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Message from the  
FAST ’19 Program Co-Chairs

Welcome to the 17th USENIX Conference on File and Storage Technologies, FAST ’19. This year’s conference continues 
the tradition of bringing together researchers and practitioners from both industry and academia for a program of innovative 
and rigorous storage-related research. We are pleased to present a diverse set of papers on topics such as persistent memory 
systems, deduplication, erasure coding and reliability, and traditional file systems. Submissions to the conference came from 
20 countries on 4 continents, from authors representing academia, industry, and the open source community.

FAST ’19 received 145 submissions—a record high number. Of these, we accepted 26 papers, for an acceptance rate of 18%. 
The Program Committee used a two-round online review process and then met in person to select the final program. In the 
first round, each paper received at least three reviews. For the second round, 96 papers received at least two more reviews. 
The Program Committee discussed 58 papers in an all-day meeting on December 3, 2018, at Google in Sunnyvale, CA. 
We used Eddie Kohler’s excellent HotCRP software to manage all stages of the review process, from submission to author 
 notification.

As in the previous years, we included a category of short papers. Short papers provide a vehicle for presenting completed 
research that does not require a full-length paper to describe and evaluate. We received 27 short paper submissions, of which 
2 were accepted. Also in line with previous years, we included a category of deployed-systems papers, which address experi-
ence with the practical design, implementation, analysis or deployment of large-scale, operational systems. We received 12 
deployed-systems submissions, of which we accepted 3.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the authors 
who submitted their work to FAST ’19. We would also like to thank the attendees of FAST ’19 and the future readers of 
these papers. Together with the authors, you form the FAST community and make storage research vibrant and exciting. We 
extend our thanks to the entire USENIX staff, especially Casey Henderson, Jasmine Murcia, Jessica Kim, Michele Nelson, 
and Arnold Gatilao, who have provided outstanding support throughout the planning and organizing of this conference with 
the highest degree of professionalism and friendliness. Most importantly, their behind-the-scenes work makes this conference 
actually happen. We would like to thank the Poster and Work-in-Progress session Chairs, Bill Jannen and Vasily Tarasov. Our 
thanks go also to the members of the FAST Steering Committee who provided invaluable advice and feedback, and to our 
Steering Committee Liaison, Keith Smith, for his guidance and encouragement on many issues, large and small, over the past 
year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing and discussing the sub-
missions, some of whom traveled halfway across the world for the one-day in-person PC meeting. In total, they wrote 637 
thoughtful and meticulous reviews. HotCRP recorded over 447,194 words in reviews and comments (excluding HotCRP 
boilerplate; 496,030 when included). The reviewers’ evaluations, and their thorough and conscientious deliberations at the PC 
meeting, contributed significantly to the quality of our decisions.

We look forward to an interesting and enjoyable conference!

Arif Merchant, Google 
Hakim Weatherspoon, Cornell University 
FAST ’19 Program Co-Chairs



FAST ’19: 17th USENIX Conference on File and Storage Technologies 
February 25–28, 2019 

Boston, MA, USA

Persistent Memory Systems
Reaping the performance of fast NVM storage with uDepot  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1
Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas, IBM Research

Optimizing Systems for Byte-Addressable NVM by Reducing Bit Flipping   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 17
Daniel Bittman, Darrell D. E. Long, Peter Alvaro, and Ethan L. Miller, UC Santa Cruz

Write-Optimized Dynamic Hashing for Persistent Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31
Moohyeon Nam, UNIST (Ulsan National Institute of Science and Technology); Hokeun Cha, Sungkyunkwan University; 
Young-ri Choi and Sam H. Noh, UNIST (Ulsan National Institute of Science and Technology); Beomseok Nam, 
Sungkyunkwan University

Software Wear Management for Persistent Memories  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 45
Vaibhav Gogte, University of Michigan; William Wang and Stephan Diestelhorst, ARM; Aasheesh Kolli, Pennsylvania 
State University and VMware Research; Peter M. Chen, Satish Narayanasamy, and Thomas F. Wenisch, University of 
Michigan

File Systems
Storage Gardening: Using a Virtualization Layer for Efficient Defragmentation in the WAFL File System   .  .  .  .  .  .  .  . 65
Ram Kesavan, Matthew Curtis-Maury, Vinay Devadas, and Kesari Mishra, NetApp

Pay Migration Tax to Homeland: Anchor-based Scalable Reference Counting for Multicores  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
Seokyong Jung, Jongbin Kim, Minsoo Ryu, Sooyong Kang, and Hyungsoo Jung, Hanyang University

Speculative Encryption on GPU Applied to Cryptographic File Systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93
Vandeir Eduardo, Federal University of Paraná and University of Blumenau; Luis C. Erpen de Bona and Wagner M. 
Nunan Zola, Federal University of Paraná

Deduplication
Sketching Volume Capacities in Deduplicated Storage  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 107
Danny Harnik and Moshik Hershcovitch, IBM Research; Yosef Shatsky, IBM Systems; Amir Epstein, Citi Innovation Lab 
TLV; Ronen Kat, IBM Research

Finesse: Fine-Grained Feature Locality based Fast Resemblance Detection for Post-Deduplication Delta  
Compression   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
Yucheng Zhang, Hubei University of Technology; Wen Xia, Harbin Institute of Technology, Shenzhen & Peng Cheng 
Laboratory; Dan Feng, WNLO, School of Computer, Huazhong University of Science and Technology; Hong Jiang, 
University of Texas at Arlington; Yu Hua and Qiang Wang, WNLO, School of Computer, Huazhong University of Science 
and Technology

Sliding Look-Back Window Assisted Data Chunk Rewriting for Improving Deduplication Restore Performance   .  . 129
Zhichao Cao, University of Minnesota; Shiyong Liu, Ocean University of China; Fenggang Wu, University of Minnesota; 
Guohua Wang, South China University of Technology; Bingzhe Li and David H.C. Du, University of Minnesota



(continued on next page)

Storage Potpourri
DistCache: Provable Load Balancing for Large-Scale Storage Systems with Distributed Caching   .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 143
Zaoxing Liu and Zhihao Bai, Johns Hopkins University; Zhenming Liu, College of William and Mary; Xiaozhou Li, Celer 
Network; Changhoon Kim, Barefoot Networks; Vladimir Braverman and Xin Jin, Johns Hopkins University; Ion Stoica, 
UC Berkeley

GearDB: A GC-free Key-Value Store on HM-SMR Drives with Gear Compaction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 159
Ting Yao, Huazhong University of Science and Technology and Temple University; Jiguang Wan, Huazhong University 
of Science and Technology; Ping Huang, Temple University; Yiwen Zhang, Zhiwen Liu, and Changsheng Xie, Huazhong 
University of Science and Technology; Xubin He, Temple University

Speicher: Securing LSM-based Key-Value Stores using Shielded Execution  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 173
Maurice Bailleu, Jörg Thalheim, and Pramod Bhatotia, The University of Edinburgh; Christof Fetzer, TU Dresden; 
Michio Honda, NEC Labs; Kapil Vaswani, Microsoft Research

NVM File and Storage Systems
SLM-DB: Single-Level Key-Value Store with Persistent Memory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191
Olzhas Kaiyrakhmet and Songyi Lee, UNIST; Beomseok Nam, Sungkyunkwan University; Sam H. Noh and Young-ri 
Choi, UNIST

Ziggurat: A Tiered File System for Non-Volatile Main Memories and Disks   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207
Shengan Zheng, Shanghai Jiao Tong University; Morteza Hoseinzadeh and Steven Swanson, University of California,  
San Diego

Orion: A Distributed File System for Non-Volatile Main Memory and RDMA-Capable Networks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 221
Jian Yang, Joseph Izraelevitz, and Steven Swanson, UC San Diego

Big Systems
INSTalytics: Cluster Filesystem Co-design for Big-data Analytics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 235
Muthian Sivathanu, Midhul Vuppalapati, Bhargav Gulavani, Kaushik Rajan, and Jyoti Leeka, Microsoft Research India; 
Jayashree Mohan, Univ. of Texas Austin; Piyus Kedia, IIIT Delhi

GraphOne: A Data Store for Real-time Analytics on Evolving Graphs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 249
Pradeep Kumar and H. Howie Huang, George Washington University

Automatic, Application-Aware I/O Forwarding Resource Allocation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265
Xu Ji, Tsinghua University; National Supercomputing Center in Wuxi; Bin Yang and Tianyu Zhang, National 
Supercomputing Center in Wuxi; Shandong University; Xiaosong Ma, Qatar Computing Research Institute, HBKU; 
Xiupeng Zhu, National Supercomputing Center in Wuxi; Shandong University; Xiyang Wang, National Supercomputing 
Center in Wuxi; Nosayba El-Sayed, Emory University; Jidong Zhai, Tsinghua University; Weiguo Liu, National 
Supercomputing Center in Wuxi; Shandong University; Wei Xue, Tsinghua University; National Supercomputing Center 
in Wuxi

Flash and Emerging Storage Systems
Design Tradeoffs for SSD Reliability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 281
Bryan S. Kim, Seoul National University; Jongmoo Choi, Dankook University; Sang Lyul Min, Seoul National University

Fully Automatic Stream Management for Multi-Streamed SSDs Using Program Contexts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 295
Taejin Kim and Duwon Hong, Seoul National University; Sangwook Shane Hahn, Western Digital; Myoungjun Chun, 
Seoul National University; Sungjin Lee, DGIST; Jooyoung Hwang and Jongyoul Lee, Samsung Electronics; Jihong Kim, 
Seoul National University

Large-Scale Graph Processing on Emerging Storage Devices  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 309
Nima Elyasi, The Pennsylvania State University; Changho Choi, Samsung Semiconductor Inc.; Anand Sivasubramaniam, 
The Pennsylvania State University



Erasure Coding and Reliability
Fast Erasure Coding for Data Storage: A Comprehensive Study of the Acceleration Techniques .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 317
Tianli Zhou and Chao Tian, Texas A&M University

OpenEC: Toward Unified and Configurable Erasure Coding Management in Distributed Storage Systems  .  .  .  .  .  .  . 331
Xiaolu Li, Runhui Li, and Patrick P. C. Lee, The Chinese University of Hong Kong; Yuchong Hu, Huazhong University of 
Science and Technology

Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability  
heterogeneity  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 345
Saurabh Kadekodi, K. V. Rashmi, and Gregory R. Ganger, Carnegie Mellon University

ScaleCheck: A Single-Machine Approach for Discovering Scalability Bugs in Large Distributed Systems  .  .  .  .  .  .  .  .  . 359
Cesar A. Stuardo, University of Chicago; Tanakorn Leesatapornwongsa, Samsung Research America; Riza O. Suminto, 
Huan Ke, and Jeffrey F. Lukman, University of Chicago; Wei-Chiu Chuang, Cloudera; Shan Lu and Haryadi S. Gunawi, 
University of Chicago



Reaping the performance of fast NVM storage with uDepot

Kornilios Kourtis, Nikolas Ioannou, and Ioannis Koltsidas∗

IBM Research, Zurich
{kou, nio, iko}@zurich.ibm.com

Abstract
Many applications require low-latency key-value storage, a
requirement that is typically satisfied using key-value stores
backed by DRAM. Recently, however, storage devices built
on novel NVM technologies offer unprecedented perfor-
mance compared to conventional SSDs. A key-value store
that could deliver the performance of these devices would
offer many opportunities to accelerate applications and re-
duce costs. Nevertheless, existing key-value stores, built for
slower SSDs or HDDs, cannot fully exploit such devices.

In this paper, we present uDepot, a key-value store built
bottom-up to deliver the performance of fast NVM block-
based devices. uDepot is carefully crafted to avoid ineffi-
ciencies, uses a two-level indexing structure that dynami-
cally adjusts its DRAM footprint to match the inserted items,
and employs a novel task-based IO run-time system to max-
imize performance, enabling applications to use fast NVM
devices at their full potential. As an embedded store, uDe-
pot’s performance nearly matches the raw performance of
fast NVM devices both in terms of throughput and latency,
while being scalable across multiple devices and cores. As
a server, uDepot significantly outperforms state-of-the-art
stores that target SSDs under the YCSB benchmark. Finally,
using a Memcache service on top of uDepot we demonstrate
that data services built on NVM storage devices can offer
equivalent performance to their DRAM-based counterparts
at a much lower cost. Indeed, using uDepot we have built
a cloud Memcache service that is currently available as an
experimental offering in the public cloud.

1 Introduction

Advancements in non-volatile memory (NVM) technologies
enable a new class of block-based storage devices with un-
precedented performance. These devices, which we refer to
as Fast NVMe Devices (FNDs), achieve hundreds of thou-
sands of IO operations per second (IOPS) as well as low la-
∗Now at Google.

tency, and constitute a discrete point in the performance/cost
tradeoff spectrum between DRAM and conventional SSDs.
To illustrate the difference, the latency of fetching a 4 KiB
block in conventional NVMe Flash SSD is 80 µs, while in
FNDs the same operation takes 7 µs (Optane drive [88]) or
12 µs (Z-SSD [48,74]). To put this in perspective, a common
round-trip latency of a TCP packet over 10 Gigabit Ethernet
is 25 µs-50 µs, which means that using FNDs in commodity
datacenters results in storage no longer being the bottleneck.

Hence, FNDs act as a counterweight to the prevalent archi-
tectural trend of data stores placing all data in main memory
[26,35,72,73,78]. Specifically, many key-value (KV) stores
place all their data in DRAM [21,25,44,52,57,59,68,73] to
meet application performance requirements. An FND-based
KV store offers an attractive alternative to DRAM-based sys-
tems in terms of cost and capacity scalability.1 We expect
that many applications, for which conventional SSDs are not
performant enough, can now satisfy their performance re-
quirements using KV stores built on FNDs. In fact, since for
many common setups FNDs shift the bottleneck from stor-
age to the network, it is possible for FND-based KV stores
to provide equivalent performance to that of their DRAM-
based counterparts.

Existing KV stores, however, cannot use FNDs to their full
potential. First, KV stores that place all their data in DRAM
require OS paging to transparently use FNDs, which results
in poor performance [33]. Second, KV stores that place their
data in storage devices [8, 24, 31, 50], even those that specif-
ically target conventional SSDs [3, 19, 20, 58, 60, 84, 87, 91],
are designed with different requirements in mind: slower de-
vices, smaller capacity, and/or no need to scale over multiple
devices and cores. As Barroso et al. [7] point out, most exist-
ing systems under-perform in the face of IO operations that
take a few microseconds.

Motivated by the above, we present uDepot, a KV store
designed from the ground up to deliver the performance of
FNDs. The core of uDepot is an embedded store that can

1At the time of writing: DRAM costs about $10/GiB, an Optane NVMe
drive $1.25/GiB, and a commodity Flash NVMe drive $0.4/GiB.
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be used by applications as a library. Using this embedded
store we build two network services: a distributed KV store
using a custom network protocol, and a distributed cache
that implements the Memcache [64] protocol, which can be
used as a drop-in replacement for memcached [65], a widely
used [5, 70] DRAM-based cache.

By design, uDepot is lean: it provides streamlined func-
tions for efficient data access, optimizing for performance
instead of richer functionality (e.g., range queries). uDe-
pot is efficient in that it: i) achieves low latency, ii) provides
high throughput per core, iii) scales its performance with the
number of drives and cores, iv) enforces low bounds to end–
to-end IO amplification, in terms of bytes and number of op-
erations, and, finally, v) achieves a high utilization of storage
capacity. This requires multiple optimizations throughout
the system, but two aspects are especially important. First,
efficiently accessing FNDs. Most existing KV stores use
synchronous IO that severely degrades performance because
it relies on kernel-scheduled threads to handle concurrency.
Instead, uDepot employs asynchronous IO and, if possible,
directly accesses the storage device from user-space. To this
end, uDepot is built on TRT, a task runtime for IO at the mi-
crosecond scale that uses user-space collaborative schedul-
ing. Second, uDepot uses a high-performance DRAM in-
dex structure that is able to match the performance of FNDs
while keeping its memory footprint small. (A small memory
footprint leads to efficient capacity utilization because less
DRAM is needed to index the same storage capacity.) uDe-
pot’s index structure is resizable, adapting its memory con-
sumption to the number of items stored. Resizing does not
require any IO operations, and is performed incrementally so
that it causes minimal disruption.

In summary, our contributions are: 1) uDepot, a KV store
that delivers the performance of FNDs, offering low latency,
high throughput, scalability, and efficient use of CPUs, mem-
ory, and storage. 2) TRT, a task run-time system suitable for
IO at the microsecond scale, which acts as a substrate for
uDepot. TRT provides a programmer-friendly framework for
writing applications that fully exploit fast storage. 3) uDe-
pot’s index data structure that enables it to meet its perfor-
mance goals while being space efficient, dynamically resiz-
ing to match the number of KV pairs stored. 4) An exper-
imental evaluation demonstrating that uDepot matches the
performance of FNDs, which, to our knowledge, no existing
system can. Indeed, uDepot vastly outperforms SSD-opti-
mized stores by up to ×14.7 but also matches the perfor-
mance of a DRAM-backed memcached server allowing it to
be used as a Memcache replacement to dramatically reduce
cost. A cloud Memcache service built using uDepot is avail-
able as an experimental offering in the public cloud [39].

The rest of the paper is organized as follows. We motivate
our work in §2, discuss TRT in §3, and present and evaluate
uDepot in §4 and §5, respectively. In §6 we discuss related
work and conclude in §7.
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2 Background and Motivation

In 2010, arguing for an in-memory KV store, Ousterhout et
al. predicted that “Within 5–10 years, assuming continued
improvements in DRAM technology, it will be possible to
build RAM-Clouds with capacities of 1–10 Petabytes at a
cost less than $5/GB” [72]. Since then, researchers have
been conducting an “arms race” to maximize performance
for in-memory KV stores [10, 21, 44, 52, 57, 68, 73]. In con-
trast to the above prediction, however, DRAM scaling is ap-
proaching physical limits [69] and DRAM is becoming more
expensive [22, 40]. Hence, as capacity demands increase,
memory KV stores rely on scaling out to achieve the re-
quired storage capacity by adding more servers. Naturally,
this is inefficient and comes at a high cost as the rest of the
node (CPUs, storage) remains underutilized and resources
required to support the additional nodes need to increase pro-
portionally as well (space, power supplies, cooling). In ad-
dition, while the performance of memory KV stores is im-
pressive, many depend on high-performance or specialized
networking (e.g., RDMA, FPGAs) and cannot be deployed
in commodity datacenter infrastructures such as the ones of-
fered by many public cloud providers.

Fast NVMe devices (FNDs) that were released recently
offer a cost-effective alternative to DRAM, with signifi-
cantly better performance than conventional SSDs (Fig. 1a).
Specifically, the Optane drive, based on 3D XPoint (3DXP),2

delivers a throughput close to 0.6 Mops/s, and achieves read
access latencies of 7 µs, an order of magnitude lower than
conventional SSDs, which have latencies of 80 µs or higher
[34]. Furthermore, Samsung announced availability of Z-
SSD, a new device [89] that utilizes Z-NAND [74] and
has similar performance characteristics to Optane, achiev-
ing read access latencies of 12 µs. Hence, a KV store ef-
fectively using FNDs offers an attractive alternative to its

2 3DXP is also used to build devices accessible as memory that offer
even lower latencies. Our work focuses on IO devices because they are
widely available and the most cost effective option.
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DRAM counterparts. This is especially true in environments
with commodity networking (e.g., 10 Gbit/s Ethernet) where
FNDs shift the bottleneck from the storage to the network,
and the full performance of DRAM KV stores cannot be ob-
tained over the network.

Existing KV stores are built with slower devices in mind
and fail to deliver the performance of FNDs. As a motivating
example, we consider a multi-core and multi-device system
aimed at minimizing cost with 20 cores and 24 NVMe drives,
and compare the performance of the devices against the per-
formance of two ubiquitous storage engines: RocksDB and
WiredTiger. These engines epitomize modern KV store de-
signs, using LSM- and B-trees. We measure device perfor-
mance with microbenchmarks using the Linux asynchronous
IO facility (aio) and SPDK, a library for directly accessing
devices from user-space. For the two KV stores, we load
50M items of 4 KiB and measure the throughput of ran-
dom GET operations using their accompanying microbench-
marks while setting appropriate cache sizes so that requests
are directed to the devices. Even after tuning RocksDB and
WiredTiger to the best of our ability, we were not able to ex-
ceed 1 Mops/s and 120 Kops/s, respectively. On the other
hand, the storage devices themselves can provide 3.89 Mop-
s/s using asynchronous IO and 6.87 Mops/s using user-space
IO (SPDK). (More details about this experiment and how
uDepot performs in the same setup can be found in §5.)

Overall, these stores underutilize the devices and even
though experts can probably tune them to improve their
performance, there are fundamental issues with their de-
sign. First, these systems, built for slower devices, use syn-
chronous IO which is highly problematic for IO at the mi-
crosecond scale [7]. Second, they use LSM- or B-trees which
are known to cause significant IO amplification. In the pre-
vious experiment, for example, RocksDB IO amplification
was ×3 and WiredTiger’s ×3.5. Third, they cache data in
DRAM which requires additional synchronization but also
limits scalability due to memory requirements, and finally
they offer many additional features (e.g., transactions) which
may have a toll on performance.

uDepot follows a different path: it is built bottom-up to de-
liver the performance of FNDs (e.g., by eliminating IO am-
plification), offers only the basic operations of a KV store,
does not cache data, and uses asynchronous IO via TRT,
which we describe next.

3 TRT: a task run-time system for fast IO

Broadly speaking, there are three ways to access storage:
synchronous IO, asynchronous IO, and user-space IO. The
majority of existing applications access storage via syn-
chronous systems calls (e.g., pread, pwrite). As it is al-
ready well established for networking [45], synchronous IO
does not scale because handling concurrent requests requires
one thread for each, leading to context switches that degrade

performance when the number of in-flight requests is higher
than the number of cores. Hence, as with network program-
ming, utilizing the performance of fast IO devices requires
utilizing asynchronous IO [7]. For example, Linux AIO [43],
allows multiple IO requests (and their completions) to be is-
sued (and received) in batches from a single thread. Per-
forming asynchronous IO in itself, however, is not enough to
fully reap the performance of FNDs. A set of new principles
have emerged for building applications that efficiently ac-
cess fast IO devices. These principles include removing the
kernel from the datapath, favouring polling over interrupts,
and minimizing, if not precluding, cross-core communica-
tion [9, 75]. While the above techniques initially targeted
mostly fast networks, they also apply to storage [47, 94]. In
contrast to Linux AIO that is a kernel facility, user-space
IO frameworks such as SPDK [85], allow maximizing per-
formance by avoiding context switches, data copying, and
scheduling overheads. On the other hand, it is not always
possible to use them because they require direct (and in many
cases unsafe) access to the device and many environments
(e.g., cloud VMs) do not (yet) support them.

Hence, an efficient KV store (or a similar application)
needs to access both the network and the storage asyn-
chronously, potentially using user-space IO if available
to maximize performance. Existing frameworks, such as
libevent [55], are ill-suited for this use-case because they
assume a single endpoint for the application to check for
events (e.g., the epoll wait [46] system call). When com-
bining both access to the storage and network, multiple event
(and event completion) endpoints that need to be checked
might exist. For example, it might be that epoll wait

is used for network sockets, and io getevents [42] or
SPDK’s completion processing call is used for storage. Fur-
thermore, many of these frameworks are based on callbacks
which can be troublesome to use due to the so-called “stack
ripping” problem [1, 49].

To enable efficient, yet programmer-friendly, access to
FNDs, we developed TRT, a Task-based Run-Time system,
where tasks are collaboratively scheduled (i.e., no preemp-
tion) and each has its own stack. TRT spawns a number of
threads (typically one per core) and executes a user-space
scheduler on each. The scheduler executes in its own stack.
Switching between the scheduler and tasks is lightweight,
consisting of saving and restoring a number of registers
without involving the kernel. In collaborative scheduling,
tasks voluntarily switch to the scheduler via executing proper
calls. An example of such a call to the scheduler is yield
that defers execution to the next task. There are also calls
to spawn tasks, and synchronization calls: waiting and no-
tifying. The synchronization interface is based on Futures
[29, 30]. Because TRT tries to avoid cross-core communi-
cation as much as possible, it provides two variants for the
synchronization primitives: intra- and inter-core. Intra-core
primitives are more efficient because they do not require syn-
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chronization to protect against concurrent access as long as
critical sections do not include commands that switch to the
scheduler.

Based on the above primitives, TRT provides an infras-
tructure for asynchronous IO. In a typical scenario, each net-
work connection would be served by a different TRT task. To
enable different IO backends and facilities, each IO backend
implements a poller task that is responsible for polling for
events and notifying tasks to handle these events. To avoid
cross-core communication, each core runs its own poller in-
stance. As a result, tasks cannot move across core when they
have pending IO operations. Poller tasks are scheduled by
the scheduler as any other task.

TRT currently supports four backends: Linux AIO, SPDK
(single device and RAID-0 multi-device configurations), and
Epoll, with backends for RDMA and DPDK in development.
Each backend provides a low-level interface that allows tasks
to issue requests and wait for results, and, built on top of that,
a high-level interface for writing code resembling its syn-
chronous counterpart. For example, a trt::spdk::read()
call will issue a read command to SPDK device queues, and
call the TRT scheduler to suspend task execution until noti-
fied by the poller that processes SPDK completions.

To avoid synchronization, pollers of all backends running
on different cores use separate endpoints: Linux AIO pollers
use different IO contexts, SPDK pollers use different de-
vice queues, and Epoll pollers use a different control file-
descriptor.

4 uDepot

uDepot supports GET, PUT, and DELETE operations (§4.5) on
variable-sized keys and values. The maximum key and value
sizes are 64 KiB and 4 GiB, respectively, with no minimum
size for either. uDepot directly operates on the device and
does its own (log-structured) space management (§4.1), in-
stead of depending on a filesystem. To minimize IO ampli-
fication, uDepot uses a two-level hash table in DRAM as an
index structure (§4.2) which allows implementing KV oper-
ations with a single IO operation (if no hash collision exists),
but lacks support for efficient range queries. The index struc-
ture can utilize PBs of storage while still remaining memory
efficient by adapting its size to the number of KV entries
stored at run-time (resizing). Resizing (§4.3) causes minimal
disruption because it is incremental and does not incur IO.
uDepot does not cache data and is persistent (§4.4): when a
PUT (or DELETE) operation returns, the data are stored in the
device (not in OS cache) and will be recovered in case of a
crash. uDepot supports multiple IO backends (§4.6), allow-
ing users to maximize performance depending on their setup.
uDepot can currently be used in three ways: as an embedded
store linked to the application, as a distributed store over the
network (§4.7), or as a cache that implements the Memcache
protocol [64] (§4.8).

index (DRAM)

FND space

directory

table

segment

K len V len K V csum
KV record

index seg. KV seg.

Figure 2: uDepot maintains its index structure (directory and tables)
in DRAM. The FND space is split into segments of two types: index
segments for flushing index tables, and KV segments for storing
KV records.

4.1 Storage device space management
uDepot manages device space using a log-structured ap-
proach [67, 79], i.e., space is allocated sequentially and
garbage collection (GC) deals with fragmentation. We use
this approach for three reasons. First, it achieves good per-
formance on idiosyncratic storage like NAND Flash. Sec-
ond, it is more efficient than traditional allocation methods
even for non-idiosyncratic storage like DRAM [80]. Third,
an important use case for uDepot is caching, and there are a
number of optimization opportunities when co-designing GC
and caches [81, 84]. Allocation is implemented via a user-
space port of the log-structured allocator of SALSA [41].
Device space is split into segments (default size: 1 GiB),
which are in turn split into grains (typically sized equal to the
blocks of the IO device). There are two types of segments:
KV segments for storing KV records, and index segments
for flushing the index structure to speed up startup (§4.4).
uDepot calls SALSA to (sequentially) allocate and release
grains. SALSA performs GC and upcalls uDepot to relocate
specific grains to free segments [41]. SALSA’s GC [76] is
a generalized variant of the greedy [12] and circular buffer
(CB) [79] algorithms, which augments a greedy policy with
the aging factor of the CB.

4.2 Index data structure
uDepot’s index is an in-memory two-level mapping directory
for mapping keys to record locations in storage (Fig. 2). The
directory is implemented as an atomic pointer to a read-only
array of pointers to hash tables.

Hash table Each hash table implements a modified hop-
scotch [37] algorithm, where an entry is stored within a range
of consecutive locations, which we call neighborhood.3 Ef-
fectively, hopscotch works similarly to linear probe, but
bounds probe distance within the neighborhood. If an en-
try hashes to index i in the hash table array, and H is the

3The original paper [37] also uses the term “virtual” bucket.
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Figure 3: How key fingerprints are used to determine the neighbor-
hood for a key. d is a directory with 4 tables, where only two are
shown (ht00 and ht10).

neighborhood size (default: 32), then the entry can be stored
in any of the H valid entries starting from i. In the subse-
quent paragraphs, we refer to i as neighborhood index. We
choose hopscotch because of its high occupancy, cache effi-
cient accesses, bounded lookup performance – even in high
occupancy, and simple concurrency control [21].

We make two modifications to the original algorithm.
First, we use a power of two number of entries, indexing
the hash table similarly to set-associative caches [38]: we
calculate the neighborhood index using the least-significant
bits (LSB) of a fingerprint computed from the key. This al-
lows efficiently reconstructing the original fingerprint during
resize without needing to fully store it or perform IO to fetch
the key and recompute it.

Second, we do not maintain a bitmap per neighborhood,
nor a linked-list of entries per neighborhood, that the original
algorithm suggests [37]. The latter would increase the mem-
ory requirements by 50% for the default configuration (8B
entries, and neighborhood size of 32, 4B per entry). A linked
list would at least double the memory requirement (assum-
ing 8B pointers and singly or doubly linked list); let alone
increase in complexity. Instead of using a bitmap or a list,
we perform a linear probe directly on the entries both for
lookup and insert.

Synchronization We use an array of locks for concurrency
control. These locks protect different regions (lock regions)
of the hash table, with a region being strictly larger than the
neighborhood size (8192 entries by default). A lock is ac-
quired based on the neighborhood’s region; if a neighbor-
hood spans two regions, a second lock is acquired in order.
(The last neighborhoods do not wrap-around to the begin-
ning of the table so lock order is maintained.) Moreover, to
avoid inserts spanning more than two lock regions, we do not
displace entries further than two regions apart. Hence, oper-
ations take two locks at maximum, and, assuming good key
distribution, there is negligible lock contention.

Hash table entry Each hash table entry consists of 8 bytes:

s t r u c t HashEnt ry {
u i n t 6 4 t n e i g h o f f : 5 ; / / ne ighborhood o f f s e t
u i n t 6 4 t k e y f p t a g : 8 ; / / f i n g e r p r i n t MSBs
u i n t 6 4 t k v s i z e : 1 1 ; / / KV s i z e ( g r a i n s )
u i n t 6 4 t pba : 4 0 ; / / s t o r a g e addr . ( g r a i n s )

} ;

The pba field contains the grain offset on storage where
the KV pair resides. To allow utilization of large-capacity de-
vices we use 40 bits for this field, thus able to index petabytes
of storage (e.g., 4 PiB for 4 KiB grains). The pba value of all
1s indicates an invalid (free) entry.

We use 11 bits to store the size of the KV pair in grains
(kv size). This allows issuing a single IO read for GETs to
KV pairs of up-to 8 MiB when using 4 KiB grains. KV pairs
larger than that require a second operation. A valid entry
with a KV size of 0 indicates a deleted entry.

The remaining 13 bits are used as follows. The in-memory
index operates on a fingerprint of 35 bits, which are the LSBs
of a 64 bit cityhash [14] hash of the key (Fig. 3). We divide
the fingerprint into a index (27 bits) and a tag (8 bits). The
index is used to index the hash table, allowing for a maxi-
mum of 227 entries per table (the default). Reconstructing
the fingerprint from a table location requires: i) the off-
set of the entry within the neighborhood, and ii) the fin-
gerprint tag. We store both on the entry: 8 bits for the tag
(key fp tag), and 5 bits to allow for 32 entries in a neigh-
borhood (neigh off). Hence, if an entry has location λ in
the table, then its neighborhood index is λ−neigh off, and
its fingerprint is key fp tag : (λ−neigh off).

Capacity utilization Effectively utilizing storage capacity
requires being able to address it (pba field), but also hav-
ing enough table entries. Using the LSBs of the tag (8 bits
in total) to index the directory, uDepot’s index allows for 28

tables, each with 227 entries for a total of 235 entries. At
the cost of increased collisions, we can further increase the
directory by also using up to 5 LSBs from the fingerprint
to index it, allowing for 213 tables. We can use up to the
5 neighborhood bits this way because the existing hopscotch
collision mechanisms will end up filling positions in the table
where no neighborhood starts. If we consider KV pairs with
an average size of 1 KiB, this allows utilizing up to 1 PiB
(235+5 ·210) of storage. Based on the expected workload and
available capacity, users can maximize utilization by config-
uring the table size parameters accordingly.

Operations For lookups, a key fingerprint is generated.
We use the fingerprint tag LSBs to index the directory and
find the table for this key (if the fingerprint tag is not enough
we also use the fingerprint LSBs as described above). Next,
we index the table with the fingerprint index to find the
neighborhood (also see: Fig. 3). A linear probe is then per-
formed in the neighborhood, and the entries for which the
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Figure 4: Incremental resizing example, transitioning from a direc-
tory with two hash tables (d) to a directory with four (d′). Dur-
ing resizing, insertions copy data from the lock region of ht0 that
contains the neighborhood for the inserted entry, to the same lock
regions across two hash tables (ht ′00,ht ′10).

fingerprint tag (key fp tag) matches, if any, are returned.
For inserts, the hash table and neighborhood are located as

described for the lookup. Then a linear probe is performed
on the neighborhood and if no existing entry matches the
fingerprint tag (key fp tag), then insert returns the first free
entry, if one exists. The user may then fill the entry. If no free
entry exists, then the hash table performs a series of displace
attempts until a free entry can be found within the neighbor-
hood. If this fails, an error is returned, at which point the
caller usually triggers a resize operation. If matching entries
exist, then insert returns them. The caller decides whether
to update an entry in-place or continue the search for a free
entry where they left off.

4.3 Resize operation

The optimal size of the index data structure depends on the
number of KV records. Setting the size of the index data
structure too low limits the number of records that can be
handled. Setting the size too high could waste a significant
amount of memory. For example, assuming an average KV
record size of 1 KiB, a dataset of 1 PiB would require around
8 TB of memory.

uDepot avoids this issue by dynamically adapting the in-
dex data structure to the workload. The resize operation is
fast, because it does not require any IO to the device, and
causes minimal disruption to normal operations because it is
executed incrementally.

The directory grows in powers of two, so that at any point
the index holds n∗2m entries, where m is the number of grow
operations, and n is the number of entries in each hash table.
We only need the fingerprint to determine the new locations,
so no IO operations are required to move hash entries to their
new locations. A naive approach would be to move all en-
tries at once, however, it would result in significant delays

to user requests. Instead, we use an incremental approach
(Fig. 4). During the resize phase, both the new and the old
structures are maintained. We migrate entries from the old
to the new structure at the granularity of the lock regions.
A “migration” bit per lock indicates whether the region has
already migrated. An atomic “resize” counter keeps track
of whether the total resize operation has concluded, and is
initialized to the total number of locks.

Migration is triggered by an insertion operation that fails
to find a free entry. The first such failure triggers a resize op-
eration, and sets up a new shadow directory. Subsequent in-
sertion operations migrate all the entries under the locks they
hold (one or two) to the new structure, setting the “migra-
tion” bit for each lock, and decrementing the “resize” counter
(by one or two). Hash tables are pre-allocated during the re-
size operation in a separate thread to avoid delays. When all
entries are migrated from the old to the new structure (“re-
size” count is zero), the memory of the old structure is re-
leased. During the resize operation, lookups need to check
either the new or the old structure, depending on the lookup
region’s “migration” status.

4.4 Metadata and persistence

uDepot maintains metadata at three different levels: per de-
vice, per segment, and per KV record. At the device level the
uDepot configuration is stored together with a unique seed
and a checksum. At each segment’s header, its configura-
tion is stored (owning allocator, segment geometry, etc.) to-
gether with a timestamp and checksum that matches the de-
vice metadata. At the KV record (Fig. 2), uDepot prepends
to each KV pair 6B of metadata containing the key size (2B)
in bytes, and value size (4B) in bytes, and appends (to avoid
the torn page problem) a 2B checksum matching the seg-
ment metadata (not computed over the data). The device and
segment metadata require 128B and 64B, respectively, are
stored in grain aligned locations and their overhead is neg-
ligible. The main overhead is due to the per KV metadata
which depends on the average key-value size; for a 1 KiB
average size the overhead amounts to 0.8%.

To speed up startup, in-memory index tables are flushed
to persistent storage, but they are not guaranteed to be up-
to-date: the persistent source of truth is the log. Flushing
to storage occurs in normal shutdown, but also periodically
to speed recovery. Upon initialization, uDepot iterates in-
dex segments, restores the index tables, and reconstructs the
directory. If uDepot was cleanly shut down (we check this
using checksums and unique session identifiers), the index is
up to date. Otherwise, uDepot reconstructs the index from
KV records found in KV segments. KV records for the same
key (new values or tombstones) are disambiguated using seg-
ment version information. Because we are not reading data
(only keys and metadata) during recovery, starting up after a
crash typically takes a few seconds.
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4.5 KV operations

For GET, a 64 bit hash of the key is computed and locking of
the associated hash table region is performed. A lookup (see
§4.2) is performed, returning zero or more matching hash en-
tries. After the lookup, the table’s region is unlocked. If no
matching entry is found, the key does not exist. Otherwise,
the KV record is fetched from storage for each matching en-
try; either a full key match is found and the value is returned,
or the key does exist.

For PUT, we first write a KV record in the log out-of-place.
Subsequently, we perform an operation similar to GET (key
hash, lock, etc.) to determine whether the key already exists,
using the insert (see §4.2) hash table function. If not, we in-
sert a new entry to the hopscotch table if a free entry exists
– if no free entry exists, then we trigger a resize operation.
If a key already exists, we invalidate the grains of the previ-
ous entry, and update the table entry in-place with the new
location (pba) and size of the KV record. Note that, also like
GET, read IOs to matching hash table entries are performed
without holding the table region lock. Unlike GET, though,
PUT re-acquires the lock if the record is found, and repeats
the lookup to detect concurrent mutation(s) on the same key:
if such a concurrent mutation is detected, then the operation
that updated the hash table entry first, wins. If the PUT fails,
then it invalidates the grains it wrote before the lookup, and
returns an appropriate error. PUT updates existing entries by
default, but provides an optional argument where the user
can choose instead to perform a PUT (i) only if the key ex-
ists, or (ii) only if the key does not exist.

DELETE is almost identical to PUT, other than it writes a
tombstone entry instead of the KV record. Tombstone entries
are used to identify deleted entries on a restore from the log,
and are recycled during GC.

4.6 IO backends

uDepot bypasses the page cache and accesses the storage di-
rectly (O DIRECT) by default. This prevents uncontrolled
memory consumption, but also avoids scalability problems
caused by concurrently accessing the page cache from mul-
tiple cores [96]. uDepot supports accessing storage both via
synchronous IO and via asynchronous IO. Synchronous IO
is implemented by the uDepot Linux backend (called so be-
cause scheduling is left to Linux). Despite its poor perfor-
mance, this backend allows uDepot to be used by existing
applications without modifications. For example, we have
implemented a uDepot JNI interface that uses this backend.
Its implementation is simple, since most operations directly
translate to system calls. For asynchronous and user-space
IO, uDepot uses TRT, and can use either SPDK or the kernel
Linux AIO facility.

4.7 uDepot server
Embedded uDepot provides two interfaces to users: one
where operations take arbitrary (contiguous) user buffers,
and one where operations take a data structure that holds a
linked list of buffers allocated from uDepot. The former in-
terface, which internally is implemented using the latter, is
simpler but is inherently inefficient. One of the problems is
that for many IO backends it requires a data copy between IO
buffers and the user-provided buffers. For instance, perform-
ing direct IO requires aligned buffers, while SPDK requires
buffers allocated via its run-time system. Our server uses the
second interface so that it can perform IO directly from (to)
the receive (send) buffers. The server is implemented using
TRT and uses the epoll backend for networking. First, a task
for accepting new network connections is spawned. This task
registers with the poller, and is notified when a new connec-
tion is requested. When this happens, the task will check if
it should accept the new connection and spawn a new task
on a (randomly chosen) TRT thread. The task will register
with the local poller to be notified when there are incoming
data for its connection. The connection task handles incom-
ing requests by issuing IO operations to the storage backend
(either Linux AIO or SPDK). After issuing an IO request, the
task defers its execution and the scheduler runs another task.
The storage poller is responsible for waking up the deferred
task when the IO completion is available. The task will then
send the proper reply and wait for a new request.

4.8 Memcache server
uDepot also implements the Memcache protocol [64],
widely used to accelerate object retrieval from slower data
stores (e.g., databases). The standard implementation of
Memcache is in DRAM [65], but implementations for SSDs
also exist [27, 61].

uDepot Memcache is implemented similarly to the uDe-
pot server (§4.7): it avoids data copies, uses the epoll back-
end for networking and either the AIO or the SPDK back-
end for access to storage. Memcache specific KV metadata
(e.g., expiration time, flags, etc.) are appended at the end of
the value. Expiration is implemented in a lazy fashion: it is
checked when a lookup is performed (either for a Memcache
GET or a STORE command).

uDepot Memcache exploits synergies in the cache evic-
tion and the space management GC design space: a merged
cache eviction and GC process is implemented that reduces
the GC cleanup overhead to zero in terms of IO amplifi-
cation. Specifically, a GC LRU-policy is employed at the
segment level (§4.1): on a cache hit the segment contain-
ing the KV is updated as the most recently accessed; when
running low on free segments the least recently used one is
chosen for cleanup, its valid KV entries (both expired and
unexpired) are invalidated (i.e., evicted) in the uDepot di-
rectory, and the segment is now free to be re-filled, with-
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out performing any relocation IO. This scheme allows us
to maintain a steady performance even in the presence of
sustained random updates, and also to reduce the overprovi-
sioning at the space management level (SALSA) to a bare
minimum (enough spare segments to accommodate the sup-
ported write-streams) thus maximizing capacity utilization at
the space management level. A drawback of this scheme is
potentially reduced cache hit ratio [81,93]; we think this is a
good tradeoff to make since the cache hit ratio is amortized
by having a larger caching capacity due to the reduced over-
provisioning. The uDepot memcache server is the basis of
an experimental cloud memcache service currently available
in the public cloud [39].

4.9 Implementation notes

uDepot is implemented in C++11. It is worth noting that
uDepot’s performance requires many optimizations: we
eliminate heap allocations from the data path using core-
local slab allocators, we use huge pages, we favor static
over dynamic polymorphism, we avoid copies using scatter-
gather IO and placing data from the network at the proper
location of IO buffers, we use batching, etc.

5 Evaluation

We perform our experiments on a machine with two 10-core
Xeon CPUs (configured to operate at their maximum fre-
quency: 2.2GHz), 125 GiB RAM, and running a 4.14 Linux
kernel (including support for KPTI [16] – a mitigation for
CPU security problems that increases context switch over-
head). The machine has 26 NVMe drives: 2 Intel Optanes
(P4800X 375GB HHHL PCIe), and 24 Intel Flash SSDs
(P3600 400GB 2.5in PCIe).

5.1 Index structure

We start by evaluating the performance of our index struc-
ture both in the absence and presence of resize operations.
We use 512 MiB (226 entries) hash tables with 8192 locks
per table. Our experiment consists of inserting a number
of random keys, and then performing random lookups on
those keys. We consider two cases: i) inserting 50M (5 ·107)
items where no resize happens, and ii) inserting 1B (109)
items where four grow operations happen. We compare
against libcuckoo [53, 54], a-state-of-the-art hash table im-
plementation by running its accompanying benchmarking
tool (universal benchmark), configuring an initial capac-
ity of 226/230 for our 50M/1B runs. Results are shown in
Fig. 5. For 50M items, our implementation achieves 87.7
million lookups and 64 million insertions per second, ×5.8
and ×6.9 better than libcuckoo, respectively. For 1B items,
the insertion rate drops to 23.3 Mops/sec due to the resizing

1 2 4 6 8 10 12 14 16 18 20
Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

uDepot lookups
uDepot inserts
libcuckoo lookups
libcuckoo inserts

(a) throughput: 50M items (no grow)

1 2 4 6 8 10 12 14 16 18 20
Threads

0

20

40

60

80

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

uDepot lookups
uDepot inserts
libcuckoo lookups
libcuckoo inserts

(b) throughput: 1B items (4 grows)

percentile lookup/50M lookup/1B insert/50M insert/1B
50% 0.2 µs 0.3 µs 0.2 µs 0.4 µs
99% 1.1 µs 1.2 µs 0.6 µs 1.0 µs
99.9% 1.9 µs 2.0 µs 1.6 µs 9.2 µs
99.99% 11.0 µs 8.9 µs 7.5 µs 1168.0 µs

(c) Operation latencies

Figure 5: Mapping structure performance results.

operations. To better understand the cost of resizing, we per-
form another run where we sample latencies. Fig. 5c shows
the resulting median and tail latencies. The latency of insert
operations needing to copy items is seen in the 99.99% per-
centile, where latency is 1.17 ms. Note that this is a worse
case scenario, where only insertions and no lookups are per-
formed. It is possible to reduce the latency of these slow
insertions by increasing the number of locks, at the cost of
additional memory.

5.2 Embedded uDepot

Next, we examine the performance of uDepot as an embed-
ded store. Our goal is to evaluate uDepot’s ability to utilize
FNDs, and compare the performance of the three different IO
backends: syncronous IO using threads (linux-directIO),
TRT using Linux asynchronous IO (trt-aio), and TRT us-
ing SPDK (trt-spdk). We are interested in two properties:
efficiency and scalability. For the first, we restrain the appli-
cation to use 1 core and 1 drive (§5.2.1). For the second, we
use 24 drives and 20 cores (§5.2.2).

We use a custom microbenchmark to generate load for
uDepot. We annotate the microbenchmark to sample the ex-
ecution time for the operations performed, which we use to
compute the median latency. In the following experiments,
we use random keys of 8-32 bytes and values of 4K bytes.
We perform 50M random PUTs, and 50M random GETs on
the inserted keys.

5.2.1 Efficiency (one drive, one core)

We evaluate the efficiency of uDepot and its IO backends
by using one core to drive one Optane drive. We compare
uDepot’s performance to the raw performance achievable by
the device.
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Figure 6: uDepot running on a single core/single device setup. Me-
dian latency and throughput for a uniform random workload of 4K
values for different IO backends and different queue depths.

We bind all threads on a single core (one that is on the
same NUMA node as the drive). We apply the workload
described in §5.2 for queue depths (qd) of 1,2,4, . . . ,128
and for the three different IO backends. For synchronous
IO (linux-directIO) we spawn a number of threads equal
to the qd. For TRT backends we spawn a single thread and
a number of tasks equal to the qd. Both linux-directIO

and trt-aio use direct IO to bypass the page cache.
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Figure 7: uDepot running on a single core/single device setup under
a uniform random workload of GET operations for 4K values.

Results are shown in Fig. 6b for GETs and Fig. 6a for PUTs.
The linux-directIO backend performs the worst. To a
large extent, this is because it uses one thread per in-flight
request, resulting in frequent context switches by the OS to
allow all these threads to run on a single core. trt-aio im-
proves performance by using TRT’s tasks to perform asyn-
chronous IO and perform a single system call for multiple
operations. Finally, trt-spdk exhibits (as expected) the best
performance as it avoids switching to the kernel.

We consider the better performing GET operations to com-
pare uDepot against the device performance. We focus on
latency with a single request in flight (qd = 1), and through-
put at a high queue depth (qd = 128). Fig. 7a shows the
median latency achieved for qd = 1 for each backend. The
figure includes two lines depicting the raw performance
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Figure 8: Aggregate GET/PUT throughput of uDepot backends when
using 24 NVMe drives for different concurrencies.

of the device under a similar workload obtained using ap-
propriate benchmarks for each IO facility. That is, one
core, one device, 4KiB random READ operations at qd = 1
across the whole device which was randomly written (pre-
conditioned). fio raw shows the latency achieved by fio

[23] with the libaio (i.e., Linux AIO) backend, while for
spdk raw we use SPDK’s perf utility [86]. uDepot under
trt-spdk achieves a latency of 7.2 µs which is very close
the latency of the raw device using SPDK (6.8 µs). The
trt-aio backend achieves a latency of 9.5 µs with the cor-
responding raw device number using fio being 9 µs. An ini-
tial implementation of the trt-aio backend that used the
io getevents() system call to receive IO completions, re-
sulted in a higher latency (close to 12 µs). We improved per-
formance by implementing this functionality in user-space
[17, 28, 77]. fio’s latency remained unchanged when using
this technique (fio option userspace reap). Fig. 7b shows
the throughput achieved by each backend at high (128) queue
depth. linux-directIO achieves 200 kops/s, trt-aio

272 kops/s, and trt-spdk 585 kops/s. As before, fio raw

and spdk raw show the device performance under a simi-
lar workload (4KiB random READs, qd=128) as reported by
fio and SPDK’s perf. Overall, uDepot performance is very
close to the device performance.

5.2.2 Scalability (24 drives, 20 cores)

Next, we examine how well uDepot scales when using multi-
ple drives and multiple cores, and how the different IO back-
ends behave under these circumstances.

To maximize aggregate throughput, we use the 24 Flash-
based NVMe drives in the system, and all of its 20 cores.
(Even though these drives are not FNDs, we use a large
number of them to achieve a high aggregate throughput and
examine uDepot’s scalability.) For the uDepot IO back-
ends that operate on a block device (linux-directIO and
trt-aio), we create a software RAID-0 device that com-
bines the 24 drives into one using the Linux md driver. For
the trt-spdk backend we use the RAID-0 uDepot SPDK
backend. We use the workload described in §5.2, and take
measurements for different numbers of concurrent requests.
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For linux-directIO we use one thread per request, up to
1024 threads. For TRT backends, we use 128 TRT tasks per
thread for GETs and 32 TRT tasks for PUTs (we use different
numbers for different operations because they are saturated
at different queue depths). We vary the number of threads
from 1 up to 20.

Results are presented in Fig. 8. We also include two lines
depicting the maximum aggregate throughput achieved on
the same drives by SPDK perf and fio using the libaio

(Linux AIO) backend. We focus on GETs, because that’s the
most challenging workload. The linux-directIO back-
end initially has better throughput as it uses more cores.
For example, for a concurrency of 256, it uses 256 threads,
and subsequently all the cores of the machine; for the
TRT backends, the same concurrency uses 2 threads (128
tasks per thread), and subsequently 2 out of the 20 cores
of the machine. Its performance, however, is capped at
1.66 Mops/s. The trt-aio backend achieves a maximum
throughput of 3.78 Mops/s, which is very close to the per-
formance achieved by fio: 3.89 Mops/s. Finally, trt-spdk
achieves 6.17 Mops/s which is about 90% of the raw SPDK
performance (6.87 Mops/s). We use normal SSDs to reach
a larger throughput than the one that we could using Op-
tane drives due to limited PCIe slots on our server. Because
we measure throughput, these results can be generalized to
FNDs with the difference being that it would require fewer
drives to reach the achieved throughput. Moreover, the raw
SPDK performance measured (6.87 Mops/s) is close to the
throughput that the IO subsystem of our server can deliver:
6.91 Mops/s. The latter number is the throughput achieved
by the SPDK benchmark when using uninitialized drives that
return zeroes without accessing Flash. The PCIe bandwidth
of our server is 30.8 GB/s (or 7.7 Mops/s for 4 KiB), which
is consistent with our results if we consider PCIe and other
overheads.

Overall, both uDepot backends (trt-aio, trt-spdk)
perform very close in terms of efficiency and scalability to
what the device can provide for each different IO facility.
In contrast, using blocking system calls (linux-directIO)
and multiple threads has significant performance limitations
both in terms of throughput and latency.

5.3 uDepot server / YCSB

In this section we evaluate the performance of the uDepot
server against two NoSQL stores: Aerospike [2] and Scyl-
laDB [82]. Even though uDepot has (by design) less func-
tionality than these systems, we select them because they are
NVMe-optimized and offer, to the best of our knowledge,
the best options for exploiting FNDs today.

To facilitate a fair comparison, we use the YCSB [15]
benchmark, and run the following workloads: A (update
heavy: 50/50), B (read mostly: 95/5), C (read only), D (read
latest), and F (read-modify-write), with 10M records and the
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Figure 9: Overall throughput when using 256 YCSB client threads
for different key-value stores.

default record size of 1 KiB. (We exclude workload E be-
cause uDepot does not support range queries.) We configure
all systems to use two Optane drives and 10 cores (more than
enough to drive 2 Optane drives), and generate load using
a single client machine connected via 10 Gbit/sec Ethernet.
For uDepot, we develop a YCSB driver using the uDepot
JNI interface to act as a client. Because TRT is incompat-
ible with the JVM, clients use the Linux uDepot backend.
For Aerospike and ScyllaDB we use their available YCSB
driver. We use YCSB version 0.14, Scylla version 2.0.2, and
Aerospike version 3.15.1.4. For Scylla, we set the cassandra-
cql driver’s core and maxconnections parameters at least
equal to the YCSB client threads, and capped its memory use
to 64GiB to mitigate failing YCSB runs on high client thread
counts due to memory allocation.

Fig. 9 presents the achieved throughput for 256 client
threads for all workloads. uDepot using the trt-spdk back-
end improves YCSB throughput from ×1.95 (workload D)
up to×2.1 (workload A) against Aerospike, and from×10.2
(workload A) up to ×14.7 (workload B) against ScyllaDB.
Fig. 10 focuses on the update-heavy workload A (50/50), de-
picting the reported aggregate throughput, update and read
latency for different number of client threads (up to 256) for
all the examined stores. For 256 clients, uDepot using SPDK
achieves a read/write latency of 345 µs/467 µs, Aerospike
882 µs/855 µs, and ScyllaDB 4940 µs (3777 µs).

We profile execution under workload A, to understand the
causes of the performance differences between Aerospike,
ScyllaDB, and uDepot. Aerospike is limited by its use of
multiple IO threads and synchronous IO. Indeed, synchro-
nization functions occupied a significant amount of its exe-
cution time due to contention created by the multiple threads.
ScyllaDB uses asynchronous IO (and in general has an effi-
cient IO subsystem), but it exhibits significant IO amplifica-
tion. We measured the read IO amplification of the user data
(YCSB key and value) versus what was read from the FNDs
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Figure 10: Overall throughput, update and read latency, as reported by the YCSB benchmark for different number of client threads applying
workload A (50/50 reads/writes) to different key-value stores.

and the results were as follows: ScyllaDB: ×8.5, Aerospike:
×2.4, and uDepot (TRT-aio): ×1.5.

Overall, uDepot exposes the performance of FNDs signif-
icantly better than Aerospike and ScyllaDB. We note that
YCSB is inefficient since it uses synchronizing Java threads
with synchronous IO, and under-represents uDepot’s perfor-
mance. In the next section, we use a more performant bench-
mark that better illustrates uDepot’s efficiency.

5.4 uDepot Memcache
Lastly, we evaluate the performance of our uDepot Mem-
cache implementation, and investigate if it can provide com-
parable performance to DRAM-based services.

We use memcached [65] (version: 1.5.4), the standard im-
plementation of Memcache that uses DRAM, as the standard
on what applications using Memcache expect, MemC3 [25]
(commit: 84475d1), a state-of-the-art Memcache implemen-
tation, and Fatcache [27] (commit: 512caf3), a Memcache
implementation on SSDs.
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Figure 11: Memcache performance as reported by memaslap us-
ing the default 10%-PUT, 90%-GET workload of 1 KiB objects for
different number of clients (concurrency).

We use memaslap4 [62], a standard Memcache bench-
mark, and generate the default workload: 10%-PUT, 90%-
GET with 1 KiB objects. We execute memaslap on a different
machine, connected over 10 Gbit/s Ethernet to the server.
The Memcache servers are configured to use all 20 cores of

4We applied a number of scalability patches [63] to improve perfor-
mance.

our machine. DRAM-based memcached, and MemC3 are
configured to use enough memory to fit all the working set,
while Fatcache and uDepot are configured to use the two Op-
tane drives in a RAID-0 configuration, using the Linux md
driver when required. We use the default options for Fat-
cache.

The reported latency and throughput is summarized in
Fig. 11. For a single client, the reported latency is 49 µs
for MemC3, 51 µs for both memcached and uDepot using
trt-spdk, 52 µs for Fatcache, and 67 µs for uDepot us-
ing trt-aio. Contrarily to uDepot, Fatcache caches data
in DRAM which leads to the low latency at low queue
depths. As the number of clients increase, however, the per-
formance of Fatcache significantly diverges, while uDepot’s
performance remains close. Case in point, for 128 clients,
MemC3’s latency is 110 µs, memcached’s 126 µs, uDe-
pot with trt-spdk achieves 128 µs, uDepot with trt-aio

139 µs, and Fatcache 2418 µs; The achieved throughputs
are: MemC3:1145 kops/s, memcached:1001 kops/s, uDe-
pot trt-spdk: 985 kops/s uDepot trt-aio: 911 kops/s,
and Fatcache: 53 kops/s.

Hence, our results show that memcached on DRAM can
be replaced with uDepot on NVM with a negligible perfor-
mance hit, since the bottleneck is the network. Moreover,
Fatcache cannot exploit the performance benefits of FNDs.

6 Related work

Flash KV stores Two early KV stores that specifically tar-
geted Flash are FAWN [3], a distributed KV store, built with
low-power CPUs and small amounts of Flash storage, and
FlashStore [19], a multi-tiered KV store using both DRAM,
Flash, and Disks. These systems are similar to uDepot in that
they keep an index in the form of a hash-table in DRAM, and
they use a log-structured approach. They both use 6-byte en-
tries: 4 bytes to address Flash, and 2 bytes for they key fin-
gerprint, while subsequent evolutions of these works [20,56]
further reduce the entry size. uDepot increases the entry to
8 bytes, enabling features not supported by the above sys-
tems: i) uDepot stores the size of the KV entry, allowing it
to fetch both key and value with a single read request. That
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is, a GET operation requires a single access. ii) uDepot sup-
ports online resizing that does not require accessing NVM
storage. iii) uDepot uses 40 instead of 32 bits for addressing
storage, supporting up to 1 PB of grains. Moreover, uDe-
pot efficiently accesses FNDs (via asynchronous IO back-
ends) and scales over many devices and cores which these
systems, built for slower devices, do not support. A number
of works [60,91] built Flash KV stores or caches [81,84] that
rely on non-standard storage devices, such as open-channel
SSDs. uDepot does not depend on special devices, and using
richer storage interfaces to improve uDepot is future work.

High-performance DRAM KV stores A large number of
works targets to maximize the performance of DRAM-based
KV stores using RDMA [21,44,68,73], direct access to net-
work hardware [57], or, FPGAs [10, 52]. uDepot, on the
other hand, operates over TCP/IP and places data in storage
devices. Nevertheless, many of these systems use a hash-
table to maintain their mapping, and access it with one-sided
RDMA operations from the client when possible. FaRM
[21], for example, identifies the problems of cuckoo hash-
ing, and, similarly to uDepot, uses a variant of hopscotch
hashing. A fundamental difference of FaRM and uDepot is
that the former is concerned with minimizing RDMA oper-
ations to access the hash table, which is not a concern for
uDepot. Moreover, uDepot’s index structure supports online
resizing, while FaRM uses an overflow chain per bucket that
can cause a performance hit for checking the chain.

NVM KV stores A number of recent works [4, 71, 92, 95]
propose NVM KV stores. These systems are fundamen-
tally different in that they operate on byte-addressable NVM
placed on the memory bus. uDepot, instead, uses NVM on
storage devices because the technology is widely available
and more cost effective. MyNVM [22] also uses NVM stor-
age as a way to reduce the memory footprint of RocksDB,
where NVM storage is introduced as a second level block
cache. uDepot takes a different approach by building a
KV store that places data exclusively on NVM. Aerospike
[87], that targets NVMe SSDs, follows a similar design to
uDepot by keeping its index in DRAM and the data in a log
that resides in storage. Nevertheless, because it is designed
with SSDs in mind, it cannot fully exploit the performance of
FNDs (e.g., it uses synchronous IO). Faster [11] is a recent
KV store that, similarly to uDepot, maintains an resizable
in-memory hash index and stores its data into a log. In con-
trast to uDepot, Faster uses a hybrid log that resides both in
DRAM and in storage.

Memcache Memcache is an extensively used service [5,
6, 32, 65, 70]. MemC3 [25] redesigns memcached using a
concurrent cuckoo hashing table. Similarly to the original
memcached, the hash table cannot be dynamically resized
and the amount of used memory must be defined when the
service starts. uDepot supports online resizing of the hash

table, while also allowing for faster warm-up times if the
service restarts since the data are stored in persistent stor-
age. Recently, usage of FNDs in memcached was explored
as means to reduce costs and expand the cache [66].

Task-based asynchronous IO A long-standing debate ex-
ists on programming asynchronous IO using threads versus
events [1, 18, 49, 51, 90]. uDepot is built on TRT that uses a
task-based approach, where each task has its own stack. A
useful extension to TRT would be to provide a composable
interface for asynchronous IO [36]. Flashgraph [97] uses an
asynchronous task-based IO system to process graphs stored
on Flash. Seastar [83], the run-time used by ScyllaDB, fol-
lows the same design principles as TRT, but does not (cur-
rently) support SPDK.

7 Conclusion and Future Work

We presented uDepot, a KV store that fully utilizes the per-
formance of fast NVM storage devices like Intel Optane. We
showed that uDepot reaches the performance available from
the underlying IO facility it uses, and can better utilize these
new devices compared to existing systems. Moreover, we
showed that uDepot can use these devices to implement a
cache service that achieves a similar performance to DRAM
implementations, at a much lower cost. Indeed, we use our
uDepot Memcache implementation as the basis of an exper-
imental public cloud service [39].

uDepot has two main limitations that we plan to address
in future work. First, uDepot does not (efficiently) support
a number operations that have been proven useful for ap-
plications such as range queries, transactions, checkpoints,
data structure abstractions [78], etc. Second, there are many
opportunities to improve efficiency by supporting multiple
tenants [13], that uDepot does not currently exploit.
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Abstract

New byte-addressable non-volatile memory (BNVM) tech-
nologies such as phase change memory (PCM) enable the
construction of systems with large persistent memories, im-
proving reliability and potentially reducing power consump-
tion. However, BNVM technologies only support a limited
number of lifetime writes per cell and consume most of their
power when flipping a bit’s state during a write; thus, PCM
controllers only rewrite a cell’s contents when the cell’s value
has changed. Prior research has assumed that reducing the
number of words written is a good proxy for reducing the
number of bits modified, but a recent study has suggested
that this assumption may not be valid. Our research con-
firms that approaches with the fewest writes often have more
bit flips than those optimized to reduce bit flipping.

To test the effectiveness of bit flip reduction, we built a
framework that uses the number of bits flipped over time
as the measure of “goodness” and modified a cycle-accurate
simulator to count bits flipped during program execution. We
implemented several modifications to common data struc-
tures designed to reduce power consumption and increase
memory lifetime by reducing the number of bits modified
by operations on several data structures: linked lists, hash ta-
bles, and red-black trees. We were able to reduce the number
of bits flipped by up to 3.56× over standard implementations
of the same data structures with negligible overhead. We
measured the number of bits flipped by memory allocation
and stack frame saves and found that careful data placement
in the stack can reduce bit flips significantly. These changes
require no hardware modifications and neither significantly
reduce performance nor increase code complexity, making
them attractive for designing systems optimized for BNVM.

1 Introduction

As byte-addressable non-volatile memories (BNVMs) be-
come common [15, 18, 24], it is increasingly important that
systems are optimized to leverage their strengths and avoid

stressing their weaknesses. Historically, such optimizations
have included reducing the number of writes performed, ei-
ther by designing data structures that require fewer writes
or by using hardware techniques such as caching to reduce
writes. However, it is the number of bits flipped that matter
most for BNVMs such as phase-change memory (PCM), not
the number of words written.

BNVMs such as PCM suffer from two problems caused by
flipping bits: energy usage and cell wear-out. As these mem-
ory technologies are adopted into longer-term storage solu-
tions and battery powered mobile and IoT devices, their costs
become dominated by physical replacement from wear-out
and energy use respectively, so increasing lifetime and drop-
ping power consumption are vital optimizations for BNVM.
Flipping a bit in a PCM consumes 15.7−22.5× more power
than reading a bit or “writing” a bit that does not actually
change [13, 14, 24, 29]. Thus, many controllers optimize by
only flipping bits when the value being written to a cell dif-
fers from the old value [39]. While this approach saves some
energy, it cannot eliminate flips required by software to up-
date modified data structures. An equally important concern
is that PCM has limited endurance: cells can only be writ-
ten a limited number of times before they “wear out”. Un-
like flash, however, PCM cells are written individually, so
it is possible (and even likely) that some cells will be writ-
ten more than others during a given period because of im-
balances in values written by software. Reducing bit flips,
an optimization goal that has yet to be sufficiently explored,
can thus both save energy and extend the life of BNVM.

Previously, we showed that small changes in data struc-
tures can have large impacts in the bit flips required to com-
plete a given set of data structure modifications [4]. While it
is possible to reduce bits flipped with changes to hardware,
we can gain more by optimizing compiler constructs and
choosing data structures to take advantage of semantic infor-
mation that is not available at other layers of the stack; it is
critical we design our data structures with this in mind. Suc-
cessful BNVM-optimized systems will need to target new
optimizations for BNVM, including bit flip reduction.

USENIX Association 17th USENIX Conference on File and Storage Technologies    17



We implemented three such data structures and evaluated
the impact on the number of writes and bit flips, demonstrat-
ing the effectiveness of designing data structures to minimize
bit flips. These simple changes reduce bit flips by as much
as 3.56×, and therefore will reduce power consumption and
extend lifetime by a proportional amount, with no need to
modify the hardware in any way. Our contributions are:

• Implementation of bit flip counting in a full cycle-accurate
simulation environment to study bit flip behavior.

• Empirical evidence that reducing memory writes may not
reduce bit flips proportionally.

• Measurements of the number of bit flips required by op-
erations such as memory allocation and stack frame use,
and suggestions for reducing the bit flips they require.

• Modification of three data structures (linked lists, hash ta-
bles, red-black trees) to reduce bit flips and evaluation of
the effectiveness of the techniques.

The paper is organized as follows. Section 2 gives back-
ground demonstrating how bit flips impact power consump-
tion and BNVM lifetime. Section 3 discusses some tech-
niques for reducing bit flips in software, which are evaluated
for bit flips (Section 4) and performance (Section 5). Sec-
tion 6 discusses the results, followed by comments on future
work (Section 7) and a conclusion (Section 8).

2 BNVM and Bit Flips

Non-volatile memory technologies [6] such as phase-change
memory (PCM) [24], resistive RAM (RRAM, or memris-
tors) [33, 35], Ferroelectric RAM (FeRAM) [15], and spin-
torque transfer RAM (STT-RAM) [22], among others, have
the potential to fundamentally change the design of devices,
operating systems, and applications. Although these tech-
nologies are starting to make their way into consumer de-
vices [18] and embedded systems [33], their full poten-
tial will be seen when they replace or coexist with DRAM
as byte-addressable non-volatile memory (BNVM). Such a
memory hierarchy will allow the processor, and thus appli-
cations, to use load and store instructions to update persis-
tent state, bypassing the high-latency I/O operations of the
OS. However, power consumption, especially for write op-
erations, and device lifetime are more serious concerns for
these technologies than for existing memory technologies.

2.1 Optimizing for Memory Technologies

Data structures should be designed to exploit the advan-
tages and mitigate the disadvantages of the technologies on
which they are deployed. For example, data structures for
disks are block-oriented and favor sequential access, while
those designed for flash reduce writes, especially random
writes, often by trading them for an increase in random

reads [10]. Prior data structures and programming mod-
els for NVM [9, 11, 16, 25, 36, 38] have typically exploited
its byte-addressability while mitigating the relatively slow
access times of most BNVM technologies. However, in
the case of technologies such as PCM or RRAM, exist-
ing research ignores two critical characteristics: asymmet-
ric read/write power usage and the ability to avoid rewriting
individual bits that are unchanged by a write [6, 39].

For example, writes to PCM are done by melting a cell’s
worth of material with a relatively high current and cooling it
at two different rates, leaving the material in either an amor-
phous or crystalline phase [30]. These two phases have dif-
ferent electrical resistance, each corresponding to a bit value
of zero or one. The writing process takes much more energy
than reading the phase of the cell, which is done by sensing
the cell’s resistance with a relatively low current. To save
energy, the PCM controller can avoid writing to a cell during
a write if it already contains the desired value [39], meaning
that the major component of the power required by a write
is proportional not to the number of bits (or words) written,
but rather to the number of bits actually flipped by the write.
Based on this observation, we should design data structures
for BNVM to minimize the number of bits flipped as the
structures are modified and accessed rather than simply re-
ducing the number of writes, as is more commonly done.

2.2 Power Consumption of PCM and DRAM

While our research applies to any BNVM technology in
which writes are expensive, we focus on PCM because its
power consumption figures are more readily available. Fig-
ure 1 shows the estimated power consumption of 1 GB of
DRAM and PCM as a function of bits flipped per second, us-
ing power measurements from prior studies of memory sys-
tems [4, 7, 13, 14, 24, 29]. The number of writes to DRAM
has little effect on overall power consumption since the entire
DRAM must be periodically refreshed (read and rewritten);
refresh dominates, resulting in a high power requirement re-
gardless of the number of writes. In contrast, PCM requires
no “maintenance” power, but needs a great deal more energy
to write an individual bit (~50 pJ/b [2]) compared to the low
overhead for writing a DRAM page (~1 pJ/b [24]). The re-
sult is that power use for DRAM is largely proportional to
memory size, while power consumption for PCM is largely
proportional to cell change rate. The exact position of the
cross-over point in Figure 1 will be narrowed down as these
devices become more common; many features of these de-
vices, including asymmetric write-zero and write-one costs,
increased density of PCM over DRAM, and decreasing fea-
ture sizes, will affect the trade-off point over time.

Figure 1 demonstrates the need for data structures for
PCM to minimize cell writes. Because the memory con-
troller can minimize the cost of “writing” a memory cell with
the same value it already contains, the primary concern for
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Figure 1: Power use as a function of flips per second [4].

data structures in PCM is reducing the number of bit flips,
which the memory controller cannot easily eliminate.

Power consumption is particularly concerning for battery-
operated Internet of Things (IoT) devices, which may be-
come a significant consumer of BNVM technologies to
facilitate fast power-up and reduce idle power consump-
tion [20, 21]. Devices that collect large amounts of data and
write frequently to BNVM may find power usage increasing
depending on access patterns. Thus, IoT devices may benefit
significantly from bit-flip-aware systems and data structures.

2.3 Wear-out

Another significant advantage to avoiding bit flips is reduc-
ing memory cell wear-out. BNVM technologies typically
have a maximum number of lifetime writes, and fewer writes
means a longer lifetime. However, by avoiding unneces-
sary overwrites, the controller would introduce uneven wear
within BNVM words where some of the bits flip more fre-
quently than others due to biases of certain writes. For ex-
ample, pointer overwrites may only alter the low-order bits,
except for the few that are zero because of structure align-
ment in memory, if the pointers are to nearby regions. Thus,
the middle bits in a 64-bit word may wear out faster than the
lowest and highest bits. While reducing bit-flips increases
the average lifetime of the cells in a word, it has the potential
to exacerbate the uneven wear problem since such techniques
might increase the biases of certain writes.

Fortunately, we can take advantage of existing research in
wear-leveling for BNVM that allows the controller to spread
out the cell updates within a given word. While a full remap-
ping layer similar to a flash translation layer is infeasible for
BNVM—the overhead would be too high—hardware tech-
niques such as row shifting [40], content-aware bit shuf-
fling [17], and start-gap wear leveling [28] may be able to
mitigate biased write patterns with low overhead. This would
allow BNVM to leverage bit flip reduction to reduce wear
even if the result is that some bits are flipped more frequently
than others. These techniques, implemented at the memory
controller level, can work in tandem with the techniques de-
scribed in this paper since they benefit bit flip reduction and

can distribute “hot” bits across a word, mitigating the biased
write patterns bit flip reduction techniques may introduce.

2.4 Reducing Impact of Bit Flips in BNVM

Although bit flips in BNVM have been studied previously,
much of that work has focused on hardware encoding, which
re-encodes cache lines to reduce bit flips, but re-encoding has
limited efficacy [8, 19, 32] because it must also store infor-
mation on which encoding was used. While hardware tech-
niques are worth exploring, software techniques to reduce bit
flips can be more effective because they can leverage seman-
tic knowledge available in the software but not visible in the
memory controller’s limited view of single cache lines.

Chen et al. [7] evaluate data structures on BNVM and ar-
gue that reducing bit flips is workload dependent and diffi-
cult to reason about, so we should strive to reduce writes be-
cause writes are approximately proportional to bit flips. We
found that this is often not the case—our prior experiments
revealed that bit flips were often not proportional to writes,
and we were able to examine bit flips and optimize for them
in an example data structure [4]. These findings are further
corroborated by our experiments in Section 4.

Since bit flips directly affect power consumption and wear,
we can study three separate aspects for bit flip reduction:

• Data structure design: Since data organization plays a
large role in the writes that make it to memory, we de-
signed new data structures built around the idea of pointer
distance [34] instead of storing pointers directly. While
data writes themselves significantly affect bit flips, these
writes are often unavoidable (since the data must be writ-
ten), while data structure writes are more easily optimized
(as we see in existing BNVM data structure research).
Furthermore, data structures often require a significant
number of updates over time, while data is often written
once (since we can reduce writes by updating pointers in-
stead of moving data). Thus the overall proportion of bit
flips caused by data writes may drop over time as data
structures are updated.

• Effects of program operation: A common source of
writes is the stack, where return addresses, saved regis-
ters, and register spills are written. Understanding how
these writes affect bit flips plays a critical role in recom-
mendations for bit flip reduction for system designers.

• Effects of caching layers: Since writes must first go
through the cache, it is vital to understand how different
caching layers and cache sizes affect bit flips in memory.
Complicating matters is the unique consistency challenges
of BNVM [9,11,36], wherein programs often flush cache-
lines to main memory more frequently than they other-
wise would, use write-through caching, or more com-
plex, hardware-supported cache flushing protocols. These
questions are evaluated in Section 4.6.
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3 Reducing Bit Flips in Software

By reducing bit flips in software, we can effect improve-
ments in BNVM lifetime and power use without the need
for hardware changes. To build data structures to reduce bit
flips (Sections 3.1–3.3), we propose several optimizations to
pointer storage along with additional optimizations for indi-
cating occupancy. For stack writes, we propose changes to
compilers to spill registers such that they avoid writing dif-
ferent registers to the same place in the stack (Section 3.4).

3.1 XOR Linked Lists

XOR linked lists [34] are a memory-efficient doubly-linked
list design where, instead of storing a previous and next node
pointer, each node stores only a siblings value that is the
XOR between the previous and next node. If the previous
node is at address p and the next node is at address n, the
node stores siblings = p⊕ n. This scheme cuts the number
of stored pointers per node in half while still allowing bi-
directional traversal of the list—having pointers to two adja-
cent nodes is sufficient to traverse both directions. However,
an XOR linked list has disadvantages; it does not allow O(1)
removal of a node with just a single pointer to that node, as
a node’s siblings cannot be determined from the node alone,
and it increases code complexity by requiring XOR opera-
tions before pointers are dereferenced.

When they were proposed, XOR linked lists had little ad-
vantage over doubly linked lists beyond a modest memory
saving. However, with the need for fewer bit flips on BNVM,
they gain a critical advantage: they cut the number of stored
pointers in half, reducing writes, but they also store the XOR
of two pointers, which are likely to contain similar higher-
order bits, making the siblings pointer mostly zeros.

One problem with the original design for XOR linked lists
is that each node stores siblings = p⊕n, but for the first and
last node, p or n are NULL, so the full pointer value for its ad-
jacent node is stored in the head and tail. To further cut down
on bit flips, we changed this design so that the head and tail
XOR their adjacent nodes with themselves (if the node at ad-
dress h is the head, then it stores siblings = h⊕n instead of
siblings= 0⊕n). The optimization here is not a performance
optimization—in fact, it’s likely to reduce performance—
and only makes sense in the context of bit flips, an optimiza-
tion goal that would not be targeted before the introduction
of BNVM. However, with bit flips in-mind, it becomes crit-
ical. Other data structures may have similar optimizations
that we can easily make to reduce bit flips 1.

1Circular linked lists solve the head and tail siblings pointer problem
automatically, since no pointers are stored as NULL; however, in XOR linked
lists this increases the number of pointer updates during an insert operation
and requires storing two adjacent head nodes to traverse.

3.2 XOR Hash Tables

A direct application of XOR linked lists is chained hash-
ing, a common technique for dealing with hash table colli-
sions [12]. An array of linked list heads is maintained as the
hash table, and when an item is inserted, it is appended to the
list at the bucket that the item hashes to. To optimize for bit
flips, we can store an XOR list instead of a normal linked list,
but since bidirectional traversal is not needed in a hash table
bucket, we need not complicate the implementation with a
full XOR linked list. Instead, we apply the property of XOR
linked lists that we find useful—XORing pointers.

Each pointer in each list node is XORed with the address
of the node that contains that pointer. For example, a list
node n whose next node is p will store n⊕ p instead of p. In
effect, this stores the distance between the nodes rather than
the absolute address of the next node and exploits locality in
memory allocators. The end of the list is marked with a NULL
pointer. In addition to a distance pointer, each node contains
a key and a pointer to a value. The list head stored in the
hash table is a full node, allowing access to the first entry in
the list without needing to follow a pointer.

A second optimization we make is that an empty list can
be marked in one of two ways: the least-significant bit (LSB)
of the next pointer set to one, or the data pointer set to NULL.
When we initialize the table, it is set to zero everywhere, so
the data pointers are NULL. During delete, if the list becomes
empty, the LSB of the next pointer in the list head is set to 1, a
value it would never have when part of a list. This allows the
data pointer to remain set to a value such that when it is later
overwritten, fewer bits need to change. This is an example
of an optimization that only makes sense in the context of bit
flips, as it increases code complexity for no other gain.

3.3 XOR Red-Black Trees

Binary search trees are commonly used for data indexing,
support range queries, and allow efficient lookup and modifi-
cation, as long as they are balanced. Red-black trees [12,31]
are a common balanced binary tree data structure with
strictly-bounded rebalancing operations during modification.
A typical red-black tree (RBT) node contains pointers to its
left child and right child, along with meta-data. They often
also contain a pointer to the parent node, since this enables
easier balancing implementation and more efficient range-
query support without significantly affecting performance
due to the increased memory usage [23].

We can generalize XOR linked lists to XOR trees. Instead
of storing left, right, and parent pointers, each node
stores xleft and xright, which are the XOR between each
child and the parent addresses. This reduces the memory
usage to the two-pointer case while maintaining the bene-
fits of having a parent pointer, since given a node and one
of its children (or its parent), we can traverse the entire tree.
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Like XOR linked lists, the root node stores xleft = root
⊕ left, where root is the address of the root node and
left is the address of its left child, saving bit flips. To indi-
cate that a node has no left or right child, it stores NULL.

Determining the child of a node requires both the node
and its parent:
get_left_child(Node *node, Node *parent) {
return (parent ⊕ node->xleft);

}
Getting a node’s parent, however, requires additional work.
Given a child c and a node n, getting n’s parent requires
we know which child (left or right) c is. Fortunately, in a
binary search tree we store the key k of a node in each node,
and the nodes are well-ordered by their k. Thus, getting the
parent works as follows:
get_parent(Node *n, Node *c) {
if(c->k < n->k) return (n->xleft ⊕ c);
else return (n->xright ⊕ c);

}
Note that this is not the only way to disambiguate between
pointers. In fact, it’s not strictly necessary to do so because
the algorithms can be implemented recursively without
ever needing to traverse up the tree explicitly. However,
providing upwards traversal can reduce the complexity of
implementation and improve the performance of iteration
over ranges. Another solution to getting the parent node
would be to record whether a node is a left or right child by
storing an extra bit along with the color. We did not evaluate
this method, as it would increase both writes and bit flips
over our method.

With these helper functions, we implemented both an
XOR red black tree (xrbt) and a normal red-black tree (rbt)
using similar algorithms. The code for xrbt was just 20 lines
longer, with only a minor increase in code complexity. Node
size was smaller in xrbt, with a node being 40 bytes instead
of 48 bytes as in rbt. To control for the effects of node size
on performance and bit flips, we built a variant of xrbt with
the same code but with a node size of 48 bytes (xrbt-big).

Generalization These techniques can generalize beyond a
red-black tree. Any ordered k-ary tree can use XOR pointers
in the same way. As discussed above, disambiguating be-
tween pointers during traversal depends on either additional
bits being stored or using an ordering property. Either tech-
nique can work with arbitrary graph nodes.

3.4 Stack Frames
Data structure layout and data writes are only some of the
writes made by a program. Register spills, callee-saved reg-
ister saving, and return addresses pushed during function
calls are all writes to memory, and if these writes make it
to BNVM, they will cause bit flips as well. These writes
may make it to main memory if the cache is saturated or if

the program is designed to keep program state in BNVM to
enable instantaneous restart after power cycles [26]. Addi-
tionally, systems designed for BNVM may run with write-
through caches to reduce consistency complexity, resulting
in execution state reaching BNVM.

The exact pattern of stack writes depends on the ABI and
the calling convention of a system and processor, though we
focus on x86-64 Linux systems. When a program calls a
function, it (potentially) pushes a number of arguments to
the stack, followed by a return address. In the called func-
tion, callee-saved registers are pushed to the stack, but only
if they are modified during that function’s execution. When
finished, the callee pops all the saved registers and returns.

Our observation is that the order that callee-saved regis-
ters are pushed to the stack is not specified, meaning that
two different functions could push the same registers in a
different order. Secondly, the same callee-saved register is
less-likely to change drastically in a small amount of code in
a tight loop, since these registers are typically used for loop
counters or bases for addressing. Thus, a loop that calls two
functions alternately will likely have similar or the same val-
ues in the callee-saved registers during the invocation of both
functions. If these two functions push the (often unchanged)
callee-saved registers to the same place both times, fewer bit
flips will occur than if the functions pushed them in different
orders. While this is just a simple example, such loops that
call out to alternating functions with different characteristics
can occur, for example, when rehashing a table, rebuilding a
tree, or reading task items from a linked list.

We propose specifying a callee-saved register frame lay-
out that functions adhere to, so that the registers are always
pushed in the same order. To handle variable numbers of
arguments, we make use of passing arguments in registers,
common in many modern ABIs. If a function need not push
any callee-saved registers, it can still reserve the stack space
for that frame and then not push anything to save writes.
Functions which only save a small number of registers can
still push them to the correct locations within the frame. Fi-
nally, if this is standardized, programs need not worry about
library calls increasing bit flips.

For example, if we have two functions A and B in an ABI
where registers e, f , g, h are callee-saved, and A uses e while
B uses g, then traditionally each function would simply push
the frame pointer followed by the register they wish to save:

A:
push fp
mov fp ← sp
push e
...
pop e
pop fp; ret

B:
push fp
mov fp ← sp
push g
...
pop g
pop fp; ret

If e and g are significantly different, then a significant
amount of needless bit flips could occur if these functions
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are called often. Instead, if we define a layout that functions
adhere to for register saving, the code would look like:

A:
push fp
mov fp ← sp
push e
sub sp, 24
...
add sp, 24
pop e
pop fp; ret

B:
push fp
mov fp ← sp
sub sp, 16
push g
sub sp, 8
...
add sp, 8
pop g
add sp, 16
pop fp; ret

Here the code always pushes the same register to the same
place, regardless of the registers it needs to save, thereby al-
lowing overwrites by likely similar values. While it does add
some additional instructions, code could instead write regis-
ters directly to the stack locations using offset style address-
ing, reducing code size.

4 Memory Characteristics Results

We evaluated XOR linked lists, XOR hash tables, and XOR
red-black trees, tracking bits flipped in memory, bytes writ-
ten to memory, and bytes read from memory during program
execution. Our goal was not only to demonstrate that our bit
flip optimizations were effective, but to also understand how
different system and program components affected bit flips.
In addition to tracking bit flips caused by our data structures,
we also studied bit flips caused by varying levels and sizes
of caching, calls to malloc, and writes to the stack. Fi-
nally, we evaluated the accuracy of in-code instrumentation
for bit flips, which would allow programmers to more easily
optimize for bit flips at lower cost than full-system simula-
tion. All of these experiments were designed to demonstrate
how effective certain bit flipping reduction techniques are.
Existing systems are poorly equipped to handle evaluation
of these techniques, since existing systems are poorly opti-
mized for BNVM. The techniques we present here are de-
signed to be used by system designers when building new,
BNVM-optimized systems.

4.1 Experimental Methods

Evaluating bit flips during data structure operations requires
more than simply counting the bits flipped in each write in
the code. Compiler optimizations, store-ordering, and the
cache hierarchy can all conspire to change the order and
frequency of writes to main memory, potentially causing a
manual count of bit flips in the code to deviate from the
bits flipped by writes that actually make it to memory. To
record better metrics than in-code instrumentation, we ran

Table 1: Cache parameters used in Gem5.

Cache Count Size Associativity
L1d 1 64KB 2-way
L1i 1 32KB 2-way
L2 1 2MB 8-way

our test programs on a modified version of Gem5 [3], a full-
system simulator that accurately tracks writes through the
cache hierarchy and memory. We modified the simulator’s
memory system so that, for each cache-line written, it could
compute the Hamming distance between the existing data
and the incoming write, thereby counting the bit flips caused
by each write to memory. The bit flips for each write were
added to a global count, which was reported after the pro-
gram terminated, along with the number of bytes written to
and read from memory. This gave us a more accurate picture
of the bit flips caused by our programs, since writes that stay
within the simulated cache hierarchy do not contribute to the
global count. We ran the simulator in system-call emula-
tion mode, which runs a cycle-accurate simulation, emulat-
ing system calls to provide a Linux-like environment, while
tracking statistics about the program, including the memory
events we recorded.

We used the default cache hierarchy (shown in Ta-
ble 1) provided by Gem5, using the command-line options
“--caches --l2cache”. For the XOR linked list and stack
writes experiments, we used clwb instructions to simulate
consistency points (in the linked list, clwb was issued to per-
sist the contents of a node before persisting the pointers to the
node, and for stack writes, clwb was issued after each write).
This was not done for the malloc experiment (we used an
unmodified system malloc for testing), the XOR hash table
(the randomness of access to the table quickly saturated the
caches anyway), or manual instrumentation (caches were ir-
relevant). For the XOR red-black tree, in addition to the bit
flip characteristics, we focused on observing how cache be-
havior affected more complex data structures; these results,
along with the results of varying L2 size, are discussed in
Section 4.6.

Most of the programs we ran accept as their first argu-
ment an iteration_count, which specifies how many iter-
ations the program should run. For example, the red-black
tree would do iteration_count number of insertions. We
ran the simulator on a range of iteration_counts, record-
ing the bits flipped, bytes written, and bytes read (col-
lectively referred to as memory events) for each value of
iteration_count. An example of a typical result is shown
in Figure 2. The result was often linear, allowing us to calcu-
late a linear regression using gnuplot, giving us both a slope
and confidence intervals. The slope of the line is “bit flips per
operation”—for example, a slope of 10 for linked list insert
means that it flipped 10 bits on average during insert oper-
ations. Throughout our results, only the slope is presented
unless the raw data is non-linear. Since the slope encodes
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Figure 2: A typical result of running a test program with
increasing values of iteration_count.

the bit flips per operation, we can directly compare variants
of a data structure by comparing their slopes. Error bars are
95% confidence intervals.

4.2 Calls to malloc

Many data structures allocate data during their operation.
For example, a binary tree may allocate space for a node
during insert or a hash table might decide to resize its ta-
ble. An allocator allocating data from BNVM must store the
allocation metadata within BNVM as well, so the internal
allocator structures affect bit flips for data structures which
allocate memory. Additionally, the pointers returned them-
selves contribute to the bits flipped as they are written.

We called malloc 100,000 times with allocation sizes of
16, 24, 40, and 48 bytes. We chose these sizes because our
data structure nodes were all one of these sizes. The num-
ber of bits flipped per malloc call is shown in Figure 3. As
expected, larger allocation sizes flip more bits, since the al-
locator meta-data and the allocated regions span additional
cache lines. Interestingly, 40 byte allocations and 48 byte
allocations switch places partway through, with 40 byte al-
locations initially causing fewer bit flips and later causing
more after a cross-over point. We believe this is due to 40
byte allocations using fewer cache lines, but 48 byte alloca-
tions having better alignment.

After a warm-up period where the cache hierarchy has a
greater effect, the trends become linear, allowing us to calcu-
late the bit flips per malloc call. Allocating 40 bytes costs
1.5× more bit flips on average than allocating 48 bytes. Al-
locating 24 or 16 bytes has the same flips per malloc as 48
bytes but has a longer warm-up period, such that programs
would need to call malloc (24) 1.56× as often to flip the
same number of bits as malloc (48).

While the relative savings for bit flips between malloc
sizes are significant, their absolute values must be taken into
consideration. Calls to malloc for 16 and 48 bytes cost 2±
0.1 flips per malloc (after the warm-up period) while calls
to malloc for 40 bytes cost 3±0.1 flips per malloc. As we

will see shortly, the data structures we are evaluating flip tens
of bits per operation, indicating that savings from malloc
sizes are less significant than the specific optimizations they
employ.

4.3 XOR Linked Lists
We evaluated the bit flip characteristics of an XOR linked
list compared to a doubly-linked list, where we randomly in-
serted (at the head) and popped nodes from the tail at a ratio
of 5:1 inserts to pops. The results are shown in Figure 4. As
expected, bit flips are significantly reduced when using XOR
linked lists, by a factor of 3.56×. However, both the num-
ber of bytes written to and read from memory were the same
between both lists. The reason is that, although an XOR list
node is smaller, malloc actually allocates the same amount
of memory for both.

We counted the number of pointer read and write oper-
ations in the code, and discovered that, although the XOR
linked list performs fewer write operations during updates,
it performs more read operations than the doubly-linked list.
This is because updating the data structure requires more in-
formation than in a doubly-linked list. However, Figure 4
shows that the number of reads from memory are the same,
indicating that the additional reads are always in-cache.

4.4 XOR Hash Tables
We implemented two variants of our hash table: “single-
linked”, which implemented chaining using a standard
linked list, and “XOR Node”, which XORs each pointer in
the chain with the address of the node containing the pointer.
We ran a Zipfian workload on them [5], where 80% of up-
dates happen to 20% of keys2, where keys and values were
themselves Zipfian. During each iteration, if a key was
present, it was deleted, while if it was not present, it was

2Skew of 1, with a population of 100,000.
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Figure 3: Bit flips due to calls to malloc. Allocation size of
16 bytes is not shown because it matches with 24 bytes.
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Figure 4: Memory characteristics of of XOR linked lists
compared to Doubly-Linked Lists.
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Figure 5: Memory characteristics of XOR hash table variants
under Zipfian workload.

inserted. This resulted in a workload where a large number
of keys were rarely modified, but a smaller percentage were
repeatedly inserted or removed from the hash table.

Figure 5 shows the bits flipped and bytes written by the
hash table after 100,000 updates. As expected, the XOR lists
saw a reduction in bit flips over the standard, singly-linked
list implementation while the number of bytes written were
unchanged. We were initially surprised by the relatively low
reduction in bit flips (1.13×) considering the relative success
of XOR linked lists; however, the common case for hash ta-
bles is short chains. We observed that longer chains improve
the bit flips savings, but forcing long hash chains is an unre-
alistic evaluation. Since buckets typically have one element
in them, and that element is stored in the table itself, there
are few pointers to XOR, meaning the reduction is primarily
from indicating a list is valid via the least-significant bit of
the next pointer. The bit flips in all variants come primar-
ily from writing the key and value, which comprise 9.3 bit
flips per iteration on average. Thus, this data structure had
little room for optimization, and the improvements we made
were relatively minor—although they still translate directly
to power saving and less wear, and are easy to achieve while
not affecting code complexity significantly.
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Figure 6: Memory characteristics of XOR red-black trees
compared to normal red-black trees.

4.5 XOR Red-Black Trees

Figure 6 shows the memory event characteristics of xrbt
(our XOR RBT with two pointers, xleft and xright),
xrbt-big (our XOR RBT with each node inflated to the
size of our normal RBT nodes), and rbt (our standard RBT)
under sequential and random inserts of one million unique
items. Each item comprises an integer key from 0 to one
million and a random value. Both xrbt and xrbt-big cut
bit flips by 1.92× (nearly in half) in the case of sequential in-
serts and by 1.47× in the case of random inserts, a dramatic
improvement for a simple implementation change. The small
saving in bit flips in xrbt-big over xrbt is likely due to the
allocation size difference as discussed in Section 4.2.

The number of bytes written is also shown in Figure 6.
Due to the cache absorbing writes, xrbt-big and rbt write
the same number of bytes to memory in all cases, even
though rbt writes more pointers during its operation. We
can also see a case where the number of writes was not cor-
related with the number of bits flipped, since xrbt writes
fewer bytes but flips more bits than xrbt-big.

We did not implement and test delete operation in our red-
black trees because the algorithm is similar to insert in that
its balancing algorithm is tail-recursive and merely recolors
or rotates the tree a bounded number of times. Since the
necessary functions to implement this algorithm are present
in all variations, it is certainly possible to implement, and we
expect the results to be similar between them.

4.6 Cache Effects

Although it is easy to exceed the size of the L1 cache dur-
ing normal operation of large data structures at scale, larger
caches may have more of an effect on the frequency of writes
to memory. Of course, a persistent data structure which is-
sues cache-line writebacks or uses write-through caching by-
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Figure 7: Bits flipped by xrbt and rbt over a varying number
of sequential inserts, with and without the L2 cache present.

passes this by causing all writes to go to memory3, but it is
still worth studying the effects of larger write-back caches on
bit flips. They may absorb specific writes that have higher
than average flips, or they may cause coalescing even for
persistent data structures worrying about consistency.

We studied cache effects in two ways—how the mere pres-
ence of a layer-2 cache affects the data structures we studied
and how varying the size of that cache affects them. Fig-
ure 7 shows xrbt compared with rbt, with and without L2.
The effect of L2 is limited as the operations scale, with the
bit flips for both data structures reaching a steady, linear in-
crease once L2 is saturated. The bit flips per operation for
both data structures with L2 is the same as without L2 once
the saturation point is reached, indicating that while the pres-
ence of the cache delays bit flips from reaching memory, it
does little to reduce them in the long term. Finally, since
xrbt has fewer bit flips overall and fewer memory writes, it
took longer to saturate L2, delaying the effect.

Next, we looked at different L2 sizes, running xrbt with
no L2, 1MB L2, 2MB L2 (the default), and 4MB L2, as
shown in Figure 8. The exact same pattern emerges for each
size, delayed by an amount proportional to the cache size.
This is to be expected, and it further corroborates our claim
that cache size has only short-term effects.

4.7 Manual Instrumentation
While testing data structures on Gem5 was straightforward,
if time consuming, more complex structures and programs
may be difficult to evaluate, either due to Gem5’s relatively
limited system call support or due to the extreme slowdown
caused by the simulation. Since real hardware does not pro-
vide bit flip counting methods, we are left with using in-

3Even if this is the case, a full system simulator will give a more accurate
picture than manually counting writes, since store ordering and compiler
optimizations still affect memory behavior.
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quential inserts, with different sizes for L2.
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Figure 9: Manual instrumentation for counting bit flips (in-
str) compared to full-system simulation (sim).

program instrumentation if we want to avoid the Gem5 over-
head. However, these results may be less accurate.

To study the accuracy of in-code instrumentation, we man-
ually counted bit flips in the XOR and doubly-linked lists.
We did this by replacing all direct data structure writes
(e.g., node->prev = pnode) with a macro that both did that
write and also counted the number of bytes (by looking at
the types), and computing the Hamming distance between
the original and new values. Totals of each were kept track
of and reported at the end of program execution. While not
difficult to implement, manual instrumentation adds the pos-
sibility of error and increases implementation complexity.

Figure 9 shows the results of manual instrumentation com-
pared to results from Gem5. While accuracy suffered, man-
ual counting was not off by orders of magnitude. It properly
represented the relationship between XOR linked lists and
doubly-linked lists in terms of bit flips, and it was off by a
constant factor across the test. We hypothesize that the dis-
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Figure 10: Evaluating memory events for different stack
frame layouts.

crepancy arose from the fact that our additional flip counting
code affected the write combining and (possibly) the cache
utilization. We expect that future system designs could “cal-
ibrate” manual instrumentation by running a smaller version
of their system on Gem5 to calculate the discrepancy be-
tween its counts and theirs, allowing them to more accurately
extrapolate the bits flipped in their system using instrumenta-
tion. Additionally, one could modify toolchains and debug-
ging tools to automatically emit such instrumentation code
during code generation. Manual instrumentation may find its
use here for large systems that are too complex or unwieldy
to run on Gem5, or as a way to quickly prototype bit flipping
optimizations.

4.8 Stack Frames

To study bit flips caused by stack writes, we wrote an as-
sembly program that alternates between two function calls
in a tight loop while incrementing several callee-saved regis-
ters on x86-64. The loop could call two of three functions—
function x, which pushed six registers (the callee-save regis-
ters on x86_64, including the base pointer) in a given order,
y, which pushed the registers in a different, given order, and
s, which pushed only two of the registers, but pushed them
to the same locations as function x. Our program had three
variations: x-x, which called function x twice, x-s, which al-
ternated between functions x and s, and x-y, which alternated
between functions x and y. The x-y variant represents the
worst-case scenario of today’s methods for register spilling,
while x-s demonstrates our suggestion for reducing bit flips.
To force the writes to memory, we used clwb after the writes
to simulate write-through caching or resumable programs.

Figure 10 shows both bit flips (left) and bytes written
(right) by all three variants. The x-s and x-x variants have
similar behavior in terms of bit flips, which is understand-
able because they are pushing registers to the same locations
within the frame. The x-y variant, however, had 3.8× the
number of bit flips compared to x-x and 4.1× the number of
bit flips compared to x-s, showing that consistency of frame
layout has dramatic impact. Unsurprisingly, x-x and x-y had
the same number of bytes written, since they write the same

Table 2: Performance of XOR linked lists compared with
doubly-linked lists.

Operation XOR Linked Doubly-Linked
Insert (ns) 45±1 45±1
Pop (ns) 27±1 28±1

Traverse (ns/node) 2.6±0.1 2.2±0.1

number of registers, while x-s wrote fewer registers. By
keeping frame layout consistent, we can reduce bit flips, and
the optimization of only pushing the registers needed but to
the same locations can further reduce writes as well.

5 Performance Analysis

While bit flip optimization is important, it is less attractive if
it produces a large performance cost. We compared our data
structures’ performance to equivalent “normal” versions not
designed to reduce bit flips. Benchmarks were run on an i7-
6700K Intel processor at 4GHz, running Linux 4.18, glibc
2.28. They were compiled using gcc 8.2.1 and linked with
GNU ld 2.31.1. Unless otherwise stated, programs were
linked dynamically and compiled with O3 optimizations.

XOR Linked Lists The original publication of XOR
linked lists found little performance difference between them
and normal linked lists [34]; we see the same relationship in
our implementation (see Table 2). The only statistically sig-
nificant difference was seen in traversal, where XOR linked
lists have a 1.18× increase in latency; however, both lists av-
erage less than three nanosecond-per-node during traversal.

XOR Hash Tables Figure 11 shows the performance of
the two hash table variants we developed. We inserted
100,000 keys, followed by lookup and delete. As expected,
both variants have nearly identical latencies, with a slow-
down of only 1.06× for using XOR lists during lookup.

