenters to achieve better design trade-offs.  

1. Introduction 
 The global server power demand reaches approxi-
mately 30 gigawatts in total [1], which account for over 
250 million metric tons of CO2 emissions per year [2]. 
Faced with a growing concern about the projected rise 
in both server power demand and carbon emissions, 
academia and industry alike are now focusing more 
attention than ever on non-conventional power provi-
sioning solutions. For instance, recently there have been 
vigorous discussions on renewable energy driven com-
puter system design with respect to carbon-aware 
scheduling [3-5], renewable power control [6-9], and 
cost optimization strategies [10-11]. In addition, Mi-
crosoft, eBay, HP, and Apple have announced projects 
that use green energy sources like solar/wind power, 
fuel cells, and bio-gas turbines to minimize their reli-
ance on conventional utility power [12-15]. It has been 
estimated that these eco-friendly IT solutions could 
reduce almost 15% global CO2 emissions by 2020, 
leading to around $900 billion of cost savings [16].  
 The expected growth in renewable power generation 
poses new challenges for datacenter operational resili-
ence. A number of the renewable energy sources are 
intermittent power supply, such as wind turbine and 
solar array. They are free sources of energy but incur 
power variability problems. Several emerging green 
power supplies, such as fuel cells and bio-fuel based 

generators, are typically used as baseload power supply. 
They are stable and controllable power sources, but not 
fast enough to respond instantaneously to quick changes 
in server power demand. In case the intermittent power 
supply drops suddenly or the baseload power supply 
cannot follow an unexpected power demand surge, 
backup power supply (e.g., batteries, super-capacitors) 
must be used to handle the power shortfall.  
 As we move toward a smarter grid, datacenters are 
expected to be powered by hybrid renewable energy 
systems that combine multiple power generation mech-
anisms [17]. With an integrated mix of complementary 
power provisioning methods, one can overcome the 
limitations of each single type of power supply, thereby 
achieving better energy reliability and efficiency. 
 However, a common limitation of prior proposals is 
that they mainly focus on certain specific type of green 
power supplies. We classify existing schemes into three 
broad categories: 1) load shedding, which focuses on 
utilizing intermittent power [6, 9], typically reduces 
load when renewable power drops; 2) load boosting, 
which uses both intermittent and backup power [8, 18], 
takes advantage of the stored energy to maintain desired 
performance when the current green power generation 
is inadequate; and 3) load following, which assumes 
both baseload and backup power [19], leverages tunable 
generators to track datacenter load demand. Since prior 
proposals lack the capability of managing renewable 
energy mix, they can hardly gain the maximum benefits 
from hybrid renewable energy systems, and conse-
quently yield sub-optimal design tradeoffs.  
  In this study we explore diversified multi-source 
power provisioning for green high-performance data-
centers today and in the future. We propose Green-
Works, a framework for managing datacenter power 
across several layers from datacenter server to onsite 
renewable energy mix. GreenWorks comprises two key 
elements: the green workers, which are multiple plat-
form-specific power optimization modules that use dif-
ferent supply/load control strategies for different types 
of renewable energy systems; and green manager, a 
hierarchical coordination scheme for green workers. 
 GreenWorks tackles the challenges of integrating 
and coordinating heterogeneous power supplies with a 
three-tiered hierarchical coordination scheme. Each 
layer of the hierarchy is tailored to the specific timing 
and utilization requirements of the associated energy 
sources. In addition, power management modules in 
different layers of the hierarchy can also interact with 
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each other within the framework. This allows us to fur-
ther improve the power management effectiveness of 
hybrid renewable energy systems. 
 GreenWorks emphasize a multi-objective power 
management. It jointly manages green energy utiliza-
tion, backup energy availability, and workload perfor-
mance. Specifically, we define three types of green 
workers: 1) baseload laborer, which adjusts the output 
of the baseload power to track the coarse-grained 
changes in load power demand; 2) energy keeper, 
which regulates the use of the stored renewable energy 
to achieve satisfactory workload performance while 
maintaining desired battery life; and 3) load broker, 
which could opportunistically increase the server pro-
cessing speed to take advantage of the excess energy 
generation of the intermittent power supply. All the 
three modules are able to distill crucial runtime power 
profiling data and identify appropriate control strategies 
for different types of renewable generation.  
 To our knowledge, this paper is the first to design a 
hierarchal power management and coordination frame-
work for multi-source powered green datacenters. 
 This paper makes three main contributions:  

 We propose GreenWorks, a hierarchical power 
management framework for green datacenters pow-
ered by renewable energy mix. It enables cross-
source power management coordination, thereby 
greatly facilitating supply-load power matching.  

 We propose a multi-source driven multi-objective 
power management that takes advantage of our hier-
archical power management framework. Our tech-
nique enables GreenWorks to maximize the benefits 
of the hybrid renewable energy systems without 
heavily relying on any single type of power supply. 

 We evaluate GreenWorks using real-world work-
load traces and green energy data. We show that 
GreenWorks could achieve less than 3% job runtime 
increase, extend battery lifetime by 23%, increase 
UPS backup time by 12%, and maintains the same 
energy efficiency as the state-of-the-art design. 

The rest of this paper is organized as follows. Sec-
tion 2 introduces background. Section 3 proposes the 
GreenWorks framework. Section 4 proposes multi-
objective power management scheme. Section 5 de-
scribes evaluation methodologies. Section 6 presents 
our results. Section 7 discusses related work and Sec-
tion 8 concludes this paper.   

2. Background 
Today’s energy crisis and environmental problems 

force the IT industry to look at datacenter power provi-
sioning in a different way. In this section, we introduce 
green datacenters powered by hybrid renewable energy 
systems and discuss their design challenges. 
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Figure 1: A datacenter powered by renewable power mix. 

2.1 Hybrid Renewable Energy Systems 

 There are three types of renewable power supplies 
that we can leverage to power a datacenter. Some green 
power supplies, such as solar panels and wind turbines, 
are affected by the availability of ambient natural re-
sources (i.e., solar irradiance or wind speed). They are 
referred to as intermittent power supply since their out-
puts are time-varying. Several emerging green power 
supplies – including fuel cells, bio-fuel based gas tur-
bines, and bio-mass generators – can offer controllable 
green energy by burning various green fuels. We refer 
to them as baseload power supply since they can be 
used to provide stable renewable power to meet the 
basic datacenter power demand (e.g., idle power). In 
addition, energy storage devices such as batteries and 
super-capacitors are also critical components that pro-
vide backup power supply. They can be used to tempo-
rarily store green energy or improve power quality.  
 Looking ahead, datacenters in the smart grid era are 
expected to be powered by hybrid renewable energy 
systems that combine all the three types of power sup-
plies, as shown in Figure 1. Different power supplies 
are typically implemented as small, modular electric 
generators (called micro-sources) near the point of use. 
To manage such an integrated renewable energy mix, 
micro-grid is proposed as a coordinated cluster/network 
of supply and load [20]. Although the micro-grid allows 
its customer to import power from the utility, we focus 
our attention on minimizing the reliance on utility pow-
er due to sustainability and cost concerns.  
 Energy source management and datacenter load 
management are largely decoupled in prior studies. Ex-
isting micro-grid control strategies often focus on pow-
er supply scheduling [21]. Recent proposals on power-
aware datacenter mainly emphasize demand response 
control [22, 23]. In contrast, we propose load/supply 
cooperative power management across several layers 
from servers to hybrid renewable energy systems. 
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Micro-sources Response Speed Startup Time 
   Batteries Immediate N/A 
Flywheel Immediate N/A 
Fuel cells 30 sec ~ 5 min 20 ~ 50 min 
Gas turbine 10s of seconds 2 ~ 10 min  

Table 1: Response speed of different power supplies [24-28]. Figure 2: The demand-supply mismatch scenario. 
 
2.3 Energy Balance Challenge 
 Many system-level events can cause power demand 
fluctuations, such as dynamic power tuning via DVFS, 
on/off server power cycles, and random user request. 
Unexpected variations in intermittent power supplies, 
unfavorably combined with datacenter workload fluctu-
ation, could make the power mismatch problem even 
worse. Therefore, matching datacenter load to the vari-
able power budget is often the crux of eliminating pow-
er disruptions in a green datacenter.  
 Managing multi-source powered system can be a 
great undertaking. As shown in Table 1, micro-sources 
often have different characteristics and operating 
timeframes. Most baseload green power systems cannot 
meet the needs of fast supply-load power matching. For 
example, both fuel cells and gas turbines need time to 
be committed and dispatched to a desired output level. 
They provide a slow energy balance service called load 
following, which typically occurs every tens of minutes 
to a few hours [28].  