XOR Red-Black Trees We measured xrbt, xrbt-big,
and rbt during 100,000 inserts and lookups, the results of
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Figure 11: Performance of XOR hash table variants.
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Figure 13: Lookup latency for XOR red-black trees com-
pared to normal red-black trees.

which are shown in Figure 12 and Figure 13. During insert,
xrbt is actually slightly faster than rbt, with xrbt-big be-
ing slower, indicating that although there is a non-zero cost
for the additional XOR operations, it is outweighed by the
performance improvement from smaller node size and better
cache utilization. The lookup performance shown in Fig-
ure 13 demonstrates a similar pattern, although for sequen-
tial lookup the overheads are similar enough that there is no
significant performance difference between xrbt and rbt.

6 Discussion

Software Bit Flip Reduction The data structures pre-
sented here are both old and new ideas. While not algorith-
mically different from existing implementations (both xrbt
and rbt use the same, standard red-black tree algorithms),
they present a new approach to implementation with opti-
mizations for bit flipping. This has not been sufficiently stud-
ied before in the context of software optimization; after all,
there is no theoretical advance nor is there an overwhelming
practical advantage to these data structures outside of the bit
flip reduction, an optimization goal that is new with BNVM.

However, keeping this in mind has huge ramifications for
data structures in persistent memory and applications for new
storage technologies, as it presents a whole new field of study
in optimization and practical data structure design. The goal
is not performance improvements; instead we strive to pro-
long the lifetime of expensive memory devices while reduc-
ing power use, with at most a minor performance cost. These
improvements can be achieved without hardware changes,
meaning even savings of 10% (1.1×) or less are worthwhile
to implement because savings are cumulative.

These optimizations are not specific to PCM; any memory
with a significant read/write disparity and bit-level updates
could benefit from this. The energy savings from bit flip opti-
mization will, of course, be technology-dependent, numbers
for which will solidify as the technologies are adopted. Our
estimates of the linear relationship between flips and power
use (Figure 1) indicate that, on PCM, the energy savings will
be roughly proportional to the bit flip savings since the dif-
ference between read and write energy is so high.

Bit flips can and should be reasoned about directly. Not
only is it possible to do so, but the methods presented here
are straightforward once this goal is in mind. Furthermore,
while reducing writes can reduce bit flips, we have con-
firmed that this is not always true. XOR linked lists reduced
bit flips without affecting writes, while xrbt reduced writes
over xrbt-big at the cost of increasing bit flips. With stack
frames, the biggest reduction in bit flips corresponded with
no change in writes, while the reduction of writes was corre-
lated with only a modest bit flip reduction.

The implications are far-reaching, especially when consid-
ering novel computation models that include storing program
state in BNVM. Writes to the stack also affect bit flips, but
these can be dramatically optimized. Compilers can imple-
ment standardized stack frame layouts for register spills that
save many bit flips while remaining backwards compatible
since nothing in these optimizations breaks existing ABIs.
Further research is required to better study the effects of
stack frame layout in larger programs, and engineering work
is needed to build these features into existing toolchains.

Of course, we must be cautious to optimize where it mat-
ters. While different allocation sizes reduced bit flips relative
to each other, the overall effect was minor compared to the
savings gained in other data structures. In fact, the reduc-
tion in allocation size from 48 to 40 bytes in xrbt actually
increased bit flips in calls to malloc, but this increase is
dwarfed by the savings from the XOR pointers. Addition-
ally, the hash table saw a relatively small saving compared to
other data structures since it already flipped a minimal num-
ber of bits in the average case; red-black trees often do more
work during each update operation, resulting in a number
of pointer updates. Hash tables often do their “rebalancing”
during a single rehash operation; perhaps bit flip optimiza-
tion for hash tables should focus on these operations, some-
thing we plan to investigate in the future.
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Cache Effects The data structures we tested all had the
same behavior—a warm-up period where the cache system
absorbed many of the writes followed by a period of propor-
tional increasing of bit flips as the number of update opera-
tions increased. We must keep this in-mind when evaluating
data structures for bit flips, since we must ensure that the
ranges of inputs we test reach the expected scale for our data
structures, or we may be blind to its true behavior. The cache
size affects this, of course, but it does so in a predictable way
in the case of xrbt, with only the warm-up period being ex-
tended by an amount proportional to cache size. Of course,
the behaviour may be heavily dependent on write patterns.
Thus, we recommend further experiments and that system
designers take caches into account when evaluating bit flip
behaviour of their systems.

The cache additionally affects the read amplification seen
in XOR linked lists, wherein the XOR linked list implemen-
tation issues more reads than a doubly-linked list implemen-
tation. However, the reads that make it to memory are the
same between the two, indicating that those extra reads are
always in-cache. The resultant write reduction and bit flip
reduction is well worth the cost since a read from cache is
significantly cheaper than a write to memory.

7 Future Work

Although we covered a range of different data structures,
there are many more used in storage systems that should be
examined, such as B-trees [1] and LSM-trees [27], both to
understand their bit flipping behavior as compared to other
data structures and to examine for potential optimizations.
In addition to data structures, different algorithms such as
sorting can be evaluated for bit flips. Though this may come
down to data movement minimization, there may be opti-
mizations in locality that could affect bit flips.

While data structure and algorithm evaluation can pro-
vide system designers with insights for how to reduce bit
flips, examining bit flips in a large system, including one that
properly implements consistency and our suggested stack
frame modifications (perhaps through compiler modifica-
tion), would be worthwhile. There are a number of BNVM-
based key-value stores [37]; comparing them for bit flips
could demonstrate the benefits of some designs over others.

Studying bit flips directly is a good metric for understand-
ing power consumption and wear, but a better understanding
through the evaluation of real BNVM would be illuminat-
ing. The power study discussed earlier was derived from a
number of research papers that give approximate numbers
or estimates. On a real system, we could measure power
consumption, and cooperation with vendors may enable ac-
curate studies of wear caused by bit flips. Additionally, some
technologies (e.g., PCM) have a disparity between writing a
1 or a 0, something that could be leveraged by software (in
cooperation with hardware) to further optimize power use.

8 Conclusion

The pressures from new storage hardware trends compel us
to explore new optimization goals as BNVM becomes more
common as a persistent store; the read/write asymmetry of
BNVM must be addressed by reducing bit flips. As we
showed, the number of raw writes is not always a faithful
proxy for the number of bit flips, so simple techniques that
minimize writes overall may be ineffective. At the OS level,
we can reconsider memory allocator design to minimize bit
flips as pointers are written. Different data structures use and
write pointers in different ways, leading to different trade-
offs for data structures when considering BNVM applica-
tions. At the compiler level, we show that careful layout of
stack frames can have a significant impact on bit flips dur-
ing program operation. Since it can be challenging to reason
directly about how application-level writes translate to raw
writes due to the compiler and caches, more sophisticated
profiling tools are needed to help navigate the tradeoffs be-
tween performance, consistency, power use, and wear-out.

Most importantly, we demonstrated the value of reason-
ing at the application level about bit flips, reducing bit flips
by 1.13− 3.56× with minor code changes, no significant
increase in complexity, and little performance loss. The
data structures we studied had novel implementations, but
were algorithmically the same as their standard implemen-
tations; yet we still saw dramatic improvements with little
effort. This indicates that reasoning about bit flips in soft-
ware can yield significant improvements over in-hardware
solutions and opens the door for additional research at a va-
riety of levels of the stack for bit flip reduction. These tech-
niques translate directly to power saving and lifetime im-
provements, both important optimizations for early adoption
of new storage trends that will have lasting impact on sys-
tems, applications, and hardware.

Availability

Source code, scripts, Gem5 bit flip patch, and raw re-
sults are available at https://gitlab.soe.ucsc.edu/
gitlab/crss/opensource-bitflipping-fast19.
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Abstract

Low latency storage media such as byte-addressable per-
sistent memory (PM) requires rethinking of various data
structures in terms of optimization. One of the main chal-
lenges in implementing hash-based indexing structures on
PM is how to achieve efficiency by making effective use
of cachelines while guaranteeing failure-atomicity for dy-
namic hash expansion and shrinkage. In this paper, we
present Cacheline-Conscious Extendible Hashing (CCEH)
that reduces the overhead of dynamic memory block man-
agement while guaranteeing constant hash table lookup time.
CCEH guarantees failure-atomicity without making use of
explicit logging. Our experiments show that CCEH effec-
tively adapts its size as the demand increases under the fine-
grained failure-atomicity constraint and its maximum query
latency is an order of magnitude lower compared to the state-
of-the-art hashing techniques.

1 Introduction

In the past few years, there have been numerous efforts to
leverage the byte-addressability, durability, and high perfor-
mance of persistent memory (PM) [7, 13, 18, 32, 34, 39, 40,
45, 47]. In particular, latency critical transactions on storage
systems can benefit from storing a small number of bytes to
persistent memory. The fine-grained unit of data I/O in per-
sistent memory has generated interest in redesigning block-
based data structures such as B+-trees [2, 11, 20, 28, 46].
Although a large number of previous studies have improved
tree-based indexing structures for byte-addressable persis-
tent memory, only a few have attempted to adapt hash-
based indexing structures to persistent memory [48, 49].
One of the main challenges in hash-based indexing for PM
is in achieving efficient dynamic rehashing under the fine-
grained failure-atomicity constraint. In this paper, we present
Cacheline-Conscious Extendible Hashing (CCEH), which is
a variant of extendible hashing [6] optimized for PM to mini-
mize cacheline accesses and satisfy failure-atomicity without
explicit logging.

Due to the static flat structure of hash-based indexes, they
can achieve constant lookup time. However, static hashing
does not come without limitations. Such traditional hashing
schemes must typically estimate the size of hash tables and
allocate sufficient buckets in advance. For certain applica-
tions, this is a feasible task. For example, in-memory hash
tables in key-value stores play a role of fixed-sized buffer
cache, i.e., recent key-value records replace old records.
Hence, we can set the hash table size a priori based on the
available memory space.

However, not all applications can estimate the hash table
size in advance, with database systems and file systems be-
ing typical examples. If data elements are dynamically in-
serted and deleted, static fixed-sized hashing schemes suffer
from hash collisions, overflows, or under-utilization. To re-
solve these problems, dynamic resizing must be employed
to adjust the hash table size proportional to the number of
records. In a typical situation where the load factor (bucket
utilization) becomes high, a larger hash table must be cre-
ated, and a rehash that moves existing records to new bucket
locations must be performed.

Unfortunately, rehashing is not desirable as it degrades
system throughput as the index is prevented from being ac-
cessed during rehashing, which significantly increases the
tail latency of queries. To mitigate the rehashing overhead,
various optimization techniques, such as linear probing, sep-
arate chaining, and cuckoo hashing, have been developed to
handle hash collisions [4, 14, 25, 29, 31]. However, these
optimizations do not address the root cause of hash colli-
sions but defer the rehashing problem. As such, static hash-
ing schemes have no choice but to perform expensive full-
table (or 1/3-table [49]) rehash operations later if the allo-
cated hash table size is not sufficient.

In light of PM, rehashing requires a large number of
writes to persistent memory. As writes are expected to in-
duce higher latency and higher energy consumption in PM,
this further aggravates performance. Furthermore, with life-
time of PM expected to be shorter than DRAM, such extra
writes can be detrimental to systems employing PM.
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Unlike these static hashing schemes, extendible hash-
ing [6] dynamically allocates and deallocates memory space
on demand as in tree-structured indexes. In file systems,
extendible hash tables and tree-structured indexes such as
B-trees are used because of their dynamic expansion and
shrinkage capabilities. For example, extendible hashing is
used in Oracle ZFS [26], IBM GPFS [30, 33], Redhat GFS,
and GFS2 file systems [38, 44], while tree structured indexes
are used for SGI XFS, ReiserFS, and Linux EXT file sys-
tems. However, it is noteworthy that static hashing schemes
are not as popular as dynamic indexes because they fall short
of the dynamic requirements of file systems.

In this work, we show the effectiveness of extendible hash-
ing in the context of PM. Byte-addressable PM places new
challenges on dynamic data structures because the issue of
failure-atomicity and recovery must be considered with care
so that when recovered from failure, the data structure re-
turns to a consistent state. Unfortunately, extendible hash-
ing cannot be used as-is, but requires a couple of sophisti-
cated changes to accommodate failure-atomicity of dynamic
memory allocations on PM. As in other dynamic indexes,
extendible hashing manages discontiguous memory spaces
for hash buckets and the addresses of buckets are stored in
a separate directory structure. When a bucket overflows or
is underutilized, extendible hashing performs split or merge
operations as in a tree-structured index, which must be per-
formed in a failure-atomic way to guarantee consistency.

Cacheline-Conscious Extendible Hashing (CCEH) is a
variant of extendible hashing with engineering decisions for
low latency byte-addressable storage such as PM. For low la-
tency PM, making effective use of cachelines becomes very
important [11, 16, 35, 43]. Therefore, CCEH sets the size
of buckets to a cacheline in order to minimize the num-
ber of cacheline accesses. Although CCEH manages a fine-
grained bucket size, CCEH reduces the overhead of directory
management by grouping a large number of buckets into an
intermediate-sized segment. That is, CCEH works in three
levels, namely, the global directory, segments pointed by the
directory, and cache-line sized buckets in the segment. We
also present how CCEH guarantees the failure-atomicity and
recoverability of extendible hash tables by carefully enforc-
ing the ordering of store instructions.

The main contributions of this work are as follows:
• First, we propose to use cacheline-sized buckets but re-

duce the size of the directory by introducing intermedi-
ate level segments to extendible hashing. The three-level
structure of our cacheline-conscious extendible hashing
(CCEH) guarantees that a record can be found within two
cacheline accesses.

• Second, we present a failure-atomic rehashing (split and
merge) algorithm for CCEH and a recovery algorithm
based on MSB (most significant bit) keys that does not use
explicit logging. We also show that MSB rather than LSB
(least significant bit) is a more effective key for extendible

hashing on PM, which is contrary to popular belief.
• Third, our extensive performance study shows that CCEH

effectively adapts its size as needed while guaranteeing
failure-atomicity and that the tail latency of CCEH is up
to 3.4× and 8× shorter than that of the state-of-the-art
Level Hashing [49] and Path Hashing [48], respectively.
The rest of this paper is organized as follows. In Sec-

tion 2, we present the background and the challenges of ex-
tendible hashing on PM. In Section 3, we present Cacheline-
Conscious Extendible Hashing and show how it provides
failure-atomicity while reducing the amount of writes to PM.
In Section 4, we present the recovery algorithm of CCEH. In
Section 5, we discuss concurrency and consistency issues of
CCEH. In Section 6, we evaluate the performance of PM-
based hash tables. Finally, we conclude the paper in Sec-
tion 7.

2 Background and Related Work

The focus of this paper is on dynamic hashing, that is,
hashing that allows the structure to grow and shrink ac-
cording to need. While various methods have been pro-
posed [17, 19, 22], our discussion concentrates on extendible
hashing as this has been adopted in numerous real sys-
tems [26, 30, 33, 38, 44] and as our study extends it for PM.

Extendible Hashing: Extendible hashing was developed
for time-sensitive applications that need to be less affected
by full-table rehashing [6]. In extendible hashing, re-hashing
is an incremental operation, i.e., rehashing takes place per
bucket as hash collisions make a bucket overflow. Since ex-
tendible hashing allocates a bucket as needed, pointers to
dynamically allocated buckets need to be managed in a hi-
erarchical manner as in B-trees in such a way that the split
history can be kept track of. This is necessary in order to
identify the correct bucket for a given hash key.

Figure 1 shows the legacy design of extendible hashing. In
extendible hashing, a hash bucket is pointed to by an entry of
a directory. The directory, which is simply a bucket address
table, is indexed by either the leading (most significant) or
the trailing (least significant) bits of the key. In the example
shown in Figure 1, we assume the trailing bits are used as in
common practice and each bucket can store a maximum of
five key-value records. The global depth G stores the number
of bits used to determine a directory entry. Hence, it deter-
mines the maximum number of buckets, that is, there are 2G

directory entries. When more hash buckets are needed, ex-
tendible hashing doubles the size of the directory by incre-
menting G. From the example, G is 2, so we use the low end
2 bits of the key to designate the directory entry in the direc-
tory of size 4 (22). Eventually, when the buckets fill up and
split, needing more directory entries, G can be incremented
to 3, resulting in a directory of size 8.

While every directory entry points to a bucket, a single
bucket may be pointed to by multiple directory entries. Thus,
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Figure 1: Extendible Hash Table Structure

each bucket is associated with a local depth (L), which indi-
cates the length of the common hash key in the bucket. If a
hash bucket is pointed by k directory entries, the local depth
of the bucket is L = G− log2k. For example in Figure 1, B2
is pointed to by 2 directory entries. For this bucket, as the
global depth (G) is 2 and the bucket is pointed to by two
directory entries, the local depth of the bucket (L) is 1.

When a hash bucket overflows, extendible hashing com-
pares its local depth against the global depth. If the local
depth is smaller, this means that there are multiple directory
entries pointing to the bucket, as for bucket B2 in Figure 1.
Thus, if B2 overflows, it can be split without increasing the
size of the directory by dividing the directory entries to point
to two split buckets. Thus, G will remain the same, but the
Ls for the two resulting buckets will both be incremented to
2. In the case where the bucket whose local depth is equal
to the global depth overflows, i.e., B1 or B3 in Figure 1, the
directory needs to be doubled. In so doing, both the global
depth and the local depth of the two buckets that result from
splitting the overflowing bucket also need to be incremented.
Note, however, that in so doing, overhead is small as rehash-
ing of the keys or moving of data only occur for keys within
the bucket. With the larger global and local depths, the only
change is that now, one more bit of the hash key is used to
address the new buckets.

The main advantage of extendible hashing compared to
other hashing schemes is that the rehashing overhead is in-
dependent of the index size. Also, unlike other static hash ta-
bles, no extra buckets need to be reserved for future growth
that results in extendible hashing having higher space utiliza-
tion than other hashing schemes [37]. The disadvantage of
extendible hashing is that each hash table reference requires
an extra access to the directory. Other static hashing schemes
do not have this extra level of indirection, at the cost of full-
table rehashing. However, it is known that the directory ac-
cess incurs only minor performance overhead [23, 37].

PM-based Hashing: Recently a few hashing schemes,
such as Level Hashing [49], Path Hashing [48], and

PCM(Phase-Change Memory)-friendly hash table
(PFHT) [3] have been proposed for persistent memory
as the legacy in-memory hashing schemes fail to work on
persistent memory due to the lack of consistency guarantees.
Furthermore, persistent memory is expected to have limited
endurance and asymmetric read-write latencies. We now
review these previous studies.

PFHT is a variant of bucketized cuckoo hashing designed
to reduce write accesses to PCM as it allows only one cuckoo
displacement to avoid cascading writes. The insertion per-
formance of cuckoo hashing is known to be about 20∼ 30%
slower than the simplest linear probing [29]. Furthermore, in
cuckoo hashing, if the load factor is above 50%, the expected
insertion time is no longer constant. To improve the inser-
tion performance of cuckoo hashing, PFHT uses a stash to
defer full-table rehashing and improve the load factor. How-
ever, the stash is not a cache friendly structure as it linearly
searches a long overflow chain when failing to find a key in
a bucket. As a result, PFHT fails to guarantee the constant
lookup cost, i.e., its lookup cost is not O(1) but O(S) where
S is the stash size.

Path hashing is similar to PFHT in that it uses a stash al-
though the stash is organized as an inverted binary tree struc-
ture. With the binary tree structure, path hashing reduces the
lookup cost. However, its lookup time is still not constant but
in log scale, i.e., O(logB), where B is the number of buckets.

Level hashing consists of two hash tables organized in two
levels. The top level and bottom level hash tables take turns
playing the role of the stash. When the bottom level over-
flows, the records stored in the bottom level are rehashed to
a 4× larger hash table and the new hash table becomes the
new top level, while the previous top level hash table be-
comes the new bottom level stash. Unlike path hashing and
PFHT, level hashing guarantees constant lookup time.

While level hashing is an improvement over previous
work, our analysis shows that the rehashing overhead is no
smaller than legacy static hashing schemes. As the bottom
level hash table is always almost full in level hashing, it
fails to accommodate a collided record resulting in another
rehash. The end result is that level hashing is simply per-
forming a full-table rehash in two separate steps. Consider
the following scenario. Say, we have a top level hash table
that holds 100 records and the bottom level stash holds 50
records. Hence, we can insert 150 records without rehashing
if a hash collision does not occur. When the next 151st inser-
tion incurs a hash collision in the bottom level, the 50 records
in the bottom level stash will be rehashed to a new top level
hash table of size 200 such that we have 150 free slots. Af-
ter the rehash, subsequent 150 insertions will make the top
level hash table overflow. However, since the bottom level
hash table does not have free space either, the 100 records in
the bottom level hash table have to be rehashed. To expand a
hash table size to hold 600 records, level hashing rehashes a
total of 150 records, that is, 50 records for the first rehashing
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and another 100 records for the second rehashing.
On the other hand, suppose the same workload is pro-

cessed by a legacy hash table that can store 150 records as
the initial level hash table does. Since the 151st insertion re-
quires more space in the hash table, we increase the hash ta-
ble size by four times instead of two as the level hashing does
for the bottom level stash. Since the table now has 600 free
spaces, we do not need to perform rehashing until the 601th
insertion. Up to this point, we performed rehashing only once
and only 150 records have been rehashed. Interestingly, the
number of rehashed records are no different. We note that
the rehashing overhead is determined by the hash table size,
not by the number of levels. As we will show in Section 6,
the overhead of rehashing in level hashing is no smaller than
other legacy static hashing schemes.

To mitigate the shortage of space in bottom-level stash,
level hashing proposes to use the bottom-to-top cuckoo dis-
placement that evicts records from the bottom level stash to
the top level hash table. However, in our experiments, when
we insert 160 million records into a level hash table we ob-
serve the bottom-to-top cuckoo displacement occurs with a
probability of 0.001% (only 1882 times) while rehashing oc-
curs 14 times. As such, we find that in our experiments,
bottom-to-top eviction rarely helps in improving the load
factor or postponing rehashing.

One of the challenges in cuckoo displacement is that two
cachelines need to be updated in a failure-atomic manner as
we move a record into another bucket. If a system crashes
during migration, there can be duplicate records after the
system recovers. Suppose one of the duplicate records ex-
ists in the top level and the other record is in the bottom level.
When a subsequent transaction updates the record, the one in
the top level will be updated. Later, the top level hash table
becomes the bottom level stash and another transaction will
access the new top level hash table and find the stale record,
which is not acceptable. Level hashing proposes to delete one
of the two items when a subsequent transaction updates the
item. Since every update transaction has to detect if there is a
duplicate record, update transactions in level hashing needs
to access other cachelines that have the possibility of having
a duplicate record. In the worst case, each update transaction
has to access every cacheline in each bucket referenced by
two cuckoo hash functions in both levels. We note that such
a worst case happens when there are no duplicate records,
which would be the most common case in practice. To fix
the problem in a more efficient way, we need to scan the en-
tire hash table every time the system recovers from failure.

3 Cacheline-Conscious Extendible Hashing
In this section, we present Cacheline-Conscious Extendible
Hashing (CCEH), a variant of extendible hashing that over-
comes the shortcomings of traditional extendible hashing by
guaranteeing failure-atomicity and reducing the number of
cacheline accesses for the benefit of byte-addressable PM.

Figure 2: Cacheline-Conscious Extendible Hashing

3.1 Three Level Structure of CCEH

In byte-addressable PM, the unit of an atomic write is a word
but the unit of data transfer between the CPU and memory
corresponds to a cacheline. Therefore, the write-optimal size
of a hash bucket is a cacheline. However, a cacheline, which
is typically 64 bytes, can hold no more than four key-value
pairs if the keys and values are word types. Considering that
each cacheline-sized bucket needs an 8-byte pointer in the
directory, the directory can be the tail wagging the dog, i.e.,
if each 64-byte bucket is pointed by a single 8-byte direc-
tory entry, the directory can be as large as 1/8 of the total
bucket size. If multiple directory entries point to the same
bucket, the directory size can be even larger. To keep the di-
rectory size under control, we can increase the bucket size.
However, there is a trade-off between bucket size and lookup
performance as increasing the bucket size will make lookup
performance suffer from the large number of cacheline ac-
cesses and failure to exploit cache locality.

In order to strike a balance between the directory size and
lookup performance, we propose to use an intermediate layer
between the directory and buckets, which we refer to as a
segment. That is, a segment in CCEH is simply a group of
buckets pointed to by the directory. The structure of CCEH
is illustrated in Figure 2. To address a bucket in the three
level structure, we use the G bits (which represents the global
depth) as a segment index and an additional B bits (which de-
termines the number of cachelines in a segment) as a bucket
index to locate a bucket in a segment.

In the example shown in Figure 2, we assume each bucket
can store two records (delimited by the solid lines within the
segments in the figure). If we use B bits as the bucket index,
we can decrease the directory size by a factor of 1/2B (1/256
in the example) compared to when the directory addresses
each bucket directly. Note that although the three level struc-
ture decreases the directory size, it allows access to a specific
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(a) Step 1: Create Sibling

(b) Step 2: Split and Lazy Deletion

Figure 3: Failure-Atomic Segment Split Example

bucket (cacheline) without accessing the irrelevant cache-
lines in the segment.

Continuing the example in Figure 2, suppose the given
hash key is 10101010...11111110(2) and we use the least
significant byte as the bucket index and the first two lead-
ing bits as the segment index since the global depth is 2.
We will discuss why we use the leading bits instead of trail-
ing bits as the segment index later in Section 3.4. Using
the segment index, we can lookup the address of the cor-
responding segment (Segment 3). With the address of Seg-
ment 3 and the bucket index (11111110(2)), we can directly
locate the address of the bucket containing the search key,
i.e., (&Segment3+64× 11111110(2)). Even with large seg-
ments, the requested record can be found by accessing only
two cachelines — one for the directory entry and the other
for the corresponding bucket (cacheline) in the segment.

3.2 Failure-Atomic Segment Split
A split performs a large number of memory operations. As
such, a segment split in CCEH cannot be performed by a
single atomic instruction. Unlike full-table rehashing that
requires a single failure-atomic update of the hash table
pointer, extendible hashing is designed to reuse most of the
segments and directory entries. Therefore, the segment split
algorithm of extendible hashing performs several in-place
updates in the directory and copy-on-writes.

In the following, we use the example depicted in Fig-
ure 3 to walk through the detailed workings of our proposed
failure-atomic segment split algorithm. Suppose we are to
insert key 1010...11111110(2). Segment 3 is chosen as the
leftmost bit is 1, but the 255th (11111111(2)th) bucket in the
segment has no free space, i.e., a hash collision occurs. To
resolve the hash collision, CCEH allocates a new Segment
and copies key-value records not only in the collided bucket
of the segment but also in the other buckets of the same seg-
ment according to their hash keys. In the example, we allo-
cate a new Segment 4 and copy the records, whose key pre-
fix starts with 11, from Segment 3 to Segment 4. We use the
two leading bits because the local depth of Segment 3 will
be increased to 2. If the prefix is 10, the record remains in
Segment 3, as illustrated in Figure 3(a).

In the next step, we update the directory entry for the new
Segment 4 as shown in Figure 3(b). First, (1) the pointer and
the local depth for the new bucket are updated. Then, (2)
we update the local depth of the segment that we split, Seg-
ment 3. I.e., we update the directory entries from right to left.
The ordering of these updates must be enforced by inserting
an mfence instruction in between each instruction. Also, we
must call clflush when it crosses the boundary of cache-
lines, as was done in FAST and FAIR B-tree [11]. Enforcing
the order of these updates is particularly important to guaran-
tee recovery. Note that these three operations cannot be done
in an atomic manner. That is, if a system crashes during the
segment split, the directory can find itself in a partially up-
dated inconsistent state. For example, the updated pointer to
a new segment is flushed to PM but two local depths are not
updated in PM. However, we note that this inconsistency can
be easily detected and fixed by a recovery process without
explicit logging. We detail our recovery algorithm later in
Section 4.

A potential drawback of our split algorithm for three level
CCEH is that a hash collision may split a large segment
even if other buckets in the same segment have free space.
To improve space utilization and avoid frequent memory al-
location, we can employ ad hoc optimizations such as lin-
ear probing or cuckoo displacement. Although these ad hoc
optimizations help defer expensive split operations, they in-
crease the number of cacheline accesses and degrade the in-
dex lookup performance. Thus, they must be used with care.
In modern processors, serial memory accesses to adjacent
cachelines benefit from hardware prefetching and memory
level parallelism [11]. Therefore, we employ simple linear
probing that bounds the number of buckets to probe to four
cachelines to leverage memory level parallelism.

Similar to the segment split, a segment merge performs
the same operations, but in reverse order. That is, (1) we mi-
grate the records from the right segment to the left segment.
Next, (2) we decrease the local depths and update pointers
of the two segments in the directory. Note that we must up-
date these directory entries from left to right, which is the
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opposite direction to that used for segment splits. This order-
ing is particularly important for recovery. Details about the
ordering and recovery will be discussed in Section 4.

3.3 Lazy Deletion

In legacy extendible hashing, a bucket is atomically cleaned
up via a page write after a split such that the bucket does not
have migrated records. For failure-atomicity, disk-based ex-
tendible hashing updates the local depth and deletes migrated
records with a single page write.

Unlike legacy extendible hashing, CCEH does not delete
migrated records from the split segment. As shown in Fig-
ure 3(b), even if Segments 3 and 4 have duplicate key-value
records, this does no harm. Once the directory entry is up-
dated, queries that search for migrated records will visit
the new segment and queries that search for non-migrated
records will visit the old segment but they always succeed in
finding the search key since the split Segment 3 contains all
the key-value records, with some unneeded duplicates.

Instead of deleting the migrated records immediately, we
propose lazy deletion, which helps avoid the expensive copy-
on-write and reduce the split overhead. Once we increase the
local depth of the split segment in the directory entry, the
migrated keys (those crossed-out keys in Figure 3(b)) will
be considered invalid by subsequent transactions. Therefore,
there is no need to eagerly overwrite migrated records be-
cause they will be ignored by read transactions and they can
be overwritten by subsequent insert transactions in a lazy
manner. For example, if we insert a record whose hash key
is 1010...11111110(2), we access the second to last bucket of
Segment 3 (in Figure 3(b)) and find the first record’s hash key
is 1000...11111110(2), which is valid, but the second record’s
hash key is 1101...11111110(2), which is invalid. Then, the
insert transaction replaces the second record with the new
record. Since the validity of each record is determined by the
local depth, the ordering of updating directory entries must
be preserved for consistency and failure-atomicity.

3.4 Segment Split and Directory Doubling

Although storing a large number of buckets in each seg-
ment can significantly reduce the directory size, directory
doubling is potentially the most expensive operation in large
CCEH tables. Suppose the segment pointed to by the first
directory entry splits, as shown in Figure 4(a). To accommo-
date the additional segment, we need to double the size of
the directory and make each existing segment referenced by
two entries in the new directory. Except for the two new seg-
ments, the local depths of existing segments are unmodified
and they are all smaller than the new global depth.

For disk-based extendible hashing, it is well known that
using the least significant bits (LSB) allows us to reuse the
directory file and to reduce the I/O overhead of directory

(a) Directory with Global Depth=2

(b) Directory Doubling with LSB

(c) Directory Doubling with MSB

Figure 4: MSB segment index makes adjacent directory en-
tries be modified together when a segment splits

doubling because we can just copy the directory entries as
one contiguous block and append it to the end of the file
as shown in Figure 4(b). If we use the most significant bits
(MSB) for the directory, new directory entries have to be
sandwiched in between existing entries, which makes all
pages in the directory file dirty.

Based on this description, it would seem that making use
of the LSB bits would be the natural choice for PM as well.
In contrary, however, it turns out when we store the directory
in PM, using the most significant bits (MSB) performs better
than using the LSB bits. This is because the existing direc-
tory entries cannot be reused even if we use LSB since all
the directory entries need to be stored in contiguous memory
space. That is, when using LSB, we must allocate twice as
much memory as the old directory uses, copy the old direc-
tory to the first half as well as to the second half.

The directory doubling is particularly expensive because
of cacheline flushes that are required for failure atomicity.
In fact, the overhead of doubling the directory with two
memcpy() function calls and iterating through a loop to
duplicate each directory entry is minimal compared to the
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overhead of clflush. Note that when we index 16 million
records using 16 KByte segments, it takes 555 usec and 631
usec to double the directory when we use LSB and MSB re-
spectively. However, clflush() takes about 2 msec (3∼4×
higher). In conclusion, LSB does not help reduce the over-
head of enlarging the directory size unlike the directory file
on disks.

The main advantage of using MSB over LSB comes from
reducing the overhead of segment splits, not from reducing
the overhead of directory doubling. If we use MSB for the
directory, as shown in Figure 4(c), the directory entries for
the same segment will be adjacent to each other such that
they benefit from spatial locality. That is, if a segment splits
later, multiple directory entries that need to be updated will
be adjacent. Therefore, using MSB as segment index reduces
the number of cacheline flushes no matter what local depth
a split segment has. We note, however, that even though this
has a positive effect of reducing the overhead for directory
doubling, in terms of performance, it is more important to re-
duce the overhead of segment splits as segment splits occur
much more frequently. Even though preserving the spatial
locality has little performance effect on reducing the over-
head of directory doubling because both MSB and LSB seg-
ment index call the same number of clflush instructions
in batches when doubling the directory, MSB segment in-
dex has a positive effect of reducing the overhead of segment
splits, which occur much more frequently than directory dou-
bling. As we will see next, using MSB has another benefit of
allowing for easier recovery.

4 Recovery

Various system failures such as power loss can occur while
hash tables are being modified. Here, we present how CCEH
achieves failure-atomicity by discussing system failures at
each step of the hash table modification process.

Suppose a system crashes when we store a new record into
a bucket. First, we store the value and its key next. If the key
is of 8 bytes, the key can be atomically stored using the key
itself as a commit mark. Even if the key is larger than 8 bytes,
we can make use of the leading 8 bytes of the key as a com-
mit mark. For example, suppose the key type is a 32 byte
string and we use the MSB bits as the segment index and
the least significant byte as the bucket index. We can write
the 24 byte suffix first, call mfence, store the leading 8 bytes
as a commit mark, and call clflush. This ordering guaran-
tees that the leading 8 bytes are written after all the other
parts of the record have been written. Even if the cacheline
is evicted from the CPU cache, partially written records will
be ignored because the key is not valid for the segment, i.e.,
the MSB bits are not a valid segment index. This is the same
situation as when our lazy deletion considers a slot with any
invalid MSB segment index as free space. Therefore, the par-
tially written records without the correct leading 8 bytes will

(a) Tree Representation of Segment Split History

(b) Split: Update Pointer and Level for new Segment from Right to Left

(c) Split: Increase Level of Split Segment from Right to Left

Figure 5: Buddy Tree Traversal for Recovery

be ignored by subsequent transactions. Since all hash tables
including CCEH initialize new hash tables or segments when
they are first allocated, there is no chance for an invalid key
to have a valid MSB segment index by pure luck. To delete
a record, we change the leading 8 bytes to make the key in-
valid for the segment. Therefore, the insertion and deletion
operations that do not incur bucket splits are failure-atomic
in CCEH.

Making use of the MSB bits as a segment index not only
helps reduce the number of cacheline flushes but also makes
the recovery process easy. As shown in Figure 5, with the
MSB bits, the directory entries allow us to keep track of the
segment split history as a binary buddy tree where each node
in the tree represents a segment. When a system crashes, we
visit directory entries as in binary tree traversal and check
their consistency, which can be checked by making use of G
and L. That is, we use the fact that, as we see in Figure 3,
if G is larger than L then the directory buddies must point to
the same segment, while if G and L are equal, then each must
point to different segments.
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Algorithm 1 Directory Recovery
1: while i < Directory.Capacity do
2: DepthCur← Directory[i].Depthlocal
3: Stride← 2(Depthglobal−DepthCur)

4: j← i+Stride . Buddy Index
5: DepthBuddy← Directory[ j].Depthlocal
6: if DepthCur < DepthBuddy then . Left half
7: for k← j−1; i < k;k← k−1 do
8: Directory[k].Depthlocal ← DepthCur

9: else
10: if DepthCur = DepthBuddy then . Right half
11: for k← j+1;k < j+Stride;k← k+1 do
12: Directory[k]← Directory[ j]
13: else . DepthCur > DepthBuddy; Shrink
14: for k← j+Stride−1; j <= k;k← k−1 do
15: Directory[k]←Directory[ j+Stride−1]
16: i← i+2(Depthglobal−(DepthCur−1))

Let us now see how we traverse the directories. Note that
the local depth of each segment and the global depth deter-
mine the segment’s stride in the directory, i.e., how many
times the segment appears contiguously in the directory.
Since the leftmost directory entry is always mapped to the
root node of the buddy tree because of the in-place split al-
gorithm, we first visit the leftmost directory entry and check
its buddy entry. In the walking example, the buddy of S1 (di-
rectory[0]) is S5 (directory[2]) since its stride is 2G−L = 2.
After checking the local depth and pointer of its right buddy,
we visit the parent node by decreasing the local depth by one.
I.e., S1 in level 2. Now, the stride of S1 in level 2 is 2G−L = 4.
Hence, we visit S3 (directory[4]) and check its local depth.
Since the local depth S3 is higher (4 in the example), we can
figure out that S3 has split twice and its stride is 1. Hence,
we visit directory[5] and check its consistency, continuing
this check until we find any inconsistency. The pseudo code
of this algorithm is shown in Algorithm 1.

Suppose a system crashes while splitting segment S2 in
the example. According to the split algorithm we described
in Section 3.2, we update the directory entries for the split
segment from right to left. Say, a system crashes after mak-
ing directory[11], colored red in the Figure 5(b), point to
a new segment S11. The recovery process will traverse the
buddy tree and visit directory[8]. Since the stride of S2 is
4, the recovery process will make sure directory[9], direc-
tory[10], and directory[11] have the same local depth and
point to the same segment. Since directory[11] points to a
different segment, we can detect the inconsistency and fix it
by restoring its pointer. If a system crashes after we update
directory[10] and directory[11] as shown in Figure 5(c), we
can either restore the two buddies or increase the local depth
of directory[8] and directory[9].

5 Concurrency and Consistency Model

Rehashing is particularly challenging when a large number
of transactions are concurrently running because rehashing
requires all concurrent write threads to wait until rehashing
is complete. To manage concurrent accesses in a thread-safe
way in CCEH, we adapt and make minor modifications to
the two level locking scheme proposed by Ellis [5], which is
known to show reasonable performance for extendible hash-
ing [24]. For buckets, we protect them using a reader/writer
lock. For segments, we have two options. One option is that
we protect each segment using a reader/writer lock as with
buckets. The other option is the lock-free access to segments.

Let us first describe the default reader/writer lock option.
Although making use of a reader/writer lock for each seg-
ment access is expensive, this is necessary because of the
in-place lazy deletion algorithm that we described in Sec-
tion 3.2. Suppose a read transaction T1 visits a segment but
goes to sleep before reading a record in the segment. If we do
not protect the segment using a reader/writer lock, another
write transaction T2 can split the segment and migrate the
record to a new segment. Then, another transaction accesses
the split segment and overwrites the record that the sleeping
transaction is to read. Later, transaction T1 will not find the
record although the record exists in the new buddy segment.

The other option is lock-free access. Although lock-free
search cannot enforce the ordering of transactions, which
makes queries vulnerable to phantom and dirty reads prob-
lems [37], it is useful for certain types of queries, such
as OLAP queries, that do not require a strong consistency
model because lock-free search helps reduce query latency.

To enable lock-free search in CCEH, we cannot use the
lazy deletion and in-place updates. Instead, we can copy-on-
write (CoW) split segments. With CoW split, we do not over-
write any existing record in the split segment. Therefore, a
lock-free query accesses the old split segment until we re-
place the pointer in the directory with a new segment. Un-
less we immediately deallocate the split segment, the read
query can find the correct key-value records even after the
split segment is replaced by two new segments. To deallo-
cate the split segment in a thread-safe way, we keep count
of how many read transactions are referencing the split seg-
ment. If the reference count becomes zero, we ask the per-
sistent heap memory manager to deallocate the segment. As
such, a write transaction can split a segment even while it is
being accessed by read transactions.

We note that the default CCEH with lazy deletion has a
much smaller overhead for segment split than the CCEH
with CoW split, which we denote as CCEH(C), because it
reuses the original segment so that it can allocate and copy
only half the amount required for CCEH(C). If a system fail-
ure occurs during a segment split, the recovery cost for lazy
deletion is also only half of that of CCEH(C). On the other
hand, CCEH(C) that enables lock-free search at the cost of
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weak consistency guarantee and higher split overhead shows
faster and more scalable search performance, as we will
show in Section 6. Another benefit of CCEH(C) is that its
probing cost for search operations is smaller than that of
CCEH with lazy deletion because all the invalid keys are
overwritten as NULL.

For more scalable systems, lock-free extendible hashing
has been studied by Shalev et al. [36]. However, such lock-
free extendible hashing manages each key-value record as a
split-ordered list, which fails to leverage memory level paral-
lelism and suffers from a large number of cacheline accesses.

To minimize the impact of rehashing and reduce the tail la-
tency, numerous hash table implementations including Java
Concurrent Package and Intel Thread Building Block parti-
tion the hash table into small regions and use an exclusive
lock for each region [8, 12, 21, 27], hence avoiding full-table
rehashing. Such region-based rehashing is similar to our
CCEH in the sense that CCEH rehashes only one segment
at a time. However, we note that the existing region-based
concurrent hash table implementations are not designed to
guarantee failure-atomicity for PM. Furthermore, their con-
current hash tables use separate chaining hash tables, not dy-
namic hash tables [8, 12, 21, 27].

6 Experiments

We run experiments on a workstation that has four Intel
Xeon Haswell-EX E7-4809 v3 processors (8 cores, 2.0GHz,
8×32KB instruction cache, 8×32KB data cache, 8×256KB
L2 cache, and 20MB L3 cache) and 64GB of DDR3 DRAM.
Since byte-addressable persistent main memory is not com-
mercially available yet, we emulate persistent memory using
Quartz, a DRAM-based PM latency emulator [9, 41]. To em-
ulate write latency, we inject stall cycles after each clflush

instructions, as was done in previous studies [10, 20, 15, 35,
42].

A major reason to use dynamic hashing over static hashing
is to dynamically expand or shrink hash table sizes. There-
fore, we set the initial hash table sizes such that they can store
only a maximum of 2048 records. For all experiments, we in-
sert 160 million random keys, whose keys and values are of
8 bytes. Although we do not show experimental results for
non-uniformly distributed keys such as skewed distributions
due to the page limit, the results are similar because well
designed hash functions convert a non-uniform distribution
into one that is close to uniform [1].

6.1 Quantification of CCEH Design
In the first set of experiments, we quantify the performance
effect of each design of CCEH. Figure 6 shows the insertion
throughput and the number of cacheline flushes when we in-
sert 160 million records into variants of the extendible hash
table, while increasing the size of the memory blocks pointed

by directory entries, i.e., the segment in CCEH and the hash
bucket in extendible hashing. We fix the size of the bucket
in CCEH to a single cacheline, but employ linear probing
and bound the probing distance to four cachelines to lever-
age memory level parallelism.
CCEH(MSB) and CCEH(LSB) show the performance of

CCEH when using MSB and LSB bits, respectively, as the
segment index and LSB and MSB bits, respectively, as the
bucket index. EXTH(LSB) shows the performance of legacy
extendible hashing that uses LSB as the bucket index, which
is the popular practice.

When the bucket size is 256 bytes, each insertion into
EXTH(LSB) calls clflush instructions about 3.5 times on
average. Considering an insertion without collision requires
only a single clflush to store a record in a bucket, 2.5
cacheline flushes are the amortized cost of bucket splits and
directory doubling. Note that CCEH(LSB) and EXTH(LSB)

are the same hash tables when a segment can hold a sin-
gle bucket. Therefore, their throughputs and number of
cacheline accesses are similar when the segment size of
CCEH(LSB) and the bucket size of EXTH(LSB) are 256 bytes.

As we increase the bucket size, EXTH(LSB) splits buckets
less frequently, decreasing the number of clflush down to
2.3. However, despite the fewer number of clflush calls,
the insertion and search throughput of EXTH(LSB) decreases
sharply as we increase the bucket size. This is because
EXTH(LSB) reads a larger number of cachelines to find free
space as the bucket size increases.

In contrast, as we increase the segment size up to 16KB,
the insertion throughput of CCEH(MSB) and CCEH(LSB) in-
crease because segment splits occur less frequently while the
number of cachelines to read, i.e., LLC (Last Level Cache)
misses, is not affected by the large segment size. However,
if the segment size is larger than 16KB, the segment split
results in a large number of cacheline flushes, which starts
degrading the insertion throughput.

Figure 6(b) shows CCEH(MSB) and CCEH(LSB) call a
larger number of clflush than EXTH(LSB) as the segment
size grows. This is because CCEH(MSB) and CCEH(LSB)

store records in a sparse manner according to the bucket
index whereas EXTH(LSB) sequentially stores rehashed
records without fragmented free spaces. Thus, the number
of updated cachelines written by EXTH(LSB) is only about
two-third of CCEH(LSB) and CCEH(MSB). From the experi-
ments, we observe the reasonable segment size is in the range
of 4KB to 16KB.

When the segment size is small, the amortized cost of seg-
ment splits in CCEH(MSB) is up to 29% smaller than that of
CCEH(LSB) because CCEH(MSB) updates adjacent directory
entries, minimizing the number of clflush instructions.
However, CCEH(LSB) accesses scattered cachelines and fails
to leverage memory level parallelism, which results in about
10% higher insertion time on average.

It is noteworthy that the search performance of
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Figure 7: Breakdown of Time Spent for Insertion While Varying R/W latency of PM

CCEH(MSB) and CCEH(LSB) improves as the segment size
grows. This is because the larger the segment size, the more
bits CCEH uses to determine which cacheline in the seg-
ment needs to be accessed, which helps CCEH perform lin-
ear probing less frequently. Figure 6(c) shows the average
number of extra cache line accesses per query caused by lin-
ear probing. As we increases the segment size, the average
probing distance decreases from 0.221 cacheline to 0.017
cacheline.

6.2 Comparative Performance
For the rest of the experiments, we use a single byte as
the bucket index such that the segment size is 16 Kbytes,
and we do not show the performance of CCEH(LSB) since
CCEH(MSB) consistently outperforms CCEH(LSB). We com-
pare the performance of CCEH against a static hash table
with linear probing (LINP), cuckoo hashing [29] (CUCK), path
hashing [48] (PATH), and level hashing [49] (LEVL).1

For path hashing, we set the reserved level to 8, which
achieves 92% maximum load factor as suggested by the au-
thors [48]. For cuckoo hashing, we let CUCK perform full-
table rehashing when it fails to displace a collided record 16
times, which shows the fastest insertion performance on our
testbed machine. Linear probing rehashes when the load fac-
tor reaches 95%.

1Our implementations of CCEH, linear probing (LINP), and cuckoo
hashing (CUCK) are available at https://github.com/DICL/CCEH. For path
hashing (PATH) and level hashing (LEVL), we downloaded the authors’ im-
plementations from https://github.com/Pfzuo/Level-Hashing.

In the experiments shown in Figure 7, as the latency for
reads and writes of PM are changed, we insert 160 million
records in batches and breakdown the insertion time into (1)
the bucket search and write time (denoted as Write), (2) the
rehashing time (denoted as Rehash), and (3) the time to dis-
place existing records to another bucket, which is necessary
for cuckoo hashing (denoted as Cuckoo Displacement).
CCEH shows the fastest average insertion time through-

out all read/write latencies. Even if we disable lazy dele-
tion but perform copy-on-write for segment splits, denoted as
CCEH(C), CCEH(C) outperforms LEVL. Note that the Rehash
overhead of CCEH(C) is twice higher than that of CCEH that
reuses the split segment via lazy deletion. However, as the
write latency of PM increases, CCEH(C) is outperformed by
CUCK and LINP because of frequent memory allocations and
expensive copy-on-write operations.

Interestingly, the rehashing overhead of LEVL is even
higher than that of LINP, which is just a single array that
employs linear probing for hash collisions. Although LINP

suffers from a large number of cacheline accesses due to
open addressing, its rehashing overhead is smaller than all
the other hashing schemes except CCEH. We note that the
rehashing overhead of LEVL and PATH is much higher than
that of LINP because the rehashing implementation of LEVL
calls clflush to delete each record in the bottom level stash
when rehashing it to the new enlarged hash table. This extra
clflush is unnecessary for LINP and CUCK, because we can
simply deallocate the previous hash table when the new hash
table is ready. If a system crashes before the new hash table
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Figure 8: Performance of concurrent execution: latency CDF and insertion/search throughput

is ready, we discard the new hash table and perform rehash-
ing from the beginning. As LEVL and PATH can employ the
same rehashing strategy, we implement the improved rehash-
ing code for them, denoted as LEVL(M) and PATH(M). With
the modification, LEVL(M) shows similar rehashing over-
head with CCEH(C). However, it is outperformed by CCEH

and LINP because its two-level structure and ad hoc op-
timizations such as bucketization increases the number of
cacheline accesses. Note that the bucket search and write
time (Write) of LEVL(M) is higher than that of CCEH and
even CUCK. It is noteworthy that LEVL performs the cuckoo
displacement much less frequently than CUCK and its over-
head is almost negligible.
PATH hashing shows the worst performance throughout

all our experiments mainly because its lookup cost is not
constant, but O(log2N). As the write latency increases, the
performance gap between LEVL and PATH narrows down be-
cause the lookup cost becomes relatively inexpensive com-
pared to the Write time.

6.3 Concurrency and Latency

Full-table rehashing is particularly challenging when multi-
ple queries are concurrently accessing a hash table because
it requires exclusive access to the entire hash table, which
blocks subsequent queries and increases the response time.
Therefore, we measure the latency of concurrent insertion
queries including the waiting time, whose CDF is shown
in Figure 8(a). For the workload, we generated query inter-
arrival patterns using Poisson distribution where the λ rate is
set to the batch processing throughput of LINP.

While the average batch insertion times differ by only
up to 180%, the maximum latency of PATH is up to 56×
higher than that of CCEH (378 msec vs. 21.3 sec), as shown
in Figure 8(a). This is because full-table rehashing blocks
a large number of concurrent queries and significantly in-
creases their waiting time. The length of each flat region in
the CDF graph represents how long each full-table rehash-
ing takes. PATH takes the longest time for rehashing whereas
LEVL, LINP, and CUCK spend a similar amount of time on
rehashing. In contrast, we do not find any flat region in the
graph for CCEH. Compared to LEVL, the maximum latency of

CCEH is reduced by over 90%.
For the experimental results shown in Figures 8(b) and (c),

we evaluate the performance of the multi-threaded versions
of the hashing schemes. Each thread inserts 160/k million
records in batches where k is the number of threads. Overall,
as we run a larger number of insertion threads, the insertion
throughputs of all hashing schemes improve slightly but not
linearly due to lock contention.

Individually, CCEH shows slightly higher insertion
throughput than CCEH(C) because of smaller split overhead.
LEVL, LINP, CUCK, and PATH use a fine-grained reader/writer
lock for each sub-array that contains 256 records (4 KBytes),
which is even smaller than the segment size of CCEH

(16 KBytes), but they fail to scale because of the rehashing
overhead. We note that these static hash tables must obtain
exclusive locks for all the fine-grained sub-arrays to perform
rehashing. Otherwise, queries will access a stale hash table
and return inconsistent records.

In terms of search throughput, CCEH(C) outperforms CCEH
as CCEH(C) enables lock-free search by disabling lazy dele-
tion and in-place updates as we described in Section 5. Since
the read transactions of CCEH(C) are non-blocking, search
throughput of CCEH(C) is 1.63×, 1.53×, and 2.74× higher
than that of CCEH, CUCK, and LEVL, respectively. Interest-
ingly, LEVL shows worse search performance than LINP.
Since level hashing uses cuckoo displacement and two-level
tables, which accesses noncontiguous cachelines multiple
times, it fails to leverage memory level parallelism and in-
creases the LLC misses. In addition, level hashing uses
small-sized buckets as in bucketized hashing and performs
linear probing for at most four buckets, which further in-
creases the number of cacheline accesses, hurting search per-
formance even more. As a result, LEVL shows poor search
throughput.

While the results in Figure 8(c) were for queries where
the lookup keys all existed in the hash table, Figure 9 shows
search performance for non-existent keys. Since CUCK ac-
cesses no more than two cachelines, it shows even higher
search performance than CCEH, which accesses up to four
cachelines due to linear probing. Although LINP shows sim-
ilar search performance with CCEH for positive queries, it
suffers from long probing distance for negative queries and
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shows very poor search performance. We see that LEVL also
suffers as making use of long probing, cuckoo displacement,
and stash hurts search performance even more. Interestingly,
PATH shows even worse search performance than LINP be-
cause of its non-constant lookup time.

We now consider the YCSB benchmarks representing re-
alistic workloads. Figure 10 shows the throughput results
of YCSB workload D as we vary the number of indexed
records. In the workload, 50% of the queries insert records
of size 32 bytes, while the other 50% read recently inserted
records. As we increase the number of indexed records,
the size of CCEH grows from 593 MBytes to 8.65 GBytes.
Since hashing allows for constant time lookups, insertion
and search throughput of most of the hashing schemes are
insensitive to the size of hash tables. However, we ob-
serve that throughput of CCEH decreases linearly because
of the hierarchical structure. When CCEH indexes 16 mil-
lion records, the directory size is only 1 MBytes. Since the
directory is more frequently accessed than segments, it has
a higher probability of being in the CPU cache. However,
when CCEH indexes 256 million records, the directory size
becomes 16 MBytes while the total size of all segments is
8 GBytes. Considering that the LLC size of our testbed ma-
chine is 20 MBytes, the LLC miss ratio for the directory
increases as the directory size grows. As a result, search
performance of CCEH becomes similar to that of LEVL and
CUCK when we index more than 64 million records and the
throughput gap between CCEH and LEVL(M) narrows down.

6.4 Load Factor and Recovery Overhead
Figure 11 shows the memory utilization of CCEH and LEVL.
The load factor of LEVL fluctuates between 50% and 90%
because of the full-table rehashing. On each rehash, the bot-
tom level hash table is quadrupled and the load factor drops
down to 50%, which is no different from other static hash
tables as we discussed in Section 2. In contrast, CCEH shows
more smooth curves as it dynamically allocates small seg-
ments. Note that we can improve the load factor by increas-
ing the linear probing distance as CCEH allocates a new seg-
ment when linear probing fails to insert a record into adja-
cent buckets. When we set the linear probing distance to 4

and 16, the load factor of CCEH, denoted as CCEH(4) and
CCEH(16), range from 50% to 60% and from 70% to 80%,
respectively. As we increase the distance up to 64, the load
factor of CCEH increases up to 92%. However, as we increase
the linear probing distance, the overall insertion and search
performance suffers from the larger number of cacheline ac-
cesses.

While recovery is trivial in other static hash tables, CCEH
requires a recovery process. To measure the recovery latency
of CCEH, we varied the number of indexed records and delib-
erately injected faults. When we insert 32 million and 128
million records, the directory size is only 2 MBytes and
8 MBytes, respectively, and our experiments show that re-
covery takes 13.7 msec and 59.5 msec, respectively.

7 Conclusion
In this work, we presented the design and implementation of
the cacheline-conscious extendible hash (CCEH) scheme, a
failure-atomic variant of extendible hashing [6], that makes
effective use of cachelines to get the most benefit out of
byte-addressable persistent memory. By introducing an in-
termediate layer between the directory and cacheline-sized
buckets, CCEH effectively reduces the directory manage-
ment overhead and finds a record with at most two cache-
line accesses. Our experiments show that CCEH eliminates
the full-table rehashing overhead and outperforms other hash
table schemes by a large margin on PM as well as DRAM.
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Abstract
The commercial release of byte-addressable persistent memo-
ries (PMs) is imminent. Unfortunately, these devices suffer
from limited write endurance—without any wear manage-
ment, PM lifetime might be as low as 1.1 months. Existing
wear-management techniques introduce an additional indirec-
tion layer to remap memory across physical frames and re-
quire hardware support to track fine-grain wear. These mecha-
nisms incur storage overhead and increase access latency and
energy consumption.

We present Kevlar, an OS-based wear-management tech-
nique for PM that requires no new hardware. Kevlar uses ex-
isting virtual memory mechanisms to remap pages, enabling it
to perform both wear leveling—shuffling pages in PM to even
wear; and wear reduction—transparently migrating heavily
written pages to DRAM. Crucially, Kevlar avoids the need
for hardware support to track wear at fine grain. Instead, it
relies on a novel wear-estimation technique that builds upon
Intel’s Precise Event Based Sampling to approximately track
processor cache contents via a software-maintained Bloom fil-
ter and estimate write-back rates at fine grain. We implement
Kevlar in Linux and demonstrate that it achieves lifetime im-
provement of 18.4× (avg.) over no wear management while
incurring 1.2% performance overhead.

1 Introduction

Forthcoming Persistent Memory (PM) technologies, such as
3D XPoint [3, 46], promise to revolutionize storage hierar-
chies. These technologies are appealing in many ways. For
example, they are being considered as cheaper, higher ca-
pacity and/or energy-efficient replacements for DRAM [5,
64, 87, 119], low-latency and byte-addressable persistent stor-
age [22, 23, 83, 101], and even as hardware accelerators for
neural networks [89, 94]. We focus on systems with het-
erogeneous memory—with both DRAM and PM connected
to the memory bus. Such systems may use PM for persis-
tent data storage or to replace some or all of DRAM with a

cheaper/higher-capacity technology.
Nevertheless, PM’s limited write endurance [21,64,87,114,

119] may hinder adoption. Just like erase operations wear
out Flash cells, PM devices may also wear out after a certain
number of writes. The expected PM cell write endurance
varies significantly across technologies. For example, a phase-
change memory is expected to endure 107−109 writes [64,85,
87] while resistive RAM may sustain over 1010 writes [106].
So, system developers must consider PM cell write frequency
and manage wear to ensure memory endures for the expected
system lifetime.

PM wear-management techniques employ wear leveling,
spreading writes uniformly over all memory locations, and/or
wear reduction, reducing the number of writes with addi-
tional caching layers [26, 64, 85, 88, 92, 119]. Unfortunately,
prior techniques rely on various kinds of hardware support.
Some proposals [85, 119] add an additional programmer-
transparent address translation mechanism in the PM memory
controller. These mechanisms periodically remap memory
locations to uniformly distribute writes across the PM. Other
techniques [26, 88, 114] perform wear reduction by remap-
ping contents of frequently-written PM page frames to higher-
endurance DRAM. Such techniques depend on hardware sup-
port to estimate wear, for example, via per-page counters or
specialized priority queues/monitoring in the memory con-
troller. Unfortunately, PM-based mechanisms [26, 88, 114]
that rely on higher-endurance but volatile DRAM to reduce
wear do not support applications [77] that require crash con-
sistency when using PM as storage.

The indirection mechanisms proposed for PMs are analo-
gous to the translation layer [33, 58, 65] in Flash firmware,
which perform functionalities such as garbage collection [33,
58, 109] and out-of-place updates [33, 58, 65, 67] in addition
to wear leveling, and incur high erasure latency [33, 53, 67].
Additional translation layers increase design complexity and
incur higher access latency and power/energy consumption.
Indeed, recent work [12, 15, 40, 41, 50, 66, 82, 115] aims to
eliminate complexity and overhead associated with a Flash
translation layer by combining its features in either the virtual
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memory system in the OS [12, 15, 40, 41, 115], or in file-
system applications [15, 50, 66, 82]. We would prefer to avoid
additional indirection mechanisms for byte-addressable PMs,
which have lower access latency and offer a direct load/store
interface.

We note that the OS already maintains a mapping of virtual
to physical memory locations and that these mappings can be
periodically updated to implement wear management without
an additional translation layer. We build upon virtual memory
to implement Kevlar, a software wear-management system for
fast, byte-addressable persistent memories. Kevlar performs
both wear leveling, by reshuffling pages among physical PM
frames, and wear reduction, by judicious migration of wear-
heavy pages to DRAM, to achieve a configurable lifetime
target.

A critical aspect of wear management is to estimate the
wear to each memory location. Existing hardware tracks PM
writes only at the granularity of memory channels—too coarse
to be useful for wear management. Tracking PM writes at finer
granularity is complicated by write-back hardware caches; an
update to a memory location leads to a PM write only when a
dirty cache block is evicted from the processor’s caches.

Kevlar relies upon a novel, low-overhead wear-estimation
mechanism by using Intel’s Precise Events Based Sampling
(PEBS) [44], which allows us to intercept a sample of store
operations. Kevlar maintains an approximate representation
of hardware cache contents using Bloom filters [16], and
uses it to estimate relative fine-grain writeback rates. We
demonstrate that our estimation strategy incurs less than 1%
performance overhead.

Kevlar enables wear management for applications that em-
ploy PMs for capacity expansion [5, 55, 88] and/or durabil-
ity [77]. When a PM device is used for capacity expansion,
Kevlar exploits memory device heterogeneity and migrates
frequently updated PM pages to the neighboring DRAM—a
system-level option that cannot be exploited by device-level
wear-management schemes [85, 92, 119]. We show that mi-
grating as few as 1% of pages from PM to DRAM is sufficient
to achieve our target PM lifetime. For pages that require dura-
bility, Kevlar relies on reserve PM capacity and performs
directed migrations of frequently written pages across the
nominal and reserve capacity.

We implement Kevlar in Linux version 4.5.0 and evaluate
its impact on performance and PM lifetime. To summarize,
the contributions of Kevlar are:

• Wear leveling: We first develop an analytical framework
to show that even a simple, wear-oblivious random page
shuffling is sufficient to achieve near-ideal (uniform) wear
over the memory device lifetime at negligible (< 0.1%) per-
formance overhead. Unfortunately, even ideal wear leveling
provides insufficient lifetime for lower-endurance PMs.

• Wear estimation: We demonstrate how to estimate wear
at fine grain by using Intel’s PEBS to approximate cache
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Figure 1: (a) Pages sorted by number of writes (program entirety) in
Aerospike: There is a large disparity between most and least written pages.
(b) PM lifetime with no wear leveling: The lifetime until 1% of pages
sustain 107 writes can be as short as 1.1 months.

contents via a Bloom filter, thereby estimating the cache
write-backs to each page. We show that this mechanism is
21.7× more accurate than naive write sampling.

• Wear reduction: We demonstrate Kevlar, which uses our
wear-estimation technique to apply both wear leveling and
wear reduction, reducing wear by migrating less than 1% of
the application working set to neighboring DRAM (when
durability is not needed) incurring 1.2% (avg.) performance
overhead.

2 Background and Motivation

We briefly describe PM use cases and their drawbacks.

2.1 Persistent Memories (PMs)

Persistent memory technologies, such as Phase Change Mem-
ory [64, 87], Memristor [106], and Spin Torque Transfer
RAM [111] are byte-addressable, achieve near-DRAM per-
formance, and are denser and cheaper than DRAM. These
characteristics allow systems to leverage PMs in exciting new
ways. We focus on two well-studied use cases: (1) capacity
expansion and (2) memory persistency.

Capacity expansion: Owing to their higher density and
lower power consumption, PMs are projected to be cheaper
than DRAM [5, 31, 55, 64, 87, 119] on a dollar per GB basis.
Higher density enables greater peak capacity: Intel expects
to soon offer servers with up to 6TB of PM [3, 38]. System
designers can use this capacity to manage larger in-memory
data-structures [9, 42, 72].

Memory persistency: Since PMs are non-volatile, they
blur the traditional distinctions between memory and stor-
age. Recent research leverages PM non-volatility by ac-
cessing persistent data directly in memory via loads and
stores [22, 23, 28, 36, 48, 52, 60, 61, 63, 77, 83, 101]. The byte-
addressable load-store PM interface enables fined-grained
accesses to persistent data and avoids the expensive serializa-
tion and de-serialization layer of conventional storage [54].
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PM drawbacks: Whereas PMs exhibit many useful prop-
erties, they also have two key drawbacks. First, PM cells have
limited write endurance. For example, PCM endures only
107 - 109 writes [85]. In contrast, DRAM endurance is essen-
tially unbounded (> 1015 writes) [87]. Limited PM endurance
may lead to rapid capacity loss for write-intensive applica-
tions. Figure 1(a) shows the disparity between writes seen
by the hottest and coldest pages for Aerospike (see Section 5
for our methodology). Absent wear management, frequently
written-back addresses wear out sooner, compromising life-
time. Figure 1(b) shows the lifetime until 1% of memory
locations wear out in a device with a write endurance of 107

writes (such as PCM) under the write patterns of various ap-
plications assuming no efforts to manage wear. For example,
we observe that TPCC can wear out a PCM memory device
within 1.1 months.

Second, PM access latency and bandwidth, while close
to DRAM, fall short [64, 87, 106]. So, applications sensi-
tive to memory performance might still prefer DRAM. Prior
works [5, 55, 84] mitigate this challenge by identifying hot/
cold regions of applications’ footprints and placing hot re-
gions in DRAM and cold regions in PM. Unlike these
works [5, 55, 84], we exploit memory device heterogeneity
to improve device lifetime when PMs are employed for ca-
pacity expansion and/or memory persistency. To this end, we
propose Kevlar, a wear-management mechanism to improve
low-endurance PM device lifetime.

2.2 Wear-aware virtual memory system

Prior PM wear-management mechanisms [85–87, 92, 119]
require an additional indirection layer in hardware to uni-
formly wear PM cells. However, these mechanisms suffer
from several drawbacks. First, these mechanisms [85–87, 92]
use volatile DRAM caches to reduce wear to PM. These
mechanisms do not readily support applications [77] that rely
on PM durability, since the volatile DRAM caches lose data
upon power failure. Second, these mechanisms perform ad-
ditional DRAM cache lookups and address translation for
each memory access, delaying PM loads/stores. Third, wear
leveling alone sometimes achieves PM lifetime of only 2.3
years (as shown later in Section 6.2)—lower than the desired
system lifetimes. These device-level mechanisms are unable
to exploit memory system heterogeneity for applications that
employ PMs for capacity expansion.

We explore low-overhead OS wear-management mecha-
nisms that can extend PM device lifetime to a desired tar-
get without any additional indirection layers. Indeed, our
approach is analogous to similar ongoing efforts [12, 15,
40, 41, 50, 66, 82, 115] in Flash-based systems to identify
and eliminate performance bottlenecks in the Flash transla-
tion layer (FTL). These works avoid FTL complexities and
overheads by folding its features either into the virtual mem-
ory system [12, 15, 40, 41, 115], or into file system applica-

tions [15, 50, 66, 82]. Like these works, we aim to build PM
wear-management into the virtual memory system. Note that,
contrary to block-based access to Flash, PM updates arise
from LLC write-backs. Unfortunately, there are no straight-
forward mechanisms to measure LLC write-backs directly at
fine grain—a critical challenge that we solve in Kevlar.

3 Kevlar

We detail wear-management approaches in Kevlar.

3.1 Wear leveling

Modern OSes, such as Linux, manage memory via a paging
mechanism to translate virtual to physical memory addresses.
Linux manages the page tables used by the hardware trans-
lation mechanism, and already reassigns virtual-to-physical
mappings for a variety of reasons (e.g., to improve NUMA
locality).

Kevlar’s Wear-Leveling (WL) mechanism uses existing OS
support to periodically remap virtual pages to spread writes
uniformly. Kevlar makes a conservative assumption that a
write to a physical PM page modifies all locations within that
page. Thus, Kevlar does not need an additional intra-page
wear-leveling mechanism. We observe that periodic random
shuffling of virtual-to-physical mappings—migrating each
virtual page to a randomly selected physical page frame—is
sufficient to uniformly distribute writes to PM provided shuf-
fles are frequent enough. A key advantage of this approach
is that it is wear oblivious—it requires no information about
the wear to each location; it only requires the aggregate write-
back rate to memory, which is easily measurable on modern
hardware. Surprisingly, we find that this simple approach
may be acceptable for PM devices with a sufficiently high
endurance (e.g., 109 writes).

We consider a scheme that periodically performs a random
shuffle of all virtual pages, reassigning each virtual page to
a randomly selected physical page. Whereas our analysis as-
sumes all pages are shuffled at once for simplicity, in practice,
pages are shuffled continuously and incrementally over the
course of the shuffle period. Our analysis poses the question:
How many times must the address space be shuffled for the ex-
pected number of writes to each page to approach uniformity?
Furthermore, at what point does the wear incurred by shuffling
exceed the wear from the application? To simplify discussion,
we use “write” to mean write-back from the last-level cache
to the PM throughout this section.

Analysis. Let W represent the write distribution to physical
pages and Wi be the write rate to ith physical page in the
memory. We define an equality function E as:

E(x,y) =

{
1 x == y
0 x! = y

(1)
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a. PDF and CDF for N shuffles b. Write rate of nth percentile hot pages
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Figure 2: (a) Write-back rate distribution: We use an application’s write
distribution to derive 99th percentile write rate after N shuffles. (b) Write-
back rate vs. shuffles: The disparity in page write rates shrinks with the
increase in shuffles.

Given a write distribution W over n physical pages, Pk
n

represents the probability density function (PDF) for W after
k shuffles. Using the distribution W, we can compute the
probability P0

n (x) of physical page with the write rate x with
0 shuffles (initial state) as:

P0
n (x) =

1
n
×

n

∑
i=1

E(Wi,x) (2)

With no shuffles, one can easily compute the expected life
of each physical page by dividing the expected endurance (in
number of writes) by the write rate x, yielding an expected
lifetime distribution over pages. When we consider a shuffle’s
effect, each page will experience an average write rate x’ of
two write rates x1 and x2 chosen uniformly at random from
W . Since the PDF of the sum of two random variables is the
convolution of their respective PDFs, we can calculate the
expected distribution of write rates after S shuffles, PS

n , as:

PS
n (X = x′/2) =

∞

∑
k=−∞

PS−1
n (X = k)PS−1

n (X = x′− k) (3)

Note the normalization by one half, since we want the average
(rather than the sum) of the random variables.

We illustrate the PDF P0
n (expected write rate without shuf-

fles) of the page write distribution as expressed by Eq. 2 in
Fig. 2 (a). The PDF P0

n has a heavy right-tailed distribution
with high variance (i.e. the write-rate of few pages is high
as compared to the mean write rate), a characteristic typical
of the applications we have studied. Moreover, due to high
variance, there is a wide write-rate range that might occur for
any given page. Next, we compute the PDF PS

n using Eq. 3
for shuffles ranging from one to N. With each shuffle, the
PDF variance shrinks, while the probability of a near-mean
write rate increases. Note that the PDF mean P1

n appears to
be higher than the PDF P0

n due to the heavy right-tail of P0
n .

The mean in fact stays constant after each shuffle.
Fig. 2 (a) illustrates how the PDF after N shuffles con-

verges to the mean write rate (equivalently, writes become
uniformly distributed over the physical pages). In Figure 2 (a),
we also show the cumulative distribution function (CDF) for
N shuffles where the CDF CN

n is used to compute the top nth

percentile of pages with the highest write rate after N shuffles
(i.e., the “hottest” pages). CN

n (p) provides the minimum ex-
pected write rate of the most heavily written (1− p)∗100% of

the pages. For example, in Fig. 2 (a), we mark with a dotted
line the 99th percentile. The CN

n (p = 0.99) gives the mini-
mum expected write rate of the most heavily written 1% of
pages after N shuffles. From this rate, we can estimate when
we expect this 1% of pages to have worn out. As the num-
ber of shuffles grows, the variance shrinks and CN

n (p = 0.99)
approaches the mean write rate.

We illustrate how the write rate of the hottest pages com-
pares to the mean as a function of the number of shuffles in
Fig. 2 (b). Note that our approach can estimate the wear rate
at any percentile, but we present results primarily for the 99th

percentile. Without shuffles, there is a large disparity between
the most-written 1% of pages and the mean. The gap rapidly
shrinks with additional shuffles. Given the hottest pages’ write
rates in Fig. 2(b), we compute lifetime of a device with a 107

write endurance.
Tracing Methodology. We collect write-back traces for

a set of applications (detailed in Section 5) using the Dy-
namoRio [17] instrumentation tool and its online cache simu-
lation client drcachesim. Since drcachesim can simulate
only a two-level cache hierarchy with power-of-two cache
sizes, we model an 8-way 256KB L2 cache and 32MB 16-way
associative L3 cache, which is close to the configuration of
the physical system on which we evaluate our Kevlar proto-
type (described in Table 1). We instrument loads and stores to
trace all memory references and run drcachesim online to
simulate the system’s cache hierarchy. We record writebacks
from the simulated LLC to PM. We then extract write rate
distributions to analyze expected PM lifetime under shuffling.

Determining optimal shuffles. In Fig. 3(a), we show the
lifetime, normalized to what is possible under ideal wear level-
ing, as a function of the number of shuffles. We assume some
redundancy in the PM device similar to prior works [85, 86]
and define its lifetime as the time when 1% of pages are ex-
pected to fail. Note that the lifetime under ideal wear leveling
is the device endurance divided by the application’s average
write-back rate. As shown in Figure 3(a), frequently written
virtual pages are mapped to a different set of physical pages
after every shuffle, leading to improved device lifetime with
more shuffles. Interestingly, for all applications, after about
8192 shuffles, the expected lifetime converges to that of ideal
wear leveling (i.e., the write distribution is uniform). Note
that we do not consider the additional writes incurred due
to remapping virtual-to-physical page mappings after each
shuffle in Figure 3(a).

Figure 3(b) shows the write amplification caused due to the
shuffle operations. The write amplification shows the ratio
of the total writes incurred after shuffling as compared to
the application’s PM writes. The write amplification can be
higher than 1.4x (40% additional writes) for greater than 216

shuffles as shown in Figure 3(b).
Peak lifetimes occur when memory is shuffled 8192 times

over the device lifetime. With 8192 shuffles, we perform 5%
additional writes for wear leveling. Fig. 3(c) shows the writes
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a. Normalized lifetime of 1% pages vs shuffles c. Lifetime of 1% pages accounting for shuffle writes b. Write-amplification due to shuffle writes
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Figure 3: (a) Lifetime of 1% of pages vs. shuffles: The expected lifetime converges to the ideal lifetime for shuffles > 8192, (b) Write-amplification due
to shuffle writes: Kevlar performs 5% additional writes with 8192 shuffles, (c) Lifetime of 1% of pages, accounting for shuffle writes: The lifetime of PM
peaks at 8192 shuffles, following which shuffle writes become significant.

due to shuffle operations, which may grow to dwarf the appli-
cation’s writes if shuffles are too frequent (i.e. >16384).

Discussion. Shuffling memory 8192 times over the PM
device lifetime uniformly distributes PM writes. However, the
lifetime achievable via even ideal wear leveling is limited by
an application’s average write rate. For our applications, this
lifetime is only 2.3 to 2.8 years for a device that wears out
after 107 writes (see Fig. 3(c)). Wear leveling alone may be
insufficient to meet lifetime targets.

To achieve desired lifetimes, we must augment Kevlar’s
wear-leveling mechanism with a wear-reducing mechanism.
The key challenge for wear reduction is to monitor the wear to
each virtual page at low overhead. There is no straightforward
mechanism for the OS to directly monitor device wear at fine
granularity. PM devices incur wear only when writes reach the
device. Write-back caches absorb much of the processor write
traffic, so the number of stores to a location can be a poor in-
dicator of actual device wear. Current x86 hardware can count
writebacks per memory channel, but provides no support for
finer-grain (e.g., page or cache line) monitoring. Mechanisms
that monitor writes via protection faults (e.g., [5, 34]) incur
high performance overhead and fail to account for wear re-
duction by writeback caches, grossly overestimating wear
for well-cached locations. Instead, Kevlar builds a software
mechanism to estimate per-page wear intensity.

3.2 Wear Estimation

We design a wear-estimation mechanism that approximately
tracks hardware cache contents to estimate per-page PM write-
back rates. Our mechanism builds upon Intel’s PEBS perfor-
mance counters [45] to sample store operations executed by
the processor. Note that, although we focus on Intel platforms,
other platforms—AMD Instruction Based Sampling [29] and
ARM Coresight Trace Buffers [7]—provide analogous mon-
itoring mechanisms. Kevlar’s write estimation mechanism
monitors the retiring stores to maintain an estimate of hard-
ware cache contents.

Monitoring stores. PEBS captures a snapshot of proces-
sor state upon certain configurable events. We configure
PEBS to monitor MEM_UOPS_RETIRED.ALL_STORES events.

As stores retire, PEBS can trigger an interrupt to record state
into a software-accessible buffer; we record the virtual ad-
dress accessed by the retiring store.

Although accurate, sampling every store with PEBS is pro-
hibitive. Instead, we rely on systematic sampling to reduce
performance overhead: we configure PEBS with a Sample
After Value (SAV). For a SAV of n, PEBS captures only ev-
ery nth event. Like prior work [71], we choose prime SAVs
to avoid bias from periodicities in the systematic sampling.
We explore the accuracy and overhead of SAV alternatives in
Section 6.1.

We obtain the virtual addresses of sampled stores to esti-
mate per-page write-back rates. A naive strategy to compute
write-back rates is to assume that each sampled store results
in a write-back. However, with write-back hardware caches,
a PM write occurs only when a dirty block is evicted from
the cache hierarchy; many stores coalesce in the caches. In-
deed, in our applications, the naive strategy drastically over-
estimates writebacks (see Section 6.1). Consequently, we
design an efficient software mechanism that estimates tem-
poral locality due to hardware caches to predict which stores
incur write-backs.

Estimating temporal locality. Prior mechanisms have
been proposed to estimate temporal locality in storage [102,
103] or multicore [13, 90, 91] caches. These mechanisms
maintain stacks or hashmaps to compute reuse distances for
accesses to sampled locations. Instead, we focus on modeling
temporal locality in hardware caches to estimate LLC write-
backs using sampled stores. We estimate temporal locality by
using a Bloom filter [16] to approximately track dirty memory
locations stored in the caches. For each store sampled by
PEBS, we insert its cache block address into the Bloom filter.
(Algorithm 1: Line 12-14). Whenever a new address is added
to the filter, we assume it is the store that dirties the cache
block, and hence will eventually result in a writeback. Further
stores to the same cache block will find their address already
present in the Bloom filter; we assume these hit in the cache
and hence do not produce additional write-backs. Thus, the
Bloom filter maintains a compact representation of likely dirty
blocks present in the cache.

Bloom filters have a limited capacity; after a certain num-
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ber of insertions into the set, their false positive rate increases
rapidly. We size the Bloom filter such that it can accurately
(less than 1% false positives) track a set as large as the capac-
ity of the processor’s last-level cache (LLC), which is roughly
700K cache blocks on our evaluation platform. We clear the
Bloom filter when the number of insertions reaches this size
(Algorithm 1: Line 19-29).

Of course, after clearing the filter, Kevlar would predict a
sudden false spike in writeback rates. We address this by using
two Bloom filters; Kevlar probes both filters but inserts into
only one “active” filter at a time (Algorithm 1: Line 3, 12-17).
When the active filter becomes full, we clear the inactive filter
and then make it active. As such, at steady state, one filter
contains 700K cache block addresses, while the other is active
and being populated (Algorithm 1: Line 12-17). We assume a
cache block will result in a store hit (no additional writeback)
if it is present in either filter (Algorithm 1: Line 6-10).

In essence, our tracking strategy filters out cache blocks
that have write reuse distances [56] of about 700K or less,
as such writes are likely to be cache hits. Effectively, we
assume that dirty blocks are flushed from the cache primarily
due to capacity misses, which is typically the case for large
associative LLCs [39, 113]. Note that our estimate of the
cache contents is approximate. For example, the Bloom filters
do not track read-only cache blocks. Moreover, due to SAV,
only a sample of writes are inserted. The mechanism works
despite these approximations because: (1) frequently written
addresses are likely to be sampled and inserted into the filters—
it is these addresses that are most critical to track; and (2) few
addresses have reuse distances near 700K—reuse distances
are typically much shorter or longer, so the filters are effective
in estimating whether or not a store is likely to hit. Although
Kevlar approximates writebacks by sampling retiring stores,
our goal in Kevlar is to measure relative hotness of the pages
as opposed to absolute writebacks per page. We show the
accuracy of our estimation mechanism to identify writeback
intensive pages later in Section 6.1.

Estimating write-backs. PEBS provides the virtual ad-
dress of sampled stores. Our handler then walks the software
page table to obtain the corresponding physical frame (Alg. 1:
Line 7). In our Linux prototype, we maintain a writeback
count in struct page, a data-structure associated with each
page frame. When we sample a store, we update the counter
for the corresponding physical page as shown in Alg. 1: Line 8.
Kevlar uses the estimated writebacks to identify writeback-
intensive pages.

3.3 Wear Reduction

As shown in Sec. 3.1, Kevlar’s wear-leveling mechanism can
achieve only 2.3- to 2.8-year lifetime for a PM device that
wears out after 107 writes. Our goal is to achieve a lifetime
target for a low-endurance PM device by migrating heavily
written pages to DRAM. We assume a nominal lifetime goal

of four years. This target is software-configurable; we discuss
longer targets in Section 6.2.

Consider an application with a memory footprint of N phys-
ical PM pages and a given lifetime target, the write rate to
the PM B writes/sec to achieve the lifetime target can be
computed as:

B =
Endurance×N

Li f etime
(4)

We use Eq. 4 to compute the number of writes the ap-
plication may make per 1GB (i.e. N = 256K small pages)
of PM footprint. For a given lower-bound endurance of 107

writes and a 4-year lifetime, writebacks must be limited to
20K writes/sec/GB. Configuring a different target lifetime or
device endurance changes the allowable threshold.

One approach is to use wear leveling (as described in
Sec. 3.1) by provisioning additional reserve capacity such
that the target lifetime is met. This strategy is applicable both
when PM is used for persistent storage or capacity expansion.
For instance, with N pages in an application, and average write
rate of B’ writes/sec/GB, the reserve capacity R to achieve a
4-year lifetime is given by:

R =
N×B′

2×104 (5)

When the application write rate is high relative to the de-
vice endurance, the required reserve can undermine any cost
advantages, as we show later in Section 6.3. Instead, for ca-
pacity expansion, we propose wear reduction by migrating
the hottest pages to high-endurance memory (DRAM). Kevlar
regulates the average write rate to the pages that remain in
PM to 20K writes/GB/sec such that we achieve the desired
lifetime of four years.

3.3.1 Page migration

Kevlar uses its write-back estimation mechanism to measure
per-page PM writeback rates and migrate the most write-
intensive pages to DRAM. Kevlar must regulate average PM
writeback rate to 20K writes/GB/sec to achieve a 4-year life-
time. Kevlar uses IMC.MC_CHy_PCI_PMON_CTR counters in
the Intel memory controller to count CAS_COUNT.WR events,
which measure write commands issued on the memory chan-
nels. Such counters already exist in DRAM controllers,
and analogous counters exist on other hardware platforms
(e.g. ARM’s L3D_CACHE_WB performance monitoring unit
counter [8]). This aggregate measure allows us to determine
whether pages must be migrated from PM to DRAM (or can
be migrated back) to maintain the target average rate of 20K
writes/GB/sec.

Migrating hot-pages to DRAM. Kevlar computes the PM
writeback rate at a fixed 10-second interval. If the average
writeback rate exceeds 20K writes/GB/sec during an interval,
Kevlar enables PEBS and samples the retiring stores as ex-
plained in Section 3.2. Kevlar estimates the PM writeback rate
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Algorithm 1 Write-back estimation mechanism
1: Inputs:

PEBS record rec, Bloom Filter filterA, Bloom Filter filterB
2:
3: Initialize:

filterA.isActive = True
filterB.isActive = False
activate = LLC_CACHE_BLOCKS

4:
5: blockAddr = rec.strAddr » log2(LLC_BLOCK_SIZE)
6: if !filterA.isPresent(blockAddr) and !filterB.isPresent(blockAddr) then
7: pageStruct = doPageWalk(blockAddr)
8: pageStruct.WBCount+=1
9: memRef+=1

10: end if
11:
12: if filterA.isActive and !filterA.isPresent(blockAddr) then
13: filterA.add(blockAddr)
14: end if
15: if filterB.isActive and !filterB.isPresent(blockAddr) then
16: filterB.add(blockAddr)
17: end if
18:
19: if activate == memRef then
20: filterA.isActive = !filterA.isActive
21: filterB.isActive = !filterB.isActive
22: if filterA.isActive then
23: filterA.clear()
24: end if
25: if filterB.isActive then
26: filterB.clear()
27: end if
28: activate+=LLC_CACHE_BLOCKS
29: end if

at 4KB-page granularity. When migration is needed, Kevlar
scans writeback counters for all page frames and sorts them
by their estimated write-back counts. Kevlar then migrates
the hottest 10% of pages to DRAM. It continues monitor-
ing for an additional interval. Kevlar ceases migration, dis-
ables PEBS monitoring, and clears write-back counters when
the write-back rate falls below 20K writes/GB/sec. With this
monitoring and migration control loop, Kevlar achieves our
lifetime target with 1.2% performance impact.

Migrating cold pages to PM. An application’s access pat-
tern might change over its execution, so pages migrated to
DRAM may become cold. To minimize the application foot-
print in DRAM, it is desirable to migrate cold pages back
to PM. If Kevlar observes five consecutive intervals with a
PM writeback rate below 20K writes/GB/sec, it re-enables
PEBS for a 10-second interval, estimates the write-back rate
of pages in DRAM, and migrates 10% of cold pages from
DRAM back to PM.

4 Implementation

We implement Kevlar in Linux kernel version 4.5.0. We use
the Linux control group mechanism [74] to manage Kevlar
specific configuration parameters.

Wear leveling. Kevlar should shuffle the entire application
footprint once every 4.2 hours to achieve uniform wear lev-
eling over a lifetime of 4 years. Instead of gang-scheduling
the shuffle operations together every 4.2 hours, Kevlar peri-
odically shuffles a fraction of application footprint. Kevlar

maintains a shuffle bit in the struct page associated with
each page frame to indicate whether the page was shuffled
within the current shuffle interval. Kevlar scans the applica-
tion pages every 300-sec shuffle interval to identify the pages
that are yet to be shuffled. It randomly chooses a fraction of
pages to be shuffled in this shuffle interval by equally appor-
tioning the total number of pages yet to be shuffled to the time
remaining in a 4.2 hour shuffle operation.

The fraction of pages are then shuffled following these
steps: (1) Kevlar selects a pair of application pages in PM
to be swapped. (2) It locks the page table entries for both
pages so that any intermediate application accesses stall on
page locks. (3) It allocates a temporary page in DRAM (for
capacity workloads) to aid in swapping the contents of the two
pages in PM. (4) Once the pages are swapped, Kevlar restores
the page table entries so that the virtual addresses now map
to the swapped pages, unlocks the pages, and deallocates the
temporary DRAM page. (5) Once shuffled, Kevlar records
this event in the shuffle bit in page frame’s struct page of
the two pages.

Note that, we use a temporary page mapped in DRAM to
limit wear in PM due to shuffle. For persistent applications,
we map the temporary page in PM to ensure that the page
contents are persistent in case of intermediate failure. Once all
the pages are shuffled, Kevlar clears the shuffle bit in struct
page and initiates the next shuffle.

Wear estimation. Kevlar initializes PEBS to monitor the
MEM_UOPS_RETIRED.ALL_STORES event and a SAV to sam-
ple the retiring stores for wear estimation. We determine SAV
empirically to ensure that the monitoring has negligible perfor-
mance overhead. Kevlar implements two Bloom Filters, each
of size 840KB and a capacity of 700K cache blocks, corre-
sponding to the 45MB LLC of our system. We size the Bloom
filter to achieve less than 1% false positives. As explained in
Section 3.3.1, Kevlar performs a software page table walk to
identify the page frames being accessed by the sampled store,
and records writeback counts in struct page.

Wear reduction. Kevlar monitors PM writeback rate at a
10-second migration interval to determine if it needs to initi-
ate hot/cold page migration between DRAM and PM. If the
PM writeback rate triggers a migration, Kevlar scans the appli-
cation pages and identifies the top 10% hot (or cold) pages to
be migrated to DRAM (or PM). It performs migration using
a mechanism similar to the page shuffles in wear leveling: it
locks the page to be migrated, copies its contents to a newly
allocated page in DRAM (or PM), updates page table entries,
and unlocks the page. If no migration is triggered, Kevlar
disables PEBS sampling counters to minimize performance
monitoring overhead.

5 Methodology

We next discuss details of our prototype and evaluation.
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Core
Intel Xeon E5-2699 v3, 2.30GHz

36-core (72 hardware threads)
Dual-socket x86 server

L1 D&I Cache 32KB, 8-way associative

L2 Cache 256KB, 8-way associative

Shared LLC 45MB, 20-way associative

DRAM 256GB per socket

Operating System Linux Kernel 4.5.0

Table 1: System Configuration.

5.1 Emulating persistent memory

A system with byte-addressable persistent memory is not yet
commercially available. Hence, we emulate a hybrid PM-
DRAM memory system using a dual-socket server. We run
the application under test on a single socket and treat memory
local to that socket as DRAM. Conversely, we treat memory of
the remote socket as PM. Note that the local and remote nodes
are cache coherent across the sockets. Since each chip has its
own memory controllers, we use the performance counters in
each memory controller to monitor the total accesses to each
device and distinguish “PM” and “DRAM” accesses.

Using this emulation, our Kevlar prototype incurs the ac-
tual performance overheads of monitoring and migration that
would occur in a real hybrid-memory system. However, the la-
tency and bandwidth differential between our emulated “PM”
and “DRAM” is only the gap between local and remote socket
accesses. The performance differential between DRAM and
actual PM devices is technology dependent and remains un-
clear, but is likely higher than in our prototype. We expect
relative performance overhead of our mechanism (as detailed
later in Section 6.4) to be lower on a system with a high differ-
ential between DRAM and PM devices. Our results represent
a high estimate of the Kevlar’s performance overhead.

Nevertheless, our contributions with respect to wear man-
agement are orthogonal to the performance aspects of re-
placing DRAM with PM, which have been studied in prior
work [5, 55, 84]. We focus our evaluation on quantifying the
effectiveness and overheads of Kevlar’s mechanisms.

5.2 System configuration

We run our experiments on a dual-socket server with the
configuration listed in Table 1. We use the Linux control
group mechanism [74] to isolate the application to a particular
socket. We pin application threads to execute only on CPUs on
the local node, but map all memory to initially allocate in the
remote node using Linux’s memory and cpuset cgroups,
modeling a system where DRAM has been replaced by PM.
Kevlar expects a lifetime goal for the PM device as an input,
and performs wear leveling, estimation, and reduction for all
the processes in the cgroups. The test applications use all 18
CPU cores of the local node with hyper-threading enabled. For

client-server benchmarks, we run clients on another system
to avoid performance interference.

As explained in Section 3.2, we use Intel’s PEBS counters
to estimate PM page writeback frequency. We isolate these
counters to monitor only accesses from the application under
test using Linux’s perf_event cgroup mechanism. Thus,
spurious store operations from background processes or the
kernel do not perturb our measurements.

We measure the write rate to the PM (i.e. remote DRAM)
using the performance counters in the memory controller.
Unlike PEBS counters, these counters lie in a shared domain
and cannot be isolated to count only events for a particular
process. However, we have measured the write rate of the
background processes in an idle system and find that they
constitute less than 1% of the total writeback rate observed
during our experiments.

5.3 Benchmarks
We study two categories of applications. We report memory
footprints of the benchmarks under study in Figure 9.

5.3.1 Capacity Expansion Workloads

We evaluate both the wear-leveling and wear-reduction mech-
anisms of Kevlar for the following benchmarks in a “capacity
expansion” PM use case.

NoSQL applications. Aerospike [1, 97], and Mem-
cached [4] are popular in-memory NoSQL databases. We
use YCSB clients [24] to generate the workload to Aerospike
and Memcached. We evaluate 400M operations on 4M keys
for Aerospike and 100M operations on 1M keys for Mem-
cached. We configure each record to have 20 fields resulting
in a data size of 2KB per record. As we are interested in man-
aging wear in write-intensive scenarios, we configure YCSB
for update-heavy workload with a 50:50 read-write ratio and
Zipfian key distribution.

MySQL. MySQL is a SQL database management sys-
tem. We drive MySQL using the open-source TPCC [98]
and TATP [79] workloads from oltpbench [27]. TPCC mod-
els an order fulfillment business and TATP models a mobile
carrier database. In each, we run default transactions with a
scale-factor of 320 for 1800 secs.

5.3.2 Persistent Workloads

We evaluate persistent applications from the WHISPER
benchmark suite [77], which use the Intel PMDK libraries [2]
for persistence. These applications divide their address space
into volatile and persistent subsets. The persistent subset must
always be mapped to PM to ensure recoverability in the event
of power failure. As such, Kevlar may not migrate pages in the
persistent subset to DRAM. We instead rely only on wear lev-
eling to shuffle these pages in PM. However, we allow pages
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Figure 4: Estimated writebacks vs. observed writebacks. We compare the estimated writebacks with observed writebacks obtained from memory access
tracing. Each point on the scatter plot represents the number of writebacks to a page. The red line on each plot represents the ideal prediction curve.
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Figure 5: Comparison of top 10% estimated hot pages to top 10%
observed hot pages. Kevlar’s wear estimation identifies 80.10% (avg.) of
the 10% hottest written pages correctly.

in the volatile subset to migrate to DRAM if the aggregate
write rate to all pages exceeds 20K writes/GB/sec.

Linux presently provides no mechanism to label pages as
persistent or volatile. WHISPER benchmarks use Linux’s
tmpfs [96] memory mapped in DRAM to emulate persis-
tency, and the persistent pages are allocated in a fixed address
range. We hardcode this address range in our experiments to
prevent page migrations to DRAM.

We select the two NoSQL applications, Redis and Echo,
from WHISPER. Redis is a single-threaded in-memory key-
value store. We configure a Redis database comprising 1M
records, each with 10 fields. We use YCSB clients to perform
key-value operations on the Redis server with a Zipfian dis-
tribution. For our evaluation, we run 40M operations with an
update-heavy workload with a 50:50 read-to-write ratio. For
echo, we use the configuration provided with the WHISPER
benchmark suite and evaluate it using 2 client threads each
running 40M operations.

6 Evaluation

We evaluate Kevlar’s wear-management mechanisms.

6.1 Modeling Wear Estimation

We first evaluate the accuracy of Kevlar’s wear-estimation
mechanism as described in Section 3.2. We collect a ground-
truth writeback trace for each application using the online
cache simulator drcachesim in Dynamorio [17] with a trac-
ing infrastructure described in Section 3.1. We model the
PEBS sampling mechanism and bloom filters in drcache-
sim to record the estimated writeback rate. We compare the
ground-truth writebacks against the estimates provided by the
emulation of PEBS sampling and our Bloom filters.
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Figure 6: RMS Error with cache modeling. Kevlar achieves 20× lower
RMS error than a mechanism without cache modeling.

Comparison with ideal mechanism. In Figure 4, we show
estimated writebacks (vertical axis) and ground-truth ob-
served writebacks (horizontal axis) for each application for
one 10-sec sampling interval. We use log-linear scale1 to
highlight accuracy of our mechanism for higher write rate.
As instrumentation results in application slowdown, we ex-
pand the 10-second sampling duration by the slowdown due
to instrumentation measured for each workload. Due to the
log-linear scale, we plot a red curve in the Figure to show the
ideal prediction curve, where estimated and observed write-
backs match. For all applications, Figure 4 (a-f) indicates that
the estimated writebacks correlate closely to the ideal curve.
Echo performs cache flush operation following each store to
flush dirty cache blocks to PM. As a result, we observe 64
write-backs per page (owing to 64 cache blocks in a 4KB
page) for nearly all pages. As shown in Figure 4(f), Kevlar is
able to measure write-backs to these pages.

Prediction accuracy. Next, we compare the top 10% heav-
ily written pages as estimated by Kevlar’s wear-estimation
mechanism to the top 10% hottest observed (ground-truth)
pages. Figure 5 shows the percentage of heavily written pages
correctly estimated by Kevlar. Kevlar correctly estimates
80.1% hottest pages on average and up to 96.3% hottest pages
in Echo as compared to the ground truth.

We also demonstrate the accuracy of Kevlar’s prediction
mechanism by measuring root-mean-squared (RMS) error
between estimated and observed writebacks. The RMS er-
ror reports the standard-deviation of the difference between
estimated and observed writebacks. We study the impact of
hardware cache modeling using our Bloom filter mechanism

1We use log-linear scale to highlight estimated and observed writebacks
to hot pages that are crucial for our study. In contrast, a log-log scale dis-
cretizes lower writeback values and hides comparison between observed and
estimated writebacks for hot pages.
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Figure 7: PEBS sampling overhead. Runtime overhead due to sampling
every retiring store is 13.2% (avg.). We configure PEBS SAV = 17 in Kevlar
with < 1% overhead.

by comparing Kevlar’s prediction mechanism with a mecha-
nism without the Bloom filter. Figure 6 shows the RMS error
of our writeback prediction mechanism normalized to the
average writeback rate of the application for different PEBS
SAV values. We choose prime numbers for PEBS SAV to
avoid periodicities in systematic sampling.

As compared to a mechanism that does not model cache
contents, we observe 100.0× and 106.8× improvement in
RMS errors for Memcached and Redis, respectively, with our
estimation mechanism (with SAV = 1). Overall, the Bloom
filters can approximate the dirty cache contents well, allow-
ing it to estimate writebacks with 21.6× lower RMS error on
average. The Bloom filters are critical to avoiding overesti-
mation of writebacks in Aerospike, Memcached, and Redis
by estimating temporal locality of memory accesses. Note
that, as shown in Figure 6, the standard deviation of the dif-
ference between absolute values of estimated and observed
writebacks is 2.85× that of the mean for SAV of 1. Although
the estimated writebacks are not accurate when compared to
absolute values, our goal in Kevlar is to measure the relative
hotness of the pages. As shown earlier in Figure 5, Kevlar
identifies 80.1% of the 10% hottest pages correctly.

Configuring PEBS SAV. We study the RMS error in Fig-
ure 6 and runtime performance overhead in Figure 7 for dif-
ferent PEBS SAV values. Figure 7 shows the monitoring
overhead for different SAVs when compared to the applica-
tion runtime without PEBS monitoring. Upon sampling a
store, PEBS triggers an interrupt and records architectural
state in a software buffer, which can lead to a performance
overhead. Taking an interrupt on every retiring store results
in substantial performance overhead. Indeed, with SAV=1,
the performance overhead due to PEBS sampling can be as
high as 112.9% (in Aerospike), and 13.2% on an average. In
contrast, the performance overhead in persistent applications,
Redis and Echo, is less than 3% as we sample only stores
to volatile pages, which may be migrated between PM and
DRAM. Interestingly, with SAV of 17, the average perfor-
mance overhead due to sampling is less than 1% (avg.) with
no substantial degradation in RMS error. As we do not see
any substantial performance gains for SAV > 17, we configure
PEBS to sample one in every 17 stores in Kevlar.
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Figure 8: PM Lifetime: Kevlar achieves greater than 4 years of lifetime;
11.2× (avg.) higher than no wear leveling.

6.2 PM Lifetime

We study Kevlar for lifetime targets of four and six years.
We compare Kevlar’s wear-management mechanisms to a
baseline with no wear leveling. We make a conservative as-
sumption that a write to a physical page modifies all locations
within that page for Kevlar’s wear-management mechanisms.
In contrast, we measure lifetime for the baseline via precise
monitoring at cache-line granularity.

Wear leveling alone. We first consider lifetime for the
PM device achieved by Kevlar’s wear-leveling mechanism
alone. As discussed in Section 3.3, to achieve a four- (or six-)
year lifetime until 1% of locations wear out on a PM device
that can sustain only 107 writes, the average write rate must
be below 20,000 (or 13,333) writes/GB/second. Even after
wear leveling, all of the applications we study incur a higher
average write rate when their entire footprints reside in PM.
We also show lifetime due to ideal wear leveling in Figure 8
when writes are uniformly remapped in PM. Although wear
leveling substantially improves PM lifetimes over a baseline
of no wear leveling, it falls short of achieving the four-year
and six-year lifetime targets for all applications. As compared
to the baseline with no wear leveling, Kevlar with only wear
leveling achieves an average lifetime improvement of 9.8×
with 31.7× improvement in lifetime for TPCC.

Wear leveling + wear reduction. Wear reduction can im-
prove application lifetimes to meet our target while moving
only a remarkably small fraction of the application footprint
to DRAM. Kevlar in wear leveling + wear reducing mode
aims to limit the write-back rate to the PM at 20K (or 13.3K)
write/GB/second for four (or six) year lifetime target, by iden-
tifying the “hottest pages” that are being frequently written
back and migrating them to DRAM.

Owing to the writeback rate limit imposed by Kevlar’s
wear-reducing mechanism, as indicated in Figure 8, the life-
time with wear leveling + wear reduction exceeds the config-
ured target of four and six years for all applications. Kevlar’s
wear leveling + wear reduction mode (for a 6-year lifetime
configuration) achieves the highest lifetime improvement of
80.7× for TPCC, with an average improvement of 26.1×
when compared to no wear leveling.

High-endurance PMs: Absent wear-management mecha-
nisms, a PM device that can sustain 108 writes would wear out
within 9.8 months. Moreover, for PM devices with endurance
108 - 109, wear-leveling mechanism would be sufficient to
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Figure 9: Application footprint in PM and DRAM: Kevlar migrates
< 1% of application footprint to DRAM. Blue and orange bars represent
application footprint in PM and DRAM respectively.

achieve the desired lifetimes of 4- and 6-years. For instance,
our wear-leveling mechanism alone can achieve a lifetime
of 24.0 years (average) for a PM device that can sustain 108

writes. Kevlar would not trigger wear-reduction mechanism
for PMs with high write endurance as the application write-
back rate would be lower than configured threshold. Never-
theless, the endurance numbers of commercial PM devices
(i.e. Intel’s 3D XPoint) are not publicly available. As such,
we can configure the endurance of a PM device in Kevlar.

6.3 Memory Overhead
Figure 9 shows the baseline memory footprint of the applica-
tions, and an additional memory footprint in DRAM necessary
to host the most frequently written PM pages that are migrated
by Kevlar. In addition, we also show the reserve footprint that
can be mapped in PM to achieve the lifetime targets using
wear-leveling mechanism alone as outlined in Equation 5.

Wear reduction for persistency applications. For the
WHISPER benchmarks that rely on persistency (Redis &
Echo), the pages in the persistent set must always remain
in PM. Nevertheless, some fraction of these applications’
footprints are volatile and may reside in PM or DRAM. We
initially map the entire footprint to the PM and allow only
volatile pages to migrate to DRAM. As a majority of memory
accesses are made to the volatile footprint in these applica-
tions [77], the wear-reducing mechanism can achieve a 4 year
lifetime by migrating only 23.6MB of footprint to DRAM.

Reserve PM required can be significant. The amount of
PM reserves required to ensure that the target lifetime be met
are significant. It can be as high as 2.7× for TPCC and 2.0×
for TATP for a six-year lifetime (1.3× average across all the
benchmarks). The required reserve capacity may undermine
the cost advantages of capacity expansion offered by PMs.

Reserve DRAM required is much smaller than reserve
PM. As can be seen from Figure 9, the reserve DRAM re-
quired is much smaller than the reserve PM required. This
difference is due to a difference in the write endurance of
DRAM (practically infinite) and the cell endurance we assume
for PM (107 writes). Note that Kevlar’s goal is to limit wear
while maximizing application footprint in PM (especially
for the capacity expansion use-case) and achieve configured
device lifetime. Thus, it migrates only the heavily written
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Figure 10: Performance overhead: Overhead of page monitoring and
migration in Kevlar is 1.2% (avg.) in our applications.

application footprint from PM to DRAM. In contrast, prior
mechanisms [5, 55] aggressively migrate pages to DRAM
and limit application performance degradation resulting from
slower PM accesses. Kevlar migrates less than 1% of the ap-
plication’s footprint to DRAM for four- and six-year lifetime
targets, on average.

6.4 Performance Overhead
Next, we present application slowdown due to Kevlar.

Page shuffle overhead. Figure 10 illustrates the slowdown
(lower is better) in applications resulting from our wear level-
ing, wear estimation, and page migration. The shuffle mech-
anism incurs a negligible average performance overhead of
0.04% (highest 0.1% in Echo) over the baseline with no wear
leveling.

Overheads from Kevlar’s monitoring and migration.
As explained in Section 3.3, we configure PEBS with SAV of
17, and further reduce performance overhead by filtering store
addresses using the Bloom filters. We observe up to 1.3%
slowdown from our PEBS sampling in Aerospike, with even
lower overheads in the remaining applications. Redis observes
a net gain (as much as 0.9%) when we enable migration and
relocate their frequently written pages to DRAM because the
local NUMA node (representing DRAM) is faster than the
remote node (representing PM) in our prototype. We expect
the performance gains to be more pronounced with PMs that
are anticipated to exhibit higher memory latency than remote
DRAM in our prototype. On an average, we see 1.2% (or
3.2%) slowdown due to our wear-management mechanisms
to achieve the lifetime goal of four (or six) years.

7 Related work

The adoption of PMs has been widely studied by both
academia and industry in processor architectures [23, 28, 51,
52, 60, 77, 83, 95, 117], file systems [20, 23, 30, 100, 105, 107,
108], logging/databases [10, 11, 18, 19, 35–37, 59, 62, 63, 68,
73, 80, 81, 104], data structures [43, 78, 99], and distributed
systems [57, 70, 116, 120]. We discuss the relevant works that
address wear out problem in PMs.

7.1 Wear-reduction mechanisms
We first discuss techniques that reduce PM writes.

USENIX Association 17th USENIX Conference on File and Storage Technologies    55



DRAM cache. Numerous works [32, 75, 87, 92] advocate
placing a DRAM cache in front of PM. The DRAM cache
absorbs most of the writes thereby reducing wear. A DRAM
cache presents three disadvantages: (1) it sacrifices capacity
that could instead be used to expand memory; (2) it increases
the latency of PM writes; and (3) it is inapplicable to writes
that require persistency, which must write through the cache.
Like many prior works [23, 28, 36, 51, 52, 60, 77, 83, 95, 117],
we assume that PM and DRAM are peers on the memory bus.

Page migration. Several works [6, 26, 88, 114] propose
migrating pages from PM to DRAM to reduce wear. Dhiman
et al. [26] use a software-hardware hybrid solution, where
dedicated hardware counters (one per PM page) that track
page hotness are maintained in PM and cached in the mem-
ory controller. RaPP [88] and Zhang et al. [114] use a set
of queues in the memory controller to estimate write inten-
siveness and perform page migrations to DRAM. However,
these mechanisms propose no wear-leveling solutions for the
remaining pages in PM. As such, these mechanisms may still
not achieve desired PM device lifetimes. For example, RaPP
can achieve a device lifetimes exceeding 3 years only if the
cell endurance exceeds 109 [88] – insufficient for PCM-based
memories with endurance of only 107 - 109 writes. Moreover,
these mechanisms do not support applications that require
crash consistency when using PM as storage [77]. Kevlar
incurs none of these hardware overheads and uses a novel
sampling scheme to estimate wear completely in the OS.

Heterogeneous main memory: Several works [5, 55, 84]
manage footprint between DRAM and PM for applications
that prefer DRAMs for high performance. These works map
heavily and least accessed regions of application footprint to
DRAM and PM respectively. Unlike these works [5, 55, 84],
Kevlar exploits heterogeneity to reduce PM wear.

Currently, Kevlar operates at a small (4KB) page granu-
larity. However, huge (2MB) pages are increasingly being
used to minimize performance penalties of using small pages
(due to increased TLB pressure), especially in virtualized sys-
tems. Kevlar can be further extended to operate at a huge page
granularity. For instance, Kevlar can be integrated with mech-
anisms such as Thermostat [5] to split a huge page into small
pages, monitor write rate at granularity of small pages, and
migrate pages between DRAM and PM. We leave evaluation
of Kevlar’s wear-reduction mechanism and development of
shuffling strategies to operate at a huge page granularity to
future work.

Other. DCW [119] and Flip-N-Write [21] perform read-
compare-write operation to ensure that only the data bits that
have changed are written. Bittman et al. [14] proposes data
structures aimed at minimizing the number of bit-flips per PM
write operation. Ferreira et al. [32] enable eviction of clean
cache lines over dirty cache lines at the expense of potentially
slowing down future reads to evicted cache lines. Recent
works, MCT [25] and Mellow Writes [112], improve the en-
durance by reconfiguring memory voltage levels and slowing

write accesses to the PM. These proposals can achieve high
device lifetime but at a significant performance overhead,
especially when write latency is critical to application per-
formance [77]. NVM-Duet [69] employs a smart-refresh
mechanism to eliminate redundant memory refresh opera-
tions thereby reducing PM wear. Others [49, 118] propose
solutions to manage wear when using persistent memory tech-
nologies to build caches. These techniques are orthogonal to
our proposal and can be used in conjunction with Kevlar.

7.2 Wear-leveling mechanisms

Qureshi et al. [87], Zhou et al. [119], Security refresh [92],
Online Attack Detection [86] and Start-Gap [85] observe that
cache lines within a PM page do not wear out equally and pro-
pose mechanisms to remap cache lines for uniform intra-page
wear. All of these works rely on additional address indirection
mechanisms in hardware. Unlike Kevlar, these mechanisms
cannot exploit the heterogeneity of memory systems as dis-
cussed earlier in Section 2.2.

Error recovery. DRM [47] and SAFER [93] gracefully
degrades PM capacity as memory cells wear out by reusing
and remapping failed cells to store data. FREE-p [110] and
NVMAlloc [76] leverage ECC and checksum mechanisms to
tolerate wear out errors.

8 Conclusion

We have presented Kevlar, a wear-management mechanism
for persistent memories. Kevlar relies on a software wear-
estimation mechanism that uses PEBS-based sampling in a
novel approach to estimate dirty cache contents and predict
writebacks to PM. It uses a wear-leveling mechanism that
shuffles PM pages every ~4 hours with an overhead of less
than 0.10% achieving up to 31.7× higher lifetime as compared
to PM with no wear leveling. Kevlar employs wear-reduction
mechanism to further extend PM lifetime. It migrates the
hottest pages to higher durability memory. Kevlar, imple-
mented in Linux kernel (version 4.5.0), achieves four-year
target lifetime with 1.2% performance overhead.
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As a file system ages, it can experience multiple forms of
fragmentation. Fragmentation of the free space in the file
system can lower write performance and subsequent read
performance. Client operations as well as internal opera-
tions, such as deduplication, can fragment the layout of an in-
dividual file, which also impacts file read performance. File
systems that allow sub-block granular addressing can gather
intra-block fragmentation, which leads to wasted free space.
This paper describes how the NetApp® WAFL® file system
leverages a storage virtualization layer for defragmentation
techniques that physically relocate blocks efficiently, includ-
ing those in read-only snapshots. The paper analyzes the
effectiveness of these techniques at reducing fragmentation
and improving overall performance across various storage
media.

1 Introduction

File systems typically allocate physically contiguous blocks
in storage devices to write out logically sequential data and
metadata. This strategy maximally uses the write bandwidth
available from each storage device since more blocks can be
written to it using fewer write I/Os, and it allows for op-
timal performance when that data or metadata is later read
sequentially. Common operations such as file creations, re-
sizes, and deletions age a file system, resulting in free space
fragmentation and file layout fragmentation. Free space frag-
mentation results in reduced contiguous physical allocations,
which in turn lowers file system write throughput [32]. Fur-
thermore, it limits the system’s ability to optimally lay out
logically sequential data and metadata, thereby contributing
to file layout fragmentation [33, 35]. Fragmentation impacts
the I/O performance of both hard drives (HDDs) and solid
state drives (SSDs), although in different ways.

File sizes rarely align with the file system block size, thus
there is potential for intra-block wastage of storage space.
Some file systems provide the ability to address sub-block
chunks to avoid such wastage and improve storage effi-
ciency [25, 31, 37]. However, such sub-block indexing in-
troduces the potential for intra-block fragmentation, which

occurs as chunks within a block are freed at different times.
A copy-on-write (COW) file system never overwrites a

block containing active data or metadata in place, which
makes it more susceptible to fragmentation [12]. WAFL [14]
is an enterprise-grade COW file system that is subject to free
space, file layout, and intra-block fragmentation. In this pa-
per, we present techniques that efficiently address each form
of fragmentation in the WAFL file system, which we refer
to collectively as storage gardening. These techniques are
novel because they leverage WAFL’s implementation of vir-
tualized file system instances (FlexVol® volumes) [9] to ef-
ficiently relocate data physically while updating a minimal
amount of metadata, unlike other file systems and defrag-
mentation tools. This virtualization layer provides two ad-
vantages: (1) The relocation of blocks needs to be recorded
only in the virtual-to-physical virtualization layer rather than
requiring updates to all metadata referencing the block. (2) It
even allows relocation of blocks that belong to read-only
snapshots of the file system, which would be ordinarily be
prohibited.

Most previous studies of fragmentation predate modern
storage media (i.e., SSD drives) [32, 33, 34]. Other studies
were performed on commodity-grade systems (with single
drives) [5, 16]; these studies draw conclusions that do not
apply to enterprise-grade systems. The WAFL file system
can be persisted on a variety of storage media, which makes
it well-suited for this study on fragmentation. We analyze
each form of fragmentation and evaluate our defragmenta-
tion techniques with various storage media permutations.

To summarize our findings, we see significant improve-
ments in data layout metrics on HDD- and SSD-based sys-
tems using our approaches. These improvements trans-
late into significant performance gains on HDD-based sys-
tems, which are typically I/O-bound, as well as mixed-media
(HDD and SSD) systems. In contrast, the same approaches
generally show negative overall performance impact on all-
SSD systems, which are more sensitive to the CPU overhead
incurred by defragmentation. We conclude that for SSD-
based systems, it is preferable (and advantageous) to per-
form defragmentation only during periods of low load. Our
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lessons are applicable to other file systems as well, especially
ones that are COW, such as ZFS [27] and Btrfs [31].

2 An Overview of WAFL

This section presents background on WAFL—an enterprise-
grade UNIX-style file system—and the trade-offs inherent in
defragmentation.

2.1 File System Layout and Transaction
A Data ONTAP® storage system uses the proprietary
WAFL [14] file system, which is persisted as a tree of 4KiB
blocks, and all data structures of the file system, including its
metadata, are stored in files. Leaf nodes (L0s) of an inode’s
block tree hold the file’s data. The next higher level of the
tree is composed of indirect blocks (L1s) that point with a
fixed span to children L0s; L2s point to children L1s, and so
on. The number of levels in the block tree is determined by
the size of the file. Each inode object uses a fixed number
of bytes to store file attributes and the root of its block tree,
unless the file size is tiny, in which case the file data is stored
directly within the inode. All inodes for data and metadata
are arranged in the L0s of a special file whose block tree is
rooted at the superblock. WAFL is a copy-on-write (COW)
file system that never overwrites a persistent block in place.
Instead, all mutations are written to free blocks and the pre-
viously allocated blocks become free.

Client operations that modify the file system make
changes to in-memory data structures and are acknowledged
once they have also been logged to nonvolatile memory.
WAFL collects and flushes the results of thousands of op-
erations from main memory to persistent storage as a sin-
gle atomic transaction called a consistency point (CP) [9, 14,
19]. This delayed flushing of “dirty” blocks allows better
layout decisions and amortizes the associated metadata over-
head. During each CP, all updates since the previous CP
are written to disk to create a self-consistent, point-in-time
image of the file system. A snapshot of the file system is
trivially accomplished by preserving one such image. The
WAFL write allocator assigns available free blocks of stor-
age to the dirty blocks during a CP. The goals of the write
allocator are to maximize file system write throughput and
subsequent sequential read performance.

We have previously presented the data structures and al-
gorithms used to steer the write allocator toward the empti-
est regions of storage, with built-in awareness of RAID ge-
ometry and media properties [17]. Prior work has also de-
scribed how CPs manage free space in order to maximize
various performance objectives [8]. In this paper, we extend
these concepts further, showing how storage gardening can
increase the availability of high-quality regions for writing
and recreate the desired layout after file system aging has
undone the initial write allocation.

Figure 1: The relationship of a FlexVol volume with its container
file and the aggregate. A real-world aggregate has many more
drives.

2.2 FlexVol Volumes and Aggregates

WAFL defines collections of physical storage as aggregates,
which are typically several dozen TiB in size. A WAFL ag-
gregate can consist of different permutations of storage me-
dia: HDDs (hard drives) only, SSDs (solid state drives) only,
HDDs and SSDs, SSDs and S3-compliant object stores, and
LUNs exported from third-party storage. Storage devices
with no native redundancy, such as HDDs and SSDs, are or-
ganized into RAID [6, 10, 29] groups for resiliency. Multiple
aggregates are connected to each of two ONTAP® nodes that
are deployed as a high-availability pair. Within each aggre-
gate’s physical storage, WAFL houses and exports hundreds
of virtualized WAFL file system instances called FlexVol vol-
umes [9].

Each aggregate and each FlexVol is a WAFL file system.
A block in any WAFL file system instance is addressed by a
volume block number, or VBN. WAFL uses a Physical VBN
to refer to a block in the aggregate; the Physical VBN maps
to a location on persistent storage. A block in a FlexVol
is referenced by a Virtual VBN. FlexVols are stored within
files that reside in the aggregate—the blocks of a FlexVol
are stored as the L0 blocks of a corresponding container file.
The block number in the FlexVol (Virtual VBN) corresponds
to the offset in the container file. Thus, the L1 blocks of
the container file are effectively an array that is indexed by
the Virtual VBN to find the corresponding Physical VBN. In
other words, container file L1 blocks form a map of Physical
VBNs indexed by the Virtual VBNs, which we call the con-
tainer map. Data structures in the FlexVol store a cached
copy of the Physical VBN along with the Virtual VBN point-
ers. In most cases, the cached Physical VBN helps avoid the
extra CPU cycles and storage I/O for consulting the container
map. It is possible for the cached Physical VBN in a FlexVol
structure to become stale, in which case the container map is
consulted for the authoritative version. Fig. 1 illustrates the
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relationship between the Physical VBNs in an aggregate and
the blocks of a File A in a FlexVol.

This virtualization of storage for blocks in a FlexVol and
the corresponding indirection between Virtual VBNs and
Physical VBNs through the container map provide the ba-
sis for the storage gardening techniques presented in this pa-
per, as well as a wide range of technologies, such as FlexVol
cloning, replication, thin provisioning, and more [9].

2.3 Performance and Defragmentation
Modifications to data and metadata in a COW file system,
such as WAFL, fragment both the layout of files and the ag-
gregate’s free space. WAFL also supports sub-block address-
ing, and uses that to compact sub-4KiB chunks into a single
block. These compacted blocks become fragmented as their
constituent chunks are freed. Subsequent sections detail the
impact of each form of fragmentation. Defragmentation is
typically accomplished by relocating in-use blocks or chunks
from badly fragmented regions of a file or file system. Re-
locating a block is trivial in many cases; the pointer stored
in a parent indirect can be fixed up to point to a relocated
child’s new physical location. Although most file systems
prevent relocation of blocks that belong to read-only snap-
shots, WAFL provides this functionality. Two requirements
exist to support block relocation below the file system in the
storage layer: (1) the ability to virtualize the address space,
which WAFL provides in the form of FlexVol layering, and
(2) the ability to detect stale pointers. Each of these abilities
is detailed in Sec. 3.3. Although the CP amortizes the over-
head associated with re-writing these blocks, defragmenta-
tion comes at a cost (CPU cycles and I/Os). An enterprise
storage system must consider this cost in the context of the
storage media type before it chooses to defragment. This pa-
per explains the defragmentation techniques used by WAFL,
and how these trade-offs play out in various Data ONTAP
configurations.

3 Free Space Fragmentation

This section discusses the effect of free space fragmentation
and the technique used to counter it.

3.1 Background on Space Fragmentation
WAFL groups HDDs and SSDs of an aggregate into RAID
groups to protect against device errors and failures. As
Fig. 2(A) shows, a stripe is a set of blocks, one per de-
vice, that share the same parity block. A full stripe write
is one in which all data blocks in the stripe are written out
together such that RAID can compute the parity without ad-
ditional reads. Fragmentation of free space leads to partial
stripe writes, shown in Fig. 2(B), which require RAID to
read data blocks to compute parity [29]. Writing logically

Figure 2: (A) A sample RAID-4 group with 3 data and 1 parity
storage device (for simplicity). (B) A sample aged RAID group
with free space fragmentation.

sequential blocks of the file system to consecutive blocks of
a storage device reduces the total number of write I/Os to the
device and improves sequential read performance, because
the blocks can be read with a single I/O [2]. Contiguous free
space on devices, such as on D1 in Fig. 2(B), is required to
meet this objective, by facilitating long write chains. Frag-
mented free space decreases the availability of contiguous
free blocks on each device, as shown on drives D2 and D3.

The latency of a write operation is not directly affected
by free space fragmentation because WAFL acknowledges a
write operation immediately after it is logged to nonvolatile
memory. Fragmentation makes each CP more expensive,
which indirectly impacts client operations. First, more CPU
cycles are required to find free blocks to allocate [19] and
compute RAID parity, which causes the WAFL scheduler to
divert more CPU away from client operations so the CP can
complete in time. Second, more I/Os of shorter write chains
are required to flush out all the dirty blocks of the CP, which
takes storage I/O bandwidth away from client operations.

Fragmentation can also impact performance by making
free space reclamation more expensive in terms of CPU cy-
cles and metadata updates. Over time, several improvements
to free space reclamation have ensured that WAFL now per-
forms efficiently even in the presence of fragmentation [19].
However, this concern still applies in most other file systems.

3.2 Segment Cleaning in WAFL
The goal of free space defragmentation is to make emptier
regions of free space available to the write allocator. In-use
blocks need to be efficiently relocated to create large areas of
free space without violating invariants associated with blocks
in FlexVol snapshots. Prior work [17] describes how the
WAFL write allocator segments each RAID group into al-
location areas (AAs) when choosing free Physical VBNs for
the CP. As Fig. 2(A) shows, an AA is a set of consecutive
RAID stripes; the AA size depends on storage media prop-
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erties [17]. Defragmentation operates by segment cleaning
at the AA granularity. The cleaning of an AA entails con-
sulting free space metadata in WAFL [18] to pick stripes in
the AA that are worth cleaning, reading all in-use blocks of
such stripes into the buffer cache, and tagging them dirty.
WAFL stores a context together with each written block [36],
which identifies its file and file block offset1. Cleaning uses
this context to determine the file and offset of the in-use
block and marks the buffer dirty in the corresponding file.
The subsequent CP processes these dirty buffers (together
with all others) and writes them out to new Physical VBNs,
thereby freeing the previously used blocks and creating an
emptier AA. The parent indirect block of such a rewritten
block (much like that of any dirty block) is updated by the
CP to reflect its new Physical VBN.

3.3 Blocks in the FlexVol Volume
The vast majority of the blocks in an aggregate belong to its
FlexVols, because they contain user data. WAFL leverages
the indirection provided by the FlexVol virtualization layer to
efficiently relocate FlexVol blocks. In particular, such blocks
are relocated by loading and dirtying them as L0 blocks of
the corresponding container file, rather than as blocks in the
block tree within the volume. Thus, a relocated block gets a
new Physical VBN, but its Virtual VBN remains unchanged
and no changes are made within the volume. Fig. 3 shows
an example in which blocks are moved from within alloca-
tion areas AAx and AAy. The cleaner determines all in-use
blocks (i.e., p1–p5) in these AAs and reads each of these
blocks into memory, along with its associated context. The
context for a block in a FlexVol refers to its container file and
Virtual VBN. Thus, p1–p3 of File A are marked as dirty L0s
of FlexVol 1’s container file, and p4–p5 are marked as dirty
L0s of File B (a metadata file in the aggregate). In the subse-
quent CP, the write-allocator rewrites these blocks together
with other dirty buffers to a new AAz, thereby emptying AAx
and AAy. Note that File A’s indirect blocks continue to point
to stale Physical VBNs p1–p3 (as discussed in detail later
in this section), whereas File B and the container file of the
FlexVol are up to date.

Leveraging the virtualization layer provided by the con-
tainer file yields two key benefits. First, it facilitates relo-
cation of blocks in a snapshot because file system invariants
associated with snapshots are preserved within the FlexVol
layer. Blocks in a snapshot image of the FlexVol are im-
mutable and therefore forbidden from being dirtied and pro-
cessed by the CP. Such rules are typical across file system
implementations. In theory, it is possible to physically relo-
cate blocks within snapshots without virtualization, but this
requires the ability to update metadata within a snapshot to

1This context was introduced originally to protect against lost or misdi-
rected writes [3], so that a subsequent read can detect a mismatch from the
expected context.

Figure 3: (A) 4 drives with 5 blocks randomly allocated in AAx and
AAy and the same 5 blocks relocated to AAz to create empty AAs.
(B) Impact of block relocation due to segment cleaning within the
L1s of File A in FlexVol 1 and a File B in that aggregate, and the
relevant changes to the container file.

reflect those relocations. In a COW file system, such updates
cascade up the file system tree, resulting in further updates.
Physical-only relocation via the container preserves the Vir-
tual VBN, and that leaves the FlexVol snapshot image intact,
including all file system metadata for block allocation. Given
the popularity of FlexVol snapshots, such block relocation is
critical to efficient defragmentation2.

The second benefit is that the requisite metadata updates
are minimized. Relocating a block is expensive in a COW
file system like WAFL because every ancestor block in the
file system tree needs to be rewritten to point to the new lo-
cation of its child. By leveraging the container map for the
FlexVol, blocks within the FlexVol are not rewritten. Further,
as described in Sec. 2.1, the file system tree of blocks rooted
at the superblock of a FlexVol can be quite tall, whereas the
height of the container file is a function only of the size of
its Virtual VBN space. Thus, the tree of blocks comprising
the container file is significantly shorter, and higher-level in-
directs of a container file are likely to be already dirty due to
the batching effect of the CP.

A file system operation that accesses a relocated block of
File A uses the stale pointer in that indirect, such as p1, to
read a block from storage. If WAFL has not yet assigned the
previously freed p1 for a new write, the context check suc-
ceeds and the I/O is accomplished. Otherwise, the context
check fails and the operation pays a redirection penalty to
consult the container map, using v1 to read p′1. The pointer
in File A’s parent indirect block can optionally be fixed to
p′1 either via a background scan or opportunistically after the
redirected read to avoid the penalty on subsequent accesses.
The use of a virtualization layer in this case provides both

2Snapshots of an aggregate are rare and short-lived, so their interaction
with segment cleaning is limited, and is not discussed here.
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the ability to defer fix-up work and the option to leave stale
pointers in indirects in cases where the update would not be
expected to improve performance. Without this virtualiza-
tion, all references to the physical block would have to be
corrected immediately. Although Fig. 3 depicts only L0s of
File A being relocated, any block in the block tree of any file
in the FlexVol can be relocated.

3.4 Continuous Segment Cleaning
Segment cleaning was first introduced for all-HDD aggre-
gates as a background scan that walked all AAs in each
RAID group. It was expensive and had to be initiated by
the administrator during periods of low load. A later release
introduced continuous segment cleaning (CSC), which runs
autonomously and is more efficient. It cleans AAs just in
time as they get selected for use by the write allocator. Prior
work [17] shows how the WAFL write allocator uses a max-
heap to pick the emptiest AA from each RAID group. Clean-
ing the emptiest AAs minimizes the number of in-use blocks
that are required to be relocated, which in turn minimizes
the total number of I/Os and CPU cycles required for this ac-
tivity. This greedy approach also minimizes the subsequent
redirection penalty and fix-up work for the file system.

4 File Layout Fragmentation

This section discusses how files become fragmented in
WAFL and the approach used to counteract that fragmen-
tation.

4.1 Background on File Fragmentation
The WAFL write allocator attempts to allocate consecutive
L0s of a file sequentially on a single storage device to op-
timize subsequent sequential read performance. Given that
WAFL is a COW file system, this layout may fragment over
time. That is, even if sequential file L0s are initially stored
contiguously, continued random overwrites of the L0s can
cause them to be rewritten elsewhere. It should be noted that
neighboring offsets in a file need to be overwritten several
seconds apart to fragment the file because the CP collects
and processes a few seconds’ worth of dirty buffers. An ex-
ample of suboptimal file layout is shown in Fig. 4, in which
sequential L0s of File A are scattered across the aggregate,
with Physical VBNs p1–p5.

Sequential reads of a fragmented file require an increased
number of drive I/Os [2]. Like most file systems, WAFL de-
tects sequential patterns in the accesses to a file, and specula-
tively prefetches L0s based on heuristics. (Prefetch heuristics
used by WAFL are outside the scope of this paper.) Although
prefetching helps sequential read performance, the associ-
ated overhead (CPU cycles and storage I/Os) increases with
fragmentation of the file layout [2, 34].

Figure 4: (A) 4 devices with 5 blocks located sequentially within a
file but randomly on the storage media due to file layout fragmen-
tation, and the same 5 blocks relocated sequentially on device D1.
(B) Impact of this block movement within the L1s of a File A in a
FlexVol volume and the changes to that volume’s container file.

4.2 File Defragmentation in WAFL

In theory, file layout defragmentation can be trivially accom-
plished in any COW file system by dirtying sequential file
blocks that are not sequentially stored. These blocks will be
written out sequentially during the subsequent write alloca-
tion process. File systems have two choices for how to deal
with blocks shared with snapshots: (1) Update all indirect
blocks pointing to the relocated block, which is not feasible
because it requires modifying blocks in a snapshot. (2) Up-
date references to the block in the “active” file system only
and leave the block in place in the snapshot, which results
in divergence from the snapshot and wasted storage for du-
plicate copies of these blocks. In WAFL, when a block in
a FlexVol is dirtied, it is assigned not just a new Physical
VBN but also a new Virtual VBN. The allocation of a new
Virtual VBN is reflected in the FlexVol metadata, which re-
sults in divergence from the most recent snapshot of the vol-
ume. Efficient replication technologies minimize the amount
of data transferred in each periodic incremental update [30],
which is accomplished by diff’ing per-snapshot metadata to
efficiently compute changes to the file system.

The need to keep FlexVol metadata intact motivates an-
other physical-only block relocation strategy by leveraging
container file indirection. In particular, WAFL tags file-
defragmented blocks as fake dirty, which conveys that the
content of the data block is unchanged and should not di-
verge from any snapshot to which it belongs. In the next CP,
a fake dirty buffer is assigned a new Physical VBN without
changing its Virtual VBN. Fig. 4 shows the result of this pro-
cess on File A; the L0s retain their Virtual VBNs while get-
ting reallocated sequentially from p′1 to p′5. Thus, these re-
located blocks do not create false positives during the afore-
mentioned snapshot diff process, and WAFL replication tech-
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nologies remain efficient. Although Physical VBNs cached
in snapshot copies of indirect blocks become stale, a failed
read is redirected through the container map to the new loca-
tion of the block.

File layout defragmentation in WAFL is similar to free
space defragmentation, in that a relocated block only ac-
quires a new Physical VBN. However, file defragmentation
is different in two ways that make fake dirties more effec-
tive for this use case. First, the file blocks being dirtied
are by definition contiguous in the file block space, so the
COW-related overhead for the block tree in the FlexVol is
amortized across multiple fake dirty blocks. Second, file de-
fragmentation is triggered in cases where future sequential
file accesses are anticipated (as discussed in Sec. 4.3), so it
is desirable to “fix up” the block tree indirects right away
rather than deferring the effort.

Relocating L0 blocks that are shared with other files as a
result of deduplication or file cloning does not create incon-
sistencies. For example, if some File B shares the first L0
of File A, the parent L1 in File B is not changed by the de-
fragmentation of File A and therefore points to v1 and p1
even after the L0 of File A is relocated to p′1. As described in
Sec. 3.3, once the now-free p1 is reused, any subsequent read
via that stale pointer in File B fails the context match, and is
redirected to p′1 via the container map. It should be noted
that relocating blocks p1–p5 in File A could potentially frag-
ment File B if it shares some of these blocks but at different
offsets. However, fragmentation resulting from deduplica-
tion is unlikely in real-world datasets and as far as we know
has not been encountered in our customer deployments. We
find that multiple L0s are shared in the same order between
files, so defragmentation of one helps all such files3.

4.3 Write After Read

File defragmentation was originally introduced as an
administrator-initiated command to kick off defragmentation
of a specific file or all user files in a FlexVol. When in-
voked, the Physical VBN pointers in the L1s of the file are
inspected to determine whether defragmentation could result
in improved read performance. If so, the L0 blocks are read
into the buffer cache and tagged fake dirty. Autonomous file
defragmentation—write after read (WAR)—was introduced
in a later release. When enabled, it uses heuristics to defrag-
ment files that get accessed sequentially by client operations,
but only when the system has sufficient availability of CPU
cycles and I/O bandwidth. These techniques can also be ap-
plied to metadata such as directories4.

3WAFL deduplication code paths track how many consecutive file
blocks are detected as duplicates and replaced. Statistics from customer
deployments show this number to be mostly in the 4 to 8 range.

4WAFL uses several techniques to optimize metadata access, some of
which are described in prior work [19]. Such optimizations have made it
unnecessary to employ WAR on metadata.

Figure 5: (A) Files A and B with sub-block chunks that share a
physical block and the corresponding container file. (B) Format of
the physical block containing the three chunks. (C) The refcount
file with an “initial” and “current” value of 3 for physical block p1.

5 Intra-Block Fragmentation

This section describes intra-block fragmentation in WAFL
and its mitigation by using the virtualization layer. There are
two sources of intra-block wastage in WAFL. First, when the
size of a file is not an exact multiple of 4KiB (the block size
used by WAFL), the unused portion of the last L0 of that file
is wasted. This may result in significant wastage of storage
space, but only if the dataset contains a very large number of
small files. Second, data compression in WAFL can result in
intra-block wastage even for large files. WAFL uses various
algorithms to compress the data stored in two or more con-
secutive L0s of a file, and writes the compressed result to the
file. Thus, a user file L1 points to fewer L0s and some “holes”
to indicate blocks saved by that compression. Each set of
such L0s is called a compression group. The compressed
data rarely aligns to the 4 KiB block boundary; therefore
space is almost always wasted in the tail L0 of every com-
pression group. For example, 8KiB of data may compress
down to 5KiB. This would consume two 4KiB blocks of stor-
age where 3KiB of the second block is wasted. Compres-
sion has become ubiquitous in Data ONTAP deployments,
with significant savings reported for large-file datasets. Sub-
block compaction enables WAFL to pack multiple sub-block
chunks from tails of one or more compression groups and/or
files into a single physical block.

5.1 Sub-Block Compaction

Sub-block chunk addressability leverages FlexVol virtualiza-
tion to remain transparent to the FlexVol layer. Blocks within
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a FlexVol retain their Virtual VBNs, but now multiple Vir-
tual VBNs can share one Physical VBN. The corresponding
physical block contains the sub-block chunk associated with
each Virtual VBN. Similarly, a container file can contain
multiple references to the Physical VBN of a single com-
pacted block. Fig. 5(A) shows how a compacted block p1
is pointed to by three Virtual VBNs from a container file.
These chunks are from two different files, A and B, and can
be either tails of compression groups or uncompressed but
partially filled blocks. As Fig. 5(B) shows, compacted block
p1 starts with a vector of tuples, which allows for chunks of
different lengths to be compacted together. When a block is
read, the tuples are parsed to locate the desired data. Each
WAFL instance has a refcount metadata file that tracks ref-
erences to a block [19]. The refcount file of an aggregate
tracks in-use chunks in a compacted Physical VBN5.

This design offers several clear benefits. First, com-
paction through the container file keeps it independent of the
FlexVol. Thus, although blocks in a snapshot are immutable,
they can be compacted or recompacted via the container file.
Second, without compaction, compression is beneficial only
if the compression group yields at least one block in savings,
whereas compaction can exploit savings of less than 4KiB.
Third, there is no fixed chunk size, which means that sub-
blocks can be compacted together based on workload-aware
criteria rather than on their sizes. For example, client-access
heuristics can be used to compact together “hot” blocks that
might get overwritten soon versus “cold” blocks.

5.2 Recompaction
Over time, one or more chunks within a compacted phys-
ical block may get freed due to overwrites or file trunca-
tions, which results in intra-block fragmentation within pre-
viously compacted blocks, providing an opportunity to re-
claim wasted space via recompaction.

Recompaction in WAFL is performed by a recompaction
scanner that walks the container map in Virtual VBN order
and chooses blocks to defragment. The per-Physical VBN
entry in the refcount file contains two sub-counts: ri, the
initial number of chunks in the Physical VBN when it was
first written out, and rc, the current number of chunks ref-
erenced by the container map. As shown in Fig. 5(C), both
sub-counts are initialized to the number of chunks when a
compacted block is written out. As chunks are freed, rc is
decremented. The recompaction scanner uses the two sub-
counts to predict whether a block is worth recompacting. If
rc
ri

is below some threshold (specified by the administrator
based on desired aggressiveness), the block is read in from
storage and its contents are examined to determine the ac-
tual free space in the block. If the block is truly worth re-

5The refcount file supports deduplication; blocks from different files and
FlexVols may refer to the same Physical VBN. Prior work [19] studies the
performance implications of maintaining a refcount file.

compacting, each chunk is marked dirty as a standalone con-
tainer L0 block. The subsequent CP applies compaction to all
such blocks and writes them out in newly compacted blocks.
In this way, Physical VBNs are changed transparently under
the FlexVol virtualization layer, leaving stale Physical VBNs
cached in FlexVol data structures.

A fourth type of fragmentation occurs in Data ONTAP that
is similar to intra-block fragmentation. Recently introduced
all-SSD FabricPool aggregates collect and tier cold blocks
as 4MiB objects to an object store, for example to a remote
hyperscaler such as AWS. As with compacted blocks, ob-
jects may become fragmented due to block frees, and objects
can be freed only once all used blocks are freed. Object de-
fragmentation consists of marking all blocks within sparsely
populated objects dirty and rewriting them into new objects.
It leverages the container file indirection to avoid changes
within the FlexVol when the block is moved. Defragmenta-
tion is triggered by comparing the monetary cost of wasted
storage versus the cost of GETs and PUTs to rewrite the de-
fragmented data. Thresholds of allowed free blocks in an
object are defined per-hyperscaler such that the cost of GETs
and PUTs to defragment objects breaks even within a month
when compared to savings from the reduced storage.

6 Interactions between Techniques

CSC, WAR, and recompaction can run concurrently and with
very little adverse interaction. Segment cleaning generates
empty AAs for use by the write allocator, which naturally
facilitates efficient file block reallocation. No additional re-
quirement is placed on CSC because of WAR. CSC and re-
compaction both operate by generating dirty L0s of container
files. A block being relocated by CSC may be a compacted
block, in which case it may be unnecessarily recompacted in
order to reclaim the old Physical VBN.

In theory, defragmentation techniques could invalidate a
large number of cached Physical VBNs, which may affect
performance because of more fix-up work and/or read redi-
rection penalty. As described in this paper, defragmentation
is used with care and only when the associated overhead is
justified; as far as we know, no customer systems have been
impacted by any pathological scenarios of defragmentation6.

7 Evaluation

It is not practical to formulate an apples-to-apples compar-
ison of the defragmentation techniques in WAFL with that
in other file systems, due to the configurations, sizes, and its
large feature set. Instead, this section provides some histor-
ical context and explores the trade-offs inherent to each of

6Specific features unrelated to defragmentation, such as Volume
Move [1], may create scenarios leading to severe redirections, but purpose-
built scanners have been designed to handle them.
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our techniques across some key configurations.
Data ONTAP is deployed by enterprises in different busi-

ness segments for a wide variety of use cases. A typ-
ical NetApp storage controller might be hosting datasets
for multiple instances of different applications that are ac-
tively accessed at the same time. In such multitenant en-
vironments, no individual customer workload represents the
range of possible outcomes. Instead, we use a set of micro-
benchmarks and an in-house benchmark that represent spe-
cific average and worst-case scenarios, but the conclusions
are applicable across the majority of benchmarks that we
track. The IOPS mix—random reads, random and semise-
quential overwrites—of the in-house benchmark is designed
to be identical to that of the industry-standard SPC-1 bench-
mark [7], and models the query and update operations of an
OLTP/DB application. We generate load by using NFS or
SCSI clients based on convenience, but the choice of pro-
tocol does not make any material difference to the results
presented. Unless otherwise specified, all experiments use
our midrange system, which has 20 Intel Xeon E5v2 2.8GHz
25MB-cache cores (10-cores x 2 sockets) with 128GiB of
DRAM and 16GiB of NVRAM.

7.1 Free Space Defragmentation
The original ONTAP deployments (20+ years ago) were
HDD-only, and WAFL had no defragmentation capability
at the time. Because those systems were typically bottle-
necked by hard-drive bandwidth, higher performance re-
quired attaching more HDDs. Segment cleaning was de-
signed into WAFL soon after the FlexVol layering was intro-
duced. However, it could be initiated only by the administra-
tor, based on observed system performance. In most cases,
background defragmentation scans were configured to run
during weekends or known times of low load. Just-in-time
segment cleaning (CSC) was introduced later, as discussed
in Sec. 3.2. Here, we evaluate the performance benefits of
CSC across different storage media configurations.

To evaluate the benefits of CSC on all-HDD aggregates,
we directed a load of 3K ops/sec of the in-house OLTP/DB
benchmark using clients connected over Fibre Channel to a
low-end 8-core system with an aggregate composed of 22
10K RPM HDDs of 136GiB each. Fig. 6 presents the results
of our test over a 60+ day window7. Without CSC, client ob-
served latency continues to increase over time due to increas-
ing fragmentation in the file system. As shown in Fig. 6(A),
CSC carries some initial overhead that results in higher client
latency for the first 35 days, but it eventually delivers layout
benefits that yield a stable and lower client latency over time.
Both write chain length and parity reads are greatly improved
by using CSC (Fig. 6(B)), as write chain length converges to-
ward a worst-case value of 1 without CSC.

7It takes a long while to fragment a real-world-sized all-HDD aggregate,
given its low IOPS capability; all-SSD aggregates can be fragmented faster.

(A)

(B)

Figure 6: (A) Client observed operation latency and (B) parity
reads/sec and write chain lengths with and without CSC on an all-
HDD aggregate over 62 days running an OLTP/DB benchmark.

Introduced in 2012, NetApp Flash Pool® aggregates mix
RAID groups of SSDs together with RAID groups of HDDs.
At that time, enterprise-quality SSDs were 100 to 200GiB
in size and relatively expensive. Therefore, based on cost-
benefit analysis for ONTAP systems, SSDs could make up
at most 10% of an aggregate’s total capacity. WAFL used
heuristics to determine where a particular block was to be
stored. For example, “hot” (based on access patterns) data
and metadata blocks were stored or even cached in the SSDs,
and “cold” blocks were stored in or tiered down to HDDs.

An interesting effect of biasing hot blocks to SSDs was
that fragmentation was mostly isolated to the SSD tier, and
infrequent deletion of cold blocks in the HDD tier was insuf-
ficient to fragment the HDD tier. This was verified by repeat-
ing the OLTP/DB experiment previously described, but at a
higher load on a Flash Pool aggregate composed of 12 SSDs
and several HDDs. Hot spots of the working set stayed in
the SSD tier, and write chains to HDDs declined very slowly,
leveled out at around 48 blocks after 22 days, and remained
stable for the remainder of the measurement interval (60+
days), without any need for CSC; the graph for this experi-
ment is not shown.

On the other hand, the SSD tier of a Flash Pool aggre-
gate fragments very quickly. We studied this by running
the OLTP/DB benchmark benchmark on the midrange sys-
tem with 12 200GiB SSDs and a large number of HDDs.
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Figure 7: Parity reads per second and write chain lengths for the
SSDs in a mixed aggregate during the in-house OLTP/DB bench-
mark, with and without CSC on the SSD tier.

The SSD tier is fragmented by running a heavy load (100K
op/sec) for 2 hours, followed by another 2 hours of a more
moderate and recommended load (50K op/sec) for that con-
figuration. Fig. 7 shows write chains and parity reads per sec-
ond within the SSD tier during the latter period. Both met-
rics show a marked improvement with CSC, with write chain
lengths of about 40 instead of 2. Although CSC results in a
small increase in client latency—from 0.79ms to 0.82ms (not
shown here)—it was still beneficial for this earlier generation
of SSDs, which were more prone to wear out. SSDs have
a flash translation layer (FTL) that generates empty erase
blocks for new writes and evenly wears out the SSD by mov-
ing data around within the SSD [28]. It is well known that
shorter and more random write chains lead to higher write
amplification on SSDs, which impacts SSD lifetime. Prior
work [17] explains how the choice of the AA size in WAFL
minimizes negative log-on-log behaviour [41] in devices us-
ing translation layers such as SSDs or SMR drives.

Following architectural improvements to the WAFL I/O
path, ONTAP systems with all-SSD aggregates were intro-
duced in 2015. As the size of the enterprise-quality SSD
has increased from 100GiB to 16+ TiB in less than 5 years
(remarkably), and the promise of new interconnect technolo-
gies such as NVMe [39, 40] has become a reality, the perfor-
mance bottleneck in these storage systems has shifted from
the media to the available CPU cycles to maximally use stor-
age I/O bandwidth. In addition, emphasis has shifted away
from SSD lifetimes and avoiding burnout due to write am-
plification in favor of total cost of ownership benefits as ven-
dors manufacture SSDs with larger drive writes per day [4].
RAID-style fault tolerance also provides protection from
burnout. Thus, write amplification due to free space frag-
mentation on enterprise-class SSDs is a performance prob-
lem that manifests mostly when a storage server has an ex-
cess of free CPU cycles but insufficient SSD I/O bandwidth.
This is unlikely on systems with RAID-based redundancy,
which require a minimum number of SSDs to amortize the

Figure 8: Latency and CPU utilization with the in-house OLTP/DB
workload on an all-SSD aggregate, with and without CSC.

Figure 9: Latency and CPU utilization with a pure random over-
write workload on an all-SSD aggregate, with and without CSC.

space needed for storing RAID parity; ONTAP aggregates
contain anywhere from 12 to 20+ SSDs. Much higher perfor-
mance with consistently low operational latency is required
of all-SSD systems, and therefore these systems are sensitive
to changes in available CPU cycles.

We first evaluate CSC on all-SSD systems by running the
OLTP/DB benchmark on the midrange system with an ag-
gregate comprising 21 SSDs of 1TiB each. The aggregate
was first filled to 85% of its capacity and subjected to se-
vere load for approximately 1 day, until fragmentation met-
rics plateaued. Fig. 8 presents the achieved latency and CPU
utilization at discrete increasing levels of load on this pre-
aged dataset. The use of CSC dramatically improves write
chain length, from 10.9 to 60.6 blocks, and nearly doubles
the read chain length, from 2.2 to 3.7 blocks, by providing
emptier AAs for write allocation; this is not shown in the fig-
ure. The CPU overhead of CSC is limited to a fraction of a
core, because writes represent only a portion of the load to
the system and therefore demand for clean AAs is limited.
Despite the layout improvements with CSC, performance is
unaffected until the maximum load is requested, where CSC
reduces latency from 3.0ms to 2.6ms.

Given the variety of workloads and the prevalence of mul-
titenancy on deployed systems, performance cannot be fairly
evaluated by any one benchmark. Thus, we next target a
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pure random overwrite to the same pre-aged setup as just
described to increase demand for clean AAs and determine
worst-case CSC overhead, as shown in Fig. 9. These results
do not represent the expected behavior in practice, but they
can inform the decision of whether to enable the feature by
default. Without CSC, write chain lengths quickly degrade
to 3, but with CSC they never fall below 12. Parity reads/sec
without CSC are around 10 times those with CSC. However,
CSC consumes significant CPU cycles in this workload—
almost 3 out of the 20 cores—which results in higher laten-
cies, especially at higher load.

Given the ubiquity of SSDs these days, all-HDD aggre-
gates are now mostly used for backup and archival purposes.
Such systems do not experience sufficient free space frag-
mentation to benefit from CSC, so it is disabled by default.
CSC can be (and is) enabled on customer deployments that
target more traditional I/O loads to achieve the benefits we
describe. In hybrid SSD and HDD aggregates, CSC is en-
abled only on the SSD tier to provide reduced write am-
plification and extend device lifetimes. Finally, our results
show that free space fragmentation plays a smaller role in
all-SSD configurations (with sufficient SSDs) than do CPU
bottlenecks. Given the expectation of consistent low latency
at higher IOPS from all-SSD systems, and the higher en-
durance of modern enterprise-quality SSDs, CSC is disabled
by default on such systems. Free space defragmentation can
still be enabled on a case-by-case basis or performed by a
background scan as needed at known periods of low load;
Sec. 7.4 discusses this further.

7.2 File Layout Defragmentation

As discussed in Sec. 4.3, WAFL uses WAR to defragment file
layouts, and that reduces the number of drive I/Os required
to satisfy a client request. We use the read chain length—
the number of consecutive blocks read by a single request to
a drive—as a primary metric for measuring file fragmenta-
tion. In these experiments, we used an internal tool to gener-
ate pre-fragmented datasets on the 20-core midrange system.
The tool randomizes the Physical VBNs assigned to the L0s
of a set of files, which efficiently mimics file fragmentation.

First, we analyze all-HDD aggregates. Sequential reads
of 64KiB each from several clients were aimed at the sys-
tem with an all-HDD aggregate. Fig. 10 presents both the
average latency and read chain lengths at increasing levels
of that load. Without WAR, both metrics remain stable at
around 8ms and 1.8 blocks, respectively. With WAR en-
abled, the incoming read operations trigger WAR to improve
file layout, which translates into longer read chains and re-
duced latency in successive load points. Overall client read
throughput (not shown in the graph) also improves when us-
ing WAR, from 1GiB/sec without WAR to 2.6GiB/sec with
WAR at the higher load points. At the drive level, the num-
ber of read I/Os decreases from 639 to 345 per second, in

Figure 10: Read chain length and read operation latency on an
all-HDD aggregate, with and without WAR. Increasing loads of se-
quential read are run for fixed intervals to fragmented files.

Figure 11: Latency versus achieved throughput of sequential reads
to a pre-aged dataset. With WAR enabled, measurements were
taken after WAR had completed defragmenting file layout.

spite of the significantly higher read throughput. This re-
duced load translates to a reduction in I/O latency, measured
at the drive, from 3.9ms to 1.2ms. As expected, WAR writes
to the storage to relocate fake dirty blocks, but the reduction
in the number of drive-reads outweighs these writes.

We now evaluate WAR for all-SSD aggregates by replac-
ing the HDDs in the previous experiment with 21 1TiB
SSDs. We first isolate the benefits of file layout improve-
ments on the performance of sequential reads by measuring
throughput and latency after WAR has completed defrag-
menting the pre-aged dataset, as shown in Fig. 11. While the
file fragmented test sees average read chain lengths of 1.7
blocks, post-WAR the system sees read chains of 32 blocks.
Thus, file defragmentation significantly reduces SSD read
I/Os per second and lowers CPU cycles needed by the stor-
age driver code in ONTAP. As a result, with WAR, the sys-
tem is capable of much higher throughput before the system
saturates and latency climbs to unacceptable levels. This ex-
periment demonstrates that file layout can still have a major
impact on read performance on SSDs, even though random
read performance is less of a factor than on HDDs.

As mentioned earlier, all-SSD systems are CPU-bound,
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and operational latencies are more sensitive to CPU con-
sumed by other activity. To evaluate the worst-case perfor-
mance impact of WAR overhead and inform the enablement
of this feature by default, we issued a mixed workload of se-
quential read and sequential write on the same fully pre-aged
dataset (graph not shown). Writes are more CPU intensive
than reads and so are a better indicator of CPU interference.
In this test, WAR overhead pushes operation latency up from
1.7ms to 2.5ms and throughput is lowered from 2GiB/sec to
1.7GiB/sec. The WAR interference particularly comes from
the increase in drive writes and 1.6 extra cores used in an
already CPU-saturated system.

All-HDD backup and archival systems typically experi-
ence sequential writes (backup transfer streams) and sequen-
tial reads (restore transfer streams), and they get fragmented
by the deletion of older snapshots and archives. Thus, WAR
is beneficial to such deployments. WAR is disabled on all-
SSD platforms due to its performance overhead, but can be
enabled as needed during periods of low activity to achieve
the demonstrated file layout benefits.

7.3 Compaction and Recompaction
Sec. 5 presented the compaction technology in WAFL to
pack multiple compressed blocks within a single block on
persistent storage. In our evaluation, we first created 2.2TiB
of data across several files in the midrange system with
21 1TiB SSDs. The data written to these files was de-
signed to be highly compressible. Once created, this data
set consumed only 511GiB of physical storage, representing
a 1.7TiB (77%) savings due to the cumulative effect of com-
pression and compaction. In particular, compaction was able
to store an average of 4.8 chunks per block. These were large
files, so the benefit of compaction was primarily due to the
tail-end of compression groups being compacted together.

The compacted dataset was then fragmented by using
random overwrites until the storage savings were reduced
to 27%, indicating sparsely compacted blocks and signifi-
cant intra-block fragmentation. Overwrites of compressed
user L0s resulted in the freeing of chunks within compacted
blocks. Then we initiated a moderate random read load
(80MB/sec) with and without a recompaction scanner to
measure the rate of intra-block defragmentation and the as-
sociated interference to the client workload. We observed
storage space being reclaimed at a rate of 3.78GiB/min, with
somewhat significant impact on client latency. In particu-
lar, we saw the average latency of the client read operations
rise from 0.63ms to 2.07ms, which comes from an additional
1.25 cores worth of CPU cycles, as well as the additional
blocks written to the SSD drives. The primary reason for
the latency increase is a background scan8 that runs after re-
compaction, but at a coarser parallelism that precludes client

8This scan is mentioned in Sec. 3.3, and is used to fix up stale Physical
VBNs in indirect blocks of the FlexVol.

operations. Until that limitation is fixed and recompaction
is made sufficiently lightweight, it should be initiated by the
administrator only at known time periods of low load. Once
recompaction is made lightweight, it can run autonomously.

7.4 Customer Data and Summary

We mined data from customer deployments running a recent
Data ONTAP release on all-SSD configurations, with differ-
ent space utilization levels (aggregate fullness); Fig. 12(A)
presents the distribution of write chain length observed. It
shows that higher space utilization adds to the fragmenta-
tion effect caused by file system aging—higher utilization
shows smaller write chain lengths. About 40% of systems
that were at least 75% full have write chain lengths below 11;
such systems stand to benefit from CSC. Logs collected over
a recent 3-month period also showed that 17% of all-SSD
systems experienced the less-efficient administrator-invoked
segment cleaning (versus 7% for all-HDD systems), justify-
ing the need for CSC. A similar analysis across all-HDD sys-
tems (not shown here) reveals that write chain length distri-
bution skews to higher values. There are two reasons for this.
One, it takes much longer to fragment an all-HDD aggregate
given its lower IOPS capability, while our data was from
a recent release. Two, a sizeable fraction of these systems
are archival, hosting “secondary” FlexVols that are replicas
of FlexVols accessed by customer applications. Incremental
updates to such FlexVols [30] are slow to fragment free space
because they overwrite (and free) large ranges of blocks.

To determine available CPU headroom, we next mined
CPU utilization during a particularly busy hour of a week-
day, but specifically for all-SSD systems with write chains
less than 11. Fig. 12(B) shows that about 85% of systems had
CPU utilization of less than 50%; a similar trend was seen
across all-HDD systems as well. This indicates that enabling
CSC would not really impact client operations. Further data
mining also showed that CPU utilization of systems varies
during a day, depending on the workload and the time zone,
as well as the customer workflow. Several features in Data
ONTAP autonomically detect periods of low user activity to
selectively enable themselves; our data indicates that CSC,
WAR, and recompaction can behave similarly.

To summarize this section, CSC and WAR are consis-
tently able to deliver improved layout, and these improve-
ments successfully translate to significant performance gains
for HDD-based systems that are typically storage bound, and
where layout plays a more critical role. The CPU and I/O
overhead of data relocation on all-SSD systems occasionally
outweighs improvements in layout, motivating autonomic
defragmentation during periods of low load. Other media
such as QLC flash and SMR are being analyzed. There is in-
sufficient customer data to analyze recompaction at this time.
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Figure 12: (A) Distribution of write chain lengths on customer de-
ployments at different levels of fullness, and (B) Distribution of
CPU utilization for systems with write chain length less than 11.

8 Related Work

The original LFS work [32] introduced log structuring and
evaluated several policies for performing segment cleaning
to constrain the associated overhead. Seltzer, et al. [34]
analyze the performance impacts of free space fragmenta-
tion in FFS and the overheads associated with cleaning in
LFS. It was shown that a policy based on grouping simi-
larly aged blocks into new segments is efficient. Our tech-
nique targets areas that have the least cost, and because the
emptiest segments (AAs) generally have the oldest blocks,
cold blocks become colocated when rewritten out together.
The SMaRT file system employs free space defragmentation
on SMR drives [13], using either background or on-demand
garbage collection based on a set of SMR-specific heuristics.

F2FS is a log-structured file system that is optimized for
SSD [21]. Similar to our work, F2FS has the ability to per-
form both foreground and background segment cleaning and
seeks to minimize the impact of cleaning on system perfor-
mance. Converting random overwrites into sequential write
requests in the block device driver can provide the benefits
of log-structured writes without paying the cost of segment
cleaning [20, 22, 43]. Geriatrix is an aging tool to fragment
both files and free space [16]; it reports that free space frag-
mentation significantly affects file system performance on
SSDs. These findings were not on enterprise-grade systems
with large storage arrays and do not conflict with our results.

Sequential file read performance degrades as a file’s data
becomes fragmented [2, 12, 33]. Betrfs is a file system
whose format inherently reduces fragmentation; the authors
found that performance was sustained better over time than
other file systems [5]. Aging can also be partially avoided
through preallocating space for a file, multiblock allocations,
and delayed allocation [24]. Unfortunately, some degree of
aging is inevitable in a log-structured, copy-on-write file sys-
tem [12]. The DFS file system relocates data in order to re-
duce fragmentation [2] and improve the subsequent read per-
formance. Recent work has found similar negative effects of
file fragmentation on mobile storage and tuned defragmen-

tation for such platforms [11, 15]. A study of deduplication
using Windows desktops showed that file fragmentation does
not impact performance because a large fraction of their files
are not overwritten after creation, and the background de-
fragmenter patches up the fragmented files [26].

The problem of intra-block fragmentation is most com-
monly solved by using tail packing, in which the non-block-
size aligned ends of files are persisted to a shared block
[5, 31, 37]. The most popular form of this consists of
defining some fragment size less than the block size, which
becomes the minimum unit of allocation [25, 42]. Re-
conFS [23] dynamically compacts sub-block sized updates
to metadata in order to reduce the number of drive writes on
flash. Our approach is more general, in that there is no mini-
mum or fixed chunk size. Further, we first compress data so
that blocks within large files can also benefit from this tech-
nique. Our process of recompaction is similar in concept to
garbage collection in the NOVA file system [38], in which
log entries in nonvolatile memory are written compactly to a
new log when less than 50% of log entries are active.

9 Conclusion

We investigated various forms of fragmentation in the WAFL
file system, and showed that it can have significant impli-
cations on both performance (as in the cases of free space
and file block fragmentation) and storage efficiency (as in
the case of intra-block fragmentation). We then presented
storage gardening techniques that leverage the FlexVol virtu-
alization to counteract each type of fragmentation. Although
the techniques dramatically improved data layout across a
variety of workloads, performance gains did not universally
follow. I/O-bound HDD systems showed significant benefits.
However, operational latency on all-SSD storage systems is
very sensitive to the availability of CPU cycles, and therefore
CPU and I/O overhead of defragmentation may outweigh its
benefits. Intra-block defragmentation provided significant
storage savings, but with a performance penalty.
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Abstract
The operating system community has been combating scal-
ability bottlenecks for the past decade with victories for all
the then-new multicore hardware. File systems, however, are
in the midst of turmoil yet. One of the culprits behind per-
formance degradation is reference counting widely used for
managing data and metadata, and scalability is badly im-
pacted under load with little or no logical contention, where
the capability is desperately needed. To address this, we pro-
pose PAYGO, a reference counting technique that combines
per-core hash of local reference counters with an anchor
counter. PAYGO imposes the restriction that decrement must
be performed on the original local counter where the act of
increment has occurred so that reclaiming zero-valued local
counters can be done immediately. To this end, we enforce
migrated processes running on different cores to update the
anchor counter associated with the original local counter. We
implemented PAYGO in the Linux page cache, and so our
implementation is transparent to the file system. Experimen-
tal evaluation with underlying file systems (i.e., ext4, F2FS,
btrfs, and XFS) demonstrated that PAYGO scales file sys-
tems better than other state-of-the-art techniques.

1 Introduction

Reference counting is a general technique, originally intro-
duced by Collins [8] almost six decades ago, to determine
the liveness of an object for automatic storage reclamation.
Since the early version of UNIX kernel used reference count-
ing to manage data (e.g., page cache) and metadata (e.g.,
inode), reference counting has gained widespread accep-
tance in the systems community thereafter, e.g., file systems,
HBase [21], RocksDB [22] and MariaDB [23].

However, a recent study by Min et al. [17] found that ref-
erence counters, among many other factors, in modern file
systems are not scalable, thus leading file systems to suffer
performance degradation on multicore hardware, even with
∗Contact author and principal investigator

applications with little or no logical contention. For exam-
ple, the traditional way of referencing (let us call it ‘tradi-
tional reference counter’), which is currently being used in
the Linux operating system for page cache, uses a single
shared atomic counter. By using atomic operations, an object
can be safely referenced even when multiple threads update
at the same time. The traditional reference counters, how-
ever, degrade the performance of applications on multicores
due to excessive atomic operations on a shared counter.

In order to be a good reference counter for concurrent ap-
plications, there are important properties to consider; 1) up-
dates on reference counters must be scalable, 2) reading an
accurate (zero or positive) counter value should be cheap, 3)
reference counters should be space-efficient and 4) all these
should be guaranteed without incurring extra delay to man-
age reference counters. We denote overheads required for
achieving the four properties as counting overhead, query
overhead, space overhead, and time overhead, respectively.

Counting overhead. The counting overhead, which is the
most important property for scalable counting, indicates the
cost of updating (REF/UNREF) a reference counter itself
when there is a heavy load on referencing an object. Since
the counting overhead is a crucial hurdle for achieving scal-
ability, all reference counting techniques strive hard to elim-
inate it first. The traditional reference counter which uses a
single shared counter has the highest counting overhead due
to the hardware-based synchronization bottleneck [13].

Query overhead. The query overhead measures the cost
of query operation which checks if the reference counter of
an object is zero and so we can safely reclaim the object
from memory. The traditional technique can detect zero by
reading a single atomic counter.

Space overhead. The space overhead indicates how much
space they use for reference counting. In terms of space over-
head, the traditional reference counter is a (de facto) optimal
technique since it does not require any other data structure
than one atomic counter per object.

Time overhead. The time overhead represents any other
delay than the counting overhead introduced by a reference
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counting technique to manage all data structures it maintains.
The traditional reference counter has minimal time overhead
since it maintains only per-object atomic counters. However,
some reference counting techniques that exploit distributed
local reference caches have the synchronization overhead be-
tween local counters and a global counter. This synchroniza-
tion plays two roles: 1) the global counter becomes ready
(i.e., up-to-date) for zero detection and 2) the local counter,
if it resides in hash, can be reclaimed. We generally denote
this type of overhead as the time overhead.

Our analysis of prior proposals (§2.1) suggests that it is
challenging to achieve all four properties, possibly due to
tradeoffs between different properties. In this work, we pro-
pose pay-as-you-go (PAYGO1) reference counting that en-
sures scalable counting and space efficiency with negligi-
ble time overhead. Although based on a well-known per-core
hash technique, PAYGO introduces a novel concept of an an-
chor counter that enables the immediate reclamation of lo-
cal zero-valued counter entries, which is pivotal to reducing
the forceful eviction of the conflicting hash entries when the
number of objects accessed in a core becomes large. The in-
stant reclamation is indeed a critical feature for escaping per-
formance degradation that may otherwise occur due in large
part to the heavy cost of operations for resolving collisions,
including forceful evictions.

We implemented PAYGO and applied it to page cache in
Linux, leaving existing file systems almost intact. To see the
applicability of PAYGO to user applications, we also imple-
mented new PAYGO system calls that can be used for ref-
erence counting user-level objects. Evaluation results with
various underlying file systems (i.e., ext4, F2FS, btrfs and
XFS) demonstrated that PAYGO shows substantial improve-
ments against state-of-the-art reference counting techniques.

2 Related Work and Motivation

2.1 Related Work
There have been many proposals attempting to address some
of the properties introduced in §1, and the techniques avail-
able so far utilize at least one of the following features:

Contention distribution. One of the major factors imped-
ing the scalability of a reference counter is cache line con-
tention: updating the same reference counter atomically by
many threads results in high contention. SNZI [14] mitigates
the contention by dispersing the reference counters at com-
pile time. It manages distributed counters using a binary tree
with a fixed-sized depth. While it shows better scalability
than the traditional reference counter, it is still slower than
other techniques due to the possible contention on a partic-
ular counter that changes frequently. However, it can per-
form zero detection in constant time by checking the indi-
cator of the root node in the binary tree, although determin-
ing the global count value is impossible. Other techniques

[1, 18] alleviate the contention problem by distributing ref-
erence counters according to the degree of contention at run-
time, but they empirically judge the degree of contention
and distribute reference counters so they cannot relieve the
contention for a reference counter under general workloads
where we can hardly predict the degree of contention. Car-
refour [12] also distributes contention dynamically, but hard-
ware profiling is required to verify memory traffic. Proposals
in this category still rely on atomic instructions for updating
reference counters, so they seldom achieve linear scalability.

Cache affinity. Another factor that hinders scalability of
reference counters is cache misses. To reduce the cache
misses, a local reference counter is used in a way that an ob-
ject has per-core local counters and updates are made to the
local counters nonatomically. The downside of this approach
is the overhead needed for summing all local counter values
to obtain the global count. To alleviate this side effect, there
is a way to obtain the global count in advance and store it in
the central counter [9, 5, 10], which incurs extra time over-
head. Sloppy counter [9, 5] updates only the local counter
if the updated value is less than a certain threshold. If the
value exceeds the threshold, the local counter value is trans-
ferred to the central counter. The central counter is therefore
an approximation of the global count. Before transferring the
local counter value, it acquires the global lock for the central
counter, which incurs extra time overhead. percpu ref [10],
a variant of the sloppy counter, implemented in Linux for
managing memory objects in several device drivers, also pri-
marily changes the local counter. The techniques exploiting
cache affinity have the counting-query tradeoff : nonatomic
updates on local reference counters earn good scalability in
exchange for longer query time to read a global count by col-
lecting the sum of local counters. They also have bad space
efficiency due to the per-object, per-core local counters.

Per-core hash. To improve the space overhead of cache
affinity-based techniques, recent years have seen attempts
to use per-core hash of reference caches that would fulfill
the main duty of reference counting with much less space
overhead [7, 4, 3]. They can substantially reduce the space
overhead by using per-core hash which keeps the local refer-
ence counters for only those objects in use. Techniques based
on per-core hash inevitably face the problem of reclaiming a
hash table entry whose local counter is zero (i.e., the corre-
sponding object is not in use). Existing techniques address
this using quiescent period-based synchronization which is
widely used in Linux to reclaim objects, such as read-copy-
update (RCU) [16]. The reference counting algorithm ex-
ploiting per-core hash with quiescent period-based synchro-
nization cannot avoid the space-time tradeoff : they achieve
better space efficiency in exchange for time overheads not
only in synchronization between local and global counters
but also in hash entry reclamation. RefCache [7], which is
one of quiescent period-based techniques, manages its local
counters in per-core hash, and the counter values are flushed
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Figure 1: A comparison of reference counting techniques under workloads accessing a shared counter.

into a central counter every epoch. OpLog [4] generalized
RefCache’s idea by using operation logs for the shared data
structure with a local timestamp. In descending order of the
timestamp, per-core logs are applied to the data structure.

2.2 Motivation

The design of PAYGO is motivated by two observations:
Observation 1. Our analysis of existing algorithms in §2.1

is summarized in Figure 1. Noticeable is the observation that
attaining the counting scalability (i.e., low counting over-
head) demands a sacrifice of two other properties due to the
counting-query and space-time tradeoffs. By escaping those
tradeoffs we can attain more good properties; for example,
escaping the space-time tradeoff enables us to make both
space and time overheads low while achieving scalability.

Observation 2. Another and more important observation
is that the excessive time overhead may eventually incur se-
vere performance degradation. As described in §2.1, tech-
niques based on per-core hash sacrifice time overhead to re-
duce space overhead. The time overhead under consideration
in such techniques is the overhead of reclaiming hash entries,
when the number of objects accessed in a core becomes large
so that frequent hash collisions occur and therefore forceful
evictions for the conflicting hash entries need to be exercised
to make room for newly accessed objects. The eviction of
a hash entry needs to flush the local counter value to the
global counter and therefore causes additional synchroniza-
tion overhead between local and central counters.

For example, RefCache [7], designed for a new virtual
memory system, is perfectly scalable when n threads are re-
peatedly performing mmap/munmap on a single shared phys-
ical page (see Figure 8 in [7]), since the forceful eviction of
hash entries due to collisions seldom occurs and so may not
be a serious design consideration in virtual memory systems.
However, if we use RefCache in page caches under file sys-
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Figure 2: Performance of RefCache: hash table size = 4,096
entries (default size), ext4 file system.

tem benchmarks that may access far more objects, frequent
evictions that internally acquire/release object locks to pro-
tect the flush of local counter values to the central counters,
may result in serious time overhead, leading to performance
degradation. To confirm it, we conducted a preliminary ex-
periment that measures the throughput of RefCache for page
caches. The experimental environment is shown in §6.1, and
we ran the FXMARK microbenchmark so that 96 threads
read 64 bytes (or 4 KiB) on a shared file, with a sequen-
tial access pattern and varying the file size. Figure 2 shows
the result that confirms our conjecture. The throughput de-
creases as the file size (i.e., the number of objects) gets big-
ger, due to increased hash collisions triggering more force-
ful evictions. We found that the hash collisions start slightly
occurring from the point when the file size is 1 MiB (i.e.,
256 objects) and become excessive as the file size increases.
Hence, reclaiming garbage hash entries in a timely manner is
critical for avoiding the performance degradation of per-core
hash-based reference counting techniques.

The above observations guide us to conclude that escap-
ing the space-time tradeoff is crucial for scalable reference
counting techniques. By escaping the space-time tradeoff,
we can achieve true scalable counting keeping both space
and time overheads low, which is our design goal of PAYGO
whose comparative properties are depicted in Figure 1.
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3 PAYGO

Of counting-query and space-time tradeoffs, we aim at es-
caping the space-time tradeoff while embracing the other.
PAYGO achieves this by using a per-core hash-based refer-
ence cache with a new technique called anchoring. PAYGO
is designed on the following assumptions; (i) objects are ref-
erenced and unreferenced by the same process and (ii) the
lifetime of references is reasonably short not to put the static
size of per core hash in jeopardy (see §3.5).

3.1 Design Overview

Design rationale. To escape the space-time tradeoff, per-
core hash-based techniques must ensure the safety condi-
tion such that a local reference cache entry can be reclaimed
immediately upon releasing all references to an object, all
done without sacrificing other properties. In this respect, Re-
fCache earned the counting scalability in exchange for the
increased time overhead required for reclaiming obsolete
cache entries. For addressing this issue, our main design ra-
tionale behind PAYGO lies in a simple goal; we make a local
reference cache zero (i.e., ready to be reclaimed) right after
all references are released. To this end, we enforce the re-
striction that a process, once referencing an object, must be
anchored to the original reference cache to inform of any un-
referencing to the object irrespective of which core the pro-
cess runs on. For this purpose, PAYGO’s per-core hash entry
consists of a local counter and an anchor counter fields, and
the sum of two represents a local count for an object initially
accessed in that core.

Access rules. First, we establish ground rules in accessing
a pair of local and anchor counters to preserve the correct-
ness, that is ‘never miscount’. Access rules for (UN)REF are
described as follows. For the REF operation, a process al-
ways accesses a local reference cache and updates the local
counter field nonatomically. At this time, the process is log-
ically anchored to this core (homeland) and anchor core ID
is recorded in a task struct. For the UNREF operation, act-
ing on local or anchor counters depends on whether migrated
or not in between REF and UNREF; if the process remains at
the same core (homeland), UNREF is done on the same lo-
cal counter nonatomically. Otherwise, the migrated process
atomically updates the anchor counter of the original refer-
ence cache in the homeland core. The use of an atomic op-
eration on an anchor counter is indeed for correct counting
even with multiple processes in concurrent environments.

We summarize the access rules in Table 1, and we ensure
that a local reference cache becomes zero upon the comple-
tion of REF/UNREF operations. This allows PAYGO to reclaim
zero-valued local reference caches immediately from hash,
thus retaining the hash space efficiency without time over-
head. The common rule governing both REF and UNREF is,
we disable preemption while performing two operations in

Table 1: Access rules for REF and UNREF from homeland and
foreign land. (X: nonatomic, X©: atomic, ×: no-op)

Type
PAYGO Entry

local counter anchor counter
REF UNREF REF UNREF

Homeland X X × ×
Foreign land × × × X©

REF at core 0

1 0 0
LC AC ID

core corePAYGO

object 
pointer

local 
counter

PAYGO entry

cache line size (byte)

task struct
anchor info

StateStructure

(per-process)

(per-core)

63 56 55  52 51 48 47 0

(ⅰ) UNREF at the same core

0 0 0
LC AC ID

(ⅱ) UNREF at different core

1 −1 0
LC AC ID

core

( )
core

core

LC : local counter
AC : anchor counter
ID : anchor core ID

anchor 
counter

anchor core IDs

Figure 3: An overall structure of PAYGO and state of the
structure when referencing and unreferencing an object.

order to prevent malicious data races on a local counter. Of
course, there are other ways of doing this, such as kernel spin
locks (i.e., spinlock t), but disabling/enabling preemption
is by far the fastest method we found it suitable for our pur-
pose and has been used in prior work [7, 10]. An in-depth
performance analysis will be presented in §6.2.5.

Overall structure of PAYGO. Next, we describe the over-
all structure of PAYGO. Figure 3 shows the structure of
PAYGO and the state of the data when an object is refer-
enced and unreferenced. For each core, there is per core hash
of reference caches, each entry of which consists of an ob-
ject pointer and two counters, a local and an anchor coun-
ters. The space overhead for this hash table is much smaller
than the Linux sloppy counter and larger than the traditional
one, but it is similar to RefCache. Given hash of reference
caches, the UNREF operation atomically decreases the anchor
counter of the anchored core only when process migration
occurs, by the access rules in Table 1. To do this, each pro-
cess stores anchor information that bookkeeps the core IDs in
which an object is referenced. The anchor information inter-
nally maintains multiple anchor core IDs to deal with a case
where a process references an object multiple times on differ-
ent cores without unreferencing it. Matching anchor core ID
is removed after UNREF is done on the corresponding core.
Unlike hash, PAYGO requires extra memory space for stor-
ing anchor information in a task structure, and this is surely
regarded as additional memory overhead.

On the right side of Figure 3 shows the state of the data
when a process references and unreferences an object. When
a process references an object at core 0, it raises the local
counter of core 0 and keeps core 0 in the process’s anchor
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information. When the process unreferences the object, it
first searches the current core ID in its anchor information. If
found, the process decreases the local counter of the current
core; otherwise, it decreases the anchor counter of any core
in the anchor information atomically.

3.2 PAYGO Operations

PAYGO has three operations: REF/UNREF operations to in-
crease/decrease a reference counter and READ-ALL operation
to read the global value of the reference counter which is
equivalent to the query operation.
REF operation. When a REF operation of an object is in-

voked, it finds the PAYGO entry for the object in the hash
of the current core. If the PAYGO entry is found, its local
counter is increased. If the PAYGO entry is not found, a new
PAYGO entry is created in the hash and the local counter
is increased, and then the current core ID is stored in the
process’ anchor information. The REF operation is executed
while preemption is disabled to prevent multiple processes
from updating the same hash entry concurrently.
UNREF operation. When an UNREF operation of an object

is invoked, it first checks the anchor information of the pro-
cess. If the core ID stored in the anchor information is the
same as the current core, the process finds the PAYGO entry
for the object in the hash of the current core and decreases
the local counter. If the process has migrated to another core,
it finds the PAYGO entry for the object in the hash of the
anchored core and atomically decreases the anchor counter.
The UNREF operation is also performed with preemption be-
ing disabled for the same reason as the REF operation.
READ-ALL operation. When a READ-ALL operation is in-

voked, it finds all the PAYGO entries for the object in all per-
core hash tables and computes the sum of the local and the
anchor counters of all valid PAYGO entries. The READ-ALL

operation is performed while the preemption is disabled in
order to prevent any scheduling delays that may slow down
the process. Nevertheless, this does not guarantee to read the
correct sum since the REF and the UNREF operations may
modify the counters during the READ-ALL operation. Object
reclamation therefore needs a delicate design (§3.3).

3.3 Object Reclamation

Objects are a target of reference counting, and operating sys-
tems often reclaim objects that are not referenced by any pro-
cess in order to keep memory pressure under control. Once
an object is chosen to be reclaimed, the reclaiming process
should prevent any additional reference to the object and
check again the zero value of the reference counter. In tra-
ditional reference counting, this can be done atomically by
comparing the shared atomic counter with zero and swap-
ping it to a negative value. The synchronization used in the

rcu_read_lock();
while (rcu_pagep = radix_tree_lookup_slot()) {

if (!(page = radix_tree_deref_slot(rcu_pagep))
break;

preempt_disable();
this_cpu->hash[H(page)]->local_counter++;
add_anchor_info(current_task, page, this_cpu);
preempt_enable();
if (get_flag(page) || is_object_removed(page)) {

UNREF(page);         
continue;

}
}
rcu_read_unlock();

local
counter

0

1

(a) REF operation

(migrated to other core)
preempt_disable();
anchor = find_last_anchor(current_task, page);
if (anchor.cpu == this_cpu)
this_cpu->hash[H(page)]->local_counter--;

else
atomic_dec(&anchor.cpu->

hash[H(page)]->anchor_counter);
delete_anchor_info(current_task, anchor);
preempt_enable();

anchor
counter

0

-1

(b) UNREF operation
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Figure 4: Code snippets of how PAYGO’s REF, UNREF and
READ-ALL are implemented and used in the Linux page
cache, where H() is a hash function.

traditional method is based on atomic read-modify-write op-
eration (e.g., CMPXCHG).

In PAYGO, it needs more steps to correctly handle the case.
Since the READ-ALL operation cannot acquire the sum in one
snapshot, it uses a flag to indicate its commencement, which
helps prevent the additional reference to the object. The syn-
chronization method we use here is based on the read-after-
write (RAW) pattern [2]. Important to notice is the invariant
that at least one of a reclaiming process and referencing pro-
cesses, if they run concurrently, must detect both events and
then retreat itself for safety, thus never allowing malicious
data race. We enforce these checking conditions to be veri-
fied at the end of REF and READ-ALL routines.

Figure 4 shows the code snippets of how REF, UNREF and
READ-ALL operations are implemented in the Linux page
cache with a special flag indicating that the current page
is accessed for reclamation. Accessing the special flag may
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cause contention only if the same page is repeatedly re-
claimed (or flushed in the Linux page cache) while many pro-
cesses read it, which we seldom, if ever, witnessed in Linux.
In Figure 4a, the code executed while preemption is disabled
denotes the REF operation. In Figure 4b, the whole code is
the UNREF operation. READ-ALL operation which iterates all
core’s hash, finds the PAYGO entry and collects the sum of
all entries again with the preemption being disabled, is only
shown as a function call in Figure 4c. Notice that there is ad-
ditional code around the REF and READ-ALL operations for
the correct implementation of reclaiming page caches.

As shown in Figure 4a, the entire routine for ref-
erencing a page is protected by rcu read lock() and
rcu read unlock(). The REF operation starts by obtain-
ing an rcu reference to the page. Once it obtains the rcu

reference, it retrieves the page object and then performs the
REF operation. After that, a flag is checked to see if a re-
claiming process is being tried. If the flag is clear, then the
page is checked whether or not it is removed. This makes
sure that the page is not already reclaimed before the flag
is checked. Only if both conditions are passed, the page is
safely referenced. Otherwise the flag is set, then the process
retries until the reclaiming process clears the flag. If the page
was already removed, the reference process fails. For the re-
claiming process, the READ-ALL operation is performed after
setting a flag. If the page is not referenced by any thread, the
page object is safely removed and the flag is cleared. If the
page is already referenced by other thread, it is not removed
and the flag is cleared, thus failing to reclaim the page object.

3.4 Anchoring in Action

Reference counting techniques exploiting per-core hash,
such as RefCache [7], allow processes to update nonatomic
local counters of the running core. This means that when a
process at core 0 increases the local counter of core 0, mi-
grates to core 1, and decreases the local counter of core 1,
then we have two local counters with values of 1 and -1, re-
spectively. The spread-out local counters are problematic if
per-core hash is used to reduce space overhead. As an ex-
ample, RefCache uses background threads to flush the local
counters every epoch, which inevitably delays the reclama-
tion of zero-valued reference cache entries.

The anchoring technique in PAYGO enforces the REF and
UNREF operations to act on the same PAYGO entry, thus guar-
anteeing the sum of its local and anchor counters to eventu-
ally become zero. Any zero-valued PAYGO entry can be re-
cycled immediately when another REF operation accesses the
same hash bucket. Figure 5 shows an example of an object
accessed by multiple threads in a system with four cores. At
core 0, a red thread references and unreferences the object by
increasing and decreasing the local counter of core 0. At core
1, a blue thread followed by a green thread reference the ob-
ject. Then, a yellow thread also references the object at core

core 0

core 1

core 2
read-all

1

0 0

migrate

migrate

: lock;subl (atomic op.)
: addl/subl

: anchor counter
: local counter /

0 0

core 3

Figure 5: Usages of an anchor counter.

1. Since the yellow thread is using core 1, the blue thread and
the green thread have to migrate to other cores (namely, core
2 and core 3, respectively), and unreference the object using
the same anchor counter of core 1. As shown in this example,
an anchor counter has the risk of being modified by multiple
threads in parallel, so we use an atomic operation.

The anchoring technique gives us another opportunity of
reducing the query overhead. Since the sum of local and an-
chor counters in a core can never be negative, during the zero
detection (i.e., query), upon seeing a positive value of the
sum in a core, we can immediately stop zero detection safely
concluding that the object is currently being used by at least
one process.

Discussion. Since decreasing an anchor counter uses an
atomic operation, there is a performance concern when sys-
tems have processes that are all accessing the same an-
chor counter, thus hitting the hardware-based synchroniza-
tion bottleneck. This is the worst case that can occur when
processes are migrated frequently between REF and UNREF.
But, the general design rationale for the OS scheduler usu-
ally inhibits such frequent process migration unless there are
compelling reasons, such as severe load imbalance.

Nonetheless, the chance of migrating a process can in-
crease if the interval between REF and UNREF becomes dis-
tant. Even if it occurs, atomic operations on anchor counters
would not have bad impact on performance, since the price
for process migration is much larger than the pure cost of ref-
erence counting itself. Hence, the performance degradation
caused by atomic operations can be neglected (see anchor-
ing overhead in §6.2.3). To alleviate any possible bottleneck
on the same anchor counter, the OS scheduler can give a tem-
porary CPU affinity to processes that are in between REF and
UNREF, to prevent process migration.

One may raise concern about the overhead of searching
the matching core ID in anchor information when a pro-
cess references an object multiple times or numerous objects
without unreferencing. Since PAYGO stores the same anchor
ID in anchor information even if the same object is refer-
enced again, this issue will surely impact performance due
to the search cost, but we have not discovered such cases yet
inside file systems or data management systems. If the case is
found, then augmenting an additional search structure must
be necessary.
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3.5 Table Overflow

The table overflow problem of hash tables is a fundamen-
tal issue that per-core hash-based counting techniques should
address. In the context of reference counting, the table over-
flow occurs when there are a large number of live objects.
For instance, if a process opens many files, then the cor-
responding dentry objects will be alive in per-core hash
until closed. Conventional methods, such as table doubling,
are hard to use or to be efficiently designed due mainly to
high concurrency. We deal with the overflow similar to the
way Linux swap space is managed. First, an object that uses
PAYGO has a list, called an overflow counter list, protected
by an object lock. When a live object needs to be evicted
from per-core hash, we acquire the object lock, evict the en-
try from hash, add the evicted counter information to the
overflow counter list and then release the lock. Later, the
owner process of the evicted entry can reload the evicted
counter information from the overflow list while holding the
object lock. Further improvements can be made to the shared
overflow list, but we hold off until it really matters since
‘premature optimization is the root of all evil’ [15]. What re-
ally matters here is the lifetime of the referenced object, and
the concerned place (i.e., page cache) suffering bottlenecks
has short-lived objects that begin and end its lifetime inside
read/write system calls. PAYGO scales file operations well
under such conditions.

4 PAYGO Implementation

We implemented PAYGO in Linux kernel version 4.12.5 and
applied it to the page cache that can affect many concrete
file systems suffering scalability issues. For experiments, we
take the code base implementing RefCache and SNZI from
sv6 [6] and adapt it to Linux page cache. Noticeable is the
observation that other latent contention often arises after
PAYGO eliminated contention on reference counters.

The Linux page cache is implemented using a radix tree,
and its operations are made lockless for the performance ben-
efits [20]. However, read system calls using a page cache
still have scalability issues, such as the usage of atomic ref-
erence counter to synchronize between reading a page from
a page cache (REF/UNREF) and flushing the page from mem-
ory to storage (READ-ALL). Therefore, threads trying to read
the same page contend on the same reference counter and
have poor performance under such loads [17].

In the original implementation of a reference counter in
a page ( refcount) has two purposes. First, it is used as a
status variable. If the value is zero, it means that the page is
unused. If the value is two, the page is active and is stored
in a page cache, but it is not referenced by any threads.
The refcount of a value above two is used as a reference
counter. For example, the refcount value of three indicates
that there is one process referencing the page. Here, we left

user	threads

sys_ref(void* obj) or sys_unref(void* obj)

user	mode

kernel	mode

object

preempt_disable() preempt_enable()

referencing / unreferencing

REF(obj, pid)
UNREF(obj, pid)

Figure 6: User-level PAYGO in Linux.

the refcount to be used as a status variable and use PAYGO
to replace the referencing part of refcount.

5 User-Level PAYGO

PAYGO, although being motivated by pressing concerns in
file systems and intended to address it, can be easily extended
to a user-level reference counting method for applications
above the kernel. The development of scalable user-level ref-
erence counting is more demanding indeed, since there are
many latent use cases where contention may arise once the
present performance matters are all cleared away. For exam-
ple, managed language runtimes (such as the JAVA runtime)
use referencing counting for collecting garbage objects, and
the same is true in the database land; popular database sys-
tems, such as HBase [21], RocksDB [22] and MariaDB [23],
also use reference counting for managing memory objects.
To the best of our knowledge, they use either hardware
based atomic operations or lock based synchronization prim-
itives to safely orchestrate concurrent accesses to the shared
counter variables, but both methods are all vulnerable to per-
formance bottlenecks in highly concurrent environments.

To make applications benefit from the better scalability
of PAYGO, we implement three system calls, sys ref(),
sys unref() and sys readall(), which enable applica-
tions to exploit core kernel-level PAYGO operations without
difficulty for user-level reference counting (Figure 6). De-
spite there being the inherent overhead required in switching
between user mode and kernel mode, reference counting on
user-level objects through PAYGO system calls enables ap-
plications to achieve far better scalability than their legacy
reference counting techniques. Furthermore, PAYGO will ex-
hibit much less overhead for managing garbage entries in
per-core hash, and this is a required feature especially when
applications hold a large number of live references.

Enabling applications to directly exploit the reference
counting technique in the kernel via system calls poses two
nontrivial issues. First, the system call overhead should be
sufficiently minimized to benefit from the original perfor-
mance of the kernel-level reference counting technique. To
this end, we make PAYGO system calls lightweight such
that they just wrap core kernel-level PAYGO routines with
preempt disable()/preempt enable() executed before-
hand/afterward. The wrapped routines here basically refer
to the code segments bounded by preempt disable() and
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Figure 7: Scalability comparison under strongly contending workloads: the Linux page cache.

preempt enable() in Figure 4. One subtle matter is, we
have to transform the virtual address of a user object into a
unique one inside per-core hash, by combining it with the
pid of a user process. Second, since applications are not as
reliable as kernel, the abnormal termination of applications
may leave the kernel data structures for reference count-
ing incorrect. When an application terminates after referenc-
ing an object but before unreferencing it, the correspond-
ing counter in the kernel can never become zero. To resolve
the problem, when terminating a process, the task struct

needs to be checked to detect any left-over counter values
in the corresponding PAYGO entries in per-core hash tables.
Any such left-over counters, if found, must be decreased.

6 Evaluation

In this section, we measure the overall performance and
scalability of PAYGO, especially in page cache, and com-
pare with other reference counting techniques including Re-
fCache, SNZI and traditional reference counter under vari-
ous file systems. For analyzing the performance of user-level
PAYGO, we compare PAYGO with existing user-level refer-
ence counting techniques.

6.1 Experimental Setup
We perform all of the experiments in Linux kernel version
4.12.5 on our 96-core system equipped with four 24-core In-
tel Xeon E7-8890 v4 CPUs and 1 TiB DDR4 DRAM. We
run FXMARK microbenchmark [17] with a RAM disk and
filebench [11, 25] with a Samsung SM1725 NVMe SSD. To
show the general applicability of PAYGO, we conduct exper-
iments under four different file systems (i.e., ext4, btrfs,
F2FS and XFS). In ext4, we used the default journaling
mode and did not see any lock contention in the journaling
subsystem observed in the prior study [17]. Page structures
cached in memory are freed before every experiment, and
the Linux security module is turned off to avoid the unre-
lated performance degradation.

6.2 Scalability
This section explores the multicore scalability of concerned
file systems under file system benchmarks, with the degree of

contention being varied from strongly contending to weakly
contending. Our evaluation methodology follows similar ap-
proaches used in [17], and the important metric is the number
of REF/UNREF (i.e., file reads) with the degree of contention
on reference counters being controlled by the size of files ac-
cessed by benchmark threads. Experiments under this con-
trolled environment may reveal the weakness and strength
of tested schemes that may overlook at the time it was pro-
posed.

6.2.1 Strongly Contending Workloads

To evaluate the performance of file operations under strongly
contending scenarios, we ran the shared block read work-
load (i.e., DRBH) in FXMARK, a microbenchmark that is
intended to stress file systems. For the evaluation, a vary-
ing number of threads repeatedly read the same 4 KiB data
block, thus stressing the reference counting part enormously.
This workload is known to reveal the contention resilience
of any reference counting approach, since the stock Linux
suffers the most. Figure 7 shows the results. With this work-
load, all file systems under consideration in stock Linux
(i.e., vanilla) undergo severe scalability bottlenecks arising
from contention on the same reference counter. SNZI shows
slight improvements over the vanilla scheme that uses the
traditional reference counter. PAYGO and RefCache perfectly
scale the throughput of ext4, btrfs and F2FS. The main
reason for slightly lower performance of PAYGO than Re-
fCache is because the number of instructions executed by
PAYGO is slightly greater than RefCache. By profiling on
clock cycles, we obtain the cycle difference that matches the
performance difference we observe here.

Interesting is the performance degradation that has been
consistently observed in XFS primarily due to contention on
the semaphore inside an inode structure, which completely
renders all reference counting methods useless. Although a
further investigation is needed, it is worthwhile putting effort
to redesign this coarse-grained locking so that XFS can reap
performance benefits from better counting techniques.

6.2.2 Weakly Contending Workloads

To evaluate the performance of file systems under weakly
contending scenarios, we used filebench, a benchmark that
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Figure 8: Scalability comparison under weakly contending workloads: the Linux page cache.

can flexibly add and test workloads to file systems and stor-
age. Before we run the filebench, we modified the filebench
code to experiment with more flexibility on multicores. Orig-
inally, filebench is implemented with a lock for each file and
only one thread can access the file at a time. We eliminated
the file lock so that multiple threads can access the file con-
currently. For the evaluation, we ran the randomread work-
load with participating threads performing 64 bytes random
reads from one of ten 128 MiB files. Since weakly con-
tending workloads disperse contention on reference coun-
ters, it may expose any latent overhead (or downside) of
given counting techniques that has been overlooked in ex-
change for resolving high contention arising under strongly
contending scenarios.

The throughput results are shown in Figure 8. Strikingly
the vanilla scheme deployed in the stock Linux page cache
performs well after it reduces hotspot contention; it out-
classes SNZI all the time and sometimes outperforms Ref-
Cache with a slight margin. As the thread count increases,
the throughput gap between PAYGO and RefCache widens
due to a large number of garbage entries that increase hash
collisions in RefCache’s per-core hash, which were not ob-
served under strongly contending workloads.

Again, none of the tested counting techniques scale the
performance with XFS due to bottlenecks inside XFS, and this
will be discussed in detail in the following section.

6.2.3 In-Depth Analysis

In order to reveal detailed information about various system
activities, we perform an in-depth analysis with moderately
contending workloads being profiled over different metrics.

Stressing page cache. We first ran the randomread work-
load of the filebench microbenchmark, by varying the num-
ber of files whose size is set to 32 MiB. We chose the moder-
ately contending workload as a good proxy for stressing ref-
erence counting schemes with a reasonable balance of con-
tention and the count of objects referenced. Figure 9 shows
the throughput and the CPU breakdown of the benchmark.

First, the in-depth profiling gives clear explanations for
two strange observations in XFS and SNZI. The first obser-
vation is the poor scalability of XFS. The main culprit for this
problem is due to severe lock contention inside the file sys-
tem; xfs ilock() and xfs iunlock() on the inode of a

file. Lock contention mainly depends on the number of files,
not the file size. High contention on the inode lock indeed
leads to severe performance degradation regardless of refer-
ence counting schemes. This perhaps needs attention from
our community. The second observation is the poor scalabil-
ity of SNZI, and SNZI also has a similar culprit for the issue;
it scales poorly regardless of file systems at this time. Since
the only publicly available code base for SNZI can be taken
from sv6 [6], we show the results as is.

The vanilla scheme can scale the performance of ext4,
btrfs and F2FS quite well as the thread count increases.
Although the overhead of atomic instructions grows in pro-
portion to the thread count, the dispersed contention cancels
out the negative impact of atomic operations we have seen
in Figure 7. With 72 threads, the vanilla scheme performs
almost on a par with RefCache. An in-depth analysis of per-
formance over different contention levels will be discussed
in the next experiment.

RefCache shows worse core scalability than PAYGO, and
this is mainly because of the increased overhead of handling
hash collisions (i.e., atomic lock operations) in RefCache.
Also, noticeable is the slight performance degradation of the
vanilla, RefCache and PAYGO as the file count increases.
This is due to the increased memory access overhead for
reading files larger than cache memory, which is not ob-
served in experiments with the same number of smaller files,
although results are omitted here due to the space limitation.

Performance spectrum over degree of contention. We
further investigate the performance spectrum over differ-
ent contention levels to fully grasp the nature of the space-
time tradeoff. For this evaluation, we modified the FXMARK
benchmark in a way that 96 threads perform 64 bytes se-
quential reads per 4 KiB page on a single file whose size
is varied from 1 MiB to 64 MiB, with ext4 mounted. Fig-
ure 10 shows the performance spectrum of three concerned
schemes. The most noticeable result is the sharp throughput
decrease in RefCache as the file size grows, which clearly
shows the negative effect of a large time overhead to scala-
bility and so the necessity of the instant reclamation of hash
entries. PAYGO effectively addresses the problem and under-
goes no performance overhead for that issue. The gradual
degradation of the throughput in PAYGO is due to the file data
overflow in cache memory, resulting in the increased mem-
ory access overhead, which also occurs in other schemes.
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Figure 9: The performance and the CPU breakdown of file systems (i.e., column labels (a)-(d)) with different reference counting
schemes (i.e., row labels on the right side) under moderately contending workloads: the Linux page cache.

As we analyzed earlier, the vanilla scheme is ill-suited
for the strongly contending condition (i.e., 1 MiB). But
its performance rebounds quickly as soon as the degree
of contention is alleviated, and it outperforms RefCache
once it passes a break even point (i.e., 16 MiB file in our
case). In-depth looking through profiling reveals that the ac-
quire/release of an object lock in RefCache to handle hash
collisions incur more overhead than the atomic operations in
the vanilla scheme when hash collisions occur frequently due
to a large number of objects accessed. After the break even
point, the throughput of the vanilla scheme starts to decrease
because the increased memory access overhead due to the
file data overflow in cache memory becomes larger than the
merit of dispersed contention.

Anchoring overhead. Since the anchor counter can be
contended by only migrated threads, the frequency of thread
migration determines the anchoring overhead. As described
in §3.4, the design rationale for the OS scheduler usually in-

hibits frequent process migration. To confirm it, we ran the
openfiles workload of the filebench on all cores that could
cause thread migration between REF and UNREF operations,
and counted the number of migration. For this experiment,
we created 2,000 threads running the openfiles workload
on 36 physical cores (disabling 60 cores), which hopefully
causes frequent thread migration due to the load imbalance.
However, during the 60 seconds experiment, less than 10,000
times of migration occurred.

Moreover, regardless of how the Linux scheduler is im-
plemented, the more frequent the thread migration occurs,
the less effective the CPU time is due to the long latency of
the context switch. The latency of the context switch can be
as short as 1 microsecond [24, 19] which is still relatively
larger than the overhead of the atomic operation [13]. Re-
cently, there has been an effort to reduce the latency of the
context switch to several tens of nanoseconds by emulating
a thread at the user level [24], but no such study has been

88    17th USENIX Conference on File and Storage Technologies USENIX Association



 0

 20

 40

 60

 80

 100

U
ti
liz

a
ti
o

n
(%

)

User Library Misc. Kernel Refcnt Lock Atomic

   0

 100

 200

 300

1 2 4 8 16 32 64

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

e
c
)

File Size (MiB)

Vanilla   RefCache PAYGO

Figure 10: Performance spectrum of the vanilla, RefCache and PAYGO over varying contention levels on ext4.

 1

 10

 100

 1000

1 2 4 8 16 32 64 96

T
h

ro
u

g
h

p
u

t 
(M

o
p

s
/s

)

No. of Threads

FAA CAS PAYGO

Figure 11: Throughput under the strongly contending work-
load (user-level reference counting).

found in the kernel level. Therefore, there is practically no
reduction in system throughput due to frequent changes of
the anchor counter in PAYGO.

6.2.4 Scalability of User-level PAYGO

Next, we evaluate the performance of user-level PAYGO sys-
tem calls to see its applicability. For the evaluation, we use
a microbenchmark that has a varying number of threads
(un)referencing user-level objects repeatedly. For compari-
son, we implement two methods based on our observation.
The first one is to use atomic fetch add and fetch sub for
reference counting. We call it FAA, and this is a typical im-
plementation widely adopted in many systems. Note that this
technique does not show performance collapses, but it cannot
scale performance mainly due to hardware-based synchro-
nization bottlenecks. The second one is to implement what
is being used in the Linux page cache, which is based on the
atomic compare-and-swap instruction. We call this CAS.

Figure 11 shows the throughput (i.e., the number of
fetch add/fetch sub and REF/UNREF operations per second)
of three schemes as we increase the number of threads, all of
which access a single shared user-level object. As we man-
ifested, the mode switch overhead of user-level PAYGO is
quite noticeable and expected, considering the performance
of FAA and CAS until 2 threads in our system. The perfor-
mance number FAA and CAS achieve with 1 thread, how-
ever, is the peak number obtainable for reference counting a
single shared object. After 2 threads, both FAA and CAS are
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Figure 12: Performance spectrum of FAA, CAS and user-level
PAYGO with a varying number of objects.

either saturated or slowly degrading. Meanwhile, our user-
level PAYGO scales the performance with no contention over-
head. Figure 12 shows the performance spectrum of three
methods as we increase the number of referenced objects
with 96 threads. As shown in the figure, FAA and CAS suf-
fer from synchronization bottlenecks initially when all of 96
threads access a small number of objects, but they slowly
gain throughput up to a certain point as contention is dis-
persed. We believe that the saturation point observed here
(i.e., 137 Mops/s) reaches the maximum capacity that our
96-core server can support. On the other hand, our user-level
PAYGO could sustain the maximum throughput regardless of
the count of objects.