Figure 2 illustrates the load matching effectiveness 
using real-world datacenter traces and renewable energy 
datasets. The power supply trace shown in the figure 
combines the outputs of baseload power units and in-
termittent wind power supplies. As can be seen, load 
following alone cannot eliminate fine-grained power 
mismatch. When the wind power is stable, fluctuating 
load can be the main cause of power mismatch; when 
wind power output varies, it can significantly increase 
mismatch events. Although increasing the baseload 
power output can reduce the chance of brownout, it will 
significantly increase the operational expenditure.  

Note that we cannot heavily rely on utility power 
grid and energy backup to manage the demand-supply 
power mismatches. First, it requires additional standby 
power capacity, which is economically unfavorable. 
Energy backup services are typically much more costly 
than the load following services [29]. Second, grid-
inverter and battery incur round-trip energy loss, which 
degrade overall system efficiency. Third, heavy reliance 
on backup power supply can be risky. As recent survey 
indicates, datacenters in the US experiences 3.5 times of 
utility power loss per year with an average duration 
over 1.5 hours [30]. It also shows that UPS battery fail-
ure and capacity exceeded are the top root causes of 
unplanned outages. Without appropriate coordination, 
the demand-supply power mismatch can cause frequent 
battery discharging activities, which not only decrease 

the battery lifetime but also frequently deplete the 
stored energy that is crucial for handling emergencies. 
  In this study we explore a holistic approach for elim-
inating the supply-load mismatch problems in green 
datacenters. Specifically, we look at how cross-source 
power management and coordination will help to im-
prove energy balance and datacenter resilience.  

3. The GreenWorks Framework 
GreenWorks is a hierarchical power management 

scheme that is tailored to the specific timing and utiliza-
tion requirements of different energy sources. It pro-
vides coordinated power management across intermit-
tent renewable power supplies, controllable baseload 
generators, onsite batteries, and datacenter servers. 
 The intention of this work is to provide an initial 
power management framework for datacenters powered 
by renewable energy mix. In the smart grid era, data-
centers must increase their awareness of the attributes 
of power supplies to achieve the best design trade-offs. 

3.1 System Overview 
 Figure 3 depicts the architecture of a green datacen-
ter powered by renewable energy mix. We adopt typical 
micro-grid power distribution scheme for managing 
various renewable energy resources. Various renewable 
energy systems are connected to the power feeder 
through circuit breakers and appropriate interfaces.  
 GreenWorks is a middleware that resides between 
front-end computing facilities and back-end distributed 
generators. It manages various onsite energy sources 
through a micro-grid central controller, which is a typi-
cal power management module in the micro-grid sys-
tem. The controller is able to adjust onsite power gener-
ation through communication with the dedicated power 
interface connected to each distributed generators. 
GreenWorks also communicates with the UPS battery 
rack, the cluster-lever power meters, and the server-
level power control module. It cooperatively adjusts 
power supplies and workload performance levels, and 
thereby eliminates demand-supply power mismatch.  
 As shown in Figure 3, GreenWorks comprises two 
key elements: the green workers and the green manager. 
The former are platform-specific power management 
modules for managing different types of micro-sources 
and the later coordinates these modules. In this study 
we define three types of green workers: baseload labor-
er (B), energy keeper (E), and the load broker (L). 
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Figure 3: High-level system architecture for GreenWorks. Figure 4: GreenWorks power management hierarchy. 

 
The baseload laborer controls the output of distrib-

uted generators such as fuel cells and bio-fuel genera-
tors. It is responsible for providing a specific amount of 
baseload power to satisfy the basic power needs (i.e., 
datacenter idle power). It can also provide load follow-
ing services [28] at each coarse-grained time interval.  

The energy keeper is able to provide necessary 
power support if intermittent power supply drops sud-
denly or load surge happens. It also monitors the ca-
pacity utilization and the health status of the battery 
packs. In Figure 3, we use distributed battery architec-
ture (at server cluster level) since it has better energy 
efficiency, reliability, and scalability [31].  

The load broker is responsible for managing the fi-
ne-grained power mismatch between the fluctuating 
datacenter load and the intermittent power supply. We 
leverage the performance scaling capability (via CPU 
frequency scaling) of server system to match load pow-
er demand to time-varying green energy budget.  

3.2 Power Management Hierarchy  
Although the hybrid renewable energy systems are 

often centrally installed at the datacenter facility level, 
improving the overall efficiency requires a multi-level, 
cooperative power management strategy. 

GreenWorks uses a three-tier control hierarchy for 
power management coordination. It organizes different 
types of green workers in the power management hier-
archy based on their design goals.  

As Figure 4 shows, in the top tier of the hierarchy is 
the baseload laborer. We put the load laborer at the dat-
acenter facility level since it is where the baseload pow-
er generator is integrated. Managing baseload power 
budget at datacenter level facilitates load following con-
trol, thereby minimizing over-/under- generation of the 
baseload renewable energy.  

GreenWorks manages the intermittent renewable 
power supply at the cluster level, or PDU (power distri-
bution unit) level. At this level, dynamic voltage and 
frequency scaling (DVFS) shows impressive peak pow-
er management capabilities [32] and could be leveraged 
to manage the supply-load power mismatch. During 
runtime, the load broker calculates the total renewable 
power generation based on the baseload power budget 
and the assigned renewable power. When the total re-

newable power generation is not enough, the load bro-
ker will decrease server processing speed evenly or re-
quest stored energy (from the energy keeper), depend-
ing on whichever yields the best design tradeoff.  

The energy keeper resides in the third tier of the hi-
erarchy. This allows us to provide backup power direct-
ly to server racks if local demand surge happens or 
power budget drops. Such distributed battery architec-
ture [31] has many advantages such as high efficiency 
and reliability. In this study, we leverage it for manag-
ing fine-grained supply-load power mismatches.  

The main advantage of our multi-level cooperative 
power management scheme is that it facilitates cross-
source power optimization. For example, GreenWorks 
allows datacenters to schedule additional baseload gen-
eration to release the burden of the energy backup when 
the capacity utilization of onsite batteries is high. It also 
allows them to request additional stored renewable en-
ergy to boost server performance if necessary.  

4. Multi-Objective Power Management  
 In this section, we propose multi-source driven mul-
ti-objective power management for GreenWorks. The 
basic idea is to take advantages of the cross-source co-
ordination capability of GreenWorks to balance the 
usage of different types of energy sources. To achieve 
this goal, we develop a novel three-stage coordination 
scheme that synergistically combines battery-aware 
power management, workload-aware power manage-
ment, and variability-aware power management to 
achieve the best design trade-offs. 

4.1 Stage I: Adequate Power Supply Budget 
 The green manager enters power management 
Stage-I (as shown in Figure 5), when the renewable 
power generation is unable to ensure the rated speed on 
all the active servers. In this stage, the excess renewable 
energy generated will be stored in UPS batteries if there 
is still enough room. In addition, the green manager 
also monitors the actual charging current and the maxi-
mal power capacity of batteries. The remaining excess 
renewable power will be send to the utility grid via 
grid-tie inverter, which is a power inverter that syn-
chronizes onsite power generation with a utility line. 
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Requires:  The percentage of job execution time increase: T 
                  TimeTable[T][index], a N×2 lookup table for N jobs 
Initialize: TimeTable is sorted based on T (descending order) 
1: 
2: 
3: 
4: 
5: 
6: 
7: 

PowerHeadroom= TotalSupply – PeakLoadDemand; 
for each job j in the TimeTable 

            if job j has enough thermal headroom then 
                    while (The frequency of j < maxFreq) 
                            Increase the node frequency for job j; 
                            Re-evaluate PowerHeadroom 
                            if PowerHeadroom = 0  then break; 

Figure 5: Load adaptation pseudo code for Stage-I. 
 