Impact on application performance. As demonstrated
above, user-level PAYGO may have a profound impact on
application performance especially on multicore hardware.
We have been conducting an in-depth code-level analysis
of latent bottlenecks caused by reference counting in Mon-
goDB, MariaDB, Boost.Asio, etc. What we have learnt from
our preliminary study on such systems is that many applica-
tions using user-level reference counting mostly suffer per-
formance bottlenecks that start occurring much earlier be-
fore the reference counting is responsible for severe perfor-
mance degradation. For example, database systems we ana-
lyzed have recently undergone major changes to enhance its
multicore scalability. As the systems community is battling
pressing concerns, the contention around reference counting
will soon appear as a primary bottleneck in achieving scal-
able performance.
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Figure 13: Query overhead comparison.

6.2.5 Comparing preempt disable() and spin lock

As we briefly mentioned in §3.1, the use of
preempt disable(), instead of kernel spin locks
or something similar, to prevent data races in
REF/UNREF needs concrete justification. Hence, we
compared the overheads of both methods by mea-
suring the average clock cycles per each function
pair (i.e., preempt disable()/preempt enable(),
spin lock()/spin unlock()) by iterating them up to a
billion times. The results show that the clock cycles for
preempt disable() and spin lock converge to 14 cycles
and 50 cycles, respectively. Throughout the experiments,
the overhead of preempt disable() remains a constant
fraction (∼30%) of that of spin lock regardless of the
number of iterations performed. The main reason for the
higher overhead of spin lock is because it internally
invokes preempt disable() and executes additional code
segments including an atomic instruction for cross-core
communication supporting mutual exclusion on a global ob-
ject. This is undoubtedly overkill for our case where we also
use an atomic operation to safely decrease an anchor count
from remote cores. In conclusion, preempt disable() is a
fast and safe method, as it has shown its usefulness in prior
work, for preventing data races on local counters in our
REF/UNREF implementations.

6.3 Query Overhead

In this section, we conduct the performance evaluation of
the READ-ALL operation. To evaluate the query overhead of
PAYGO, we measure the time to flush a 4 GiB file in the
Linux page cache with and without background readers on
ext4. The experiment first reads the entire file so that file
blocks are all loaded in page caches. Then, it measures the
time taken to drop the file from page caches. Since page
caches are all clean (i.e., unmodified), dropping page caches
is comprised of pure CPU activities. Figure 13 shows the
completion time of different reference counting techniques.
With background readers, RefCache surprisingly outpaced
all other competitors, since RefCache may read a batch of
global counters for multiple pages safely if their hash entries
were flushed two epochs ago and no referencing occurred in
between. Although PAYGO has less query overhead than Re-

fCache for a single reference counter, the benefit of syncing
the entire hash of dirty reference caches to global counters
predominates the time overhead of two epochs with a large
number of objects. Meanwhile PAYGO exhibits the overhead
of reading a large number of local counters for each page and
the vanilla scheme suffers contention due to atomic opera-
tions. Without background readers, the vanilla scheme is bet-
ter than RefCache, but PAYGO still shows the same overhead
of reading local counters. Nevertheless, the query overhead
of PAYGO does not commensurate with the number of cores
owing to its early detection of positive reference counter val-
ues (§3.4).

7 Limitations and Future Work

The limitations of PAYGO can be summarized as follows.
First and foremost, PAYGO is not completely free from the
counting-query tradeoff. We do not have a clue on whether it
is possible or not. A proposal achieving low overhead in all
directions must be a major breakthrough in systems research.
Second, the way we handle the table overflow is rather naive,
and one may find practical use cases that can stress PAYGO in
that the overflow counter list is spotted as a bottleneck point.
Our ongoing work is to apply user-level PAYGO to language
runtime systems that surely benefit from user-level PAYGO.

8 Conclusion

Reference counting in modern file systems is not scalable
on multicores, even under workloads with little or no log-
ical contention. Through in-depth survey of present refer-
ence counting techniques designed for scaling file I/O opera-
tions, we found that there are space-time tradeoff and query-
counting tradeoff in designing scalable reference counting
techniques. In this paper, we have presented a novel refer-
ence counting scheme, PAYGO, that escapes the space-time
tradeoff by using an anchor counter. PAYGO provides scal-
able counting and space efficiency with negligible time de-
lay for the reclamation of hash entries. We have implemented
PAYGO in the page cache in Linux. Our evaluation with dif-
ferent file system benchmarks demonstrated that PAYGO is
practically useful in addressing severe contention arising in
other reference counting techniques.
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Abstract

Due to the processing of cryptographic functions, Crypto-
graphic File Systems (CFSs) may require significant process-
ing capacity. Parallel processing techniques on CPUs or GPUs
can be used to meet this demand. The CTR mode has two par-
ticularly useful features: the ability to be fully parallelizable
and to perform the initial step of the encryption process ahead
of time, generating encryption masks. This work presents an
innovative approach in which the CTR mode is applied in the
context of CFSs seeking to exploit these characteristics, in-
cluding the anticipated production of the cipher masks (specu-
lative encryption) in GPUs. Techniques that demonstrate how
to deal with the issue of the generation, storage and manage-
ment of nonces are presented, an essential component to the
operation of the CTR mode in the context of CFSs. Related to
GPU processing, our methods work to perform the handling
of the encryption contexts and control the production of the
masks, aiming to produce them with the adequate anticipation
and overcome the extra latency due to encryption tasks. The
techniques were applied in the implementation of EncFS++,
a user space CFS. Performance analyzes showed that it was
possible to achieve significant gains in throughput and CPU
efficiency in several scenarios. They also demonstrated that
GPU processing can be efficiently applied to CFS encryption
workload even when working by encrypting small amounts
of data (4 KiB), and in scenarios where higher speed/lower
latency storage devices are used, such as SSDs or memory.

1 Introduction

In the era of storing data in cloud services, where they end
up being written to server disks scattered around the world,
it is increasingly important to deal with data confidentiality
before it is actually stored. Cloud storage services typically
provide secure communication channels in the data transfer
process. However, they do not bother encrypting the files
before writing and transferring them, which usually results in
data being stored in clear text format.

One way to get around the problem of storing files in clear
text is to use a Cryptographic File System (CFS). By using
cryptographic techniques, they act transparently, encrypting
the data before they are actually stored. CFSs can apply en-
cryption functions at different levels of the data storage and
retrieval process, and can encrypt individual files, directories,
partitions, and entire disks. CFSs typically encrypt the con-
tents of files in blocks, in order to allow accesses at random
without having to decipher them completely. They use block
ciphers and modes of operation that dictate specific rules on
how the encryption process should be performed.

CFSs have intensive processing demands due to the vol-
ume of data and the cost of cryptographic functions. Parallel
processing techniques on CPUs or GPUs can be used to meet
these demands. As a way to achieve better performance on
these systems, you can use the parallel processing capabilities
offered by multiprocessor computers and servers, whether in
the form of multiple CPUs or GPUs.

The acceleration of symmetric GPU encryption algorithms
is a well-studied subject, including the Advanced Encryption
Standard (AES) [1] [19] [18] [13] [6] [12], in addition to its
application in the context of CFSs [26] [14] [10] [25]. One of
the studies related to the acceleration of AES in GPUs resulted
in the AES (WAES) Warped, presenting significant perfor-
mance gains [28]. This study also resulted in the creation
of the WAESlib library, which can be used to facilitate the
integration of applications with the use of AES cryptographic
processing in GPUs.

A major feature of WAES, apart from GPU processing, is
the use of the operating mode called Counter (CTR). The
CTR mode has two particularly useful features: the ability
to be fully parallelizable in both encryption and decryption
operations and the ability to perform the initial step of the
encryption process in advance, generating what we call the
encryption masks.

In addition to exploring the first characteristic, WAES also
explores the second, making it capable of computing en-
crypted data in advance. So when an application actually
needs encrypted data, it will already be available, ready to
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be used. This feature may prove useful in a number of situa-
tions, allowing effective GPU encryption of small amounts
of data, something indicated to be impracticable in previous
research [26] [14] [10] [25]. Since most file system have
blocking factor of 4 KiB or lower, using WAES can bring
interesting results.

However, endowing a CFS with the ability to process its
cryptographic functions by a parallel processor is not re-
stricted to the simple use of a library. For this to be done
efficiently, there are significant challenges to overcome.

A first concern would be about how to implement the CTR
mode in a CFS respecting the security requirements required
by the mode. It is necessary to treat issues related to an essen-
tial element to the operation of the CTR mode called nonce.
These issues pertain to their generation, storage and manage-
ment. The resulting implementation needs to ensure that the
use of the CTR mode does not cause negative impacts to the
CFS performance, which could nullify the gains from parallel
processing the cryptographic functions.

Another point with direct connection to the parallel pro-
cessing of the encryption workload regards to how to manage
the CFSs encryption contexts, controlling the production of
encryption masks on the multicores or GPU for subsequent
use in data encryption and decryption tasks. The read and
write operations, either sequential or random, have different
characteristics, which requires the creation of different tech-
niques for managing these contexts in order to produce the
encryption masks with adequate time in advance. A related
issue is about how to aggregate enough work for the cores, for
parallel processing from typically sequential workloads gen-
erated by each CFS client application, without compromising
latency on the CFS operations.

This paper presents techniques that try to overcome these
challenges and constitute the main contribution of this work.
The authors are unaware of previous work that has used the
CTR mode in the context of CFSs, mainly seeking to exploit
the advantage of being able to produce the encryption masks
in a speculative way. The main objective of such an approach
is to obtain a better performance of the CFS in order to achieve
higher throughput and more efficient use of CPUs.We specifi-
cally deal with aspects related to the counter mode encryption.
Authentication issues could be dealt with at FS level or also in
conjunction to the encryption processes. In the latter case, our
techniques could also be applied in conjunction to other au-
thenticated encryption methods (e.g. GCM [3] or OCB [22])
that are parallelizable and work with similar counter mode
constraints.

The techniques presented were validated through the cre-
ation of the EncFS++ CFS, based on the preexisting CFS
called EncFS [7]. The results show that it was possible to
obtain significant performance improvements (in throughput
and CPU efficiency) in several scenarios, even in very low
latency environments where the base file system (FS) was
stored in memory. In SSD disk micro-benchmarks this im-

provement reached a maximum of 269% in throughput and
112% in CPU efficiency for sequential writing of large blocks.
Indeed, in the most adverse scenario for SSDs, the random
reading, it was possible to achieve gains of 18% in throughput
and 18% in CPU efficiency. The results also demonstrate that
the applied techniques allowed performance improvements
even when processing small amounts of data (requests of 4
KiB). Our approach was also evaluated in a scenario of low
latency "devices", by locating the tested file system in mem-
ory (RAM). We also present synthetic macro-benchmarks
performed in solid-state disks.

The rest of this paper is organized as follows: In Section 2
we introduce background aspects related to CTR encryption
mode, cryptographic storage systems and the GPU encryp-
tion library used in our work. We discuss related work in
Section 3. Issues related to CTR implementation and stor-
age on CFSs are shown in Section 4. The management of
encryption contexts is presented in Section 5. We show micro
and macro-benchmark evaluations of our proposed scheme in
user space CFS EncFS++ in section 6. Finally we present our
conclusions in Section 7.

2 Background

This section presents some concepts relevant to the under-
standing of this work. The operation of the CBC and CTR
modes is discussed, emphasizing the advantages of the CTR
mode. Examples of cryptographic storage systems and the
different levels at which they can act on the Linux IO subsys-
tem are also presented. EncFS is also previously presented
considering that the techniques of this work are implemented
on this. Finally, we present WAES, and its WAESlib library,
which exploit the advantages of CTR mode and allow the
execution of cryptographic functions in GPUs.

2.1 CBC and CTR Operation Modes
CFSs encrypt files in fixed-size blocks so that you can ac-
cess parts of them without having to encrypt or decrypt them
completely. The blocks are coded using block ciphers that
subdivide these blocks into smaller blocks (usually 64 or 128
bits), processing them individually [16] [20] [23]. The pro-
cessing of these smaller blocks during encryption must follow
specific rules which are known as operation modes. Among
these modes are the CBC and CTR [2].

In CBC mode, each cipher block depends on the clear
text block (P), the key (K), and the previous ciphertext block
(C). In the encryption process, before a block is encrypted, it
undergoes an operation of XOR with the previously encrypted
block. The encryption operation can be seen in Figure 1a. The
CTR mode employs a counter that is incremented for each
new block processed. This counter, called nonce, is encrypted
and then used in a XOR operation with the clear text to produce
the ciphertext, as in Figure 1b.
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Figure 1: CBC and CTR encryption process.

The CBC mode requires the use of an initialization (IV)
vector. Data in IV should not be predictable, ie an attacker
with use of some clear text should not be able to predict the
IV that will be used in the future process of encryption. The
choice of data to be used to populate the IV should follow
specific rules. Generally, a pseudorandomly generated number
is used, which is encrypted with the same key used in the
remainder of the encryption process [20] [23] [4] [2].

In CTR mode, the use of nonce enforces a unique nonce
and key pair. That is, the same nonce can not be used in differ-
ent encryption operations with a given key in the encryption
process. This leads to the explicit need to control nonce in-
crement between different encryption processes that use the
same key [2].

With regard to the parallel execution capability of the
blocks, in CBC this is not possible. This is due to the fact that
the encryption of a particular block depends on the encryption
of the previous block. Only the decryption process can be par-
allelized. In contrast, the CTR mode is highly parallelizable
since there is no dependence between the blocks. In addition,
since encryption can be done only on nonce it is possible to
generate encryption masks in advance. Thus, these masks will
be ready to be used when the data is known.

Besides the efficiency characteristics of CTR, it has proven
security bounds. In fact, the concrete security bounds one gets
for CTR-mode encryption, using a block cipher, are no worse
than what one gets for CBC encryption [15].

2.2 Cryptographic Storage Systems

Software-based storage systems can operate at different levels
of the Linux I/O subsystem. For this reason, the integration
of cryptographic resources into this system can be done in
several ways, giving rise to different types of cryptographic
storage systems.

There are file systems that act on user space, communi-
cating with kernel space through libfuse and the FUSE mod-
ule [27]. Because they run in user space, they offer greater
flexibility, not requiring elevated user privileges to be con-
figured, used, and even developed and tested. On the other
hand, by constantly calling from the user to kernel space, they
cause a lot of context changes, which compromises their per-
formance. An example of a CFS of this category is EncFS [7].

Other systems are implemented as kernel modules, com-
municating directly with the Virtual File System (VFS). By
running entirely in kernel space, they significantly reduce the
need for context switches, improving their performance. An
example of this category is eCryptfs [8].

Another approach is to act on the block layer through the
device mapper. In this way the encryption will occur only in
an agnostic form acting on blocks to the file system itself.
They present the best performance, at the cost of not being as
flexible as the systems described above. Dm-crypt exemplifies
such a system.

The positioning in the Linux IO subsystem of each of these
three system examples can be seen in the Figure 2.

Figure 2: Cryptographic storage systems placement on Linux I/O
subsystem.

2.3 EncFS
The implementations of this work were realized on a crypto-
graphic FS called EncFS [7]. The main reason for choosing
EncFS was that it is well known and run in user space, which
has two important advantages: it facilitates development / test-
ing and allows direct access to the CUDA [17] library, which
is only available in user space.

In its encryption processes EncFS can use AES, Blow-
fish and Camellia symmetric block ciphers available in the
OpenSSL library. In order to be able to randomly access data
within an encrypted file, its contents are encrypted in blocks
with fixed sizes. The size is set during FS creation and can
range from 1 to 4 KiB. In full block encryption, it uses CBC
mode of operation.

Three different types of IVs are used in block encryption.
The first is the IV contained in the volume key (IVV ). The
second is the IV of the file (IVA) and the third is the IVs for
encryption of the blocks within the files (IV B). The IVV is
stored in the final bytes of the volume key (V K), which is
generated randomly in the FS creation. IVA is also generated
randomly in creating a new file. NumBlock corresponds to
the block number within the file. IV B is obtained by applying
the following cryptographic hash function:

IV B = HMAC_CT X(V K, IVV ‖ (NumBlock
⊕

IVA))

Because EncFS uses CBC mode, the IVs used in block
encryption (IVBs) must meet the unpredictability require-
ment. This is why the concatenation of different IVs and the
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application of the cryptographic hash function is done. Con-
sidering the same file stored in a given EncFS system, VK,
IVV and IVA remain constant, the only variable being the
block number. This feature has advantages over performance,
as it allows the IVBs to be dynamically calculated, and it is
not necessary to store them. In addition, the same IVB can
be reused in rewriting processes of the same block within a
same file.

2.4 WAES and WAESlib

WAES (Warped AES) [28] is the implementation of a high
performance algorithm for heterogeneous parallel process-
ing employed for data encryption using GPU. WAES was
implemented with 128-bit and 256-bit keys in CTR mode.
The heterogeneous part of WAES refers to the possibility of
performing all the steps of the CTR operation mode on the
GPU or performing the final part of XOR with the text to be
encrypted or decrypted in the CPU.

WAES explores the characteristic of the CTR mode of oper-
ation to implement a technique called speculative encryption.
From the moment you have the encryption key and nonce,
WAES can compute and pre-populate buffers with encrypted
data. In this way, these data are available in advance and are
called encryption masks.

Anticipating the production of encryption masks in con-
junction with performing the final XOR step of CTR mode
on the CPU are critical to efficient processing when working
with small amounts of data in GPUs. This anticipation allows
you to compensate for the latency involved in GPU operations
such as data transfer and GPU kernel activation. Performing
the final XOR step on the CPU avoids the need to transfer the
data to be GPU encrypted.

WAES also allows buffer aggregation, which are processed
in the same WAES kernel activation. The buffers aggregation
technique decreases the latency and increases the utilization
of the GPU processing cores, consequently resulting in higher
bandwidth, thus being a promising technique to be used with
file systems submitted to workloads composed of requests in
the 4 KiB range.

The techniques proposed by WAES were implemented and
made available in a library called WAESlib. Calling this li-
brary will prepare the CUDA environment and launch the
WAES kernel which will pre-compute the encryption masks.
Calls to masks made through WAESlib are asynchronous,
freeing the application to perform other tasks while the en-
cryption masks are computed on the GPU.

WAESlib also offers a priority feature that can be used to
control the production order of encryption masks. Contexts
defined with higher priority have their masks produced before.
This feature can be explored by trying to sort the production
of the masks according to the order in which blocks of a file
are accessed.

3 Related Work

The GPU acceleration of symmetric block ciphers is a well-
known subject in the literature [1] [19] [18] [13] [6] [12].
Some of these researches aim to take advantage of the accel-
eration of these ciphers in cryptographic storage systems. In
this section we first present research that worked with systems
running in user space and in the sequence those that worked
with systems running in kernel space.

In user space. The Engine-CUDA [21] project features
an OpenSSL engine capable of performing symmetric GPU
encryption operations. The project is used in the development
of the work done in [6], where the engine has been improved
and extended, being implemented other ciphers such as DES,
Blowfish, IDEA, Camellia and CAST5. Results show that
GPU processing becomes effective above 16 KiB and can be
eight times better when approaching 8 MiB.

In [5], CrystalGPU is presented, which is a framework
that aims to facilitate the integration of GPU processing into
applications. This framework is used in the implementation
of a FUSE-based CFS called CRSFS [26] [14]. In this work
the encryption algorithms used are the AES operating in the
ECB and CBC modes. Experimental results show that it is
advantageous to use CPU processing for data sizes up to 4
KiB and GPUs for data above 16 KiB.

In kernel space. The OpenBSD Cryptographic Framework
(OCF) [11] is a framework developed with the goal of provid-
ing a service virtualization layer within the kernel by offering
an API that hides the specific details of each accelerator. The
work presented in [9] uses the Linux version of the OCF to
integrate the GPU processing resources into this framework,
allowing to execute in NVIDIA GPUs symmetric encryption
operations using AES in ECB mode.

Gdev [10] is a runtime system designed to run in the kernel
space to manage the use of the GPU in a way that is similar
to the processes running on the CPU. Its main feature is to
control the GPU without relying on proprietary drivers and
access libraries that run in user space. One of the practical ap-
plications demonstrated is the eCryptfs adaptation to perform
encryption on the GPU. For writing operations the gain was
up to 2x.

The GPUStore [24] [25] is a runtime and framework sys-
tem designed to facilitate the integration and efficient use of
GPU processing for data storage systems that run in kernel
space. In [25] as a practical application, the GPUStore is used
to accelerate code inside the kernel from the dm-crypt, and
eCryptfs. For data encryption above 256 KiB, the performance
was 36 times better.

Two points can be highlighted in relation to the state of the
art presented. First, when applying the processing acceleration
of the cryptographic functions in GPU to file systems none of
the work took advantage of the CTR mode. To our knowledge,
the work proposed in this paper is the first to explore the CTR
mode in this context. The second is that results in the reviewed
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work indicate that GPU processing only begins to be efficient
when working with larger size requests (> 16 KiB).

The use of the CTR mode for CFS proposed here allows
new forms of performance gain not exploited in previous
work: exploring the ability to produce the encryption masks
speculatively in the GPU; and to avoid transferring the data to
be encrypted or decrypted from the CPU to GPU. These tech-
niques allow to compensate for the additional latency inherent
to the GPU processing that are especially impacting when
the size of the requests is small, according to the research
data presented. Moreover, we show that the data space needed
for nonce storage is very small and that it can be retrieved
and operated without compromising performance. Our ap-
proach is applicable, with some adaptation, to other counter
mode encryption methods that include authentication and are
parallelizable, including on multicores.

4 CTR Implementation on CFSs

Before we can exploit the benefits of using CTR in the context
of CFSs, it must be adapted to operate in CTR mode. One
essential element for the operation of the CTR mode is the
nonce. We must carefully think the ways to generate and store
these nonces as these factors can impact the performance
of the CFS and possibly cancel any impending gains from
the application of speculative encryption using GPU process-
ing. This section presents some techniques that address such
issues.

4.1 Nonces Generation

Considering the issue of nonces generation and seeking to
satisfy the demand for nonce uniqueness [3] in the CTR mode,
this work proposes a deterministic form for its generation. The
technique relies on a single global counter that is incremented
on each write or rewrite of a data block in the FS. The numbers
generated by this counter are used as nonce in the encryption
and decryption functions. Considering, for example, the use
of a 128-bit block cipher, the nonce must also have that size.
Therefore, a 128-bit counter can be used.

In implementations such as the OpenSSL library, the least
significant nonce bits are used as an internal counter incre-
mented every 16 bytes of encrypted data. The amount of bits
required for this counter is given by the formula log2(x/16),
where x is the number of bytes to be encrypted with this nonce.
Since nonces must be unique, the amount of blocks that can be
written or rewritten is given by 2128−x, where x is the amount
of reserved bits.

Figure 3 illustrates the format of the global counter and the
least significant bits reserved for the internal counter of the
CTR mode.

Figure 3: Nonce obtained from CFS global counter.

4.2 Nonces Storage

Regarding the storage of nonces, when a FS block is written,
the nonce used in its encryption process is obtained from
the FS global counter. In a future process of reading the
same block, in order to be able to decipher its contents, it is
necessary that the same nonce be passed as a parameter to the
decryption functions. Therefore, it must be stored for future
retrieval since any rewritten block needs a different nonce and
file blocks may have been updated in any given order.

A naive method would be to store the nonces individually,
prepending each block. However, this approach is inappropri-
ate for random reading because it makes it difficult to read
nonces in advance in order to trigger the anticipated gener-
ation of encryption masks. In addition, FS block sizes are
already page aligned and doesn’t have the space to include
the nonces.

One way to work around this problem is to store nonces
separately from the encrypted file. Thus, they occupy contigu-
ous regions on disk, streamlining the processes of reading and
writing. Also, since each nonce has only 16 bytes, accessing
it individually is not efficient. In addition to storing them
in separate files, it is also interesting that they be read and
written in a clustered fashion.

However, grouped and separate storage is not the ideal
solution for all cases. In a scenario that works with very small
files, containing few blocks of data, reading and writing an
entire group of nonces can lead to wasted memory and disk
space. Ideally, we would store the initial nonces of all files in
a single storage location. Only when a file occupies a greater
number of blocks, its other nonces begin to be stored in a
separate and exclusive file.

To deal with the storage situation of the initial file nonces,
this paper proposes a solution based on the Unix inodes stor-
age system. This structure was called nonce node (nnode).
There is a single file responsible for storing the nnodes of all
files stored in the FS. The general structure of this file can be
seen in Figure 4a.

At the beginning of the nnodes structure (file) the FS global
counter is stored. Following is a counter that controls the
amount of nnodes used, as well as a bitmap that is intended
to control the allocation of nnodes. The nnodes themselves
are in the sequence. Each file stored in the FS has an nnode
allocated to it and stored in that structure. In the expansion of
an nnode, shown in Figure 4b, you can see the information
contained in it. They are the inode number of the file (used to
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Figure 4: Nonce nodes (nnodes) file format (a). Detail of a nnode
(b). Exclusive nonce file format (c).

index the file to nnode), followed by the first 16 nonces of the
file.

Considering that an nnode is used to store the first 16
nonces of a file, assuming for example that the FS uses 4
KiB blocking factor and supposing files of up 64 KiB, only
the structure of one nnode is sufficient to store its nonces.
This form of storage helps to optimize access to small files as
it allows nnodes to be stored in near regions on the disk. In ad-
dition, it also helps to avoid wasting disk space by allocating
larger structures for storing an entire group of nonces.

If a file grows beyond the 16 blocks, the other nonces begin
to be stored in a separate and unique file for each file stored
in the FS. The format of this file can be seen in Figure 4c.
Nonces are stored in groups of 256 nonces to match the size
of a 4 KiB memory page. This implies that that one nonce
group is stored for each 256∗4 KiB segment of a file (i.e. a 1
MiB file segment). This way the overhead, in terms of disk
space to keep the nonces, stays negligibly under 0.4% (i.e. at
most 4KiB/1MiB).

5 Encryption Contexts Management

In order to understand some of the techniques proposed in this
work, which aim to use WAESlib efficiently in the context of
CFSs, it is necessary to briefly describe its operation. One of
the main components of the library is the so called encryption
contexts: a kind of logical organization used by the library to
control the production and application of encryption masks.

Basically, the use of the library is a process that involves
calling a context definition function to start the production of
the encryption masks and then call the functions that apply
these generated masks.

In the use of the context definition function, the identifica-
tion number of the context being defined, the identification
number of the previously defined key, nonce and a priority
number are given. The call to this function is asynchronous,
releasing the application to perform other tasks. After the
function call, the library can fire the WAES kernel so that

it begins computing the encryption masks in advance in the
GPU.

Internally the priority is used by WAESlib to aggregate and
define the order in the production of the masks. As the masks
are generated, they are transferred to the system memory and
are available for use in the data encryption and decryption
functions.

The other two main functions are used to instruct WAESlib
to encrypt and decrypt data. In your call information such
as the context identification number, the buffer containing
the data to be encrypted or decrypted and its size is passed.
These are synchronous functions that cause WAESlib to use
the previously calculated encryption mask for the context in
question, available in system memory, to effectively encrypt
or decrypt the data. This final step consists of a bitwise XOR
operation between the data and the mask generated, being
performed in the CPU.

Despite its simplified use, there are significant challenges
involved in this process. They mainly concern how to ef-
fectively group, define, and use these encryption contexts in
writing and reading operations. One of the main contributions
of this paper is to present some techniques that show how
to do this. They demonstrate how to use encryption contexts
to ensure that encryption masks are produced promptly in
advance and are readily available at times when they are re-
quired to effectively encrypt and decrypt blocks of data. These
techniques seek to explore how files stored in the CFS are
accessed, for example by examining data locality issues and
access patterns.

5.1 Encryption Context Pools

The approach carried out in this work in grouping the encryp-
tion contexts was based on the idea of pools that are used
differently according to the operation being performed. We
identified the need to create at least two group types: a unique
pool of encryption contexts, at CFS level, used in sequential
and random write operations; and several pools of contexts for
decryption, one per open file, used in sequential and random
read operations. The working idea of these pools is described
in the following two subsections.

5.1.1 Contexts Pool for Encryption/Writing

In order to hide the latency involved in the process of generat-
ing the masks in the GPU, as well as its transference from the
memory of the device to the system memory, it is essential
that the triggering of the masks generation occurs as soon
as possible. This work proposes the use of a single pool of
contexts used for the generation of masks that can be used in
the process of block encryption. Consequently, they can be
used in the processes of writing and rewriting blocks of all
CFS files.
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Using as an example a pool containing eight contexts, when
the CFS is mounted, eight contexts will be allocated for this
pool. The current value of the CFS counter is copied and
used to define the contexts contained in the pool using a
nonce corresponding to the value of that counter, which is
incremented with each defined new context. Respecting the
need to keep the least significant bits of the counter reserved
and considering a CFS that uses blocks of 4 KiB, the counter
increases in the value of 256 (as each 4 KiB data block totals
256 AES blocks).

The queue start (pool beginning) indicator is used to store
the context ID containing the oldest mask generated. At the
end of this process, shown in Figure 5a, the CFS will have an
amount corresponding to the size of the pool in masks ready
to be used in block encryption processes.

Figure 5: Contexts pool usage example for encrypting blocks in
write operations.

However, in order to avoid wasting nonces and avoid the
need to temporarily store the nonces used to generate masks,
the CFS counter is only effectively incremented when a mask
is used in the encryption process. The nonce to be saved
to be used in the future process of decrypting the block is
obtained from the value of the CFS counter when mask usage
occurs. Soon after, the counter is incremented, corresponding
to the value used before in the generation of the mask of the
subsequent context. The queue start indicator is then moved.

After consuming the mask, the context that contained the
newly used mask is reused to trigger the generation of a new
mask. Thus, all contexts are always maintained with a new
mask. The priority used in this context reset (redefinition)
may be as small as possible, since the mask to be produced
will only be consumed after all others. The value of nonce to
be used in the generation of the next mask can be obtained
through the formula x= y+(1<<w)∗z, where x corresponds
to the next nonce y the current value of the CFS counter, w
the amount of reserved bits of CTR mode and z the size of
the pool of writing contexts. Figure 5b illustrates the state of
pool after consumption of a mask, followed by generation of
a new mask.

5.1.2 Contexts Pool for Decryption/Reading

The context pool used for decryption, and consequently in the
reading processes, works as a mask window that is shifted

according to the region of the file being read. In this technique,
each open file has its unique context pool whose trigger for
masking occurs according to the block number being accessed.
The window is positioned on the first read block, generating
the masks for the subsequent blocks according to the size of
the pool. As the blocks are read and the masks consumed
in the decryption processes, the window is shifted and new
masks are generated.

The Figure 6 illustrates the behavior of the pool of contexts
containing the generated masks in a sequential read process,
initiating at the beginning of the file. Also taking as an exam-
ple a pool containing eight contexts, when the file is opened,
the nonces of the first eight blocks are used to define the
encryption contexts that begin to produce the masks.

Figure 6: Contexts pool usage example for decrypting blocks in
sequential read operations.

The priority feature offered by WAESlib can be exploited
to dictate the production order of these masks. Thus, when
defining each of the contexts of the window, one can define
the context contained at the beginning of the window with the
highest possible priority, gradually decreasing this priority in
the definition of subsequent contexts. The masks needed to
decipher the first blocks are getting ready before the masks
of subsequent blocks.

As illustrated in Figure 6, after consumption of the mask
referring to the 0th block, one can trigger the production of
the mask for block eight with the lowest possible priority,
since the trend is that it will be used only after consumption
of the masks from the previous blocks. In a purely sequential
reading, this process repeats itself, with the consumption of
the mask at the beginning of the window and the subsequent
production of a new mask at its end.

The sliding window technique can also be applied for ran-
dom access. In this case, its beginning is always moved to the
position corresponding to the first block being read. When this
displacement occurs, two situations may occur at first: (i) the
window is fully shifted to an earlier position, i.e. (x− y)> z,
where x is the previous initial position of the window, y the
new starting position and z the size of the window; (ii) the
window is shifted fully forward, where (y−x)> z. Both situa-
tions are illustrated in Figure 7a and 7b, respectively. Because
the new starting positions are completely outside the previous
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window, it is necessary to reset (redefine) all contexts for new
masks to be generated.

Figure 7: Window moved to a far position with the redefinition of
all contexts inside the pool.

The other two situations refer to cases where, after moving
the window, part of the new window ends up overlapping
the previous one. These situations occur when the window
is moved to a near previous position, that is (x− y) <= z;
and when it is shifted to a near posterior position, that is,
(y− x) <= z. The figure 8a and 8b illustrates the first and
second case, respectively. In these situations, the window that
occupied the previous position contains some masks that can
be reused, it is not necessary to redefine the contexts of the
positions that overlap, making the process more efficient.

Figure 8: Window moved to a near position with reuse of previously
produced masks.

6 Evaluation

As a way of validating the techniques discussed in the pre-
vious sections, they were implemented on the EncFS CFS.
We have called this new version EncFS++. The performance
analyzes in this section compare EncFS and EncFS++. The
EncFS version is the original, using CBC mode and with
exclusive CPU processing. The EncFS++ version uses the
CTR mode implemented according to the ideas discussed
in Section 4, as well as the encryption context management
techniques for GPU processing discussed in Section 5.

Performance measurements were performed at the micro-
benchmark level measuring throughput with 4, 64 and 128
KiB requests in read and write operations both sequentially
and randomly. To measure throughput the tool fio was
used; to measure CPU utilization, the pidstat tool was
used to exclusively monitor the EncFS and EncFS++ pro-
cesses and subprocesses. Macro-benchmarks were also per-
formed with the filebench tool, as described at the end of
this section. The tests were performed on a computer run-
ning Linux OS with 4.10 kernel, using Intel Core i7-7700HQ
@ 2.8GHz, 32 GiB memory and Western Digital SSD disk
model WDS240G1G0A. The libfuse version used was 2.9.4,
OpenSSL 1.0.2g and WAESlib 2.01g. The GPU used was
an NVIDIA GeForce GTX 1070 (mobile version), in CUDA
9.2 environment. The micro-benchmark measurements were
performed on a 16 GiB file, being repeated 10 times and tak-
ing the simple arithmetic mean of the results. Among the
measurements, the base FS (ext4, default settings) was un-
mounted, re-created and remounted. Among all the repetitions,
the caching pages were discarded.

As a way of comparing CPU utilization between versions,
an index called CPU utilization efficiency was used. It was cal-
culated using the following formula: x = (y/z)/(w/k), where
x corresponds to the efficiency index being calculated, y and
z correspond to the throughput and utilization value of CPUs
reached in the version being compared; w and k correspond
to the value of bandwidth and CPU utilization reached in the
version with which the comparison is being made. Thus, it is
possible to obtain a comparison between the amount of work
performed by each version contrasted with the percentage of
CPU usage.

Figure 9 shows the bandwidth values obtained in the two
versions of EncFS, in a sequential read scenario with base
FS stored on disk (SSD) and in memory. In the secondary
y axis (right side) the percentage of the bandwidth variation
of EncFS++ is displayed in relation to its original version.
Table 1 displays the values obtained. The next to last column
shows the percentage increase or decrease in bandwidth. Pos-
itive and green values indicate that the EncFS++ version had
an increase in bandwidth compared to the original version.
Negative values in red means the opposite. The last column
shows the calculated efficiency values. Values above 1 were
colored green indicating more efficient CPU usage in the
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EncFS++ version. Values below 1 were colored red indicating
less efficient use.

Figure 9: Throughput variation (sequential read+decrypt).

Table 1: Throughput and CPU utilization: sequential read+decrypt.

With the base FS stored on disk, it is perceived that the
maximum throughput gain in EncFS++ is approximately
52%, with an increase in CPU utilization efficiency around
60%. However, the bandwidth number reached approaches
the throughput limit supported by the disk (500 MB/s). With
base FS stored in memory (Figure 9b), it can be seen that it is
possible to obtain much more significant gains, up to 359%
in throughput and 135% in CPU use efficiency.

The significant performance improvement in the reading
operations deserve to be highlighted, mainly because they in-
volve the use of the decryption functions. CBC mode also has
the same advantage as CTR mode in that it can be parallelized
in the decryption processes. Therefore, a simple application
of the CTR mode, without exploiting the parallel processing
in GPU, would not have many advantages with respect to the
improvement in throughput.

The results of the sequential writing operations can be seen
in Figure 10 and the values in the Table 2. In the sequential
writing scenario, EncFS++ also has a significant throughput
gain of up to 269%, using base FS on disk, and 324% with
FS in memory. CPU utilization efficiency, is up to 212% and
133%, with base FS stored on disk and memory, respectively.
In both cases, direct write to disk (O_DIRECT) was not used
because it was not supported by EncFS. As a consequence,
writing occurs first on cache pages. For this reason, the values
written to disk and memory are very close and values exceed
the bandwidth limit of the SSD disk.

Significant gains in both sequential reading and sequential
writing demonstrate the effectiveness of context pool man-
agement techniques in order to be able to produce encryption

Figure 10: Throughput variation (sequential write+encrypt).

Sequencial Write+Encrypt (SSD) Sequencial Write+Encrypt (Memory)

4 97.43 10.41 179.86 11.75 84.61 1.64 102.88  10.42  188.11  12.19  82.83 1.56
64 203.79 10.55 650.71 14.16 219.30 2.38 214.71  11.00  806.92  18.59  275.82 2.22

128 199.87 9.93 738.43 11.75 269.44 3.12 211.56  10.43  897.25  18.94  324.12 2.33

Req. 
Size 
(KiB)

EncFS 
(CBC, CPU)

EncFS++ 
(CTR, GPU)

EncFS++/
EncFS

EncFS 
(CBC, CPU)

EncFS++ 
(CTR, GPU)

EncFS++/
EncFS

Thrput 
(MB/s)

CPU 
(%)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
Var. (%)

CPU use 
efficiency

Thrput 
(MB/s)

CPU 
(%)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
Var. (%)

CPU use 
efficiency

Table 2: Throughput and CPU utilization: sequential write+encrypt.

masks well in advance. Even in a scenario of very low la-
tency as in the case of base FS stored in memory. It is also
important to highlight the gains obtained in the measurements
involving 4 KiB requests, demonstrating that it is also pos-
sible to perform GPU processing efficiently when the CFS
works with small amounts of data. As described in Section
3, previous research indicates that this is only feasible with
larger requests (> 16 KiB).

The results of the random read can be seen in Figure 11
and the values in the Table 3.

Figure 11: Throughput variation (random read+decrypt).

Random Read+Decrypt (SSD) Random Read+Decrypt (Memory)

EncFS++/EncFS EncFS++/EncFS

4 17.80 1.93 18.71 3.75 5.14 0.54 166.68 10.37 59.72 8.30 -64.17 0.45
64 96.48 4.37 107.95 5.35 11.88 0.91 290.74 11.40   541.54  17.12 86.26 1.24
128 120.17 5.34 142.50 5.38 18.57 1.18 297.11 11.45   684.10  17.37  130.25 1.52

Req. 
Size 
(KiB)

EncFS 
(CBC, CPU)

EncFS++ 
(CTR, GPU)

EncFS 
(CBC, CPU)

EncFS++ 
(CTR, GPU)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
Var. (%)

CPU use 
efficiency

Thrput 
(MB/s)

CPU 
(%)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
Var. (%)

CPU use 
efficiency

Table 3: Throughput and CPU utilization: random read+decrypt.

Before discussing the results of random reading, it is im-
portant to explain how the random reading generated by the
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fio tool occurs. When generating the random accesses, the
tool determines the next block to be randomly accessed based
on a uniform distribution. While all blocks of a file are not
accessed, the reading of a previously held block does not re-
peat. Since the CFS was configured to encrypt blocks of 4
KiB, requests of 4, 64 and 128 KiB result in access to 1, 16
and 32 blocks, respectively.

The context pool for reading is designed to be used for both
sequential and random reading. In sequential reading this pool
was configured to contain 64 contexts (window size). That
means, in every read request, 64 encryption masks will be pro-
duced. In sequential reading, this is not a problem, since the
blocks are read in sequence and all masks are used. However,
considering the random access of 4 KiB, if a window of 64
contexts is used, mostly the first mask produced is consumed,
as the chances of the next block to be read in the sequence is
low in random read patterns. Consequently, a significant over-
head would have occurred in the production of 63 masks that
are not harnessed. Therefore, in random readings, the size of
the window was adapted according to the size of the request.
For the 4, 64 and 128 KiB requests, windows containing 2, 8
and 16 encryption contexts were used.

First, by analyzing the results with the base FS stored in
memory, in the 64 and 128 KiB requests, there are gains in
throughput (86% and 130%), but they are smaller than the val-
ues obtained in sequential reading (319% and 359%). If you
use smaller windows, you also reduce the level of advance
that masks are generated when the request is being served. It
is also important to highlight the issue of full window offset
when a new random read request occurs. All window con-
texts need to be reset and there is less time for the masks
corresponding to the initial blocks of the request to be ready,
causing the application to wait for its production.

In the random 4 KiB requests and FS in memory there
are significant throughput losses (64%) and low CPU use
efficiency. Considering the random access where it is not
possible to predict the next block to be accessed and due to
the use of a small window (2 contexts), there is no way to
shoot the mask production well in advance. Therefore, with
each block accessed, the application needs to wait for the
mask to be ready, adding latency to the decryption process.
The scenario is aggravated by the fact that the base FS is
stored in memory, because in this case there is neither the
time to read the block on disk, in which, in parallel, the mask
could be generated. In Figure 11a, it can be seen that there are
no throughput losses in 4 KiB requests, which demonstrates
how disk access time can be exploited as a way to compensate
for processing latency in GPU kernel launches. One solution
to circumvent this outcome is to either lower the latency in
GPU decryption library setup or to resort to pure CPU CTR
decryption when 4K random read patterns are presented to
the FS.

In contrast, according to the performance observed in the
64 and 128 KiB requests, even without having the access

time to disk to produce the masks, the use of a slightly larger
window (8 and 16 context) and the technique of launching the
production of a mask for the block n positions ahead (where n
corresponds to the size of the window), are enough to achieve
a certain level of advance in the production of the masks. Thus,
even in this scenario of very low latency (without access to
disk), we still have gains in throughput.

However, although disk access time can be exploited as a
way to compensate for the latency of GPU processing, it also
acts against WAESlib’s ability to aggregate encryption con-
texts, mainly in the random read scenario. As a consequence,
the efficiency in the use of GPU processing resources is re-
duced and the overheads inherent in GPU processing (GPU
kernel launching and mask transfer) become more significant.
Even with these adversities, there are still gains in this case
with the base FS stored on disk, although modest, from 5%
up to 18% in throughput boost.

Regarding CPU utilization efficiency, in the disk FS sce-
nario, there is a reduction of about 46% (i.e. 0.54 efficiency) in
the 4KiB requests, the worst case. In practice, this means that
it would not be possible to ameliorate CPU utilization in these
small requests sizes, given the throughput levels achieved.
We have observed that polling mechanisms, either internal
in CUDA or in the GPU encryption library, generate slightly
higher CPU overhead when waiting longer for disk operations
to complete. This is an issue to be further investigated. One
possible solution was dicussed before, for the small 4KiB
random read case from memory.

Figure 12: Throughput variation (random write+encrypt).

Random Write+Encrypt (SSD) Random Write+Encrypt (Memory)

4  96.61 10.36  173.46 11.54  79.54 1.61   99.81 10.28  182.13  11.94  82.47 1.57
64 202.53  10.50  640.83 14.06   216.42 2.36 213.83  10.97  801.79  18.57  274.96 2.21

128 198.91  9.91  739.30 11.60   271.69 3.17 211.47  10.43  888.46  18.89  320.13 2.32

Req. 
Size 
(KiB)

EncFS 
(CBC, CPU)

EncFS++ 
(CTR, GPU)

EncFS++/
EncFS

EncFS 
(CBC, CPU)

EncFS++ 
(CTR, GPU)

EncFS++/
EncFS

Thrput 
(MB/s)

CPU 
(%)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
Var. (%)

CPU use 
efficiency

Thrput 
(MB/s)

CPU 
(%)

Thrput 
(MB/s)

CPU 
(%)

Thrput 
Var. (%)

CPU use 
efficiency

Table 4: Throughput and CPU utilization: random write+encrypt.

The results of the random writing can be seen in Figure
12 and the values in the Table 4. The outcomes in this sce-
nario are very close to the sequential writing scenario. This
is because writing occurs in memory regardless of whether
the base FS is on disk or memory, as explained before. In
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addition, the pool of contexts used in sequential and random
writing is the same, including with respect to its mechanism of
operation. There are significant gains with both disk (271%)
and memory (320%) FS, citing the maximum numbers. There
are also improvements in CPU efficiency of up to 217%and
132%, respectively.

On the synthetic macro-benchmark analyses, two example
workloads from filebench were used: f ileserver. f (character-
ized by a mix of read and writes operations) and webserve f . f
(characterized mainly by read operations). EncFS++ perfor-
mance was compared to the original EncFS and with eCryptfs.
The hardware accelerated (AESNI) as well as the CPU version
of eCryptfs were used due to the fact that it is also stacked over
ext4 FS (figure 2), but operating in kernel space. Measure-
ments with simultaneous access by 1, 2 and 4 threads were
performed. In this scenario, the base FS (ext4) was stored on
a SSD disk.

Greater throughput gains occurred in the webserver. f work-
load (Figure 13 and Table 5). The gains are up 145% when
compared to EncFS and ranges from 44% to 130% with re-
spect to eCryptfs. In the f ileserver. f workload, the gains
were more modest: between 9% and 27% when compared to
EncFS and and between 2% and 33% contrasted to eCryptfs.
It is important to note that with the base FS stored in SSD, the
maximum throughput supported by the disc imposes a limit
to the gains. Despite the theoretical limit of 540/465 MB/s
(read/write) supported by the SSD, in practice this value is
400/200 MB/s (measured by dd tool with bs=128k, same size
as iosize parameter used in the filebench tool). Regarding CPU
use efficiency, there were also gains. Compared to EncFS
in the f ileserver. f workload, these gains ranged between
120% and 170% and in webserver. f it was between 60% and
80%. The gains against eCryptfs in the f ileserver. f workload
stayed between 110% and 190%, and in webserver. f ranged
from 90% to 120%.

A comparison with eCryptfs(AESNI), a CFS executing
AES encryption in hardware, is a fair experiment with macro-
benchmark workload. In particular because the latency at sub-
mitting encryption tasks is much lower than spawning GPU
work, and this FS works in kernel space. Even in this case, the
performance of EncFS++ proved competitive with respect to
throughput capacity. EncFS++ showed gains between 8% and
32% in webserver. f workload. In the f ileserver. f workload,
the throughput practically stayed the same. The negative point
in this scenario was in the efficiency of CPU usage, especially
in the webserver. f workload where, in the worst case, there
was a reduction of 60%.

Nevertheless, it is important to highlight the low GPU uti-
lization in the experiments (Table 5). GPU utilization was
only up to 25% in the webserver. f benchmark and around
half of this amount in the f ileserver. f workload. Also, this
GPU use is lowering with more threads, as expected, because
in this case, more threads competing for disk access gener-
ate more delays at this level, consequently generating less

encryption work. This means that there is potential margin
for scalability at the GPU side, provided bottlenecks at the
FS/storage layers are resolved.
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Figure 13: Macro-benchmarks (SSD).
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Table 5: Macro-benchmarks: numbers (SSD).

7 Conclusion

CFSs have intensive processing demands due to the volume
of data and the cost of cryptographic functions. Parallel pro-
cessing techniques on CPUs or GPUs can be used to meet
these demands. As a way to achieve better performance on
these systems, you can use the parallel processing capabilities
offered by multiprocessor computers and servers, whether in
the form of multiple CPUs or GPUs.

In the application of the encryption functions, different
modes of operation can be used, among them the CTR mode.
It has interesting advantages, including the ability to be
fully parallelizable and allowing the generation of encryp-
tion masks in advance. This work sought to explore both,
including the anticipated generation of encryption masks in
the GPU. The authors of this work are unaware of previous
works that have explored them in the context of CFSs, which
makes our approach innovative. While this work applies such
techniques with the use of GPUs for parallel encryption tasks,
they could also be exploited using CPUs only or in heteroge-
neous (CPU+GPU) solutions.

In this work, techniques were proposed to overcome two
important challenges. The first concerns the use of the CTR

USENIX Association 17th USENIX Conference on File and Storage Technologies    103



mode in the context of CFSs. Issues related to the manage-
ment of nonces were addressed, including techniques for their
generation and storage. The main objective was to ensure
that the management of the nonces did not cause a significant
decrease in the performance of the CFS, which could nullify
the later benefits of parallel encryption tasks.

Future work involves macro-benchmark analysis using real
workloads primarily to better evaluate the performance of
context pools. This will allow to identify the need for im-
provements in management techniques created, or even the
creation of new techniques. There is also the intention to ap-
ply the approach carried out in this work on storage systems
that run in the kernel space, since these systems also usually
demand greater processing capacity and we can circumvent
extra delays introduced by user space modules.
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Abstract
The adoption of deduplication in storage systems has intro-
duced significant new challenges for storage management.
Specifically, the physical capacities associated with volumes
are no longer readily available. In this work we introduce a
new approach to analyzing capacities in deduplicated stor-
age environments. We provide sketch-based estimations of
fundamental capacity measures required for managing a stor-
age system: How much physical space would be reclaimed
if a volume or group of volumes were to be removed from a
system (the reclaimable capacity) and how much of the phys-
ical space should be attributed to each of the volumes in the
system (the attributed capacity). Our methods also support
capacity queries for volume groups across multiple storage
systems, e.g., how much capacity would a volume group con-
sume after being migrated to another storage system? We
provide analytical accuracy guarantees for our estimations as
well as empirical evaluations. Our technology is integrated
into a prominent all-flash storage array and exhibits high per-
formance even for very large systems. We also demonstrate
how this method opens the door for performing placement
decisions at the data center level and obtaining insights on
deduplication in the field.

1 Introduction

The rise of all-flash storage arrays has also brought dedu-
plication technology to the forefront and many prominent
all-flash systems now support deduplication across entire sys-
tems or data pools (e.g., [2–5, 7, 9]). While this shift helped
reduce storage costs, it also created new storage management
challenges for storage administrators. This work focuses on
technologies and tools for managing storage capacities in
storage systems with deduplication.

Storage Management and Deduplication: Volume place-
ment and capacity management were challenging yet well

∗Work was conducted while at IBM Research.

understood management tasks before deduplication was in-
troduced. A storage volume needs to be allocated appropriate
resources and connectivity. In large data centers, spanning
multiple storage arrays, managing where to place volumes
optimally is a tricky task. It involves satisfying two main mea-
sures that characterize a volume: its capacity and workload
(IOPS/throughput). The main problem tackled in this paper
is that once deduplication is brought in to the equation, the
capacity of a volume is no longer a known quantity. Hence a
storage administrator is left without clarity about one of the
main resources that he needs to manage.

Our solution serves a number of appealing applications that
are otherwise hard to accomplish in a deduplicated setting.
In a recent paper titled “99 deduplication problems" [31],
Shilane et al. present some burning deduplication related
problems that need to be addressed. Our methods turn out to
be helpful in solving three of the five problem classes that
are discussed in this paper (it was actually 5 rather than 99
problems...). In particular, our solution is relevant to the issues
of: 1) understanding capacities, 2) storage management and
3) tenant chargeback.

Why is managing volumes with deduplication hard? Vol-
ume level capacity statistics are the primary tools for manag-
ing the system capacity. However, in a system with dedupli-
cation those statistics are no longer naturally available. There
are two different aspects that are the main reasons for this:

1. The first is that once cross-volume deduplication is en-
abled, it is no longer clear which volume owns what data.
This brings up a conceptual question of what should
actually be reported to the storage administrator? In Sec-
tion 3.2 we discuss in detail and define what capacity
can be attributed to a volume and why this information is
useful. More importantly, we point out that a critical and
well-defined question about a volume is how much space
will be freed in case this volume was removed from the
system (termed the reclaimable space of a volume in this
paper). Note that with deduplication enabled, one could
possibly remove the largest volume in the system, yet
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not free up a single byte of user data from the storage.
2. The second aspect is a pure computational challenge:

once we decide what we want to report, how can this
number be calculated in a typical architecture of a stor-
age system with deduplication. There is a fundamental
difference between capacity statistics in the presence
of deduplication and traditional capacity statistics (in
traditional statistics we also include those of storage that
supports compression only without deduplication).
Traditional statistics are all additive and can be aggre-
gated per each volume - i.e., hold a counter of how much
space was held by a volume and update this on every
write/overwrite/delete operation.1 On the other hand,
in the case of storage with deduplication, the capacity
statistics of a single volume do not depend solely on
what happens in this specific volume, but rather could
be affected by any write operation to any volume in the
system (as long as they are part of the same deduplica-
tion domain). Moreover, the reclaimable statistic of a
group of volumes is not additive - i.e. the reclaimable
space of removing two different volumes does not equal
the sum of the reclaimable quantities of the two volumes
separately. As a result, the methods for calculating such
statistics are much harder than traditional stats, and near
impossible to do if considering any arbitrary combina-
tion of volumes.
That being said, it is clear that a storage array holds all
of the information required to actually compute these
numbers. It is just that the sheer amount of metadata that
needs to be analyzed to produce these statistics is too
large to actually analyze with acceptable resources (CPU
and memory).

Our Work - Sketching Capacities: We present a novel ap-
proach to produce capacity statistics in a deduplicated storage
system for any single volume or any combination of volumes.
Moreover, our approach can answer complex placement ques-
tions, e.g., not only do we answer how much space would be
reclaimed when moving an arbitrary set of volumes out of a
system, we can answer how much space this set would take
up at a different deduplicated storage system (which holds
different content than the original system).

At the core of our solution is the decision to forgo the
attempt to produce accurate statistics. Rather, we settle for
estimations of the capacity statistics as long as we can gauge
the accuracy of these estimations. We borrow techniques from
the realm of streaming algorithms in which the metadata
of each volume is sampled using a content-based sampling
technique to produce a so-called sketch (or capacity sketch) of
the volume. The key is that the sketch is much smaller than the
actual metadata, yet contains enough information to evaluate

1It should be noted that while this is conceptually easy, many times it
collecting these statistics requires complex engineering, especially in highly
distributed storage systems.

the volumes capacity properties in conjunction with any other
set of volume sketches. To illustrate this, consider a storage
system holding 1 PB of data. In order to manage such a huge
amount of data, a system has to hold a very large amount of
metadata which could be on the order of 10 TB (depending
on the specific design). In contrast, our sketch data for such
a system takes under 300 MB, which makes our statistics
calculations easily manageable. Part of this technology is
integrated into the IBM FlashSystem A9000/A9000R.

Main Contributions: In the paper we provide details of the
technique, its accuracy statement and a description of our
implementation. In our design, sketch data is collected by the
storage system and pulled out of the system to an adjacent
management server where it is analyzed and presented to the
administrator. Our implementation includes the following:
• Provides reclaimable capacities and attributed capacities

for any volume in the system.
• Supports queries of these capacities on any arbitrary

group of volumes within a deduplication domain (an
option that to the best of our knowledge is not available
in any system to date).
• In a multi-system environment, we answer how much

physical space such a volume/group would consume if
it were to be migrated to another deduplicated storage
system (with different content).

The implementation is optimized for high performance,
providing a real-time user-experience. After initial extraction
of the sketch and ingestion into the sketch analyzer, we can
answer queries in well under a second.

The high performance is also key for providing next level
optimization of management functions. We present an exam-
ple of a greedy solution for multi-system space reclamation
optimization. The algorithm creates a migration plan from
a full source system onto the other systems in a way that
optimizes overall capacity utilization.

2 Background and Related Work

Deduplication is a form of compression in which duplicate
chunks of data are replaced by pointers to the original repeat-
ing data chunk. This practice can greatly reduce the amount
of physical space required to store a large data repository,
depending on the amount of repetitiveness of the data chunks.
Deduplication is typically used in concert with traditional
“local" compression. Unlike deduplication, which looks for
repeating data across an entire repository of data, in com-
pression a single data chunk or block is compressed on its
own (typically using a techniques such as Zip [13, 25, 35]).
To measure data reduction, we use the convention by which
the data reduction ratio is the size of the data after reduction
divided by the size of data before reduction (so 1 means no
compression and close to 0 is highly compressible). Dedu-
plication can consider fixed size data chunks or variable size
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chunks. In our work we refer to systems that use fixed size
chunks (we use chunks of size 8KB), but our techniques can
generalize nicely to variable sized chunking as well.

The common technique for performing deduplication is
via chunk fingerprinting. Namely, for each data chunk a hash
of its content is calculated, creating an identifier of the data.
If a strong cryptographic hash is used, then for all practical
purposes this hash is considered a unique identifier of the
content. Duplications are found by holding a database of
chunk fingerprints and finding repeating fingerprints across
the entire data set.

Related Work: Variations of content-based sampling have
been deployed in the context of deduplication for various
tasks. Mainly for identifying deduplication potential in data
sets that have not yet been deduplicated (e.g. [17, 23, 24, 34]),
for finding repetitive streams/files as part of the actual dedupli-
cation process (e.g. [10,26]) or for automatic routing of data in
a distributed setting [12, 14, 18, 19]. Accuracy guarantees for
data reduction estimations have been explored in [22–24, 34].
These works focused on analyzing data that has not been
deduplicated for assessing their potential data reduction and
sizing of the storage required to store them.

In contrast, our aim is to address gaps for reporting and
management of data that has already been deduplicated,
which prior works do not address. We use similar techniques,
but the application presents different requirements and hence
we deploy slightly different practices. The idea of content
based sampling dates back to the classical algorithm of Flajo-
let and Martin [16] and was thoroughly studied in the context
of streaming algorithms for estimating the number of distinct
elements in a data stream, a problem which is similar to esti-
mating the amount of distinct data chunks in a data set. We
use a variation of a method introduced by Gibbons and Tirtha-
pura [20] and by Bar Josef et al. [11]. In the deduplication
context, a similar technique was used by Xie et al. [34] who
use filtering according to hash values. The main technical
difference between the sketch that they use and ours is that
Xie et al. always keep a bounded sample of hashes, a practice
that cannot provide adequate accuracy in our context. There
is also a significant difference in what the sketches are even-
tually used for. We also extend the methods to handle the
combination of compression with deduplication and provide
a different approach to the accuracy analysis (See Section 4).
In the storage realm, variants of sketches on the space of LBA
addresses have also been used by Wires at al. [33] to estimate
amount of exclusive blocks in a snapshot and by Waldspurger
et al. [32] for simulating cache behaviors.

There have also been studies tackling the problem of free-
ing space from a deduplicated system [30] or balancing of
content between several deduplicated systems [15, 27]. These
suggest various heuristics to perform such optimizations, but
largely avoid the question of how to actually learn the inter-
play between various volumes and assume that this is a given

quantity and is computed as a preprocessing step. As such,
our work is very suitable to work together with any of these
methods.2

3 Sketches and their Use

Capacity Sketches: The main idea of capacity sketches is
to choose samples of the metadata according to the respec-
tive data content. At its core, the sampling technique is very
simple: for each data chunk, examine its fingerprint (the hash
of its content) and include it in the sketch only if it contains
k leading zeros for a parameter k (namely, the k most-bits
of the hash are all zeros). So if, for example, k = 13 and the
fingerprints are random, then on average a 1

213 = 1
8192 frac-

tion of the data chunks participate in the sketch and the rest
are ignored. We refer to 2k as the sketch factor and in our
implementation we typically set the sketch factor to be 8192.
This choice was made by balancing the tradeoffs between
the required resources to handle the sketches vs. the accuracy
which they provide (See Section 4).

Denote by S a data set that corresponds to a vol-
ume/group/system, denote by SketchS the set of hashes which
were included in the sketch of the data set and denote by
SpaceS the physical space required for storing S (SpaceS is
the value that we aim to estimate). Denote by WrittenS the
amount of logical data written by the user (prior to compres-
sion and deduplication). For each hash h ∈ SketchS in the
sketch we also hold the chunk’s compression ratio – denoted
by CompRatio(h). We estimate the number of unique chunks
in S by the amount of chunks that participate in the sketch
times 2k, namely by 2k · |SketchS |. The estimated amount of
space required for storing this data set in a clean system is:

ŜpaceS = 2k · ∑
h∈Sketch

CompRatio(h) ·ChunkSize

In such a case the estimated data reduction ratio (combining
both deduplication and compression) is :

ReductionRatioS =
ŜpaceS

WrittenS

This is the basis for a sketch-based estimation of a sin-
gle set.3 In the following sections we describe how to use
sketches for estimating volume level statistics in an existing
deduplicated storage system. In Section 4 we discuss the ac-
curacy of these estimations as a function of the size of the
sketch and the sketch factor.

2Note that these heuristics are typically based solely on the knowledge
of the pair-wise deduplication relations between volumes but ignore the
numbers about a combination of a larger number of volumes. This is mainly
because computing such quantities is extremely taxing. Our techniques open
the door to utilizing much more information than just pair-wise information.

3Note that the same estimation method for ŜpaceS holds for variable
sized chunking, only that then ChunkSize is also a function off the hash h.
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Using Sketches for Data Inside a Deduplicated System:
When discussing the statistics of volumes or groups with
respect to a storage system, additional challenges arise. Unlike
the stand-alone case, the statistics of a volume or group do
not depend solely on the contents (or the sketch) of this single
data set. Rather, they depend on the contents of all of the data
in the system and may change even though the volume itself
observed no changes at all. To facilitate efficient computation
of the statistics for a live existing system, we maintain at all
time a full system sketch (denoted SketchFULL) representing
all of the data in the system. We also collect further parameters
in the sketch. Specifically, for each fingerprint h ∈ SketchS
the sketch holds:
• Reference count - Denoted Re f (h,S) is the number of

times the data chunk with fingerprint h was written in
the data set by the user.
• Physical count - Denoted Phys(h,S) is the number of

physical copies stored during writes to the data set S . In
contrast to reference count which refers to the virtual
space, this counter refers to how many virtual copies of
this chunk where eventually written in the physical space.
Note that there are a number of reasons for a chunk
to have more than a single physical copy in a system.
Most obvious is deduplication opportunities that were
not identified. But sometimes this is done out of choice,
e.g., as a means to limit the size of the reference counters,
or the choice to forgo a deduplication opportunity for
avoiding extensive data fragmentation.

With this additional information we can calculate the statistics
of a volume or group as part of a larger system. It should be
noted that a real deduplicated system may also hold quite a
bit of unhashed data (data written at IO’s smaller than a single
chunk size, or misaligned with the deduplication chunk align-
ment). We use various techniques to account for such data,
but this is out of the scope of this paper. We now describe the
main estimations that we calculate as well as their motivation.

3.1 Reclaimable Capacity
As mentioned in the introduction, a key product of our method
is the ability to accurately predict how much physical space
would be freed from a system if a volume or a group of vol-
umes were to be removed from it. Note that the reclaimable
capacity is an inherently non-linear quantity. For example,
if a system contains just two identical volumes, then the re-
claimable capacity of each of the volumes separately is es-
sentially 0, yet the reclaimable capacity of their combination
amounts to the system’s entire space which is very different
than the sum of their respective reclaimable numbers. As
such, some deduplicated storage vendors do not produce such
a number at all. Others (e.g. [8]) resort to reporting how much
unique data a volume holds.4 This number is additive and is

4Unique data counts only data chunks that have reference count = 1.

easier to maintain, but can be very misleading when a vol-
ume holds internal deduplication, a situation that is magnified
when trying to estimate the reclaimable of a group of volumes.

Our strategy for estimating the reclaimable capacity con-
sists of “subtracting" the sketch of the data set being examined
from the full system sketch as follows:

Calculate Reclaimable
Input: SketchS , SketchFULL
Reclaimable = 0
for h ∈ sketchS do:

if (re f (h,S) == re f (h,FULL)) then
Reclaimable += CompRatio(h) ·Phys(h,FULL)

Reclaimable = Reclaimable ·SketchFactor ·ChunkSize

While the algorithm above gives the general idea, there
are some additional subtleties that need to be addressed. For
instance, each chunk held in the system also holds some meta-
data associated with it. While this is typically much smaller
than the data itself, it can amount to a significant portion of
the space, especially for highly compressed or deduplicated
data. So reclaimable space should account for metadata space
that is released when a chunk is removed (whether it was a
physical chunk or a reference). Another subtlety is the fact
that it is hard to gauge if a physical chunk would be released
when its physical count is two or more. Handling this requires
additional information from the system, but for the most part
tends to account for a very small portion of the physical space.

3.2 Attributed Capacity and Data Reduction
Ratios

Unlike the reclaimable statistic which is very clearly defined,
it is not straightforward to define the data reduction ratio of
a volume, or what capacity is owned by a volume. This is
because data is shared across volumes and has no clear owner.
Still, there are a number of motivating reasons to define and
support such numbers. The first reason is the possibility to
do fair chargeback of tenant capacities for service providers
(see discussion in [31], Section 6). Another reason is to allow
the storage administrator to understand the data reduction
properties of volumes – how much is a volume involved in
deduplication? how much does it gain from compression?
Such knowledge can allow better planning of storage capaci-
ties (e.g., an administrator can learn what data reduction to
expect from her Databases), and better placement decisions
(e.g., a volume that has no data reduction saving can be placed
in a system that does not support data reduction).

To that end, we define a measure that we call the attributed
capacity of a volume and a breakdown of its space savings
to deduplication and compression. Our definition follows a
fair sharing principle: Data which is shared among a number
of volumes will receive its proportionate share in attributed
capacity. For example, if a data chunk is only referenced
twice, once in each of two volumes, then the space to hold
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this chunk is split evenly in the attributed capacity of the
corresponding volumes. If it has 3 references, 2 originating
from volume A and one from volume B, then its space is split
in a 2

3 and 1
3 fashion between volumes A and B respectively.

Note that there is no single correct definition of attributed
capacity, but rather a choice of what the vendor deems as fair
sharing. Our sketches approach can accommodate more or
less any definition.5

For the breakdown to deduplication and compression we
define the following: Deduplication savings are an estimate
of what the savings would have been if compression was
not deployed. For compression we give a different estimate,
basically answering how much additional space was saved
after deduplication was performed. This does not answer the
question of how much space savings we would gain if only
compression was performed (without deduplication). In order
to answer the latter question, one needs to sample the virtual
space of data (as described in [22]), rather than sample the
fingerprint space which is what our sketch does.

The following method is used for attributed space and dedu-
plication savings:

Calculate Attributed
Input: SketchS , SketchFULL
Attributed = 0
DedupeOnly = 0
for h ∈ sketchS do:

Attributed += re f (h,S)
re f (h,FULL) ·CompRatio(h) ·Phys(h,FULL)

DedupeOnly += re f (h,S)
re f (h,FULL) ·Phys(h,FULL)

Attributed = Attributed ·SketchFactor ·ChunkSize
DedupeOnly = DedupeOnly ·SketchFactor ·ChunkSize

3.3 Insights on the Achieved Deduplication

An additional benefit for our methodology is the ability to
collect drill down statistics regarding deduplication and com-
pression at a very low price. For example, we collect statistics
regarding the effectiveness of the deduplication in the storage
system. Another set of interesting statistics is the correlation
between deduplication and compression, this can be done at
a volume granularity, as well as at the single chunk granu-
larity (e.g. is there a correlation between the reference count
of a chunk and its compression ratio?). A summary of such
insights is sent back to us via a call-home mechanism, and
will serve as a mechanism for collecting information from the
field about the deduplication properties of real data in the field
in order to improve the deduplication process and design.

Explaining deduplication behavior: It is not uncommon
for gaps between the customer expectation of deduplication
and compression effectiveness versus the reality. In many
cases the gap arises from the data written to the system. The

5Having said that, it makes sense to use a definition that allows for correct
accumulation of attributed capacity between any set of volumes.

ability to correlate hashes between volumes very quickly, and
identify correlations and anti-correlations can provide the
explanation of why certain deduplication and compression
ratios are achieved.

3.4 Cross System Capacity Estimations
In a data center environment spanning a number of storage
systems, the question of space reclamation from one system
is accompanied by the question of where to move the volume
to? The goal here is to provide insight into the overall capacity
management of the data center rather than just managing a
single system; namely, can I gain capacity by moving data
between systems? The use of sketches allows to answer the
capacity aspect of such complex “what if" questions. Specif-
ically, how much capacity would be freed when moving a
volume from system A to another system, and how much
capacity would this volume potentially consume in each of
the target migration systems. This question can be answered
given a sketch for a data set S and a full sketch of a target
system using the following method:

Calculate Space in Target System
Input: SketchS , SketchTARGET
TargetSpace = 0
for h ∈ sketchS do:

if h 6∈ SketchTARGET then
TargetSpace += CompRatio(h)

TargetSpace = TargetSpace ·SketchFactor ·ChunkSize

Data Center Space Optimizations: Such a cross system es-
timation presents a strong tool for performing optimizations
across multiple systems. Without clarity of the capacity re-
quired to store a volume on various systems, such decisions
are made in the blind. Our technique provides clarity and
allows us to explore optimizations and advanced placement,
rebalancing and space reclamation decisions. In Section 6.4
we present an example of such an optimization for data center
level space reclamation.

4 Accuracy Guarantees

A crucial property of sketches is the ability to make concrete
statements regarding its accuracy, hence allowing decision
makers to make educated decisions with confidence while
taking into account known error margins. To this end, we
provide a mathematically proven statistical accuracy theorem.
We also evaluate this guarantee empirically and see that the ac-
tual estimations indeed behave according to the mathematical
statement (see Section 6.3).

As is common in statistical statements, we have two pa-
rameters: the error (or skew) denoted by ε and the confidence
denoted by δ. The formal statement says that the estimation
will be off by error greater than ε with probability no larger
than δ. It turns out that the key parameter relating between

USENIX Association 17th USENIX Conference on File and Storage Technologies    111



ε and δ is the size of the physical space being estimated –
whether it is reclaimable, attributed, or the space required
for storing S in a deduplicated and compressed system. In
the following statement we simply use SpaceS to denote this
size.

Theorem 1. Let S be a data set whose physical space (after
deduplication and compression) is SpaceS and let ŜpaceS be
a sketch-based estimation of this space using a random hash
function. Then the probability of over-estimation:

Pr[ŜpaceS > (1+ε)SpaceS ]<
(

eε

(1+ ε)(1+ε)

) SpaceS
ChunkSize·SketchFactor

and the probability of under-estimation:

Pr[ŜpaceS < (1−ε)SpaceS ]<
(

e−ε

(1− ε)(1−ε)

) SpaceS
ChunkSize·SketchFactor

The theorem follows from the classical multiplicative vari-
ant of the Chernoff Bound (e.g., in [29]). However, we needed
to reprove a more generalized form of this bound in order
to capture variations including compression ratios, variable
sized chunking, reclaimable and attributed. Note that [34] use
a different method to achieve their accuracy guarantee. Their
guarantee relies on the estimation of Bernoulli variables by
a normal distribution, which for smaller numbers may add
some noise. Our estimation avoids this and turns out to be
slightly more conservative in the guarantees it provides.
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Figure 1: The behavior of the accuracy guarantee ε as a func-
tion of the physical size for a fixed choice of the confidence
δ = 1

2000 . The smallest values in the graph are at 4 GBs.

Figure 1 depicts the behavior of our bound for a fixed choice
of confidence δ. Note that we need to consider a δ which is
small enough to account for a large number of volumes and
sets being tested. For example, if we evaluate 750 volumes,
using δ = 1

100 is not sufficient, as we expect on average 7.5
volumes to exceed the error that corresponds to δ = 1

100 . In
our evaluations we typically use δ = 1

2000 , but this should be
adapted depending on the circumstances.

Using Theorem 1: The goal of the mathematical guarantee
is to produce an estimation together with a range for which
we can say with confidence that the actual value resides in.
For example, we estimate that the reclaimable of a volume
is 200GB +/- 14 GB. To this end, for a given fixed confi-
dence parameter δ we create an inverse lookup table that on
input SpaceS returns the corresponding ε(SpaceS). We can
then return a +/- value of SpaceS · ε(SpaceS). One subtlety,
however, is that the bound above is dictated by the actual
physical space SpaceS whereas we only have the estima-
tion of this value ŜpaceS . Therefore, in order to get an accu-
rate ε one has to find what is the smallest SpaceS such that
ŜpaceS > SpaceS − SpaceS · ε(SpaceS). Note that this is
important only for evaluating over-estimations, since it turns
out that the function SpaceS · ε(SpaceS) is monotonically
increasing with SpaceS . We also note that the difference be-
tween this method and simply returning ŜpaceS · ε(ŜpaceS)
is only noticeable for small volumes.

The Effect of the Sketch Factor: The sketch factor appears
in Theorem 1 as a divisor of the actual space. This means that,
for example, moving from sketch factor 2k to sketch factor
2k+1 will shift the same accuracy guarantees to volumes that
are double the size. On the other hand, the amount of sketch
data to handle will be cut in half. We arrived at our choice
of k = 8192 by taking a sketch factor that is high enough to
ensure good performance and low overheads, yet still give
acceptable accuracy guarantees.

Handling Small Volumes: The accuracy we can achieve
when estimating small volumes is limited (and more precisely,
volumes of small physical space). For example, the guarantee
for a volume of physical size 50GB is only ε = 0.14. There
are a number of points to consider here:

• The virtual capacity of the volume is important in under-
standing if the estimation is worthwhile. For example,
for an estimation in the range of 2GB we can only say
with confidence that the value is in the range between
0.5GB and 4.2GB. This is not saying much if the vol-
ume’s virtual size is 4GB but contains very valuable
information if the volume’s virtual size is 100GB. In
the latter case it means that the reclaimable space of the
volume is just a small fraction of the original volume
(and is a bad candidate for space reclamation).
• Small logical volumes gain very little from sketches (ex-

cept in very extreme cases, e.g. if the volume is very
compressible). It could be argued that small volumes are
not very interesting from a capacity management per-
spective since they have very little impact. On the other
hand, grouping several small volumes together to form a
larger group is highly recommended. The sketch merge
functionally accommodates this and accuracy improves
as the size of the merged data set increases.
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5 Architecture and Implementation

We turn to describe our actual implementation and integration
of the sketch-based capacity analytics for a production storage
system. Our overall strategy is to pull the sketch data out of
the storage system onto an adjacent management server where
the sketch data is analyzed and the outcome is displayed to
the storage client (See Figure 2). The choice to do the anal-
ysis outside of the storage box has a number of reasons. For
one, this avoids using CPU and memory resources in the
storage that could otherwise be spent on serving IO requests.
But more importantly, it is the optimal location for managing
cross system placement options (such as the ones discussed
in Section 3.4). As such, our design has two separate compo-
nents: the sketch collection embedded in the storage system
and the sketch analysis running on an external server. We
next describe our design and implementation of these two
components.

Sketch Analyzer

Sketch 
(in memory)

Sketch 
(in memory) 

Sketch Data

REST API

Storage Systems

. . .
Sketch 
(in memory)

Figure 2: The general sketches support architecture.

5.1 Sketch Collection

There are multiple approaches that can be used for sketch
collection. One can use a bump in the wire approach that
directs all sketch information as data is written to a sketch
collection mechanism. However, in such a design, support
for updating the sketch should also be added for deletion
or data overwrites which makes this harder to maintain. In
addition, in a highly distributed storage system such as ours,
it is unclear where the sketch collector should run and if it
should be likewise distributed. Another approach is to do
an offline metadata scan to extract the actual sketches. In
this approach all metadata in the system must be read, and
since the metadata is typically paged in and out of memory,
such a scan can be relatively slow and may have a negative
performance impact on the storage system by introducing
additional reads from disk. Instead, we use a third variant
which is somewhat of a medium of the two aforementioned
approaches.

Our design has the following key principles:

• All sketch data is held in memory at all times - This
allows to retrieve this data swiftly, but more crucially
avoids adding IOs to the disk backend for sketch update
and retrieval.
• Each process is in charge of the sketch data for its juris-

diction - Our storage system is highly distributed, with
hundreds of processes working in parallel to serve IOs.
Each process is in charge of serving IOs for slices of the
entire virtual space. In our design each slice has its own
sketch which is maintained by the owning process.
• The sketch portrays the state of a slice at a point in time

- The sketch data is held and managed as an integral
part of the metadata of a slice, and therefore there is no
history of writes and deletes as part of the sketch.

These principles are achieved using the following methodol-
ogy: During sketch retrieval, if the metadata of a slice happens
to be in memory, then the sketch data for this slice is extracted
directly from the slice metadata. Whenever the metadata of a
slice is paged out of memory, its sketch data is kept “alive" in
a designated memory area and retrieved from there.

For the act of sketch extraction, a central process contacts
all processes and retrieves their respective sketch data. These
are streamed out of the system to the adjacent server. Note
that the sketch data in the storage is always in distributed
form, and the aggregation of this data only takes place outside
the system once the sketch data has been extracted. It should
also be noted that as in many cases for distributed systems,
the extracted sketch does not actually reflect a single point in
time. In our case, the sketch provides a fuzzy state, e.g., when
we actually obtain the sketch for the last slice, the sketch in
the system for the early slices might have changed. This is
an inaccuracy that we are willing to tolerate since storage
systems are dynamic and we cannot expect to freeze them at
a specific state. That being said, the fact that we can serve the
sketches quickly from memory is a considerable advantage
as it can reduce the time window in which the sketches are
extracted.

Extensive performance tests were run to ensure that our
sketch collection and retrieval mechanisms do not interfere
with the performance of the storage system and the effects are
unnoticeable even at peak performance.6 In order to minimize
the memory footprint, we hold the sketches in packed format
and the size of each element in the sketch is limited to 19
bytes. This includes volume information, compression ratio,
reference and physical counters and 8 Bytes for the actual
hash value, truncated down from 20 bytes of a full SHA1
hash (we take 8 bytes that do not include the leading zero
bits). We point out that while an 8 byte hash is not enough
for avoiding collisions in a deduplicated system, it is well

6The retrieval process is throttled to ensure it does not interfere with the
systems IO chores.
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suited for achieving high accuracy estimations.7 Overall this
means that for 1PB of user data the sketch data will amount
to approximately 300MB on average.

5.2 The Sketch Analyzer
The statistics provided by our sketch analysis do not reflect
a real time state of the system. Rather, they reflect a fuzzy
state of the storage over the sketch retrieval time duration.
Additionally, we can provide the resulting statistics only af-
ter the sketch has been fully transferred and processed by
the analyzer. That being said, we invest quite a bit of effort
to make our sketch analysis as fast as possible, for a couple
of reasons: 1) In order to be interactive and support online
statistics queries on arbitrary volumes groups by the storage
administrator. Our aim is to provide a real-time user expe-
rience for this, and indeed we manage to answer all queries
well within one second; and 2) Using our tools for performing
optimizations typically entails performing a very large num-
ber of queries, and therefore the fast processing of queries on
sketches allows such optimizations to be feasible.

Recall that the sketch extracted from the storage arrives as a
stream in its distributed form. It contains hardly any aggrega-
tion at all, and therefore the first phase that we need to do is to
ingest it (including sorting to volumes and aggregation). The
next phase is the actual analysis using the methods described
in Section 3.

The Ingest Phase: The first phase of the process is therefore
an ingestion phase. In a nutshell, the sketch contains a stream
of hash values along with their respective compression ratios,
a local reference count (within the slice), an indication if
this was written as a physical copy or just a reference, and
finally the name of the owning volume. For each volume we
need to collect all of its relevant hashes while merging and
aggregating multiple appearances of hashes. The same applies
toward creating the full system sketch.

In order to accommodate this, we create two types of data
structures at ingest time:

1. The full system table: An open addressing hash table
holding all of the hashes seen in the full system (includ-
ing the compression ratio, reference counts and physical
copies count). We use statistics from the system to esti-
mate the size of this table and allocate the memory for
this table accordingly.

2. Volume level structures: We hold a temporary B-Tree
for each volume in the system which aggregates the
hashes that appeared in the respective volume (along
with the reference count for each volume). At the end
of the ingest phase we replace each B-Tree with an im-
mutable sorted array, which is a more space efficient data
structure which will support faster volume merges.

7Under the randomness of SHA1, a false collision of 8 bytes in the sketch
data would occur on average once on every 256PB of logical written data.

Our sketch analyzer is designed as a micro-service and uses a
REST API to receive the raw sketch data and to then answer
statistics queries.

The implementation of the REST interface is in Python, but
the core data structures are implemented in C++, using the
C-types interface. The implementation in C++ is critical for
achieving the performance that we require and for minimizing
the memory utilization of the sketch analyzer. For space and
time optimization we leveraged the following implementation
details:

Space optimization: instead of holding the full hash in the
B-Trees and volume arrays, they are held only once in the
full-system table, and in the volume level structures we only
store a pointer to the entry in the full table (the pointer takes
just 5 bytes rather than 8 bytes for the sketch hash).

Sketch distribution and concurrency: Each of our data struc-
tures is divided in to 16 partitions, each handling on average
1
16 of the hashes in the sketch, depending on the first four bits
of the hash value. This allows for analysis concurrency as
each (hash range) partition can be independently analyzed.
Keep in mind that due to the randomness of the hash func-
tion, it is expected that each such partition will receive a fair
share of the load.8 In addition, the partitioning provides easy
sparsification of the sketch. Depending on the query, a higher
sketch factor than 8192 may be sufficient for allowing faster
computations (by handling smaller sketches). Simply working
with j out of the 16 partitions can easily allow us to work
with a sketch factor of 16

j ·8192.

The Analysis Phase: The basic analysis phase consists of
computing the reclaimable and attributed statistics for all vol-
umes in a system. In addition, we implemented support for
running these queries on any arbitrary group of volumes and
the ability to query cross system migration costs for any group
of volumes. We emphasize that we consider this phase as the
most performance critical phase, since it should support in-
teractive administrator queries that should be satisfied online
to deliver a favorable user experience. In addition, the perfor-
mance of grouping and merging is critical for the next level
optimization algorithms as discussed in Section 3.4.

The basic functionality is straightforward and tightly fol-
lows the methods described in Section 3. For the group
queries, however, an additional step is required to generate the
sketch of a newly defined group. This process receives a list
of volumes that form the group and merges them into a single
sketch (reference counts and physical counts are summed in
the merge, whereas compression ratio is averaged). To this
end we implemented a classical heap-based k-way merge of
sorted arrays (e.g., see [21]).9

8A different approach would be to run the analysis for many vol-
umes/groups in parallel. However, the volumes can be very different in size
which could create a strong imbalance between the processes and require
more complex load sharing between the processes.

9Recall that at this point the volume sketches are held in sorted arrays.
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Test Name Data Written (TB) Number of volumes Ingest time (sec) Analysis time (sec)
UBC-Dedup 63 768 22 0.21

Synthetic 1500 5 89 0.93
Customer System 1 980 3400 104 4.80
Customer System 2 505 540 65 2.70

Table 1: Performance of the ingest and analysis phase

6 Evaluation

6.1 Methods and Workloads
We used a number of methodologies to evaluate our sketches
implementation, each with its own workloads. We describe
these below:

1. Synthetic data - These are end-to-end tests performed
in our lab in which various sets of synthetic data were
written to the storage system, the sketches were extracted
by the adjacent manager server and analyzed with the
sketch analyzer. The tests evaluate both the performance
of the mechanism as well as the accuracy of the results.
The data was crafted in a way that allows us to predict
the expected outcome and evaluate it. In addition we
also ran tests that delete volumes from the system and
compare the space that was released to the reclaimable
that was predicted by the sketches.
The data was generated using the following methodol-
ogy: a number of equally sized data units were created,
each with a different chosen compression ratio and with
no deduplication. These were generated using the VD-
Bench benchmarking suite [1]. We then wrote a number
of data volumes to the storage, each consisting of a cho-
sen set of units. Deduplication was created by reusing
the same data units in different volumes, or repeating in
inside the same volume. Our tests were of various sizes,
ranging from small tests with data units of size 100GB
each, to a large scale test in which 1.5 PB of data was
written to the storage system, using data units of size
100TB each.

2. UBC data traces We leveraged the data trace called
UBC-Dedup from the SNIA’s IOTTA repository [6]
(The Input/Output Traces, Tools, and Analysis repos-
itory). This are traces that were collected for the study of
Meyer and Boloski [28], spanning 852 file systems from
Microsoft in the form of hashes of the data and some
related metadata (compression ratios are not available in
this trace). After cleaning some small file systems, we
ended up with hashes for 768 file systems representing
63 TBs of data.10 The traces offers several chunking
options and we used the fixed 8KB chunks. We use these
file systems to simulate volumes in a storage system and
evaluate our sketch analyzer both from a performance

10The traces also contain a number of versions of each file system, but we
use only a single snapshot from each file system.

standpoint and from an accuracy standpoint. Note that
these tests are not an end-to-end evaluation as real data
was not involved. Rather, from the full hash traces we
generated a much smaller sketch and ingested it into our
sketch analyzer.

3. Production data in the field: The product implementa-
tion allows us to gain some insights via call-home data.
While this data is very succinct and contains only gen-
eral statistics, we learn from it about the performance of
the sketch analyzer and can gather some insights about
the data reduction properties of the written data.

6.2 Performance Evaluation

Ingest & Analyze Performance: We first evaluate the perfor-
mance of the ingestion and volume level statistics calculation.
These provide an idea on the time it takes to acquire sketch
statistics at a volume level on large production systems. The
timing of the ingestion phase is less critical and it is also
hampered by the fact that the sketch data is read from disk in
the manager system and passed to the sketch analyzer via a
REST API. The performance of the analysis phase is more
crucial, as it gives us an indication on our ability to process
real-time queries and answer mass queries for optimization
purposes.

In Table 1 we present timing results for four large scale
tests. The times are affected both by the actual sketch size as
well as by the number of volumes. In addition the hardware
available for the sketch analyzer also has an effect. We ran
the local tests on a virtual machine running on an Intelr
Xeonr Gold 6130 CPU @ 2.10GHz (cpu cores: 4) with
4×16 GB DDR3 RAM and do not know the configuration of
the external runs. But in general, the take home is that we can
easily perform a cycle of sketch statistics once in a couple of
minutes even for very large systems (small systems can run
in seconds). In our field deployment the cycle is longer since
the sketch retrieval process is throttled to reduce network
overheads.

Group Query Performance: We turn to evaluate our ability
to support online queries on reclaimable capacities of arbi-
trary groups. The latency of answering such queries for large
groups is dominated by the merge operation which creates
the sketch of the queried group (described in Section 5.2).
Figure 3 plots the performance of the merge operation and the
entire query response time (with reclaimable computation) for
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random groups from the UBC-Dedup workload, on various
group sizes. The graph depicts the average of 50 runs, with
the largest skew being under 10 ms. We are able to satisfy
such queries in less than 0.2 seconds even for a very large
group which contains half of the volumes in the system. For
a small group, e.g. of 12 volumes, the average test managed
to run in under 4 ms.
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Figure 3: Performance of group query operations as a function
of the group size ranging from a group of half the volumes in
the system (368) through a small group of just 3 volumes.

Note that for further speedup we can run the merge op-
eration using multiple threads, where each thread runs on
separates partitions (according to hash values). For exam-
ple, we tested a merge over all the 768 volumes on a virtual
machine with four cores. The merge operation took 0.396
seconds using a single process, 0.186 seconds when using
two processes and using 4 processes brought us down to 0.121
seconds.

6.3 Accuracy Evaluation

As mentioned in Section 6.1 we evaluated the accuracy of
our work using two methods: using synthetic data and by
studying the UBC-Dedup traces. The first is by writing syn-
thetic data with expected behavior to the storage system and
evaluating the expected reclaimable and attributed numbers.
We complemented this by deleting volumes and measuring
the amount of physical space reclaimed from the system. A
crucial aspect of these tests was to evaluate the combination
of compression and deduplication, since the UBC traces do
not contain compression ratios. The synthetic tests therefore
included writing data with a variety of deduplication and com-
pression ratios. The skew observed in these test (not presented
here) was always well within the accuracy guarantee.

The second method that we used to evaluate accuracy was
using the UBC-Dedup traces. In order to evaluate the accuracy
behavior of the sketch estimation method we first computed
the exact physical capacities required to store each of the 768
volumes from the UBC-Dedup traces. This was done once by
a lengthy offline process and recorded. We then evaluated the

same physical capacities using our sketch mechanism with
sketch factor 8192. In our evaluation we compare the observed
error for each of the sketch estimations to the accuracy guar-
antee obtained in Theorem 1. For example, if the estimation is
off by a factor of−3%, and the accuracy guarantee is ε= 0.05,
the relative measured skew is −0.03

0.05 =−0.6. In Figure 4 we
show a histogram detailing the number of volumes in each
range of relative measured skew of reclaimable estimations.
The behavior comes out as a very nice bell curved distribution.
Note that this behavior is not symmetric like a normal distri-
bution, but rather is shifted to the negative skew, a behavior
expected in a Binomial distribution B(n, p) in which p is very
small ( 1

8192 in our case).11
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Figure 4: The errors observed over 768 volumes relative to
the accuracy guarantee. The observed estimation skew was
always smaller than the accuracy bound. In fact, in over 95%
of the volumes the skew was less than half of the calculated
accuracy bound.

To give a further indication on the behavior of sketch esti-
mations, we picked six large volumes from the UBC-Dedup
trace and examined the sketch estimation for with a growing
sketch factor (starting with 213 = 8192 through 217). Figure 5
depicts the skew observed for each volume as the sketch fac-
tor grows. We observe that indeed the error tends to grows
significantly as the sketch becomes sparser.

6.4 Data Center Level Optimizations

As an example of the potential of our methods for cross sys-
tem optimizations, we implemented a greedy algorithm for
space reclamation in a data center consisting of a number of
deduplicated storage systems. The input to the algorithm is
the name of the source system that is filling up and a mini-
mal amount of space that needs to be reclaimed from it. The
output is a migration plan of volumes from the source system
to the other available system. The goal is to minimize the
overall space usage of the entire data center by finding data
similarities and exploiting them.

11This serves as justification for our choice not to use a binomial to normal
estimation in the accuracy proof (as was done in [34]).
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Figure 5: The errors observed for six volumes (and their phys-
ical sizes) as the sketch factor grows.

In a nutshell, at each round we enumerate over all of the
volumes in the source system and evaluate what is their re-
claimable space from the source system, and how much space
they would take up in each of the other systems. At each round
we pick the single volume for which the migration would yield
the best space saving ratio12 and update the sketches of the
systems as though the migration has already happened. We
then move to the next round in which the same process is
repeated until the amount of reclaimed space from the source
system is reached. Note that if data reduction mechanisms
exist as part of the networking used for migrations (such as
compression or WAN deduplication) then these consideration
can easily be taken into account as part of the decisions in
such a greedy algorithm.

The above algorithm does not attempt to find an overall op-
timum for such a process, and would generally not work well
in situations in which the optimal solution involves moving
several highly correlated volumes together. That being said,
it exemplifies the insight and capabilities that the storage ad-
ministrator has with clarity about expected volume capacities
across multiple systems in the datacenter.

Evaluation: We evaluated the above algorithm using a simu-
lated environment of four storage systems. The UBC-Dedup
workload was partitioned among the four storage systems in
a random fashion (each system received 192 volumes). On
average, the physical space in each system amounted to 7TB.

We then ran the algorithm four times, each time with a
different system serving as the source. In each test we asked
to release at least 1TB of data from the source system. The
tests ran between 30 to 55 seconds (depending on the system)
and produced a migration plan that frees over 1TB of data
from the source while taking up significantly less physical
space in the other systems. The space savings achieved were
between 257GB to 296GB, depending on the source system.

Figure 6 plots the progression of space reclamation and the

12We slightly penalize small volumes since we have a preference to migrate
fewer volumes rather than many.

capacity consumed at the targets for one of the experiments.
We point out that as the rounds progress the ratio of space sav-
ings achieved by the migration process predictably declined.
For example, at the beginning some volumes were found for
which the space saving ratio from migration was as high as
10:1 and 3.7:1. As the algorithm progresses the extremely
beneficial volumes have already been migrated and the saving
ratio went down to around 1.15:1.
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Figure 6: The progression of the reclaimed space from the
source and the space the suggested volumes would take up in
other systems.

6.5 Results from Early Adopters

As mentioned, our implementation is running as a beta offer-
ing for early adopters. This gives us initial statistics acquired
in the field, on real customer data. We show here a glimpse of
some insights that we have learnt (other than the performance
numbers presented in Section 6.2): We evaluated how differ-
ent the reclaimable numbers of a volume would be if they rely
solely on unique data accounting rather than on sketches. The
early numbers show that on average there is a 42% difference
between the numbers and this can be attributed to the relative
high internal volume deduplication encountered in the data
sets that have been analyzed. This result strongly motivates
the use of sketches for reclaimable capacity estimation.

Another example of insight that can be learnt is regarding
the correlation between a data chunks’ deduplicability and
compression ratio. In the data sets that were scanned by the
sketches mechanism we found no evidence of such correla-
tion. Specifically, 99.9% of the data chunks had reference
count between 1 and 4. For these four reference count values,
we observed the exact same compression ratio of the data
chunks.We are confident that as this feature is integrated and
widely adopted we would gain some important insights on
deduplication.
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7 Conclusions and Discussion

We described a novel and efficient approach to analyzing vol-
ume capacities in storage systems with deduplication. Our
mechanism provides accurate estimations for capacity mea-
sures that are not available in deduplicated storage systems
to date. We have shown the accuracy of the capacity statis-
tics computed from the sketch and demonstrated how it can
be seamlessly collected from a system. From a performance
standpoint our algorithms scale well and exhibit high per-
formance even with high capacities. The small scale of the
sketch and the ability to pull it out of the storage systems al-
lows for further analytics and automation. To date, placement
decision algorithm were mostly focused only on performance
optimization and just making sure we don’t overrun the sys-
tem overall capacity. The sketch mechanism enables a new
dimension of data center capacity optimization. This opens
the door for performing insight analytics on storage capacities
and making placement decisions at the pool or system level
as well as across multiple deduplication domains and systems.
Among the potential uses of our technology is the ability to
reduce the overall space usage in a number of circumstances:
Upon space reclamation when a system fills up (as described
in Section 6.4); as part of data rebalancing between systems
upon introducing of new systems; or by actively relocating
volumes to reside in the same deduplication domain together
with their optimal cluster of related volumes.

Acknowledgements: We are grateful to our many colleagues
at the IBM Systems Israel Development Center who con-
tributed to our efforts to bring this technology to the field.
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Abstract

In storage systems, delta compression is often used as a
complementary data reduction technique for data deduplica-
tion because it is able to eliminate redundancy among the
non-duplicate but highly similar chunks. Currently, what
we call ‘N-transform Super-Feature’ (N-transform SF) is
the most popular and widely used approach to computing
data similarity for detecting delta compression candidates.
But our observations suggest that the N-transform SF is
compute-intensive: it needs to linearly transform each Rabin
fingerprint of the data chunks N times to obtain N features,
and can be simplified by exploiting the fine-grained feature
locality existing among highly similar chunks to eliminate
time-consuming linear transformations. Therefore, we pro-
pose Finesse, a fine-grained feature-locality-based fast re-
semblance detection approach that divides each chunk into
several fixed-sized subchunks, computes features from these
subchunks individually, and then groups the features into
super-features. Experimental results show that, compared
with the state-of-the-art N-transform SF approach, Finesse
accelerates the similarity computation for resemblance de-
tection by 3.2×∼3.5× and increases the final throughput of
a deduplicated and delta compressed prototype system by
41%∼85%, while achieving comparable compression ratios.

1 Introduction
Data deduplication, a popular data reduction technique, usu-
ally identifies duplicate data at the chunk level (e.g., 8KB
size) by using secure fingerprints (e.g., SHA1) to uniquely
and globally represent data chunks in storage systems [34,
44]. Hence, deduplication-based storage systems only store
one physical instance referred to by any other duplicates,
which helps improve storage space efficiency [18, 25, 44]
or network bandwidth efficiency [26, 29].

Recently, delta compression has also gained increasing at-
tention due to its ability to eliminate data redundancy among
non-duplicate but highly similar chunks, which can be used
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Figure 1: An example of delta compression on two similar
chunks with the three typical steps: 1⃝ computing similarity,
2⃝ indexing, and 3⃝ delta encoding.

post-deduplication as a complementary technique to further
eliminate redundancy. For example, if chunk A2 is similar to
chunk A1 (the base chunk), the delta compression approach
only stores or transfers the differences (delta) and the map-
ping relation between A2 and A1, removing the redundant
data to improve storage space efficiency [21, 30, 36, 37, 41]
or network bandwidth efficiency [8, 29, 42, 43]. Several
studies [29, 30, 37, 38] suggest that delta compression is
able to achieve about 2× additional compression ratio be-
yond deduplication and local compression in backup storage
workloads.

For delta compression in deduplication-based storage sys-
tems, resemblance detection is the first key step in its work-
flow, which identifies delta compression candidates. This is
because a higher similarity degree in the detected chunks
implies more space savings from delta compression. Cur-
rently, the most commonly used chunk-level resemblance
detection approach computes the ‘super-features’ (SF for
short) [5, 17, 29] based on the Rabin fingerprints [28] of
data contents, to detect highly similar chunks. Figure 1
gives an example of the general workflow for this SF-based
delta compression approach: 1⃝ computing the similarity of
chunks, namely, computing features and grouping features
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into SFs (detailed in Section 3), 2⃝ detecting similar chunks
according to their SFs (any two chunks having a SF in com-
mon are considered highly similar [6]), 3⃝ delta encoding the
two similar chunks, i.e., calculating their differences, also
called ‘delta’. For decompression, the input chunk is recov-
ered by decoding the ‘delta’ with the base chunk.

To achieve high delta compression efficiency, some recent
works on delta compression [17, 19, 29] recommend group-
ing four or more features into one SF to reduce false positives
in resemblance detection, and using three or more SFs to de-
tect more highly similar chunks for delta compression. But
according to observations in our delta compressed prototype
system, computing the similarity of data chunks, namely,
generating their SFs, is quite time-consuming. Specifically,
to ensure high similarity detection efficiency, Rabin finger-
prints are calculated byte-by-byte on data chunks (similar to
Content-Defined Chunking [26, 40, 43]), and are each then
linearly transformed N times to calculate N-dimensional
hash value sets. Finally the N maximal values, one from
each of the N dimensions, are selected as features. Thus, the
traditional SF approach needs to linearly transform each Ra-
bin fingerprint of data chunks N times, which we refer to as
‘N-transform SF’ to distinguish it from our approach in the
remainder of the paper.

Consistent with the backup stream locality observed by
many studies on deduplication [13, 16, 18, 22, 33, 35, 44],
we observe that there also exists fine-grained locality among
similar chunks. This locality refers to the fact that the cor-
responding subregions (subchunks) of chunks and their fea-
tures also appear in the same order among the similar chunks
with a very high probability, which is referred to as feature
locality in this paper. Based on this key observation, we ar-
gue that a collection of features, exactly one extracted from
each subchunk of a chunk, can also be used for represent-
ing the similarity of a chunk for generating SFs, which is
much less compute-intensive than the N-transform SF since
it eliminates the time-consuming linear transformations.

In this paper, we propose Finesse, a fast resemblance-
detection approach that exploits the fine-grained feature
locality of similar chunks. Specifically, Finesse simplifies
computing the similarity by first dividing each chunk into
several subchunks and then quickly computing features from
each subchunk, finally grouping these features into SFs. Ex-
perimental results based on six datasets show that, compared
with the baseline N-transform SF approach, Finesse acceler-
ates the similarity computation by 3.2×∼3.5× and increases
the throughput of a delta compression prototype system by
41%∼85%, while achieving comparable and even higher
compression ratios.

2 Background and Related Work
Data reduction has gained increasing attention and popular-
ity in storage and file-transfer systems due to the explosive
growth of digital data. Compared with local compression

(e.g., LZ [34]), data deduplication is able to identify and
eliminate redundancy globally at at a much larger granular-
ity (i.e., chunk- or file-level) in large-scale storage systems.
Thus it is widely studied and used in large-scale backup stor-
age [18, 29, 33, 44], primary storage [10, 24, 31], and HPC
storage [23].

Meanwhile, delta compression, another data reduction
technique that removes redundancy among non-duplicate but
highly similar chunks, is able to help maximize the comp-
ression ratio when combined with deduplication and local
compression in backup storage [30], storage replication [29],
database storage [41], etc. Shilane et al. [29, 30] suggest that
delta compression can achieve an additional 2× compression
ratio beyond data deduplication in their production backup
storage systems. Similar results are also observed in other
scenarios, such as, database storage [41, 42] and migratory
compression [19].

While greatly improving storage efficiency, delta comp-
ression also introduces extra compute and I/O overheads.
SIDC [29] suggests that the issue of on-disk large-sized sim-
ilarity indexing faced by delta compression can be addressed
by exploiting (caching) backup stream locality, in a way sim-
ilar to data deduplication systems [44]. Ddelta [38] and
Edelta [39] have been proposed to accelerate the delta en-
coding process by using the idea of CDC-based deduplica-
tion and exploiting fine-grained locality of the backup data
streams.

3 Super-Feature based Approach
Resemblance detection is the first step needed for delta
compression to compute the similarity of data chunks and
find compression candidates. As mentioned earlier, the
‘N-transform SF’ approach is currently the most popular
method for chunk-level resemblance detection. It was first
proposed by Broder [6] and is based on “Broder’s theo-
rem” [5], which evaluates the resemblance between two sets,
as detailed below:

Theorem 1 Consider two sets A and B, with H(A) and H(B)
being the corresponding sets of the hashes of the elements
of A and B respectively, where H is chosen uniformly and
randomly from a min-wise independent family of permuta-
tions [2, 7]. An element in the set is mapped to an integer.
Let min(S) denote the smallest element of the set of integers
S. Then:

Pr[min(H(A))) = min(H(B))] =
|A∩B|
|A∪B|

.

Broder’s theorem states that the probability of the two
sets A and B having the same minimum hash element is
the same as their Jaccard similarity coefficient [14]. Based
on this theorem, Broder proposed a resemblance detection
approach called super-features [6, 29] that extracts a fixed
number of features from a chunk. Specifically, this SF-based
approach [29] (referred to as N-transform SF in this paper)
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Algorithm 1 Extracting features in N-transform SF.
Require: chunk content, Str; length of the chunk, L; randomly

value pair for linear transformation, mi and ai;
Ensure: N features, Feature[N];

1: function FEATURE-EXTRACT-N-TRANSFORM SF(Str, L)
2: Feature[0, · · · ,N – 1]← 0;
3: for m = 0 to L – 1 do
4: FP← RabinFunction(Str,m);
5: for i = 0 to N – 1 do
6: Transform[i]← (mi*FP + ai) mod 232;
7: if Feature[i]≤ Transform[i] then
8: Feature[i]← Transform[i];
9: end if

10: end for
11: end for
12: end function

computes data similarity by extracting features from Rabin
fingerprints (a rolling hash algorithm [28]) and then group-
ing these features into SFs to detect resemblance for data
reduction. For example, Featurei of a chunk (length = L), is
uniquely generated with a randomly pre-defined value pair
mi & ai (i.e., linear transformation) and L Rabin fingerprints
(as used in Content-Defined Chunking [26, 40, 43] with a
sliding window size of 48 bytes as follows:

Featurei = MaxL
j=1{(mi ·Rabinj + ai)mod232} (1)

Where Rabinj is the Rabin fingerprint of the sliding win-
dow located at position j) Thus chunks that have one or more
such features (maximal values) in common are likely to be
very similar, but small changes to the data are unlikely to
perturb the maximal values [5, 29]. Algorithm 1 provides a
detailed pseudo-code implementation of extracting features
by N-transform SF. Then a super-feature of this chunk, SFx,
can be calculated by several such features as follows:

SFx = Rabin(Featurex·k, ...,Featurex·k+k–1) (2)

For example, to generate three SFs with k=4 features each,
we must first generate N=12 features, namely, features 0...3
for SF0, features 4...7 for SF1, etc. For similar chunks that
differ only in a tiny fraction of bytes, most of their features
will be identical and thus so are their SFs [6]. More specifi-
cally, this N-transform SF approach is able to maximally de-
tect the highly similar chunks for two reasons. 1⃝ The match-
ing of one SF means that almost all the features grouped in
this SF are identical and thus grouping features into SFs re-
duces false positives for resemblance detection. 2⃝ Multi-
ple SFs are computed to increase the probability of detecting
highly similar chunks. Meanwhile, this N-transform SF ap-
proach needs to linearly transform Rabin fingerprints of the
data chunks N times, which is time-consuming and slows the
whole post-deduplication delta compression process.

It is worth noting that there are also some other coarse-
grained resemblance detection approaches [4, 9, 11, 15, 27,
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Figure 2: An example of the existence of fine-grained loca-
lity among two similar chunks. Here each chunk is divided
into N fixed-sized subchunks. The corresponding subchunks
in chunk B are largely similar (one-by-one) to subchunks in
chunk A, and thus their features are largely identical.

41] for matching similar files or large data blocks (e.g.,
size of 16MB), which extract features from non-overlapped
strings (or chunks) and thus may suffer from high false
positives. In this paper, we focus on improving the most
popular N-transform SF approach for the chunk-level re-
semblance detection in post-deduplication delta compression
scenario [30].

4 Finesse Design and Implementation

4.1 Observations
As analyzed above, the root cause of the relatively high com-
putation overhead of the N-transform SF approach is its lin-
early transforming the whole chunk’s Rabin fingerprints N
times (i.e., compute multiple rounds of transformations on
each fingerprint) to extract N features. According to our ob-
servation of delta compression on backup workloads, the fea-
tures extracted from the subchunks inside individual chunks
can also be used for resemblance detection, which means that
we eliminate the linear transformations and thus simplify the
feature computation.

Computing features from subchunks is motivated by our
observation that the fine-grained stream locality widely ex-
ists in the detected similar chunks. Figure 2 provides an
example of this locality: the subregions (subchunks) of in-
dividual chunks also appear in the same order among their
highly similar chunks with a very high probability, meaning
that these subchunks are also very similar to each other.

Table 1 studies this locality on six deduplicated backup
datasets (the detailed experimental environment and work-
load characteristics can be found in Section 5), which
demonstrates that most of the corresponding subchunk pairs
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Table 1: A study of the repeatability of subchunks and their
features (i.e., the fine-grained locality) in the identified sim-
ilar chunks in six deduplicated backup datasets. Here the
identified chunks are all divided into 12 equal-sized sub-
chunks and then we verify the locality shown in Figure 2.

Datasets WEB TAR RDB SYN VMA VMB
Avg. # of subchunks

(identical) 8.27 9.19 6.86 5.78 5.99 6.34

Avg. # of subchunks
(own the same features) 10.82 10.97 10.23 10.10 10.04 10.64

Here identical is judged by checking SHA-1 fingerprints of subchunks.

Algorithm 2 Extracting features in Finesse.
Require: chunk content, Str; length of the chunk, L;
Ensure: N features, Feature[N];

1: function FEATURE-EXTRACT-FINESSE(Str, L)
2: subChunkSize← L

N ;
3: Feature[0, · · · ,N – 1]← 0;
4: for m = 0 to N – 1 do
5: for i = 0 to subChunkSize – 1 do
6: FP← RabinFunction(Str,m*subChunkSize + i);
7: if Feature[m]≤ FP then
8: Feature[m]← FP;
9: end if

10: end for
11: end for
12: end function

in the detected similar chunks have the same features, ac-
counting for 87.22% on average, although many of them are
non-duplicate, accounting for 41.07% on average. There-
fore, grouping some of these features into SFs by exploiting
this fine-grained locality of similar chunks may also poten-
tially enable maximal detection of highly similar chunks.

More importantly, this fine-grained locality-based resem-
blance detection approach has the potential to greatly reduce
the execution time of computing features while achieving
comparable resemblance detection efficiency relative to the
N-transform SF approach, which is comprehensively evalu-
ated and demonstrated in in Section 5.

4.2 Implementation
In this subsection, we discuss some implementation issues of
Finesse, including the feature extraction and grouping strate-
gies, overhead analysis, and other design considerations.

Feature Extraction. To exploit the fine-grained feature
locality of similar chunks for extracting features, Finesse
first divides a chunk into several fixed-sized subchunks,
and then computes features on each subchunk based on the
Rabin fingerprints of the data contents, in the same way
as the traditional N-transform SF approach, which is de-
tailed in Algorithm 2. Note that a chunk can be divided
into variable-sized subchunks, similar to Content-Defined
Chunking [26, 40, 43], but the feature grouping process will

F0: 0xff9ab74e       

F1: 0xfff82845

F2: 0xfff1da26

F3: 0xff7f156c

F4: 0xff12c814

F5: 0xffe3735c

F6: 0xff32bd8e

F7: 0xfff9b8d2

F8: 0xffe87e52

F9: 0xfff93729

F10: 0xffe2fcaf

F11: 0xff16ecf3

F0 < F2 < F1

F4 < F3 < F5

F6 < F8 < F7

F11 < F10 < F9

SF0: hashing {F1, F5, F7, F9} = 0xf794de5e

SF1: hashing{F2, F3, F8, F10} = 0x4b6f535e

SF2: hashing{F0, F4, F6, F11} = 0xd07267d6

Figure 3: A concrete example of the grouping strategy in
Finesse with actual values for the features and SFs.

become very complicated since the subchunks’ sizes and the
number of features will become unknown. In addition, our
preliminary results suggest that extracting features on fixed-
sized subchunks is able to achieve nearly the same comp-
ression ratio as N-transform SF, and thus we use the fixed-
sized subchunks for feature extraction.

Feature Grouping. The grouping strategy in Finesse is
different from traditional N-transform SF since the way fea-
tures are extracted is changed in Finesse. Specifically, Fi-
nesse first divides the subchunks and their corresponding fea-
tures into several contiguous sets of the same size. Then the
biggest features (with the largest hash values from each of
the sets) are grouped to constitute the first SF, the second-
biggest features of the sets are grouped to form the second
SF, and so on and so forth. This grouping strategy in Finesse
ensures that the grouped features in each SF are selected uni-
formly and consistently all over the chunks, which achieves
grouping efficiency similar to N-transform SF.

To better illustrate this grouping strategy, we provide a
detailed example with three SFs and four features per SF
in Finesse as shown in Figure 3. We first divide the chunk
into twelve subchunks to extract 12 features F0...F11. These
features are further divided into four sets and sorted by
their values, {F0<F2<F1}...{F11<F10<F9}. Finally, SF0
is composed of the maximal values from the above four sets,
namely, {F1, F5, F7, F9}, SF2 of the 2nd biggest values {F2,
F3, F8, F10}, and SF2 of the 3rd biggest values {F0, F4, F6,
F11}. Therefore, compared with feature extraction, feature
grouping is fast since it only processes a small amount of
features instead of the whole data chunk.

Note that we tried other grouping strategies for Finesse but
the performance differences were small or ever worse. And
our final evaluation result suggests Finesse using this group-
ing strategy achieves nearly the same delta-compression ra-
tio as the classic N-transform SF.

Computational Overhead. As discussed above, the com-
putational overhead of grouping features in Finesse is in-
significant compared with computing features. Thus, we
only analyze the computational overhead on computing fea-
tures. Specifically, to generate N features from one chunk,
for each Rabin fingerprint on the data chunk contents:
• N-transform SF needs at least 3×N operations, includ-
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Table 2: Workload characteristics of the tested datasets.
Name Size DR Workload descriptions

WEB 367 GB 4.21
135 days’ snapshots of the website:
news.sina.com.

TAR 112 GB 1.70
258 versions of Linux kernel source
code [1]. Each version is packaged
as a tar file.

RDB 540 GB 12.25
100 backups of the redis key-value
store database.

SYN 330 GB 13.07
176 synthetic backups by simulating
file create/delete/modify operations [32].

VMA 117 GB 1.61
78 virtual machine images of different
OS release versions, including Fedora,
CentOS, Debian, etc [3].

VMB 321 GB 10.45
20 backups of an Ubuntu 12.04 VM
image in use by a research group.

Deduplication Ratio (DR) is measured by total data size before deduplication
total data size after deduplication .

ing N multiply, N add, and N conditional branch oper-
ations, to select N maximal values (i.e., features) after
linear transformation as discussed in Section 3.

• Finesse only needs one operation, i.e., one ‘conditional
branch’, to select one maximal value (one feature) in
each subchunk.

Therefore, Finesse greatly reduces the computation over-
head for feature extraction and thus accelerates the whole
resemblance-detection process.

Limitations. Note that Finesse has one limitation in that
it does not detect “similar” chunks with very different sizes.
This is because Finesse divides a chunk into several equal-
sized subchunks and the features will be totally different if
the two “similar” chunks are of very different sizes. But in
the delta-compression scenario, detecting chunks with simi-
lar sizes is reasonable since “similar” chunks with very dif-
ferent sizes (detected by the N-transform SF approach) may
result in a low delta-compression ratio [17]. For example,
two non-similar chunks that only have a small region in com-
mon may have many features and SFs in common and thus
be considered to be similar chunks by the N-transform SF
approach.

5 Performance Evaluation
5.1 Evaluation Setup
Experimental Platform. We implement delta compression
in an open-source deduplication prototype system called
Destor [12, 13] on the Ubuntu 12.04.2 operating system run-
ning on a quad-core Intel i7-4770 processor at 3.4 GHz and
two 1TB 7200RPM hard disks. Another Intel E5-2620 pro-
cessor at 2.4 GHz is also used for performance comparison.
Data Reduction Configurations. In our prototype system,
deduplication is configured with Rabin-based chunking with
the expected chunk size of 8KB as used in LBFS [26] and an
in-memory SHA1 fingerprint table for duplicate detection.

For the post-deduplication delta compression, the non-
duplicate chunks are processed in three steps: resemblance

detection, base chunk reading, and delta encoding. The re-
semblance detection step for both Finesse and N-transform
SF is configured to compute 3 SFs and 4 features per SF for
matching highly similar chunks as suggested by SIDC [29]
and MC [19] (to trade off the space savings and the com-
putation & indexing overheads). In addition, a chunk may
have multiple similar chunks, and our prototype system se-
lects the first matched chunk as its base, which is also known
as “FirstFit” [17]. For the base chunk reading step, delta
compression needs to read for each matched similar chunk
its base chunk from the disk for delta encoding. Here we use
a base chunk cache with LRU and a size of 400MB to reduce
base chunk I/Os. For delta encoding, we employ the classic
Xdelta [20] to calculate the delta of the similar chunks for
space saving.
Performance Metrics. We evaluate resemblance detection
performance of Finesse using two metrics, Delta Compre-
ssion Ratio (DCR) and Delta Compression Efficiency (DCE).
DCR is measured by total size before delta compression

total size after delta compression , reflect-
ing the total space saved by resemblance detection and then
delta compression. DCE is used to estimate the similarity
degree between the similar chunks detected by Finesse, i.e.,

the chunk data size after delta compression
the chunk data size before delta compression . It is worth noting that
DCR focuses on the overall space savings while DCE em-
phasizes the detected resembling chunks themselves. Thus
higher DCE means lower probability of false positives for
detecting similar chunks.

In addition, Similarity Computing Speed is measured by
the processing speed at which the input data are calculated
to obtain SFs for resemblance detection. System Throughput
is measured by the throughput with which the input data are
deduplicated and then delta compressed. We run each exper-
iment five times to get the stable and the average results of
the deduplication throughput.
Evaluated Datasets. Six datasets are used for evaluation as
shown in Table 2. These datasets represent various typical
workloads, including website snapshots, tarred source code
files, database snapshots, and virtual machine images.

5.2 Evaluation of Finesse vs. N-transform SF
Resemblance Detection Efficiency. Table 3 provides the
delta compression results of all the similar chunks detected
(i.e., they have a super-feature in common) by Finesse and
N-transform SF respectively. Generally, evaluation results
in Table 3 suggest that Finesse achieves comparable comp-
ression ratio (with difference of -3.21%∼+7.36%) to the N-
transform SF approach in the metrics of DCR and DCE. In
addition, the resemblance detection performance of Finesse
is sensitive to the datasets due to the different ways in which
the files of each workload are evolved (i.e., modified) during
backups. Thus the six workloads have different levels of the
fine-grained locality as studied in Table 1 (see Section 4.1).
For example, Finesse achieves higher DCR on datasets TAR
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Table 3: Comparison of resemblance detection efficiency of
N-transform SF and Finesse on the six datasets.

Dataset Approaches DCR DCE

WEB
N-transform SF 7.60 0.8749

Finesse 7.52 (–1.05%) 0.8795 (+0.53%)

TAR
N-transform SF 15.00 0.9516

Finesse 15.34 (+2.27%) 0.9846 (+3.47%)

RDB
N-transform SF 3.67 0.9129

Finesse 3.94 (+7.36%) 0.9448 (+3.49%)

SYN
N-transform SF 1.75 0.9326

Finesse 1.70 (–2.86%) 0.9640 (+3.37%)

VMA
N-transform SF 1.56 0.9088

Finesse 1.51 (–3.21%) 0.9161 (+0.80%)

VMB
N-transform SF 1.30 0.9093

Finesse 1.28 (–1.54%) 0.9193 (+1.10%)
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Figure 4: Similarity computing speed.

and RDB, and lower DCR on datasets SYN and VMB.
Meanwhile, Finesse achieves higher DCE than N-

transform SF on all the six datasets. There are two reasons.
1⃝ The N-transform SF approach may obtain all the features
from one subregion of the chunk, which can lead to possi-
ble false positive resemblance detection and thus lower DCE.
In contrast, Finesse’s SF grouping strategy ensures that the
features grouped for each SF are coming from multiple sub-
chunks of a chunk. 2⃝ N-transform SF may detect “similar”
chunks with the very different sizes, which can result in poor
delta compression efficiency as discussed in Section 4.2.

Speed of Computing SFs. While Finesse achieves compa-
rable compression ratios to that of N-transform SF, it greatly
accelerates the similarity computation as shown in Figure 4.
Finesse improves this speed by an average of 3.5× and 3.2×
respectively on the i7-4770 and E5-2620 CPUs. This is be-
cause it requires much fewer operations on computing fea-
tures as discussed in Section 4. Note that the SF comput-
ing speed is not sensitive to the datasets because the time on
computing features is decided by the size of the data chunks
(i.e., scan all the bytes to calculate features and SFs ).

System Throughput. To understand the impact of the
resemblance detection approaches on the total throughput
of the composite data reduction system combining dedup-
lication and delta compression, we construct and evaluate
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Figure 5: Throughputs of the Finesse based and N-transform
SF based delta compression prototype systems.

the throughputs of two such systems with Finesse and N-
transform SF as their delta compression components respec-
tively. In our prototype system of both Finesse and N-
transform SF, we pipeline the deduplication subtasks (i.e.,
chunking, fingerprinting, and indexing) and delta compre-
ssion subtasks (i.e., resemblance detection, reading base
chunk, and delta encoding) for high system throughput.

Figure 5 shows the evaluation results comparing these two
systems. The system based on the Finesse approach outper-
forms the one based on N-transform SF by 41%-85% in total
system throughput. This is because in the delta compression
phase after deduplication, Finesse is running 3× faster than
N-transform SF for resemblance detection.

6 Conclusion

In this paper, we propose Finesse, a much faster resemblance
detection approach than the state-of-the-art N-transform SF
approach. The key idea behind Finesse is to exploit the fine-
grained feature locality of highly similar chunks by dividing
data chunk into multiple subchunks and extract features from
each subchunk, thus reducing the computation overhead of
resemblance detection. Our experimental results based on
six datasets demonstrate the superior performance of Finesse
in terms of delta compression ratio, delta compression effi-
ciency, speed of computing SFs, and throughput of the com-
posite data reduction prototype system combining deduplica-
tion and delta compression.
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Abstract

Data deduplication is an effective way of improving stor-
age space utilization. The data generated by deduplication
is persistently stored in data chunks or data containers (a
container consisting of a few hundreds or thousands of data
chunks). The data restore process is rather slow due to data
fragmentation and read amplification. To speed up the re-
store process, data chunk rewrite (a rewrite is to store a du-
plicate data chunk) schemes have been proposed to effec-
tively improve data chunk locality and reduce the number
of container reads for restoring the original data. However,
rewrites will decrease the deduplication ratio since more
storage space is used to store the duplicate data chunks.

To remedy this, we focus on reducing the data fragmen-
tation and read amplification of container-based deduplica-
tion systems. We first propose a flexible container referenced
count based rewrite scheme, which can make a better trade-
off between the deduplication ratio and the number of re-
quired container reads than that of capping which is an exist-
ing rewrite scheme. To further improve the rewrite candidate
selection accuracy, we propose a sliding look-back window
based design, which can make more accurate rewrite deci-
sions by considering the caching effect, data chunk locali-
ties, and data chunk closeness in the current and future win-
dows. According to our evaluation, our proposed approach
can always achieve a higher restore performance than that of
capping especially when the reduction of deduplication ratio
is small.

1 Introduction

With the fast development of new eco-systems such as social
media, cloud computing, artificial intelligence (AI), and In-
ternet of Things (IoT), the volume of data created increases
exponentially. However, the storage density and capacity in-
crease in main storage devices like disk drives (HDD) and
solid-state drives (SSD) cannot match the explosion in the
speed of data creation [1, 2]. Data deduplication is an effi-
cient way of improving the storage space utilization such that
the cost of storing data can be reduced. Data deduplication
is a widely used technique to reduce the amount of data to

be transferred or stored in today’s computing and communi-
cation infrastructure. It has been applied to primary and sec-
ondary storage systems, embedded systems, and other sys-
tems that host and transfer a huge amount of data.

Data deduplication partitions the byte stream formed by
the original data into data chunks. The chunk size can be
either fixed or variable (e.g., 4KB size in average). For ef-
ficiency, deduplicating systems usually process a segment of
data at one time. A segment is typically the size of several
thousand data chunks (e.g., 20MB). Each chunk is repre-
sented by a chunk ID which is a hashed fingerprint of the
chunk content. By representing the original data stream with
a sequence of the chunk IDs as well as the metadata to find
the data chunks (called a recipe) and storing only the unique
data chunks (not the duplicates of existing data chunks) into
the storage system, the amount of data to be stored can be
greatly reduced. The result of deduplication can be mea-
sured by the deduplication ratio which is the total amount of
data in the original byte stream divided by the total size of
stored unique data chunks.

Since the size of a data chunk is rather small, storing indi-
vidual data chunks directly cannot efficiently utilize the stor-
age bandwidth especially for storage systems with low ran-
dom read/write performance. For HDD based storage sys-
tems used by backup or archive applications, the deduplica-
tion process typically accumulates a number of data chunks
(say 1000 data chunks) in a container before writing them
out together [3]. For the same reason, when reading a data
chunk to restore the original data, the whole container is read
from storage since we are expecting that many data chunks
in the same container will be accessed soon. In this paper,
we focus on the container-based deduplication systems.

The data deduplication restore process accesses and re-
turns the data chunks based on the order in the recipe to re-
create the original byte stream. Since the unique data chunks
are writing to storage based on the order of their first appear-
ance in the byte stream, a duplicate data chunk may require
reading a container that was stored a long time ago. In this
case, the restore process may not require most of the data
chunks in such a container in the near future. This causes
data fragmentation (i.e., data chunks are scattered) and read
amplification (i.e., the size of data being read is larger than
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the size of data being restored), which leads to low restore
performance. Therefore, reducing the number of container
reads is a major task for restore performance improvement.

To improve the restore performance, several techniques
have been proposed including caching schemes (e.g.,
container-based caching [4, 5, 6, 7], chunk-based caching
[8, 9, 10], and forward assembly [8, 10]) and duplicate data
chunk rewrite schemes [4, 5, 6, 7, 8]. Since the unique
data chunks are stored in the same order as they first ap-
peared, unique data chunks in the same container are usually
at nearby locations that these chunks are first identified in the
original byte stream. If a large number of data chunks from
the same container are used in a small range in the original
byte stream, caching schemes can be very useful in reducing
the number of container reads.

When a deduplication system runs for a long time, the
data chunks in a segment of the original byte stream can be
highly fragmented. That is, the duplicate data chunks in this
segment are stored in a large number of containers that are
new or have already existed (old containers). When restor-
ing this segment, each container read from storage (read-in
container) holds only a few data chunks that belong to this
segment. Therefore, a large number of data chunks are read
in from storage, possibly evicting cached data chunks before
they are used again in the restore process. In this scenario,
the number of container reads cannot be effectively reduced
by applying caching schemes only.

In this situation, each container read only contributes a
small number of data chunks for restore. This type of con-
tainer read is inefficient and expensive. To address this issue,
rewriting some of the duplicate data chunks in a highly frag-
mented segment and storing them together with the nearby
newly identified unique data chunks in the same container
can effectively reduce the number of container reads required
for restoring these chunks. However, it is hard to decide
which duplicate data chunks to rewrite during the deduplica-
tion process due to the limited information that can be used
by a rewrite scheme.

Previous studies introduced several data chunk rewriting
policies. Among these studies, Lillibridge et al. [8] proposed
a simple but effective data chunk rewriting selection policy,
named capping. Capping first partitions the byte stream into
fixed size segments (e.g., 20MB). Then, in each segment, the
referenced old containers are sorted in a descending order
based on the number of data chunks in each container that
appeared in the segment. Data chunks in the old containers
which are ranked out of a pre-defined threshold (i.e., capping
level) are stored again (to be rewritten). Therefore, when
restoring the data chunks in this segment, the total number
of container reads is limited by the capping level plus the
number of new containers created when deduplicating this
segment.

Capping operates on a single fixed-size segment of input
data at a time. It applies the same cap to each segment and

analyzes each segment in isolation, without considering the
contents of the previous or following segments. Also, the
deduplication ratio cannot be guaranteed via capping. In this
paper, we explore two data chunk rewrite schemes to im-
prove restore performance. First, based on capping, we pro-
pose a flexible container referenced count based scheme to
adjust the cap for each segment according to the fragmenta-
tion of the duplicate data chunks in that segment. Second,
we propose a new rewrite scheme called Sliding Look-Back
Window Rewrite that makes better rewrite decisions by con-
sidering a larger amount of input data around each dupli-
cate chunk. This avoids inefficiencies when related dupli-
cate chunks are divided by the arbitrary boundaries between
segments. The new rewrite policy for the sliding look-back
window scheme combines the flexible container referenced
count based scheme with the consideration of caching effects
in the restore process.

To fairly and comprehensively evaluate our rewriting de-
signs, we implemented a system with both deduplication
and restore engines for normal deduplication, the capping
scheme, the two schemes we are proposing, Forward As-
sembly (FAA) [8], and a chunk-based caching scheme called
ALACC [10]. We compared and evaluated the performance
of different combinations of deduplication and restore en-
gines. We use speed factor (MB/container-read), which is
defined as the mean size data being restored (MB) per con-
tainer read [8], to indicate the amount of data that can be
restored by one container read on average. Speed factor is
platform independent and a higher speed factor usually indi-
cates a higher restore performance. Using several real-world
deduplication traces, with the same deduplication ratio and
the same restore engine, our proposed sliding look-back win-
dow based design always achieves the best restore perfor-
mance. Our design can improve the speed factor up to 97%
compared with normal deduplication and it can improve the
speed factor up to 41% compared with capping.

The rest of the paper is presented as follows. Section 2
reviews the background of data deduplication and the related
work of caching and rewrite schemes. Section 3 describes
a flexible container referenced count based rewrite scheme
which improves on capping. To further reduce the number
of container reads, a sliding look-back window based rewrite
scheme is proposed and presented in Section 4. Based on
the sliding look-back window, the rewrite candidate selecting
policy is discussed in Section 5. We present the evaluation
results and analysis in Section 6. Finally, we conclude our
work and discuss future work in Section 7.

2 Background and Related Work

In this section, we first briefly describe the deduplication and
restore processes. Then, the related studies of improving the
restore performance are presented and discussed.
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2.1 Deduplication and Restore Process

Data deduplication is widely used in secondary storage
systems, such as archiving and backup systems, to improve
storage space utilization [3, 11, 12, 13, 14, 15, 16, 17].
Data deduplication is also deployed in primary storage sys-
tems to make better trade-offs between cost and performance
[18, 19, 20, 21, 22, 23, 24, 25]. After the original data is
deduplicated, only the unique data chunks and the recipe are
stored. When the original data is requested, the recipe is
used to read the corresponding data chunks for assembling
the data. From the beginning of the recipe, the restore en-
gine uses the data chunk metadata to access the correspond-
ing data chunks one by one and assembles the data chunks
in the memory buffer (assembling buffer). Once the engine
accumulates a buffer worth of data chunks, it returns the re-
stored data.

To store the unique data chunks, some deduplication sys-
tems such as HYDRAstor [17], iDedup [18], Dmdedup [22],
and ZFS [26] directly store individual data chunks to the per-
sistent storage. They do not incur read amplification during
restore, but they suffer from data chunk fragmentation and
the slow performance of random reads. Other deduplication
systems, such as the backup products from Veritas [27] and
Data Domain [3], pack a number of data chunks (compres-
sion may be applied) in one I/O unit (called a container in
this paper). Data chunks in the same container are written
out and read in together to benefit from the high sequential
I/O performance and good chunk localities. In this paper, we
focus on the container-based deduplication systems.

In the worst case of restore, we may need N container
reads to assemble N data chunks. A straightforward way
to reduce the number of container reads is to cache some
of the containers or data chunks. Since some data chunks
will be used soon after they are read into memory, these
cached chunks can be directly copied from the cache to the
assembling buffer which can reduce the number of container
reads. In some scenarios, even with caching schemes like
chunk-based caching and forward assembly [8], the number
of container reads cannot be further reduced. This is espe-
cially true for restoring a duplicate data chunk since this data
chunk was stored in a container created earlier and most of
the data chunks in this container may not be needed by the
restore process.

Another way to reduce the number of container reads is to
store (rewrite) some of the duplicate data chunks together
with the unique chunks in the same container during the
deduplication process. The decision to rewrite a duplicate
data chunk has to be made during the deduplication process
instead of being done at restore process like caching. Af-
ter rewriting, the duplicate chunks and unique chunks will
be read together from the same container, thus avoiding the
need to read these duplicate chunks from other old contain-
ers. However, this approach reduces the effectiveness of data

deduplication (i.e., reduces the deduplication ratio). Rewrite
can effectively reduce the number of container reads in the
cases that caching schemes do not work well, especially
when each container read only contributes a few data chunks
to restoring the original data.

2.2 Related Work on Restore Performance Im-
provement

We will first review the different caching policies such as
container-based caching, chunk-based caching, and forward
assembly. Then, we will focus on the studies of storing du-
plicate chunks to improve restore performance.

Different caching policies are studied in [4, 5, 6, 8, 9,
10, 28]. To improve the cache hit ratio, Kaczmarczyk et
al. [4], Nam et al. [5, 6], and Park et al. [28] used
container-based caching, which cache containers in mem-
ory. Container-based caching schemes can achieve Belady’s
optimal replacement policy [7]. To achieve a higher cache
hit ratio, some studies cache data chunks directly [8, 9]. If
we compare container-based with chunk-based caching, the
former has lower cache management overhead (e.g., fewer
memory copies), while the latter has a higher cache hit ratio.
Therefore, caching chunks is preferred in the restore process,
especially when the cache space is limited. Lillibridge et al.
proposed the forward assembly scheme, which reads ahead
in the recipe and pre-fetches some chunks into a Forward
Assembly Area (FAA) [8]. This scheme ensures that no con-
tainer will be read more than once when restoring the data
chunks of the current FAA. The management overhead of
FAA is lower than that of chunk-based caching, but the re-
store performance of these two schemes is closely related
to the workload characteristics. Therefore, we previously
proposed a new caching scheme which combines FAA and
chunk-based caching called Adaptive Look-Ahead Chunk
Caching (ALACC). ALACC can potentially adapt to various
workloads and achieve better restore performance [10].

Nam et al. [5, 6] first introduced the Chunk Fragmenta-
tion Level (CFL) to estimate degraded read performance of
deduplication storage. CFL is defined as a ratio of the opti-
mal number of containers with respect to the actual number
of containers required to store all the unique and duplicate
chunks of a backup data stream. When the current CFL be-
comes worse than a predefined threshold, data chunks will
be rewritten. Kaczmarczyk et al. [4, 29] utilized stream con-
text and disk context of a duplicate block to rewrite highly-
fragmented duplicates. A data chunk whose stream con-
text in the current backup is significantly different from its
disk context will be rewritten. Fu et al. [7, 30] proposed
a History-Aware Rewriting algorithm (HAR) which identi-
fies and rewrites sparse containers according to the historical
information of the previous backup. A new rewrite scheme
called container capping was proposed by Lillibridge et al.
[8], which uses a fixed-size segment to identify the data
chunks to be rewritten. Since each container read involves a
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large fixed number of data chunks, Tan et al. [31] proposed
a Fine-Grained defragmentation approach (FGDefrag) that
uses variable-size data groups to more accurately identify
and effectively remove fragmented data. FGDefrag rewrites
the fragmental chunks and the new unique chunks of each
segment into a single group.

In these data chunk rewrite schemes, after some of the
data chunks are rewritten, one data chunk can appear in sev-
eral different containers. How to choose one container to
be referenced is challenging. Wu et al. [32, 33] proposed a
cost-efficient rewriting scheme (SMR). SMR first formulates
the defragmentation as an optimization problem of selecting
suitable containers and then builds a sub-modular maximiza-
tion model to address this problem by selecting containers
with more distinct referenced data chunks.

Caching schemes can be effective if the data chunks of the
read-in container will be used again in the near future dur-
ing the restore. If duplicate data chunks are spread across
many containers, a large number of container reads will be
required. Caching schemes cannot reduce these compulsory
misses and reads. Thus, rewriting some of the duplicate data
chunks that can effectively reduce the number of container
reads is an alternative solution. However, it is difficult to
make decisions on which duplicate chunks need to be rewrit-
ten with the minimum reduction of the deduplication ratio.
This is the focus of our study.

As mentioned before, container capping is a simple and
effective rewrite scheme [8]. In this scheme, the original
data stream is partitioned into fixed size segments, and each
segment has the size of N containers (e.g., N · 4MB). The
goal of this scheme is to limit the number of container reads
required to restore a segment of data to T +C. C is the num-
ber of new containers generated when deduplicating the seg-
ment, and T is the capping level. Thus, the capping level
limits the number of containers that will be read to load
duplicate chunks. In capping, the first step is to count the
number of data chunks (including duplicates) in the segment
that belongs to an old container, called CoNtainer Refer-
enced Count (CNRC). Then, these old containers containing
at least one duplicate data chunk in the segment are sorted
with their CNRCs in descending order. If the container is
ranked lower than T , the duplicate data chunks in this con-
tainer are written together with unique data chunks into the
currently active container. In this way, capping ensures the
higher bound of container reads in each segment. However,
capping also has limitations, which motivate us to design
new rewrite schemes for higher restore performance. The
details are presented in the following.

3 Flexible Container Referenced Count based
Design

In this section, we first discuss the limitations of the cap-
ping scheme. Then, we propose a flexible container refer-
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Figure 1: An example of the relationship between the CN-
RCs distribution and the capping level

enced count based scheme which improves the performance
of capping and achieves a good tradeoff between the number
of container reads and the deduplication ratio.

3.1 Limitations of Capping
Capping uses a fixed threshold to control the capping level

for all the segments such that a higher bound on the number
of container reads can be obtained. However, the dedupli-
cation ratio is not considered as an optimization objective in
the capping scheme. We have found that with some changes
to the capping scheme, a better tradeoff between the num-
ber of container reads and the data deduplication ratio can be
achieved.

If we consider the number of old containers involved in a
segment and the distribution of CNRCs of these old contain-
ers, we find that the number of old containers and the dis-
tribution of CNRCs can be very different for different seg-
ments. If we wish to bound the reduction of deduplication
ratio, some segments can keep fewer container reads than
the targeted capping level while other segments may have
to go beyond the targeted capping level. For example, in a
segment, after sorting the old containers according to their
CNRCs in descending order, we can plot out the CNRC dis-
tribution of these containers as shown in Figure 1(a). The
X-axis is the rank of containers and Y-axis is the number of
referenced data chunks of an involved container. Different
segments have different distributions. Consider Segment 1
and Segment 2 in Figure 1(a). A fixed capping level of 10
is shown. All duplicate data chunks in the containers to the
right of the capping level have to be rewritten.

In this example, the number of container reads of these
two segments is capped by 20 plus the number of newly gen-
erated containers. For Segment 1, containers ranked from
10 to 12 have a relatively large number of referenced data
chunks. Rewriting duplicates of data chunks in these con-
tainers will cause more reduction of deduplication ratio. The
ideal capping level for Segment 1 should be either 12 or 13
according to the distribution. For Segment 2, since data
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chunks are more concentrated in the higher ranking con-
tainers, rewriting the duplicate data chunks in the containers
ranked beyond container 6 or 7 instead of container 10 will
reduce more container reads while the increased amount of
duplicate data chunks being rewritten is limited. Therefore,
as shown in Figure 1(b), if we use 12 as the new capping level
for Segment 1 (CL1 in the figure) and 6 as the new capping
level for Segment 2 (CL2 in the figure), the number of con-
tainer reads will be 1 fewer and the number of duplicate data
chunks being rewritten will be even lower. Therefore, apply-
ing varied capping levels for different segments can further
reduce container reads and achieve even fewer data chunk
rewrites. However, how to decide the “capping levels” for
different segments is challenging.

3.2 Flexible Container Referenced Count Scheme

To address the aforementioned limitations of using a fixed
capping level, we proposed the Flexible Container Refer-
enced Count based scheme (FCRC). It is an improvement
of capping. Instead of using a fixed capping level as the se-
lection threshold, FCRC uses a value of CNRC as the new
threshold. It rewrites duplicate data chunks from old contain-
ers that have CNRCs lower than the threshold. In this way,
different segments will have different actual capping levels.
The actual capping levels are decided by the threshold and
the distribution of CNRCs of these segments. The CNRC
threshold Tcnrc can be estimated by a targeted capping level.
That is, the total number of duplicate data chunks (including
all copies of a duplicate) in a segment divided by the tar-
geted capping level. Statistically, if each read-in container in
a segment can contribute more than Tcnrc number of dupli-
cate data chunks, the total number of old container reads to
restore this segment will be bounded by the targeted capping
level. Thus, rewriting duplicate data chunks in a container
with CNRC lower than Tcnrc can achieve a similar number of
container reads as using the same targeted capping level in
the capping scheme.

Using a fixed value of Tcnrc as a threshold can make a
tradeoff between the number of container reads and the dedu-
plication ratio, but it cannot guarantee either an upper bound
on the number of container reads, like capping, or a lower
bound on the deduplication ratio. Tcnrc can only decide
which data chunks belonging to the old containers with low
CNRC are rewritten. The actual number of duplicate data
chunks being rewritten in each segment is unknown. Also,
the estimation of Tcnrc does not guarantee the minimal or
maximal number of container reads. To solve this issue, we
use a targeted deduplication ratio reduction limit x% and the
targeted number of container reads Cap in one segment to
generate these two bounds for Tcnrc. In the following, we
will discuss the algorithm to calculate the two bounds and
how we decide the Tcnrc of one segment. The old containers
referenced in one segment are sorted by CNRCs in descend-
ing order before we start the following algorithm.

Bound for Deduplication Ratio Reduction We first cal-
culate the targeted number of data chunks that can be rewrit-
ten in total (Nrw total) according to the deduplication ratio re-
duction limit x% (i.e., after rewrite, deduplication ratio is at
most x% lower than that of no the rewrite case). Let us con-
sider a backup system as an example. Suppose in the current
backup version, the total number of data chunks is Ndc and
the deduplication ratio reduction limit is x%. For one backup
version, we use the number of unique data chunks gener-
ated in the previous deduplicated version as an estimate of
that value for the current version, which is Nunique. If we do
not rewrite duplicate data chunks, the deduplication ratio is
DR = Ndc

Nunique
. To have at most x% of deduplication ratio re-

duction, we need to rewrite at most Nrw total data chunks in
total after deduplication. We can calculate the new dedupli-
cation ratio after rewrites by DR · (1− x%) = Ndc

Nunique+Nrw total
.

Finally, we have Nrw total =
Nunique·x%

1−x% . By dividing Nrw total
by the total number of segments in this backup version, we
can calculate the average data chunks that can be rewritten in
each segment, which is Hrw. Hrw is used for all the segments
in one backup. For other applications, we can run deduplica-
tion for a short period of time. Then, we estimate Hrw using
the current total number of data chunks being generated as
Ndc and the current total number of unique chunks as Nunique.

Since the actual rewrite number can be smaller than Hrw in
some segments, we can accumulate and distribute the saving
as credits to the rest of the segments such that some of the
segments can rewrite more than Hrw duplicate data chunks.
In this way, the number of container reads can potentially
be reduced, but the overall deduplication reduction limit x%
is still satisfied. Note that, we cannot allow rewriting more
data chunks than planned and hope segments in the future
can pay for the deficit. So the accumulated credit is always
non-negative.

For the ith segment, suppose the accumulated actual
rewrites before ith segment is Ni−1

rw . We can rewrite at most
Hrw · i−Ni−1

rw duplicate data chunks in the ith segment. If
Ni−1

rw = Hrw ·(i−1) (the accumulated credit is 0), we still use
Hrw as the rewrite limit for the ith segment. In this way, we
get the referenced count bound RCi

rw of the ith segment by
adding the CNRCs of the old containers from low to high
until the sum reaches the rewrite limit.

Bound for Container Reads Suppose the bound on the
number of container reads of the ith segment is RCi

reads. The
maximum number of old containers being referenced in one
segment is Cap, which is the same concept as capping level
in capping scheme. Suppose the accumulated number of old
containers referenced before the ith segment is Ni−1

reads. For
the ith Segment, we can tolerate referencing at most Cap · i−
Ni−1

reads containers. Counting the old containers ranking from
high to low, when the container number is Cap · i−Ni−1

reads,
the CNRC of this container is RCi

reads. It is possible that
Cap · i−Ni−1

reads is higher than the number of referenced old
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containers in this segment. In this case, RCi
reads = 0 and the

credit is accumulated for the future.
Tcnrc Calculation If RCi

rw < RCi
reads in the ith segment, we

are unable to satisfy the number of container reads and the
targeted deduplication reduction limit at the same time. We
choose to satisfy the deduplication ratio reduction limit first.
Therefore, the threshold Tcnrc that we use in this segment is
RCi

rw. The bound on the number of container reads will be
violated and the credits of the number of container reads of
this segment will be negative. If RCi

rw ≥ RCi
reads, the thresh-

old Tcnrc can be adjusted between RCi
rw and RCi

reads. If Tcnrc
of the previous segment is in between, we use the same Tcnrc.

Otherwise, we use RCi
rw+RCi

reads
2 as the new Tcnrc which can

accumulate the credit for both the number of data chunks
rewritten and the number of container reads.

The performance comparisons between the FCRC scheme
and the capping scheme are shown in Section 6. In general,
by using a flexible referenced count based scheme, the con-
tainer reads are effectively reduced compared to the capping
scheme with a fixed value of capping level when the same
deduplication reduction ratio is achieved.

4 Sliding Look-Back Window

Although our proposed FCRC scheme can address the trade-
off between the number of container reads and the dedu-
plication ratio, using a fixed size segment partition causes
another problem. In this section, we will first discuss the
problem. Then we present a new rewrite framework called
Sliding Look-Back Window (LBW) in detail.

4.1 Issues of Fixed Size Segment Partition

In both the capping and FCRC schemes, the decision
to rewrite duplicate data chunks near the segment partition
boundaries may have issues. Let us look at the example
shown in Figure 2. There are two consecutive segments S1
and S2. The majority of data chunks of container C1 appear
at the front of S1 and the majority of data chunks of C2 are
at the front of S2. Due to the segment partition point, a few
duplicate chunks of container C1 are also at the front of S2
and a few duplicate chunks of container C2 are at the end of
S1. According to the capping scheme, the number of data
chunks of C1 in S1 and that of C2 in S2 are ranked higher
than the capping level. These chunks will not be rewritten.
However, the ranking of container C1 in S2 and container C2
in S1 are out of the capping level. Since we do not know the
past information about C1 in S1 when deduplicating S2 and
the future information about C2 in S2 when deduplicating
S1, these chunks (i.e., a few data chunks from C2 in S1 and
a few data chunks from C1 in S2) will be rewritten. When
we restore S1, C1 and C2 will be read in the cache. When
restoring S2, C2 is already in the cache and the additional
container read will not be triggered. Therefore, rewriting the

Segment S1 Segment S2

Data chunks of container C1 Data chunks of container C2

Be rewritten

Figure 2: An example to show the fixed size segment parti-
tion issue in capping

data chunks of C2 appearing in S1 and a few data chunks of
C1 in S2 is wasted.

As demonstrated in the aforementioned example, in both
the capping and FCRC schemes, the container and data
chunk information based on a fixed size segment do not in-
clude information about the past and future segments. On
one hand, data chunks close to the front of a segment are
evaluated together with subsequent chunks in the same seg-
ment, but they do not benefit from information about data
chunk references and rewrite decisions made in the previous
segment. On the other hand, data chunks close to the end
of the segment are evaluated with earlier chunks in the seg-
ment, but there is no information about the next segment that
can be used. The data chunks close to the end of the segment
have a higher probability of being rewritten if most of the
data chunks of their containers appear in the subsequent few
segments. As a result, the rewrite decisions made with the
statistics only from the current segment are less accurate.

4.2 Sliding Look-Back Window Assisted Rewrite

To prevent various cases at the boundaries of the segments
and to more precisely evaluate each data chunk in a seg-
ment, we propose a fixed size “sliding” window design. In
the deduplication process, the window covers a range of data
chunks that have been recently generated by the deduplica-
tion engine and slides forward to cover the newly generated
data chunks. A newly generated data chunk will start at the
front of the sliding window. At this moment, each data chunk
can be evaluated with a window-size of “past information” to
make an initial rewrite decision, or a rewrite decision for this
data chunk can be made later before it moves out the window.
As the deduplication process continues, the window moves
forward. Before a previously generated data chunk moves
out of the sliding window, we can evaluate it with a window-
size of “future information” to make the final rewrite deci-
sion. In this design, all data chunks are fairly evaluated with
one window-size of past information and one window-size of
future information which solves the issues of fixed segment
partition. The details of the proposed sliding look-back win-
dow assisted rewrite scheme are presented in the following.

The overall architecture is shown in Figure 3. To move the
window efficiently, the sliding window consists of N con-
tainers (4 containers of three chunks each in this example)
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Active container

Look back window
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Recipe
Persistent store

Candidate chunk

Non-rewrite chunk

Persistent Storage

Recipe cache

Rewrite candidate cacheImmutable recipe entry

Mutable recipe entry

Container

Figure 3: The overview of the sliding look-back window as-
sisted rewrite design

and it is moved forward in container granularity. When one
container size new data chunks are accumulated, they are
added to the front of the window together. At the same time,
one container size data chunks at the end of the window are
moved out. The window moves forward to process the newly
generated data chunks while these data chunks are evaluated
together with other data chunks in the back of the window to
make the initial rewrite decisions. This is why we call it a
Look-Back Window (LBW). The LBW acts as a recipe cache
that maintains the metadata entries of data chunks in the or-
der covered by the LBW in the byte stream. The metadata
entry for each data chunk consists of the same information
found in a recipe referencing the data chunk: chunk meta-
data, offset in the byte stream, container ID/address, and the
offset in the container. This information is used to select the
data chunks to be rewritten.

To implement such a look back mechanism, some data
needs to be temporarily cached in memory. In our design,
we cache three types of data in memory as shown in Fig-
ure 3. First, as mentioned before, the LBW maintains a
recipe cache. Second, similar to the most container based
deduplication engines, we maintain an active container as
chunk buffer in memory to store the unique and rewritten
data chunks. The buffer is of one container size. Third, we
maintain a rewrite candidate cache in memory to temporally
cache the candidate data chunks. The size of the rewrite can-
didate cache is user-configurable. The same chunk may ap-
pear in different positions in the window, but only one copy
is cached in the rewrite candidate cache. As the window
moves, data chunks in the rewrite candidate cache will be
gradually evicted according to the rewrite selection policy
and these chunks become non-rewrite chunks. Finally, be-
fore the last container is moved out, the remaining candidate
chunks in that container are rewritten to the active container.
The metadata entry of a candidate chunk is mutable while
the metadata entry of a non-rewrite chunk is immutable. The
details of the rewrite selection policy will be presented in
Section 5.

Position 1

Data chunks of container C1 Data chunks of container C2

Position 2
Position 3

Data chunks of container C3

Figure 4: An example of the sliding look-window assisted
rewrite scheme

We perform the following steps to move the LBW for-
ward. First, as each new data chunk is received, it is identi-
fied as unique or duplicate and added to the first container of
the LBW. If a data chunk is unique, its data will be put into
the active container and its corresponding metadata entry is
stored in the recipe cache. If the data chunk is a duplicate,
its metadata entry is added to the recipe cache and temporar-
ily references the old container. Then, we make an initial
rewrite decision for this data chunk. If a data chunk is a du-
plicate satisfying the non-rewrite condition (described later),
it will not be rewritten and will be marked as a non-rewrite
chunk. In this case, the data chunk will not be added to the
rewrite candidate cache. If the rewrite decision cannot be
made at this moment, this data chunk will be added to the
rewrite candidate cache as one candidate chunk and we will
wait for more information. When the most recent container
in the LBW fills up with data chunks, the oldest container
in the LBW (at the end of the LBW) is moved out and its
corresponding metadata entries are written to the recipe on
storage. Before the oldest container is moved out, the rewrite
decisions of all candidate chunks in that container have to be
made. Then, the LBW will move forward to cover a new
container size of data chunks.

The effect of delaying rewrite decisions using a look-back
window is as follows. When a data chunk is identified as
a candidate chunk, we will have the information of all data
chunks in the past N− 1 containers including old container
referencing information and the data chunk rewrite decisions
of these data chunks. If we cannot make a decision for this
candidate chunk immediately due to the limited information,
we can wait to make a decision before this chunk is moved
out of the window. At that time, we will know the data
chunks subsequent to this data chunk in the future N−1 con-
tainers. With both past and future information in the LBW, a
more accurate decision can be made.

Let us consider the simple example as shown in Figure
4. Suppose we use a fixed reference count value of 4 as
the threshold. That is, once an old container has more than
4 duplicate data chunks in the window, the duplicate data
chunks in that container will not be rewritten (non-rewrite
condition). When the LBW is at Position 1, the number of
data chunks from Containers 1, 2, and 3 are 8, 2, and 2, re-
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spectively. Based on the non-rewrite condition, the chunks
from Container 1 will not be rewritten. The newly iden-
tified data chunks from Containers 2 and 3 cannot satisfy
the non-rewrite condition. We add these data chunks to the
rewrite candidate cache. When the LBW is moved to Po-
sition 2, the number of data chunks from Container 2 is al-
ready 5, which satisfy the non-rewrite condition. The data
chunks from Container 2 will not be rewritten. Therefore,
the data chunks of Container 2 in the rewrite candidate cache
are dropped. For the data chunks from Container 3, we still
need to delay to make the rewrite decision. When the LBW
is moved to Position 3, the data chunks from Container 3 are
already at the end of the LBW. At this moment, the num-
ber of data chunks from Container 3 is still lower than the
threshold. Thus, the two data chunks from Container 3 are
rewritten to the active container. At the same time, the corre-
sponding metadata entries in the recipe cache are updated
with the active container information. As the oldest con-
tainer is moved out of the LBW, the corresponding metadata
entries are written to storage.

5 Rewrite Selection Policy for LBW

In the LBW scheme, since there are no segment partitions,
we cannot directly sort the old containers by their CNRCs,
which vary as the LBW moves. Therefore, either the capping
level or the threshold Tcnrc of FCRC cannot be directly used
in LBW. Based on the flexible container referenced count
concept proposed in FCRC, we design a new rewrite selec-
tion policy for LBW. In the new policy, we further consider
the cache-effective range and the container read efficiency
of the restore process. These two criteria help us to adjust
the threshold and make more accurate rewrite decisions. In
this section, we first discuss the two criteria and how we can
use them during the deduplication process to help make the
rewrite decisions of duplicate data chunks. Then, the details
of the rewrite policy are described.

5.1 Two Criteria of Restore Process
In most data chunk rewrite studies, caching-effectiveness

of the restore is not considered. Some data chunks being
rewritten may actually be in the cache when these chunks
are restored, causing unnecessary rewrite overhead. On the
other hand, how many data chunks can be restored by one
container read and how long these chunks will stay in the
cache can also influence the rewrite decision. Therefore, we
bridge the deduplication and restore processes with the two
criteria and design a new rewrite policy for LBW.

Cache-Effective Range In most data deduplication sys-
tems, caching is used to improve the restore perfor-
mance. Different caching policies (e.g., chunk-based
caching, container-based caching, or FAA) have different
eviction priorities. However, for a very short period of time,
the data chunks of a read-in container will not be evicted. In

other words, if a container is read into the memory, the data
chunks of that container will be cached for at least the next
S container size data chunks of restore, we consider this the
cache-effective range. After restoring S container size data
chunks, these cached data chunks will be gradually evicted.
For FAA, S is the size of FAA in terms of the number of
containers. For chunk-based caching and container-based
caching, S is closely related to the size of the cache and
varies as the workload changes. Although it may be hard
to precisely know when a data chunk will be evicted, we can
still estimate S as a lower bound on the cache-effective range
of each read-in container.

Importantly, the size of the LBW is related to the cache-
effective range S. On one hand, if the size of the LBW is
much smaller than S, some rewritten data chunks may have a
probability to be in the cache. This will cause an unnecessary
reduction of the deduplication ratio. On the other hand, if
LBW is much larger than S, a data chunk that was not rewrit-
ten due to the same data chunk existing in LBW may not
be cached during the restore process (i.e., should have been
rewritten). Also, a large LBW requires maintaining a larger
amount of metadata in memory and caching a larger number
of candidate chunks, which may not be acceptable. There-
fore, maintaining an LBW with the size compatible with the
cache-effective range is a good tradeoff.

Container Read Efficiency A container’s read efficiency
can be measured by the number of data chunks used in a
short duration after it is read-in and the concentration level
of these chunks in a given restore range. Please note that at
different moments of the restore, the same old container may
have a different read efficiency. If one container read can re-
store more data chunks, that container read is more efficient
than rewriting those data chunks. With the same number of
data chunks being restored from one old container, if those
data chunks are more concentrated in a small range of the
byte stream, fewer data chunks will be cached and the cached
chunks can be evicted earlier. In this case, the cache space
can be more efficiently used and more container reads can be
potentially eliminated.

To quantitatively define a container read efficiency, we use
two measurements of an old container in the LBW: container
referenced count and referenced chunk closeness. The con-
tainer referenced count (CNRC) was used in FCRC to decide
the rewrite candidates in a segment. Similarly, we define the
container referenced count of an old container as the num-
ber of times the data chunks in that container appear in the
LBW (duplications are counted) at a point in time, which
is CNRClbw. CNRClbw of an old container can change with
each movement of the LBW as data chunks are added in
and moved out. In fact, the nature of capping is to rank the
CNRClbw of the old containers appearing in a segment and to
rewrite the data chunks that belong to the old containers with
low CNRC. The FCRC scheme rewrites the containers with
CNRC lower than the CNRC threshold.
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We define the referenced chunk closeness Lc as: the av-
erage distance (measured by the number of data chunks) be-
tween a data chunk that will potentially trigger a container
read and the rest of the data chunks of that container in the
same LBW, divided by the size of LBW (the total number
of chunks in the LBW), where Lc < 1. Note that if one
data chunk appears in multiple positions, only the first one
is counted. Smaller Lc means the data chunks are closer.

5.2 Rewrite Selection Policy for LBW

The rewrite selection policy is designed based on the infor-
mation covered by the LBW. Suppose the LBW size is SLBW
which is measured by the number of containers. When the
LBW moves forward for one container size, a container size
of data chunks (added container) will be added to the front
of the LBW and one container size of data chunks (evicted
container) will be removed from the end of the LBW. There
are five steps to make the rewrite decision: 1) process the
added container, classify the data chunks into three cate-
gories: unique chunks, non-rewrite chunks (duplicate data
chunks that will not be rewritten), and candidate chunks (du-
plicate data chunks that may be rewritten); 2) update the
metadata entries of data chunks in the added container and
add the identified candidate chunks to the rewrite candidate
cache; 3) recalculate the CNRClbw of old containers that con-
tain the data chunks in the rewrite candidate cache and re-
classify these data chunks according to the updated CNRClbw
and the threshold Tdc. At this step, some of the data chunks
in the candidate cache are identified as non-rewrite chunks
and are evicted from the cache; 4) rewrite the remaining can-
didate chunks in the evicted container to the active container
and update their metadata entries in LBW. The updated meta-
data entries of data chunks in the evicted container are writ-
ten to the recipe persistently; 5) every SLBW containers move-
ment of the LBW, adjust the CNRC threshold Tdc, which is
used to filter out the non-rewrite chunks. The details of each
step are explained in the following.

In Step 1, by searching the indexing table, the unique data
chunks and duplicate data chunks are identified. The unique
data chunks are written to the active container. Next, for each
duplicate data chunk, we search backward in the LBW. If
some data chunks from the same old container appear ahead
of that duplicate data chunk and these chunks are non-rewrite
chunks, the duplicate data chunk is marked as a non-rewrite
chunk. Otherwise, the duplicate chunk becomes a candidate
chunk and it is added to the candidate cache. If a candidate
chunk is the first chunk of its container appearing in the most
current S containers, it means this container has not been
used or referenced at least S containers range. This chunk
will potentially trigger one container read and thus we call it
the leading chunk of this container. As the LBW moves, we
can determine the range and distance of data chunks from the
same container appearing after the leading chunk. Based on
future information, we can decide whether these data chunks

should be rewritten or not.
In Step 2, the metadata entries of data chunks in the added

container are updated with the metadata information of the
referenced chunks in the active container or old container.
Note that the same duplicate data chunk can appear in mul-
tiple old containers due to past rewrites. One of the old con-
tainers should be referenced in the metadata entry. There are
some studies on how to optimize the selection of old con-
tainers. For an example, an approximately optimal solution
is proposed by [32, 33]. Here, when the indexing table re-
turns the list of old containers that store a data chunk, we
use a greedy algorithm to select the container that has the
most chunks in the current LBW. Other algorithms can also
be easily applied to our proposed policy.

In Step 3, we follow the definition of CNRClbw described
in Section 5.1 to calculate the latest CNRClbw of each old
container referenced by the candidate chunks. The candidate
chunks from the old containers whose CNRClbw are higher
than the threshold Tdc (the calculation of Tdc will be dis-
cussed in Step 5) are removed from the rewrite candidate
cache. They become non-rewrite chunks and their metadata
entries in the recipe cache still reference the old containers.

In Step 4, the data chunks in the evicted container that are
still in the candidate cache are rewritten to the active con-
tainer before we move the evicted container out of the LBW.
Their metadata entries in the recipe cache are updated to ref-
erence the active container. If a leading chunk of one old
container is rewritten, which means the CNRClbw of its con-
tainer is still lower than Tdc, other data chunks from the same
container appearing in the current LBW will be rewritten too.
Once a data chunk is rewritten, it is evicted from the candi-
date cache.

In Step 5, Tdc is adjusted to make better tradeoffs between
deduplication ratio reduction and the number of container
reads. Every Slbw size movement is one LBW moving cy-
cle and the Tdc is adjusted at the end of each cycle. Simi-
lar to the FCRC scheme in Section 3.2, we calculate the two
bounds of Tdc in the ith moving cycle: RCi

rw and RCi
reads. The

referenced chunk closeness of current and previous moving
cycle are Li

c and Li−1
c and they are used to further adjust the

threshold according to the data chunk closeness. The algo-
rithm details to calculate Tdc are described in Algorithm 1.
Finally, we get the threshold T i+1

dc for the i+1th moving cy-
cle.

6 Performance Evaluation

To comprehensively evaluate our design, we implemented
four deduplication engines including normal deduplication
with no rewrite (Normal), capping scheme (Capping), flexi-
ble container referenced count based scheme (FCRC), and
Sliding Look-Back Window scheme (LBW). For the re-
store engine, we implemented two state-of-the-art caching
designs, Forward Assembly Area (FAA) [8] and Adaptive
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Algorithm 1 Tdc Adjusting Algorithm

Input: T i
dc, Li

c, Li−1
c , RCi

rw, RCi
reads

Output: T i+1
dc

if RCi
rw < RCi

reads then
T i+1

dc ← RCi
rw

else
if RCi

reads < T i
dc AND T i

dc < RCi
rw then

T i
start ← T i

dc
else

T i
start ← (RCi

reads +RCi
rw)/2

end if
if Li

c < Li−1
c then

T i+1
dc ← T i

start −1
else

T i+1
dc ← T i

start +1
end if

end if

Look-Ahead window Chunk based Caching (ALACC) [10].
Since any restore experiments will include one deduplica-
tion engine and one restore engine, there are 8 combinations.
Speed factor and deduplication ratio are used as the evalua-
tion metrics, which are determined by the workload, dedu-
plication and restore engine designs. The two metrics are
platform independent. Since the container I/O time dom-
inates the whole restore time, especially when low perfor-
mance storage (e.g., HDD or tape) are used to store contain-
ers, a higher speed factor (fewer container reads) represents
a higher restore performance. The high performance storage
scenario (e.g., SSD) is not considered in this paper.

6.1 Experimental Setup and Data Sets

The prototype is deployed on a Dell PowerEdge R430
server with a Seagate ST1000NM0033-9ZM173 SATA hard
disk of 1TB capacity as the storage. The server has a
2.40GHz Intel Xeon with 24 cores and 64GB of memory.
In our experiments, the container size is set to 4MB. To
fairly compare the performance of these four deduplication
engines, we try to use the same amount of memory in each
engine. That is, for Capping and FCRC, the size of each seg-
ment is fixed at 5 containers. For LBW, the total size of the
recipe cache and the rewrite candidate cache size is also 5
containers. For FAA, the look-ahead window size is 8 con-
tainers and the forward assembly area size is also 8 contain-
ers. ALACC has a 4 container size FAA, a 4 container size
chunk cache, and an 8 container size look-ahead window.

In the experiments, we use six deduplication traces from
the File System and Storage Lab (FSL) [34, 35, 36] as shown
in Table 1. The traces were collected by the File Systems and
Storage Lab (CS Department, Stony Brook University) and
its collaborators. These traces cover two types of file system
snapshots: MacOS and Homes. The former was collected on

Table 1: Characteristics of datasets

Dataset MAC1 MAC2 MAC3 FSL1 FSL2 FSL3
TS(TB)1 2.04 1.97 1.97 2.78 2.93 0.63
US(GB)2 121.8 134.5 142.3 183.7 202 71
ASR(%)3 45.99 46.50 46.80 42.49 39.96 33.60
SV(%)4 99.28 96.60 95.48 97.87 98.64 93.00
IV5 5 20 60 5 20 60
1 TS stands for the total data size of the trace.
2 US stands for the unique data size of the trace.
3 ASR stands for the average self-referenced chunk ratio in each version.
4 SV stands for the average similarity between each version.
5 IV stands for the time interval (days-based) between each version.

a Mac OS X Snow Leopard server running in an academic
computer lab which contains SMTP, MySQL, HTTP, FTP,
Wiki, etc., the latter contains snapshots of students’ home
directories from a shared network file system of the File Sys-
tem and Storage Lab. MAC1, MAC2, and MAC3 are three
different backup traces from MacOS. FSL1, FSL2, and FSL3
are from FSL /home directory snapshots from 2014 to 2015.

Each trace has 10 full backup snapshots and we choose
the version with the 4KB average chunk size. As shown in
SV (average similarity between versions) of Table 1, in each
trace at least 93% of the data chunks appears in the previous
versions. This indicates that most data chunks are duplicate
data chunks and they are fragmented. The time interval (IV)
between versions of each trace is also shown in Table 1. We
select different IV for each trace such that the fragmentation
and version similarity are varied in different traces. Each
trace record contains the chunk hash value (17 bytes), chunk
size, and compression ratio. The implemented deduplication
engines use the chunk size and hash value to simulate the
deduplication process without the chunking and chunk hash
generating steps. Before replaying a trace, all data in the
cache is cleared. For each experiment, we run the traces 3
times and present the average value.

6.2 Influence of LBW Size and Mean Value of Tdc

In the LBW design, different configurations of LBW size
and different mean values of CNRC threshold Tdc will influ-
ence the deduplication ratio and the speed factor. We use the
MAC2 trace as an example and design a set of experiments
to investigate these relationships. In the restore process, we
use FAA as the restore caching scheme and set the FAA size
to 8 containers. To investigate the influence of LBW size,
we fix the mean Tdc to 120 by setting the two bounds while
the size of the LBW changes from 16 to 2 containers. The
results are shown in Table 2. As the LBW size decreases,
the deduplication ratio decreases slightly. It indicates that,
when the threshold configuration is the same, if we reduce
the LBW size, less information is maintained in the window
and more data chunks are selected to be rewritten. The dedu-
plication ratio decreases even faster when the LBW size is
smaller than the FAA size, which is caused by a large num-
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Table 2: The change of the deduplication ratio (DR) and the speed factor
(SF) with different LBW size and a fixed mean Tdc (mean Tdc =120)

LBW size 16 14 12 10 8 6 4 2
DR 8.53 8.53 8.53 8.50 8.45 8.37 8.27 8.07
SF 2.80 2.84 2.87 2.92 3.01 3.14 3.16 3.18
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Figure 5: The change of deduplication ratio and speed factor
with different mean Tdc and a fixed LBW size (LBW=5)

ber of unnecessary rewrites due to a small LBW size. In
contrast, when the LBW size is close to or even smaller than
the FAA size as shown in Table 2, there is a relatively large
increase in the speed factor. Therefore, to achieve a good
tradeoff between the deduplication ratio and the speed fac-
tor, the LBW size should be compatible with the FAA size,
which is the cache-effective range in this case.

In another experiment, we fix the LBW size to 8 contain-
ers, FAA size to 8 containers, and vary Tdc from 0 to 1000.
With a higher Tdc, more old containers will be rewritten since
it is harder for each old container to have more than Tdc du-
plicate data chunks in the LBW. Therefore, as shown in Fig-
ure 5(a), the deduplication ratio decreases as Tdc increases.
Also, the speed factor increases since more data chunks are
rewritten as shown in Figure 5(b). When Tdc is zero, there
is no rewrite and the deduplication regresses to the Normal
deduplication case. On the other hand, when Tdc= 1000 (one
container stores 1000 data chunks on average), almost every
duplicate chunk is re-written. Thus, no deduplication is per-
formed (i.e., deduplication ratio is 1) and the speed factor is
4. Note that, the decreasing of the deduplication ratio as well
as the increasing of the speed factor are at a faster pace when
Tdc is less than 100. When Tdc is larger than 100, the two
curves vary linearly at a slower pace. It shows that we can
achieve a good tradeoff between deduplication ratio reduc-
tion and restore performance improvement when Tdc is set
smaller than 100 for this trace. The “knee” point can be dif-
ferent in other workloads. It is closely related to the CNRC
distribution of old containers.

6.3 Deduplication Ratio & Speed Factor Compar-
ison

In this subsection, we compare the performance of Cap-
ping with LBW in terms of deduplication ratio and speed
factor when deduplicating the last version of MAC2. We
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Figure 6: The speed factor of Capping and LBW when dif-
ferent deduplication ratios are achieved for the same trace.
The Normal scheme is a black point in the figure

choose FAA as the restore engine for Capping and LBW. In
both cases, we set the FAA size to 8 containers. For Cap-
ping, the segment size is set to 5 containers and we run with
the capping level varying from 0 to 70. For LBW, the mem-
ory for the rewrite candidate cache and the recipe cache is
also 5 containers and the LBW size is fixed to 8 containers.
We vary Tdc from 0 to 1000 by adjusting the targeted dedu-
plication ratio and the targeted number of container reads.
To fairly compare Capping and LBW, we need to compare
the speed factor of the two designs when they have the same
deduplication ratio.

The results are shown in Figure 6. We can clearly con-
clude that when the deduplication ratio is the same, the speed
factor of LBW is always higher than that of Capping. For ex-
ample, when the speed factor is 3.7, Capping has a dedupli-
cation ratio of 1.2, which indicates a very high rewrite num-
ber (close to no deduplication). With the same speed fac-
tor, LBW has a deduplication ratio of 4, which means only
25% of data chunks are stored. With the deduplication ra-
tio of 14, Capping has a speed factor of 1.27 and LBW has
a speed factor of 1.75 which is about 38% higher than that
of Capping. If no rewrite is performed (Normal deduplica-
tion process), the deduplication ratio is 15 while the speed
factor is close to 1. When the deduplication ratio increases
from 8 to 14, which indicates fewer data chunks are rewritten
and is close to the no rewrite case (Normal), the speed factor
of LBW ranges from 20% to 40% higher than that of Cap-
ping. In general, LBW can achieve a better tradeoff between
deduplication ratio reduction and speed factor improvement
especially when the deduplication ratio is high.

6.4 Restore Performance Comparison

To obtain the performance of Normal, Capping, FCRC,
and LBW as deduplication engines, we pair them with two
restore engines (FAA and ALACC). Since a small reduc-
tion of deduplication ratio (i.e., fewer data chunk rewrites)
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deduplication-restore experiments when deduplicating and
restoring the trace MAC2

is preferred in production, we configure the parameters of
Capping, FCRC, and LBW in the following experiments to
achieve the deduplication ratio reduction of 7%.

Each trace has 10 backup versions and the mean speed fac-
tors achieved by all 8 combination schemes are shown in Fig-
ure 7. If data chunk rewrite is not applied (Normal design)
in the deduplication process, even with FAA or ALACC as
the restore caching schemes, the speed factor is always lower
than 1.3. In three FSL traces, the speed factor is even lower
than 1, which means reading out a 4MB size container cannot
even restore 1MB of data. It indicates that the data chunks
are fragmented and the two caching schemes cannot effec-
tively reduce a large number of container reads. By rewriting
duplicate data chunks, the speed factor is improved. For all 6
traces, we find that with the same deduplication ratio, LBW
always achieves the highest speed factor (best restore per-
formance) when the same restore engine is used. The speed
factor of FCRC is lower than that of LBW, but higher than
that of Capping. Due to a lower average self-reference count
ratio (ASR) shown in Table 1, the duplicate data chunks of
FSL traces are more fragmented than that of MAC traces.
Thus, the overall speed factor of FSL traces is lower than
those of MAC traces. In general, when using the same re-
store caching scheme, the speed factor of LBW is up to 97%
higher than that of Normal, 41% higher than that of Capping,
and 7% higher than that of FCRC.

We also compared the speed factors of different backup

versions in trace MAC2. The evaluation results of using FAA
and ALACC as the restore caching schemes are shown in
Figure 8(a) and Figure 8(b), respectively. Among the 10 ver-
sions, the duplicate data chunks are more fragmented after
version 4. Therefore, there is a clear speed factor drop at ver-
sion 5. As shown in both figures, by using FCRC, the speed
factor is improved a lot compared with the Normal and Cap-
ping schemes. LBW further improves the speed factor when
compared with FCRC by addressing the rewrite accuracy is-
sues caused by a fixed segment partition and considering the
cache-effective range as well as container read efficiency. So
the speed factor of LBW is always the highest in all 10 ver-
sions. In general, with the same deduplication ratio, LBW
can effectively reduce the number of container reads such
that its restore performance is always the best.

7 Conclusion and Future Work

Rewriting duplicate data chunks during the deduplication
process is an important and effective way to reduce container
reads, which cannot be achieved by caching schemes during
restore. In this paper, we discuss the limitations of capping
design and propose the FCRC scheme based on capping to
improve rewrite selection accuracy. To further reduce the in-
accurate rewrite decisions caused by the fixed segment par-
tition used by capping and FCRC, we propose the sliding
look-back window based rewrite approach. By combining
the look-back mechanism and the caching effects of the re-
store process, our approach makes better tradeoffs between
the reduction of deduplication ratio and container reads. In
our experiments, the speed factor of LBW is always better
than that of capping and FCRC when the deduplication ratio
is the same. In our future work, the adaptive LBW size and
more intelligent rewrite policies will be investigated. Also,
the garbage collection of the deleted data chunks will be in-
vestigated together with the rewrite design.
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Abstract
Load balancing is critical for distributed storage to meet strict
service-level objectives (SLOs). It has been shown that a fast
cache can guarantee load balancing for a clustered storage sys-
tem. However, when the system scales out to multiple clusters,
the fast cache itself would become the bottleneck. Traditional
mechanisms like cache partition and cache replication either
result in load imbalance between cache nodes or have high
overhead for cache coherence.

We present DistCache, a new distributed caching mecha-
nism that provides provable load balancing for large-scale
storage systems. DistCache co-designs cache allocation with
cache topology and query routing. The key idea is to parti-
tion the hot objects with independent hash functions between
cache nodes in different layers, and to adaptively route queries
with the power-of-two-choices. We prove that DistCache en-
ables the cache throughput to increase linearly with the num-
ber of cache nodes, by unifying techniques from expander
graphs, network flows, and queuing theory. DistCache is a
general solution that can be applied to many storage systems.
We demonstrate the benefits of DistCache by providing the
design, implementation, and evaluation of the use case for
emerging switch-based caching.

1 Introduction
Modern planetary-scale Internet services (e.g., search, social
networking and e-commerce) are powered by large-scale stor-
age systems that span hundreds to thousands of servers across
tens to hundreds of racks [1–4]. To ensure satisfactory user
experience, the storage systems are expected to meet strict
service-level objectives (SLOs), regardless of the workload
distribution. A key challenge for scaling out is to achieve load
balancing. Because real-world workloads are usually highly-
skewed [5–8], some nodes receive more queries than others,
causing hot spots and load imbalance. The system is bottle-
necked by the overloaded nodes, resulting in low throughput
and long tail latencies.

Caching is a common mechanism to achieve load balanc-
ing [9–11]. An attractive property of caching is that caching

O(n logn) hottest objects is enough to balance n storage
nodes, regardless of the query distribution [9]. The cache
size only relates to the number of storage nodes, despite the
number of objects stored in the system. Such property leads to
recent advancements like SwitchKV [10] and NetCache [11]
for balancing clustered key-value stores.

Unfortunately, the small cache solution cannot scale out
to multiple clusters. Using one cache node per cluster only
provides intra-cluster load balancing, but not inter-cluster
load balancing. For a large-scale storage system across many
clusters, the load between clusters (where each cluster can
be treated as one “big server”) would be imbalanced. Using
another cache node, however, is not sufficient, because the
caching mechanism requires the cache to process all queries
to the O(n logn) hottest objects [9]. In other words, the cache
throughput needs to be no smaller than the aggregate through-
put of the storage nodes.

As such, it requires another caching layer with multiple
cache nodes for inter-cluster load balancing. The challenge
is on cache allocation. Naively replicating hot objects to all
cache nodes incurs high overhead for cache coherence. On
the other hand, simply partitioning hot objects between the
cache nodes would cause the load to be imbalanced between
the cache nodes. The system throughput would still be bottle-
necked by one cache node under highly-skewed workloads.
Thus, the key is to carefully partition and replicate hot objects,
in order to avoid load imbalance between the cache nodes,
and to reduce the overhead for cache coherence.

We present DistCache, a new distributed caching mecha-
nism that provides provable load balancing for large-scale
storage systems. DistCache enables a “one big cache” ab-
straction, i.e., an ensemble of fast cache nodes acts as a single
ultra-fast cache. DistCache co-designs cache allocation with
multi-layer cache topology and query routing. The key idea
is to use independent hash functions to partition hot objects
between the cache nodes in different layers, and to apply the
power-of-two-choices [12] to adaptively route queries.

Using independent hash functions for cache partitioning
ensures that if a cache node is overloaded in one layer, then
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the set of hot objects in this node would be distributed to mul-
tiple cache nodes in another layer with high probability. This
intuition is backed up by a rigorous analysis that leverages
expander graphs and network flows, i.e., we prove that there
exists a solution to split queries between different layers so
that no cache node would be overloaded in any layer. Further,
since a hot object is only replicated in each layer once, it
incurs minimal overhead for cache coherence.

Using the power-of-two-choices for query routing provides
an efficient, distributed, online solution to split the queries
between the layers. The queries are routed to the cache nodes
in a distributed way based on cache loads, without central
coordination and without knowing what is the optimal solu-
tion for query splitting upfront. We leverage queuing theory
to show it is asymptotically optimal. The major difference
between our problem and the balls-and-bins problem in the
original power-of-two-choices algorithm [12] is that our prob-
lem hashes objects into cache nodes, and queries to the same
object reuse the same hash functions to choose hash nodes,
instead of using a new random source to sample two nodes for
each query. We show that the power-of-two-choices makes
a “life-or-death” improvement in our problem, instead of a
“shaving off a log n” improvement.

DistCache is a general caching mechanism that can be
applied to many storage systems, e.g., in-memory caching
for SSD-based storage like SwitchKV [10] and switch-based
caching for in-memory storage like NetCache [11]. We pro-
vide a concrete system design to scale out NetCache to demon-
strate the power of DistCache. We design both the control
and data planes to realize DistCache for the emerging switch-
based caching. The controller is highly scalable as it is off the
critical path. It is only responsible for computing the cache
partitions and is not involved in handling queries. Each cache
switch has a local agent that manages the hot objects of its
own partition.

The data plane design exploits the capability of pro-
grammable switches, and makes innovative use of in-network
telemetry beyond traditional network monitoring to realize
application-level functionalities—disseminating the loads of
cache switches by piggybacking in packet headers, in order to
aid the power-of-two-choices. We apply a two-phase update
protocol to ensure cache coherence.

In summary, we make the following contributions.
• We design and analyze DistCache, a new distributed

caching mechanism that provides provable load balancing
for large-scale storage systems (§3).

• We apply DistCache to a use case of emerging switch-
based caching, and design a concrete system to scale out
an in-memory storage rack to multiple racks (§4).

• We implement a prototype with Barefoot Tofino switches
and commodity servers, and integrate it with Redis (§5).
Experimental results show that DistCache scales out lin-
early with the number of racks, and the cache coherence
protocol incurs minimal overhead (§6).

Cache

Storage Nodes

Example

Cache

Storage

SwitchKV[10] NetCache[11]

SSD

In-memory

In-memory

In-switch

Figure 1: Background on caching. If the cache node can
absorb all queries to the hottest O(n logn) objects, the load
on the storage nodes is guaranteed to be balanced [9].

2 Background and Motivation
2.1 Small, Fast Cache for Load Balancing
As a building block of Internet applications, it is critical for
storage systems to meet strict SLOs. Ideally, given the per-
node throughput T , a storage system with n nodes should
guarantee a total throughput of n · T . However, real-world
workloads are usually high-skewed, making it challenging to
guarantee performance [5–8]. For example, a measurement
study on the Memcached deployment shows that about 60-
90% of queries go to the hottest 10% objects [5].

Caching is a common mechanism to achieve load balanc-
ing for distributed storage, as illustrated in Figure 1. Previous
work has proven that if the cache node can absorb all queries
to the hottest O(n logn) objects, then the load on n storage
servers is guaranteed to be balanced, despite query distribu-
tion and the total number of objects [9]. However, it also
requires that the cache throughput needs to be at least n ·T
to not become the system bottleneck. Based on this theoreti-
cal foundation, SwitchKV [10] uses an in-memory cache to
balance SSD-based storage nodes, and NetCache [11] uses
a switch-based cache to balance in-memory storage nodes.
Empirically, these systems have shown that caching a few
thousand objects is enough for balancing a hundred storage
nodes, even for highly-skewed workloads like Zipfian-0.9 and
Zipfian-0.99 [10, 11].

2.2 Scaling out Distributed Storage
The requirement on the cache performance limits the system
scale. Suppose the throughput of a cache node is T̃ = c ·T .
The system can scale to at most a cluster of c storage nodes.
For example, given that the typical throughput of a switch
is 10-100 times of that of a server, NetCache [11] can only
guarantee load balancing for 10-100 storage servers. As such,
existing solutions like SwitchKV [10] and NetCache [11] are
constrained to one storage cluster, which is typically one or
two racks of servers.

For a cloud-scale distributed storage system that spans
many clusters, the load between the clusters can become im-
balanced, as shown in Figure 2(a). Naively, we can put another
cache node in front of all clusters to balance the load between
clusters. At first glance, this seems a nice solution, since we
can first use a cache node in each cluster for intra-cluster load
balancing, and then use an upper-layer cache node for inter-
cluster load balancing. However, now each cluster becomes
a “big server”, of which the throughput is already T̃ . Using
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Figure 2: Motivation. (a) A cache node only guarantees load
balancing for its own cluster, but the load between clusters
can be unbalanced. (b) Use one cache node in each cluster
for intra-cluster load balancing, and another layer of cache
nodes for inter-cluster load balancing. The challenge is on
cache allocation.

only one cache node cannot meet the cache throughput re-
quirement, which is mT̃ for m clusters. While using multiple
upper-layer cache nodes like Figure 2(b) can potentially meet
this requirement, it brings the question of how to allocate
hot objects to the upper-layer cache nodes. We examine two
traditional cache allocation mechanisms.

Cache partition. A straightforward solution is to partition
the object space between the upper-layer cache nodes. Each
cache node only caches the hot objects of its own partition.
This works well for uniform workloads, as the cache through-
put can grow linearly with the number of cache nodes. But
remember that under uniform workloads, the load on the stor-
age nodes is already balanced, obviating the need for caching
in the first place. The whole purpose of caching is to guarantee
load balancing for skewed workloads. Unfortunately, cache
partition would cause load imbalance between the upper-layer
cache nodes, because multiple hot objects can be partitioned
to the same upper-layer cache node, making one cache node
become the system bottleneck.

Cache replication. Cache replication replicates the hot ob-
jects to all the upper-layer cache nodes, and the queries can be
uniformly sent to them. As such, cache replication can ensure
that the load between the cache nodes is balanced, and the
cache throughput can grow linearly with the number of cache
nodes. However, cache replication introduces high overhead
for cache coherence. When there is a write query to a cached
object, the system needs to update both the primary copy at
the storage node and the cached copies at the cache nodes,
which often requires an expensive two-phase update protocol
for cache coherence. As compared to cache partition which
only caches a hot object in one upper-layer cache node, cache
replication needs to update all the upper-layer cache nodes
for cache coherence.

Challenge. Cache partition has low overhead for cache co-
herence, but cannot increase the cache throughput linearly
with the number of cache nodes; cache replication achieves
the opposite. Therefore, the main challenge is to carefully
partition and replicate the hot objects, in order to (i) avoid
load imbalance between upper-layer cache nodes, and to (ii)

ABC DE F

BE A CDF
C0 C1 C2

C3 C4 C5

Get(A)

One
Big

Cache

Many
Big

Servers

Cache Partition
with Independent
Hash Functions

Query Routing with
Power-of-Two-Choices

Figure 3: Key idea. (i) Use independent hash functions to
partition hot objects in different layers. (ii) Use the power-
of-two-choices to route queries, e.g., route Get(A) to either
cache node C1 or cache node C3 based on cache load.

reduce the overhead for cache coherence.

3 DistCache Caching Mechanism Design
3.1 Key Idea
We design DistCache, a new distributed caching mechanism
to address the challenge described in §2.2. As illustrated by
Figure 3, our key idea is to use independent hash functions
for cache allocation and the power-of-two-choices for query
routing, in order to balance the load between cache nodes.
Our mechanism only caches an object at most once in a layer,
incurring minimal overhead for cache coherence. We first
describe the mechanism and the intuitions, and then show
why it works in §3.2.

Cache allocation with independent hash functions. Our
mechanism partitions the object space with independent hash
functions in different layers. The lower-layer cache nodes pri-
marily guarantee intra-cluster load balancing, each of which
only caches hot objects for its own cluster, and thus each
cluster appears as one “big server”. The upper-layer cache
nodes are primarily for inter-cluster load balancing, and use a
different hash function for partitioning. The intuition is that if
one cache node in a layer is overloaded by receiving too many
queries to its cached objects, because the hash functions of
the two layers are independent, the set of hot objects would
be distributed to multiple cache nodes in another layer with
high probability. Figure 3 shows an example. While cache
node C3 in the lower layer is overloaded with three hot objects
(A, B and C), the three objects are distributed to three cache
nodes (C0, C1 and C2) in the upper layer. The upper-layer
cache nodes only need to absorb queries for objects (e.g., A
and B) that cause the imbalance between the clusters, and do
not need to process queries for objects (e.g., D and F) that
already spread out in the lower-layer cache nodes.

Query routing with the power-of-two-choices. The cache
allocation strategy only tells that there exists a way to han-
dle queries without overloading any cache nodes, but it does
not tell how the queries should be split between the layers.
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Conceivably, we could use a controller to collect global mea-
surement statistics to infer the query distribution. Then the
controller can compute an optimal solution and enforce it at
the senders. Such an approach has high system complexity,
and the responsiveness to dynamic workloads depends on the
agility of the control loop.

Our mechanism uses an efficient, distributed, online solu-
tion based on the power-of-two-choices [12] to route queries.
Specifically, the sender of a query only needs to look at the
loads of the cache nodes that cache the queried object, and
sends the query to the less-loaded node. For example, the
query Get(A) in Figure 3 is routed to either C1 or C3 based on
their loads. The key advantage of our solution is that: it is dis-
tributed, so that it does not require a centralized controller or
any coordination between senders; it is online, so that it does
not require a controller to measure the query distribution and
compute the solution, and the senders do not need to know
the solution upfront; it is efficient, so that its performance is
close to the optimal solution computed by a controller with
perfect global information (as shown in §3.2). Queries to
hit a lower-layer cache node can either pass through an arbi-
trary upper-layer node, or totally bypass the upper-layer cache
nodes, depending on the actual use case, which we describe
in §3.4.

Cache size and multi-layer hierarchical caching. Suppose
there are m clusters and each cluster has l servers. First, we
let each lower-layer cache node cache O(l log l) objects for
its own cluster for intra-cluster load balancing, so that a to-
tal of O(ml log l) objects are cached in the lower layer and
each cluster appears like one “big server”. Then for inter-
cluster load balancing, the upper-layer cache nodes only need
to cache a total of O(m logm) objects. This is different from
a single ultra-fast cache at a front-end that handles all ml
servers directly. In that case, O(ml log(ml)) objects need to
be cached based on the result in [9]. However, in DistCache,
we have an extra upper-layer (with the same total throughput
as ml servers) to “refine” the query distribution that goes to
the lower-layer, which reduces the effective cache size in the
lower layer to O(ml log l). Thus, this is not a contradiction
with the result in [9]. While these O(m logm) inter-cluster
hot objects also need to be cached in the lower layer to en-
able the power-of-two-choices, most of them are also hot
inside the clusters and thus have already been contained in
the O(ml log l) intra-cluster hot objects.

Our mechanism can be applied recursively for multi-layer
hierarchical caching. Specifically, applying the mechanism
to layer i can balance the load for a set of “big servers” in
layer i-1. Query routing uses the power-of-k-choices for k
layers. Note that using more layers actually increases the total
number of cache nodes, since each layer needs to provide a
total throughput at least equal to that of all storage nodes. The
benefit of doing so is on reducing the cache size. When the
number of clusters is no more than a few hundred, a cache
node has enough memory with two layers.

3.2 Analysis
Prior work [9] has shown that caching O(n logn) hottest ob-
jects in a single cache node can balance the load for n storage
nodes for any query distribution. In our work, we replace the
single cache node with multiple cache nodes in two layers to
support a larger scale. Therefore, based on our argument on
the cache size in §3.1, we need to prove that the two-layer
cache can absorb all queries to the hottest O(m logm) objects
under any query distribution for all m clusters. We first define
a mathematical model to formalize this problem.

System model. There are k hot objects {o0,o1, . . . ,ok−1}
with query distribution P = {p0, p1, . . . , pk−1}, where pi de-
notes the fraction of queries for object oi, and ∑

k−1
i=0 pi = 1.

The total query rate is R, and the query rate for object oi is ri =
pi ·R. There are in total 2m cache nodes that are organized to
two groups A = {a0,a1, ...,am−1} and B = {b0,b1, ...,bm−1},
which represent the upper and lower layers, respectively. The
throughput of each cache node is T̃ .

The objects are mapped to the cache nodes with two inde-
pendent hash functions h0(x) and h1(x). Object oi is cached
in a j0 in group A and b j1 in group B, where j0 = h0(i) and
j1 = h1(i). A query to oi can be served by either a j0 or b j1 .

Goal. Our goal is to evaluate the total query rate R the cache
nodes can support, in terms of m and T̃ , regardless of query
distribution P, as well as the relationship between k and m.
Ideally, we would like R ≈ αmT̃ where α is a small con-
stant (e.g., 1), so that the operator can easily provision the
cache nodes to meet the cache throughput requirement (i.e.,
no smaller than the total throughput of storage nodes).

If we can set k to be O(m logm), it means that the cache
nodes can absorb all queries to the hottest O(m logm) objects,
despite query distribution. Combining this result with the
cache size argument in §3.1, we can prove that the distributed
caching mechanism can provide performance guarantees for
large-scale storage systems across multiple clusters.

A perfect matching problem in a bipartite graph. The key
observation of our analysis is that the problem can be con-
verted to finding a perfect matching in a bipartite graph. In-
tuitively, if a perfect matching exists, the requests to k hot
objects can be completely absorbed from the two layers
of cache nodes. Specifically, we construct a bipartite graph
G = (U,V,E), where U is the set of vertices on the left, V
is the set of vertices on the right, and E is the set of edges.
Let U represent the set of objects, i.e., U = {o0,o1, ...,ok−1}.
Let V represent the set of cache nodes, i.e., V = A∪ B =
{a0,a1, ...,am−1,b0,b1, ...,bm−1}. Let E represent the hash
functions mapping from the objects to the cache nodes, i.e.,
E = {eoi,a j0

|h0(i) = j0}∪{eoi,b j1
|h1(i) = j1}. Given a query

distribution P and a total query rate R, we define a perfect
matching in G to represent that the workload can be supported
by the cache nodes.

Definition 1. Let Γ(v) be the set of neighbors of vertex v in G.
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Figure 4: Example for analysis. (a) A bipartite graph con-
structed for the scenario in Figure 3. (b) A perfect matching
for query routing when all objects have a query rate of 1, and
all cache nodes have a throughput of 1.

A weight assignment W = {wi, j ∈ [0, T̃ ]|ei, j ∈ E} is a perfect
matching of G if

1. ∀oi ∈U : ∑v∈Γ(oi) woi,v = pi ·R, and
2. ∀v ∈V : ∑u∈Γ(v) wu,v ≤ T̃ .
In this definition, wi, j denotes the portion of the queries to

object i served by cache node j. Condition 1 ensures that for
any object oi, its query rate pi ·R is fully served. Condition 2
ensures that for any cache node v, its load is no more than T̃ ,
i.e., no single cache node is overloaded.

When a perfect matching exists, it is feasible to serve all
the queries by the cache nodes. We use the example in Fig-
ure 4 to illustrate this. Figure 4(a) shows the bipartite graph
constructed for the scenario in Figure 3, which contains six
hot objects (A-F) and six cache nodes in two layers (C0-C5).
The edges are built based on two hash functions h0(x) and
h1(x). Figure 4(b) shows a perfect matching for the case that
all objects have the same query rate ri = 1 and all cache nodes
have the same throughput T̃ = 1. The number besides an edge
denotes the weight of an edge, i.e., the rate of the object served
by the cache node. For instance, all queries to A are served
by C1. This is a simple example to illustrate the problem. In
general, the query rates of the objects do not have to be the
same, and the queries to one object may be served by multiple
cache nodes.
Step 1: existence of a perfect matching. We first show the
existence of a perfect matching for any given total rate R and
any query distribution P. We have the following lemma to
demonstrate how big the total rate R can be in terms of T̃ , for
any P. For the full proof of Lemma 1, we refer the readers to
§A.2 in the technical report.

Lemma 1. Let α be a suitably small constant. If k ≤ mβ

for some constant β (i.e., k and m are polynomial-related)
and maxi(pi) ·R ≤ T̃/2, then for any ε > 0, there exists a

perfect matching for R = (1− ε)α ·mT̃ and any P, with high
probability for sufficiently large m.

Proof sketch of Lemma 1: We utilize the results and tech-
niques developed from expander graphs and network flows.
(i) We first show that G has the so-called expansion property
with high probability. Intuitively, the property states that the
neighborhood of any subset of nodes in U expands, i.e., for
any S⊆U , |Γ(S)| ≥ |S|. It has been observed that such prop-
erties exist in a wide range of random graphs [13]. While
our G behaves similar to random bipartite graphs, we need
the expansion property to hold for S in any size, which is
stricter than the standard definition (which assumes S is not
too large) and thus requires more delicate probabilistic tech-
niques. (ii) We then show that if a graph has the expansion
property, then it has a perfect matching. This step can be
viewed as a generalization of Hall’s theorem [14] in our set-
ting. Hall’s theorem states that a balanced bipartite graph has a
perfect (non-fractional) matching if and only if for any subset
S of the left nodes, |Γ(S)| ≥ |S|. and perfect matching can be
fractional. This step can be proved by the max-flow-min-cut
theorem, i.e., expansion implies large cut, and then implies
large matching.
Step 2: finding a perfect matching. Demonstrating the exis-
tence of a perfect matching is insufficient since it just ensures
the queries can be absorbed but does not give the actual weight
assignment W , i.e., how the cache nodes should serve queries
for each P to achieve R. This means that the system would
require an algorithm to compute W and an mechanism to
enforce W . As discussed in §3.1, instead of doing so, we use
the power-of-two-choices to “emulate” the perfect matching,
without the need to know what the perfect matching is. The
quality of the mechanism is backed by Lemma 2, which we
prove using queuing theory. The detailed proof can be found
in §A.3 of the technical report [15].

Lemma 2. If a perfect matching exists for G, then the power-
of-two-choices process is stationary.

Stationary means that the load on the cache nodes would
converge, and the system is “sustainable” in the sense that the
system will never “blow up” (i.e., build up queues in a cache
node and eventually drop queries) with query rate R.

Proof sketch of Lemma 2: Showing this lemma requires us
to use a powerful building block in query theory presented in
[16, 17]. Consider 2m exponential random variables with rate
T̃i > 0. Each non-empty set of cache nodes S⊆ [2m], has an
associated Poisson arrival process with rate λS ≥ 0 that joins
the shortest queue in S with ties broken randomly. For each
non-empty subset Q⊆ [2m], define the traffic intensity on Q
as

ρQ =
∑S⊆Q λS

µQ
,

where µQ =∑i∈Q T̃i. Note that the total rate at which objects
served by Q can be greater than the numerator of (3.2) since
other requests may be allowed to be served by some or all of
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the cache nodes in Q. Let ρmax = maxQ⊆[2m]{ρQ}. Given the
result in [16, 17], if we can show ρmax < 1, then the Markov
process is positive recurrent and has a stationary distribution.
In fact, our cache querying can be described as an arrival
process (§A.3 of [15]). Finally, we show that ρmax is less than
1 and thus the process is stationary.
Step 3: main theorem. Based on Lemma 1 and Lemma 2, we
can prove that our distributed caching mechanism is able to
provide a performance guarantee, despite query distribution.

Theorem 1. Let α be a suitable constant. If k ≤ mβ for
some constant β (i.e., k and m are polynomial-related) and
maxi(pi) ·R≤ T̃/2, then for any ε > 0, the system is station-
ary for R = (1− ε)α ·mT̃ and any P, with high probability
for sufficiently large m.

Interpretation of the main theorem: As long as the query
rate of a single hot object oi is no larger than T̃/2 (e.g., half
of the entire throughput in a cluster rack), DistCache can
support a query rate of ≈ mT̃ for any query distributions to
the k hot objects (where k can be fairly large in terms of m) by
using the power-of-two-choices protocol to route the queries
to the cached objects. The key takeaways are presented in the
following section.

3.3 Remarks
Our problem isn’t a balls-in-bins problem using the original
power-of-two-choices. The major difference is that our prob-
lem hashes objects into cache nodes, and queries to the same
object by reusing the same hash functions, instead of using a
new random source to sample two nodes for each query. In
fact, without using the power-of-two-choices, the system is
in non-stationary. This means that the power-of-two-choices
makes a “life-or-death” improvement in our problem, instead
of a “shaving off a log n” improvement. While we refer to the
technical report [15] for detailed discussions, we have a few
important remarks.
• Nonuniform number of cache nodes in two layers. For

simplicity we use the same number of m cache nodes per
layer in the system. However, we can generalize the anal-
ysis to accommodate the cases of different numbers of
caches nodes in two layers, as long as min(m0,m1) is suf-
ficiently large, where m0 and m1 are the number of upper-
layer and lower-layer cache nodes respectively. While it
requires m to be sufficiently large, it is not a strict require-
ment, because the load imbalance issue is only significant
when m is large.
• Nonuniform throughput of cache nodes in two groups.

Although our analysis assumes the throughput of a cache
node is T̃ , we can generalize it to accommodate the cases
of nonuniform throughput by treating a cache node with
a large throughput as multiple smaller cache nodes with a
small throughput.

• Cache size. As long as the number of objects and the num-
ber of cache nodes are polynomially-related (k ≤ mβ), the

system is able to provide the performance guarantee. It
is more relaxed than O(m logm). Therefore, by setting
k = O(m logm), the cache nodes are able to absorb all
queries to the hottest O(m logm) objects, making the load
on the m clusters balanced.

• Maximum query rate for one object. The theorem re-
quires that the maximum query rate for one object is no
bigger than half the throughput of one cache node. This
is not a severe restriction for the system, because a cache
node is orders of magnitude faster than a storage node.

• Performance guarantee. The system can guarantee a total
throughput of R = (1−ε)α ·mT , which scales linearly with
m and T . In practice, α is close to 1.

3.4 Use Cases
DistCache is a general solution that can be applied to scale
out various storage systems (e.g., key-value stores and file
systems) using different storage mediums (e.g., HDD, SDD
and DRAM). We describe two use cases.

Distributed in-memory caching. Based on the performance
gap between DRAMs and SSDs, a fast in-memory cache node
can be used balance an SSD-based storage cluster, such as
SwitchKV [10]. DistCache can scale out SwitchKV by using
another layer of in-memory cache nodes to balance multiple
SwitchKV clusters. While it is true that multiple in-memory
cache nodes can be balanced using a faster switch-based cache
node, applying DistCache obviates the need to introduce a
new component (i.e., a switch-based cache) to the system.
Since the queries are routed to the cache and storage nodes
by the network, queries to the lower-layer cache nodes can
totally bypass the upper-layer cache nodes.

Distributed switch-based caching. Many low-latency stor-
age systems for interactive web services use more expensive
in-memory designs. An in-memory storage rack can be bal-
anced by a switch-based cache like NetCache [11], which
directly caches the hot objects in the data plane of the ToR
switch. DistCache can scale out NetCache to multiple racks
by caching hot objects in a higher layer of the network topol-
ogy, e.g., the spine layer in a two-layer leaf-spine network. As
discussed in the remarks (§3.3), DistCache accommodates the
cases that the number of spine switches is smaller and each
spine switch is faster. As for query routing, while queries to
hit the leaf cache switches need to inevitably go through the
spine switches, these queries can be arbitrarily routed through
any spine switches, so that the load on the spine switches can
be balanced.

Note that while existing solutions (e.g., NetCache [11])
directly embeds caching in the switches which may raise
concerns on deployment, another option for easier deploy-
ment is to use the cache switches as stand-alone specialized
appliances that are separated from the switches in the data-
center network. DistCache can be applied to scale out these
specialized switch-based caching appliances as well.
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4 DistCache for Switch-Based Caching
To demonstrate the benefits of DistCache, we provide a con-
crete system design for the emerging switch-based caching.
A similar design can be applied to other use cases as well.

4.1 System Architecture
Emerging switch-based caching, such as NetCache [11] is lim-
ited to one storage rack. We apply DistCache to switch-based
caching to provide load balancing for cloud-scale key-value
stores that span many racks. Figure 5 shows the architecture
for a two-layer leaf-spine datacenter network.

Cache Controller. The controller computes the cache parti-
tions, and notifies the cache switches. It updates the cache
allocation under system reconfigurations, e.g., adding new
racks and cache switches, and system failures; and thus up-
dating the allocation is an infrequent task. We assume the
controller is reliable by replicating on multiple servers with a
consensus protocol such as Paxos [18]. The controller is not
involved in handling storage queries in the data plane.

Cache switches. The cache switches provide two critical
functionalities for DistCache: (1) caching hot key-value ob-
jects; (2) distributing switch load information for query rout-
ing. First, a local agent in the switch OS receives its cache
partition from the controller, and manages the hot objects for
its partition in the data plane. Second, the cache switches
implement a lightweight in-network telemetry mechanism to
distribute their load information by piggybacking in packet
headers. The functionalities for DistCache are invoked by
a reserved L4 port, so that DistCache does not affect other
network functionalities. We use existing L2/L3 network pro-
tocols to route packets, and do not modify other network
functionalities already in the switch.

ToR switches at client racks. The ToR switches at client
racks provide query routing. It uses the power-of-two-choices
to decide which cache switch to send a query to, and uses
existing L2/L3 network protocols to route the query.