 During runtime, the load broker dynamically moni-
tors each job’s progress and calculates an execution 
time increase (ETI). Assuming that a job j has n execu-
tion phases: {1, 2, 3, ···, i, ···, n}. For a given execution 
phase i that spends ta seconds under actual processing 
frequency factual, it would spend tr seconds under rated 
processing frequency frated. If we scale down the fre-
quency (i.e., factual ≤ frated), we expect to increase the 
execution time (i.e., ta ≥ tr). As frequency scaling main-
ly changes CPU time and has little impact on non-CPU 
time (i.e., I/O waiting time and memory access time), 
the job’s ETI in phase i is given by:  

(1 ) =actual
ij a r a

rated

f CPUtimeT t t t
f Runtime

     ， ,         (1) 

where  is the monitored actual CPU utilization (under 
scaled processing frequency) in execution phase i. ide-
ally, without performance scaling, the total execution 
time Er of previous i execution phases is:  

r r a iji
E t E T    ,                        (2) 

where Ea is the actual total execution time of previous i 
execution phases monitored by load brokers. Thus, we 
can compute the percentage increase of execution time 
at the end of execution phase i as:  

 %(i, j) ij riT T E                           (2) 
 In Figure 5, the green manager dynamically updates 
the job execution time information and maintains a 
sorted lookup table for each running job. When allocat-
ing additional renewable power budget across server 
nodes, the green manager will always give priority to 
jobs that have higher job execution time increase. Spe-
cifically, our green manager uses a job acceleration 
scheme which opportunistically boosts the processing 
speed/frequency (i.e., over-clocking) to take advantage 
the additional renewable power budget. This can help 
mitigate unnecessary energy loss due to power feedback 
and improve workload performance. It allows a proces-
sor to enter a performance state higher than the speci-
fied frequency if there is enough thermal/power head-
room and if it is enabled by the power management 
software. Through execution time monitoring and pow-
er allocation balancing in the Stage I, we can greatly 
improve average workload performance. 
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Figure 6: The power management pseudo code for Stage-II. 

 

4.2 Stage II: Moderate Power Supply Drop 
 Our system enters Stage-II when it senses inade-
quate power supply. Unlike prior designs which heavily 
rely on either load shedding or backup power, we use a 
balanced power management, as shown in Figure 6. 

Battery Discharge Control:  
 Battery lifetime is an important design considera-
tion. To maximize the benefits of the stored energy 
without compromising reliability, we dynamically mon-
itor the discharge events of the UPS system and calcu-
late a discharge budget based on the aggregated dis-
charge throughput (Amp-hours) of the batteries, the 
overall runtime of the battery, and the rated cycle life.  
 We use an Ah-Throughput Model [33] to evaluate 
the battery cycle life and a kinetic battery model 
(KiBaM) [34] to analyze the battery charg-
ing/discharging behaviors. The Ah-Throughput model 
states that there is a fixed amount of charges that can be 
cycled through a battery before it requires replacement. 
The KiBaM model uses a chemical kinetics process as 
its basis and describes the charge movement inside the 
battery, as shown in Figure 7. Both models provide rea-
sonable evaluations of battery systems and have been 
used in professional power system simulation software 
developed by the National Renewable Energy Lab [35].  
 We use two different power control schemes in this 
stage. If the required UPS energy is within the dis-
charge budget, the green manager will give priority to 
using stored energy to maintain high performance (load 
boosting). Otherwise, it will first decrease the server 
speed (load shedding) and then use stored energy if 
necessary. In Figure 7, we assume a maximal UPS dis-
charge amount of 40% of the total installed capacity, 
which we refer to as flexible UPS energy (upsFlexible, 
0~40% of the total capacity). We also define a reserved 
UPS energy (40%~80% of the total capacity), which is 
used to handle significant power drop in the Stage-III.  
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Figure 7: The KiBaM battery model [34]. The stored 
charge is distributed over two pools: An available-energy 
pool supplies current directly to the load.  

Load Shedding Control:  
 The load brokers of GreenWorks use performance 
statistics to make load shedding decisions. GreenWorks 
allows the datacenter operator to specify a limit (not a 
hard limit) on job ETI to achieve different performance 
goals. Our system allows performance scaling only on 
jobs that have less than x% (default value is 10%) in-
crease of execution time. We refer to this as x% load 
shedding mechanism. If there is still a demand-supply 
mismatch after the x% load shedding and the system 
has run out of flexible UPS power, the green manager 
will enter to power management Stage-III.  

4.3 Stage III: Significant Power Supply Drop 
 Our system enters Stage-III when it realizes that 
moderate load tuning in Stage-II cannot handle the sig-
nificant power mismatch. The Stage-III is an emergency 
state since in this scenario the green manager might put 
the load into minimum power state and use reserved 
UPS capacity to avoid server shutdown.  

Saving UPS Reserved Capacity:  
 Maintaining an appropriate level of stored energy is 
important to ensure service availability. In this stage we 
trade off performance for higher reserved UPS capacity. 
We first decrease load power demand, and then use 
stored energy to bridge the remaining power gap. 

Deadline-Aware Load Shedding:  
 GreenWorks uses a deadline-aware load shedding 
to achieve a better tradeoff between UPS capacity and 
job execution time increase. Figure 8 shows the algo-
rithm for our deadline-aware load shedding. 
 The green manager first checks the current ETI 
values of all the jobs for load shedding opportunities. It 
calculates a Time Budget which evaluates if a job could 
meet its deadline in the future with frequency boosting 
techniques. For example, if the monitored CPU utiliza-
tion μ is 50% (i.e., CPU time is 50% of the job runtime), 
a 20% frequency increase in the future is expected to 
reduce 50% × (1-1/1.2) = 0.08s execution time for one 
second frequency boost.  
 To estimate the total Time Budget, one must know 
the chances (%) of enabling boosted processing speed. 
In this study we use historical renewable power traces 
to estimate the changes of receiving additional renewa-
ble power. To further improve accuracy, one can com-
bine our estimation with weather forecasting. 

Requires: The value of power shortfall after Stage II: Shortfall 
Initialize: The mean percentage of CPU time (i.e., utilization): μ  
                 The duty ratio of performing turbo boost: D 
                 The likelihood of receiving adequate renewable power: P 
 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

// 1st  step of Stage III: decrease load power demand 
for each job j in the TimeTable 
        Saving = μ ×(1 – 1/FreqSpeedup) ; 
        TimeBudget = RemainingRuntime × D× P × Saving; 
        if the execution time increase of job j < TimeBudget  then 
               if ( Freq. of j > MinFreq ) & (Shortfall >0) then 
                         Lower the node frequency for job j; 
                         Re-evaluate Shortfall; 
                 if Shortfall < 0 then break; 
  // 2nd  step of Stage III: use reserved UPS energy if have to 
if Shortfall > 0 then decrease load in round-robin fashion 
Re-evaluate Shortfall; 
if Shortfall > 0 then            
          if Shortfall < upsReserve then 
                    release UPS power; 
            else  shut down  servers 

Figure 8: Power management pseudo code for Stage-III.  

 Assuming that the given job has 1 hour remaining 
execution time and the chance of receiving adequate 
green power is 60%, the anticipated time of being in 
Stage I is 3600s × 60% = 2160s. However, the actual 
turbo boost duration is far less than this value. In Figure 
5, a duty ratio D is defined as the percentage of one 
period in which the CPU is over-clocked. The value of 
D is hardware-specific and is used to control the ther-
mal headroom of processors. If the duty ratio is 30%, 
the anticipated turbo boost duration is 3600s × 60% × 
30% = 648s. Therefore the total Time Budget is 648s × 
0.08s/s = 52s. This means that the given job can tolerate 
up to 52s ETI at the current timestamp.  
  If the given job has enough Time Budget, our con-
troller will incrementally reduce its CPU frequency 
(∆f=0.1GHz) until it reaches its lowest speed (MinFreq 
= 1.6GHz). It will put server nodes into low power 
states in a round-robin fashion if the demand-supply 
discrepancy still exists. Finally, we release the reserved 
UPS energy if necessary. In this study we assume that 
each node runs independent data-processing task. Paral-
lel workloads are often not accelerated as much as cal-
culated since the accelerated threads or processes have 
to wait for others. Exploring workloads with high 
communication to computation ratio is our future work. 
  Note that we assume that a job's runtime is known 
a priori. Typically, HPC users are required to submit 
their job runtime estimations to enable backfilling, 
which can help maximize cluster utilization. In this 
study we leverage it to determine job deadline. 

4.4 Managing Baseload at Coarse-Grained Interval 
 At each fine-grained timestamp (e.g., every 1 sec-
ond), the green manager adjusts the load processing 
speed and manages the stored energy. The objective is 
to mitigate power mismatch caused by the variability 
issue in the intermittent power supply and server load.  
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Figure 9: Feedback control for managing baseload power.  
 
 At each coarse-grained timestamp (15 minutes), it 
adjusts the baseload power generation level through the 
baseload laborers, as shown in Figure 9. The green 
manager collects the monitored information at the end 
of each coarse-grained control period; it then adjusts the 
output of the baseload power supply based on the aver-
age power supply shortfall in the last control period. 
The green manager can also incrementally add addi-
tional baseload power (10% of the current output level) 
if the monitored UPS capacity is low (upsFlexible = 0), 
or the workload performance is low (e.g., 80% of the 
jobs would be delayed), or the anticipated wind power 
availability is low (e.g., P > 80% in Figure 8). 

5. Evaluation Methodologies 
 We develop a simulation framework for datacenters 
powered by renewable generation mix. As shown in 
Figure 10, this framework is configured into three lay-
ers for modeling the entire system from the job dis-
patching behavior to the power system specifics. It uses 
discrete-event simulation to process a chronological 
sequence of job submissions. It also simulates the pow-
er behavior of renewable energy system on per-second 
time scale which is in tune with our datacenter job 
scheduler. This three-layer framework provides us the 
flexibility in analyzing various design spaces.  

We adopt renewable energy system model from 
HOMER [35]. Table 2 shows the parameters we used. 
All the values are carefully selected based on manufac-
turer’s specifications, government publications and in-
dustry datasheet. The maximum baseload power output 
in our simulator equals to the average power demand of 
the evaluated datacenter workload. The default load 
following interval is 15 minutes. The capacity of our 
simulated battery cell is 24Ah at a 20-hour rate (1.2A 
discharge current). Its capacity is 10Ah at a 15-minute 
rate (40A discharge current). We determine the total 
battery capacity in such a way that the backup power 
system can ensure 15 minutes power output in emer-
gency. We maintain detailed log of each discharging 
event to calculate battery life using methods in [33, 34].  

We use wind turbine as our evaluated intermittent 
power source since it is widely used to provide abun-
dant and affordable green energy for large-scale facili-
ties. We collect minute-by-minute wind speed data from 
the National Wind Technology Center [36] during the 
month of March, 2012, as shown in Figure 11. We cal-
culate wind power based on the wind speed data and the 
wind turbine output curve.  
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Figure 10: Details of our three-layer simulation platform. 
  

Inputs Typical Value Value Used 
 Load Following Interval 5 min ~ 1 hour 15 min 
Battery Life Cycle 5,000 ~ 20,000   10,000 times  
Rated Depth of Discharge 
(DoD) 

0.8 0.8 
Battery Efficiency  75% ~ 85% 80% 
Max Charging Current N/A 8 Ah 
Peukert Coefficient 1.0~ 1.3 1.2 
UPS Installed Backup 
Time 

10~20 min 15 min 

Table 2: Key parameters used in the simulation [21-25]. 
 
 We use a queueing-based model that takes real 
workload traces as input. It uses a first come first serve 
(FCFS) policy and puts each job request into a queue 
and waits to grant allocation if computing nodes are 
available. Each job request in the trace has exclusive 
access to its granted nodes for a bounded duration. Such 
trace-driven simulation has been adopted by several 
prior studies on datacenter behaviors and facility-level 
design effectiveness [8, 19, 37, 38]. 
 We use real-world workload traces from a well-
established online repository [39]. As shown in Table 3, 
these workload activity logs are collected from state-of-
the-art HPC systems in production use around the 
world. We select five key task parameters in each trace 
file: job arrival time, job start time, job completion 
time, requested duration, and job size in number of 
granted CPU nodes. As shown in Table 3, we select 
eight 1-week workload traces that have different mean 
utilization level and mean job runtime.  
 Our datacenter infrastructure is based on the IBM 
System x3650 M2 (2.93G Intel Xeon X5570 processor) 
high-performance server which supports Intel Turbo 
Boost technology. While the number of performance 
states (P-states) is processor specific, we assume 12 P-
states as indicated in [40]. The minimum frequency is 
1.6GHz and the normal frequency is 2.9GHz. In Turbo 
Boost mode, the processor could increase the frequency 
by 14%. We increase the frequency moderately (i.e., 
10%) when the Turbo Boost mode is enabled. Our pow-
er model uses CPU utilization as the main signal of 
machine-level activity. Prior work has shown that CPU 
utilization traces can provide fairly accurate server-level 
power prediction [41]. According to the published 
SPEC power data, the modeled system consumes 244 
Watts at full utilization and 76 Watts when idle [42]. 



268 11th International Conference on Autonomic Computing USENIX Association

    

Traces Descriptions Load Mean Inter-arrival 
Time  

Avg. Job Run Time 
      Thunder Lawrence Livermore Lab’s 4096-CPU capacity cluster called Thunder 61% 1.8 min Short 0.58h 

Short DataStar San Diego Supercomputer Center’s 184-node cluster DataStar  56% 3.5 min 1.41h 
Atlas Lawrence Livermore Lab’s 9216-CPU capability cluster called Atlas 33% 11 min Long 0.61 h 
BlueGene A 40-rack large Blue Gene/P system at Argonne National Lab 26% 8.4 min 1.4h 
RICC A massively parallel Japanese cluster of cluster with 1024 nodes 49% 0.9 min  Short 16.6 h 

Long MetaC Czech national grid infrastructure called MetaCentrum 67% 2.1 min 11.8 h 
Seth A 120-node European production system named Seth 80% 21 min Long 6.2 h 
iDataPlex 320-node IBM iDataPlex cluster for Climate Impact Research 18% 50 min 3.7h 

Table 3: The evaluated real-world workload traces in representative HPC datacenters [39]. 

  
Figure 12: Average increase of job turnaround time (i.e., the 
average ETI for all the processed jobs). 

Figure 13: Maximum increase of job turnaround time (i.e., the 
average ETI for the worst 5% delayed jobs). 

 
Figure 14: GreenWorks (GW) maintains almost the same green energy utilization efficiency as Shedding (S) and Boosting (B). 
 

6. Results 
 In this section we evaluate the benefits of applying 
GreenWorks to datacenters powered by hybrid onsite 
green power supplies. We compare GreenWorks to two 
state-of-the-art baselines: Shedding and Boosting. Shed-
ding is a widely used load management schemes for 
emerging renewable energy powered datacenters [43, 
44]; Boosting represents recent datacenter power man-
agement approaches that emphasis the role of energy 
storage devices [45, 46]. Both baselines use UPS and 
server load scaling to manage fine-grained power short-
fall and adjust baseload output level at each end of the 
control period. The only difference between the two is 
that Shedding gives priority to load scaling, while 
Boosting gives priority to UPS stored energy.  

6.1 Execution Time 
 We evaluate datacenter performance in terms of 
average job turnaround time increase compared to an 
oracle (which always ensures full processing speed with 
zero service downtime). Figure 12 shows the average 
job execution time increase. On average, the job execu-
tion time increase of Shedding, Boosting and Green-
Works are 5.4%, 2.1%, and 2.4%, respectively. Com-
pared to Shedding, Boosting shows less execution time 
increase since it trades off UPS capacity for perfor-
mance. As GreenWorks seeks a balanced power man-
agement across different power supplies, it yields 
slightly higher ETI compared to Boosting. 

 The performance of the worst 5% jobs could signif-
icantly affect the service-level agreements (SLA) of 
datacenters. Figure 13 shows the maximum increase of 
job turnaround time which is calculated as the average 
execution time increase of the 5% worst cases. The 
worst-case result of Shedding is 28%. Surprisingly, 
GreenWorks (12%) reduces the maximum job execu-
tion time increase by 33%, compared to Boosting 
(18%). The improvement is due to the x% shedding 
mechanism (detailed in Section 4.2). By modifying the 
value of the x, one can easily adjust the performance 
goal of GreenWorks (detailed in Section 6.5).  

6.2 Energy Efficiency 
 The main sources of inefficiency in green datacen-
ters are the battery round-trip power loss and the power 
conversion loss in the grid-tied inverter. We assume a 
typical battery system of 80% round-trip energy effi-
ciency and a power inverter of 92% energy efficiency. 
 GreenWorks could maintain the same energy effi-
ciency as Shedding and Boosting. In Figure 14 we show 
the total energy loss due to the battery round-trip energy 
loss and the inverter’s power conversion loss. The over-
all efficiencies of the three evaluated schemes are very 
close to each other. The differences are less than 0.5%. 
Compared to the other two, Boosting shows relatively 
lower inverter loss because it can maximally leverage 
the power smoothing effect of UPS battery to reduce 
the amount of power feedback. 
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Figure 15: The estimated battery lifetime based on detailed 
battery charging/discharging statistics. 

Figure 16: The normalized backup time throughout the eval-
uated operation duration (normalized to rated backup time). 

  
Figure 17: Cumulative distribution function (CDF) for the 
normalized UPS autonomy time. 

Figure 18: Sensitivity to various performance capping re-
quirements. The default performance threshold is 10%. 

 
6.3 Battery Lifetime 
 Typically the rated lifetime of a valve-regulated 
lead–acid battery (VLRA) is 3 years to 10 years [47]. In 
Figure 15, GreenWorks shows a near-threshold battery 
life (8.3 years). It means our multi-source multi-
objective power management can maximally leverage 
batteries without degrading their life significantly. In 
contrast, Boosting shows a mean lifetime of 6.7 years; 
and Shedding shows a mean lifetime of 19.7 years. Typ-
ically, the battery lifetime is not likely to exceed 10 
years [47]. The reason Shedding over-estimates battery 
life is that the system underutilizes batteries. Since bat-
teries may fail due to various aging problems and self-
discharging issues, it is better to fully utilize it. 