Storage servers. The storage servers host the key-value store.
DistCache runs a shim layer in each storage server to integrate
the in-network cache with existing key-value store software
like Redis [19] and Memcached [20]. The shim layer also

implements a cache coherence protocol to guarantee the con-
sistency between the servers and cache switches.

Clients. DistCache provides a client library for applications to
access the key-value store. The library provides an interface
similar to existing key-value stores. It maps function calls
from applications to DistCache query packets, and gathers
DistCache reply packets to generate function returns.

4.2 Query Handling
A key advantage of DistCache is that it provides a distributed
on-path cache to serve queries at line rate. Read queries on
cached objects (i.e., cache hit) are directly replied by the
cache switches, without the need to visit storage servers;
read queries on uncached objects (i.e., cache miss) and write
queries are forwarded to storage servers, without any routing
detour. Further, while the cache is distributed, our query rout-
ing mechanism based on the power-of-two-choices ensures
that the load between the cache switches is balanced.

Query routing at client ToR switches. Clients send queries
via the client library, which simply translates function calls
to query packets. The complexity of query routing is done at
the ToR switches of the client racks. The ToR switches use
the switch on-chip memory to store the loads of the cache
switches. For each read query, they compare the loads of the
switches that contain the queried object in their partitions,
and pick the less-loaded cache switch for the query. After the
cache switch is chosen, they use the existing routing mech-
anism to send the query to the cache switch. The routing
mechanism can pick a routing path that balances the traffic in
the network, which is orthogonal to this paper. Our prototype
uses a mechanism similar to CONGA [21] and HULA [22]
to choose the least loaded path to the cache switch.

For a cache hit, the cache switch copies the value from its
on-chip memory to the packet, and returns the packet to the
client. For a cache miss, the cache switch forwards the packet
to the corresponding storage server that stores the queried
object. Then the server processes the query and replies to the
client. Figure 6 shows an example. A client in rack R3 sends a
query to read object A. Suppose A is cached in switch S1 and
S3, and is stored in a server in rack R0. The ToR switch S6
uses the power-of-two-choices to decide whether to choose
S1 or S3. Upon a cache hit, the cache switch (either S1 or S3)
directly replies to the client (Figure 6(a)). Upon a cache miss,
the query is sent to the server. But no matter whether the leaf
cache (Figure 6(b)) or the spine cache (Figure 6(c)) is chosen,
there is no routing detour for the query to reach R0 after a
cache miss.

Write queries are directly forwarded to the storage servers
that contain the objects. The servers implement a cache co-
herence protocol for data consistency as described in §4.3.

Query processing at cache switches. Cache switches use the
on-chip memory to cache objects in their own partitions. In
programmable switches such as Barefoot Tofino [23], the on-
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chip memory is organized as register arrays spanning multiple
stages in the packet processing pipeline. The packets can read
and update the register arrays at line rate. We uses the same
mechanism as NetCache [11] to implement a key-value cache
that can support variable-length values, and a heavy-hitter
(HH) detector that the switch local agent uses to decide what
top k hottest objects in its partition to cache.

In-network telemetry for cache load distribution. We use
a light-weight in-network telemetry mechanism to distribute
the cache load information for query routing. The mechanism
piggybacks the switch load (i.e., the total number of packets
in the last second) in the packet headers of reply packets,
and thus incurs minimal overhead. Specifically, when a reply
packet of a query passes a cache switch, the cache switch
adds its load to the packet header. Then when the reply packet
reaches the ToR switch of the client rack, the ToR switch
retrieves the load in the packet header to update the load stored
in its on-chip memory. To handle the case that the cache load
may become stale without enough traffic for piggybacking,
we can add a simple aging mechanism that would gradually
decrease a load to zero if the load is not updated for a long
time. Note that aging is commonly supported by modern
switch ASICs, but it is not supported by P4 yet, and thus is
not implemented in our prototype.

4.3 Cache Coherence and Cache Update

Cache coherence. Cache coherence ensures data consis-
tency between storage servers and cache switches when write
queries update the values of the objects. The challenge is
that an object may be cached in multiple cache switches, and
need to be updated atomically. Directly updating the copies
of an object in the cache switches may result in data inconsis-
tency. This is because the cache switches are updated asyn-
chronously, and during the update process, there would be a
mix of old and new values at different switches, causing read
queries to get different values from different switches.

We leverage the classic two-phase update protocol [24] to
ensure strong consistency, where the first phase invalidates

all copies and the second phase updates all copies. To apply
the protocol to our scenario, after receiving a write query, the
storage server generates a packet to invalidate the copies in
the cache switches. The packet traverses a path that includes
all the switches that cache the object. The return of the in-
validation packet indicates that all the copies are invalidated.
Otherwise, the server resends the invalidation packet after
a timeout. Figure 7(a) shows an example that the copies of
object A are invalidated by an invalidation packet via path
R0-S3-S1-S3-R0. After the first phase, the server can update
its primary copy, and send an acknowledgment to the client,
instead of waiting for the second phase, as illustrated by Fig-
ure 7(b). This optimization is safe, since all copies are invalid.
Finally, in the second phase, the server sends an update packet
to update the values in the cache switches, as illustrated by
Figure 7(c).

Cache update. The cache update is performed in a decentral-
ized way without the involvement of the controller. We use a
similar mechanism as NetCache [11]. Specifically, the local
agent in each switch uses the HH detector in the data plane
to detect hot objects in its own partition, and decides cache
insertions and evictions. Cache evictions can be directly done
by the agent; cache insertions require the agent to contact the
storage servers. Slightly different from NetCache, DistCache
uses a cleaner, more efficient mechanism to unify cache inser-
tions and cache coherence. Specifically, the agent first inserts
the new object into the cache, but marks it as invalid. Then
the agent notifies the server; the server updates the cached
object in the data plane using phase 2 of cache coherence,
and serializes this operation with other write queries. As for
comparison, in NetCache, the agent copies the value from the
server to the switch via the switch control plane (which is
slower than the data plane), and during the copying, the write
queries to the object are blocked on the server.

4.4 Failure Handling
Controller failure. The controller is replicated on multiple
servers for reliability (§4.1). Since the controller is only re-
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sponsible for cache allocation, even if all servers of the con-
troller fail, the data plane is still operational and hence pro-
cesses queries. The servers can be simply rebooted.

Link failure. A link failure is handled by existing network
protocols, and does not affect the system, as long as the net-
work is connected and the routing is updated. If the network
is partitioned after a link failure, the operator would choose
between consistency and availability, as stated by the CAP
theorem. If consistency were chosen, all writes should be
blocked; if availability were chosen, queries can still be pro-
cessed, but cache coherence cannot be guaranteed.

ToR switch failure. The servers in the rack would lose access
to the network. The switch needs to be rebooted or replaced.
If the switch is in a storage rack, the new switch starts with an
empty cache and uses the cache update process to populate
its cache. If the switch is in a client rack, the new switch
initializes the loads of all cache switches to be zero, and uses
the in-network telemetry mechanism to update them with
reply packets.

Other Switch failure. If the switch is not a cache switch,
the failure is directly handled by existing network protocols.
If the switch is a cache switch, the system loses throughput
provided by this switch. If it can be quickly restored (e.g., by
rebooting), the system simply waits for the switch to come
back online. Otherwise, the system remaps the cache partition
of the failed switch to other switches, so that the hot objects
in the failed switch can still be cached, alleviating the impact
on the system throughput. The remapping leverages consis-
tent hashing [25] and virtual nodes [26] to spread the load.
Finally, if the network is partitioned due to a switch failure,
the operator would choose consistency or availability, similar
to that of a link failure.

5 Implementation
We have implemented a prototype of DistCache to realize
distributed switch-based caching, including cache switches,
client ToR switches, a controller, storage servers and clients.

Cache switch. The data plane of the cache switches is written

in the P4 language [27], which is a domain-specific language
to program the packet forwarding pipelines of data plane de-
vices. P4 can be used to program the switches that are based
on Protocol Independent Switch Architecture (PISA). In this
architecture, we can define the packet formats and packet pro-
cessing behaviors by a series of match-action tables. These
tables are allocated to different processing stages in a forward-
ing pipeline, based on hardware resources. Our implementa-
tion is compiled to Barefoot Tofino ASIC [23] with Barefoot
P4 Studio software suite [28]. In the Barefoot Tofino switch,
we implement a key-value cache module uses 16-byte keys,
and contains 64K 16-byte slots per stage for 8 stages, provid-
ing values at the granularity of 16 bytes and up to 128 bytes
without packet recirculation or mirroring. The Heavy Hitter
detector module contains a Count-Min sketch [29], which has
4 register arrays and 64K 16-bit slots per array, and a Bloom
filter, which has 3 register arrays and 256K 1-bit slots per
array. The telemetry module uses one 32-bit register slot to
store the switch load. We reset the counters in the HH detector
and telemetry modules in every second. The local agent in the
switch OS is written in Python. It receives cache partitions
from the controller, and manages the switch ASIC via the
switch driver using a Thrift API generated by the P4 compiler.
The routing module uses standard L3 routing which forwards
packets based on destination IP address.
Client ToR switch. The data plane of client ToR switches is
also written in P4 [27] and is compiled to Barefoot Tofino
ASIC [23]. Its query routing module contains a register array
with 256 32-bit slots to store the load of cache switches. The
routing module uses standard L3 routing, and picks the least
loaded path similar to CONGA [21] and HULA [22].
Controller, storage server, and client. The controller is
written in Python. It computes cache partitions and notifies
the result to switch agents through Thrift API. The shim
layer at each storage server implements the cache coherence
protocol, and uses the hiredis library [30] to hook up with
Redis [19]. The client library provides a simple key-value
interface. We use the client library to generate queries with
different distributions and different write ratios.
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6 Evaluation
6.1 Methodology
Testbed. Our testbed consists of two 6.5Tbps Barefoot Tofino
switches and two server machines. Each server machine is
equipped with a 16 core-CPU (Intel Xeon E5-2630), 128 GB
total memory (four Samsung 32GB DDR4-2133 memory),
and an Intel XL710 40G NIC.

The goal is to apply DistCache to switch-based caching to
provide load balancing for cloud-scale in-memory key-value
stores. Because of the limited hardware resources we have,
we are unable to evaluate DistCache at full scale with tens
of switches and hundreds of servers. Nevertheless, we make
the most of our testbed to evaluate DistCache by dividing
switches and servers into multiple logical partitions and run-
ning real switch data plane and server software, as shown
in Figure 8. Specifically, a physical switch emulates several
virtual switches by using multiple queues and uses counters
to rate limit each queue. We use one Barefoot Tofino switch
to emulate the spine switches, and the other to emulate the
leaf switches. Similarly, a physical server emulates several
virtual servers by using multiple queues. We use one server
to emulate the storage servers, and the other to emulate the
clients. We would like to emphasize that the testbed runs the
real switch data plane and runs the Redis key-value store [19]
to process real key-value queries.
Performance metric. By using multiple processes and using
the pipelining feature of Redis, our Redis server can achieve
a throughput of 1 MQPS. We use Redis to demonstrate that
DistCache can integrate with production-quality open-source
software that is widely deployed in real-world systems. We al-
locate the 1 MQPS throughput to the emulated storage servers
equally with rate limiting. Since a switch is able to process
a few BQPS, the bottleneck of the testbed is on the Redis
servers. Therefore, we use rate limiting to match the through-
put of each emulated switch to the aggregated throughput of
the emulated storage servers in a rack. We normalize the sys-
tem throughput to the throughput of one emulated key-value
server as the performance metric.
Workloads. We use both uniform and skewed workloads in
the evaluation. The uniform workload generates queries to
each object with the same probability. The skewed workload
follows Zipf distribution with a skewness parameter (e.g.,
0.9, 0.95, 0.99). Such skewed workload is commonly used
to benchmark key-value stores [10, 31], and is backed by
measurements from production systems [5, 6]. The clients
use approximation techniques [10, 32] to quickly generate
queries according to a Zipf distribution. We store a total of
100 million objects in the key-value store. We use Zipf-0.99 as
the default query distribution to show that DistCache performs
well even under extreme scenarios. We vary the skewness and
the write ratio (i.e., the percentage of write queries) in the
experiments to evaluate the performance of DistCache under
different scenarios.

Emulated Storage Servers

Emulated Leaf Switches 
for Storage Racks

Emulated Leaf Switches 
for Client Racks

One Physical
Barefoot Switch

Emulated Spine Switches

One Physical
Barefoot Switch

Two Physical
Servers Emulated Client Servers

Figure 8: Evaluation setup. The testbed emulates a datacenter
with a two-layer leaf-spine network by dividing switches and
servers into multiple logical partitions.

Comparison. To demonstrate the benefits of DistCache, we
compare the following mechanisms in the experiments: Dist-
Cache, CacheReplication, CachePartition, and NoCache. As
described in §2.2, CacheReplication is to replicate the hot
objects to all the upper layer cache nodes, and CachePartition
partitions the hot objects between nodes. In NoCache, we do
not cache any objects in both layers. Note that CachePartition
performs the same as only using NetCache for each rack (i.e.,
only caching in the ToR switches).

6.2 Performance for Read-Only Workloads
We first evaluate the system performance of DistCache. By
default, we use 32 spine switches and 32 storage racks. Each
rack contains 32 servers. We populate each cache switch with
100 hot objects, so that 64 cache switches provide a cache size
of 6400 objects. We use read-only workloads in this experi-
ment, and show the impact of write queries in §6.3. We vary
workload skew, cache size and system scale, and compare the
throughputs of the four mechanisms under different scenarios.

Impact of workload skew. Figure 9(a) shows the through-
put of the four mechanisms under different workload skews.
Under the uniform workload, the four mechanisms have the
same throughput, since the load between the servers is bal-
anced and all the servers achieve their maximum through-
puts. However, when the workload is skewed, the throughput
of NoCache significantly decreases, because of load imbal-
ance. The more skewed the workload is, the lower throughput
NoCache achieves. CachePartition performs better than No-
Cache, by caching hot objects in the switches. But its through-
put is still limited because of load imbalance between cache
switches. CacheReplication provides the optimal throughput
under read-only workloads as it replicates hot objects in all
spine switches. DistCache provides comparable throughput
to CacheReplication by using the distributed caching mech-
anism. And we will show in §6.3 that DistCache performs
better than CacheReplication under writes because of low
overhead for cache coherence.
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Figure 9: System performance for read-only workloads.

Impact of cache size. Figure 9(b) shows the throughput of
the three mechanisms under different cache sizes. CacheP-
artition achieves higher throughput with more objects in the
cache. Because the skewed workload still causes load im-
balance between cache switches, the benefits of caching is
limited for CachePartition. Some spine switches quickly be-
come overloaded after caching some objects. As such, the
throughput improvement is small for CachePartition. On the
other hand, CacheReplication and DistCache gain big im-
provements by caching more objects, as they do not have the
load imbalance problem between cache switches. The curves
of CacheReplication and DistCache become flat after they
achieve the saturated throughput.
Scalability. Figure 9(c) shows how the four mechanisms scale
with the number of servers. NoCache does not scale because
of the load imbalance between servers. Its throughput stops to
improve after a few hundred servers, because the overloaded
servers become the system bottleneck under the skewed work-
load. CachePartition performs better than NoCache as it uses
the switches to absorb queries to hot objects. However, since
the load imbalance still exists between the cache switches,
the throughput of CachePartition stops to grow when there
are a significant number of racks. CacheReplication provides
the optimal solution, since replicating hot objects in all spine
switches eliminates the load imbalance problem. DistCache
provides the same performance as CacheReplication and
scales out linearly.

6.3 Cache Coherence
While read-only workloads provide a good benchmark to
show the caching benefit, real-world workloads are usually
read-intensive [5]. Write queries require the two-phase up-
date protocol to ensure cache coherence, which (i) consumes
the processing power at storage servers, and (ii) reduces the
caching benefit as the cache cannot serve queries to hot ob-
jects that are frequently being updated. CacheReplication,
while providing the optimal throughput under read-only work-
loads, suffers from write queries, since a write query to a
cached object requires the system to update all spine switches.
We use the basic setup as the previous experiment, and vary
the write ratio.

Since both the workload skew and the cache size would
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(a) Throughput vs. write ratio under Zipf-0.9 and cache size 640.

0.0 0.2 0.4 0.6 0.8 1.0
Write Ratio

0

512

1024
N

or
m

al
iz

ed
Th

ro
ug

hp
ut DistCache

CacheReplication
CachePartition
NoCache

(b) Throughput vs. write ratio under Zipf-0.99 and cache size 6400.

Figure 10: Cache coherence result.

affect the result, we show two representative scenarios. Fig-
ure 10(a) shows the scenario for Zipf-0.9 and cache size 640
(i.e., 10 objects in each cache switch). Figure 10(b) shows the
scenario for Zipf-0.99 and cache size 6400 (i.e., 100 objects
in each cache switch), which is more skewed and caches more
objects than the scenario in Figure 10(a). NoCache is not
affected by the write ratio, as it does not cache anything (and
our rate limiter for the emulated storage servers assumes same
overhead for read and write queries, which is usually the case
for small values in in-memory key-value stores [33]). The
performance of CacheReplication drops very quickly, and it
is highly affected by the workload skew and the cache size,
as higher skewness and bigger cache size mean more write
queries would invoke the two-phase update protocol. Since
DistCache only caches an object once in each layer, it has
minimal overhead for cache coherence, and its throughput re-
duces slowly with the write ratio. The throughputs of the three
caching mechanisms eventually become smaller than that of
NoCache, since the servers spend extra resources on the cache
coherence. Thus, in-network caching should be disabled for
write-intensive workloads, which is a general guideline for
many caching systems.

USENIX Association 17th USENIX Conference on File and Storage Technologies    153



0 50 100 150 200
Time (s)

0

256

512
N

or
m

al
iz

ed
Th

ro
ug

hp
ut

switch failure
failure recovery

switch restoration

Figure 11: Time series for failure handling.

Switches Match Entries Hash Bits SRAMs Action Slots

Switch.p4 804 1678 293 503
Spine 149 751 250 98
Leaf (Client) 76 209 91 32
Leaf (Server) 120 721 252 108

Table 1: Hardware resource usage of DistCache.

6.4 Failure Handling

We now evaluate how DistCache handles failures. Figure 11
shows the time serious of this experiment, where x-axis de-
notes the time and y-axis denotes the system throughput.
The system starts with 32 spine switches. We manually fail
four spine switches one by one. Since each spine switch pro-
vides 1/32 of the total throughput, after we fail four spine
switches, the system throughput drops to about 87.5% of its
original throughput. Then the controller begins a failure re-
covery process, by redistributing the partitions of the failed
spine switches to other alive spine switches. Since the maxi-
mum throughput the system can provide drops to 87.5% due
to the four failed switches, the failure recovery would have no
impact if all alive spine switches were already saturated. To
show the benefit of the failure recovery, we limit the sending
rate to half of the maximum throughput. Therefore, after the
failure recovery, the throughput can increase to the original
one. Finally, we bring the four failed switches back online.

6.5 Hardware Resources

Finally, we measure the resource usage of the switches. The
programmable switches we use allow developers to define
their own packet formats and design the packet actions by
a series of match-action tables. These tables are mapped
into different stages in a sequential order, along with ded-
icated resources (e.g., match entries, hash bits, SRAMs, and
action slots) for each stage. DistCache leverages stateful mem-
ory to maintain the cached key-value items, and minimizes
the resource usage. Table 1 shows the resource usage of the
switches with the caching functionality. We show all the three
roles, including a spine switch, a leaf switch in a client rack,
and a leaf switch in a storage rack. Compared to the baseline
Switch.p4, which is a fully functional switch, adding caching
only requires a small amount of resources, leaving plenty
room for other network functions.

7 Related Work
Distributed storage. Distributed storage systems are widely
deployed to power Internet services [1–4]. One trend is to
move storage from HDDs and SDDs to DRAMs for high
performance [19, 20, 34, 35]. Recent work has explored both
hardware solutions [36–47] and software optimizations [33,
48–52]. Most of these techniques focus on the single-node
performance and are orthogonal to DistCache, as DistCache
focuses on the entire system spanning many clusters.
Load balancing. Achieving load balancing is critical to
scale out distributed storage. Basic data replication tech-
niques [25, 53] unnecessarily waste storage capacity under
skewed workloads. Selective replication and data migration
techniques [54–56], while reducing storage overhead, increase
system complexity and performance overhead for query rout-
ing and data consistency. EC-Cache [31] leverages erasure
coding, but since it requires to split an object into multiple
chunks, it is more suitable for large objects in data-intensive
applications. Caching is an effective alternative for load bal-
ancing [9–11]. DistCache pushes the caching idea further by
introducing a distributed caching mechanism to provide load
balance for large-scale storage systems.
In-network computing. Emerging programmable network
devices enable many new in-network applications. In-
cBricks [57] uses NPUs as a key-value cache. It does not
focus on load balancing. NetPaxos [58, 59] presents a solu-
tion to implement Paxos on switches. SpecPaxos [60] and
NOPaxos [61] use switches to order messages to improve
consensus protocols. Eris [62] moves concurrency control to
switches to improve distributed transactions.

8 Conclusion
We present DistCache, a new distributed caching mechanism
for large-scale storage systems. DistCache leverages indepen-
dent hash functions for cache allocation and the power-of-
two-choices for query routing, to enable a “one big cache”
abstraction. We show that combining these two techniques
provides provable load balancing that can be applied to vari-
ous scenarios. We demonstrate the benefits of DistCache by
the design, implementation and evaluation of the use case for
emerging switch-based caching.
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Abstract
Host-managed shingled magnetic recording drives (HM-
SMR) give a capacity advantage to harness the explosive
growth of data. Applications where data is sequentially writ-
ten and randomly read, such as key-value stores based on
Log-Structured Merge Trees (LSM-trees), make the HM-
SMR an ideal solution due to its capacity, predictable per-
formance, and economical cost. However, building an LSM-
tree based KV store on HM-SMR drives presents severe
challenges in maintaining the performance and space effi-
ciency due to the redundant cleaning processes for applica-
tions and storage devices (i.e., compaction and garbage col-
lections). To eliminate the overhead of on-disk garbage col-
lections (GC) and improve compaction efficiency, this pa-
per presents GearDB, a GC-free KV store tailored for HM-
SMR drives. GearDB proposes three new techniques: a new
on-disk data layout, compaction windows, and a novel gear
compaction algorithm. We implement and evaluate GearDB
with LevelDB on a real HM-SMR drive. Our extensive ex-
periments have shown that GearDB achieves both good per-
formance and space efficiency, i.e., on average 1.71× faster
than LevelDB in random write with a space efficiency of
89.9%.

1 Introduction

Shingled Magnetic Recording (SMR) [12] is a core technol-
ogy driving disk areal density increases. With millions of
SMR drives shipped by drive vendors [32, 17], SMR presents
a compelling solution to the big data challenge in an era of
explosive data growth. SMR achieves higher areal densi-
ty within the same physical footprint as conventional hard
disks by overlapping tracks, like shingles on a roof. SMR
drives are divided into large multi-megabyte zones that must
be written sequentially. Reads can be processed precisely
from any uncovered portion of tracks, but random writes
risk corrupting data on overlapped tracks, imposing random
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write complexities [10, 12, 3]. The sequential write restric-
tion makes log-structured writes to shingled zones a common
practice [38, 32, 33], creating a potential garbage collection
(GC) problem. GC reclaims disk space by migrating valid
data to produce empty zones for new writes. The data migra-
tion overhead of GC severely degrades system performance.

Among the three SMR types (i.e., drive-managed, host-
managed, and host-aware), HM-SMR presents a preferred
option due to its capacity, predictable performance, and low
total cost of ownership (TCO). HM-SMR offers an ideal
choice in data center environments that demand predictable
performance and control of how data is handled [15], espe-
cially for domains where applications commonly write data
sequentially and read data randomly, such as social media,
cloud storage, online backup, life sciences as well as me-
dia and entertainment [15]. The key-value data store based
on Log-Structured Merge trees (LSM-trees) [37] inherent-
ly creates that access pattern due to its batched sequential
writes and thus becomes a desirable target application for
HM-SMR.

LSM-tree based KV stores, such as Cassandra [28],
RocksDB [9], LevelDB [11], and BigTable [5], have become
the state-of-art persistent KV stores. They achieve high write
throughput and fast range queries on hard disk drives and op-
timize for write-intensive workloads. The increasing demand
on KV stores’ capacities makes adopting HM-SMR drives
an economical choice [24]. Researchers from both academi-
a and industry have been attempting to build key-value da-
ta stores on HM-SMR drives by modifying applications to
take advantage of the high capacity and predictable perfor-
mance of HM-SMR, such as Kinetic from Seagate [41], SM-
R based key-value store from Huawei [31], SMORE form
Netapp [32], and others [47, 38, 48].

However, building an LSM-tree based KV store on
HM-SMR drives comes with a serious challenge: the
redundant cleaning processes on both LSM-trees and
HM-SMR drives harm performance. In an LSM-tree,
the compaction processes are conducted throughout the
lifetime to clean invalid data and keep data sorted in
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multiple levels. In an HM-SMR drive, the zones with a
log-structured data layout are fragmented as a result of
data being invalidated by applications (e.g., compactions
from LSM-trees). Therefore, garbage collection must be
executed to maintain sizeable free disk space for writing
new data. Existing applications on HM-SMR drives either
leave the garbage collection problem unsolved [33, 22]
or use a simple greedy strategy to migrate live data from
partially empty zones [32]. Redundant cleaning processes,
the garbage collection for storage devices in particular,
degrade system performance dramatically. To demonstrate
the impact of on-disk garbage collection, we implement a
cost-benefit and a greedy garbage collection strategy similar
to the free space management in log-structured files system
and SSDs [40, 2]. Evaluation results in Section 2.3 indicate
that garbage collection not only causes expensive overheads
on system latency but also hurts the space utilization of
HM-SMR drives. Conventional KV stores on HM-SMR
drives face a dilemma: either obtain high space efficiency
with poor performance or take good performance with poor
space utilization. The space utilization is defined as the ratio
between the on-disk valid data volume and the allocated
disk space.

To obtain both good performance and high space efficien-
cy in building an LSM-tree based KV store on HM-SMR
drives, we propose GearDB with three novel design strate-
gies. First, we propose a new on-disk data layout, where a
zone only stores SSTables from the same level of an LSM-
tree, contrary to arbitrarily logging SSTables of multiple lev-
els to a zone as with the conventional log layout. In this way,
SSTables in a zone share the same compaction frequency,
remedying dispersed fragments on disks. The new on-disk
data layout manages SSTables to align with the underlying
SMR zones at the application level. Second, we design a
compaction window for each level of an LSM-tree, which is
composed of 1/k zones of that level. Compaction windows
help to limit compactions and the corresponding fragments
to a confined region of the disk space. Third, based on the
new data layout and compaction windows, we propose a new
compaction algorithm called Gear Compaction. Gear com-
paction proceeds in compaction windows and descends level
by level only if the newly generated data overlaps the com-
paction window of the next level. Gear compaction not only
improves the compaction efficiency but also empties com-
paction windows automatically so that SMR zones can be
reused without garbage collection. By applying these de-
sign techniques, we implement GearDB based on LevelDB,
a state-of-art LSM-tree based KV store. Evaluating GearDB
and LevelDB on a real HM-SMR drive, test results demon-
strate that GearDB is 1.71× faster in random writes com-
pared to LevelDB, and has an efficient space utilization of
89.9% in a bimodal distribution (i.e., zones are either nearly
empty or nearly full).

2 Background and Motivation

In this section, we discuss HM-SMR and LSM-trees, as well
as challenges and our motivation in building LSM-tree based
KV stores on HM-SMR drives.

2.1 Shingled Magnetic Recording (SMR)

Shingled Magnetic Recording (SMR) techniques provide a
substantial increase in disk areal density by overlapping ad-
jacent tracks. SMR drives allow fast sequential writes and
reads like any conventional HDDs, but have destructive ran-
dom writes. SMR drives are classified into three types based
on where the random write complexity is handled: in the
drive, in the host, or co-operatively by both [17]. Drive-
managed SMR (DM-SMR) implements a translation lay-
er in firmware to accommodate both sequential and ran-
dom writes. It acts as a drop-in replacement of existing
HDDs but suffers highly unpredictable and inferior perfor-
mance [1, 4]. Host-managed SMR (HM-SMR) requires host-
software modifications to reap its advantages [33]. It ac-
commodates only sequential writes and delivers predictable
performance by exposing internal drive states. Host-aware
SMR (HA-SMR) lies somewhere between HM-SMR and
DM-SMR. However, it is the most complicated and obtains
maximum benefit and predictability when it works as HM-
SMR [45]. Research has demonstrated that SMR drives can
fulfill modern storage needs without compromising perfor-
mance [38, 32, 33, 41].

Like many production HA/HM-SMR drives [42, 18, 15],
the drive used in this study is divided into 256 MB-sized
zones. Each zone accommodates strict sequential writes by
maintaining a write pointer to resume the subsequent write.
A guard region separates two adjacent zones. A zone with-
out valid data can be reused as an empty zone via resetting
the zone’s write pointer to the first block of that zone. All
the intricacies of HM-SMR are exposed to the software by
a new command set, the T10 Zone Block Commands [19].
To comply with the SMR sequential write restrictions, appli-
cations or operating systems are required to write data in a
log-structured fashion [38, 32, 33, 4, 27]. However, the log-
structured layout imposes additional overhead in the form of
garbage collection (GC). GC blocks foreground requests and
degrades system performance due to live data migration.

2.2 LSM-trees and Compaction

Log-Structured Merge trees (LSM-trees) [37] exploit the
high-sequential write bandwidth of storage devices by writ-
ing sequentially [39]. Index changes are first deferred and
buffered in memory, then cascaded to disks level by level via
merging and sorting. The Stepped-Merge technique is a vari-
ant of LSM-trees [21], which changes a single index into k
indexes at each level to reduce the cost of inserts.
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Figure 1: A compaction process in an LSM-tree based KV
store. This figure shows the LSM-tree data structure, which
is composed of a memory component and a multi-leveled disk
component. Compaction is conducted level by level to merge
SSTables from the lower to higher levels.
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Figure 2: Conventional on-disk data layout with log-
structured writes. This figure shows that the convention-
al log write causes SSTables of different levels mixed in the
zones on HM-SMR drives.

Due to their high update throughput, LSM-trees and their
variants have been widely used in KV stores [39, 8, 24, 5,
28]. LevelDB [11] is a popular key-value store based on
LSM-trees. In LevelDB, the LSM-tree batches writes in
memory first and then flushes batched data to storage as
sorted tables (i.e., SSTable) when the memory buffer is full.
SSTables on storage devices are sorted and stored in multiple
levels and merged from lower levels to higher levels. Level
sizes increase exponentially by an amplification factor (e.g.,
AF=10). The process of merging and cleaning SSTables is
called compaction, and it is conducted throughout the life-
time of an LSM-tree to clean invalid/stale KV items and keep
data sorted on each level for efficient reads [37, 43]. Figure 1
illustrates the compaction in an LSM-tree data structure (e.g.,
LevelDB). When the size limit of Li is reached, a compaction
starts merging SSTables from Li to Li+1 and proceeds in the
following steps. First, a victim SSTable in Li is picked in a
round-robin manner, along with any SSTables in Li+1 whose
key range overlaps that of the victim SSTable. Second, these
SSTables are fetched into memory, merged and resorted to
generate new SSTables. Third, the new SSTables are writ-
ten back to Li+1. Those stale SSTables, including the victim
SSTable and the overlapped SSTables, then become invalid,
leaving dispersed garbage data in the disk space.

2.3 Motivation
The log-structured write fashion required by HM-SMR
drives could lead to excessive disk fragments and therefore
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Figure 3: Cost of garbage collections. The green line shows
the ratio of valid data volumes to the test disk space; the oth-
er two lines show the ratio of time consumption of garbage
collections in every ten minutes during the random loading.

necessitates costly garbage collections to deal with them.
Specifically, in an LSM-tree based KV store on HM-SMR
drives, compaction cleans invalid KV items in LSM-trees
but leaves invalid SSTables on the disk. Especially, the ar-
bitrarily sequential writes of the conventional log result in
SSTables from multiple levels that have different compaction
frequency being mixed in the same zones, as shown in Fig-
ure 2. As compaction procedures constantly invalidate SSTa-
bles during the lifespan of LSM-trees, the fragments on HM-
SMR drives become severely dispersed, necessitating many
GCs. Due to the high write amplification of LSM-trees [29]
(i.e., more than 12×) and the huge volume of dispersed
fragments caused by compaction, passive GCs become in-
evitable. Passive GCs are triggered when the free disk space
is under a threshold (i.e., 20% [36]) and clean zone space by
migrating valid data from zones to zones.

To demonstrate the problems of garbage collections in the
LSM-tree based KV store on HM-SMR drives, we imple-
ment LevelDB [11], a state-of-art LSM-tree based KV s-
tore, on a real HM-SMR drive using log-structured writes
to zones. We implement both greedy and cost-benefit GC s-
trategies [40, 2, 32] to manage the free space on HM-SMR
drives. The greedy GC cleans the zone with the most invalid
data by migrating its valid data to other zones. Cost-benefit
GC selects a zone by considering the age and the space uti-
lization of that zone (u) according to Equation 1 [40]. We
define the age of a zone as the sum of SSTables’ level (∑n

0 Li),
based on the observation that SSTables in a higher level live
longer and have a lower compaction frequency, where n is
the number of SSTables in the zone and Li is the level of an
SSTable. The cost includes reading a zone and writing back
u valid data.

bene f it
cost

=
FreeSpaceGain×ZoneAge

cost
=

(1−u)×∑
n
0 Li

1+u
(1)

With the parameters described in Section 5, we randomly
load 20 million KV items to an HM-SMR drive using only 70
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Figure 4: Zone space utilization. Figure a shows the zone
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Figure 5: The throughput vs. different space utilization.
This figure shows that in the conventional KV store on an
HM-SMR drive, the system performance decreases with the
space utilization. It is unable to get both good performance
and space efficiency simultaneously.

GB disk space comprised of 280 shingled zones. The valid
data volume of the workload is about 54 GB, approximating
80% of the disk space, due to duplicated and deleted KV en-
tries. Through this experiment, we have made the following
observations. First, we calculate the valid data volume and
the GC time every ten minutes during the load process. As
shown in Figure 3, the time consumption of GC grows with
the valid data volume. When valid data grows to about 70%
of the disk space, more than half of the time in that ten min-
utes is spent to perform GC. GC accounts for more than 80%
of the execution time when valid data reaches 76% of the
disk space. The test results demonstrate that garbage collec-
tion takes a substantial proportion of the total execution time,
downgrading the system performance dramatically. Because
SSTables from different levels in a zone are mixed, multiple
zones show similar age in cost-benefit GC policy. The sim-
ilar zone ages make greedy and cost-benefit policies present
almost the same performance, as they both prefer reclaiming
zones with the most invalid data.

Second, we record the space utilization of each occupied
zone on the HM-SMR drive after loading 10 million KV
items. Figure 4 (a) shows the percentage of valid data in each
zone (in a sorted way), and Figure 4 (b) shows the cumula-

tive distribution function (CDF) of the zone space utilization.
Both greedy and cost-benefit have an unsatisfactory average
space efficiency of 60%. More specifically, 85% zones have
a space utilization ranging from 45% to 80%. We contend
that this space utilization distribution results in the signifi-
cant amount of time spent in doing GC, as discussed above.
The more live data in zones that is migrated, the more disk
bandwidth is needed for cleaning and not available for writ-
ing new data. A better and more friendly space utilization
would be a bimodal distribution, where most of the zones are
nearly full, a few are empty, and the cleaner can always work
with the empty zones, eliminating the overhead of GC, i.e.,
valid data migration. In this way, we can achieve both high
disk space utilization and eliminate on-disk garbage collec-
tion overheads. This forms the key objective of our GearDB
design, as discussed in the next section.

Third, by changing the threshold of GC (from 100% to
50%) on the 110 GB restricted disk capacity, we test 6 groups
of 80 GB random writes to show the performance variation-
s with disk space utilization. The disk space utilization,
or space efficiency, is defined as the ratio of the on-disk
valid data volume to the allocated disk space. As shown in
Figure 5, system performance decreases with space utiliza-
tion. Running on an HM-SMR drive, LevelDB faces a dilem-
ma where it only delivers a compromised trade-off between
performance and space utilization. Our goal in designing
GearDB is to achieve higher performance and better space
efficiency simultaneously. The red triangle mark in Figure
5 denotes the measured performance and space efficiency of
GearDB, i.e., 89.9% space efficiency and 1489 random load
IOPS.

In summary, with log-structured writes, existing KV s-
tores on HM-SMR suffer from redundant cleaning processes
in both LSM-trees (i.e., compaction) and HM-SMR drives
(i.e., garbage collection). The expensive GC degrades sys-
tem performance, decreases space utilization, and creates a
suboptimal trade-off between performance and space effi-
ciency.

3 GearDB Design

In this section we present GearDB and three key techniques
to eliminate the garbage collection and improve compaction
efficiency. GearDB is an LSM-tree based KV store that
achieves both high performance and space efficiency on an
HM-SMR drive. Figure 6 shows the overall architecture
of GearDB’s design strategies. First, we propose a new
on-disk data layout that provides application-specific data
management for HM-SMR drives, where a zone only serves
SSTables from one level to prevent data in different levels
from being mixed and causing dispersed fragments. Sec-
ond, based on the new on-disk data layout, we design a com-
paction window for each LSM-trees level. Compactions only
proceed within compaction windows, which restricts frag-
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Figure 6: The architecture of GearDB. This figure shows
the overall structure of GearDB with three design strategies.
GearDB accesses the HM-SMR drive directly via the T10
zone block command. For the data layout on an HM-SMR
drive, SSTables form the same level are located in integral
zones, and each zone only serves SSTables from the same
level. Li© represents the SSTable from Li.

ments in compaction windows. Third, we propose a novel
compaction algorithm, called gear compaction, based on the
new data layout and compaction windows. Gear compaction
divides the merged data of each compaction into three por-
tions and further compacts with the overlapped data in the
compaction window of the next level. Gear compactions au-
tomatically empty SMR zones in compaction windows by
invalidating all SSTables, so that zones can be reused with-
out the need to garbage collection. We elaborate on the three
strategies in the following subsections.

3.1 A New On-disk Data Layout
As discussed in Section 2.3, data fragments on HM-SMR
drives are widely dispersed due to log-structured writes and
compactions, which causes SSTables from different levels to
be mixed within zones (Figure 2). To alleviate this problem,
we propose a new data layout to manage HM-SMR drives in
GearDB.

The key idea of the new data layout is that each zone only
serves SSTables from one level, as shown in Figure 6. We
dynamically assign zones to different levels of an LSM-tree.
Initially, each level in use is attached to one zone. As the
data volume of a level increases, additional zones are allo-
cated to that level. Once a zone is assigned to Level Li, it
can only store sequentially written SSTables from Li until it
is released as an empty zone by GearDB. When an LSM-tree
reaches a balanced state, each level is composed of multiple
zones according to its size limit. Among the zones of each
level, only one zone accepts incoming writes, named a writ-
ing zone. Sequential writes in each zone strictly respect the
shingling constraints of HM-SMR drives.

Since SSTables in a zone belong to the same level, they
share the same compaction frequency (or the same hotness).

Writing Full 

Compaction 
window

Empty

 

 

 

Writing Full 

Compact
ion 

window
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Figure 7: Zone state transitions in GearDB. In GearDB,
multiple zones are allocated to each level according to the
data size of that level. These zones can be in three states dur-
ing their lifetime, namely writing zone, full zone, and empty
zone. Zones, including full zones and writing zones, rotate to
construct a compaction window.

This data layout results in less fragmented disk space and
offers convenience for the following design strategies, which
potentially leads to the desired bimodal distribution and thus
allows us to achieve high system performance at low cost.
Additionally, sequential read performance is improved due
to better spatial locality.

3.2 Compaction Windows
With our new data layout, each level in an LSM-tree has mul-
tiple zones corresponding to its data volume or size limit. To
further address the dispersed fragments on HM-SMR drives
based on the new data layout, we propose a compaction win-
dow for each level. A compaction window (CW) for a level is
composed of a group of zones belonging to the level, which
is used to limit compactions and fragments.

Specifically, GearDB presets a compaction window for
each level of the LSM-tree. To construct a compaction win-
dow, a certain number of zones are picked from the zones
belonging to that level in a rotating fashion. The compaction
window size (Scwi) of level Li is given by Equation 2, where
the compaction window size of each level is 1/k of the level
size limit (LLi). Hence, the compaction window size increas-
es by the same amplification factor as the size for each level.
By default, the compaction window size is 1

4 of the corre-
sponding level size. Note that the compaction window of L0
and L1 comprises the entire level since these two levels only
take one zone in our study.

Scwi =
1
k
×LLi (1≤ k ≤ AF) (2)

Compaction windows are not designed to directly improve
the system performance. However, by limiting compaction-
s within compaction windows, the corresponding fragments
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are restricted to compaction windows instead of spanning
over the entire disk space. Therefore, system performance
benefits from gear compactions. Since a zone full of invalid
data can be reused as an empty zone without data migration,
compaction windows that filled with invalid SSTables can be
released as a group of empty zones to serve future write re-
quests. When zones of a compaction window are released,
another group of zones of that level is selected to form a new
compaction window. Different zones in a level rotate to con-
stitute the compaction window, guaranteeing every SSTable
gets involved in compactions evenly.

To facilitate the management of underlying SMR zones in
GearDB, we divide zones into three states, namely writing
zone, full zone, and empty zone. Each level only maintain-
s a writing zone for sequentially appending newly arrived
SSTables. Figure 7 shows the diagram of zone state transi-
tions. 1© A writing zone becomes a full zone once it is filled.
2© 3© A writing zone or full zone can be added into a com-

paction window by rotation. 4©When all SSTables of a com-
paction window have been invalidated by gear compactions,
the zones become empty and 5© ready to serve write requests
without incurring device-level garbage collection.

3.3 Gear Compaction

Based on our new data layout and compaction windows, we
develop a new compaction algorithm in this section. Gear
compaction aims to automatically clean compaction win-
dows during compactions and thus eliminate costly and re-
dundant garbage collections.

Gear Compaction Algorithm. A gear compaction pro-
cess starts by compacting L0 and L1, called active com-
paction. Active compaction triggers subsequent passive
compactions, and compactions progress from lower levels
to higher levels. For a conventional compaction between Li
and Li+1 in LevelDB, the merge-sorted data are directly writ-
ten back to the next level (i.e., Li+1). However, for a gear
compaction between Li and Li+1, the merge-sorted data is
divided into three parts according to its key range, including:
out of Li+2’s compaction window, out of Li+2’s key range,
and within Li+2’s compaction window. These three parts of
the merged data do not stay in memory. Instead, they are
respectively 1) written to Li+1, 2) dumped to Li+2, or 3) pro-
cessed to passive compactions (i.e., compacted with over-
lapped SSTables in the CW of Li+2). The dump operation
(i.e., step 2) helps to reduce the further write amplification
of writing the data to Li+1 and dumping it to Li+2. To avoid
data being compacted to the highest level directly, Li+2 can
only join the gear compaction if Li+1 reaches its size limit
and Li+2 reaches the size of its compaction window. As a re-
sult, GearDB maintains the temporal locality of LSM-trees,
where newer data resides in lower levels.

Figure 8 illustrates the gear compaction process. Step
1, the active compaction is performed between L0 and L1,
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Sorted data in memory

Figure 8: Process of gear compaction. The active com-
paction of L0 and L1 drives passive compactions in higher
level. The resultant data of each compaction is divided into
three parts according to its key range, including out of Li’s
compaction window (Out cw Li ), in Li’s compaction window
(In cw Li), and out of Li’s key range (Out Li).

and the resultant data in memory is divided into three part-
s according to their key range, i.e., out of L2’s compaction
window, out of the next level, and within L2’s compaction
window. Step 2, the data whose key range overlaps SSTa-
bles that is out of L2’s compaction window is written back to
L1. Step 3, the data whose key range does not overlap L2’s
SSTables is dumped to L2, avoiding further compaction and
the associated write amplification. Step 4, the data whose
key range overlaps with SSTables in L2’s compaction win-
dow remains in memory for further passive compaction with
the overlapped SSTables in L2’ s compaction window. This
gear compaction process proceeds recursively in compaction
windows, level by level, until either the compaction reaches
the highest level or the regenerated data does not overlap the
compaction window of the next level. Thus, gear compaction
only proceeds within compaction windows and therefore in-
valid SSTables only appear in compaction windows.

The gear compaction process is described in Algorithm
1. Lines 7-17 illustrate the key range division (detailed later
in “sorted data division”). Active compaction starts from
L0 and L1, and passive compaction continues level by level
until the merge and sort results of Li and Li+1 do not overlap
Li+2’s compaction window (Line 19 and 24). In addition,
if the data volume written to Li+2 is less than the size of
an SSTable (e.g., 4 MB), we write it back to Li+1 together
with other data written to Li+1. In this way, the size of each
SSTable is kept at about 4 MB to ensure no small SSTable
increases the overhead of metadata management.

Sorted data division. To divide the sorted data during
gear compaction (e.g., Li and Li+1) into the above mentioned
three categories, GearDB needs to compare the key range
of the sorted data with the key ranges of SSTables in Li+2.
As in LevelDB, SSTables within a level do not overlap in
GearDB. However, key ranges of some SSTables might not
be successive. Key range gaps between SSTables complicate
the division of the sorted data, and we need to compare the
sorted datas keys with individual SSTables. Excessive com-
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ALGORITHM 1: Gear Compaction Algorithm
Input: Vi: victim SSTable in Li

1 do
2 DoGearComp← false;
3 Oi+1 ← GetOverlaps (Vi); /*Oi+1: overlapped SSTables in

Li+1’s compaction window*/

4 result← merge-sort(Vi, Oi+1);
5 iter.key←MakeInputIterator(result);
6 for iter.first to iter.end do
7 if key In CW Li+2 then
8 write to buffer; /*wait in memory for the passive

compaction*/

9 else
10 if key Out CW Li+2 then
11 write to Li+1;
12 else
13 if key Out Li+2 then
14 write to Li+2;
15 end
16 end
17 end
18 end
19 if buffer ! = Null then
20 i++;
21 Vi ←GetVictims(buffer);
22 DoGearComp← true;
23 end
24 while DoGearComp == true;

parisons can slow down the division and increase the cost
of gear compaction and metadata management. To remedy
this problem, we divide each level into large granularity key
ranges. Specifically, for SSTables in CW and out of CW re-
spectively, if the key range gap between SSTables does not
overlap with other SSTables in that level, we combine the
key ranges into a large consecutive range. As a result, the
sorted data only needs to compare with the minimum and
maximum keys of several key ranges to do the division. For
example, suppose the compaction window of Li+2 has two
SSTables with respective key ranges of a−b and c−d. We
check other SSTables in Li+2 to find if any SSTable overlap-
s the key range b− c. If not, we amend the key range of
Li+2’s compaction window as a− d to reduce the key range
comparison during division.

How compaction windows are reclaimed. As discussed
above, gear compactions only proceed within compaction
windows. Since a compaction window filled with invalid da-
ta can be simply released as empty zones, compaction win-
dows are reclaimed automatically by gear compactions. As a
result, redundant garbage collection that requires valid data
migration is avoided. To invalidate all SSTables in the CW
of Li+1, the SSTables in Li whose key ranges overlap with

Li

Li+1

A Compaction  window (CW) in L i

Li+2

 
 

Ln

A CW in Li+2

A CW in Li+1

Figure 9: Compaction windows are reclaimed in a gear
fashion. The red, green, and yellow sectors represent the
compaction windows of Li, Li+1, and Li+2. Compaction win-
dows are reclaimed by compaction like a group of gears. Re-
claim k compaction windows (CW) in Li mimics a full round
moving of a gear, which leads to one move in the driven gear,
that is cleaning one compaction window in Li+1, and so on.

Li+1’s CW must be involved in gear compactions. Once all
zones of Li rotationally join the compaction window, we get
these SSTables in Li. In this fashion, when all compaction
windows in Li are reclaimed, the compaction window of Li+1
is reclaimed. As shown in Figure 9, when gear compactions
clean k compaction windows in Li, one compaction window
in Li+1 is cleaned correspondingly; when gear compactions
clean k compaction windows in Li+1, one compaction win-
dow in Li+2 is cleaned; and so on. This process of releasing
compaction windows works like a group of gears, where a
complete rotation (i.e., k steps) in a driving gear (i.e., Li)
triggers one move in a driven gear (i.e., Li+1), which gives
our name as “gear compaction.”

In summary, GearDB maintains the balance of LSM-trees
by keeping the amplification factor of adjacent levels un-
changed, keeping SSTables sorted and un-overlapped in each
level, and rotating the compaction window at each level. The
benefits of gear compaction include: 1) compactions and
fragments are limited to the compaction window of each
level; 2) compaction windows are reclaimed automatically
during gear compactions, thereby eliminating the expensive
on-disk garbage collections since compaction windows filled
with invalid SSTables can be reused as free space; and 3)
gear compaction compacts SSTables to a higher level with
fewer reads and writes and no additional overhead.

4 Implementation

To verify the efficiency of GearDB’s design strategies, we
implement GearDB based on LevelDB 1.19 [11], a state-
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of-art LSM-tree based KV store from Google. We use the
libzbc [16] interface to access a 13 TB HM-SMR drive from
Seagate. Libzbc allows applications to implement direct ac-
cesses to HM-SMR drives via T10/T13 ZBC/ZAC command
set [20, 19], facilitating Linux application development.

As shown in Figure 6, GearDB maintains a standard in-
terface for users, including GET/PUT/DELETE. The gear
compaction is implemented on LSM-trees by modifying the
conventional compaction processes of LevelDB. At the low-
est level, we implement an HM-SMR controller to: 1) write
sequentially in zones and manage per-zone write pointers us-
ing the new interface provided by libzbc; 2) map SSTables
to dedicate zones and map zones to specific levels; and 3)
manage the compaction window of each level. The mapping
relationship is maintained by: 1) a Lbdfile structure denoting
the indirection map of an SSTable and its zone location; 2)
a zone info structure recording all SSTables of a zone; and
3) a zone info list[Li] structure containing all zones of Lev-
el Li. Ldbfiles maintain the metadata of each SSTable. The
size of the Ldbfile dominates the size of the metadata in the
HM-SMR controller, and the other two structures only link
Ldbfiles and zones with pointers (8 bytes). These data struc-
tures consume a negligible portion of memory, e.g., for an
80GB database, the overall metadata of the HM-SMR con-
troller is less than 4 MB.

To keep metadata consistent, a conventional zone is allo-
cated on HM-SMR drives to persist the metadata together
with the version changes of the database after each com-
paction. In LevelDB, a manifest file is used to record the
initial state of the database and the changes of each com-
paction. To recover from a system crash, the database starts
from the initial state and replays the version changes. GearD-
B rebuilds the database in the same way.

Other implementation details worth mentioning include:
1) for sequential write workloads that incur no compaction,
GearDB dumps zones to the higher level by revising the
zone info list[Li] to avoid data migration. 2) To accelerate
the compaction process in both GearDB and LevelDB, we
fetch victim SSTables and overlapped SSTables into mem-
ory in the unit of SSTables instead of blocks. More details
of the implementation can be found in our open source code
with the link provided in Section 7.

5 Evaluation

GearDB is designed to deliver both high performance and
space efficiency for building key-value stores on HM-SMR
drives. In this section, we conduct extensive experiments
to evaluate GearDB by focusing on answering the follow-
ing questions: 1) what are the performance advantages of
GearDB? (Section 5.1); 2) what factors contribute to these
performance benefits? (Section 5.2); and 3) What space effi-
ciency can GearDB achieve? (Section 5.3). In addition, we
discuss the results of sensitivity studies of CW size, the per-

Table 1: System configuration for experiments

Linux 64-bit Linux 4.15.0-34-generic
CPU 8 * Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Memory 32 GB
HM-SMR 13TB Seagate ST13125NM007

Random 4 KB request (IOPS): 163(R)
Sequential (MB/s): 180(R), 178(W)
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Figure 10: Load performance. GearDB shows its advan-
tage in both random load and sequential load compared to
LevelDB.

formance of GearDB vs. SMRDB [38], and the performance
of GearDB vs. LevelDB on HDDs(Section 5.4).

We compare GearDB performance against LevelDB (ver-
sion 1.19) [11] with greedy GC (Ldb-Greedy) and cost-
benefit GC (Ldb-CB) policies. Our test environment is listed
in Table 1. By default, we use 16-byte keys, 4 KB values,
and 4 MB SSTables.

5.1 Performance Evaluation
In this section, we first evaluate the read and write perfor-
mance of LevelDB and GearDB using the db bench micro-
benchmark released with LevelDB. Then, we evaluate per-
formance using YCSB macro-benchmark suite [7].

5.1.1 Load Performance

We evaluate random load performance by inserting 20 mil-
lion key-value items (i.e., 80 GB) in a uniformly distributed
random order. Since the random load benchmark includes
repetitive and deleted keys, the actual valid data volume of
the database is around 54 GB. We restrict the capacity of
our HM-SMR drive by using only the first 280 shingled
zones (i.e., 70 GB). The final valid data takes up 77.14%
of the usable disk space. The random write performance is
shown in Figure 10 (a). GearDB outperforms Ldb-Greedy
and Ldb-CB by 1.71× and 1.73× respectively. The two Lev-
elDB solutions have lower throughput because of the time-
consuming compaction and redundant GCs. Compaction in
LevelDB produces write amplification and dispersed frag-
ments on disk. Costly garbage collections clean disk space
by migrating valid data, thus slowing down the random write
performance. GearDB delivers better performance because

166    17th USENIX Conference on File and Storage Technologies USENIX Association



0

1000

2000

3000

4000

5000

6000

7000

0 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000

O
p
er
at
io
n
s/
s

Time(s)

Ldb-Greedy Ldb-CB GearDB

Figure 11: Detail of random load. This figure shows the in-
cremental performance of every 1 GB randomly loaded dur-
ing the process of loading an 80 GB database. GearDB has
higher throughput and a shorten execution time for loading
the same sized database compared to LevelDB.

fragments are limited to compaction windows, garbage col-
lections are eliminated by gear compactions, and compaction
efficiency is improved. We further investigate detailed rea-
sons for GearDB’s performance improvements in Section
5.2.

Figure 11 shows the incremental throughput by recording
the performance for every 1 GB of randomly loaded data
(i.e., 250k KV entries). We make four observations from
this figure. First, GearDB is faster than LevelDB for ran-
domly loading the same volume of data. Second, GearDB
achieves higher throughput than LevelDB, and the perfor-
mance advantage becomes more pronounced as the volume
of the database grows. Third, both LevelDB and GearD-
B’s performance decrease with time, because the overhead
of compaction and GCs (only LevelDB has GCs) increases
with the data volume. Fourth, the performance variation of
GearDB comes from the variation of the data volume in gear
compactions. On the contrary, LevelDB shows less fluctua-
tion in performance due to the relatively stable data volume
involved in each compaction.

Similarly, we evaluate the sequential load performance by
inserting 20 million KV items in sequential order. No com-
pactions or garbage collections were incurred for sequential
writes. Figure 10(b) shows that GearDB is 1.37× and 1.39×
faster than Ldb-Greedy and Ldb-CB respectively. This per-
formance gain is attributed to the more efficient dump strat-
egy of GearDB as presented in Section 4. GearDB dumps
SSTables to the next level by simply revising the metadata of
zones.

5.1.2 Read Performance

Read performance is evaluated by reading one million key-
value items from the randomly loaded database. Figure 12
shows the results. The performance of sequential reads is
much better than random reads due to the natural character-
istics of disk drives. GearDB gets its performance advantage
in both random and sequential reads because it consolidates
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Figure 12: Read performance.
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Figure 13: Throughput on Macro-benchmarks. This fig-
ure shows the throughput of three key-value stores on load
and other five workloads. In the left figure, the x-axis repre-
sents different workloads. The load workload corresponds to
constructing an 80 GB database. Workload A is composed
with 50% reads and 50% updates; Workload-B has 95%
reads and 5% updates; Workload-C includes 100% read-
s; Workload-D has 95% reads and 5% latest keys insert;
Workload-E has 95% range queries and 5% keys insert.

SSTables of the same level. Our new data layout helps re-
duce the seek time of searching and locating SSTables by
ensuring each zone stores SSTables from just one level.

5.1.3 Macro-benchmark

To evaluate performance with more realistic workloads, we
run the YCSB benchmark [7] on GearDB and LevelDB. The
YCSB benchmark is an industry standard macro-benchmark
suite delivered by Yahoo!. Figure 13 shows the results of
the macro-benchmark in load and five other representative
workloads. GearDB is 1.56× and 1.64× faster than Ldb-CB
and Ldb-Greedy on the load workload for the same reason-
s discussed in Section 5.1.1. Workloads A-E are evaluated
based on the randomly loaded database. The performance
gains of GearDB under workloads A-E are 1.44×, 1.24×,
1.22×, 1.25×, and 1.23× compared to LevelDB, which are
consistent with the results of micro-benchmarks.

5.2 Performance Gain Analysis

In this section, we investigate GearDB’s performance im-
provement when compared to LevelDB.

Operation Time Breakdown. To figure out the advan-
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Figure 14: Random load time breakdown. This figure
shows the time spent (the y-axis) on different operations
when we randomly load an 80 GB database. The numbers
next to each bar show their time consumption and the ratio to
the overall run time. For LevelDB, compaction and garbage
collections take the most significant percentage of the over-
all runtime. GearDB eliminates the garbage collections and
improves compaction efficiency.

Figure 15: Compaction analysis. This figure shows the la-
tency of every individual compaction during the 80 GB ran-
dom load.

tages and disadvantages of GearDB and LevelDB, we break
down the time of all KV store operations (i.e., log, com-
paction, garbage collection, and other write operations) for
the random load process. As shown in Figure 14, we ob-
serve that compared to Ldb-Greedy and Ldb-CB: 1) GearDB
adds no overhead to any operations; and 2) GearDB’s per-
formance advantage mainly comes from the more efficient
compaction and eliminated garbage collection. LevelDB has
a longer random load time because garbage collections take
about a quarter of the overall runtime and the compaction is
less efficient than GearDB. We record the detailed informa-
tion of garbage collections for Ldb-CB and Ldb-Greedy as
follows: 1) the overall garbage collection time is 5,638 s and
5,670 s, which account for 23.14% and 23.47% of the overall
random load time (24,360 s and 24,156 s); and 2) the migra-
tion data volume in garbage collection is 417 GB and 430
GB, which is 25.53% and 25.77% of the overall disk writes.

Compaction Efficiency. To understand the compaction
efficiency of the three key-value stores specifically, we

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90

W
ri

te
 A

m
pl

ef
ic

at
io

n 
(t

im
es

)

Random load volume (GB)

GearDB Ldb-Greedy Ldb-CB

Figure 16: Write amplification. This figure shows the write
amplification factor of three KV systems when we load dif-
ferent sizes of the database (i.e., from 1 GB to 80 GB).

record the compaction latency for every compaction dur-
ing the random loading process, which is shown in Figure
15. From this figure, we make the following three obser-
vations. First, GearDB dramatically reduces the number of
compactions (i.e., 53,311 and 53,203 less than Ldb-Greedy
and Ldb-CB respectively). Since GearDB continues gear
compaction to higher levels when key ranges overlap with
the compaction window of the adjacent level, more data are
compacted in one compaction process, reducing the number
of compactions. Second, the average compaction latency of
GearDB is higher than LevelDB because gear compaction
involves more data in each compaction. Third, the overall
compaction latency is 1.80× shorter in GearDB than Lev-
elDB with greedy or cost-benefit strategies.

Write Amplification. Write amplification (WA) is an im-
portant factor in the performance of key-value stores. We
calculate the write amplification factor by dividing the over-
all disk-write volume by the total volume of user data writ-
ten. The WA of the three systems is shown in Figure 16.
In both LevelDB and GearDB, the WA increases with the
volume of the database as the compaction data volume in-
creases. Ldb-Greedy and Ldb-CB have a similar large write
amplification because they need to migrate data in both com-
pactions and garbage collections. GearDB reduces the write
amplification since it performs no on-disk garbage collec-
tions.

5.3 Space Efficiency Evaluation
Figure 17 shows a comparison of zone usage and zone s-
pace utilization after randomly loading 20, 40, 60, and 80
GB databases. From these results, we find GearDB occu-
pies fewer zones than LevelDB after loading the same size
database. For example, GearDB saves 71 zones (i.e., 17.75
GB) when storing a 40 GB database. Moreover, GearDB
has higher zone space utilization than LevelDB, i.e., GearD-
B’s average space utilization of loading the 80 GB database
is 89.9%. We show the corresponding CDFs of zone space
utilization in Figure 17. These results show that GearDB re-
stricts fragments in a small portion of occupied zones (i.e.,
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Figure 17: Zone space utilization. Figures a-d show the zone space utilization of each occupied zone when we randomly load
20, 40, 60, and 80 GB database. Figures e-h show the corresponding CDF of the zone space utilization. The results show that
our design consistently maintains a high space efficiency.

compaction windows). GearDB achieves a bimodal zone s-
pace utilization, where most zones are nearly full, and a few
zones are nearly empty since they are in compaction win-
dows. This bimodal distribution not only improves space
utilization but also wipes out garbage collections, since an
empty zone can be reused by resetting write pointers with-
out incurring data migration. LevelDB suffers from low s-
pace utilization, especially for smaller databases, since few-
er GCs are triggered when the database is small. Once more
garbage collections are triggered, LevelDB’s space efficien-
cy improves at the cost of system performance. However,
GearDB achieves a high space utilization during its lifetime
without sacrificing system performance. The overall perfor-
mance and space efficiency gain of GearDB is denoted by
the red triangle mark in Figure 5.

5.4 Extended Evaluations

Sensitivity Study of the Compaction Window Size. We e-
valuate GearDB with 5 different compaction window sizes
by changing the k in Equation 2 (i.e., k=2, 4, 6, 8, 10).
The experimental setup is the same as used for the micro-
benchmarks. Consistently, GearDB maintains a random load
throughput ranging from 1,314 to 1,470 operations/s, and a
space utilization ranging from 86% to 91%. Since the com-
paction window size does not have a significant influence on
system performance and space efficiency, we set k = 4 as the
default CW size for GearDB.

GearDB vs. SMRDB. SMRDB [38] is an HM-SMR
friendly KV store, which enlarges the SSTable to a zone size
(e.g., 256 MB) to prevent overwriting and reduces the num-
ber of levels to two to reduce compactions. We implement
and then evaluate SMRDB using db bench. Test results show

that SMRDB is slower than GearDB by 1.97× for random
loading. SMRDB brings severe compaction latency due to
the large data volume involved in each compaction. GearD-
B has similar sequential read performance, and 1.68× faster
random read performance compared to SMRDB since the
large SSTable increases the overhead of fetching KV items
in SSTables.

GearDB on HM-SMR vs. LevelDB on HDD. To further
demonstrate the potential of GearDB, we compare GearD-
B on HM-SMR to LevelDB on a Seagate hard disk drive
(ST1000DM003). The original LevelDB uses the standard
file system interface (i.e., Ext4 in our evaluation), and we call
it Ldb-hdd. The basic performance evaluation on db bench
shows that GearDB on HM-SMR outperforms Ldb-hdd by
2.38× for randomly loading an 80 GB database. GearDB
has higher sequential write performance and similar random
read performance with Ldb-hdd. However, Ldb-hdd has the
superiority on sequential read (i.e., 7.02× faster) due to the
file system cache. Our GearDB bypasses the file system and
thus does not benefit from the cache.

6 Related Work

GearDB is an LSM-tree based key-value store tailored for
HM-SMR drives, which aims to realize both good perfor-
mance and high space utilization. We first discuss existing
works that exploit HM-SMR drives without compromising
system performance. ZEA provides HM-SMR software ab-
stractions that map zone block addresses to the logical block
addresses of HDDs [33]. SMRDB [38] is an HM-SMR
friendly KV store described and evaluated in Section 5.4.
Caveat-Scriptor [23] and SEALDB [47] allow to write any-
where on HM-SMR drives by letting the host write beware.
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Kinetic [41] provides KV Ethernet HM-SMR drives plus an
open API to support object storage. Huawei’s key-value s-
tore (KVS) [31] provides simple and redundant KV access-
es on HM-SMR drives via a core design of a log-structured
database. SMORE [32] is an object store on an array of HM-
SMR drives, which also accesses disks in a log-structured
approach. HiSMRfs [22] stores file metadata on SSDs and
stores file data on SMR drives.

Next, we discuss research to enhance and improve LSM-
trees by reducing the write amplification caused by com-
pactions. Lwc-tree [48] performs lightweight compactions
by appending data to SSTables and only merging metadata.
PebblesDB [39] mitigates writes by using guards to maintain
partially sorted levels. WiscKey [29] separates keys from
values and compacts keys only, thus reducing compaction
overhead by eliminating value migrations. VTtrees [44] use
an extra layer of indirection to avoid reprocessing sorted da-
ta, at the cost of fragmentation. TRIAD [34] uses a holistic
of three technologies on memory, disk, and log to reduce
write amplification. Blsm [43] proposes a new merge sched-
uler to synchronize merge completions, and hence obviates
upstream writes from waiting downstream merges. LSM-
trie [46] de-amortizes compaction overhead with hash-range
based compaction for better read performance. [25] and
[24, 13] optimize LSM-trees tailored for specific storage de-
vices and specific application scenarios. In contrast, GearDB
improves system performance via providing a new data lay-
out that facilitates the data fetching in compaction and elim-
inating write amplification from redundant GC.

Third, recent works have sought to optimize or manage
SSDs at the application layer [30, 14, 35]. They aim to solve
the double logging problem in both FTLs and append-only
applications via new block I/O interfaces [30] or application-
driven FTLs [14]. However, there still exists the need to
employ GC policies for reclaiming flash segments in FTLs.
By contrast, GearDB eliminates the overhead of disk space
cleaning via three design strategies.

Finally, SSD streams [6, 26] associate data with similar
update frequencies or lifetimes to the same stream and place
it into the same unit for multi-stream SSD. The data layout
of GearDB shares the initial consideration of separating data
with similar lifetimes. However, the methodology is differ-
ent entirely, e.g., [6] assigns write requests of multiple levels
to dedicated streams.

7 Conclusion

In this paper, we present GearDB, an LSM-tree based key-
value store tailored for HM-SMR drives. GearDB is de-
signed to achieve both good performance and high space
utilization with three techniques: a new data layout, com-
paction windows, and a novel gear compaction algorithm.
We implement GearDB on a real HM-SMR drive. Experi-
mental results show that GearDB improves the overall sys-

tem performance and space utilization, i.e., 1.71× faster than
LevelDB in random write with a space efficiency of 89.9%.
GearDB’s performance gains mainly come from efficien-
t gear compaction by eliminating garbage collections. The
open source GearDB is available at https://github.com/PDS-
Lab/GearDB.
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Abstract
We introduce SPEICHER, a secure storage system that

not only provides strong confidentiality and integrity prop-
erties, but also ensures data freshness to protect against
rollback/forking attacks. SPEICHER exports a Key-Value (KV)
interface backed by Log-Structured Merge Tree (LSM) for
supporting secure data storage and query operations. SPE-
ICHER enforces these security properties on an untrusted host
by leveraging shielded execution based on a hardware-assisted
trusted execution environment (TEE)—specifically, Intel
SGX. However, the design of SPEICHER extends the trust in
shielded execution beyond the secure SGX enclave memory
region to ensure that the security properties are also preserved
in the stateful (or non-volatile) setting of an untrusted storage
medium, including system crash, reboot, or migration.

More specifically, we have designed an authenticated
and confidentiality-preserving LSM data structure. We
have further hardened the LSM data structure to ensure
data freshness by designing asynchronous trusted counters.
Lastly, we designed a direct I/O library for shielded execution
based on Intel SPDK to overcome the I/O bottlenecks in
the SGX enclave. We have implemented SPEICHER as a
fully-functional storage system by extending RocksDB, and
evaluated its performance using the RocksDB benchmark.
Our experimental evaluation shows that SPEICHER incurs
reasonable overheads for providing strong security guarantees,
while keeping the trusted computing base (TCB) small.

1 Introduction
With the growth in cloud computing adoption, online data
stored in data centers is growing at an ever increasing rate [11].
Modern online services ubiquitously use persistent key-value
(KV) storage systems to store data with a high degree of reliabil-
ity and performance [39, 65]. Therefore, persistent KV stores
have become a fundamental part of the cloud infrastructure.

At the same time, the risks of security violations in
storage systems have increased significantly for the third-
party cloud computing infrastructure [66]. In an untrusted
environment, an attacker can compromise the security

properties of the stored data and query operations. In fact,
many studies show that software bugs, configuration errors,
and security vulnerabilities pose a serious threat to storage
systems [9, 12, 16, 20, 24, 35, 37].

However, securing a storage system is quite challenging be-
cause modern storage systems are quite complex [9, 49, 64, 72].
For instance, a persistent KV store based on the Log-Structured
Merge Tree (LSM) data structure [54] is composed of multiple
software layers to enable a data path to the storage persistence
layer. Thereby, the enforcement of security policies needs
to be carried out by various layers in the system stack, which
could expose the data to security vulnerabilities. Furthermore,
since the data is stored outside the control of the data owner,
the third-party storage platform provides an additional attack
vector. The clients currently have limited support to verify
whether the third-party operator, even with good intentions,
can handle the data with the stated security guarantees.

In this landscape, the advancements in trusted execution
environments (TEEs), such as Intel SGX [4] or ARM
TrustZone [7], provide an appealing approach to build
secure systems. In fact, given the importance of security
threats in the cloud, there is a recent surge in leveraging
TEEs for shielded execution of applications in the untrusted
infrastructure [8, 10, 55, 69, 75]. Shielded execution aims to
provide strong security properties using a hardware-protected
secure memory region or enclave.

While the shielded execution frameworks provide strong
security guarantees against a powerful adversary, they are
primarily designed for securing “stateless" (or volatile)
in-memory computations and data. Unfortunately, these
stateless techniques are not sufficient for building a secure
storage system, where the data is persistently stored on an
untrusted storage medium, such as an SSD or HDD. The
challenge is how to extend the trust beyond the “secure, but
stateless/volatile" enclave memory region to the “untrusted
and persistent" storage medium, while ensuring that the
security properties are preserved in the “stateful settings", i.e.,
even across the system reboot, migration, or crash.

To answer this question, we aim to build a secure storage sys-
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tem using shielded execution targeting all three important se-
curity properties for the data storage and query processing: (a)
confidentiality — unauthorized entities cannot read the data, (b)
integrity — unauthorized changes to the data can be detected,
and (c) freshness — stale state of data can be detected as such.

To achieve these security properties, more specifically, we
need to address the following three architectural limitations of
shielded execution in the context of building a secure storage
system: Firstly, the secure enclave memory region is quite lim-
ited in size, and incurs high performance overheads for memory
accesses. It implies that the storage engine cannot store the
data inside the enclave memory; thus, the in-memory data
needs to be stored in the untrusted host memory. Furthermore,
the storage engine persists the data on an untrusted storage
medium, such as SSDs. Since the TEE cannot give any security
guarantees beyond the enclave memory, we need to design
mechanisms for extending the trust to secure the data in the un-
trusted host memory and also on the persistent storage medium.

Secondly, the syscall-based I/O operations are quite
expensive in the context of shielded execution since the
thread executing the system call has to exit the enclave, and
perform a secure context switch, including TLB flushing,
security checks, etc. While existing shielded execution
frameworks [8, 55] proposed an asynchronous system call
interface [70], it is clearly not well-suited for building a
storage system that requires frequent I/O calls. To mitigate
the expensive enclave exits caused by I/O syscalls, we need to
design a direct I/O library for shielded execution to completely
eliminate the expensive context switch from the data path.

Lastly, we also aim to ensure data freshness to protect
against rollback (replay old state) or forking attacks (create
second instance). Therefore, we need a protection mechanism
based on a trusted monotonic counter [57], for example, SGX
trusted counters [3]. Unfortunately, the SGX trusted counters
are extremely slow and they wear out within a couple of days
of operation. To overcome the limitations of the SGX counters,
we need to redesign the trusted monotonic counters to suit the
requirements of modern storage systems.

To overcome these design challenges, we propose SPE-
ICHER, a secure LSM-based KV storage system. More
specifically, we make the following contributions.
• I/O library for shielded execution: We have designed

a direct I/O library for shielded execution based on Intel
SPDK. The I/O library performs the I/O operations with-
out exiting the secure enclave; thus it avoids expensive
system calls on the data path.
• Asynchronous trusted monotonic counter: We have

designed trusted counters to ensure data freshness. Our
counters leverage the lag in the sync operations in modern
KV stores to asynchronously update the counters. Thus,
they overcome the limitations of the native SGX counters.
• Secure LSM data structure: We have designed a secure

LSM data structure that resides outside of the enclave
memory while ensuring the integrity, confidentiality and

freshness of the data. Thus, our LSM data structure over-
comes the memory and I/O limitations of Intel SGX.
• Algorithms: We present the design and implementation

of all storage and query operations in persistent KV stores:
get, put, range queries, iterators, compaction, and restore.

We have built a fully-functional prototype of SPEICHER
based on RocksDB [65], and extensively evaluated it using
the RocksDB benchmark suite. Our evaluation shows that
SPEICHER incurs reasonable overheads, while providing
strong security properties against powerful adversaries.

2 Background and Threat Model
2.1 Intel SGX and Shielded Execution
Intel Software Guard Extension (SGX) is a set of x86 ISA
extensions for Trusted Execution Environment (TEE) [15].
SGX provides an abstraction of secure enclave—a hardware-
protected memory region for which the CPU guarantees the
confidentiality and integrity of the data and code residing in
the enclave memory. The enclave memory is located in the
Enclave Page Cache (EPC)—a dedicated memory region
protected by an on-chip Memory Encryption Engine (MEE).
The MEE encrypts and decrypts cache lines with writes and
reads in the EPC, respectively. Intel SGX supports a call-gate
mechanism to control entry and exit into the TEE.

Shielded execution based on Intel SGX aims to provide
strong confidentiality and integrity guarantees for applications
deployed on an untrusted computing infrastructure [8, 10, 55,
69, 75]. Our work builds on the SCONE [8] shielded execution
framework. In SCONE, the applications are statically compiled
and linked against a modified standard C library (SCONE libc).
In this model, application’s address space is confined to the
enclave memory, and interaction with the untrusted memory is
performed via the system call interface. In particular, SCONE
runtime provides an asynchronous system call mechanism [70]
in which threads outside the enclave asynchronously execute
the system calls. SCONE protects the executing application
against Iago attacks [13] through shields. Furthermore, it en-
sures memory safety for the applications running inside the
SGX enclaves [36]. Lastly, SCONE provides an integration to
Docker for seamlessly deploying containers.

2.2 Persistent Key-Value (KV) Stores
Our work focuses on persistent KV stores based on the LSM
data structure [54], such as LevelDB [39] and RocksDB [65].
In particular, we base our design on RocksDB. RocksDB
organizes the data using three constructs: MemTable, static
sorted table (SSTable), and log files.

RocksDB inserts put requests to a memory-resident
MemTable that is organized as a skip list [62]. For crash
recovery, these puts are also sequentially logged to the
write-ahead-log (WAL) file backed by persistent storage
medium with checksums. When the MemTable fills up, it
is moved to an SSTable file backed by an SSD or HDD in a
batch to ensure sequential device access (this thus can cause
scanning the skip list).
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The SSTable files are grouped into levels with increasing
size (typically 10×). The process of moving data to the next
level is called compaction, which ensures the SSTables to
be sorted by keys, including the ones being merged from the
previous level. Since SSTables are immutable, compaction
always creates new SSTables on the persistent storage medium.
Any state changes in the entire storage system, such as creation
and deletion of SSTable and WAL files, are recorded to the
Manifest, which is a transactional and persistent log.

On a get request, RocksDB first searches the MemTable
for the key, then searches the SSTables from the lowest level
in turn; at each level, it binary-searches the corresponding
SSTable. Using this primitive, it is trivial to process range
and iterator queries, where the latter only differs in the client
interface. RocksDB maintains an index table with a Bloom
filter attached to each SSTable in order to avoid searching
unnecessary SSTables.

While restarting, RocksDB establishes the latest state in
a restore operation. To this end, the Manifest and the WAL
are read and replayed.

2.3 Threat Model
In addition to the standard SGX threat model [10], we also
consider the security attacks that can be launched using an un-
trusted storage medium, e.g., persistent state stored on an SSD
or HDD. More specifically, we aim to protect against a pow-
erful adversary in the virtualized cloud computing infrastruc-
ture [10]. In this setting, the adversary can control the entire sys-
tem software stack, including the OS or hypervisor, and is able
to launch physical attacks, such as performing memory probes.

For the untrusted storage component, we also aim to
protect against rollback attacks [57], where the adversary can
arbitrarily shut down the system, and replay from a stale state.
We also aim to protect against forking attacks [40], where
the adversary can attempt to fork the storage system, e.g., by
running multiple replicas of the storage system.

Even under the extreme threat model,our goal is to guarantee
the data integrity, confidentiality, and freshness. Lastly, we also
aim to provide crash consistency for the storage system [58].

However, we do not protect against side-channel attacks,
such as exploiting cache timing and speculative execution [78],
or memory access patterns [25, 81]. Mitigating side channel
attacks in the TEEs is an active area of research [53]. Further,
we do not consider the denial of service attacks since these
attacks are trivial for a third-party operator controlling the
underlying infrastructure [10]. Lastly, we assume that the
adversary cannot physically open the processor packaging to
extract secrets or corrupt the CPU system state.

3 Design
SPEICHER is a secure persistent KV storage system designed
to operate on an untrusted host. SPEICHER provides strong
confidentiality, integrity, and freshness guarantees for the
data storage and query operations: get, put, range queries,
iterators, compaction, and restore. In this paper, we

implemented SPEICHER by extending RocksDB [65], but our
architecture can be generalized to other LSM-based KV stores.

3.1 Design Challenges
As a strawman design, we could try to secure a storage
system by running the storage engine inside the enclave
memory. However, the design of a practical and secure system
requires addressing the following four important architectural
limitations of Intel SGX.

I: Limited EPC size. The strawman design would be able
to protect the in-memory state of the MemTable using the
EPC memory. However, EPC is a limited and shared resource.
Currently, the size of EPC is 128 MiB. Approximately 94 MiB
are available to the user, the rest is reserved for the metadata.
To allow creation of enclaves with sizes beyond that of EPC,
SGX features a secure paging mechanism. The OS can evict
EPC pages to an unprotected memory using SGX instructions.
During eviction, the page is re-encrypted. Similarly, when an
evicted page is brought back, it is decrypted and its integrity
is checked. However, the EPC paging incurs high performance
overheads (2×—2000×) [8].

Therefore, we need to redesign the shielded storage engine,
where we allocate the MemTable(s) outside the enclave in the
untrusted host memory. Since the secure enclave region cannot
give any guarantees for the data stored in the host memory,
and the native MemTable is not designed for security—we
designed a new MemTable data structure to guarantee the
confidentiality, integrity and freshness properties.

II: Untrusted storage medium. The storage engine does not
exclusively store the data in the in-memory MemTable, but
also on a persistent storage medium, such as on an SSD or
HDD. In particular, the storage engine stores three types of
files on a persistent storage medium: SSTable, WAL and the
Manifest. However, Intel SGX is designed to protect only the
volatile state residing in the enclave memory. Unfortunately,
SGX does not provide any security guarantees for stateful
computations, i.e., across system reboot or crash. Further, the
trust from the TEE does not naturally extend to the untrusted
persistent storage medium.

To achieve the end-to-end security properties, we further
redesigned the LSM data structure, including the persistent
storage state in the SSTable and log files, to extend the trust
to the untrusted storage medium.

III: Expensive I/O syscall. To access data stored on an SSD
or HDD (in the SSTable, WAL or Manifest files), conventional
systems leverage the system call interface. However, the
system call execution in the SGX environment incurs high
performance overheads. This is because the thread executing
the system call has to exit the enclave, and the syscall
arguments need to be copied in and out of the enclave memory.
These enclave transitions are expensive because of security
checks and TLB flushes.

To mitigate the context switch overhead, shielded execution
frameworks, such as SCONE [8] or Eleos [55], provide an
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asynchronous system call interface [70], where a thread
outside the enclave asynchronously executes the system calls
without forcing the enclave threads to exit the enclave. While
such an asynchronous interface is useful for many applications,
it is not clearly suited for building a storage system that needs
to support frequent I/O system calls.

To support frequent I/O calls within the enclave, we
designed a new I/O mechanism based on a direct I/O library
for shielded execution leveraging storage performance
development kit (SPDK) [28].

IV: Trusted counter. In addition to guaranteeing the integrity
and confidentiality, we also aim to ensure the freshness of the
stored data to protect against rollback attacks [57]. To achieve
the freshness property, we need to protect the data stored in the
untrusted host memory (MemTable), and those on the untrusted
persistent storage medium (SSTable, WAL and Manifest files).

For the first part, i.e., to ensure the freshness of MemTable
allocated in the untrusted host memory, we can leverage
the EPC of SGX. In particular, the Memory Encryption
Engine (MEE) in SGX already protects the EPC against
rollback attack. Therefore, we use the EPC to store a freshness
signature of the MemTable, which we use at runtime to verify
the freshness of data stored as part of the MemTable in the
untrusted host memory.

However, the second part is quite tedious, i.e., to ensure
the freshness of the data stored on untrusted persistent storage
(SSTables and log files), because the rollback protected
EPC memory is stateless, or it cannot be used to verify the
freshness properties after the system reboots or crashes.
Therefore, we need a rollback protection mechanism based
on a trusted monotonic counter [57]. For example, we could
use SGX trusted counters [3]. Unfortunately, the SGX trusted
counters are extremely slow (60−250 ms) [45]. Furthermore,
the counter memory allows only a limited number of write
operations to NVRAM, and it easily becomes unusable due
to wear out within a couple of days of operation. Therefore,
the SGX counters are impractical to design a storage system.

To overcome the limitations of SGX counters, we designed
an asynchronous trusted monotonic counter that drastically
improves the throughput and mitigates wear-out by taking
advantage of the crash consistency properties of modern
storage systems.

3.2 System Components
We next detail the system components of SPEICHER. Figure 1
illustrates the high-level architecture and building blocks
of SPEICHER. The system is composed of the controller, a
direct-I/O library for shielded execution, a trusted monotonic
counter, the storage engine (RocksDB engine), and a secure
LSM data structure (MemTable, SSTable, and log files).

SPEICHER controller. The controller provides the trusted
execution environment based on Intel SGX [8]. Clients
communicate over a mutually authenticated encrypted channel
(TLS) to the controller. The TLS channel is terminated inside
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Figure 1: SPEICHER overview (shaded boxes depict the
system components)

the controller. In particular, we built the controller based
on the SCONE shielded execution framework [8], where we
leverage SCONE’s container support for secure deployment
of the SPEICHER executable on an untrusted host.

The controller provides the remote attestation service to
the clients [6, 32]. In particular, the SGX enclave generates
a signed measured of its identity, whose authenticity can be
verified by a third party. After successful attestation, the client
provides its encryption keys to the controller. The controller
uses the client certificate to perform the access control
operation. The controller also provides runtime support for
user-level multithreading and memory management inside
the enclave. The controller leverages the asynchronous system
calls interface (SCONE libc) on the control path for the system
configuration. For the data path I/O, we built a direct I/O
library, which we describe next.
Shielded direct I/O library. The I/O library allows the
storage engine to access the SSD or HDD from inside the SGX
enclave, without issuing the expensive enclave exit operations.
We achieve this by building a direct I/O library for shielded
execution based on SPDK [28].

SPDK is a high-performance user-mode storage library,
based on Data Plane Development Kit (DPDK) [2]. It elimi-
nates the need to issue system calls to the kernel for read and
write operations by having the NVMe driver in the user space.
SPDK enables zero-copy I/O by mapping DMA buffers to
the user address space. It relies on actively polling the device
instead of interrupts.

These SPDK features align with the goal of SPEICHER of
exit less I/O operations in the enclave, i.e., to allow the shielded
storage engine to interact with the SSD directly. However, we
need to adapt the design of SPDK to overcome the limitations
of the enclave memory region. In particular, our shielded I/O
library allocates huge pages and SPDK ring buffers outside
the enclave for DMA. The host system maps the device in an
allocated DMA region. Afterwards SPDK can initialize the
device. To reduce the number of enclave exits, SPDK’s device
driver runs inside the enclave. This enables efficient delivery of
requests from the storage engine to the driver, which explicitly
copies the data between the host and the enclave memory.
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Trusted counter. In order to protect the system from rollback
attacks, we need a trusted counter whose value is stored
alongside with the LSM data structure. Intel SGX provides
monotonic counters, but their update frequency is in a range of
10 updates per second, and we indeed measured approximately
250 ms to increment a counter once. This is far too slow for
modern KV stores [26].

To overcome the limitations of SGX counters, we designed
an Asynchronous Monotonic Counter (AMC) based on the
observation that many contemporary KV stores do not persist
their inserted data immediately. This allows AMC to defer the
counter increment until the data is persisted without loosing
any availability guarantees. As a result, AMC achieves 70K
updates per second in the current implementation.

AMC provides an asynchronous increment interface,
because it takes a while since the counter value is incremented
until it becomes stable, which means the counter value cannot
be rolled back without being detected. At an increment, AMC
returns three pieces of information: the current stable value,
the incremented counter value, and the expected time for the
value to be stable. Due to the expected time and the controller
having to be re-authenticated after a shutdown, the client only
has to keep the values until the stable time has elapsed, to
prevent any data loss in case of a sudden shutdown.

AMC’s flexible interface allows us to optimize update
throughput and latency by increasing the time until a trusted
counter is stable. This also allows users to adjust trade-off
between the wear out of the SGX monotonic counter and the
maximum number of unstable counter increments, which a
client might have to account for. SPEICHER generates multiple
counters by storing their state to a file, whose freshness is
guaranteed through the use of a synchronous trusted mono-
tonic counter. For instance, we can employ SGX monotonic
counters [3], ROTE [45] or Ariadne [71] to support our
asynchronous interface. Therefore, we can have a counter with
deterministic increments for WAL and the Manifest, making it
possible to argue about the freshness of each record in the files.

MemTable. As detailed in §3.1, the EPC is limited in size and
the EPC paging incurs very high overheads. Therefore, it is
not judicious to store large MemTables or multiple MemTa-
bles within the EPC. Further, since SPEICHER uses the EPC
memory region to secure the storage engine (RocksDB) and the
shielded I/O library driver, it further shrinks the available space.

Due to this memory restriction, we need to store the
MemTable in the host memory. Since the host memory is
untrusted, we need to devise a mechanism to ensure the
confidentiality, integrity, and freshness of the MemTable.

In our project, we tried three different designs for the
MemTable. Firstly, we explored a native Merkle tree that gen-
erates hashes of the leafs and stores them in each node. Thus,
we can verify the data integrity by checking the root node hash
and each hash down to the leaf storing the KV, while allowing
the MemTable to be stored outside the EPC memory. However,
the native Merkle tree suffers from slow lookups as the key has

Value
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host memory

Value

Value

Key PtrHashK PH K PH
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Figure 2: SPEICHER MemTable format

to be decrypted on each traversal. Further, it requires multiple
hash recalculations on each lookup and insertion.

Secondly, we tried a modified Merkle tree design based on
a prefix array, where a fixed size prefix is used as an index into
the array of Merkle trees. An array entry holds the root node of
a Merkle tree, which holds the actual data. This should reduce
the depth of the search tree compared to the native Merkle tree;
thus, reducing the number of necessary hash calculations and
decryptions of keys. However, while we were able to increase
the lookup speed compared to the native Merkle tree, it still
suffered from the same problem of having to decrypt a large
number of keys in a lookup, and causing a large number of
hash calculations.

Lastly, our third attempt of the MemTable design reuses the
existing skip list data structure for the MemTable in RocksDB.
Figure 2 shows SPEICHER’s MemTable format. In particular,
we partition the existing MemTable in two parts: key path and
value path. In the key path, we store the keys as part of the skip
list inside the enclave. Whereas, the encrypted values in the
MemTable are stored in the untrusted host memory as part of
the value path. This partitioning allows SPEICHER to provide
confidentially by encrypting the value, while still enabling
fast key lookups inside the enclave. To prevent attacks on the
integrity or the freshness of the values, SPEICHER stores a
cryptographic hash of the value in each skip list node together
with the host memory location of the value.

While the first two designs removed almost the entire
MemTable from the EPC, the last design still maintains the
keys and hash values inside the enclave memory. To determine
the space requirements of our MemTable in comparison to the
regular RocksDB’s MemTable, we use the following formula:

S=n∗(k+v)+
m

∑
i=0

pi∗n∗ptr

Where S represents the entire size of the skip list, n is the
number of KV pairs, k is the key size, v is the value size or
the size of the pointer plus hash value for our skip list, p is the
probability for being added into a specific layer of the skip list,
m is the maximum number of layers, and ptr is the size of a
pointer in the system.

For instance, in case of the default setting for RocksDB,
with a maximum size of 64 MiB, key size of 16 B, value size
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of 1024 B, pointer size of 8 B, p of 1/4, m of 12 and for SPE-
ICHER’s skip list a hash size of 16 B — SPEICHER’s MemTable
achieves a space reduction of approximately 95.2 %. Further,
the reduction ratio increases with increased value size.
SSTables. The SSTable files maintain the KV pairs persis-
tently. These files store KV pairs in the ascending order of
keys. This organization allows for a binary search within the
SSTable, requiring only a few reads to find a KV-pair within
the file. Since SSTable files are optimized for block devices,
such as SSDs, they group KV pairs together into blocks (the
default block size is 32 KiB).

SPEICHER adapts SSTable file format to ensure the security
properties (see Figure 3 for SPEICHER’s SSTable file format).
The confidentiality is secured by encrypting each block of
the SSTable file before it is written to the persistent storage
medium. Additionally, SPEICHER calculates a cryptographic
hash over each block. These hashes are then grouped together
in a block of hashes and appended at the end of the SSTable
file. When reading SPEICHER can check the integrity of each
block by calculating the block’s hash and comparing it to
the corresponding hash stored in the footer. To protect the
integrity of the footer an additional hash over the footer is
calculated and stored in the Manifest. Since the Manifest
is protected against rollback attacks using a trusted counter,
the footer hash value stored in the Manifest is also protected
from the rollback attacks. Thus, SPEICHER can use this hash
to guarantee the freshness of the SSTable file’s footer and
transitively the freshness of each block in the SSTable file.
Log files. RocksDB uses two different log files to keep track of
the state of the KV store: (a) WAL for persisting inserted KV
pairs until a top-level compaction; and (b) the Manifest to keep
track of live files, i.e., the set of files of which the current state
of the KV store consists. SPEICHER adapted these log files

to ensure the desired security properties, as shown in Figure 4.
Regarding WAL, every put operation appends a record to

the current WAL. This record consists of the encrypted KV
pair, and an encrypted trusted counter value for the WAL at
the moment of insertion, and a cryptographic hash over both.
Since the records are only appended to the WAL, SPEICHER
can use the trusted counter value and the hash value to verify
the KV pair, and to replay the operations in a restore event.

The Manifest is similar to the WAL; it is a write-append log
consisting of records storing changes of live files. We use the
same scheme for the Manifest file as we do for the WAL.

3.3 Algorithms
We next present the algorithms for all storage operations in
SPEICHER. The associated pseudocodes are detailed in the
appendix.

I: Put. Put is used to insert a new KV pair into the KV store, or
to update an existing one. We need to perform two operations
to insert the KV pair into the store (see Algorithm 1). First, we
need to append the KV pair to the WAL for persistence. Second,
we need to write the KV pair to the MemTable for fast lookups.

Inserting the KV pair into the WAL guarantees that the state
of the KV store can be restored after an unexpected reboot.
Therefore, the KV pair should be inserted into the WAL before
it is inserted into the MemTable. To add a KV pair to the WAL,
SPEICHER encrypts the pair together with the next WAL trusted
counter value and a cryptographic hash over both the data and
the counter. The encrypted block is then appended to the WAL
(see the log file format in Figure 4). Thereafter, the trusted
counter is incremented to the value stored in the appended
block. In addition, the client is notified when the KV pair will
be stable; thereafter, the state cannot be rolled back. In case of a
system crash between generating the data block and increasing
the trusted counter value, the data block would be invalid at re-
boot, because the trusted counter would point the block to a fu-
ture time. This operation is safe as the client can detect a reboot
when SPEICHER tries to authenticate itself. After the reboot the
client can ask the KV store about what the last added key was,or
can simplyput the KV pair again in the store as another request
with the same key supersedes any old value with the same key.

In the second step, SPEICHER writes the KV pair into
the MemTable and thereby making the put visible to later
gets. SPEICHER first encrypts the value of the KV pair and
generates a hash over the encrypted data. The encrypted value
is then copied to the untrusted host memory, while the hash
with a pointer to the value is inserted into the skip list in the
enclave, in accordance to SPEICHER’s MemTable format
(Figure 2). Since the KV pair is first inserted into the WAL,
and only if this is successful, i.e., the WAL and trusted counter
are updated, we can guarantee that only KV value pairs whose
freshness is secured by the trusted counter are returned.

II: Get. Get may involve searching multiple levels in the
LSM data structure to find the latest value. Within each level,
SPEICHER has to generate either the proof of existence, or the
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proof of non-existence of the key. This is necessary to detect
insertion or deletion of the KV pairs by an attacker.

Algorithm 2 details the get operation in SPEICHER. In
particular, SPEICHER begins with searching the MemTable.
SPEICHER searches the skip list for the node with the key.
Either the key is in the MemTable, then the hash value is
calculated over the value and compared to the hash stored
in the skip list, or the key could not be found in the skip list.
Since the skip list resides inside the protected memory region,
SPEICHER does not need to make the non-existence proof for
the MemTable because an attacker cannot access the skip list.
If the KV store finds a key in the MemTable and the existence
proof is correct, i.e., the calculated hash value is equal to the
stored hash value, the value is returned to the client. If the
proof is incorrect, the client is informed that the MemTable
is corrupted. Since the MemTable can be reconstructed from
the WAL, the client can then instruct the SPEICHER to recreate
the KV store state in the case of an incorrect proof.

When the key is not found in the MemTable, the next level
is searched. All levels below the MemTable are stored in SSTa-
bles. The SSTable files are organized in a way that no two
SSTables in the same level have an overlapping key-range. Ad-
ditionally, all the keys are sorted within an SSTable file. Due to
this, any given key can only exist in one position in one SSTable
file per level. This allows SPEICHER to construct a Merkle tree
on top of the SSTable files of a level. With the ordering inside
the SSTable, SPEICHER can correlate a block in the file with the
key. This allows SPEICHER to calculate a hash over this block,
which then can be checked against the stored hash in the footer.
The hash of the footer can then be checked against the Merkle
tree over the SSTable files in that level. It gives SPEICHER the
proof of non-/existence for the lookup, and possibly the value
belonging to the key. If the proof fails, the client is informed.
In contrast to an incorrect proof in the MemTable, SPEICHER
is not able to recover from this problem since the data is stored
on the untrusted storage medium. If SPEICHER finds the KV
pair and the proof is correct, it returns the value to the client. If
the key does not exist, that is SPEICHER could not find it in any
level and all level proofs are correct, an empty value is returned.

The freshness of data is guaranteed either by checking the
value against the securely stored hash in the EPC for the case
where the key has been found in the MemTable, or by checking
the hash values of the SSTables against a Merkle tree. Addi-
tionally, as any key can only be stored in one position within a
level, SPEICHER can also check against deletion of the key in
a higher level, which is also necessary to guarantee freshness.

III: Range queries. Range queries are used to access all KV
pairs, with a key greater than or equal to a start key and lesser
than an end key (see Algorithm 3). To find the start KV pair, we
need to do the same operation as in get requests. Furthermore,
it requires to initialize an iterator in each level, pointing to the
KV pair with a key greater or equal to the starting key. These
iterators are necessary as higher levels have the more recent
updates, due to keys being inserted into the highest level and

being compacted over time to the lower levels, and lower being
larger in size and therefore having more KV pairs. If the next
KV pair is requested the next key of all iterators is checked
and the iterators with the smallest next key are forwarded.

In case the next key is in multiple levels, the highest level KV
pair is chosen. Therefore, SPEICHER has to do a non-/existence
proof at all the levels, before it returns the chosen KV pair. If
any of these proofs fails, the client is informed about the failed
proof. Identical to the get operation, the client can then decide
to either restore the KV store or to restore a backup.

Similar to the get operation, the hash value stored in
the EPC and the Merkle tree over the SSTables are used to
guarantee the freshness of the returned values.

IV: Iterators. Iterators work identical to the range queries;
they just have a different interface (see Algorithm 4).

V: Restore. After a reboot, the KV store has to restore its last
state (see Algorithm 5). This process is performed in two steps,
first collecting all files belonging to the KV store, and then
replaying all changes to the MemTable. In the first step the
Manifest file is read. It contains all necessary information
about the other files, such as live SSTable files, live WAL
files, smallest key of each SSTable file. Each changing event
about the live file is logged into the Manifest by appending a
record describing the event. Therefore, at a restore all changes
committed in the Manifest have to be replayed. This means
that the SSTable files have to be put in the correct level. Each
record in the Manifest is integrity-checked by a hash, and the
freshness is guaranteed by the trusted counter for the Manifest.
Since the counter value is incremented in a deterministic
way, SPEICHER can use this value to check if all blocks are
present in the Manifest. After the SSTable files in the levels are
restored, and the freshness of all the SSTable files is checked
against the Manifest by comparing the hash with the hash
stored in the Manifest, the WAL is replayed.

Since each put operation is persisted in the WAL before
it is written into the MemTable, replaying the put operations
from the WAL allows SPEICHER to reconstruct the MemTable
at the moment of the shutdown. Each put in the WAL has
to be checked against the stored hash in the record, and the
stored counter value. Additionally, since the counter value of
the WAL is checked whether it equals to that of the Manifest
counter, SPEICHER can check for the missing records. Records
that have a counter value being in the future, i.e. a counter
value higher than the stored stable trusted counter value are
ignored at restore. Further, due to the deterministic increase of
the counter, SPEICHER can check against the missing records
in the log files. If in any of these steps one of the checks
fails, SPEICHER returns the information to the client, because
SPEICHER is not able to recover from such a state.

VI: Compaction. Compaction is triggered when a level holds
data beyond a pre-defined threshold in size. In compaction
(see Algorithm 6), a file from Leveln is merged with all
SSTable files in Leveln+1 covering the same key range. The
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new SSTables are added to Leveln+1, while all SSTables in the
previous level are discarded. Before keys are added to the new
SSTable file, the non-/existence proof is done on the files being
merged. This is necessary to prevent the compaction process
from skipping keys or writing old KV to the new SSTable files.

Since hash values are calculated over blocks of the SSTable
files, a new block has to be constructed in the enclave memory,
before it is written to the SSD. Also, all hash values of the
blocks have to be stored in the protected memory until the
footer is written and a hash over the footer is created. The
file names of newly created SSTables and footer hashes are
then written to the Manifest file, with the new trusted counter
value. This is similar to the put operation. After the write
operation to the Manifest completes and the trusted counter
is incremented, the old SSTable files are removed from the KV
store and the new files are added to Leveln+1. Since the hash
values of the new SSTables are secured with a trusted counter
value in the Manifest file, the SSTables cannot be rolled back
after the compaction process.
3.4 Optimizations
Timer performance. As described in §3.2, in order to prevent
every request from blocking for the trusted counter increment,
we leverage asynchronous counters written in files whose
freshness is guaranteed by synchronous counters (or SGX
counters). We use one counter for the WAL and another for the
Manifest so that SPEICHER can operate on them independently.
Although this method drastically improves throughput by
allowing SPEICHER to process many requests without waiting
for the counter to be stable, it also poses on the client the need
for holding its write requests until the counter value is stable.
This is why we designed and implemented the interface of
AMC that reports the expected time for the counter to be stable.
Because of this interface, the client does not need to frequently
issue the requests to check the current stable counter value.
SPDK performance. SPDK is designed to eliminate system
calls from the data path, but in reality its data path issues
two system calls on every I/O request: one for obtaining the
process identifier and the other for obtaining the time. They are
executed once in an I/O request that covers multiple blocks and
their costs are normally amortized. However, since the context
switch to and from the enclave is an order of magnitude more
expensive, these costs are not amortized enough. We modified
them to obtain the values from a cache within the enclave that
are updated only at the vantage points. As a result, we achieved
25× improvements over the naive port of SPDK to the enclave.