6.4 UPS Backup Time 
  Another advantage of GreenWorks is that it can 
optimize the mean UPS autonomy time. The autonomy 
time is also known as backup time. It is a measure of 
the time for which the UPS system will support the crit-
ical load during an unexpected power failure. Figure 16 
shows the mean normalized UPS autonomy time 
throughout the operation duration for various datacenter 
traces and different power management schemes. On 
average, the mean autonomy time is: Shedding (88%), 
Boosting (70%), and GreenWorks (78%).  
 In Figure 17 we plot the cumulative distribution 
function (CDF) for the normalized UPS autonomy time. 
Our results show that the CDF curve of GreenWorks 
lays nicely between our two baselines: Shedding and 
Boosting. GreenWorks could ensure rated backup time 
(the discharge time of a fully charged UPS) for 20% of 
the time. Shedding maintains its rated backup time for 
50% of the time and the number for Boosting is only 
10%. This is because Boosting uses UPS battery much 
more aggressively than Shedding. 

 Energy storage devices should be always taken care 
of. A lower autonomy time can pose significant risk as 
the backup generator may not be ready to pick up the 
load. Without appropriate power management and co-
ordination, datacenters have to increase their installed 
UPS capacity, which is both costly and not sustainable. 

6.5 Control Sensitivity 
We also evaluate the control sensitivity of our sys-

tem by varying the value of several key parameters.   
 In Figure 18 we first show the impact of the x% 
shedding mechanism (detailed in Section 4.2) on vari-
ous performance metrics of GreenWorks. The default 
value of the performance limit in our study is 10% and 
we evaluate the performance impact when the user low-
ers the threshold. As can be seen, the x% shedding 
mechanism has a much larger impact on the average 
latency, other than the battery lifetime and UPS capaci-
ty. Decreasing the threshold (i.e., the x) can reduce the 
job execution time and increase the reliance on energy 
storage elements, which will lower the battery lifetime 
and backup capacity to some extent.  
 In Figure 19 we further evaluate the impact of the 
control intervals (load following intervals of the base-
load power supply) on the performance of our multi-
source driven multi-objective control. Our default inter-
val of adjusting the baseload power is 15 minutes. All 
the results are normalized to that of Boosting. They 
show that the job latency drops as the control interval 
becomes larger. The battery lifetime and UPS capacity 
of GreenWorks both rise as we increase the length of 
the control interval. Note that although the relative la-
tency may decrease as load following interval increases, 
the actual value of latency increases. A longer interval 
often degrades load following effectiveness, and there-
fore increases the chance of power mismatch. 
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(a) Job ETI (b) Worst-case ETI (c) Battery time-to-failure (d) UPS reserved capacity 

Figure 19: Sensitivity to various load following intervals of the baseload power supply. 
 
7. Related Work 
 Managing computer systems on green energy has 
been done at various levels. However, existing designs 
mainly focus on certain specific type of green energy 
sources (i.e., intermittent power or baseload generators) 
and overlook the benefits of cross-source coordination. 
 Managing Intermittent Power Source: Prior 
studies on this issue mainly focus on load adaptation 
schemes which can be broadly categorized into three 
types: load shedding, load deferring, and load migra-
tion. For example, SolarCore [6] is a load shedding 
based design. It temporarily lowers server power de-
mand using per-core power gating when solar power 
drops. [48] and [49] investigate server power adaptation 
under intermittent power budget. Load deferring, also 
known as load shifting, leverages the flexibility of job 
scheduling [9, 18, 50]. It re-schedules load by shifting 
user requests to a future time horizon if renewable pow-
er is currently not available. Load migration based de-
sign focuses on re-allocating application to another dat-
acenter that has reserved capacity [8]. With intelligent 
workload packing and virtual machine placement [51], 
one could further minimize resource wastage and power 
consumption in green datacenters.  
 Managing Baseload Power Generation: Several 
recent proposals have explored baseload power supply 
in datacenters. The most similar studies are [52] and 
[19]. In [52], the authors propose design methodology 
for sustainable datacenters powered by onsite genera-
tion. However, they mainly focus on high-level data-
center infrastructure management policies. In [19], we 
investigate the benefits of load following mechanism in 
distributed generation powered datacenters. However, 
[19] does not consider the power variability issue of 
intermittent green power integration.  
 Managing Backup Power / UPS Systems: There 
have been several studies exploring the use of backup 
power systems for energy-efficient datacenters. For 
example [31, 45, 46, 53] investigate the use of energy 
storage (particularly the UPS system) to manage the 
datacenter peak power. For example, [31] explore the 
TCO of the distributed UPS system in datacenters and 
propose using local distributed UPS to shave the data-
center peak power. Govindan et.al, [53] use UPS as the 
major tuning knob for minimizing power cost in aggres-
sively under-provisioned datacenter infrastructure.  

 Cost-Aware Green Energy Scheduling: The sys-
tem cost-effectiveness also receives many attentions in 
renewable energy powered datacenter. For example, 
[10] proposes algorithms that minimize fossil fuel-
based energy consumptions; [11] discusses load balanc-
ing on distributed datacenters. Recent work in capacity 
planning for datacenters also looks at the cost issue of 
green energy purchases [3].  
 In contrast to prior work, this paper explores hier-
archical, cross-layer power management for datacenters 
powered by hybrid renewable energy systems. We con-
sider an integrated mix of complementary power provi-
sioning methods that include intermittent power supply, 
baseload power generation, and energy storage devices. 

8. Conclusions 
 Although emerging green power systems are often 
centrally installed at the datacenter level, maximizing 
the overall efficiency requires a multi-level, cooperative 
power management strategy. We propose GreenWorks, 
a novel framework that could greatly facilitate multi-
source based green datacenter design. GreenWorks en-
ables datacenters to make informed power management 
decisions based on the available baseload power output, 
renewable power variability, battery capacity, and job 
performance. We show that GreenWorks could achieve 
less than 3% job runtime increase, extend battery life by 
23%, increase UPS backup time by 12%, and still main-
tain desired energy utilization efficiency. 
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Abstract
This paper presents WattValet, an efficient solution to
reduce data center peak power consumption by using
heterogeneous energy storage. We henceforth call an
energy storage device, a battery, with the understand-
ing that the discussion applies to other devices as well
such as pumped hydraulic and thermal systems. Previ-
ous work on energy storage management in data centers
often ignores or underestimates their degree of hetero-
geneity. Even if batteries used in a data center are of the
same model and purchased at the same time, differences
in storing temperature and humidity, as well as discharg-
ing cycles and depth, gradually drive their characteristics
apart. We show that differences in battery characteristics,
such as discharge rates, if not fully accounted for, can
lead to significantly suboptimal power caps. A new al-
gorithm, called WattValet, is described that reduces peak
power consumption by efficiently exploiting heterogene-
ity. Evaluation using Wikipedia traces shows that the
power cap generated by WattValet is within 2% of the
optimal solution, whereas WattValet finishes the compu-
tation orders of magnitude faster than the optimal solu-
tion even in small-scale experiments.

1 Introduction
With increased datacenter power consumption and grow-
ing concerns for sustainability of large-scale computing
systems, reducing datacenter power becomes an increas-
ingly important problem [9, 5, 17, 18, 4, 6]. Much re-
cent work in both industry and academia addressed the
challenge of shaving off power peaks using energy stor-
age devices (e.g., batteries) [7, 10, 16, 14]. Early work
considered smarter charging and discharging strategies
for energy storage systems [14, 16, 7, 2] to achieve im-
proved power capping. However, they took into account
only homogeneous environments, where all batteries are
the same [14], or allowed for a very limited heterogene-
ity [7, 2]. In reality, even in homogeneous systems, bat-
tery characteristics gradually deviate from each other due
to different storing temperatures, charging/discharging
cycles, aging, and other factors. Hence, heterogeneity
has to be considered explicitly.

Our work leverages the observation that load and
power demand in data centers often follow clearly re-
peated patterns [3, 14, 15]. That is to say, by extracting

This work was sponsored in part by the National Science Founda-
tion under grants CNS 13-20209, CNS 13-02563, CNS 10-35736 and
CNS 09-58314.

patterns from historical traces, future power demand can
be predicted. In principle, given a power demand pattern
and battery characteristics as input parameters, the opti-
mal power capping problem can be formulated as a lin-
ear programming problem and solved using an LP solver.
However, if the system contains hundreds of batteries,
and thousands of time slots, LP solutions cannot guar-
antee to generate optimal results in a reasonable amount
of time. For example, Wikipedia’s trace shows a weekly
pattern. If it is cut into 10-minute time slots, there will
be more than 1000 time slots in the power demand pat-
tern. Hence, clever approximations must be developed
that significantly reduce computational overhead without
tangibly degrading solution quality, which motivates this
work.

The paper describes WattValet, an efficient solution
to reduce datacenter peak power consumption using
heterogeneous energy storage. WattValet takes a pre-
dicted power demand pattern and a set of heteroge-
neous batteries as input. It searches for a battery charg-
ing/discharging schedule that minimizes the power con-
sumption peak. The search space is very large as it is
a function of all variables indicating the amount of en-
ergy charged into/discharged from each battery at each
time slot, and the starting time slot in the cyclic power
demand pattern. The contribution of the paper lies in
developing efficient heuristics that take into account not
only battery capacity and efficiency but also maximum
charge and discharge rates, leading to an improved power
cap compared to prior art.Evaluation results show that
the power cap achieved by WattValet is only 2% higher
than the optimal value in the worst case, which signifi-
cantly outperforms state-of-the-art solutions.

The remainder of this paper is organized as follows.
The system model is described in Section 2. Section 3
elaborates the design of WattValet. Our solution is com-
pared to the optimal solution as well as two others from
recent literature in Section 4. Section 5 briefly summa-
rizes related work. We conclude this paper in Section 6.

2 System Model
Datacenter workload often follows a clear periodic pat-
tern. As an example, Figure 1 plots the English
Wikipedia’s workload in 2008 [15], presenting an obvi-
ous weekly pattern. Therefore, future workload can be
predicted with accuracy from historical traces. Let P de-
note the power demand pattern. Hence, P can be repre-
sented by a repeating time series of period, T , composed
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of successive slots, such that the average demand in slot
k is denoted by P [k], where k = 1, 2, . . . , T .

Without an energy storage capability, the power cap
P c needs to be greater than the peak power con-
sumption in the demand time series (i.e., P c ≥
max {P [k]|k = 1, 2, . . . , T}). The presence of batter-
ies can lower the power cap by charging during power
demand vallies and discharging during power demand
spikes.

Assume the datacenter is equipped with a centralized
pool of B batteries [2] that serves the entire datacenter.
We model each battery b with four parameters: max-
imum charging rate rcb , maximum discharging rate rdb ,
energy storage capacity cb, and efficiency ηb. The max-
imum charging (discharging) rate represents the max-
imum amount of energy the battery can charge (dis-
charge) in one time slot. The parameter cb denotes the
maximum amount of energy that battery b can store at
any time. For each unit of energy spent on charging bat-
tery b, only ηb goes into the battery, which represents the
battery efficiency. Please note, even if all batteries are of
the same model, with the passage of time, their charac-
teristics will gradually deviate due to differences in the
environment (e.g., temperature, humidity, etc.) and us-
age (e.g., charging/discharging cycles and depth) [8].

We further assume that the batteries are equipped with
on/off switches to connect or disconnect them for charg-
ing or for discharging purposes [2]. When a battery is
connected it can charge or discharge at a rate no larger
than its maximum charge or discharge rate. When a bat-
tery is disconnected it does not participate in charging or
discharging.

The objective of this paper is to determine how much
each battery should charge or discharge in each time slot
such that the power cap is minimized, while being able
to meet the power demand in every time slot. Let ub[k]
represent the amount of energy that battery b is supplied
(or, if negative, discharged) in time slot k. Hence, the
solution sought in the paper is to compute ub[k] for all b
and k, such that the demand is met and the power cap,
P c, is minimized. This can be modeled as a linear pro-
gramming problem as shown below:

min P c

s.t. ∀k : −rdb ≤ ub[k] ≤ rcb
∀k : xb[k] + ub[k] ≥ 0

∀k :
B∑

b=1

ub[k]− P c + P [k] ≤ 0

xb[0] = 0, ∀k : xb[k] ≤ cb

∀k, P [k] > P c : xb[k] +
ub[k]

ηb
= xb[k + 1]

∀k, P [k] ≤ P c : xb[k] + ub[k] = xb[k + 1]

(1)

where xb[k] is the amount of energy stored in battery b
at time slot k. The first constraint guarantees that charg-
ing and discharging rates are not violated. The second
constraint states that no battery can discharge more en-
ergy than it stores. The power balance equation at a
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Figure 1: Wikipedia Workload Trace in 2008

given time slot is described with the third constraint. The
fourth constraint enforces battery capacity. Batteries are
initially empty (xb[0] = 0). The last two constraints de-
scribe how the amount of energy stored in a battery is
updated when the battery charges or discharges, respec-
tively.1

The above linear programming model contains a large
number of variables and constraints. For example, if
the data center is equipped with 1000 batteries and the
weekly pattern is divided into 10-minute slots, this model
will generate more than 2 million variables and more
than 4 million constraints. LP solutions cannot guarantee
to finish the computation in a reasonable amount of time.
Hence, we seek an approximation with low worst-case
asymptotic complexity.

3 System Design
The original problem of minimizing the power cap can
be transformed into a sequence of feasibility check prob-
lems. Each feasibility check needs to determine whether
the predicted power demand time-series can be met for
a given power cap P c. A binary search can then find
the minimum feasible power cap. Section 3.1 describes
a feasibility check algorithm for a specified power de-
mand sequence. It depends on which slot is considered
to be the beginning of the sequence. Since the demand is
cyclic, of period T , there are T candidate starting slots.
Section 3.2 describes how to efficiently consider all pos-
sible start slots to find the best power cap overall.

3.1 Feasibility Check for a Given Power Demand
Sequence

Let us call a time slot, a charging time slot if its average
power demand is smaller than the power cap P c. Other-
wise, it is a discharging time slot. A set of consecutive
charging (discharging) time slots is defined as a charging
(discharging) phase. Hence, a power cap naturally di-
vides a power demand sequence into alternating charging
and discharging phases. We can refer to the jth charging
phase as set, CPj , and to the ith discharging phase as
set, DPi. As graphed in Figure 2, solid green curves
represent the charging phases and dashed red curves rep-
resent the discharging phases. Figure 2 also suggests that

1Note that, in principle, battery inefficiency affects both charging
and discharging. Without loss of generality, we attribute all loss to
charging, while modeling discharge as lossless. This does not change
the result as long as capacity is reduced by discharge efficiency.

2
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datacenter power demand does not change dramatically
within small time intervals (e.g., 5 minutes). Therefore,
using the average power demand in a time slot, in lieu
of the instantaneous demand curve is a good approxima-
tion.
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Figure 3: Example

Our algorithm alternates charging and discharging.
Two main intuitions guide the design:

• Intuition 1: Minimize lost energy: Lost energy is
energy that is wasted due to battery inefficiency.
To minimize lost energy, charging should exploit
more efficient batteries first. By exploiting them, we
mean (i) charge them first and (ii) discharge them
first, in order to incur minimum loss. Other less ef-
ficient batteries should be used only when the more
efficient ones do not suffice.

• Intuition 2: Minimize locked energy: Locked en-
ergy is energy that is charged but not discharged
within a given cycle. Specifically, the discharge rate
of a battery limits the total amount of energy that it
can discharge in different discharge phases. There
is never a need to charge a battery beyond the max-
imum amount it can discharge, as such energy will
in effect be “locked” and not utilized.

Note that, simple greedy algorithms that exploit the
most efficient batteries first can result in some amount of
locked energy, for example, if the maximum discharge
rate of these batteries was low. In contrast, by putting
a limit on how much each battery is allowed to charge
(based on the amount it can ever discharge), we are able
to outperform state of the greedy solutions. Below, we
describe the algorithm in more detail.

3.1.1 Spatial Energy Allocation According to Intu-
ition 1, we order batteries in decreasing order of effi-
ciency, such that we consider the most efficient battery
first. Let us number them 1, ..., B, such that ηb ≥ ηb+1.
For each battery, we need to determine how much to
charge or discharge it in each time slot.

According to Intuition 2, we need to limit battery
charging to the maximum amount that a battery can dis-
charge. To compute the latter, it is first useful to define
the notion of energy shortfall in slots, k, where demand
P [k] exceeds the power cap, P c. The initial energy short-
fall in a discharging slot k, denoted P0[k], is given by the
difference between the demand and the power cap. After

batteries 1, ..., b ≤ B have been allocated, the remaining
shortfall becomes Pb[k]. Hence:

Pb
[k] = Pb−1

[k] + ub[k] (2)

P0
[k] = P [k] − P

c

Let us now compute the maximum amount of energy
a battery can discharge in a set of time slots, DPi, be-
longing to the ith discharging phase. Let mdb[i] be the
maximum amount of energy that battery b may discharge
in that phase, when the battery starts full. The amount
can be computed as:

md[i] = min

⎧⎨
⎩cb,

�
k∈DPi

min
�
Pb

[k], r
d
b

�
⎫⎬
⎭ (3)

The equation states that the maximum energy discharged
in each time slot by battery b is the minimum of the re-
maining shortfall in that time slot, Pb[k], and the max-
imum discharge rate, rdb . The maximum discharge over
the entire phase is then the minimum of the discharge
sum over all time slots, and battery capacity, cb.