4 Implementation
Direct I/O library. Our direct I/O library for shielded execu-
tion extends Intel SPDK. Further, the memory management
routines and the uio kernel module that maps the device mem-
ory to the user space are based on Intel DPDK [2]. Although the
device DMA target is configured outside the enclave, the SSD
device driver and library code, including BlobFS in which SPE-
ICHER stores RocksDB files, entirely run within the enclave.

We use SPDK 18.01.1-pre and DPDK 18.02. In SPDK, 56
LoC are added, and 22 LoC are removed. In DPDK, 138 LoC
are added and 72 LoC are removed. These changes were made
to replace the routines that cannot be executed in the enclave.

Trusted counters. AMCs are implemented using the Intel
SGX SDK. A dedicated thread continually checks if any
monotonic counter value has changed. If a counter value has
been incremented, the thread writes the current value to the
file. The storage engine can query the stable value of any of its
counters, i.e., the last value that has been written to disk. Note
that this value cannot be rolled back since it is protected by
the synchronous SGX monotonic counter. Overall, our trusted
counter consists of 922 LoC.

SPEICHER controller. The SPEICHER controller is based on
SCONE. We leverage the Docker integration in SCONE to seam-
lessly deploy SPEICHER binary on an untrusted host. Further,
we implemented a custom memory allocator for the storage
engine. The memory allocator manages the unprotected host
memory, and exploits RocksDB’s memory allocation pattern,
which allows us to build a lightweight allocator with just 119
LoC. Further, the controller employs our direct I/O library
on the data path, and the asynchronous syscall interface of
SCONE on the control path for system configuration. The con-
troller also implements a TLS-based remote attestation for the
clients [32]. Lastly, we integrated the trusted counter as a part
of the controller, and exported the APIs to the storage engine.

Storage engine. We implemented the storage engine by
extending a version of RocksDB that leverages SPDK. In
particular, we extended the RocksDB engine to run within
the enclave, also integrated our direct I/O library. Since the
RocksDB engine with SPDK does not support data encryption
and decryption, we also ported encryption support from the
regular RocksDB engine using the Botan Library [1] (1000
LoC). In addition to encrypting data files, we extended the
encryption support to ensure the confidentiality of the WAL
and Manifest files. We further modified the storage engine to
replace the LSM data structure and log files with our secure
MemTable, SSTables, and log files. Altogether, the changes in
RocksDB account for 5029 new LoC and 319 changed LoC.

MemTables. RocksDB as default uses a skip list for
MemTable. However, it does not offer any authentication
or freshness guarantees. Therefore, we replaced MemTable
with an authenticated data structure coupled with mechanisms
to ensure the freshness property. Our MemTable uses the
Inlineskiplist of RocksDB and replaces the value part of
the KV-pair with a node storing a pointer to and the size of the
value as well as an HMAC. For the en-/decryption as well as for
the HMAC we used OpenSSLs AES128 in GCM mode. This
results in a 16 B wide HMAC. This implementation consists
of 459 LoC. As discussed previously, we also implemented
MemTable with a native Merkle tree (1186 LoC) and a Merkle
tree with a prefix array (528 LoC). However, we did not use
them eventually since their performance was quite low.
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SSTables. To preserve the integrity of the SSTable blocks,
we changed the block layer in RocksDB to calculate the
hash before it issues a write request to the underlying layer.
The hash is then cached until the file is flushed (258 LoC).
Thereafter, hashes of all blocks are appended to the file coupled
with the information about the total number of blocks, and
the hash of this footer. When a file is opened, our hash layer
loads the footer into the protected memory and calculates the
hash of the footer. It then compares the value against the hash
stored in the Manifest file. Only if these checks are passed,
it opens the corresponding SSTable file and normal operations
proceed. At reading, the hash of the block is calculated and
checked against the hashes stored in the protected memory
area, before the block data is handed to the block layer of
RocksDB. We further enabled AES128 encryption to ensure
the confidentiality of the blocks (188 LoC). The hashes used
in the SSTables are SHA-3 with 384 bit.
Log files. Log files including the WAL and the Manifest use
the same encryption layer as the SSTable files. However,
the validation layer is different, and comes before the block
layer since the operation requires knowledge of the record
size. While writing, the validation layer adds the hash and the
trusted counter value to the log files.

The validation layer uses the knowledge that log files
are only read sequentially at startup for restoring purpose.
Therefore, at the start up, the layer allows any action written in
the log file as long as the hash is correct, and the stored counter
increases as expected. At the end of the file, SPEICHER checks
if the stored counter is equal to the trusted counter. The last
record’s freshness is guaranteed through the trusted counter.
Integrity of all the records is guaranteed through the hash value
protecting also the stored counter value. This value can then
be checked against the expected counter value for that block.
Since the counter lives longer than the log files, the start record
value has to be secured too. In case of WAL, this is achieved
by storing the start counter value of the WAL in the Manifest.
The start record of the Manifest is implicitly secured, since
the record must describe the state of the entire KV store.

5 Evaluation
Our evaluation answers the following questions.
• What is the performance (IOPS and throughput) of the

direct I/O library for shielded execution? (§5.2)
• What is the impact of the EPC paging on the MemTable?

(§5.3)
• What are the performance overheads of SPEICHER in

terms of throughput and latency measurements? (§5.4)
• What is the performance of our asynchronous trusted

counter? And what stability guarantees it has to provide
to be compatible with modern KV stores? (§5.5)
• What is the I/O amplification overhead? (§5.6)

5.1 Experimental Setup
Testbed. We used a machine with Intel Xeon E3-1270 v5
(3.60 GHz, 4 cores, 8 hyper-threads) with 64 GiB RAM

Workload Pattern Read/Write ratio
A (default) Read-write 90R—10W
B Read-write 80R—20W
C Read only 100R—0W

Table 1: RocksDB benchmark workloads.

2 4 8 16
Blocksize [KiB]

0

5

10

15

20

25

IO
PS

 [1
0⁴

]

2 4 8 16
Blocksize [KiB]

0.00

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
hp

ut
 [G

B/
S]

Speicher
Native

Figure 5: Performance of direct I/O library for shielded
execution vs native SPDK.

running Linux kernel 4.9. Each core has private 32 KiB L1 and
256 KiB L2 caches, and all cores share a 8 MiB L3 cache. For
the storage device our testbed uses a Intel DC P3700 SSD. The
SSD has a capacity of 400 GB and is connected over PCIe x4.

Methodology for measurements. We compare the perfor-
mance of SPEICHER with an unmodified version of RocksDB.
The native version of RocksDB does not provide any security
guarantees, i.e., it provides no support for confidentiality,
integrity and freshness of the data and query operations.

Importantly, we stress-test the system by running a client
on the same machine as the KV store. This is the worst-case
scenario for SPEICHER since the client is not communicating
over the network. Usually, the network slows down client’s
requests, and therefore, such an experimental setup is unable
to stress-test the KV store. We avoid this scenario by running
the client as part of the same process on the same host. This
eliminates further the need for enclave enters and exits, which
would add a high overhead, making a stress-test impossible.

Compiler and software versions. We used the RocksDB ver-
sion with SPDK support (git commit3c30815). We used SPDK
version 18.01.1-pre (git commit73fee9c), which we compiled
with DPDK version 18.02 (commit 92924b2). The native ver-
sion of SPDK/ DPDK and RocksDB was compiled with gcc
6.3.0 and the default release flags. The SPEICHER version
of SPDK/DPDK and RocksDB was compiled with the same
release flags but gcc version 7.3.0 of the SCONE project.

RocksDB benchmark suite. We use the RocksDB benchmark
suite for the evaluation. In particular, we used the db_bench
benchmarking tool which is shipped with RocksDB [5] and
Fex [52]. The benchmark consists of three workloads as
shown in Table 1. Workload A is the default workload.

5.2 Performance of the Direct I/O Library
We first evaluate the performance of SPEICHER’s I/O library
for shielded execution. The I/O library is designed to have fast
access to the persistent storage for accessing the KV pair stored
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Figure 6: Impact of the EPC paging on the MemTable.

on the SSD (§3.2). We run the performance measurement 20
times for every configuration of block size for the native execu-
tion and SPEICHER. Figure 5 shows the mean throughput and
IOPS with our I/O library and those with the native RocksDB-
SPDK with a confidence interval of 95%. We use Workload
B (80%R—20%W). Since the communication between SPDK
and the device is handled completely over DMA, our direct
I/O library does not suffer from context switches. Additionally,
due to storing the buffers outside of the enclave, we also do not
require expensive EPC paging, which would drastically reduce
the performance of the I/O library. Our performance evaluation
of the direct I/O library shows that it does not suffer from any
performance deprecation compared to the native SPDK setup.

5.3 Impact of the EPC paging on MemTable
We next study the impact of EPC paging on MemTable(s).
Note that a naive solution of storing a large or many MemTa-
bles in the EPC memory would incur high performance
overheads due to the EPC paging. Therefore, we adopted a
split MemTable approach, where we store only the keys along
with metadata (hashes and pointers to value) inside the EPC,
but the values are stored in the untrusted host memory (§3.3).
To confirm the overheads of the EPC paging on accessing a
large MemTable which are incurred in our rejected design,
we measure the overheads of accessing random nodes in a
MemTable completely resident in the enclave memory.

Figure 6 shows the performance overhead of accessing
memory within the SGX enclave. The result shows that as soon
as SGX has to page out MemTable memory from the EPC,
which happens at 96 MiB, the performance drops dramatically.
This is due to the en-/decryption and integrity checks employed
by the MEE in Intel SGX. Therefore, it is important for our
system design to keep the data values in the untrusted host
memory to avoid the expensive EPC paging. Our approach
of only keeping the key path of the MemTable inside the
EPC requires a small EPC memory footprint. Therefore, our
MemTable does not incur the EPC paging overhead.

5.4 Throughput and Latency Measurements
We next present the end-to-end performance of SPEICHER
with different workloads, value sizes and thread counts. We
measured the average throughput and latency for each of our
benchmarks. Figure 7 shows the measurement results as a

ratio of slowdown to the native SPDK-based RocksDB.

Effect of varying workloads. In the first experiment, we used
different workloads listed in Table 1. The workloads were
evaluated with 5 million KV pairs each. Each key was 16 B and
value was 1024 B. The benchmarks were run single threaded.

We get a throughput of 34.2k request/second (rps) for Work-
load A down to 20.8k rps for Workload C, while RocksDB
archived 512.8k rps or 676.8k rps respectively. The results
show that SPEICHER overheads 15×—32.5× for different
workloads. The overheads in Workloads A and B are mainly
due to the operations performed in the MemTable, since SPE-
ICHER has to encrypt the value and generate a cryptographic
hash for every write to the MemTable. Furthermore, for each
read operation the data has to be decrypted and the hash has to
be recalculated and compared to one in the Skip list. However,
even with AES-NI instructions, this decryption operation
takes at least 1.3 cycles/byte for encryption, limiting the
maximal reachable performance. The overhead in Workload
C is due to reading a very high percentile of the KV pairs
from the SSTable files, which uses currently an un-optimized
code path for en-/decryption and hash calculations. We expect
performance improvement by further optimizing the code path.

Effect of varying byte sizes. In the second experiment, we
investigate the overheads with varying value sizes, since it
changes the amount of data SPEICHER has to en-/decrypt and
hash for each request. We used the default Workload A, and
changed the value size from 64 B up to 4 KiB.

SPEICHER incurs an overhead of 6.7× for small value size,
i.e. 64 B, up to an overhead of 16.9× for values of size 4 KiB.
As in the previous experiment, the overhead is mainly domi-
nated by the en-/decryption and hash calculation for the values
in the MemTable. The benchmark shows a higher overhead
for larger value sizes, since the amount of data SPEICHER has
to en-/decrypt increases with the size of the values.

Effect of varying threads. We also investigated the scaling
capabilities of SPEICHER. For that we increased the number of
threads up to 8 and compared the overhead to native RocksDB
with the default Workload A. Note that the current SGX server
machine has 4 physical cores / 8 hyperthread cores.

In the test the overhead increased from around 13.6× for
two threads to 17.5× for 8 threads. This implies SPEICHER
scales slightly worse than RocksDB. This is due to less
optimal caching for random memory access in SPEICHER’s
memory allocator. SPEICHER has to manage two different
memory regions (host and EPC) for the MemTable, which
leads to sub-optimal caching. We plan to optimize our memory
allocator and data structures to exploit the cache locality.

Latency measurements. In the benchmarks, SPEICHER has
an average latency ranging from 16 µs for single threaded and
64 B value size up to 256 µs for 8 threads and 1024 B value
size, native RocksDB had for the same benchmark a latency
of 1.6 µs or 14 µs respectively. However, RocksDB’s best
latencies were in Workload C with an average of 1.5 µs.
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Figure 7: SPEICHER performance normalized to the native RocksDB (with no security): (a) different workloads with constant
value size of 1024 and constant number of threads, (b) varying value sizes, and (c) increasing number of threads.

KV store Default time for persistence (ms) Configurable
RocksDB 0 (flushing) yes
LevelDB 0 (non-flushing) yes
Cassandra 1000 yes
HBase 10000 yes

Table 2: Default time for data persistence in KV stores.

5.5 Performance of the Trusted Counter

The synchronous trusted counter rate of SGX is limited to one
increment at every 60 ms. This would limit our approach to
only 20 Put operations per second since each Put has to be
appended to the WAL, which requires a counter increment.
However, our latency suggest that we have a lot more put
operations to deal with. Even in our worse latency case with
256 µs per request we would expect 234.4 request per 60 ms,
with a write rate of 10% this would amount to 23.4 required
counter increases every possible sequential counter increase.
In practice SPEICHER should reach far higher update rates as
this calculation used worst case values from our benchmarks.

Table 2 shows the time before different KV stores guarantee
that the values are persisted. We argue that these times can be
used to hide the stability time of our asynchronous counters,
which is a maximum of 60 ms. This is far less than the
maximum time to persist the data in the default configuration
of Cassandra and HBase. If the client expects the value is
persisted only after a specific period of time, we can relax our
freshness guarantees to match to the same time window.

5.6 I/O Amplification

We measured the relative I/O amplification increase in data
for SPEICHER compared to the native RocksDB. We report
the I/O amplification results using the default workload (A)
with the key size of 16 B and value size of 4 KiB. We observed
an overhead of 30% for read and write in the I/O amplification.
This overhead mainly comes from the footer we have to add to
each SSTable as well as from the hashes and counter values we
have to add to the log files. This overhead is not only present
in the write case but also in the read, as the additional data has
also to be read to be able to verify the files.

6 Related Work
Shielded execution. Shielded execution frameworks provide
strong security guarantees for legacy applications running
on an untrusted infrastructure. Prominent examples include
Haven [10], SCONE [8], Graphene-SGX [75], Panoply [69],
and Eleos [55]. Recently, there has been a significant interest
in designing secure systems based on shielded execution, such
as VC3 [68], Opaque [82], Ryoan [27], Ohrimenko et al. [51],
SGXBounds [36], etc. However, these systems are primarily
designed to secure stateless computation and data. (Pesos [34]
is an exception, see the policy-based storage systems section
for the details.) In contrast, we present the first secure persistent
LSM-based KV storage system based on shielded execution.
I/O for shielded execution. To mitigate the I/O overheads in
SGX, shielded execution frameworks, such as Eleos [55] and
SCONE [8], proposed the usage of an asynchronous system call
interface [70]. While the asynchronous interface is sufficient
for the low I/O rate applications—it can not sustain the perfor-
mance requirements of modern storage/networked systems. To
mitigate the I/O bottleneck, ShieldBox [73] proposed a direct
I/O library based on Intel DPDK [2] for building a secure
middlebox framework. Our direct I/O library is motivated
by this advancement in the networking domain. However, we
propose the first direct I/O library for shielded execution based
on Intel SPDK [28] for the I/O acceleration in storage systems.
Trusted counters. A trusted monotonic counter is one of
the important ingredients to protect against rollback and
equivocation attacks. In this respect, Memoir [57] and
TrInc [40] proposed the usage of TPM-based [74] trusted
counters. However, TPM-based solutions are quite impractical
because of the architectural limitations of TPMs. For instance,
they are rate-limited (only one increment every 5 seconds) to
prevent wear out. Therefore, they are mainly used for secure
data access in the offline settings, e.g., Pasture [33].

Intel SGX has recently added support for monotonic
counters [3]. However, SGX counters are also quite slow,
and they wear out quickly (§3). To overcome the limitations,
ROTE [45] proposed a distributed trusted counter service
based on a consensus protocol. Likewise, Ariadne [71]
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proposed an optimized technique to increment the counter by
a single bit flip. Our asynchronous trusted counter interface is
complimentary to these synchronous counter implementations.
In particular, we take advantage of the properties of modern
storage systems, where we can use these synchronous counters
to support our asynchronous interface.
Policy-based storage systems. Policy-based storage systems
allow clients to express fine-grained security policies for
data management. In this context, a wide range of storage
systems have been proposed to express client capabilities [22],
enforce confidentiality and integrity [21], or enable new
features that include data sharing [44], database interface [46],
policy-based storage [19, 77], or policy-based data seal/unseal
operations [67]. Amongst all, Pesos [34] is the most relevant
system since it targets a similar threat model. In particular,
Pesos proposes a policy-based secure storage system based
on Intel SGX and Kinetic disks [31]. However, Pesos relies
on trusted Kinetic disks to achieve its security properties,
whereas SPEICHER targets an untrusted storage, such as an
untrusted SSD. Secondly, Pesos is designed for slow trusted
HDDs, where the additional overheads of the SGX-related
operations are eclipsed by slow disk operations. In contrast,
SPEICHER is designed for high-performance SSDs.
Secure databases/datastores. Encrypted databases, such as
CryptDB [60], Seabed [56], Monomi [76], and DJoin [50], are
designed to ensure the confidentiality of computation in un-
trusted environments. However, they are primarily for preserv-
ing confidentiality. In contrast, SPEICHER preserves all three
security properties: confidentiality, integrity, and freshness.

EnclaveDB [61] and CloudProof [59] target a threat model
and security properties similar to SPEICHER. In particular,
EnclaveDB [61] is a shielded in-memory SQL database.
However, it uses the secondary storage only for checkpoint
and logging unlike SPEICHER. Hence, it does not solve the
problem of freshness guarantee for the data stored in the
secondary storage. Furthermore, the system implementation
does not consider the architectural limitations of SGX.
Secondly, CloudProof [59] is a key-value store designed for
untrusted cloud environment. Unlike SPEICHER, it requires
the clients to encrypt or decrypt data to ensure confidentiality,
as well as to perform attestation procedures with the server,
introducing a significant deployment barrier.

TDB [43] proposed a secure database on untrusted storage.
It provides confidentiality, integrity, and freshness using
a log-structured data store. However, TBD is based on a
hypothetical TCB, and it does not address many practical
problems addressed in our system design.

Obladi [17] is a KV store supporting transactions while hid-
ing the access patterns. While it can effectively hide the values
and their access pattern against the cloud provider, it needs a
trusted proxy. In contrast, SPEICHER does not rely on a trusted
proxy. Furthermore, Obladi does not consider rollback attacks.

Lastly, in parallel with our work, ShieldStore [30] uses a
Merkle tree to build a secure in-memory KV store using Intel

SGX. Since ShieldStore is an in-memory KV Store, it does not
persist the data using the LSM data structure unlike SPEICHER.
Authenticated data structures. Authenticated data struc-
tures (ADS) [47] enable efficient verification of the integrity of
operations carried out by an untrusted entity. The most relevant
ADS for our work is mLSM [63], a recent proposal to provide
integrity guarantee for LSM. In contrast to mLSM, our system
provides stronger security properties, i.e., we ensure not only
integrity, but also confidentiality and freshness. Furthermore,
our system targets a stronger threat model, where we have to
design a secure storage system leveraging Intel SGX.
Robust storage systems. Robust storage systems provide
strong safety and liveness guarantees in the untrusted cloud en-
vironment [14, 42, 79]. In particular, Depot [42] protects data
from faulty infrastructure in terms of durability, consistency,
availability, and integrity. Likewise, Salus [79] proposed
a block store robust storage system while ensuring data
integrity in the presence of commission failures. A2M [14]
is also a robust system against Byzantine faults, and provides
consistent, attested memory abstraction to thwart equivocation.
In contrast to SPEICHER, this line of work neither provides
confidentiality nor freshness guarantees.
Secure file systems. There is a large body of work on
software-based secure storage systems. SUNDR [41], Plu-
tus [29], jVPFS [80], SiRiUS [23], SNAD [48], Maat [38] and
PCFS [21] employ cryptography to provide secure storage in
untrusted environments. None of them protect the system from
rollback attacks, and our challenges to overcome overheads
of shielded execution are irrelevant for them. Among all,
StrongBox [18] provides file system encryption with rollback
protection; however, it does not consider untrusted hosts.

7 Conclusion
In this paper, we presented SPEICHER, a secure persistent
LSM-based KV storage system for untrusted hosts. SPEICHER
targets all the three important security properties: strong confi-
dentiality and integrity guarantees, and also protection against
rollback attacks to ensure data freshness. We base the design of
SPEICHER on hardware-assisted shielded execution leveraging
Intel SGX. However, the design of SPEICHER extends the
trust in shielded execution beyond the secure enclave memory
region to ensure that the security properties are also preserved
in the stateful setting of an untrusted storage medium.

To achieve these security properties while overcoming the ar-
chitectural limitations of Intel SGX, we have designed a direct
I/O library for shielded execution, a trusted monotonic counter,
a secure LSM data structure, and associated algorithms
for storage operations. We implemented a fully-functional
prototype of SPEICHER based on RocksDB, and evaluated the
system using the RocksDB benchmark. Our experimental eval-
uation shows that SPEICHER achieves reasonable performance
overheads while providing strong security guarantees.
Acknowledgement. We thank our shepherd Umesh Mahesh-
wari for the helpful comments.
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8 Appendix
In this appendix, we present the pseudocode for all data
storage and query operations in SPEICHER.

Algorithm 1: Put algorithm of SPEICHER

Input: KV-pair which should be inserted into the store.
Result: Freshness of MemTable
/* Generating a block with the trusted counter */
hashBlock←hash(KV,counterWAL+1);
block←encrypt(KV,counterWAL+1,hashBlock);
/* Writing the block to the persistent storage, before

the trusted counter gets incremented */
writeWAL(block);
counterWAL←counterWAL+1;
/* Generating hash over the KV-pair for the Memtable */
hashKV←hash(KV );
/* Trying to insert into the memtable, if the memtable is

corrupted return a failure */
f reshness←putIntoMemtable(KV,hashKV );
return freshness

Algorithm 2: Get algorithm of SPEICHER

Input: Key in the format of the KV-store
Result: Freshness of the KV-pair and Value
for level=0 to numbero f levels do /* Check in each level if

key-value is existend, from highest to lowest */

if level=Level0 then /* First level lookup therefore
lookup in MemTable */

path,value←lookupMemtable(key) /* It is
possible that the value is empty, however we
still have to do a proof of non-existence */

foreach node∈ path do /* Validate hash values of
the trace to the leaf node */

if hash(node.le f t,node.right) 6=node.hash then
/* check that the hash value of the child
nodes is equal to the stored hash value */

/* The integrity and freshness proof
failed */

return staleMemTable,value
end

end
return f resh,value

end
else /* Lookup in a level backup by SST files */

SST←findSSTFile(level,key) /* Lookup over
authentication structures similar to MemTable
*/

block,value←lookup(SST slevel ,key);
if hash(block) 6=
SST.hashBlock(block) or !freshness(SST ) then

return staleSST ,value
end
return f resh,value

end
end

Algorithm 3: Range query algorithm of SPEICHER

Input: KV-pair with the lowest key and callback method to the
client

/* Build an iterator pointing to the first KV-pair */
iterator←constructIterator(keymin);
next←True;
/* Call the provided function until the iterator is not

valid anymore or a freshness proof failed or the
client request to end */

while isValid(iterator) and state= f resh and next do
state,value← Iterator.key_value;
next←callback(state,value);
Iterator← Iterator.next;

end

Algorithm 4: Iterator functions of SPEICHER

Input: Start key
Result: Result of freshness proof or iterator
Function constructIterator(keymin)

/* Build an iterator for each level of the LSM
pointing to the KV-pair or the next pair in the
level */

foreach level∈Level do
iteratorlevel←lowerBound(level,key);
if iteratorlevel .state 6= f resh then

return state
end
iterator.add(iteratorlevel);

end
end
Input: iterator
Result: Iterator points to the next KV-pair and freshness of the

iterator
Function next(iterator)

/* Forward all iterators pointing to the current key
*/

foreach iteratorlevel ∈ iterator where iteratorlevel .key=
iterator.key do

next(iteratorlevel);
if iteratorlevel .state 6= f resh then

return iteratorlevel .state
end

end
/* Find the level iterator pointing to the lowest key

*/
for i=0 to number_levels do

iter← iterator[i];
if iter.state 6= f resh then

return iter.state
end
if keylowest > iter.key then

keylowest← iter.key;
level← i

end
end
iterator.currentLevel(i);
return fresh

end
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Algorithm 5: Restore algorithm of SPEICHER

Input: Manifest File
Result: Restored KV-store
/* Get the counter value of the first record in the

manifest and check that the first record is an inital
record */

counter←Mani f est. f irstCounterValue;
/* Iterate over all records in the Manifest */
foreach recordencrypted ∈Mani f est do

record←decrypt;
hash←hash(record);
/* Check the records hash and counter value, if they

do not match, report an error to the client */
if hash 6=record.hash then

return Hash does not match
end
if counter 6=record.counter then

return Counter does not match
end
/* If hash and counter match apply the change to the

KV-store */
apply(record);
inc(counter);

end
/* Check if the last counter in the Manifest matches the

trusted counter, if not report an error to the client
*/

if counter 6= tusted_counterMani f est then
return Counter does not match

end
/* Get the current WAL and its initial counter value from

the Manifest */
counter←Mani f est. f irstWALCounter;
/* Apply each record of the WAL to the KV if the counter

and hash are correct, similar to the Manifest */
foreach recordencrypted ∈WAL do

record←decrypt;
hash←hash(record);
if hash 6=record.hash then

return Hash does notmatch
end
if counter 6=record.counter then

return Counter does not match
end
apply(record);
inc(counter);

end
/* Check if the last counter value is the same as the

trusted counter */
if counter 6= trusted_counterWAL then

return Counter does not match
end
/* KV-store was successfully restored and no integrity

or rollbacks problem were found */
return Success

Algorithm 6: Compaction algorithm of SPEICHER

Input: SSTable file to be compacted one from leveln
Result: Multiple SSTable files for leveln+1
// Creating an Iterator over the higher level SSTable file create a new file
and a new data block
iteratorn←createIterator(SSTablen);
NewSSTable←createNewSST();
block←createNewBlock();
last_key←iteratorn.key−1;
// As long as their are KV-pairs remaining in the SSTable open the
SSTable file in the next level which has the range of the smallest possible
next key based on the last key compacted. while
has_next(iteratorn) do

SSTablen+1←findSSTFile(n+1,last_key+1);
iteratorn+1←createIterator(SSTablen+1);
// As long as the currently open SSTn+1 file has KV-pairs find the
smaller next key of SSTn and SSTn+1 file. If both have the same next
key choose from SSTn file.
while has_next(iteratorn+1i) do

iteratormin←min(iteratorn,iteratorn+1);
// test if the key value is still fresh, that is check the hash of the
block compare in the SSTable file hash footer and check
against the Manifest
if iteratormin 6= f resh then

// If the key value is not fresh return error to client
return iteratormin.state

end
// Add key to block, if the block is then over the size limit for
blocks calculate a hash add the hash to the footer of the new
file and write the block to persistent storage, and create a new
block
block.add(iteratormin.kv);
if size(block)>block_size_limit then

hash←hash(block);
encrypted_block←encrypt(block);
NewSSTable.write(encryptedblock);
NewSSTable.addHash(hash);
// If the file reaches the size limit after an append, write
the footer to the storage and create a new SSTable
if size(NewSSTable)>SSTable_size_limit then

NewSSTable.writeFooter();
NewSSTable←createNewSST();

end
block←createNewBlock;

end
last_key= iteratormin.key;
next(iteratormin);

end
end
// After compaction, flush the block & write the footer.
hash←hash(block);
encrypted_block←encrypt(block);
NewSSTtable.write(encrypted_block);
NewSSTable.addHash(hash);
NewSSTable.writeFooter();
// Write the changes to the Manifest file.
Manifest.remove(SSTn,SSTn+1inrangeofSSTn);
Manifest.add(∀NewSSTfile);
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Abstract

This paper investigates how to leverage emerging byte-
addressable persistent memory (PM) to enhance the perfor-
mance of key-value (KV) stores. We present a novel KV
store, the Single-Level Merge DB (SLM-DB), which takes
advantage of both the B+-tree index and the Log-Structured
Merge Trees (LSM-tree) approach by making the best use
of fast persistent memory. Our proposed SLM-DB achieves
high read performance as well as high write performance
with low write amplification and near-optimal read ampli-
fication. In SLM-DB, we exploit persistent memory to main-
tain a B+-tree index and adopt an LSM-tree approach to
stage inserted KV pairs in a PM resident memory buffer.
SLM-DB has a single-level organization of KV pairs on
disks and performs selective compaction for the KV pairs,
collecting garbage and keeping the KV pairs sorted suffi-
ciently for range query operations. Our extensive experimen-
tal study demonstrates that, in our default setup, compared
to LevelDB, SLM-DB provides 1.07 - 1.96 and 1.56 - 2.22
times higher read and write throughput, respectively, as well
as comparable range query performance.

1 Introduction

Key-value (KV) stores have become a critical compo-
nent to effectively support diverse data intensive applica-
tions such as web indexing [15], social networking [8], e-
commerce [18], and cloud photo storage [12]. Two typical
types of KV stores, one based on B-trees and the other based
on Log-Structured Merge Trees (LSM-tree) have been pop-
ularly used. B-tree based KV stores and databases such as
KyotoCabinet [2] support fast read (i.e., point query) and
range query operations. However, B-tree based KV stores
show poor write performance as they incur multiple small
random writes to the disk and also suffer from high write am-
plification due to dynamically maintaining a balanced struc-
ture [35]. Thus, they are more suitable for read-intensive
workloads.

LSM-tree based KV stores such as BigTable [15], Lev-
elDB [3], RocksDB [8] and Cassandra [28] are optimized
to efficiently support write intensive workloads. A KV store
based on an LSM-tree can benefit from high write through-
put that is achieved by buffering keys and values in memory
and sequentially writing them as a batch to a disk. However,
it has challenging issues of high write and read amplifica-
tions and slow read performance because an LSM-tree is or-
ganized with multiple levels of files where usually KV pairs
are merge-sorted (i.e., compacted) multiple times to enable
fast search.

Recently, there has been a growing demand for data inten-
sive applications that require high performance for both read
and write operations [14, 40]. Yahoo! has reported that the
trend in their typical workloads has changed to have simi-
lar proportions of reads and writes [36]. Therefore, it is im-
portant to have optimized KV stores for both read and write
workloads.

Byte-addressable, nonvolatile memories such as phase
change memory (PCM) [39], spin transfer torque
MRAM [21], and 3D XPoint [1] have opened up new
opportunities to improve the performance of memory and
storage systems. It is projected that such persistent memories
(PMs) will have read latency comparable to that of DRAM,
higher write latency (up to 5 times) and lower bandwidth
(5∼10 times) compared to DRAM [19, 23, 24, 27, 42].
PM will have a large capacity with a higher density than
DRAM. However, PM is expected to coexist with disks such
as HDDs and SSDs [23, 25]. In particular, for large-scale
KV stores, data will still be stored on disks, while the new
persistent memories will be used to improve the perfor-
mance [4, 20, 23]. In light of this, there have been earlier
efforts to redesign an LSM-tree based KV store for PM
systems [4, 23]. However, searching for a new design for KV
stores based on a hybrid system of PM and disks, in which
PM carries a role that is more than just a large memory write
buffer or read cache, is also essential to achieve even better
performance.

In this paper, we investigate how to leverage PM to en-
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hance the performance of KV stores. We present a novel KV
store, the Single-Level Merge DB (SLM-DB), which takes
advantage of both the B+-tree index and the LSM-tree ap-
proach by making the best use of fast PM. Our proposed
SLM-DB achieves high read performance as well as high
write performance with low write amplification and near-
optimal read amplification. In SLM-DB, we exploit PM to
maintain a B+-tree for indexing KVs. Using the persistent
B+-tree index, we can accelerate the search of a key (without
depending on Bloom filters). To maintain high write through-
put, we adopt the LSM-tree approach to stage inserted KV
pairs in a PM resident memory buffer. As an inserted KV pair
is persisted immediately in the PM buffer, we can also elim-
inate the write ahead log completely while providing strong
data durability.

In SLM-DB, KV pairs are stored on disks with a single-
level organization. Since SLM-DB can utilize the B+-tree
for searches, it has no need to keep the KV pairs in sorted
order, which significantly reduces write amplification. How-
ever, obsolete KV pairs should be garbage collected. More-
over, SLM-DB needs to provide some degree of sequential-
ity of KV pairs stored on disks in order to provide reason-
able performance for range queries. Thus, the selective com-
paction scheme, which only performs restricted merge of the
KV pairs organized in the single level, is devised for SLM-
DB.

The main contributions of this work are as follows:

• We design a single-level KV store that retains the ben-
efit of high write throughput from the LSM-tree ap-
proach and integrate it with a persistent B+-tree for in-
dexing KV pairs. In addition, we employ a PM resident
memory buffer to eliminate disk writes of recently in-
serted KV pairs to the write ahead log.

• For selective compaction, we devise three compaction
candidate selection schemes based on 1) the live-key
ratio of a data file, 2) the leaf node scans in the B+-tree,
and 3) the degree of sequentiality per range query.

• We implement SLM-DB based on LevelDB and also in-
tegrate it with a persistent B+-tree implementation [22].
SLM-DB is designed such that it can keep the B+-tree
and the single-level LSM-tree consistent on system fail-
ures, providing strong crash consistency and durability
guarantees. We evaluate SLM-DB using the db bench
microbenchmarks [3] and the YCSB [17] for real world
workloads. Our extensive experimental study demon-
strates that in our default setup, compared to LevelDB,
SLM-DB provides up to 1.96 and 2.22 times higher read
and write throughput, respectively, and shows compara-
ble range query performance, while it incurs only 39%
of LevelDB’s disk writes on average.

The rest of this paper is organized as follows. Section 2
discusses LSM-trees with the issue of slow read performance

Figure 1: LevelDB architecture.

and high read/write amplification and also discusses PM
technologies for KV stores. Section 3 presents the design and
implementation of SLM-DB, Section 4 discusses how KV
store operations are implemented in SLM-DB, and Section 5
discusses the recovery of SLM-DB on system failures. Sec-
tion 6 evaluates the performance of SLM-DB and presents
our experimental results, and Section 7 discusses issues of
PM cost and parallelism. Section 8 discusses related work,
and finally Section 9 concludes the paper.

2 Background and Motivation

In this section, we first discuss an LSM-tree based KV store
and its challenging issues by focusing on LevelDB [3]. Other
LSM-tree based KV stores such as RocksDB [8] are simi-
larly structured and have similar issues. We then discuss con-
siderations for using PM for a KV store.

2.1 LevelDB

LevelDB is a widely used KV store inspired by Google’s
Bigtable [15], which implements the Log-Structured Merge-
tree (LSM-tree) [33]. LevelDB supports basic KV store op-
erations of put, which adds a KV pair to a KV store, get,
which returns the associated value for a queried key, and
range query, which returns all KV pairs within a queried
range of keys by using iterators that scan all KV pairs.
In LevelDB’s implementation, the LSM-tree has two main
modules, MemTable and Immutable MemTable that reside in
DRAM and multiple levels of Sorted String Table (SSTable)
files that reside in persistent storage (i.e., disks), as shown in
Figure 1.

The memory components of MemTable and Immutable
MemTable are basically sorted skiplists. MemTable buffers
newly inserted KV pairs. Once MemTable becomes full,
LevelDB makes it an Immutable MemTable and creates a
new MemTable. Using a background thread, it flushes re-
cently inserted KV pairs in the Immutable MemTable to the
disk as an on-disk data structure SSTable where sorted KV
pairs are stored. Note that the deletion of a KV pair is treated
as an update as it places a deletion marker.
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Table 1: Locating overhead breakdown (in microseconds) of
a read operation in LevelDB

KV store File search Block
search

Bloom
filter

Unnecessary
block read

LevelDB w/o BF 1.28 19.99 0 40.62
LevelDB w BF 1.33 19.38 7.22 13.58
SLM-DB 1.32 0 0

During the above insertion process, for the purpose of re-
covery from a system crash, a new KV pair must first be
appended to the write ahead log (WAL) before it is added to
MemTable. After KV pairs in Immutable MemTable are fi-
nally dumped into the disk, the log is deleted. However, by
default, LevelDB does not commit KV pairs to the log due
to the slower write performance induced by the fsync()

operations for commit. In our experiments when using a
database created by inserting 8GB data with a 1KB value
size, the write performance drops by more than 12 times
when fsync() is enabled for WAL. Hence, it trades off dura-
bility and consistency against higher performance.

For the disk component, LevelDB is organized as multi-
ple levels, from the lowest level L0 to the highest level Lk.
Each level, except L0, has one or more sorted SSTable files
in which key ranges of the files in the same level do not over-
lap. Each level has limited capacity, but a higher level can
contain more SSTable files such that the capacity of a level
is generally around 10 times larger than that of its previous
level.

To maintain such hierarchical levels, when the size of a
level Lx grows beyond its limit, a background compaction
thread selects one SSTable file in Lx. It then moves the KV
pairs in that file to the next level Lx+1 by performing a
merge sort with all the SSTable files that overlap in level
Lx+1. When KV pairs are being sorted, if the same key ex-
ists, the value in Lx+1 is overwritten by that in Lx, because
the lower level always has the newer value. In this way, it
is guaranteed that keys stored in SSTable files in one level
are unique. Compaction to L0 (i.e., flushing recently inserted
data in Immutable MemTable to L0) does not perform merge
sort in order to increase write throughput, and thus, SSTa-
bles in L0 can have overlapped key ranges. In summary, us-
ing compaction, LevelDB not only keeps SSTable files in the
same level sorted to facilitate fast search, but it also collects
garbage in the files.

LevelDB also maintains the SSTable metadata of the cur-
rent LSM-tree organization in a file referred to as MANI-
FEST. The metadata includes a list of SSTable files in each
level and a key range of each SSTable file. During the com-
paction process, changes in the SSTable metadata such as a
deleted SSTable file are captured. Once the compaction is
done, the change is first logged in the MANIFEST file, and
then obsolete SSTable files are deleted. In this way, when the
system crashes even during compaction, LevelDB can return
to a consistent KV store after recovery.

2.2 Limitations of LevelDB

Slow read operations For read operations (i.e., point
queries), LevelDB first searches a key in MemTable and then
Immutable MemTable. If it fails to find the key in the mem-
ory components, it searches the key in each level from the
lowest one to the highest one. For each level, LevelDB needs
to first find an SSTable file that may contain the key by a
binary search based on the starting keys of SSTable files in
that level. When such an SSTable file is identified, it per-
forms another binary search on the SSTable file index, which
stores the information about the first key of each 4KB data
block in the file. Thus, a read operation requires at least two
block reads, one for the index block and the other for the
data block. However, when the data block does not include
that key, LevelDB needs to check the next level again, until
it finds the key or it reaches the highest level. To avoid un-
necessary block reads and reduce the search cost, LevelDB
uses a Bloom filter for each block.

Table 1 presents the overhead breakdown (in microsec-
onds) for locating a KV pair in LevelDB with and with-
out a Bloom filter for a random read operation. For the re-
sults, we measure the read latency of LevelDB for the ran-
dom read benchmark in db bench [3] (which are micro-
benchmarks built in LevelDB). In the experiments, we use
4GB DRAM and run a random read workload right after cre-
ating a database by inserting 20GB data with a 1KB value
size (without waiting for the compaction process to finish,
which is different from the experiments in Section 6.3). The
details of our experimental setup are discussed in Section 6.

The locating overhead per read operation includes time
spent to search an SSTable file that contains the key (i.e.,
“File search”), to find a block in which the key and its
corresponding value are stored within the file (i.e., “Block
search”), and to check the Bloom filter (BF). Moreover, in-
cluded in the locating overhead is time for, what we refer to
as the “Unnecessary block read”. Specifically, this refers to
the time to read blocks unnecessarily due to the multi-level
search based on the SSTable index where BF is not used and,
where BF is used, the time to read the false positive blocks.
As shown in the table, with our proposed SLM-DB using the
B+-tree index, which we discuss in detail later, the locating
overhead can be significantly reduced to become almost neg-
ligible. In the above experiment, the average time of reading
and processing a data block for the three KV stores is 682
microseconds.

Figure 2 shows the overhead for locating a KV pair for
a random read operation over varying value sizes. The fig-
ure shows the ratio of the locating overhead to the total read
operation latency. We observe that the overhead increases as
the size of the value increases. When a Bloom filter is used in
LevelDB, the locating overhead becomes relatively smaller,
but the overhead with a Bloom filter is still as high as up to
36.66%. In the experiment, the random read workload is exe-
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Figure 2: Overhead for locating a KV pair for different size
of values as a fraction of the read operation latency.

cuted while the compaction of SSTable files from the lowest
to the highest levels is in progress. With a larger value size,
the number of files in multiple levels that LevelDB needs
to check to see if a given key exists, and consequently the
number of queries to a Bloom filter for the key, increases.
Therefore, for a 64KB value size, LevelDB with a Bloom
filter shows 6.14 times higher overhead largely incurred by
unnecessary block reads, compared to a 1KB value size.
High write and read amplification Well-known issues of
any LSM-tree based KV store are high write and read am-
plification [30, 31, 35, 40]. It maintains hierarchical levels
of sorted files on a disk while leveraging sequential writes
to the disk. Therefore, an inserted KV needs to be continu-
ously merge-sorted and written to the disk, moving toward
the highest level, via background compaction processes. For
an LSM-tree structure with level k, the write amplification
ratio, which is defined as the ratio between the total amount
of data written to disk and the amount of data requested by
the user, can be higher than 10× k [30, 31, 40].

The read amplification ratio, which is similarly defined as
the ratio between the total amount of data read from a disk
and the amount of data requested by the user, is high by na-
ture in an LSM-tree structure. As discussed above, the cost
of a read operation is high. This is because LevelDB may
need to check multiple levels for a given key. Moreover, to
find the key in an SSTable file at a level, it not only reads a
data block but also an index block and a Bloom filter block,
which can be much larger than the size of the KV pair [30].

2.3 Persistent Memory

Emerging persistent memory (PM) such as phase change
memory (PCM) [39], spin transfer torque MRAM [21], and
3D XPoint [1] is byte-addressable and nonvolatile. PM will
be connected via the memory bus rather than the block in-
terface and thus, the failure atomicity unit (or granularity)
for write to PM is generally expected to be 8 bytes [29, 42].
When persisting a data structure in PM, which has a smaller
failure atomicity unit compared to traditional storage de-
vices, we must ensure that the data structure remains consis-
tent even when the system crashes. Thus, we need to care-
fully update or change the data structure by ensuring the

Figure 3: SLM-DB architecture.

memory write ordering.
However, in modern processors, memory write operations

may be reordered in cache line units to maximize the mem-
ory bandwidth. In order to have ordered memory writes, we
need to explicitly make use of expensive memory fence and
cache flush instructions (CLFLUSH and MFENCE in Intel x86
architecture) [16, 22, 23, 29, 34, 42]. Moreover, if the size of
the data written to PM is larger than 8 bytes, the data struc-
ture can be partially updated in system failure, resulting in
an inconsistent state after recovery. In this case, it is neces-
sary to use well-known techniques like logging and Copy-
on-Write (CoW). Thus, a careful design is required for data
structures persisted in PM.

PM opens new opportunities to overcome the shortcom-
ings of existing KV stores. There has been a growing inter-
est to utilize PM for KV stores [4, 23, 41]. LSM-tree based
KV stores have been redesigned for PM [4, 23]. However, it
is also important to explore new designs for PM based KV
stores. In this work, we investigate a design of KV stores,
which employs an index persisted in PM.

3 Single-Level Merge DB (SLM-DB)

This section presents the design and implementation of our
Single-Level Merge DB (SLM-DB). Figure 3 shows the
overall system architecture of SLM-DB. SLM-DB leverages
PM to store MemTable and Immutable MemTable. The per-
sistent MemTable and Immutable MemTable allow us to
eliminate the write ahead log (WAL), providing stronger
durability and consistency upon system failures. SLM-DB
is organized as a single level L0 of SSTable files, unlike Lev-
elDB, hence the name Single Level Merge DB (SLM-DB).
Thus, SLM-DB does not rewrite KV pairs stored on disks to
merge them with pairs in the lower level, which can occur
multiple times. Having the persistent memory component
and single-level disk component, write amplification can be
reduced significantly.

To expedite read operations on a single-level organization
of SSTable files, SLM-DB constructs a persistent B+-tree in-
dex. Since the B+-tree index is used to search a KV pair
stored on a disk, there is no need to fully sort KV pairs in
the level, in contrast with most LSM-tree based KV stores.
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Algorithm 1 Insert(key, value, prevNode)
1: curNode := NewNode(key, value);
2: curNode.next := prevNode.next;
3: mfence();
4: clflush(curNode);
5: mfence();
6: prevNode.next := curNode;
7: mfence();
8: clflush(prevNode.next);
9: mfence();

However, obsolete KV pairs in the SSTable files that have
been updated by fresh values should be deleted to avoid disk
space waste. Moreover, SLM-DB needs to maintain a suffi-
cient level of sequentiality of KVs (i.e., a degree of how well
KV pairs are stored in sorted order) in SSTables so that it
can provide reasonable range query performance. Therefore,
a selective compaction scheme, which selectively merges
SSTables, is integrated with SLM-DB. Also, to keep the B+-
tree and (single-level) LSM-tree consistent on system fail-
ures, the state of on-going compaction needs to be backed up
by the compaction log stored in PM.

We implement SLM-DB based on LevelDB (version
1.20). We inherit the memory component implementation of
MemTable and Immutable MemTable with modifications to
persist them in PM. We keep the on-disk data structure of
SSTable and the file format as well as the multiple SSTable
file compaction (i.e., merge-sort) scheme. We also utilize the
LSM-tree index structure, which maintains a list of valid
SSTable files and SSTable file metadata, the mechanism to
log any change in the LSM-tree structure to the MANIFEST
file, and the recovery scheme of LevelDB. We completely
change the random read and range query operations of the
LevelDB implementation using a persistent B+-tree.

Among the many persistent B-tree implementations, we
use the FAST and FAIR B-tree [22]1 for SLM-DB. Particu-
larly, FAST and FAIR B-tree was shown to outperform other
state-of-the-art persistent B-trees in terms of range query
performance because it keeps all keys in a sorted order. It
also yields the highest write throughput by leveraging the
memory level parallelism and the ordering constraints of de-
pendent store instructions.

3.1 Persistent MemTable
In SLM-DB, MemTable is a persistent skiplist. Note that
a persistent skiplist has been discussed in previous stud-
ies [22, 23]. Skiplist operations such as insertion, update, and
deletion can be done using an atomic 8-byte write operation.
Algorithm 1 shows the insertion process to the lowest level of
a skiplist. To guarantee the consistency of KVs in MemTable,
we first persist a new node where its next pointer is set by
calling memory fence and cacheline flush instructions. We

1Source codes are available at https://github.com/DICL/FAST FAIR

then update the next pointer, which is 8 bytes, of its previ-
ous node and persist the change. Updating an existing KV
pair in MemTable is done in a similar way, without in-place
update of a value (similar to LevelDB’s MemTable update
operation). By having the PM resident MemTable, SLM-DB
has no need to depend on WAL for data durability. Similarly,
no consistency guarantee mechanism is required for higher
levels of a skiplist as they can be reconstructed easily from
the lowest level upon system failures.

3.2 B+-tree Index in PM

To speed up the search of a KV pair stored in SSTables,
SLM-DB employs a B+-tree index. When flushing a KV pair
in Immutable MemTable to an SSTable, the key is inserted in
the B+-tree. The key is added to a leaf node of the B+-tree
with a pointer that points to a PM object that contains the
location information about where this KV pair is stored on
the disk. The location information for the key includes an
SSTable file ID, a block offset within the file, and the size of
the block.

If a key already exists in the B+-tree (i.e., update), a fresh
value for the key is written to a new SSTable. Therefore, a
new location object is created for the key, and its associated
pointer in the B+-tree leaf node is updated to point to the new
PM object in a failure-atomic manner. If a deletion marker
for a key is inserted, the key is deleted from the B+-tree.
Persistent memory allocation and deallocation for location
objects is managed by a persistent memory manager such as
PMDK [5], and obsolete location objects will be garbage col-
lected by the manager. Note that SLM-DB supports string-
type keys like LevelDB does and that the string-type key is
converted to an integer key when it is added to the B+-tree.
Building a B+-tree In SLM-DB, when Immutable
MemTable is flushed to L0, KV pairs in Immutable
MemTable are inserted in the B+-tree. For a flush operation,
SLM-DB creates two background threads, one for file cre-
ation and the other for B+-tree insertion.

In the file creation thread, SLM-DB creates a new SSTable
file and writes KV pairs from Immutable MemTable to the
file. Once the file creation thread flushes the file to the disk,
it adds all the KV pairs stored on the newly created file
to a queue, which is created by a B+-tree insertion thread.
The B+-tree insertion thread processes the KV pairs in the
queue one by one by inserting them in the B+-tree. Once
the queue becomes empty, the insertion thread is done. Then,
the change of the LSM-tree organization (i.e., SSTable meta-
data) is appended to the MANIFEST file as a log. Finally,
SLM-DB deletes Immutable MemTable.
Scanning a B+-tree SLM-DB provides an iterator, which
can be used to scan all the keys in the KV store, in a way
similar to LevelDB. Iterators support seek, value, and next
methods. The seek(k) method positions an iterator in the
KV store such that the iterator points to key k or the smallest
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key larger than k if k does not exist. The next() method
moves the iterator to the next key in the KV store and
the value() method returns the value of the key, currently
pointed to by the iterator.

In SLM-DB, a B+-tree iterator is implemented to scan
keys stored in SSTable files. For the seek(k) method, SLM-
DB searches key k in the B+-tree to position the iterator. In
the FAST+FAIR B+-tree, keys are sorted in leaf nodes, and
leaf nodes have a sibling pointer. Thus, if k does not exist,
it can easily find the smallest key that is larger than k. Also,
the next() method is easily supported by moving the iter-
ator to the next key in B+-tree leaf nodes. For the value()

method, the iterator finds the location information for the key
and reads the KV pair from the SSTable.

3.3 Selective Compaction
SLM-DB supports a selective compaction operation in order
to collect garbage of obsolete KVs and improve the sequen-
tiality of KVs in SSTables. For selective compaction, SLM-
DB maintains a compaction candidate list of SSTables. A
background compaction thread is basically scheduled when
some changes occur in the organization of SSTable files (for
example, by a flush operation), and there are a large number
of seeks to a certain SSTable (similar to LevelDB). In SLM-
DB, it is also scheduled when the number of SSTables in the
compaction candidate list is larger than a certain threshold.
When a compaction thread is executed, SLM-DB chooses a
subset of SSTables from the candidate list as follows. For
each SSTable s in the list, we compute the overlapping ratio
of key ranges between s and each t of the other SSTables in
the list as MIN(sp,tq)−MAX(s1,t1)

MAX(sp,tq)−MIN(s1,t1)
, where the key ranges of s and

t are [s1, . . .sp] and [t1, . . . tq], respectively. Note that if the
computed ratio is negative, then s and t do not overlap and the
ratio is set to zero. We compute the total sum of overlapping
ratios for s. We then decide to compact an SSTable s′ with
the maximum overlapping ratio value with SSTables in the
list, whose key ranges are overlapped with s′. Note that we
limit the number of SSTables that are simultaneously merged
so as not to severely disturb foreground user operations.

The compaction process is done by using the two threads
for file creation and B+-insertion described above. However,
when merging multiple SSTable files, we need to check if
each KV pair in the files is valid or obsolete, which is done
by searching the key in the B+-tree. If it is valid, we merge-
sort it with the other valid KV pairs. If the key does not exist
in the B+-tree or the key is currently stored in some other
SSTable, we drop that obsolete KV pair from merging to a
new file.

During compaction, the file creation thread needs to create
multiple SSTable files unlike flushing Immutable MemTable
to L0. The file creation thread creates a new SSTable file (of
a fixed size) as it merge-sorts the files and flushes the new
file to disk. It then adds all the KV pairs included in the new

file to the queue of the B+-tree insertion thread. The file cre-
ation thread starts to create another new file, while the in-
sertion thread concurrently updates the B+-tree for each KV
pair in the queue. This process continues until the creation
of merge-sorted files for compaction is completed. Finally,
after the B+-tree updates for KV pairs in the newly created
SSTable files are done, the change of SSTable metadata is
committed to the MANIFEST file and the obsolete SSTable
files are deleted. Note that SLM-DB is implemented such
that B+-tree insertion requests for KVs in the new SSTable
file are immediately queued right after file creation, and they
are handled in order. In this way, when updating the B+-tree
for a KV in the queue, there is no need to check the validity
of the KV again.

To select candidate SSTables for compaction, SLM-DB
implements three selection schemes based on the live-key ra-
tio of an SSTable, the leaf node scans in the B+-tree, and
the degree of sequentiality per range query. For the selection
based on the live-key ratio of an SSTable, we maintain the
ratio of valid KV pairs to all KV pairs (including obsolete
ones) stored in each SSTable. If the ratio for an SSTable is
lower than the threshold, called the live-key threshold,
then the SSTable contains too much garbage, which should
be collected for better utilization of disk space. For each
SSTable s, the total number of KV pairs stored in s is com-
puted at creation, and initially the number of valid KV pairs
is equal to the total number of KV pairs in s. When a key
stored in s is updated with a fresh value, the key with the
fresh value will be stored in a new SSTable file. Thus, when
we update a pointer to the new location object for the key in
the B+-tree, we decrease the number of valid KV pairs in s.
Based on these two numbers, we can compute the live-key
ratio of each SSTable.

While the goal of the live-key ratio based selection is to
collect garbage on disks, the selection based on the leaf node
scans in the B+-tree attempts to improve the sequentiality
of KVs stored in L0. Whenever a background compaction is
executed, it invokes a leaf node scan, where we scan B+-tree
leaf nodes for a certain fixed number of keys in a round-robin
fashion. During the scan, we count the number of unique
SSTable files, where scanned keys are stored. If the number
of unique files is larger than the threshold, called the leaf

node threshold, we add those files to the compaction can-
didate list. In this work, the number of keys to scan for a leaf
node scan is decided based on two factors, the average num-
ber of keys stored in a single SSTable (which depends on the
size of a value) and the number of SSTables to scan at once.

For the selection based on the degree of sequentiality per
range query, we divide a queried key range into several sub-
ranges when operating a range query. For each sub-range,
which consists of a predefined number of keys, we keep
track of the number of unique files accessed. Once the range
query operation is done, we find the sub-range with the
maximum number of unique files. If the number of unique
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files is larger than the threshold, called the sequentiality
degree threshold, we add those unique files to the com-
paction candidate list. This feature is useful in improving se-
quentiality especially for requests with Zipfian distribution
(like YCSB [17]) where some keys are more frequently read
and scanned.

For recovery purposes, we basically add the compaction
candidate list, the total number of KV pairs, and the number
of valid KV pairs for each SSTable to the SSTable metadata
(which is logged in the MANIFEST file). In SLM-DB, the
compaction and flush operations update the B+-tree. There-
fore, we need to maintain a compaction log persisted in
PM for those operations. Before starting a compaction/flush
operation, we create a compaction log. For each key that
is already stored in some SSTable but is written to a new
file, we add a tuple of the key and its old SSTable file ID
to the compaction log. Also, for compaction, we need to
keep track of the list of files merged by the on-going com-
paction. The information about updated keys and their old
file IDs will be used to recover a consistent B+-tree and
live-key ratios of SSTables if there is a system crash. After
the compaction/flush is completed, the compaction log will
be deleted. Note that some SSTable files added to the com-
paction candidate list by the selection based on the leaf node
scans and the degree of sequentiality per range query may
be lost if the system fails before they are committed to the
MANIFEST file. However, losing some candidate files does
not compromise the consistency of the database. The lost
files will be added to the list again by our selection schemes.

4 KV Store Operations in SLM-DB

Put: To put a KV pair to a KV store, SLM-DB inserts the KV
pair to MemTable. The KV pair will eventually be flushed to
an SSTable in L0. The KV pair may be compacted and writ-
ten to a new SSTable by the selective compaction of SLM-
DB.
Get: To get a value for a given key k from a KV store, SLM-
DB searches MemTable and Immutable MemTable in order.
If k is not found, it searches k in the B+-tree, locates the
KV pair on disk (by using the location information pointed
to by the B+-tree for k), reads its associated value from an
SSTable and returns the value. If SLM-DB cannot find k in
the B+-tree, it returns “not exist” for k, without reading any
disk block.
Range query: To perform a range query, SLM-DB uses a
B+-tree iterator to position it to the starting key in the B+-tree
by using the seek method and then, scans a given range us-
ing next and value methods. KV pairs inserted to SLM-DB
can be found in MemTable, Immutable MemTable or one of
the SSTables in L0. Therefore, for the seek and next meth-
ods, the result of the B+-tree iterator needs to be merged
with the results of the two iterators that search the key in

MemTable and Immutable MemTable, respectively, to deter-
mine the final result, in a way similar to LevelDB.
“Insert if not exists” and “Insert if exists”: “Insert if not
exists” [36], which inserts a key to a KV store only if the key
does not exist, and “Insert if exists”, which updates a value
only for an existing key, are commonly used in a KV store.
Update workloads such as YCSB Workload A [17] are usu-
ally performed on an existing key such that for a non-existing
key, the KV store returns without inserting the key [9]. To
support these operations, SLM-DB simply searches the key
in the B+-tree to check for the existence of the given key. In
contrast, most LSM-tree based KV stores must check multi-
ple SSTable files to search the key in each level in the worst
case.

5 Crash Recovery

SLM-DB provides a strong crash consistency guarantee for
in-memory data persisted in PM, on-disk data (i.e. SSTables)
as well as metadata on SSTables. For KV pairs recently in-
serted to MemTable, SLM-DB can provide stronger durabil-
ity and consistency compared to LevelDB. In LevelDB, the
write of data to WAL is not committed (i.e., fsync()) by
default because WAL committing is very expensive and thus,
some recently inserted or updated KVs may be lost on sys-
tem failures [23, 26, 32]. However, in SLM-DB, the skiplist
is implemented such that the linked list of the lowest level
of the skiplist is guaranteed to be consistent with an atomic
write or update of 8 bytes to PM, without any logging ef-
forts. Therefore, during the recovery process, we can simply
rebuild higher levels of the skiplist.

To leverage the recovery mechanism of LevelDB, SLM-
DB adds more information to the SSTable metadata such as
the compaction candidate list and the number of valid KV
pairs stored for each SSTable along with the total number
of KV pairs in the SSTable. The additional information is
logged by the MANIFEST file in the same way as for the
original SSTable metadata.

When recovering from a failure, SLM-DB performs the
recovery procedure using the MANIFEST file as LevelDB
does. Also, similar to NoveLSM [23], SLM-DB remaps the
file that represents a PM pool and retrieves the root data
structure that stores all pointers to other data structures such
as MemTable, Immutable MemTable, and B+-tree through
support from a PM manager such as PMDK [5]. SLM-DB
will flush Immutable MemTable if it exists. SLM-DB also
checks if there is on-going compaction. If so, SLM-DB must
restart the compaction of the files that are found in the com-
paction log.

For flush, SLM-DB uses the information on an updated
key with its old SSTable file ID to keep the number of valid
KV pairs in each SSTable involved in the failed flush consis-
tent. In case of compaction, it is possible that during the last
failed compaction, the pointers in the B+-tree leaf nodes for
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some subset of valid KV pairs have been committed to point
to new files. However, when the system restarts, the files
are no longer valid as they have not been committed to the
MANIFEST file. Based on the information of keys and their
old SSTable file IDs, SLM-DB can include these valid KVs
and update the B+-tree accordingly during the restarted com-
paction. Note that for PM data corruption caused by hard-
ware errors, the recovery and fault-tolerance features such as
checksum and data replication can be used [7].

6 Experimental Results

6.1 Methodology
In our experiments, we use a machine with two Intel Xeon
Octa-core E5-2640V3 processors (2.6Ghz) and Intel SSD
DC S3520 of 480GB. We disable one of the sockets and
its memory module and only use the remaining socket com-
posed of 8 cores with 16GB DRAM. For the machine,
Ubuntu 18.04 LTS with Linux kernel version 4.15 is used.

When running both LevelDB and SLM-DB, we restrict
the DRAM size to 4GB by using the mem kernel parameter.
As PM is not currently available in commercial markets, we
emulate PM using DRAM as in prior studies [23, 29, 41].
We configure a DAX enabled ext4 file system and employ
PMDK [5] for managing a memory pool of 7GB for PM.
In the default setting, the write latency to PM is set to
500ns (i.e., around 5 times higher write latency compared
to DRAM [23] is used). PM write latency is applied for
data write persisted to PM with memory fence and cache-
line flush instructions and is emulated by using Time Stamp

Counter and spinning for a specified duration. No extra read
latency to PM is added (i.e., the same read latency as DRAM
is used) similar to previous studies [23, 41]. We also assume
that the PM bandwidth is the same as that of DRAM.

We evaluate the performance of SLM-DB and compare
its performance with that of LevelDB (version 1.20) over
varying value sizes. For all experiments, data compression
is turned off to simplify analysis and avoid any unexpected
effects as in prior studies [23, 30, 35]. The size of MemTable
is set to 64MB, and a fixed key size of 20 bytes is used. Note
that all SSTable files are stored on an SSD. For LevelDB, de-
fault values for all parameters are used except the MemTable
size and a Bloom filter (configured with 10 bits per key) is
enabled. In all the experiments of LevelDB, to achieve better
performance, we do not commit the write ahead log trad-
ing off against data durability. For SLM-DB, the live-key

threshold is set to 0.7. If we increase this threshold,
SLM-DB will perform garbage collection more actively. For
the leaf node scan selection, we scan the average number
of keys stored in two SSTable files and the leaf node

threshold is set to 10. Note that the average number of
keys stored in an SSTable varies depending on the value size.
For selection based on the sequentiality degree per range

(a) Write latency (b) Total amount of write

Figure 4: Random write performance comparison.

Figure 5: SLM-DB write latency over various PM write la-
tencies, normalized to that with DRAM write latency.

query, we divide a queried key range into sub-ranges of 30
keys each, and the sequentiality degree threshold

is set to 8. If we increase the leaf node threshold and
sequentiality degree threshold, SLM-DB will per-
form less compaction. For the results, the average value of
three runs is presented.

To evaluate the performance of SLM-DB, we use the
db bench benchmarks [3] as microbenchmarks and the
YCSB [17] as real world workload benchmarks. The bench-
marks are executed as single-threaded workloads as Lev-
elDB (upon which SLM-DB is implemented) is not opti-
mized for multi-threaded workloads, a matter that we elabo-
rate on in Section 7. In both of the benchmarks, for each run,
a random write workload creates the database by inserting
8GB data unless otherwise specified, where N write oper-
ations are performed in total. Then, each of the other work-
loads performs 0.2×N of its own operations (i.e., 20% of the
write operations) against the database. For example, if 10M
write operations are done to create the database, the random
read workload performs 2M random read operations. Note
that the size of the database initially created by the random
write workload is less than 8GB in db bench, since the work-
load overwrites (i.e., updates) some KV pairs.

6.2 Using a Persistent MemTable
To understand the effect of using a PM resident MemTable,
we first investigate the performance of a modified version
of LevelDB, i.e., LevelDB+PM, which utilizes the PM resi-
dent MemTable without the write ahead log as in SLM-DB.
Figure 4 shows the performance of LevelDB, LevelDB+PM,
and SLM-DB for the random write workload from db bench
over various value sizes. In Figures 4(a) and 4(b), the write
latency and total amount of data written to disk normalized
to those of LevelDB, respectively, are presented.
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(a) Random Write (b) Random Read (c) Range Query (d) Sequential Read

Figure 6: Throughput of SLM-DB normalized to LevelDB with the same setting for db bench.

As in the figures, in general, the write latency of Lev-
elDB+PM is similar to that of LevelDB, but the total amount
of write to disk is reduced by 16% on average as no write
ahead log is used. When a large value size is used as in
the case of 64KB, the write latency of LevelDB+PM is re-
duced by 19%. LevelDB+PM also achieves stronger dura-
bility of data as inserted KVs are persisted immediately in
MemTable. For SLM-DB, the write latency and total amount
of data written are reduced by 49% and 57%, compared to
LevelDB, on average. This is because SLM-DB further re-
duces write amplification by organizing SSTables in a single
level and performing restricted compaction.

Figure 5 presents the effects of PM write latency on the
write performance of SLM-DB. In the figure, the write oper-
ation latencies of SLM-DB with PM write latencies of 300,
500 and 900ns, normalized to that of SLM-DB with DRAM
write latency, are presented for the random write workload
of db bench. In SLM-DB, as the PM write latency increases,
the write performance is degraded by up to 75% when the
1KB value size is used. However, the effect of long PM write
latency is diluted as the value size becomes larger.

6.3 Results with Microbenchmarks

Figure 6 shows the operation throughputs with SLM-DB for
random write, random read, range query, and sequential read
workloads, normalized to those with LevelDB. In the figures,
the numbers presented on the top of the bars are the oper-
ation throughput of LevelDB in KOps/s. The range query
workload scans short ranges with an average of 100 keys.
For the sequential read workload, we sequentially read all
the KV pairs in increasing order of key values on the entire
KV store (which is created by a random write workload). For
the random read, range query, and sequential read workloads,
we first run a random write workload to create the database,
and then wait until the compaction process is finished on the
database before performing their operations.

From the results, we can observe the following:

• For random write operations, SLM-DB provides around
2 times higher throughput than LevelDB on average
over all the value sizes. This is achieved by significantly

reducing the amount of data written to disk for com-
paction. Note that in our experiments, the overhead of
inserting keys to the B+-tree is small and also, the in-
sertion to B+-tree is performed by a background thread.
Therefore, the insertion overhead has no effect on the
write performance of SLM-DB.

• For random read operations, SLM-DB shows similar
or better performance than LevelDB depending on the
value size. As discussed in Section 2.2, the locating
overhead of LevelDB is not so high when the value
size is 1KB. Thus, the read latency of SLM-DB is only
7% better for 1KB values. As the value size increases,
the performance difference between SLM-DB and Lev-
elDB increases due to the efficient search of the KV
pair using the B+-tree index in SLM-DB. However,
when the value size becomes as large as 64KB, the time
spent to read the data block from disk becomes long
relative to that with smaller value sizes. Thus, the per-
formance difference between SLM-DB and LevelDB
drops to 25%.

• For short range query operations, LevelDB with full se-
quentiality of KVs in each level can sequentially read
KV pairs in a given range, having better performance
for 1KB and 4KB value sizes. In case of a 1KB value
size, a 4KB data block contains 4 KV pairs on average.
Therefore, when one block is read from disk, the block
is cached in memory and then, LevelDB benefits from
cache hits on scanning the following three keys without
incurring any disk read. However, in order to position a
starting key, a range query operation requires a random
read operation, for which SLM-DB provides high per-
formance. Also, it takes a relatively long time to read
a data block for a large value size. Thus, even with less
sequentiality, SLM-DB shows comparable performance
for range queries. Note that when the scan range be-
comes longer, the performance of SLM-DB generally
improves. For example, we ran additional experiments
of the range query workload with an average of 1,000
key ranges for the 4KB value size. In this case, SLM-
DB throughput was 57.7% higher than that of LevelDB.

• For the sequential read workload to scan all KV pairs,

USENIX Association 17th USENIX Conference on File and Storage Technologies    199



Table 2: db bench latency of SLM-DB in microseconds/Op
Value size 1KB 4KB 16KB 64KB

Random Write 25.14 77.44 262.41 1065.68
Random Read 323.56 338.25 406.94 851.98
Range Query 14.68 25.15 54.41 307.71

Sequential Read 4.74 19.35 80.74 182.28

SLM-DB achieves better performance than LevelDB,
except for the 1KB value size.

While running the random read, range query, and sequen-
tial read workloads, LevelDB and SLM-DB perform addi-
tional compaction operations. We measure the total amount
of disk write of LevelDB and SLM-DB from the creation of
a database to the end of each workload. By selectively com-
pacting SSTables, the total amount of disk write of SLM-DB
is only 39% of that of LevelDB on average for the random
read, range query, and sequential read workloads. Note that
for LevelDB with db bench workloads, the amount of write
for WAL is 14% of its total amount of write on average.

Recall that SLM-DB adds an SSTable to the compaction
candidate list for garbage collection only when more than
a certain percentage of KV pairs stored in the SSTable are
obsolete, and it performs selective compaction for SSTables
with poor sequentiality. We analyze the space amplification
of SLM-DB for the random write workload in db bench.
Over all the value sizes, the size of the database on disk for
SLM-DB is up to 13% larger than that for LevelDB. Finally,
we show the operation latency performance of SLM-DB in
Table 2.

6.4 Results with YCSB

YCSB consists of six workloads that capture different real
world scenarios [17]. To run the YCSB workloads, we mod-
ify db bench to run YCSB workload traces for various value
sizes (similar to [35]).

Figures 7(a), 7(b) and 7(c) show the operation through-
put, latency, and the total amount of write with SLM-DB,
normalized to those with LevelDB over the six YCSB work-
loads [17]. In Figures 7(a) and 7(b), the numbers presented
on top of the bars are operation throughput in KOps/s and
operation latency in microseconds/Op of SLM-DB, respec-
tively. For each workload, the cumulative amount of write
is measured when the workload finishes. For the results, we
load the database for workload A by inserting KVs, and con-
tinuously run workload A, workload B, workload C, work-
load F, and workload D in order. We then delete the database,
and reload the database to run workload E. Workload A per-
forms 50% reads and 50% updates, Workload B performs
95% reads and 5% updates, Workload C performs 100%
reads, and Workload F performs 50% reads and 50% read-
modify-writes. For these workloads, Zipfian distribution is
used. Workload D performs 95% reads for the latest keys

(a) Throughput

(b) Latency

(c) Total amount of write

Figure 7: YCSB performance of SLM-DB normalized to
LevelDB with the same setting.

and 5% inserts. Workload E performs 95% range query and
5% inserts with Zipfian distribution.

In Figure 7(a), the throughputs of SLM-DB are higher
than those of LevelDB for all the workloads over varying
value sizes, except for workload E with a 1KB value size.
For 4∼64KB value sizes, the performance of SLM-DB for
workload E (i.e., short range queries) is 15.6% better than
that of LevelDB on average due to the fast point query re-
quired for each range query and the selective compaction
mechanism that provides some degree of sequentiality for
KV pairs stored on disks. For workload A, which is com-
posed of 50% reads and 50% updates, updating a value for
a key is performed only when the key already exists in the
database. Thus, this update is the “insert if exists” operation.
For this operation, SLM-DB efficiently checks the existence

200    17th USENIX Conference on File and Storage Technologies USENIX Association



of a key through a B+-tree search. On the other hand, check-
ing the existence of a key is an expensive operation in Lev-
elDB. If the key does not exist, LevelDB needs to search
the key at every level. Therefore, for workload A, SLM-DB
achieves 2.7 times higher throughput than LevelDB does on
average.

As shown in Figure 7(c), the total amount of write in SLM-
DB is much smaller than that of LevelDB in all the work-
loads. In particular, with a 1KB value size, SLM-DB only
writes 13% of the data that LevelDB writes to disk while ex-
ecuting up to workload D. Note that for LevelDB with YCSB
workloads, the amount of write for WAL is 11% of its total
amount of write on average.

6.5 Other Performance Factors

In the previous discussion, we mainly focused on how SLM-
DB would perform for target workloads that we envision for
typical KV stores. Also, there were parameter and scheme
choices that were part of the SLM-DB design. Due to various
limitations, we were not able to provide a complete set of
discussion on these matters. In this section, we attempt to
provide a sketch of some of these matters.
Effects of varying live-key ratios In the above experiments,
the live-key ratio is set to 0.7. As the ratio increases, SLM-
DB will perform garbage collection more aggressively. We
run experiments of the random write and range query work-
loads of db bench with a 1KB value size over varying live-
key ratios of 0.6, 0.7, and 0.8. With ratio=0.7, the range
query latency decreases by around 8%, while write latency
increases by 17% due to more compaction compared to ra-
tio=0.6. With ratio=0.8, the range query latency remains the
same as that with ratio=0.7. However, with ratio=0.8, write
performance is severely degraded (i.e., two times slower than
ratio=0.6) because the live-key ratio selection scheme adds
too many files to the candidate list, making SLM-DB stall
for compaction. Compared to ratio=0.6, with ratio=0.7 and
ratio=0.8, the database sizes (i.e., space amplification) de-
crease by 1.59% and 3.05%, whereas the total amounts of
disk write increase by 7.5% and 12.09%, respectively.
Effects of compaction candidate selection schemes The
selection schemes based on the leaf node scans and sequen-
tiality degree per range query can improve the sequentiality
of KVs stored on disks. Using YCSB Workload E, which
is composed of a large number of range query operations,
with a 1KB value size, we analyze the performance effects of
these schemes by disabling them in turn. First, when we dis-
able both schemes, the latency result becomes more than 10
times longer than with both schemes enabled. Next, we dis-
able the sequentiality degree per range query, which is only
activated by a range query operation, while keeping the leaf
node scans for selection. The result is that there is a range
query latency increase of around 50%. Finally, we flip the
two selection schemes and disable the leaf node scans and

Figure 8: Range query performance of SLM-DB over various
key ranges normalized to LevelDB with the same setting.

enable the sequentiality degree per range query scheme. In
this case, the result is around a 15% performance degrada-
tion. This implies that selection based on the leaf node scans
will play an important role for real world workloads that are
composed of a mix of “point queries, updates and occasional
scans” as described in the study by Sears and Ramakrish-
nan [36].
Short range query Figure 8 shows the range query perfor-
mances of db bench with SLM-DB over various key ranges,
5, 10, 50, and 100, normalized to those of LevelDB. For
small key ranges such as 5 and 10, the performance trend
over different value sizes is similar to that of the random
read workload shown in Figure 6(b) as the range query op-
eration depends on random read operations needed to locate
the starting key.
Smaller value sizes We evaluate the performance of SLM-
DB for a database with a 128 byte value size for random
write, random read, and range query workloads in db bench.
Note that with this setting, the total number of write oper-
ations becomes so large that, for the range query workload,
we choose to execute for only 1% of the write operations
due to time and resource limitations. For these experiments,
we find that write performance of SLM-DB is 36.22% lower
than that of LevelDB. The reason behind this is PM write la-
tency, where it is set to 500ns. With DRAM write latency,
in fact, write performance of SLM-DB becomes 24.39%
higher, while with 300ns PM write latency, it is only 6.4%
lower than LevelDB. With small value sizes, we see the ef-
fect of PM write latency on performance. Even so, note that
SLM-DB provides reasonable write performance with strong
durability of data, considering that the performance of Lev-
elDB with fsync enabled for WAL is more than 100 times
lower than that with fsync disabled for WAL. For random
read operations, SLM-DB improves performance by 10.75%
compared to LevelDB. For range query operations, with the
key range sizes of 50 and 100, performances of SLM-DB are
17.48% and 10.6% lower, respectively, than those of Lev-
elDB. However, with the key range sizes of 5 and 10, SLM-
DB becomes more than 3 times slower than LevelDB as Lev-
elDB takes advantage of the cache hits brought about by the
high sequentiality of KVs stored on disk.
LevelDB with additional B+-tree index We implement a
version of LevelDB that has an additional B+-tree index
stored in PM as SLM-DB. This version utilizes the B+-tree
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index for random read operations and the B+-tree iterators
for range query operations. We evaluate the performance of
LevelDB with the B+-tree index over various value sizes us-
ing db bench as in Section 6.3. For the random write work-
load, the performance of LevelDB with the B+-tree is al-
most the same as that of LevelDB. However, for the random
read workload, the performance is almost the same as that
of SLM-DB. For the range query workload, it shows 6.64%
higher performance than LevelDB on average over all value
sizes, as it leverages not only the full sequentiality of KVs
in each level, but also the B+-tree iterator instead of multiple
iterators of LevelDB (each of which iterates each level in an
LSM-tree).
Effects of PM bandwidth In the above experiments, it is
assumed that PM bandwidth is the same as that of DRAM
(i.e., 8GB/s). We run experiments of SLM-DB with a 1KB
value size over various PM bandwidths, 2GB/s, 5GB/s and
8GB/s. Note that for these experiments, we used a different
machine with two Intel Xeon Octa-core E5-2620V4 proces-
sors (2.1Ghz) to decrease the memory bandwidth by thermal
throttling.

Write performance of SLM-DB is affected not only by
MemTable insertion of a KV pair but also by background
compaction, which can stall write operations. For com-
paction, the performance degradation caused by lower PM
bandwidths for B+-tree insertion is around 5%. However,
the effect of PM bandwidth on compaction performance is
negligible as file creation is the performance dominating fac-
tor. For MemTable insertion, performance with 2GB/s is de-
graded by 9% compared to that with 8GB/s. Therefore, the
final write performance with 2GB/s is around 6% lower than
that with 8GB/s. With 5GB/s, the performance of MemTable
insertion is not degraded, showing final write performance
similar to that with 8GB/s. We also find that with value sizes
of 4, 16, and 64KB, write performance of SLM-DB is not
affected by PM bandwidth.

For the random read workload, the time to search
MemTable and Immutable MemTable and to query the B+-
tree is very small comprising just 0.27% of the total time
of a read operation for all PM bandwidths used in the ex-
periments. Thus, the effect of PM bandwidth on read per-
formance of SLM-DB is negligible. Note that in our exper-
iments, PM and DRAM read latency is assumed to be the
same. However, we believe this has only minor implications
on the final read latency as the time to read data from PM
during a read operation is very small compared to the time to
read a block from disk.
Larger DBs We evaluate the performance of LevelDB and
SLM-DB for a database that is created by inserting 20GB
data over various value sizes using db bench. Note that we
use 4GB DRAM for the experiments. The write and read
throughputs of SLM-DB are 2.48 and 1.34 times higher, re-
spectively, than those of LevelDB (on average), while the
range query throughput is 10% lower. Recall that for the

database with 8GB data insertion (in Section 6.3), SLM-DB
showed 1.96 and 1.45 times higher write and read through-
put, respectively, and 11% lower range query throughput
than LevelDB.

7 Discussion

Persistent memory cost SLM-DB utilizes extra PM for
MemTable, Immutable MemTable, the B+-tree index, and
compaction log. For MemTable and Immutable MemTable,
its size is user configurable and constant. On the other hand,
PM consumed for the B+-tree index depends on the value
size, as for a fixed sized database, with a smaller value size,
the number of records increases, which results in a larger
B+-tree index. Finally, the compaction log size is very small
relative to the size of the B+-tree index.

In our experiments of the database with 8GB data inser-
tion, the total amount of PM needed for MemTable and Im-
mutable Memtable is 128MB. For the B+-tree, a total of 26
bytes are used per key in the leaf nodes: (integer type) 8 bytes
for the key, 8 bytes for the pointer, and 10 bytes for the lo-
cation information. Thus, the total amount of PM needed for
the B+-tree is dominantly determined by the leaf nodes. In
particular, with the 1KB and 64KB value size, SLM-DB uses
around 700MB and 150MB of PM, respectively. The cost of
PM is expected to be cheaper than DRAM [20], and so we
will be able to achieve high performance KV stores with a
reasonably small extra cost for PM in many cases.
Parallelism SLM-DB is currently implemented as a modifi-
cation of LevelDB. Thus, LevelDB and consequently, SLM-
DB as well, has some limitations in efficiently handling
multi-threaded workloads. In particular, for writes, there is
a writer queue that limits parallel write operations, and for
reads, a global lock needs to be acquired during the opera-
tions to access the shared SSTable metadata [11]. However,
by design, SLM-DB can easily be extended for exploiting
parallelism; a concurrent skiplist may replace our current im-
plementation, lock-free search feature of FAST and FAIR B-
tree for read operations may be exploited, and multi-threaded
compaction can be supported [8]. We leave improving paral-
lelism of SLM-DB as future work.

8 Related Work

KV stores utilizing PM have been investigated [4, 6, 23, 41].
HiKV assumes a hybrid memory system of DRAM and PM
for a KV store, where data is persisted to only PM, elim-
inating the use of disks [41]. HiKV maintains a persistent
hash index in PM to process read and write operations ef-
ficiently and also has a B+-tree index in DRAM to support
range query operations. Thus, it needs to rebuild the B+-tree
index when the system fails. Unlike HiKV, our work consid-
ers a system in which PM coexists with HDDs or SSDs sim-
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ilar to NoveLSM [23]. Similarly to HiKV, it is possible for
SLM-DB to have the B-tree index in DRAM and the hash ta-
ble index in PM. However, for a hybrid system that has both
PM and disks, the final read latency is not strongly affected
by index query performance as disk performance dominates,
unless the database is fully cached. Thus, in such a hybrid
setting, using a hash table rather than a B-tree index does
make a meaningful performance difference, even while pay-
ing for the additional overhead of keeping two index struc-
tures. pmemkv [6] is a key-value store based on a hybrid sys-
tem of DRAM and PM, which has inner nodes of a B+-tree
in DRAM and stores leaf nodes of the B+-tree in PM.

NoveLSM [23] and NVMRocks [4] redesign an LSM-tree
based KV store for PM. NoveLSM proposes to have an im-
mutable PM MemTable between the DRAM MemTable and
the disk component, reducing serialization and deserializa-
tion costs. Additionally, there is a mutable PM MemTable,
which is used along with the DRAM MemTable to reduce
stall caused by compaction. Since the DRAM MemTable
with WAL and the mutable PM MemTable are used together,
the commit log for the DRAM MemTable and versions of
keys need to be carefully maintained to provide consistency.
When a large mutable PM MemTable is used, heavy writes
are buffered in MemTable and flush operations from Im-
mutable MemTable to disk will occur less frequently. How-
ever, to handle a database with a size larger than the total size
of DRAM/PM MemTables and Immutable MemTables, KVs
in Immutable MemTable will eventually need to be flushed to
disk. In NVMRocks, the MemTable is persisted in PM, elim-
inating the logging cost like SLM-DB, and PM is also used
as a cache to improve read throughput [4]. In both NoveLSM
and NVMRocks, PM is also used to store SSTables. How-
ever, in our work, we propose a new structure of employing a
persistent B+-tree index for fast query and a single level disk
component of SSTable files with selective compaction, while
leveraging the memory component similar to an LSM-tree.
In general, SLM-DB can be extended to utilize a large PM
MemTable [23], multiple Immutable MemTables [8], and a
PM cache [4], orthogonally improving the performance of
the KV store.

Optimization techniques to enhance the performance of
an LSM-tree structure for conventional systems based on
DRAM and disks have been extensively studied [10, 11, 30,
35, 37, 38, 40]. WiscKey provides optimized techniques for
SSDs by separating keys and values [30]. In WiscKey, sorted
keys are maintained in an LSM-tree while values are stored
in a separate value log without hierarchical levels similar to
SLM-DB, reducing I/O amplification. Since decoupling keys
and values hurts the performance of range queries, it utilizes
the parallel random reads of SSDs to efficiently prefetch the
values. HashKV similarly separates keys and values stored
on SSDs as WiscKey does [14]. It optimizes garbage collec-
tion by grouping KVs based on a hash function for update-
intensive workloads. LOCS looks into improving the perfor-

mance of an LSM-tree based KV store by leveraging open-
channel SSDs [38].

VT-tree [37] proposes stitching optimization that avoids
rewriting already sorted data in an LSM-tree, while main-
taining the sequentiality of KVs sufficiently to provide ef-
ficient range query performance similar to SLM-DB. How-
ever, VT-tree still needs to maintain KV pairs in multiple
levels, and does not focus on improving read performance.
LSM-trie focuses on reducing write amplification, especially
for large scale KV stores with small value sizes by us-
ing a trie structure [40]. However, LSM-trie does not sup-
port range query operations as it is based on a hash func-
tion. PebblesDB proposes the Fragmented Log-Structured
Merge Trees, which fragments KVs into smaller files, reduc-
ing write amplification in the same level [35]. FloDB intro-
duces a small in-memory buffer on top of MemTable, which
optimizes the memory component of an LSM-tree structure
and supports skewed read-write workloads effectively [11].
TRIAD also focuses on skewed workloads by keeping hot
keys in memory without flushing to disk [10]. The fractal in-
dex tree is investigated to reduce I/O amplification for B+-
tree based systems [13].

There have been several studies to provide optimal per-
sistent data structures such as a radix tree [29], a hashing
scheme [43], and a B+-tree [16, 22, 34, 42] in PM. They pro-
pose write optimal techniques while providing consistency
of the data structures with 8-byte failure atomic writes in PM.

9 Concluding Remarks

In this paper, we presented the Single-Level Merge DB
(SLM-DB) that takes advantage of both the B+-tree in-
dex and the LSM-tree approach by leveraging PM. SLM-
DB utilizes a persistent B+-tree index, the PM resident
MemTable, and a single level disk component of SSTable
files with selective compaction. Our extensive experimen-
tal study demonstrates that SLM-DB provides high read and
write throughput as well as comparable range query perfor-
mance, compared to LevelDB, while achieving low write
amplification and near-optimal read amplification.
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Abstract
Emerging fast, byte-addressable Non-Volatile Main Memory
(NVMM) provides huge increases in storage performance
compared to traditional disks. We present Ziggurat, a tiered
file system that combines NVMM and slow disks to create a
storage system with near-NVMM performance and large ca-
pacity. Ziggurat steers incoming writes to NVMM, DRAM,
or disk depending on application access patterns, write size,
and the likelihood that the application will stall until the
write completes. Ziggurat profiles the application’s access
stream online to predict the behavior of individual writes.
In the background, Ziggurat estimates the “temperature” of
file data, and migrates the cold file data from NVMM to
disks. To fully utilize disk bandwidth, Ziggurat coalesces
data blocks into large, sequential writes. Experimental re-
sults show that with a small amount of NVMM and a large
SSD, Ziggurat achieves up to 38.9× and 46.5× throughput
improvement compared with EXT4 and XFS running on an
SSD alone, respectively. As the amount of NVMM grows,
Ziggurat’s performance improves until it matches the perfor-
mance of an NVMM-only file system.

1 Introduction

Emerging fast, byte-addressable persistent memories, such
as battery-backed NVDIMMs [25] and 3D-XPoint [24],
promise to dramatically increase the performance of stor-
age systems. These non-volatile memory technologies offer
vastly higher throughput and lower latency compared with
traditional block-based storage devices.

Researchers have proposed several file systems [8, 10, 11,
29, 32] on NVMM. These file systems leverage the direct ac-
cess (DAX) feature of persistent memory to bypass the page
cache layer and provide user applications with direct access
to file data.

The high performance of persistent memory comes at a
high cost. The average price per byte of persistent mem-

∗This work was done while visiting University of California, San Diego.

ory is higher than SSD, and SSDs and hard drives scale to
much larger capacities than NVMM. So, workloads that are
cost-sensitive or require larger capacities than NVMM can
provide would benefit from a storage system that can lever-
age the strengths of both technologies: NVMM for speed
and disks for capacity.

Tiering is a solution to this dilemma. Tiered file systems
manage a hierarchy of heterogeneous storage devices and
place data in the storage device that is a good match for the
data’s performance requirements and the application’s future
access patterns.

Using NVMM poses new challenges to the data placement
policy of tiered file systems. Existing tiered storage systems
(such as FlashStore [9] and Nitro [23]) are based on disks
(SSDs or HDDs) that provide the same block-based inter-
face, and while SSDs are faster than hard disks, both achieve
better performance with larger, sequential writes and neither
can approach the latency of DRAM for reads or writes.

NVMM supports small (e.g., 8-byte) writes and offers
DRAM-like latency for reads and write latency within a
small factor of DRAM’s. This makes the decision of where
to place data and metadata more complex: The system
must decide where to initially place write data (DRAM or
NVMM), how to divide NVMM between metadata, freshly
written data, and data that the application is likely to read.

The first challenge is how to fully exploit the high band-
width and low latency of NVMM. Using NVMM introduces
a much more efficient way to persist data than disk-based
storage systems. File systems can persist synchronous writes
simply by writing them to NVMM, which not only bypasses
the page cache layer but also removes the high latency of
disk accesses from the critical path. Nevertheless, a DRAM
page cache still has higher throughput and lower latency
than NVMM, which makes it competitive to perform asyn-
chronous writes to the disk tiers.

The second challenge is how to reconcile NVMM’s ran-
dom access performance with the sequential accesses that
disks and SSDs favor. In a tiered file system with NVMM
and disks, bandwidth and latency are no longer the only
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differences between different storage tiers. Compared with
disks, the gap between sequential and random performance
of NVMM is much smaller, which makes it capable of
absorbing random writes. Simultaneously, the file system
should leverage NVMM to maximize the sequentiality of
writes and reads to and from disk.

We propose Ziggurat, a tiered file system that spans
NVMM and disks. Ziggurat exploits the benefits of NVMM
through intelligent data placement during file writes and data
migration. Ziggurat includes two placement predictors that
analyze the file write sequences and predict whether the in-
coming writes are both large and stable, and whether up-
dates to the file are likely to be synchronous. Ziggurat then
steers the incoming writes to the most suitable tier based on
the prediction: writes to synchronously-updated files go to
the NVMM tier to minimize the synchronization overhead.
Small, random writes also go to the NVMM tier to fully
avoid random writes to disk. The remaining large sequen-
tial writes to asynchronously-updated files go to disk.

We implement an efficient migration mechanism in Zig-
gurat to make room in NVMM for incoming file writes and
accelerate reads to frequently accessed data. We first profile
the temperature of file data and select the coldest file data
blocks to migrate. During migration, Ziggurat coalesces ad-
jacent data blocks and migrates them in large chunks to disk.
Ziggurat also adjusts the migration policy according to the
application access patterns.

The contributions of this paper include:

• We describe a synchronicity predictor to efficiently pre-
dict whether an application is likely to block waiting a
write to complete.

• We describe a write size predictor to predict whether the
writes to a file are both large and stable.

• We describe a migration mechanism that utilizes the
characteristics of different storage devices to perform
efficient migrations.

• We design an adaptive migration policy that can fit dif-
ferent access patterns of user applications.

• We implement and evaluate Ziggurat to demonstrate the
effectiveness of the predictors and the migration mech-
anism.

We evaluate Ziggurat using a collection of micro- and
macro-benchmarks. We find that Ziggurat is able to obtain
near-NVMM performance on many workloads even with lit-
tle NVMM. With a small amount of NVMM and a large
SSD, Ziggurat achieves up to 38.9× and 46.5× through-
put improvement compared with EXT4 and XFS running on
SSD alone, respectively. As the amount of NVMM grows,
Ziggurat’s performance improves until it nearly matches the
performance of an NVMM-only file system.

The remainder of the paper is organized as follows. Sec-
tion 2 describes a variety of storage technologies and the
NOVA file system. Section 3 presents a design overview of

Technology Latency Sequential Bandwidth
Read Write Read Write

DRAM 0.1µs 0.1µs 25GB/s 25GB/s
NVMM 0.2µs 0.5µs 10GB/s 5GB/s

Optane SSD 10µs 10µs 2.5GB/s 2GB/s
NVMe SSD 120µs 30µs 2GB/s 500MB/s
SATA SSD 80µs 85µs 500MB/s 500MB/s
Hard disk 10ms 10ms 100MB/s 100MB/s

Table 1: Performance comparison among different stor-
age media. DRAM, NVMM and hard disk numbers are esti-
mated based on [5, 19, 35]. SSD numbers are extracted from
Intel’s website.

the Ziggurat file system. We discuss the placement policy
and the migration mechanism of Ziggurat in Section 4 and
Section 5, respectively. Section 6 evaluates Ziggurat, and
Section 7 shows some related work. Finally, we present our
conclusions in Section 8.

2 Background

Ziggurat targets emerging non-volatile memory technologies
and conventional block-based storage devices (e.g., SSDs or
HDDs). This section provides background on NVMM and
disks, and the NOVA file system that Ziggurat is based on.

2.1 Storage Technologies
Emerging non-volatile main memory (NVMM), solid-state
drive (SSD) and hard disk drive (HDD) technologies have
their unique latency, bandwidth, capacity, and characteris-
tics. Table 1 shows the performance comparison of different
storage devices.

Non-volatile memory provides byte-addressability, persis-
tence and direct access via the CPU’s memory controller.
Battery-backed NVDIMMs [25, 26] have been available
for some time. Battery-free non-volatile memory tech-
nologies include phase change memory (PCM) [22, 28],
memristors [31, 33], and spin-torque transfer RAM (STT-
RAM) [7, 20]. Intel and Micron’s 3D-XPoint [24] will soon
be available. All of these technologies offer both longer la-
tency and higher density than DRAM. 3D-XPoint has also
appeared in Optane SSDs [17], enabling SSDs that are much
faster than their flash-based counterparts.

2.2 The NOVA File System
Ziggurat is implemented based on NOVA [32], an NVMM
file system designed to maximize performance on hybrid
memory systems while providing strong consistency guar-
antees. Below, we discuss the file structure and scalability
aspects of NOVA’s design that are most relevant to Ziggurat.
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NOVA maintains a separate log for each inode. NOVA
also maintains radix trees in DRAM that map file offsets to
NVMM locations. The relationship between the inode, its
log, and its data pages is illustrated in Figure 2a. For file
writes, NOVA creates write entries (the log entries for data
updates) in the inode log. Each write entry holds a pointer
to the newly written data pages, as well as its modification
time (mtime). After NOVA creates a write entry, it updates
the tail of the inode log in NVMM, along with the in-DRAM
radix tree.

NOVA uses per-cpu allocators for NVMM space and per-
cpu journals for managing complex metadata updates. This
enables parallel block allocation and avoids contention in
journaling. In addition, NOVA has per-CPU inode tables to
ensure good scalability.

3 Ziggurat Design Overview

Ziggurat is a tiered file system that spans across NVMM and
disks (hard or solid state). We design Ziggurat to fully uti-
lize the strengths of NVMM and disks and to offer high file
performance for a wide range of access patterns.

Three design principles drive the decisions we made in
designing Ziggurat. First, Ziggurat should be fast-first. It
should use disks to expand the capacity of NVMM rather
than using NVMM to improve the performance of disks as
some previous systems [14, 15] have done. Second, Ziggurat
strives to be frugal by placing and moving data to avoid wast-
ing scarce resources (e.g., NVMM capacity or disk band-
width). Third, Ziggurat should be predictive by dynamically
learning the access patterns of a given workload and adapting
its data placement decisions to match.

These principles influence all aspects of Ziggurat’s design.
For instance, being fast-first means, in the common case, file
writes go to NVMM. However, Ziggurat will make an excep-
tion if it predicts that steering a particular write in NVMM
would not help application performance (e.g., if the write is
large and asynchronous).

Alternatively, if the writes are small and synchronous
(e.g., to a log file), Ziggurat will send them to NVMM ini-
tially, detect when the log entries have “cooled”, and then ag-
gregate those many small writes into larger, sequential writes
to disk.

Ziggurat uses two mechanisms to implement these design
principles. The first is a placement policy driven by a pair of
predictors that measure and analyze past file access behavior
to make predictions about future behavior. The second is an
efficient migration mechanism that moves data between tiers
to optimize NVMM performance and disk bandwidth. The
migration system relies on a simple but effective mechanism
to identify cold data to move from NVMM to disk.

We describe Ziggurat in the context of a simple two-tiered
system comprising NVMM and an SSD, but Ziggurat can
use any block device as the “lower” tier. Ziggurat can also

handle more than one block device tier by migrating data
blocks across different tiers.

3.1 Design Decisions

We made the following design decisions in Ziggurat to
achieve our goals.

Send writes to the most suitable tier Although NVMM
is the fastest tier in Ziggurat, file writes should not always go
to NVMM. NVMM is best-suited for small updates (since
small writes to disk are slow) and synchronous writes (since
NVMM has higher bandwidth and lower latency). However,
for larger asynchronous writes, targeting disk is faster, since
Ziggurat can buffer the data in DRAM more quickly than it
can write to NVMM, and the write to disk can occur in the
background. Ziggurat uses its synchronicity predictor to an-
alyze the sequence of writes to each file and predict whether
future accesses are likely to be synchronous (i.e., whether the
application will call fsync in the near future).

Only migrate cold data in cold files During migration,
Ziggurat targets the cold portions of cold files. Hot files and
hot data in unevenly-accessed files remain in the faster tier.
When the usage of the fast tier is above a threshold, Ziggurat
selects files with the earliest average modification time to
migrate (Section 5.1). Within each file, Ziggurat migrates
blocks that are older than average. Unless the whole file is
cold (i.e., its modification time is not recent), in which case
we migrate the whole file.

High NVMM space utilization Ziggurat fully utilizes
NVMM space to improve performance. Ziggurat uses
NVMM to absorb synchronous writes. Ziggurat uses a dy-
namic migration threshold for NVMM based on the read-
write pattern of applications, so it makes the most of NVMM
to handle file reads and writes efficiently. We also implement
reverse migration (Section 5.2) to migrate data from disk to
NVMM when running read-dominated workloads.

Migrate file data in groups In order to maximize the
write bandwidth of disks, Ziggurat performs migration to
disks as sequentially as possible. The placement policy en-
sures that most small, random writes go to NVMM. How-
ever, migrating these small write entries to disks directly will
suffer from the poor random access performance of disks. In
order to make migration efficient, Ziggurat coalesces adja-
cent file data into large chunks for migration to exploit se-
quential disk bandwidth (Section 5.3).

High scalability Ziggurat extends NOVA’s per-cpu stor-
age space allocators to include all the storage tiers. It also
uses per-cpu migration and page cache writeback threads to
improve scalability.
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Figure 1: File operations. Ziggurat utilizes different storage tiers to handle I/O requests such as write, synchronize, append,
migrate, read and mmap efficiently.

3.2 File Operations
Figure 1 illustrates how Ziggurat handles operations on files
(write, synchronize, append, migrate, read, and mmap) that
span multiple tiers.

Write The application initializes the first 24 blocks of the
file with three sequential writes in (a). Ziggurat first checks
the results from the synchronicity predictor and the write size
predictor (Section 4) to decide which tier should receive the
new data. In the example, the three writes are large and Zig-
gurat predicts that the accesses are asynchronous, so Zig-
gurat steers these writes to disk. It writes the data to the
page cache in DRAM and then asynchronously writes them
to disk.

Synchronize The application calls fsync in (b). Ziggurat
traverses the write log entries of the file, and writes back the
dirty data pages in the DRAM page cache. The write-back
threads merge all adjacent dirty data pages to perform large
sequential writes to disk. If the file data were in NVMM,
fsync would be a no-op.

Append After the fsync, the application performs eight
synchronous writes to add eight blocks to the end of the file
in (c). The placement predictor recognizes the pattern of
small synchronous writes and Ziggurat steers the writes to
NVMM.

Migrate When the file becomes cold in (d), Ziggurat
evicts the first 24 data pages from DRAM and migrates last
eight data blocks from NVMM to disk using group migration
(Section 5.3).

Read The user application reads the last eight data blocks
in (e). Ziggurat fetches them from disk to DRAM page
cache.

Memory map The user application finally issues a mmap

request to the head of the file in (f). Ziggurat uses reverse
migration to bring the data into NVMM and then maps the
pages into the application’s address space.

4 Placement Policy

Ziggurat steers synchronous or small writes to NVMM, but
it steers asynchronous, large writes to disk, because writing
to the DRAM page cache is faster than writing to NVMM,
and Ziggurat can write to disk in the background. It uses two

predictors to distinguish these two types of writes.