Next, we extend the result to multiple discharge
phases. First, we define mcb[i][j] as the maximum
amount of energy that battery b may carry from charg-
ing phase j (CPj) to discharging phase i (DPi), j ≤ i,
which is bounded by the summation of the amount of
energy it may charge in each time slot and the remain-
ing capacity. For mcb[i][i], the remaining capacity is
the battery capacity cb, as battery b has not been used in
charging phase i before and there is no phases between
charging and discharging phase i:

mcb[i][i] = min

⎧⎨
⎩cb,

�
k∈CPi

min
�
−Pb

[k], r
c
b

�
⎫⎬
⎭ (4)

where we extend the definition of shortfall Pb[k] to the
charging phases to denote the surplus energy. Hence,
meb[i][i] = min (mdb[i],mcb[i][i]) is the amount of en-
ergy battery b may carry from CPi to DPi. It becomes
more complex if the charging phase j and discharging
phase i are not consecutive (i.e., i > j). Because, 1) bat-
tery b has been used to carry energy from CPj� to DPi� ,
for all i� and j� such that j ≤ j� ≤ i� ≤ i, occupying a
portion of its capacity, 2) as battery b has been used in
CPj before when exploiting DPi� , j ≤ i� < i, we need
to deduct ub[k] from its charging rate rcb in each time slot
k ∈ CPj , resulting in:

c
�
b = cb − max

⎧⎨
⎩ max

j≤i�≤i

i��

j�=1

meb[i
�
][j

�
]

⎫⎬
⎭ (5)

mcb[i][j] = min

⎧⎨
⎩c

�
b,

�
k∈CPj

min
�
−Pd

[k], r
c
b − ub[k]

�
⎫⎬
⎭ (6)

where
∑i�

j�=1 meb[i
�][j�] in Equation (5) is the total

energy battery b has discharged in DPi� . Although
this energy has been depleted in DPj� , only cb −∑i�

j�=1 meb[i
�][j�] capacity can be used to carry energy

3
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from charging phases before j� to discharging phases af-
ter j�. To calculate the remaining capacity for CPj and
DPi, all discharging phases between j and i have to be
accounted, leading to the remaining capacity c�b.

The above analysis is the foundation of our algorithm,
called the Discharge-bounded Highest Efficiency First
(DHEF). The pseudo code is shown in Algorithm 1.
The loop from Line 3 to 18 iterates over all discharg-
ing phases, where |DP | denoting the total number of
discharging phases. For each discharging phase, the al-
gorithm iterates over all batteries according to the de-
scending order of efficiency to carry energy from charg-
ing phases to the discharging phase. After calculating
meb[i][j], it calls a function, EALLOC, to allocate the en-
ergy into each time slot in charging phase j. It computes
ub[k] such that shortfall is updated correctly, using Equa-
tion (2). If the ith discharging phase cannot be satisfied,
line 15 exits the execution with return value null. Other-
wise, it proceeds to meet all discharging requirement and
return the battery scheduling plan in line 19.

Algorithm 1 Discharge-Bounded Highest Efficiency
First
Require: Power demand sequence P , battery set B
Ensure: Battery scheduling plan U
1: procedure DHEF(P , B)
2: U ← 2D array of size |B| × |P|
3: for i ← 1 ∼ |DP | do
4: for b ← 1 ∼ |B| do
5: Σ ← 0
6: calculate mdb[i]
7: for j ← i ∼ 1 do
8: calculate mcb[i][j]
9: meb[i][j]← min(mdb[i] - Σ, mcb[i][j])

10: Σ ← Σ + meb[i][j]
11: P,U ←EALLOC(P, CPj ,B[b],meb[i][j],U)
12: end for
13: P,U ←EALLOC(P, DPi,B[b],Σ,U)
14: end for
15: if DPi is not satisfied then
16: return null
17: end if
18: end for
19: return U
20: end procedure

Algorithm Analysis: The first 2 level loops of DHEF
enumerate over all discharging phases and all batteries
which contribute O(T ) and O(B) computational com-
plexity in the worst case. For each discharging phase,
DHEF checks all charging phases prior to it, which in-
duces at most O(T ) computational complexity. Hence,
the worst case computational complexity is O(T 2B).

It remains to show how to compute ub[k] such that
shortfall is updated correctly, using Equation (2), as we
consider each battery. This is described below.

3.1.2 EALLOC: Allocating One Battery The prob-
lem solved in function EALLOC is the following: Given
an initial amount of available energy, xb[k] in battery, b,

and given a discharge phase, compute the energy alloca-
tion ub[k] for battery b for each slot k in the discharge
phase.

To appreciate why some allocations are better than
others, consider Figure 3. Assume that two batteries, b1
and b2, carry 8 and 6 units of energy respectively. Their
discharge rates are 8 and 3. The batteries are discharged
into two time slots, with a shorfall of 8 and 6 units of
energy respectively. In Figure 3 (a), b1 is used exclu-
sively in time slot 1. Hence, it is depleted and cannot
contribute to time slot 2. The discharge rate constraint of
b2 (namely, 3) falls short of supplying the needed power
in slot 2 (namely, 6). Consequently, the schedule fails
even though there is enough battery capacity to cover the
shortfall. In contrast, Figure 3(b) is a solution where the
shortfall is covered in all time slots. Specifically, in the
first time slot, both batteries contribute (5 and 3 units of
energy), leaving 3 units of energy in each battery. This
is enough to cover the remaining shortfall in the second
time slot.

The example demonstrates that one needs to be mind-
ful of not only capacity but also the discharge constraints
of batteries, as such constraints, if exceeded, will prevent
covering the shortfall. Note that, these rate constraints
apply independently in each time slot. Hence, given a
set of undepleted batteries, the maximum shortfall slot
determines the feasibility of meeting discharge rate con-
straints. If the shortfall in that slot is higher than the sum
of the rate constraints, the allocation is infeasible.

The above observation suggests a simple solution to
the problem of battery energy allocation; namely, allo-
cate the energy across time slots such that the maximum
remaining shortfall is minimized, hence maximally re-
ducing the odds that rate constraints of remaining bat-
teries will preclude filling the shortfall. The algorithm
maintains a variable bar (the level to which to reduce the
remaining shortfall). As bar is reduced, slots that reach
the maximum discharge rate are “closed”. Shortfall in
the remaining slots continues to be reduced to the same
level (bar) until all capacity of battery, b, is exhausted.
The resulting allocation value, ub[k], is then returned for
each slot, k, as as well as the updated shortfall, Pb[k].

3.2 Sequence Selection
Section 3.1 introduced algorithms to check feasibility
under a given power demand sequence. Given that the
power demand pattern is cyclic, one has to decide on
a start time for the precending algorithm to be applied.
Naively checking all possible start slots multiplies the
computational complexity by another O(T ) term, re-
sulting in anO(T 3B) overall computational complexity,
which is undesirable. Below, we describe how to de-
scribe a more efficient way of considering all possible
start times.

4



USENIX Association  11th International Conference on Autonomic Computing 277

The curve in Figure 2 shows a power demand pattern
generated using Wikipedia’s workload trace. The dashed
horizontal line represents an attempting power cap P c.
As the power demand pattern is cyclic, fixing a starting
instance is equivalent to selecting a sequence from the
pattern. Let Dl

s = (Ps, Ps+1, ..., Ps+l−1) denote the
power demand sequence starting from time instance s
with length l. As batteries are all empty in the very be-
ginning, feasible sequence does not start with discharg-
ing time slots. We can also exclude time slot k if k − 1
is a charging time slot. Because, if P c is feasible for
Dl

s, the same set of batteries is also able to satisfy Dl
s−1

under P c. Therefore, remaining power sequence candi-
dates start with intersection points of the power cap P c

and the power demand pattern. At last, we remove inter-
section points with positive derivatives on the power pat-
tern curve, as no energy can be discharged from empty
battery to meet the shortfall in discharging slot Ps+1.
Hence, the feasibility checker only needs to try the in-
tersection points whose derivatives are negative on the
power demand curve, which are highlighted with circles
in Figure 2.

Let C denote the power demand sequence candidate
set. Although |C| is much smaller than |P |, it is still
not efficient enough. As shown in Figure 2, a two day
trace generates 6 candidates with the given power cap. A
one week trace may result in several tens of intersections.
Before diving into refinements, we first discuss the com-
posability of feasibility. Suppose there are two power
demand sequences, Dl1

s1 and Dl2
s2 . Define the sequence

composition operation | as:

Dl1
s1
|Dl2

s2
= (Ps1 , ..., Ps1+l1−1, Ps2 , ..., Ps2+l2−1) (7)

Please note that the operation | is not commutative
(i.e., Dl1

s1 |Dl2
s2 �= Dl2

s2 |Dl1
s1 ). Given feasibility check re-

sults of Dl1
s1 and Dl2

s2 under the same power cap P c, can
we tell whether P c is feasible for Dl1

s1 |Dl2
s2? If P c is in-

feasible on Dl1
s1 , neither will it be feasible for Dl1

s1 |Dl2
s2 ,

as the first l1 time slots in Dl1
s1 |Dl2

s2 violate P c anyway.
If P c is feasible for both Dl1

s1 and Dl2
s2 , it will also be

feasible for Dl1
s1 |Dl2

s2 . Because the first l1 time slots in
Dl1

s1 |Dl2
s2 experience exactly the same situation as Dl1

s1 ,
and the last l2 time slots in Dl1

s1 |Dl2
s2 are no worse than

Dl2
s2 as it may or may not enjoy some leftover energy in

batteries from the first l1 time slots. For the last combina-
tion where P c is feasible for Dl1

s1 and infeasible for Dl2
s2 ,

we cannot tell its feasibility without invoking the fea-
sibility checking algorithm (DHEF). The reason is that
there might be some leftover energy after the first l1 time
slots which may help to meet shortfalls in the last l2 time
slots. Table 1 summaries the results, which we call the
feasibility composition law.

The candidate set C naturally divides the cyclic power
demand pattern into an array of smaller pieces. Please
note, the array is still cyclic, as we do not know the op-

Dl1
s1

feasible feasible infeasible infeasible
Dl2

s2
feasible infeasible feasible infeasible

Dl1
s1

|Dl2
s2

feasible unknown infeasible infeasible

Table 1: Feasibility Composition Law

timal starting time slot yet. Let 1 denote feasible, and 0
denote infeasible. With a given power cap P c, the fea-
sibility checker tests each piece separately and generates
a cyclic 0/1 series. According to feasibility composition
law, compose two feasible or two infeasible pieces does
not change the feasibility. Hence, we merge consecutive
0s into a single 0, and merge consecutive 1s into a sin-
gle 1. Now, we have a new series with alternating 0 and
1. Again, based on the feasibility composition law, com-
pose infeasible piece in front of feasible piece results in
a larger infeasible piece, and the only unknown combi-
nation is (1, 0).

As the cost of evaluating a (1, 0) piece grows quadrat-
ically with its length, it is more efficient to avoid long (1,
0) pieces when possible. Therefore, we propose a greedy
algorithm that only reduces the smallest candidate power
demand piece in each iteration instead of reducing all of
them. An example is shown in Figure 4.
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Figure 4: Accelerated Feasibility Check Example

Suppose we have nk candidates in round k. Each
round, the algorithm checks the (1, 0) subsequence with
the smallest number of time slots. If the answer is feasi-
ble, this candidate merges with its right-hand side candi-
date, as all candidate subsequences start with a feasible
piece. Otherwise, it merges with its left-hand side candi-
date, as all candidate subsequences end with a infeasible
piece. Hence, we have |C| > nk > nk+1 > 1. Let
W denote the length of the entire power demand pat-
tern. Then, the length of the smallest candidate piece in
round k is shorter than W

nk
. According to the compu-

tational complexity of the DHEF algorithm, it takes at
most 1

n2
k
O(T 2B) to check the feasibility in kth round.

Therefore, the worst case computational complexity is:

O(T
2
B)

∑
k

1

n2
k

≤ O(T
2
B)

|C|∑
i=1

1

i2
≤ π2O(T 2B)

6
= O(T

2
B).

4 Evaluation
This section evaluates how WattValet compares to the
optimal solution as well as state-of-the-art solutions in
terms of approximating Optimality and handling Hetero-
geneity.

Battery configurations in our experiments are based on
APC 3U UPS [1] devices. The designed UPS capacity is

5
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0.5 KW ·H , and its maximum charging and discharging
rate are 240W and 2100W respectively. The efficiency is
about 85% when serving more than 25% load. Aged bat-
teries suffer degradations in their performance. We apply
random degradations on batteries to generate a synthetic
battery set. Each battery parameter is scaled with a ran-
dom factor γ:

γ = random()× θ + 1− θ, (8)

where random() returns a random fractional number be-
tween 0 and 1 whenever called, and θ is an input parame-
ter that controls the randomness bound. Wikipedia hosts
its service on about 300 servers [13]. Wikipedia’s work-
load is translated into power consumption traces using
the linear power model of our Dell D620 servers [11, 12].

WattValet trades optimality for efficiency. How-
ever, we need to make sure it stays within a rea-
sonable range from the optimal solution. Evaluations
compare WattValet to the optimal solution as well as
two heuristics from recent literatures[2, 10]. The fair
battery scheduling algorithm [2] deducts equal current
from all batteries, whereas the pduCtrl algorithm [10]
charges/discharges batteries one after another. Both so-
lutions examine time slots chronologically. As the LP
solver takes excessively long to converge, optimal solu-
tions are only calculated for small scale evaluations. We
scale down wikipedia’s workload to fit into 30 servers,
and use at most 16 UPS devices. The other three-week
trace in Figure 1 is used to generate the predicted power
demand pattern by taking average in each time slot.
The LP problem is solved with Matlab using linprog
method. As plotted in Figure 5, the power cap achieved
by WattValet is only 2% higher than the optimal solu-
tion in the worst case, while the other two heuristics lead
to 7% and 12% degradations respectively. With the fair
scheduler, the power cap increases when using 8 UPS
devices. It is because the 8th battery suffers much lower
efficiency compared to other batteries. The computation
times of the four solutions are shown in Figure 6. The
LP solver takes 1600 times longer than WattValet when
using 16 batteries. The average power demand is plot-
ted with the dotted line. There is still a gap between
the settled optimal solution and average. The reason is
that batteries’ efficiency is at most 85%. Some energy
losses when carried from charging phases to discharging
phases.

5 Related Work
Recently, shaving off data center power peaks using en-
ergy storage devices was introduced by Govindan et
al. [7]. They gave a complete overview of the datacen-
ter power hierarchy, and implemented a simple heuristic
to reduce datacenter operational expenses. Later, Kon-
torinis et al. [10] adapted this idea to a Google’s data-
center, where each server is equipped with its own ded-
icated battery. Wang et al. [16] further investigated and
evaluated broader types of energy storage methods, and
compared their advantages and limitations. Other liter-
ature [14] explicitly achieved minimum power capping
by modeling the problem as one of linear programming.
However, all of above work considers only homogeneous
batteries, or environments with very limited heterogene-
ity. In real-world systems, even if all batteries are identi-
cal initially, different storage temperature, humidity, and
charging/discharging cycles will cause them to diverge
over time.

This paper shares a similar infrastructure setup to Ak-
sanli et al. [2]. Together with the utility power, a pool of
batteries provide centralized support to the entire com-
puting side. The major difference is that Aksanli [2] aims
at maintaining homogeneity of all batteries which may
not be possible in real world systems, whereas WattValet
takes explicit advantage of battery heterogeneity.

Finally, the paper suggests that energy storage alloca-
tion in data centers is a QoS mechanism of growing im-
portance at an age where sustainability of computation
becomes a dimension of quality. The minimum power
cap is presented as a metric of projected increasing inter-
est. Solutions that lead to smaller power caps are more
sustainable, because smaller power caps are indicative
of smaller power consumption and better alignment be-
tween maximum and average power, achieved via more
judicious energy storage management. The paper ad-
dresses the latter subproblem, where the cap is mini-
mized for a given power demand profile.
6 Conclusion
This paper presents WattValet that reduces datacenter
peak power consumption by using batteries. WattValet
explicitly considers heterogeneities between batteries
when generating the battery charging and discharging
plan. It breaks down the power capping problem into
two smaller parts, namely, generating battery charg-
ing/discharging plans for a given power demand se-
quence, and searching for the power demand sequence
that leads to the minimum power cap. The efficiency of
WattValet allows it to scale to datacenter-size problems,
whereas the power capping result achieved by WattValet
on Wikipedia’s data is within 2% of the optimal solution.
WattValet considerably outperforms state-of-the-art so-
lution, and the advantage increases as the heterogeneity
grows.

6
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