Synchronicity predictor The synchronicity predictor pre-
dicts whether the application is likely to call fsync on the
file in the near future. The synchronicity predictor counts
the number of data blocks written to the file between two
calls to fsync. If the number is less than a threshold (e.g.,
1024 in our experiments), the predictor classifies it as a
synchronously-updated file. The predictor treats writes to
files opened with O SYNC as synchronous as well.

Write size predictor The write size predictor not only en-
sures that a write is large enough to effectively exploit disk
bandwidth but also that the future writes within the same
address range are also likely to be large. The second con-
dition is critical. For example, if the application initializes
a file with large I/Os, and then performs many small I/Os,
these small new write entries will read and invalidate dis-
crete blocks, increasing fragmentation and leading to many
random disk accesses to service future reads.

Ziggurat’s write size predictor keeps a counter in each
write entry to indicate whether the write size is both large
and stable. When Ziggurat rewrites an old write entry, it first
checks whether the write size is big enough to cover at least
half the area taken up by the original log entry. If so, Zig-
gurat transfers the counter value of the old write entry to the
new one and increases it by one. Otherwise, it resets the
counter to zero. If the number is larger than four (a tunable
parameter), Ziggurat classifies the write as “large”. Writes
that are both large and asynchronous go to disk.

5 Migration Mechanism

The purpose of migration is to make room in NVMM for in-
coming file writes, as well as speeding up reads to frequently
accessed data. We use basic migration to migrate data from
disk to NVMM to fully utilize NVMM space when running
read-dominated workloads. We use group migration to mi-
grate data from NVMM to disk by coalescing adjacent data
blocks to achieve high migration efficiency and free up space
for future writes. Ziggurat can achieve near-NVMM perfor-
mance for most accesses as long as the migration mechanism
is efficient enough.

In this section, we first describe how Ziggurat identifies
good targets for migration. Then, we illustrate how it mi-
grates data efficiently to maximize the bandwidth of the disk
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Figure 2: Migration mechanism of Ziggurat. Ziggurat migrates file data between tiers using its basic migration and group
migration mechanisms. The blue arrows indicate data movement, while the black ones indicate pointers.

with basic migration and group migration. Finally, we show
how to migrate file logs efficiently.

5.1 Migration Profiler

Ziggurat uses a migration profiler to identify cold data to
migrate from NVMM to disk.

Implementation. Ziggurat first identifies the cold files to
migrate. Ziggurat profiles the temperature of each file by
maintaining cold lists, the per-cpu lists of files on each stor-
age tier, sorted by the average modification time(amtime)
computed across all the blocks in the file. The per-cpu cold
lists correspond to per-cpu migration threads which migrate
files from one tier to another. Ziggurat updates the cold list
whenever it modifies a file. To identify the coldest blocks
within an cold file, Ziggurat tracks the mtime for each block
in the file.

To migrate data, Ziggurat pops the coldest file from a cold
list. If the mtime of the popped file is not recent (more than
30 seconds ago), then Ziggurat treats the whole file as cold
and migrates all of it. Otherwise, the modification time of the
file’s block will vary, and Ziggurat migrates the write entries
with mtime earlier than the amtime of the file. Hence, the
cold part of the file is migrated to a lower tier, and the hot
part of the file stays in the original tier.

Deciding when to migrate. Most existing tiered stor-
age systems (such as [6, 21]) use a fixed utilization thresh-
old to decide when to migrate data to lower tiers. How-
ever, a higher threshold is not suitable for write-dominated
workloads, since the empty space in persistent memory will
be devoured by intensive file writes. In this case, the file
writes have to either stall before the migration threads clean
up enough space in NVMM, or write to disk. On the other
hand, a lower threshold is not desirable for read-dominated

workloads, since reads have to load more blocks from disks
instead of NVMM. We implement a dynamic threshold for
NVMM in Ziggurat based on the overall read-write ratio of
the file system. The migration threshold rises from 50% to
90% as the read-write ratio of the system changes.

5.2 Basic Migration
The goal of basic migration is to migrate the coldest data in
Ziggurat to disk. When the usage of the upper tier is above
the threshold, a per-cpu migration thread migrates the coldest
data in a cold file to disk. The migration process repeats until
the usage of the upper tier is below the threshold again.

The granularity of migration is a write entry. During mi-
gration, we traverse the in-DRAM radix tree to locate every
valid write entry in the file and migrate the write entries with
mtime earlier than the amtime of the file.

Figure 2a illustrates the basic procedures of how Ziggurat
migrates a write entry from NVMM to disk. The first step
is to allocate continuous space on disk to hold the migrated
data. Ziggurat copies the data from NVMM to disk. Then,
it appends a new write entry to the inode log with the new
location of the migrated data blocks. After that, it updates
the log tail in NVMM and the radix tree in DRAM. Finally,
Ziggurat frees the old blocks of NVMM.

To improve scalability, Ziggurat uses locks in the granu-
larity of a write entry instead of an entire file. Ziggurat locks
write entries during migration but other parts of the file re-
main available for reading. Migration does not block file
writes. If any foreground file I/O request tries to acquire the
inode lock, the migration thread will stop migrating the cur-
rent file, and release the lock.

If a write entry migrates to a disk when the DRAM page
cache usage is low (i.e., below 50%), Ziggurat will make
a copy of the pages in the DRAM page cache in order to
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accelerate future reads. Writes will benefit from this as well,
since unaligned writes have to read the partial blocks from
their neighbor write entries to fill the data blocks.

Ziggurat implements reverse migration, which migrates
file data from disks to NVMM, using basic migration. Write
entries are migrated successively without grouping since
NVMM can handle sequential and random writes efficiently.
File mmap uses reverse migration to enable direct access to
persistent data. Reverse migration also optimizes the perfor-
mance of read-dominated workloads when NVMM usage is
low since the performance depends on the size of memory. If
Ziggurat can only migrate data from a faster tier to a slower
one, then the precious available space of NVMM will stay
idle when running read-dominated workloads. Meanwhile,
the data on disks contend for a limited DRAM. Reverse mi-
gration makes full use of NVMM in such a scenario.

5.3 Group Migration

Group migration avoids fine-grain migration to improve ef-
ficiency and maximize sequential bandwidth to disks. Zig-
gurat tends to fill NVMM with small writes due to its data
placement policy. Migrating them from NVMM to disk with
basic migration is inefficient because it will incur the high
random access latency of disks.

Group migration coalesces small write entries in NVMM
into large sequential ones to disk. There are four benefits: (1)
It merges small random writes into large sequential writes,
which improves the migration efficiency. (2) If the migrated
data is read again, loading continuous blocks is much faster
than loading scattered blocks around the disk. (3) By merg-
ing write entries, the log itself becomes smaller, reducing
metadata access overheads. (4) It moderates disk fragmenta-
tion caused by log-structured writes by mimicking garbage
collection.

As illustrated in Figure 2b, the steps of group migration
are similar to migrating a write entry. In step 1, we allocate
large chunks of data blocks in the lower tier. In step 2, we
copy multiple pages to the lower tier with a single sequen-
tial write. After that, we append the log entry, and update
the inode log tail, which commits the group migration. The
stale pages and logs are freed afterward. Ideally, the group
migration size (the granularity of group migration) should be
set close to the future I/O size, so that applications can fetch
file data with one sequential read from disk. In addition, it
should not exceed the CPU cache size in order to maximize
the performance of loading the write entries from disks.

5.4 File Log Migration

Ziggurat migrates file logs in addition to data when NVMM
utilization is too high, freeing up space for hot data and meta-
data. Ziggurat periodically scans the cold lists, and initiates
log migration on cold files. Figure 3 illustrates how log mi-
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Figure 3: Log migration in Ziggurat. Ziggurat compacts
logs as it moves them from NVMM to disk.

gration is performed. Ziggurat copies live log entries from
NVMM into the page cache. The log entries are compacted
into new log pages during coping. Then, it writes the new log
pages back to disk, and updates the inode metadata cache in
DRAM to point to the new log. After that, Ziggurat atomi-
cally replaces the old log with the new one and reclaims the
old log.

6 Evaluation

6.1 Experimental Setup

Ziggurat is implemented on Linux 4.13. We used NOVA as
the code base to build Ziggurat, and added around 8.6k lines
of code. To evaluate the performance of Ziggurat, we run
micro-benchmarks and macro-benchmarks on a dual-socket
Intel Xeon E5 server. Each processor runs at 2.2GHz, has 10
physical cores, and is equipped with 25 MB of L3 cache and
128 GB of DRAM. The server also has a 400 GB Intel DC
P3600 NVMe SSD and a 187 GB Intel DC P4800X Optane
SSD.

As persistent memory devices are not yet available, we
emulate the latency and bandwidth of NVMM with the
NUMA effect on DRAM. There are two NUMA nodes in our
platform. During the experiments, the entire address space
of NUMA node 1 is used for NVMM emulation. All appli-
cations are pinned to run on the processors and memory of
NUMA node 0. Table 2 shows the DRAM latency of our ex-
perimental platform by Intel Memory Latency Checker [16].

We compare Ziggurat with different types of file systems.
For NVMM-based file systems, we compare Ziggurat with
NOVA [32], Strata [21] (NVMM only) and the DAX-based
file systems on Linux: EXT4-DAX and XFS-DAX. For disk-
based file systems, we compare Ziggurat with EXT4 in the
data journaling mode (-DJ) and XFS in the metadata log-
ging mode (-ML). Both EXT4-DJ and XFS-ML provide data
atomicity, like Ziggurat. For EXT4-DJ, the journals are kept
in a 2 GB journaling block device (JBD) on NVMM. For
XFS-ML, the metadata logging device is 2 GB of NVMM.
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Figure 4: Fio performance. Each workload performs 4 KB reads/writes to a hybrid file system backed by NVMM and SSD
(EXT4-DJ, XFS-ML and Ziggurat) or an NVMM-only file system (NOVA, EXT4-DAX and XFS-DAX).

Node 0 1
0 76.6 133.7
1 134.2 75.5

(a) NUMA latency (ns)

Node 0 1
0 52213.9 25505.9
1 25487.3 52111.8

(b) NUMA bandwidth (MB/s)

Table 2: NUMA latency and bandwidth of our platform.
We use the increased latency and reduced bandwidth of the
remote NUMA node to emulate the lower performance of
NVMM compared to DRAM.

We limit the capacity of the DRAM page cache to 10 GB.
For tiered file systems, we only do the comparison among

Ziggurat with different configurations. To the best of our
knowledge, Strata is the only currently available tiered file
system that spans across NVMM and disks. However, the
publicly available version of Strata only supports a few ap-
plications and has trouble running workloads with dataset
sizes larger than NVMM size as well as multi-threaded ap-
plications.

We vary the NVMM capacity available to Ziggurat to
show how performance changes with different storage con-
figurations. The dataset size of each workload is smaller
than 64 GB. The variation starts with Ziggurat-2 (i.e., Zig-
gurat with 2 GB of NVMM). In this case, most of the data
must reside on disk forcing Ziggurat to frequently migrate
data to accommodate incoming writes. Ziggurat-2 is also
an interesting comparison point for EXT4-DJ and XFS-ML,
since those configurations take different approaches to using
a small amount of NVMM to improve file system perfor-
mance. The variation ends with Ziggurat-64 (i.e., Ziggurat
with 64 GB of NVMM). The group migration size is set to
16 MB. We run each workload three times and report the
average across these runs.

6.2 Microbenchmarks

We demonstrate the relationship between access locality and
the read/write throughput of Ziggurat with Fio [1]. Fio can

Locality 90/10 80/20 70/30 60/40 50/50
Parameter θ 1.04 0.88 0.71 0.44 0

Table 3: Zipf Parameters. We vary the Zipf parameter, θ ,
to control the amount of locality in the access stream.

issue random read/write requests according to Zipfian distri-
bution. We vary the Zipf parameter θ to adjust the locality
of random accesses. We present the results with a range of
localities range from 90/10 (90% of accesses go to 10% of
data) to 50/50 (Table 3). We initialize the files with 2 MB
writes and the total dataset is 32 GB. We use 20 threads for
the experiments, each thread performs 4 KB I/Os to a private
file, and all writes are synchronous.

Figure 4 shows the results for Ziggurat, EXT4-DJ, and
XFS-ML on Optane SSD and NVMe SSD, as well as NOVA,
EXT4-DAX, and XFS-DAX on NVMM. The gaps between
the throughputs from Optane SSD and NVMe SSD in both
graphs are large because Optane SSD’s read/write bandwidth
is much higher than the NVMe SSD’s. The throughput of
Ziggurat-64 is close to NOVA for the 50/50 locality, the per-
formance gap between Ziggurat-64 and NOVA is within 2%.
This is because when all the data fits in NVMM, Ziggurat is
as fast as NOVA. The throughput of Ziggurat-2 is within 5%
of EXT4-DJ and XFS-ML.

In Figure 4a and Figure 4b, the random read performance
of Ziggurat grows with increased locality. The major over-
head of reads comes from fetching cold data blocks from
disk to DRAM page cache. There is a dramatic performance
increase in 90/10, due to CPU caching and the high locality
of the workload.

In Figure 4c and Figure 4d, the difference between the ran-
dom write performance of Ziggurat with different amounts
of locality is small. Since all the writes are synchronous
4 KB aligned writes, Ziggurat steers these writes to NVMM.
If NVMM is full, Ziggurat writes the new data blocks to
the DRAM page cache and then flushes them to disk syn-
chronously. Since the access pattern is random, the migra-
tion threads cannot easily merge the discrete data blocks to
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Figure 5: Filebench performance (multi-threaded). Each workload runs with 20 threads so as to fully show the scalability of
the file systems. The performance gaps between Optane SSD and NVMe SSD are smaller than the single-threaded ones.
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Figure 6: Filebench performance (single-threaded). For small amounts of NVMM, Ziggurat is no slower than conventional
file systems running on disk. With large amount of NVMM, performance nearly matches that of NVMM-only file systems.

perform group migration in large sequential writes to disk.
Therefore, the migration efficiency is limited by the random
write bandwidth of disks, which leads to accumulated cold
data blocks in NVMM. Increasing NVMM size, increasing
locality, or reducing work set size can all help alleviate this
problem.

We also measure the disk throughput of the random write
workloads on Ziggurat-2 to show how Ziggurat fully uti-
lizes disk bandwidth to achieve maximum performance. Al-
though it is hard to merge the discrete data blocks to perform
group migration, the per-CPU migration threads make full
use of the concurrency of disks to achieve high migration ef-
ficiency. The average disk write bandwidth of Ziggurat-2 is
1917 MB/s and 438 MB/s for Optane SSD and NVMe SSD,
respectively. These values are very close to the bandwidth
limit numbers in Table 1.

6.3 Macrobenchmarks

We select three Filebench workloads: fileserver, webproxy,
and varmail to evaluate the overall performance of Ziggurat.
Table 4 summarizes the characteristics of these workloads.

Figure 5 shows the multi-threaded Filebench throughput
on our five comparison file systems and several Ziggurat
configurations. In general, we observe that the throughput
of Ziggurat-64 is close to NOVA, the performance gap be-

Workload Average # of I/O size Threads R/W
file size files (R/W) ratio

Fileserver 2MB 16K 16KB/16KB 20/1 1:2
Webproxy 2MB 16K 1MB/16KB 20/1 5:1
Varmail 2MB 16K 1MB/16KB 20/1 1:1

Table 4: Filebench workload characteristics. These work-
loads have different read/write ratios and access patterns.

tween Ziggurat-64 and NOVA is within 3%. Ziggurat grad-
ually bridges the gap between disk-based file systems and
NVMM-based file systems by increasing the NVMM size.

Fileserver emulates the I/O activity of a simple file server,
which consists of creates, deletes, appends, reads and writes.
In the fileserver workload, Ziggurat-2 has similar throughput
to EXT4-DJ and XFS-ML. The performance increases sig-
nificantly when the NVMM size is larger than 32 GB since
most of the data reside in memory. Ziggurat-64 outperforms
EXT4-DAX and XFS-DAX by 2.6× and 5.1×.

Webproxy is a read-intensive workload, which involves
appends and repeated reads to files. Therefore, all the
file systems achieve high throughputs by utilizing the page
cache.

Varmail emulates an email server with frequent syn-
chronous writes. Ziggurat-2 outperforms EXT4-DJ and
XFS-ML by 2.1× (Optane SSD) and 2.6× (NVMe SSD)
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Figure 7: Rocksdb performance. Ziggurat shows good performance for inserting file data with write-ahead logging, due to
the clear distinction between hot and cold files and its migration mechanism.

on average. Varmail performs an fsync after every two ap-
pends. Ziggurat analyzes these synchronous appends and
steers them to NVMM, eliminating the cost of most of the
fsyncs.

Figure 6 illustrates the single-threaded Filebench through-
puts. Strata achieves the best throughput in the varmail
workload since its digestion skips many temporary durable
writes which are superseded by subsequent writes. However,
Ziggurat-64 outperforms Strata by 31% and 27% on the file-
server and webproxy workloads due to the inefficiency of
reads in Strata.

6.4 Rocksdb
We illustrate the high performance of updating a key-
value store with write-ahead logging (WAL) on Ziggurat
with Rocksdb [13], a persistent key-value store based on
log-structured merge trees (LSM-trees). Every update to
RocksDB is written to two places: an in-memory data struc-
ture called memtable and a write-ahead log in the file sys-
tem. When the size of the memtable reaches a threshold,
RocksDB writes it back to disk and discards the log.

We select three Rocksdb workloads from db bench: ran-
dom insert (FillUniqueRandom), sequential insert (FillSeq),
and sequential read (ReadSeq) to evaluate the key-value
throughput and migration efficiency of Ziggurat. We set
the writes to synchronous mode for a fair comparison. The
database size is set to 32 GB.

Figure 7 measures the Rocksdb throughput. In the random
insert workload, Ziggurat with 2 GB of NVMM achieves
8.6× and 13.2× better throughput than EXT4-DJ and XFS-
ML, respectively. In the sequential insert workload, Ziggu-
rat is able to maintain near-NVMM performance even when
there are only 2 GB of NVMM. It achieves up to 38.9× and
46.5× throughput of EXT4-DJ and XFS-ML, respectively.

WAL is a good fit for Ziggurat. The reason is three-fold.
First, since the workload updates WAL files much more fre-
quently than the database files, the migration profiler can dif-
ferentiate them easily. The frequently-updated WAL files re-
main in NVMM, whereas the rarely-updated database files

are subject to migration.

Second, the database files are usually larger than the group
migration size. Therefore, group migration can fully-utilize
the high sequential bandwidth of disks. Moreover, since
Rocksdb mostly updates the journal files instead of the large
database files, the migration threads can merge the data
blocks from the database files and perform sequential writes
to disk without interruption. The high migration efficiency
helps clean up NVMM space more quickly so that NVMM
can absorb more synchronous writes, which in turn boosts
the performance.

Third, the WAL files are updated frequently with syn-
chronous and small updates. The synchronicity predictor
can accurately identify the synchronous write pattern from
the access stream of the WAL files, and the write size pre-
dictor can easily discover that the updates to these files are
too small to be steered to disk. Therefore, Ziggurat steers the
updates to NVMM so that it can eliminate the double copy
overhead caused by synchronous writes to disks. Since the
entire WAL files are hot, Ziggurat is able to maintain high
performance as long as the size of NVMM is larger than the
total size of the WAL files, which is only 128 MB in our
experiments.

Comparing Figure 7a and Figure 7b, the difference be-
tween the results from random and sequential insert of Zig-
gurat is due to read-modify-writes for unaligned writes.
In the random insert workload, the old data blocks of the
database files are likely to be on disk, especially when the
NVMM size is small. Thus, loading them from disks in-
troduces large overhead. However, in the sequential insert
workload, the old data blocks come from recent writes to
the files which are likely to be in NVMM. Hence, Ziggurat
achieves near-NVMM performance in the sequential insert
workload.

In sequential read, Ziggurat-2 outperforms EXT-DJ and
XFS-ML by 42.8% and 47.5%. With increasing NVMM
size, the performance of Ziggurat gradually increases. The
read throughputs of Ziggurat-64, NOVA, EXT4-DAX, and
XFS-DAX are close (within 6%).
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Figure 8: SQLite performance. Ziggurat maintains near-NVMM performance because the hot journal files are either short-
lived or frequently updated, so Ziggurat keeps them in NVMM. Migrating the cold database file with group migration in the
background imposes little overhead to foreground file operations.

6.5 SQLite

We analyze the performance of different logging mecha-
nisms on Ziggurat by measuring SQLite [2], a popular light-
weight relational database that supports both undo and redo
logging. It hosts the entire database in a single file, with
other auxiliary files for logging (rollback or write-ahead log).
We use Mobibench [18] to test the performance of SQLite
with three journaling modes: DELETE, PERSIST and WAL.
DELETE and PERSIST are rollback journaling modes. The
journal files are deleted at the end of each transaction in
DELETE mode. The PERSIST mode foregoes the deletion
and instead overwrites the journal header with zeros. The
WAL mode uses write-ahead logging for rollback journal-
ing. The database size is set to 32 GB in the experiments.
The experimental results are presented in Figure 8.

For DELETE and PERSIST, the journal files are either
short-lived or frequently updated. Therefore, they are classi-
fied as hot files by the migration profiler of Ziggurat. Hence,
Ziggurat only migrates the cold parts of the database files,
leaving the journal files in NVMM to absorb frequent up-
dates. The performance gain comes from accurate profil-
ing and high migration efficiency of Ziggurat. With an effi-
cient migration mechanism, Ziggurat can clear up space in
NVMM fast enough for in-coming small writes. As a result,
Ziggurat maintains near-NVMM performance in all configu-
rations. Compared with block-based file systems running on
Optane SSD, Ziggurat achieves 2.0× and 1.4× speedup for
DELETE and PERSIST on average, respectively. Further-
more, Ziggurat outperforms block-based file systems run-
ning on NVMe SSD by 3.9× and 5.6× for DELETE and
PERSIST on average, respectively.

In WAL mode, there are three types of files: the main
database files and two temporary files for each database:
WAL and SHM. The WAL files are the write-ahead log files,
which are hot during key-value insertions. The SHM files are
the shared-memory files which are used as the index for the
WAL files. They are accessed by SQLite via mmap.

Ziggurat’s profiler keeps these hot files in NVMM. Mean-
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Figure 9: MySQL performance. Ziggurat manages to keep
high throughput even with little NVMM.

while, the cold parts of the large database files migrate to
disks in the background. This only introduces very small
overhead to the foreground database operations. There-
fore, Ziggurat maintains near-NVMM performance even
when there’s only about 5% of data is actually in NVMM
(Ziggurat-2), which outperforms block-based file systems
by 1.61× and 4.78×, respectively. Ziggurat also achieves
2.22× and 2.92× higher performance compared with EXT4-
DAX and XFS-DAX on average.

6.6 MySQL

We further evaluate the throughput of databases on Ziggurat
with MySQL [27], another widely-used relational database.
We measure the throughput of MySQL with TPC-C [3], a
representative online transaction processing (OLTP) work-
load. We run the experiments with a data set size of 20 GB.

Figure 9 shows the MySQL throughput. The performance
of Ziggurat is always close to or better than EXT-DJ and
XFS-ML. On average, Ziggurat-2 outperforms disk-based
file systems by 1% (Optane SSD) and 19% (NVMe SSD).
During the transactions, Ziggurat steers most of the small
updates to NVMM. Since the transactions need to be pro-
cessed in DRAM, Ziggurat is capable of migrating the data
blocks to disks in time, which leaves ample NVMM space to
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Figure 10: Performance impact of group migration size. We use Filebench (green), Rocksdb (blue) and Fio (purple) as our
benchmarks. The average throughput (red) peaks when the group migration size is set to 16 MB.

receive new writes. Thus, Ziggurat maintains near-NVMM
performance even with little NVMM.

6.7 Parameter Tuning

We illustrate the impact of the parameter choices on perfor-
mance by measuring the throughput of workloads from Fio,
Filebench and Rocksdb with a range of thresholds. We run
the workloads with Ziggurat-2 on NVMe SSD.

Group migration size We vary the group migration size
from 4 KB to 1 GB. The normalized throughputs relative to
the maximum performance are shown in Figure 10. In gen-
eral, larger group migration size provides better performance
for write-dominated workloads, such as Rand-write from Fio
and Rand-insert from Rocksdb.

For read-dominated workloads, such as Seq-read from Fio
and Seq-read from Rocksdb, the throughputs peak when the
group migration size is set to 128 KB and 16 MB. This is
because the maximum I/O size of our NVMe SSD is 128 KB
and the CPU cache size of our experimental platform is
25 MB. Note that the group migration size is also the granu-
larity of loading file data from disk to DRAM since we fetch
file data in the granularity of write entry. On one hand, if the
group migration size is too small, Ziggurat has to issue mul-
tiple requests to load the on-disk file data into DRAM, which
hurts performance. On the other hand, if the group migration
size is too large, then a small read request will fetch redun-
dant data blocks from disk, which will waste I/O bandwidth
and pollute CPU cache. As Figure 10b shows, the average
throughputs of all ten workloads peak when the group mi-
gration size is set to 16 MB.

The throughputs of Filebench workloads are saturated
when the group migration size reaches 2 MB because the
average file size of the workloads is 2 MB. During the mi-
gration of the Filebench workloads, the data blocks of a file
are coalesced into one write entry, which suits the access pat-

tern of whole-file-reads.

Synchronous write size threshold We vary the syn-
chronous write size threshold from 4 KB to 1 GB. The per-
formance results are insensitive to the synchronous write size
threshold throughout the experiments. The standard devia-
tion is less than 3% of the average throughput. We further
examine the accuracy of the synchronicity predictor given
different synchronous write size thresholds. The predictor
accurately predicts the presence or absence of an fsync in
the near future 99% of the time. The lowest accuracy (97%)
occurs when the synchronous write size is set between the
average file size and the append size of Varmail. In this case,
the first fsync contains the writes from file initialization and
the first append, while the subsequent fsyncs only contain
one append. In general, the synchronous write size thresh-
old should be set a little larger than the average I/O size of
the synchronous write operations from the workloads. In
this case, the synchronicity predictor can not only identify
synchronously updated files easily, but also effectively dis-
tinguish asynchronous, large writes from rest of the access
stream.

Sequential write counter threshold We vary the sequen-
tial write counter threshold of Ziggurat from 1 to 64. We find
that different sequential write counter thresholds have little
impact on performance since the characteristics of our work-
loads are stable. Users should balance the trade-off between
accuracy and prediction overhead when running workloads
with unstable access patterns. A higher threshold number
improves the accuracy of the sequential predictor, which can
effectively avoid jitter in variable workloads. However, it
also introduces additional prediction overhead for Ziggurat
to produce correct prediction.

7 Related Work

The introduction of multiple storage technologies provides
an opportunity of having a large uniform storage space over
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a set of different media with varied characteristics. Appli-
cations may leverage the diversity of storage choices either
directly (e.g. the persistent read cache of RocksDB), or by
using NVMM-based file systems (e.g. NOVA, EXT4-DAX
or XFS-DAX). In this section, we place Ziggurat’s approach
to this problem in context relative to other work in this area.

NVMM-Based File Systems. BPFS [8] is a storage class
memory (SCM) file system, which is based on shadow-
paging. It proposes short-circuit shadow paging to curtail
the overheads of shadow-paging in regular cases. However,
some I/O operations that involve a large portion of the file
system tree (such as moving directories) still impose large
overheads. Like BPFS, Ziggurat also exploits fine-grained
copy-on-write in all I/O operations.

SCMFS [30] offers simplicity and performance gain by
employing the virtual address space to enable continuous file
addressing. SCMFS keeps the mapping information of the
whole available space in a page table which may be scaled
to several Gigabytes for large NVMM. This may result in a
significant increase in the number of TLB misses. Although
Ziggurat similarly maps all available storage devices into a
unified virtual address space, it also performs migration from
NVMM to block devices, and group page allocation which
reduces TLB misses.

PMFS [11] is another NVMM-based file system which
provides atomicity in metadata updates through journaling,
but large size write operations are not atomic because it re-
lies on small size in-place atomic updates. Unlike PMFS,
Ziggurat’s update mechanism is always through journaling
with fine-grained copy-on-writes.

Dong et al. propose SoupFS [10], a simplified soft update
implementation of an NVMM-based file system. They adjust
the block-oriented directory organization to use hash tables
to leverage the byte-addressability of NVMM. It also gains
performance by taking out most synchronous flushes from
the critical path. Ziggurat also exploits asynchronous flushes
to clear the critical path for higher write throughput.

Tiering Systems. Hierarchical storage Management
(HSM) systems date back decades to when disks and tapes
were the only common massive storage technologies. There
have been several commercial HSM solutions for block-
based storage media such as disk drives. IBM Tivoli Storage
Manager is one of the well-established HSM systems that
transparently migrates rarely used or sufficiently aged files
to a lower cost media. EMC DiskXtender is another HSM
system with the ability of automatically migrating inactive
data from the costly tier to a lower cost media. AutoTier-
ing [34] is another example of a block-based storage man-
agement system. It uses a sampling mechanism to estimate
the IOPS of running a virtual machine on other tiers. It calcu-
lates their performance scores based on the IOPS measure-
ment and the migration costs, and sorts all possible move-
ments accordingly. Once it reaches a threshold, it initiates a

live migration.
Since the invention of NVDIMMs, many fine-grained tier-

ing solutions have been introduced. Agarwal et al. propose
Thermostat [4], a methodology for managing huge pages in
two-tiered memory which transparently migrates cold pages
to NVMM as the slow memory, and hot pages to DRAM
as the fast memory. The downside of this approach is the
performance degradation for those applications with uniform
temperature across a large portion of the main memory. Con-
versely, Ziggurat’s migration granularity is variable, so it
does not hurt performance due to fixed-size migration as
in Thermostat. Instead of huge pages, it coalesces adjacent
dirty pages into larger chunks for migration to block devices.

X-Mem [12] is a set of software techniques that relies on
an off-line profiling mechanism. The X-Mem profiler keeps
track of every memory access and traces them to find out the
best storage match for every data structure. X-Mem requires
users to make several modifications to the source code. Ad-
ditionally, unlike Ziggurat, the off-line profiling run should
be launched for each application before the production run.

Strata [21] is a multi-tiered user-space file system that ex-
ploits NVMM as the high-performance tier, and SSD/HDD
as the lower tiers. It uses the byte-addressability of NVMM
to coalesce logs and migrate them to lower tiers to mini-
mize write amplification. File data can only be allocated in
NVMM in Strata, and they can be migrated only from a faster
tier to a slower one. The profiling granularity of Strata is a
page, which increases the bookkeeping overhead and wastes
the locality information of file accesses.

8 Conclusion

We have implemented and described Ziggurat, a tiered file
system that spans across NVMM and disks. We manage data
placement by accurate and lightweight predictors to steer in-
coming file writes to the most suitable tier, as well as an ef-
ficient migration mechanism that utilizes the different char-
acteristics of storage devices to achieve high migration effi-
ciency. Ziggurat bridges the gap between disk-based storage
and NVMM-based storage, and provides high performance
and large capacity to applications.
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Abstract

High-performance, byte-addressable non-volatile main mem-
ories (NVMMs) force system designers to rethink trade-
offs throughout the system stack, often leading to dramatic
changes in system architecture. Conventional distributed file
systems are a prime example. When faster NVMM replaces
block-based storage, the dramatic improvement in storage per-
formance makes networking and software overhead a critical
bottleneck.

In this paper, we present Orion, a distributed file system
for NVMM-based storage. By taking a clean slate design
and leveraging the characteristics of NVMM and high-speed,
RDMA-based networking, Orion provides high-performance
metadata and data access while maintaining the byte address-
ability of NVMM. Our evaluation shows Orion achieves per-
formance comparable to local NVMM file systems and out-
performs existing distributed file systems by a large margin.

1 Introduction

In a distributed file system designed for block-based devices,
media performance is almost the sole determiner of perfor-
mance on the data path. The glacial performance of disks
(both hard and solid state) compared to the rest of the stor-
age stack incentivizes complex optimizations (e.g., queuing,
striping, and batching) around disk accesses. It also saves
designers from needing to apply similarly aggressive opti-
mizations to network efficiency, CPU utilization, and locality,
while pushing them toward software architectures that are
easy to develop and maintain, despite the (generally irrele-
vant) resulting software overheads.

The appearance of fast non-volatile memories (e.g., Intel’s
3D XPoint DIMMs [28]) on the processor’s memory bus
will offer an abrupt and dramatic increase in storage system
performance, providing performance characteristics compa-
rable to DRAM and vastly faster than either hard drives or
SSDs. These non-volatile main memories (NVMM) upend
the traditional design constraints of distributed file systems.

For an NVMM-based distributed file system, media access
performance is no longer the major determiner of perfor-
mance. Instead, network performance, software overhead,

and data placement all play central roles. Furthermore, since
NVMM is byte-addressable, block-based interfaces are no
longer a constraint. Consequently, old distributed file systems
squander NVMM performance — the previously negligible
inefficiencies quickly become the dominant source of delay.

This paper presents Orion, a distributed file system de-
signed from the ground up for NVMM and Remote Direct
Memory Access (RDMA) networks. While other distributed
systems [41, 55] have integrated NVMMs, Orion is the first
distributed file system to systematically optimize for NVMMs
throughout its design. As a result, Orion diverges from block-
based designs in novel ways.

Orion focuses on several areas where traditional distributed
file systems fall short when naively adapted to NVMMs. We
describe them below.

Use of RDMA Orion targets systems connected with an
RDMA-capable network. It uses RDMA whenever possible
to accelerate both metadata and data accesses. Some existing
distributed storage systems use RDMA as a fast transport
layer for data access [10, 18, 62, 63, 71] but do not integrate it
deeply into their design. Other systems [41, 55] adapt RDMA
more extensively but provide object storage with customized
interfaces that are incompatible with file system features such
as unrestricted directories and file extents, symbolic links and
file attributes.

Orion is the first full-featured file system that integrates
RDMA deeply into all aspects of its design. Aggressive use
of RDMA means the CPU is not involved in many transfers,
lowering CPU load and improving scalability for handling in-
coming requests. In particular, pairing RDMA with NVMMs
allows nodes to directly access remote storage without any
target-side software overheads.

Software Overhead Software overhead in distributed files
system has not traditionally been a critical concern. As such,
most distributed file systems have used two-layer designs that
divide the network and storage layers into separate modules.
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Read Latency Bandwidth GB/s
512 B Read Write

DRAM 80 ns 60 30
NVMM 300 ns 8 2
RDMA NIC 3 µs 5 (40 Gbps)
NVMe SSD 70 µs 3.2 1.3

Table 1: Characteristics of memory and network devices
We measure the fisrt 3 lines on Intel Sandy Bridge-EP plat-
form with a Mellanox ConnectX-4 RNIC and an Intel DC
P3600 SSD. NVMM numbers are estimated based on assump-
tions made in [75].

Two-layer designs trade efficiency for ease of implementa-
tion. Designers can build a user-level daemon that stitches
together off-the-shelf networking packages and a local file
system into a distributed file system. While expedient, this
approach results in duplicated metadata, excessive copying,
unnecessary event handling, and places user-space protection
barriers on the critical path.

Orion merges the network and storage functions into a sin-
gle, kernel-resident layer optimized for RDMA and NVMM
that handles data, metadata, and network access. This deci-
sion allows Orion to explore new mechanisms to simplify
operations and scale performance.

Locality RDMA is fast, but it is still several times slower
than local access to NVMMs (Table 1). Consequently, the
location of stored data is a key performance concern for
Orion. This concern is an important difference between Orion
and traditional block-based designs that generally distin-
guish between client nodes and a pool of centralized storage
nodes [18, 53]. Pooling makes sense for block devices, since
access latency is determined by storage, rather than network
latency, and a pool of storage nodes simplifies system admin-
istration. However, the speed of NVMMs makes a storage
pool inefficient, so Orion optimizes for locality. To encourage
local accesses, Orion migrates durable data to the client when-
ever possible and uses a novel delegated allocation scheme to
efficiently manage free space.

Our evaluation shows that Orion outperforms existing dis-
tributed file systems by a large margin. Relative to local
NVMM filesystems, it provides comparable application-level
performance when running applications on a single client.
For parallel workloads, Orion shows good scalability: perfor-
mance on an 8-client cluster is between 4.1× and 7.9× higher
than running on a single node.

The rest of the paper is organized as follows. We discuss
the opportunities and challenges of building a distributed file
system utilizing NVMM and RDMA in Section 2. Section 3
gives an overview of Orion’s architecture. We describe the de-
sign decisions we made to implement high-performance meta-
data access and data access in Sections 4 and 5 respectively.

Section 6 evaluates these mechanisms. We cover related work
in Section 7 and conclude in Section 8.

2 Background and Motivation

Orion is a file system designed for distributed shared NVMM
and RDMA. This section gives some background on NVMM
and RDMA and highlights the opportunities these technolo-
gies provide. Then, it discusses the inefficiencies inherent in
running existing distributed file systems on NVMM.

2.1 Non-Volatile Main Memory

NVMM is comprised of nonvolatile DIMMs (NVDIMMs)
attached to a CPU’s memory bus alongside traditional DRAM
DIMMs. Battery-backed NVDIMM-N modules are commer-
cially available from multiple vendors [46], and Intel’s 3DX-
Point memory [28] is expected to debut shortly. Other tech-
nologies such as spin-torque transfer RAM (STT-RAM) [45],
ReRAM [27] are in active research and development.

NVMMs appear as contiguous, persistent ranges of phys-
ical memory addresses [52]. Instead of using block-based
interface, file systems can issue load and store instructions
to NVMMs directly. NVMM file systems provide this ability
via direct access (or “DAX”), which allows read and write
system calls to bypass the page cache.

Researchers and companies have developed several file sys-
tems designed specifically for NVMM [15, 21, 25, 73, 74].
Other developers have adapted existing file systems to
NVMM by adding DAX support [14, 70]. In either case, the
file system must account for the 8-byte atomicity guaran-
tees that NVMMs provide (compared to sector atomicity for
disks). They also must take care to ensure crash consistency
by carefully ordering updates to NVMMs using cache flush
and memory barrier instructions.

2.2 RDMA Networking

Orion leverages RDMA to provide low latency metadata and
data accesses. RDMA allows a node to perform one-sided
read/write operations from/to memory on a remote node in
addition to two-sided send/recv operations. Both user- and
kernel-level applications can directly issue remote DMA re-
quests (called verbs) on pre-registered memory regions (MRs).
One-sided requests bypass CPU on the remote host, while
two-sided requests require the CPU to handle them.

An RDMA NIC (RNIC) is capable of handling MRs regis-
tered on both virtual and physical address ranges. For MRs
on virtual addresses, the RDMA hardware needs to translate
from virtual addresses to DMA addresses on incoming pack-
ets. RNICs use a hardware pin-down cache [65] to accelerate
lookups. Orion uses physically addressed DMA MRs, which
do not require address translation on the RNIC, avoiding
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the possibility of pin-down cache misses on large NVMM
regions.

Software initiates RDMA requests by posting work queue
entries (WQE) onto a pair of send/recv queues (a queue pair
or “QP”), and polling for their completion from the comple-
tion queue (CQ). On completing a request, the RNIC signals
completion by posting a completion queue entry (CQE).

A send/recv operation requires both the sender and receiver
to post requests to their respective send and receive queues
that include the source and destination buffer addresses. For
one-sided transfers, the receiver grants the sender access to a
memory region through a shared, secret 32-bit “rkey.” When
the receiver RNIC processes an inbound one-sided request
with a matching rkey, it issues DMAs directly to its local
memory without notifying the host CPU.

Orion employs RDMA as a fast transport layer, and its
design accounts for several idiosyncrasies of RDMA:

Inbound verbs are cheaper Inbound verbs, including recv
and incoming one-sided read/write, incur lower overhead for
the target, so a single node can handle many more inbound
requests than it can initiate itself [59]. Orion’s mechanisms
for accessing data and synchronizing metadata across clients
both exploit this asymmetry to improve scalability.

RDMA accesses are slower than local accesses RDMA
accesses are fast but still slower than local accesses. By com-
bining the data measured on DRAM and the methodology
introduced in a previous study [75], we estimate the one-sided
RDMA NVMM read latency to be ∼9× higher than local
NVMM read latency for 64 B accesses, and ∼20× higher for
4 KB accesses.

RDMA favors short transfers RNICs implement most of
the RDMA protocol in hardware. Compared to transfer proto-
cols like TCP/IP, transfer size is more important to transfer
latency for RDMA because sending smaller packets involves
fewer PCIe transactions [35]. Also, modern RDMA hardware
can inline small messages along with WQE headers, further
reducing latency. To exploit these characteristics, Orion ag-
gressively minimizes the size of the transfers it makes.

RDMA is not persistence-aware Current RDMA hard-
ware does not guarantee persistence for one-sided RDMA
writes to NVMM. Providing this guarantee generally re-
quires an extra network round-trip or CPU involvement for
cache flushes [22], though a proposed [60] RDMA “commit”
verb would provide this capability. As this support is not yet
available, Orion ensures persistence by CPU involvement (see
Section 5.3).

3 Design Overview

Orion is a distributed file system built for the performance
characteristics of NVMM and RDMA networking. NVMM’s
low latency and byte-addressability fundamentally alter the
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DRAM (Client)

NVMM (MDS)
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Figure 1: Orion cluster organization An Orion cluster con-
sists of a metadata server, clients and data stores.

relationship among memory, storage, and network, motivat-
ing Orion to use a clean-slate approach to combine the file
system and networking into a single layer. Orion achieves the
following design goals:

• Scalable performance with low software overhead:
Scalability and low-latency are essential for Orion to
fully exploit the performance of NVMM. Orion achieves
this goal by unifying file system functions and network
operations and by accessing data structures on NVMM
directly through RDMA.
• Efficient network usage on metadata updates: Orion

caches file system data structures on clients. A client can
apply file operations locally and only send the changes
to the metadata server over the network.
• Metadata and data consistency: Orion uses a log-

structured design to maintain file system consistency
at low cost. Orion allows read parallelism but serializes
updates for file system data structures across the cluster.
It relies on atomically updated inode logs to guarantee
metadata and data consistency and uses a new coordina-
tion scheme called client arbitration to resolve conflicts.
• DAX support in a distributed file system: DAX-style

(direct load/store) access is a key benefit of NVMMs.
Orion allows clients to access data in its local NVMM
just as it could access a DAX-enabled local NVMM file
system.
• Repeated access become local access: Orion exploits

locality by migrating data to where writes occur and
making data caching an integral part of the file system
design. The log-structured design reduces the cost of
maintaining cache coherence.
• Reliability and data persistence: Orion supports meta-

data and data replication for better reliability and avail-
ability. The replication protocol also guarantees data
persistency.

The remainder of this section provides an overview of the
Orion software stack, including its hardware and software
organization. The following sections provide details of how
Orion manages metadata (Section 4) and provides access to
data (Section 5).
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Figure 2: Orion software organization Orion exposes as a
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maintain local copies of inode metadata and sync with the
MDS, and access data at remote data stores or local NVMM
directly.

3.1 Cluster Organization
An Orion cluster consists of a metadata server (MDS), several
data stores (DSs) organized in replication groups, and clients
all connected via an RDMA network. Figure 1 shows the
architecture of an Orion cluster and illustrates these roles.

The MDS manages metadata. It establishes an RDMA
connection to each of the clients. Clients can propagate local
changes to the MDS and retrieve updates made by other
clients.

Orion allows clients to manage and access a global, shared
pool of NVMMs. Data for a file can reside at a single DS or
span multiple DSs. A client can access a remote DS using
one-sided RDMA and its local NVMMs using load and store
instructions.

Internal clients have local NVMM that Orion manages.
Internal clients also act as a DSs for other clients. External
clients do not have local NVMM, so they can access data on
DSs but cannot store data themselves.

Orion supports replication of both metadata and data. The
MDS can run as a high-availability pair consisting of a pri-
mary server and a mirror using Mojim [76]-style replica-
tion. Mojim provides low latency replication for NVMM by
maintaining a single replica and only making updates at the
primary.

Orion organizes DSs into replication groups, and the DSs
in the group have identical data layouts. Orion uses broadcast
replication for data.

3.2 Software Organization
Orion’s software runs on the clients and the MDS. It exposes
a normal POSIX interface and consists of kernel modules that
manage file and metadata in NVMM and handle communi-
cation between the MDS and clients. Running in the kernel

avoids the frequent context switches, copies, and kernel/user
crossing that conventional two-layer distributed file systems
designs require.

The file system in Orion inherits some design elements
from NOVA [73,74], a log-structured POSIX-compliant local
NVMM file system. Orion adopts NOVA’s highly-optimized
mechanisms for managing file data and metadata in NVMM.
Specifically, Orion’s local file system layout, inode log data
structure, and radix trees for indexing file data in DRAM
are inherited from NOVA, with necessary changes to make
metadata accessible and meaningful across nodes. Figure 2
shows the overall software organization of the Orion file
system.

An Orion inode contains pointers to the head and tail of a
metadata log stored in a linked list of NVMM pages. A log’s
entries record all modifications to the file and hold pointers to
the file’s data blocks. Orion uses the log to build virtual file
system (VFS) inodes in DRAM along with indices that map
file offsets to data blocks. The MDS contains the metadata
structures of the whole file system including authoritative
inodes and their logs. Each client maintains a local copy of
each inode and its logs for the files it has opened.

Copying the logs to the clients simplifies and accelerates
metadata management. A client can recover all metadata of
a file by walking through the log. Also, clients can apply
a log entry locally in response to a file system request and
then propagate it to the MDS. A client can also tell whether
an inode is up-to-date by comparing the local and remote
log tail. An up-to-date log should be equivalent on both the
client and the MDS, and this invariant is the basis for our
metadata coherency protocol. Because MDS inode log entries
are immutable except during garbage collection and logs are
append-only, logs are amenable to direct copying via RDMA
reads (see Section 4).

Orion distributes data across DSs (including the internal
clients) and replicates the data within replication groups. To
locate data among these nodes, Orion uses global page ad-
dresses (GPAs) to identify pages. Clients use a GPA to locate
both the replication group and data for a page. For data reads,
clients can read from any node within a replication group
using the global address. For data updates, Orion performs
a copy-on-write on the data block and appends a log entry
reflecting the change in metadata (e.g., write offset, size, and
the address to the new data block). For internal clients, the
copy-on-write migrates the block into the local NVMM if
space is available.

An Orion client also maintains a client-side data cache.
The cache, combined with the copy-on-write mechanism, lets
Orion exploit and enhance data locality. Rather than relying
on the operating system’s generic page cache, Orion manages
DRAM as a customized cache that allows it to access cached
pages using GPAs without a layer of indirection. This also
simplifies cache coherence.
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4 Metadata Management

Since metadata updates are often on an application’s critical
path, a distributed file system must handle metadata requests
quickly. Orion’s MDS manages all metadata updates and
holds the authoritative, persistent copy of metadata. Clients
cache metadata locally as they access and update files, and
they must propagate changes to both the MDS and other
clients to maintain coherence.

Below, we describe how Orion’s metadata system meets
both these performance and correctness goals using a combi-
nation of communication mechanisms, latency optimizations,
and a novel arbitration scheme to avoid locking.

4.1 Metadata Communication

The MDS orchestrates metadata communication in Orion, and
all authoritative metadata updates occur there. Clients do not
exchange metadata. Instead, an Orion client communicates
with the MDS to fetch file metadata, commit changes and
apply changes committed by other clients.

Clients communicate with the MDS using three methods
depending on the complexity of the operation they need to
perform: (1) direct RDMA reads, (2) speculative and highly-
optimized log commits, and (3) acknowledged remote proce-
dure calls (RPCs).

These three methods span a range of options from simple/-
lightweight (direct RDMA reads) to complex/heavyweight
(RPC). We use RDMA reads from the MDS whenever possi-
ble because they do not require CPU intervention, maximizing
MDS scalability.

Below, we describe each of these mechanisms in detail
followed by an example. Then, we describe several additional
optimizations Orion applies to make metadata updates more
efficient.

RDMA reads Clients use one-sided RDMA reads to pull
metadata from the MDS when needed, for instance, on file
open. Orion uses wide pointers that contain a pointer to the
client’s local copy of the metadata as well as a GPA that points
to the same data on the MDS. A client can walk through its
local log by following the local pointers, or fetch the log
pages from the MDS using the GPAs.

The clients can access the inode and log for a file using
RDMA reads since NVMM is byte addressable. These ac-
cesses bypass the MDS CPU, which improves scalability.

Log commits Clients use log commits to update metadata
for a file. The client first performs file operations locally by
appending a log entry to the local copy of the inode log. Then
it forwards the entry to the MDS and waits for completion.

Log commits use RDMA sends. Log entries usually fit in
two cache lines, so the RDMA NIC can send them as inlined
messages, further reducing latencies. Once it receives the
acknowledgment for the send, the client updates its local log
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Figure 3: Orion metadata communication Orion maintains
metadata structures such as inode logs on both MDS and
clients. A client commit file system updates through Log
Commits and RPCs.

tail, completing the operation. Orion allows multiple clients
to commit log entries of a single inode without distributed
locking using a mechanism called client arbitration that can
resolve inconsistencies between inode logs on the clients
(Section 4.3).

Remote procedure calls Orion uses synchronous remote
procedure calls (RPCs) for metadata accesses that involve
multiple inodes as well as operations that affect other clients
(e.g., a file write with O APPEND flag).

Orion RPCs use a send verb and an RDMA write. An RPC
message contains an opcode along with metadata updates
and/or log entries that the MDS needs to apply atomically.
The MDS performs the procedure call and responds via one-
sided RDMA write or message send depending on the opcode.
The client blocks until the response arrives.

Example Figure 3 illustrates metadata communication. For
open() (an RPC-based metadata update), the client allo-
cates space for the inode and log, and issues an RPC 1 . The
MDS handles the RPC 2 and responds by writing the inode
along with the first log page using RDMA 3 . The client uses
RDMA to read more pages if needed and builds VFS data
structures 4 .

For a setattr() request (a log commit based metadata
update), the client creates a local entry with the update and
issues a log commit 5 . It then updates its local tail pointer
atomically after it has sent the log commit. Upon receiving
the log entry, the MDS appends the log entry, updates the log
tail 6 , and updates the corresponding data structure in VFS
7 .

RDMA Optimizations Orion avoids data copying within
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Figure 4: MDS request handling The MDS handles client
requests in two stages: First, networking threads handle
RDMA completion queue entries (CQEs) and dispatch them
to file system threads. Next, file system threads handle RPCs
and update the VFS.

a node whenever possible. Both client-initiated RDMA reads
and MDS-initiated RDMA writes (e.g., in response to an
RPC) target client file system data structures directly. Addi-
tionally, log entries in Orion contain extra space (shown as
message headers in Figure 3) to accommodate headers used
for networking. Aside from the DMA that the RNIC performs,
the client copies metadata at most once (to avoid concurrent
updates to the same inode) during a file operation.

Orion also uses relative pointers in file system data struc-
tures to leverage the linear addressing in kernel memory man-
agement. NVMM on a node appears as contiguous memory
regions in both kernel virtual and physical address spaces.
Orion can create either type of address by adding the relative
pointer to the appropriate base address. Relative pointers are
also meaningful across power failures.

4.2 Minimizing Commit Latency

The latency of request handling, especially for log commits,
is critical for the I/O performance of the whole cluster. Orion
uses dedicated threads to handle per-client receive queues as
well as file system updates. Figure 4 shows the MDS request
handling process.

For each client, the MDS registers a small (256 KB) portion
of NVMM as a communication buffer. The MDS handles
incoming requests in two stages: A network thread polls
the RDMA completion queues (CQs) for work requests on
pre-posted RDMA buffers and dispatches the requests to file
system threads. As an optimization, the MDS prioritizes log
commits by allowing network threads to append log entries
directly. Then, a file system thread handles the requests by
updating file system structures in DRAM for a log commit
or serving the requests for an RPC. Each file system thread
maintains a FIFO containing pointers to updated log entries
or RDMA buffers holding RPC requests.

For a log commit, a network thread reads the inode number,
appends the entry by issuing non-temporal moves and then
atomically updates the tail pointer. At this point, other clients
can read the committed entry and apply it to their local copy
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Figure 5: Metadata consistency in Orion The inode log
on Client A is consistent after (a) updating the log entry
committed by another client using RDMA reads, (c) issuing
an RPC, and (b) rebuilding the log on conflicts.

of the inode log. The network thread then releases the recv
buffer by posting a recv verb, allowing its reuse. Finally, it
dispatches the task for updating in-DRAM data structures to
a file system thread based on the inode number.

For RPCs, the network thread dispatches the request di-
rectly to a file system thread. Each thread processes requests
to a subset of inodes to ensure better locality and less con-
tention for locks. The file system threads use lightweight
journals for RPCs involving inodes that belong to multiple
file system threads.

File system threads perform garbage collection (GC) when
the number of “dead” entries in a log becomes too large.
Orion rebuilds the inode log by copying live entries to new
log pages. It then updates the log pointers and increases the
version number. Orion makes this update atomic by packing
the version number and tail pointer into 64 bits. The thread
frees stale log pages after a delay, allowing ongoing RDMA
reads to complete. Currently we set the maximal size of file
writes in a log entry to be 512 MB.

4.3 Client Arbitration
Orion allows multiple clients to commit log entries to a sin-
gle inode at the same time using a mechanism called client
arbitration rather than distributed locking. Client arbitration
builds on the following observations:
1. Handling an inbound RDMA read is much cheaper than

sending an outbound write. In our experiments, a single
host can serve over 15 M inbound reads per second but
only 1.9 M outbound writes per second.

2. For the MDS, CPU time is precious. Having the MDS ini-
tiate messages to maintain consistency will reduce Orion
performance significantly.

3. Log append operations are lightweight: each one takes
around just 500 CPU cycles.

A client commits a log entry by issuing a send verb and
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polling for its completion. The MDS appends log commits
based on arrival order and updates log tails atomically. A
client can determine whether a local inode is up-to-date by
comparing the log length of its local copy of the log and the
authoritative copy at the MDS. Clients can check the length
of an inode’s log by retrieving its tail pointer with an RDMA
read.

The client issues these reads in the background when han-
dling an I/O request. If another client has modified the log,
the client detects the mismatch and fetches the new log entries
using additional RDMA reads and retries.

If the MDS has committed multiple log entries in a different
order due to concurrent accesses, the client blocks the current
request and finds the last log entry that is in sync with the
MDS, it then fetches all following log entries from the MDS,
rebuilds its in-DRAM structures, and re-executes the user
request.

Figure 5 shows the three different cases of concurrent ac-
cesses to a single inode. In (a), the client A can append the
log entry #2 from client B by extending its inode log. In (b),
the client A misses the log entry #2 committed by client B,
so it will rebuild the inode log on the next request. In (c),
the MDS will execute concurrent RPCs to the same inode
sequentially, and the client will see the updated log tail in the
RPC acknowledgment.

A rebuild occurs when all of the following occur at the
same time: (1) two or more clients access the same file at
the same time and one of the accesses is log commit, (2) one
client issues two log commits consecutively, and (3) the MDS
accepts the log commit from another client after the client
RDMA reads the inode tail but before the MDS accepts the
second log commit.

In our experience this situation happens very rarely, be-
cause the “window of vulnerability” – the time required to
perform a log append on the MDS – is short. That said, Orion
lets applications identify files that are likely targets of inten-
sive sharing via an ioctl. Orion uses RPCs for all updates
to these inodes in order to avoid rebuilds.

5 Data Management

Orion pools NVMM spread across internal clients and data
stores. A client can allocate and access data either locally (if
the data are local) or remotely via one-sided RDMA. Clients
use local caches and migration during copy-on-write opera-
tions to reduce the number of remote accesses.

5.1 Delegated Allocation
To avoid allocating data on the critical path, Orion uses a
distributed, two-stage memory allocation scheme.

The MDS keeps a bitmap of all the pages Orion manages.
Clients request large chunks of storage space from the MDS
via an RPC. The client can then autonomously allocate space
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Figure 6: Orion data communication Orion allows clients
manage and access data independently.

within those chunks. This design frees the MDS from manag-
ing fine-grain data blocks, and allows clients to allocate pages
with low overhead.

The MDS allocates internal clients chunks of its local
NVMM when possible since local writes are faster. As a
result, most of their writes go to local NVMM.

5.2 Data Access

To read file data, a client either communicates with the DS
using one-sided RDMA or accesses its local NVMM via DAX
(if it is an internal client and the data is local). Remote reads
use one-sided RDMA reads to retrieve existing file data and
place it in local DRAM pages that serve as a cache for future
reads.

Remote writes can also be one-sided because allocation
occurs at the client. Once the transfer is complete, the client
issues a log commit to the MDS.

Figure 6 demonstrates Orion’s data access mechanisms. A
client can request a block chunk from the MDS via an RPC
1 . When the client opens a file, it builds a radix tree for

fast lookup from file offsets to log entries 2 . When handling
a read() request, the client reads from the DS (DS-B) to
its local DRAM and update the corresponding log entry 3 .
For a write() request, it allocates from its local chunk 4
and issues memcpy nt() and sfence to ensure that the
data reaches its local NVMM (DS-C) 5 . Then a log entry
containing information such as the GPA and size is committed
to the MDS 6 . Finally, the MDS appends the log entry 7 .
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5.3 Data Persistence
Orion always ensures that metadata is consistent, but, like
many file systems, it can relax the consistency requirement
on data based on user preferences and the availability of
replication.

The essence of Orion’s data consistency guarantee is the
extent to which the MDS delays the log commit for a file
update. For a weak consistency guarantee, an external client
can forward a speculative log commit to the MDS before its
remote file update has completed at a DS. This consistency
level is comparable to the write-back mode in ext4 and can
result in corrupted data pages but maintains metadata integrity.
For strong data consistency that is comparable to NOVA and
the data journaling mode in ext4, Orion can delay the log
commit until after the file update is persistent at multiple DSs
in the replication group.

Achieving strong consistency over RDMA is hard because
RDMA hardware does not provide a standard mechanism to
force writes into remote NVMM. For strongly consistent data
updates, our algorithm is as follows.

A client that wishes to make a consistent file update uses
copy-on-write to allocate new pages on all nodes in the appro-
priate replica group, then uses RDMA writes to update the
pages. In parallel, the client issues a speculative log commit
to the MDS for the update.

DSs within the replica group detect the RDMA writes to
new pages using an RDMA trick: when clients use RDMA
writes on the new pages, they include the page’s global ad-
dress as an immediate value that travels to the target in the
RDMA packet header. This value appears in the target NIC’s
completion queue, so the DS can detect modifications to its
pages. For each updated page, the DS forces the page into
NVMM and sends an acknowledgment via a small RDMA
write to the MDS, which processes the client’s log commit
once it reads a sufficient number of acknowledgments in its
DRAM.

5.4 Fault Tolerance
The high performance and density of NVMM makes the
cost of rebuilding a node much higher than recovering it.
Consequently, Orion makes its best effort to recover the node
after detecting an error. If the node can recover (e.g., after a
power failure and most software bugs), it can rejoin the Orion
cluster and recover to a consistent state quickly. For NVMM
media errors, module failures, or data-corrupting bugs, Orion
rebuilds the node using the data and metadata from other
replicas. It uses relative pointers and global page addresses to
ensure metadata in NVMM remain meaningful across power
failures.

In the metadata subsystem, for MDS failures, Orion builds
a Mojim-like [76] high-availability pair consisting of a pri-
mary MDS and a mirror. All metadata updates flow to the
primary MDS, which propagates the changes to the mirror.

When the primary fails, the mirror takes over and journals all
the incoming requests while the primary recovers.

In the data subsystem, for DS failures, the DS journals
the immediate values of incoming RDMA write requests in
a circular buffer. A failed DS can recover by obtaining the
pages committed during its downtime from a peer DS in the
same replication group. When there are failed nodes in a
replication group, the rest of the nodes work in the strong
data consistency mode introduced in Section 5.3 to ensure
successful recovery in the event of further failures.

6 Evaluation
In this section, we evaluate the performance of Orion by
comparing it to existing distributed file systems as well as
local file systems. We answer the following questions:
• How does Orion’s one-layer design affect its perfor-

mance compared to existing two-layer distributed file
systems?
• How much overhead does managing distributed data and

metadata add compared to running a local NVMM file
system?
• How does configuring Orion for different levels of relia-

bility affect performance?
• How scalable is Orion’s MDS?
We describe the experimental setup and then evaluate Orion

with micro- and macrobenchmarks. Then we measure the
impact of data replication and the ability to scale over parallel
workloads.

6.1 Experimental Setup
We run Orion on a cluster with 10 nodes configured to emulate
persistent memory with DRAM. Each node has two quad-core
Intel Xeon (Westmere-EP) CPUs with 48 GB of DRAM, with
32 GB configured as an emulated pmem device. Each node
has an RDMA NIC (Mellanox ConnectX-2 40 Gbps HCA)
running in Infiniband mode and connects to an Infiniband
switch (QLogic 12300). We disabled the Direct Cache Access
feature on DSs. To demonstrate the impact to co-located
applications, we use a dedicated core for issuing and handling
RDMA requests on each client.

We build our Orion prototype on the Linux 4.10 kernel with
the RDMA verb kernel modules from Mellanox OFED [42].
The file system in Orion reuses code from NOVA but adds
∼8K lines of code to support distributed functionalities and
data structures. The networking module in Orion is built from
scratch and comprises another ∼8K lines of code.

We compare Orion with three distributed file systems
Ceph [69], Gluster [19], and Octopus [41] running on the
same RDMA network. We also compare Orion to ext4
mounted on a remote iSCSI target hosting a ramdisk us-
ing iSCSI Extension over RDMA (iSER) [12] (denoted by
Ext4/iSER), which provides the client with private access to
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Figure 7: Average latency of Orion metadata and data operations Orion is built on low-latency communication primitive
(a). These lead to basic file operation latencies that are better than existing remote-access storage system (b) and within a small
factor of local NVMM file systems (c).

a remote block device. Finally, we compare our system with
two local DAX file systems: NOVA [73, 74] and ext4 in DAX
mode (ext4-DAX).

6.2 Microbenchmarks

We begin by measuring the networking latency of log com-
mits and RPCs. Figure 7(a) shows the latency of a log commit
and an RPC compared to the network round trip time (RTT)
using two sends verbs. Our evaluation platform has a net-
work round trip time of 7.96 µs. The latency of issuing an
Orion RPC request and obtaining the response is 8.5 µs. Log
commits have much lower latency since the client waits until
receiving the acknowledgment of an RDMA send work re-
quest, which takes less than half of the network round trip
time: they complete in less than 2 µs.

Figure 7(b) shows the metadata operation latency on Orion
and other distributed file systems. We evaluated basic file sys-
tem metadata operations such as create, mkdir, unlink,
rmdir as well as reading and writing random 4 KB data
using FIO [6]. Latencies for Ceph and Gluster are between
34% and 443% higher than Orion.

Octopus performs better than Orion on mkdir, unlink
and rmdir, because Octopus uses a simplified file system
model: it maintains all files and directories in a per-server
hash table indexed by their full path names and it assigns
a fixed number of file extents and directory entries to each
file and directory. This simplification means it cannot handle
large files or directories.

Ext4/iSER outperforms Orion on some metadata opera-
tions because it considers metadata updates complete once
they enter the block queue. In contrast, NVMM-aware sys-
tems (such as Orion or Octopus) report the full latency for
persistent metadata updates. The 4 KB read and write mea-
surements in the figure give a better measure of I/O latency –
Orion outperforms Ext4/iSER configuration by between 4.9×
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Figure 8: Application performance on Orion The graph is
normalized to NOVA, and the annotations give NOVA’s per-
formance. For write-intensive workloads, Orion outperforms
Ceph and Gluster by a wide margin.

and 10.9×.
For file reads and writes, Orion has the lowest latency

among all the distributed file systems we tested. For internal
clients (Orion-IC), Orion’s 4 KB read latency is 3.6 µs and
4 KB write latency of 5.8 µs. For external clients (Orion-
EC), the write latency is 7.9 µs and read latency is similar
to internal clients because of client-side caching. For cache
misses, read latency is 7.9 µs.

We compare Orion to NOVA and Ext4-DAX in Figure 7(c).
For metadata operations, Orion sends an RPC to the MDS on
the critical path, increasing latency by between 98% to 196%
compared to NOVA and between 31% and 106% compared
to Ext4-DAX. If we deduct the networking round trip latency,
Orion increases software overheads by 41%.

6.3 Macrobenchmarks
We use three Filebench [64] workloads (varmail, fileserver
and webserver) as well as MongoDB [4] running YCSB’s [16]
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Workload
#

Threads
#

Files
Avg. File

Size
R/W
Size

Append
Size

varmail 8 30 K 16 KB 1 MB 16 KB
fileserver 8 10 K 128 KB 1 MB 16 KB

webserver 8 50 K 64 KB 1 MB 8 KB
mongodb 12 YCSB-A, RecordCount=1M, OpCount=10M

Table 2: Application workload characteristics This table
includes the configurations for three filebench workloads and
the properties of YCSB-A.

Workload A (50% read/50% update) to evaluate Orion. Ta-
ble 2 describes the workload characteristics. We could not run
these workloads on Octopus because it limits the directory
entries and the number of file extents, and it ran out of mem-
ory when we increased those limits to meet the workloads’
requirements.

Figure 8 shows the performance of Orion internal and ex-
ternal clients along with other file systems. For filebench
workloads, Orion outperforms Gluster and Ceph by a large
margin (up to 40×). We observe that the high synchroniza-
tion cost in Ceph and Gluster makes them only suitable for
workloads with high queue depths, which are less likely on
NVMM because media access latency is low. For MongoDB,
Orion outperforms other distributed file systems by a smaller
margin because of the less intensive I/O activities.

Although Ext4/iSER does not support sharing, file sys-
tem synchronization (e.g., fsync()) is expensive because
it flushes the block queue over RDMA. Orion outperforms
Ext4/iSER in most workloads, especially for those that re-
quire frequent synchronization, such as varmail (with 4.5×
higher throughput). For webserver, a read-intensive workload,
Ext4/iSER performs better than local Ext4-DAX and Orion
because it uses the buffer cache to hold most of the data and
does not flush writes to storage.

Orion achieves an average of 73% of NOVA’s throughput.
It also outperforms Ext4-DAX on metadata and I/O intensive
workloads such as varmail and filebench. For Webserver, a
read-intensive workload, Orion is slower because it needs to
communicate with the MDS.

The performance gap between external clients and inter-
nal clients is small in our experiments, especially for write
requests. This is because our hardware does not support the
optimized cache flush instructions that Intel plans to add in
the near future [51]. Internal clients persist local writes using
clflush or non-temporal memory copy with fences; both
of which are expensive [76].

6.4 Metadata and Data Replication

Figure 9 shows the performance impact of metadata and data
replication. We compare the performance of a single internal
client (IC), a single external client (EC), an internal client
with one and two replicas (IC+1R, +2R), and an internal client

4K randwrite
0

5

10

15

La
te

nc
y 

(m
icr

os
ec

on
d)

varmail fileserver webserver
0.00

0.25

0.50

0.75

1.00

Th
ro

ug
hp

ut
: v

s. 
IC

IC EC IC+1R +2R +2R+M

Figure 9: Orion data replication performance Updating a
remote replica adds significantly to random write latency, but
the impact on overall benchmark performance is small.

with two replicas and MDS replication (+2R+M). For a 4 KB
write, it takes an internal client 12.1 µs to complete with our
strongest reliability scheme (+2R+M), which is 2.1× longer
than internal client and 1.5× longer than an external client.
For filebench workloads, overall performance decreases by
between 2.3% and 15.4%.

6.5 MDS Scalability
Orion uses a single MDS with a read-only mirror to avoid the
overhead of synchronizing metadata updates across multiple
nodes. However, using a single MDS raises scalability con-
cerns. In this section, we run an MDS paired with 8 internal
clients to evaluate the system under heavy metadata traffic.

We measure MDS performance scalability by stressing
it with different types of requests: client initiated inbound
RDMA reads, log commits, and RPCs. Figure 10 measures
throughput for the MDS handling concurrent requests from
different numbers of clients. For inbound RDMA reads (a),
each client posts RDMA reads for an 8-byte field, simulating
reading the log tail pointers of inodes. In (b) the client sends
64-byte log commits spread across 10,000 inodes. In (c) the
clients send 64-byte RPCs and the MDS responds with 32-
byte acknowledgments. Each RPC targets one of the 10,000
inodes. Finally, in (d) we use FIO to perform 4 KB random
writes from each client to private file.

Inbound RDMA reads have the best performance and scale
well: with eight clients, the MDS performs 13.8 M RDMA
reads per second – 7.2× the single-client performance. For
log commits, peak throughput is 2.5 M operations per sec-
ond with eight clients – 4.1× the performance for a single
client. Log commit scalability is lower because the MDS must
perform the log append in software. The MDS can perform
772 K RPCs per second with seven clients (6.2× more than
a single). Adding an eighth does not improve performance
due to contention among threads polling CQEs and threads
handling RPCs. The FIO write test shows good scalability –
7.9× improvement with eight threads. Orion matches NOVA
performance with two clients and out-performs NOVA by
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4.1× on eight clients.
Orion is expected to have good scaling under these condi-

tions. Similar to other RDMA based studies, Orion is suitable
to be deployed on networks with high bisectional bandwidth
and predictable end-to-end latency, such as rack-scale com-
puters [17, 39]. In these scenarios, the single MDS design is
not a bottleneck in terms of NVMM storage, CPU utilization,
or networking utilization. Orion metadata consumes less than
3% space compared to actual file data in our experiments.
Additionally, metadata communication is written in tight rou-
tines running on dedicated cores, where most of the messages
fit within two cache lines. Previous works [7,40] show similar
designs can achieve high throughput with a single server.

In contrast, several existing distributed file systems [8, 19,
30, 69] target data-center scale applications, and use mech-
anisms designed for these conditions. In general, Orion’s
design is orthogonal to the mechanisms used in these systems,
such as client side hashing [19] and partitioning [69], which
could be integrated into Orion as future work. On the other
hand, we expect there may be other scalability issues such
as RDMA connection management and RNIC resource con-
tention that need to be addressed to allow further scaling for
Orion. We leave this exploration as future work.

7 Related work

Orion combines ideas from NVMM file systems, distributed
file systems, distributed shared memory, user level file sys-
tems with trusted services, and recent work on how to best
utilize RDMA. Below, we place Orion in context relative to
key related work in each of these areas.

NVMM file systems Emerging NVMM technologies have
inspired researchers to build a menagerie NVMM-specific file
systems. Orion extends many ideas and implementation de-
tails from NOVA [73,74] to the distributed domain, especially
in how Orion stores and updates metadata. Orion also relies on
key insights developed in earlier systems [15,21,25,68,70,72].

Distributed file systems There are two common ways to
provide distributed file accesses: the first is to deploy a Clus-

tered File System (CFS) [8,11,20,26,31,54] running on block
devices exposed via a storage area network (SAN) protocol
like iSCSI [53], Fiber Channel or NVMe Over Fabrics [18].
They use RDMA to accelerate the data path [12, 18, 61] and
they can accelerate data transfers using zero-copy techniques
while preserving the block-based interface.

The second is to build a Distributed File System (DFS) [8,
9, 19, 30, 37, 38, 47, 57, 57, 69] that uses local file systems
running on a set of servers to create a single, shared file system
image. They consist of servers acting in dedicated roles and
communicating using customized protocols to store metadata
and data. Some distributed file systems use RDMA as a drop-
in replacement of existing networking protocols [10,18,63,71]
while preserving the local file system logic.

Their diversity reflects the many competing design goals
they target. They vary in the interfaces they provide, the
consistency guarantees they make, and the applications and
deployment scenarios they target. However, these systems
target hard drives and SSDs and include optimizations such
as queuing striping and DRAM caching. Orion adds to this
diversity by rethinking how a full-featured distributed file
system can fully exploit the characteristics of NVMM and
RDMA.

Octopus [41] is a distributed file system built for RDMA
and NVMM. Compared to Orion, its design has several limi-
tations. First, Octopus assumes a simplifed file system model
and uses a static hash table to organize file system meta-
data and data, which preventing it from running complex
workloads. Second, Octopus uses client-side partitioning.
This design restricts access locality: as the number of peers
increases, common file system tasks such as traversing a direc-
tory become expensive. Orion migrates data to local NVMM
to improve locality. Finally, Octopus does not provide provi-
sions for replication of either data or metadata, so it cannot
tolerate node failures.

Trusted file system services Another research trend is to
decouple file system control plane and data plane, and build
userspace file systems [36, 48, 68] with trusted services to
reduce the number of syscalls. Orion MDS plays a similar
role as the trusted service. However, Orion heavily leverages
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kernel file system mechanisms, as well as the linear address-
ing of kernel virtual addresses and DMA addresses. In order
to support DAX accesses, extending a uerspace file system
to a distributed setting must deal with issues such as large
page tables, sharing and protection across processes and page
faults, which are all not RDMA friendly.

Distributed shared memory There has been extensive
research on distributed shared memory (DSM) systems [44,
49, 50], and several of them have considered the problem
of distributed, shared persistent memory [29, 55, 56]. DSM
systems expose a simpler interface than a file system, so the
designers have made more aggressive optimizations in many
cases. However, that makes adapting existing software to use
them more challenging.

Hotpot [55] is a distributed shared persistent memory sys-
tem that allows applications to commit fine-grained objects
on memory mapped NVMM files. It is built on a customized
interface, requiring application modification. Hotpot uses a
multi-stage commit protocol for consistency, while Orion
uses client-side updates to ensure file system consistency.

Mojim [76] provides fine-grained replication on NVMM,
and Orion uses this technique to implement metadata replica-
tion.

RDMA-optimized applications Many existing works ex-
plore how RDMA can accelerate data center applications,
such as key-value stores [23, 33, 43], distributed transaction
systems [13, 24, 34], distributed memory allocators [5, 23,
66, 67] and RPC implementations [35, 58]. There are several
projects using RDMA protocols targeting to accelerate exist-
ing distributed storages [3,32] or work as a middle layer [1,2].
Orion differs from these systems in that it handles network re-
quests directly within file systems routines, and uses RDMA
to fully exploit NVMM’s byte-addressability.

8 Conclusion

We have described and implemented Orion, a file system for
distributed NVMM and RDMA networks. By combining file
system functions and network operations into a single layer,
Orion provides low latency metadata accesses and allows
clients to access their local NVMMs directly while accepting
remote accesses. Our evaluation shows that Orion outper-
forms existing NVMM file systems by a wide margin, and it
scales well over multiple clients on parallel workloads.
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Abstract
We present the design, implementation, and evaluation of IN-
STalytics a co-designed stack of a cluster file system and the
compute layer, for efficient big data analytics in large-scale
data centers. INSTalytics amplifies the well-known benefits of
data partitioning in analytics systems; instead of traditional
partitioning on one dimension, INSTalytics enables data to be
simultaneously partitioned on four different dimensions at the
same storage cost, enabling a larger fraction of queries to ben-
efit from partition filtering and joins without network shuffle.

To achieve this, INSTalytics uses compute-awareness to cus-
tomize the 3-way replication that the cluster file system em-
ploys for availability. A new heterogeneous replication lay-
out enables INSTalytics to preserve the same recovery cost
and availability as traditional replication. INSTalytics also
uses compute-awareness to expose a new sliced-read API that
improves performance of joins by enabling multiple compute
nodes to read slices of a data block efficiently via co-ordinated
request scheduling and selective caching at the storage nodes.

We have built a prototype implementation of INSTalytics
in a production analytics stack, and show that recovery per-
formance and availability is similar to physical replication,
while providing significant improvements in query perfor-
mance, suggesting a new approach to designing cloud-scale
big-data analytics systems.

1 Introduction

All the powers in the universe are already ours. It is we who put our
hands before our eyes and cry that it is dark.

- Swami Vivekananda

Large-scale cluster file systems [10, 22, 17] are designed to
deal with server and disk failures as a common case. To en-
sure high availability despite failures in the data center, they
employ redundancy to recover data of a failed node from data
in other available nodes [11]. One common redundancy mech-
anism that cluster file systems use for compute-intensive work-
loads is to keep multiple (typically three) copies of the data on

∗Jayashree and Piyus worked on this while at Microsoft Research

different servers. While redundancy improves availability, it
comes with significant storage and write amplification over-
heads, typically viewed as the cost to be paid for availability.

An increasingly important workload in such large-scale
cluster file systems is big data analytics processing [6, 31, 2].
Unlike a transaction processing workload, analytics queries
are typically scan-intensive, as they are interested in millions
or even billions of records. A popular technique employed by
analytics systems for efficient query execution, is partitioning
of data [31] where the input files are sorted or partitioned on
a particular column, such that records with a specific range of
column values are physically clustered within the file. With
partitioned layout, a query that is only interested in a particu-
lar range of column values (say 1%) can use metadata to only
scan the relevant partitions of the file, instead of scanning the
entire file (potentially tens or hundreds of terabytes). Simi-
larly, with partitioned layout, join queries can avoid the cost of
expensive network shuffle [29].

However, as partitioning is tied to the physical layout of
bytes within a file, data is partitioned only on a single dimen-
sion; as a result, it only benefits queries that perform a filter or
join on the column of partitioning, while other queries are still
forced to incur the full cost of a scan or network shuffle.

In this paper, we present INSTalytics (INtelligent STore
powered Analytics), a system that drives significant efficiency
improvements in performing large-scale big data analytics, by
amplifying the well-known benefits of partitioning. In partic-
ular, INSTalytics allows data to be partitioned simultaneously
along four different dimensions, instead of a single dimension
today, thus allowing a large fraction of queries to achieve the
benefit of efficient partition filtering and efficient joins without
network shuffle. The key approach that enables such improve-
ments in INSTalytics is making the distributed file system
compute-aware; by customizing the 3-way replication that the
file system already does for availability, INSTalytics achieves
such heterogeneous partitioning without incurring additional
storage or write amplification cost.

The obvious challenge with such logical replication is en-
suring the same availability and recovery performance as phys-
ical replication; a naive layout would require scanning the en-
tire file in the other partitioning order, to recover a single failed
block. INSTalytics uses a novel layout technique based on
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super-extents and intra-extent circular buckets to achieve re-
covery that is as efficient as physical replication. It also en-
sures the same availability and fault isolation guarantees as
physical replication under realistic failure scenarios. The lay-
out techniques in INSTalytics also enable an additional fourth
partitioning dimension, in addition to the three logical copies.

The file system in INSTalytics also enables efficient execu-
tion of join queries, by supporting a new sliced-read API that
uses compute-awareness to co-ordinate scheduling of requests
across multiple compute nodes accessing the same storage ex-
tent, and selectively caches only the slices of the extent that are
expected to be accessed, instead of caching the entire extent.

We have implemented INSTalytics in a production dis-
tributed file system stack, and evaluate it on a cluster of
500 machines with suitable modifications to the compute lay-
ers. We demonstrate that the cost of maintaining multiple
partitioning dimensions at the storage nodes is negligible in
terms of recovery performance and availability, while signifi-
cantly benefiting query performance. We show through micro-
benchmarks and real-world queries from a production work-
load that INSTalytics enables significant improvements upto an
order of magnitude, in the efficiency of analytics processing.

The key contributions of the paper are as follows.
• We propose and evaluate novel layout techniques for en-

abling four simultaneous partitioning/sorting dimensions
of the same file without additional cost, while preserving
the availability and recovery properties of the present 3-
way storage replication;

• We characterize a real-world analytics workload in a pro-
duction cluster to evaluate the benefit of having multiple
partitioning strategies;

• We demonstrate with a prototype implementation that
storage co-design with compute can be implemented
practically in a real distributed file system with minimal
changes to the stack, illustrating the pragmatism of the
approach for a data center;

• We show that compute-awareness with heterogenous lay-
out and co-ordinated scheduling at the file system signifi-
cantly improves the performance of filter and join queries.

The rest of the paper is structured as follows. In § 2, we
provide a background of big data analytics processing. In § 3,
we characterizate a production analytics workload. We present
logical replication in § 4, discuss its availability implications
in § 5, and describe optimizations for joins in § 6. We present
the implementation of INSTalytics in § 7, and evaluate it in § 8.
We present related work in § 9, and conclude in § 10.

2 Background
In this section, we describe the general architecture of analyt-
ics frameworks, and the costs of big data query processing.
Cluster architecture: Big data analytics infrastructure typ-
ically comprises of a compute layer such as MapReduce [6]

or Spark [28], and a distributed file system such as GFS [10]
or HDFS [22]. Both these components run on several thou-
sands of machines, and are designed to tolerate machine fail-
ures given the large scale. The distributed file system is typ-
ically a decentralized architecture [14, 26, 10], where a cen-
tralized “master” manages metadata while thousands of stor-
age nodes manage the actual blocks of data, also referred to
as chunks or extents (we use the term “extent’ in the rest of
the paper). An extent is typically between 64MB and 256MB
in size. For availability under machine failures, each storage
extent is replicated multiple times (typically thrice). The com-
pute layer can run either on the same machines as the storage
nodes (i.e., co-located), or a different set of machines (i.e., dis-
aggregated). In the co-located model, the compute layer has
the option of scheduling computation for locality between the
data and compute, say at a rack-level, for better aggregate data
bandwidth.
Cost of analytics queries: Analytics queries often process
millions or billions of records, as they perform aggregation or
filtering on hundreds of terabytes. As a result, they are scan-
intensive on the disks - using index lookups would result in
random disk reads on millions of records. Hence disk I/O is a
key cost of query processing given the large data sizes.

An important ingredient of most big data workloads is joins
of multiple files on a common field. To perform a join, all
records that have the same join key value from both files need
to be brought to one machine, thus requiring a shuffle of data
across thousands of servers; each server sends a partition of
the key space to a designated worker responsible for that par-
tition. Such all-to-all network shuffle typically involves an ad-
ditional disk write of the shuffled data to an intermediate file
and subsequent disk read. Further, it places load on the data
center switch hierarchy across multiple racks.
Optimizations: There are two common optimizations that re-
duce the cost of analytics processing: partitioning, and co-
location. With partitioning, the data file stored on disk is sorted
or partitioned by a particular dimension or column. If a query
filters on that same column, it can avoid the cost of a full scan
by performing partition elimination. With co-location, joins
can execute without incurring network shuffle. If two files A
and B are likely to be joined, they can both be partitioned on
the join column/dimension in a consistent manner, so that their
partition boundaries align. In addition, if the respective parti-
tions are also placed in a rack-affinitized manner, the join can
avoid cross-rack network shuffle, as it would be a per-partition
join. Further, the partitioned join also avoids the intermediate
I/O, because the respective partitions can perform the join of
small buckets in memory.

3 Workload Analysis

We analyzed one week’s worth of queries on a production clus-
ter at Microsoft consisting of tens of thousands of servers. We
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Figure 1: Data filtering in production queries

Figure 2: Number of partition dimensions needed.

share below our key findings.

3.1 Query Characteristics
Data filtering: The amount of data read in the first stage of
the query execution vis-a-vis the amount of data written back
at the end of the first stage indicates the degree of filtering
that happens on the input. In Figure 1, we show a CDF of
the data read and data written by unique query scripts (ag-
gregating across repetitions) along the X-axis, sorted by the
most expensive jobs. As the graph shows, on average, there
is a 7x reduction in data sizes past the first stage. This reduc-
tion is due to both column-level and row-level filtering; while
column-stores [15] help with the former, we primarily focus
on row-level filtering which is complementary.
Importance of join queries: Besides filtering, joins of mul-
tiple files are an important part of big data analytics. In our
production workload, we find that 37% of all queries contain a
join, and 85% of those perform a join at the start of the query.

3.2 Number of dimensions needed
Today’s systems limit the benefit of partitioning to just one
dimension. To understand what fraction of queries would ben-
efit from a higher number of dimensions, we analyzed each in-
put file referenced in any job during a week, and we extracted
all columns/dimensions that were ever used in a filter or join
clause in any query that accessed the file. We plot a CDF of
the fraction of files that were only accessed on K columns (K
varying along X axis). As Figure 2 shows, with one partition-
ing dimension, we cover only about 33% of files, which illus-

trates the limited utility of today’s partitioning. However, with
4 partitioning dimensions, the coverage grows significantly to
about 83%. Thus, for most files, having them partitioned in 4
dimensions would enable efficient execution for all queries on
that file, as they would benefit from partitioning or co-location.
Supporting multiple dimensions: Today, the user can par-
tition data across multiple dimensions by storing multiple
copies. However this comes with a storage cost: to support 4
dimensions, the user incurs a 4x space overhead, and worse, a
4x cost in write bandwidth to keep the copies up to date. Inter-
estingly, in our discussions with teams that perform big-data
analytics within Microsoft, we found examples where large
product groups actually maintain multiple (usually 2) copies
(partitioned on different columns) just to reduce query latency,
despite the excessive cost of storing multiple copies. Many
teams stated that more partition dimensions would enable new
kinds of analytics, but the cost of supporting more dimensions
today is too high.

4 Logical Replication

The key functionality in INSTalytics is to enable a much larger
fraction of analytics queries to benefit from partitioning and
co-location, but without paying additional storage or write
cost. It achieves this by co-designing the storage layer with the
analytics engine, and changing the physical replication (usu-
ally three copies that are byte-wise identical) that distributed
file systems employ for availability, into logical replication,
where each copy is partitioned along a different column. Log-
ical replication provides the benefit of three simultaneous par-
titioning columns at the same storage and write cost, thus im-
proving query coverage significantly, as shown in Section 3.
As we describe later, our layout actually enables four different
partitioning columns at the same cost.

The principle of logical replication is straight-forward, but
the challenge lies in the details of the layout. There are
two conflicting requirements: first, the layout should help
query performance by enabling partition filtering and collo-
cated joins in multiple dimensions; second, recovery perfor-
mance and availability should not be affected.

In the rest of the section we describe several variants of logi-
cal replication, building towards a more complete solution that
ensures good query performance at a recovery cost and avail-
ability similar to physical replication. For each variant, we
describe its recovery cost and potential query benefits. We use
the term dimension to refer to a column used for partitioning;
each logical replica would pertain to a different dimension. We
use the term intra-extent bucketing to refer to partitioning of
rows within an extent; and we use the term extent-aligned par-
titioning to refer to partitioning of rows across multiple extents
where partition boundaries are aligned with extent boundaries.
When the context is clear, we simply use the terms bucketing
and partitioning respectively for the above.
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Figure 3: Naive logical replication. The figure shows the physical layout of the input file and the layout with naive logical
replication. The file has 4 extents each consisting of 6 rows, 3 columns per row. Each logical replica is range partitioned on
a different column. The first replica is partitioned on the first column (e.g., E1 has values from 0-99, E2 from 100-199 and so
on). Recovering E1 from replica 2 requires reading all extents from replica 1.

4.1 Naive layouts for logical replication

There are two simple layouts for logical replication, neither
meeting the above constraints. The first approach is to perform
logical replication at a file-granularity. In this layout the three
copies of the file are each partitioned by a different dimension,
and stored seperately in the file system with replication turned
off. This layout is ideal for query performance as it is identi-
cal to keeping three different copies of the file. Unfortunately
this layout is a non-starter in terms of recovery; as Figure 3
shows, there is inter-dimensional diffusion of information; the
records in a particular storage extent in one dimension will be
diffused across nearly all extents of the file in the other dimen-
sion. Thus, recovering a 200MB extent would require reading
an entire say 10TB file in another dimension, whereas with
physical replication, only 200MB is read from another replica.

The second sub-optimal approach is to perform logical
replication at an intra-extent level. Here, one would simply use
intra-extent bucketing to partition the records within a storage
extent along different dimensions in each replica. This simpli-
fies recovery as there is a one-to-one correspondence with the

other replicas of the extent. This approach helps partly with
filter queries as the file system can use metadata to read only
the relevant buckets within an extent, but is not as efficient
as the previous layout as clients would touch all extents in-
stead of a subset of extents. The bigger problem though is that
joins or aggregation queries cannot benefit at all, because co-
location/local shuffle is impossible. We discuss more about the
shortcomings of this approach in handling joins in Section 6.

4.2 Super-Extents

INSTalytics bridges the conflicting requirements of query per-
formance and recovery cost, by introducing the notion of a
super-extent. A super-extent is a fixed number (typically 100)
of contiguous extents in the file in the original order the file
was written (see Figure 4). Partitioning of records happens
only within the confines of a super-extent and happens in an
extent aligned manner. As shown in the figure this ensures that
the inter-dimensional diffusion is now limited to only within
a super-extent; all records in an extent in one dimension are
hence guaranteed to be present somewhere within the corre-
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Figure 4: Super-extents and intra extent bucketing. The file to be replicated is divided into super extents and logical
replication is performed within super-extents. Any extent (like E1 of replica 2 as highlighted) can be recovered by only reading
extents of the same super extent in another replica (E1 and E2 from replica 1). Figure on the right shows a more detailed view
of a super-extent (with 4 extents per super-extent instead of 2 for clarity). Data within an extent is partitioned on a different
column and this helps reduce recovery cost further as recovering an extent only involves reading one bucket from each extent
of the other replica. Recovering E4 of replica 2 requires only reading slices from replica 1 whose C2 boxes are red.

sponding super-extent (i.e., 100 extents) of the other partition-
ing dimension. All 3 copies of the super-extent have exactly
the same information, just arranged differently. The number of
extents within a super-extent is configurable; in that sense, the
super-extent layout can be treated as striking a tunable balance
between the two extremes i.e., global partitioning and intra-
extent partitioning.

Super-extents reduce recovery cost because in order to re-
cover a 200MB extent, the store has to read “only” 100 extents
of that super-extent from another dimension. This is better
than reading the entire say 10TB file with the naive apporoach,
but the cost of recovery is still significantly higher (100x) than
physical replication. We improve on this below. From a query
perspective, the super-extent based layout limits the granular-
ity of partitioning to the number of extents per super extent.
This limits the potential savings for filtering and co-location.
For example, consider a very selective filter query that matches
only 1/1000th of the records. With the super extent layout, the
query would still have to read one extent in each super-extent.
Hence the maximum speedup because of partition elimination
(with 100 extents per super-extent) is 100x, whereas the file-
level global partitioning could support 1000 partitions and pro-
vide a larger benefit. However, the 100x speed up is significant
enough that the tradeoff is a net win. Conceptually, the super
extent based layout does a partial partitioning of the file, as ev-
ery key in the partition dimension could be present in multiple
extents, one per super extent. The globally partitioned layout
would have keys more densely packed within fewer extents.

Fourth partition dimension. Finally, super-extents benefit
query execution in a way that file-level global partitioning does
not. As we do not alter the native ordering of file extents across
super-extent boundaries, we get a fourth dimension. If the user
already partitioned the file on a particular column, say times-
tamp, we preserve the coarse partitions by timestamp across
super-extents, so a query filtering on timestamp can eliminate
entire super-extents. Thus, we get 4 partition dimensions for
no additional storage cost compared to today1.

4.3 Intra-extent Chained Buckets

While super-extents reduce recovery cost to 100 extents in-
stead of the whole file, the 100x cost is still a non-starter. Re-
covery needs to be low-latency to avoid losing multiple copies,
and needs to be low on resource usage so that the cluster can
manage recovery load during massive failures such as rack
failures. Intra-extent chained buckets is the mechanism we use
to make logical recovery as efficient as physical recovery.

The key idea behind intra-extent chained buckets, is to use
bucketing within an extent for recovery instead of query per-
formance. The records within an extent are bucketed on a di-
mension that is different from the partition dimension used
within the super-extent. Let us assume that C1, C2, and C3

are the three columns/dimensions chosen for logical replica-

1This fourth dimension is not equally powerful as the first three because
while it provides partition elimintation for filters, it does not provide coloca-
tion for joins
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tion. Given 100 extents per super-extent, the key-space of C1

would be partitioned into 100 ranges, so the ith extent in every
super-extent of dimension C1 would contain records whose
value for column C1 fall in the ith range.

Figure 4 (right) illustrates how intra-extent chained buckets
work. Let us focus on the first extent E1 of a super-extent in
dimension C1. The records within that extent are further buck-
eted by dimension C2. So the 200MB extent is now comprised
of 100 buckets each roughly of size 2MB. The first intra-extent
bucket of E1 contains only records whose value of column C2

falls in the first partition of dimension C2, and so on. Similarly
the extents of dimension C2 have an intra-extent bucketing by
column C3, and the extents of dimension C3 are intra-extent
bucketed by column C1.

With the above layout, recovery of an extent does not re-
quire reading the entire super-extent from another dimension.
In Figure 4, to recover the last extent of replica 2, the store
needs to read only the last bucket from extents E1 to E4 of
replica 1, instead of reading the full content of those 4 extents.

Thus, in a superextent of 100 extents, instead of reading 100
x 200MB to recover a 200MB extent, we now only read 2MB
each from 100 other extents, i.e., read 200MB to recover a
200MB extent, essentially the same cost as physical replica-
tion. By reading 100 chunks of size 2MB each, we potentially
increase the number of disk seeks in the cluster. However,
given the 2MB size, the seek cost gets amortized with transfer
time, so the cost is similar especially since physical recovery
also does the read in chunks. As we show in Section 8, the ag-
gregate disk load is very similar to physical replication. From a
networking perspective, the bandwidth usage is similar except
we have a parallel and more distributed load on the network.

Thus, with super-extents and intra-extent chained buckets,
we achieve our twin goals of getting the benefit of partitioning
and co-location for more queries, while simultaneously keep-
ing recovery cost the same as physical replication.

4.4 Making storage record-aware

In order to perform logical replication, the file system needs to
rearrange records across extents. However, the interface to the
file system is only in terms of opaque blocks. Clients perform
a read block or write block on the store, and the internal layout
of the block is only known to the client. For example, the file
could be an unstructured log file or a structured file with inter-
nal metadata. One could bridge this semantic gap by changing
the storage API to be record-level, but it is impractical as it
invovles changes to the entire software stack , and curtails the
freedom of higher layers to use diverse formats.

To bridge this tension, we introduce the notion of format
adapters in INSTalytics. The adapter is simply an encoder and
decoder that translates back and forth between an opaque ex-
tent, and records within that extent. Each format would have
its own adapter registered with the store, and only registered
formats are supported for logical replication. This is pragmatic

in cloud-scale data centers where the same entity controls both
the compute stack and the storage stack and hence there is co-
ordination when formats evolve.

A key challenge with the adapter framework is dealing
with formats that disperse metadata. For example, in one of
our widely-used internal formats, there are multiple levels of
pointers across the entire file.there is a footer at the end of the
file that points to multiple chunks of data, which in turn point
to pages. For a storage node that needs to decode a single
extent for logical replication, interpreting that extent requires
information from several other extents (likely on other storage
nodes), making the adapter inefficient. We therefore require
that each extent is self-describing in terms of metadata. For
the above format, we made small changes to the writer to ter-
minate chunks at extent boundaries and duplicate the footer
information within a chunk. Given the large size of the extent,
the additional metadata cost is negligible (less than 0.1%).

4.5 Creating logical replicas
Logical replication requires application hints on the dimen-
sions to use for logical replication, the file format, etc.. Also,
not all files benefit from logical replication, as it is a func-
tion of the query workload, and the read/write ratio. Hence,
files start off being physically replicated, and an explicit API
from the compute layer converts the file to being logically
replicated. Logical replication happens at the granularity of
super-extents; the file system picks 100 extents, shuffles the
data within those 100 (3-way replicated) extents and writes
out 300 new extents, 100 in each dimension. The work done
during logical replication is a disk read and a disk write.
Failure-handling during logical replication is straight-forward:
reads use the 3-way replicated copies for failover, and writes
failover to a different available storage node that meets the
fault-isolation constraints. The logical replication is not in-
place. Until logical replication for a super-extent completes,
the physically replicated copies are available, which simpli-
fies failure retry. As the application that generates data knows
whether to logically replicate, it could place those files on
SSD, so that the extra write and read are much cheaper; be-
cause it’s a transient state until logical replication, the SSD
space required is quite small.

4.6 Handling Data Skew
To benefit from partitioning, the different partitions along a
given dimension must be roughly balanced. However, in prac-
tice, because of data skew along some dimensions [4], some
partitions may have more data than others. To handle this,
INSTalytics allows for variable sized extents within a super-
extent, so that data skew is only a performance issue, not a
correctness issue. Given the broader implications of data skew
for query performance, users already pre-process the data to
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ensure that the partitioning dimensions are roughly balanced
(by using techniques such as prefixing popular keys with ran-
dom salt values, calibrating range boundaries based on a dis-
tribution analysis on the data, etc.). As the user specifies the
dimensions for logical replication, as well as the range bound-
aries, INSTalytics benefits from such techniques as well. In fu-
ture, we would like to build custom support for skew handling
within INSTalytics as a more generic fallback, by performing
the distribution analysis as part of creating logical replicas, to
re-calibrate partition boundaries when the user-data is skewed.

5 Availability with logical replication
While the super-extent based layout ensures the same recov-
ery cost as physical replication, it incurs a hit in availability.
With physical replication, for an extent to become unavail-
able, all three machines holding the three copies of the extent
must be unavailable. If p is the independent probability that
a specific machine in the cluster goes down within say a 5-
minute window, the probability of unavailability in physical
replication for a given extent is p3. But with logical replica-
tion, an extent becomes unavailable if the machine with that
extent is down, and additionally any one of the 100 machines
in each of the other two dimensions containing replicas of the
super-extent, are down, making the probability of unavailabil-
ity p × 100p × 100p = 104.p3. In this reasoning, we only
consider independent machine failures, as correlated failures
are handled below with fault-isolated placement.

5.1 Parity extents

To handle this gap in availability, we introduce an additional
level of reduduncy in the layout. Within a super-extent replica
which comprises of 100 extents, we add parity extents with
simple XOR parity for every group of 10 extents, i.e., a total
of 10 parity extents per super-extent replica. Now, each parity
group can tolerate one failure, which means for unavailability,
there has to be a double failure in the extent’s parity group, and
in addition, at least one parity group in each of the other two
dimensions must have a double failure. The probability thus
becomes p.10p × 10.

(
11
2

)
.p2 × 10.

(
11
2

)
.p2 = 3.02 × 106.p6.

Solving this for p, as long as (p < 0.7%), the availability
would be better than physical replication.2. . In rare cases of
clusters where the probability is higher, we could use double-
parity [5] in a larger group of 20 extents, so that each group
of 20 extents can tolerate two failures. The probability of un-
availability now becomes p.

(
21
2

)
.p2 × 5.

(
22
3

)
.p3 × 5.

(
22
3

)
.p3

= 12.45 × 109.p9, so the cut-off point becomes p < 2.1%.

2This formula is an approximation (for ease of understanding) that works
for small values of p. The accurate (and more complex) formula is p.(1 −
(1 − p)10)(1 − (1 − p)100(1 + 10p)10)2 which would be greater than p3

(physical replication) as long as p < 0.725%

Note that another knob to control availability is the size of a
super-extent: with super-extents comprising 10 extents instead
of 100, the single parity itself can handle a significant failure
probability of p < 3.2%.

The machine failure probability p above refers to the failure
probability within a small time window, i.e., the time it takes
to recover a failed extent. This is much lower than the average
% of machines that are offline in a cluster at any given time,
because the latter includes long dead machines, whose data
would have been recovered on other machines anyway. As we
show in Section 8, this failure probability of random indepen-
dent machines (excluding correlated failures) in large clusters
is less than 0.2%, so single parity is often sufficient, and hence
this is what we have currently implemented.

Recovering a parity extent requires 10x disk and network
I/O compared to a regular extent, because it has to perform an
XOR of 10 corresponding blocks. As 10% of logically repli-
cated extents are parity extents, this would double the cost of
recovery (10% x 10x). We therefore store two physically repli-
cated copies of each parity block, so that during recovery, most
of the failed parity blocks can be recovered with a raw copy,
and we incur the 10x disk cost only for a tiny fraction. This
is a knob for the cluster administrator - whether to incur the
additional 10% space cost, or the 2x performance cost during
recovery; in our experience, recovery cost is more critical and
hence the default is 2-way replication of parity blocks.

5.2 Fault-isolated placement

Replication is aimed at ensuring availability during machine
failures. As failures can be correlated, e.g., a rack power
switch can take down all machines in that rack, file systems
perform fault-isolated placement. For example, the placement
would ensure that the 3 replicas of an extent are placed in 3
different failure domains, to aovid simultaneously losing mul-
tiple copies of the block. With logical replication, each extent
does not have a corresponding replica, thus requiring a differ-
ent strategy for fault-isolation. The way INSTalytics performs
this fault isolation is to reason at the super-extent level, be-
cause all replicas of a given super-extent contain exactly the
same information. We thus place each replica of the super-
extent in a disjoint set of failure domains relative to any other
replica of the same super-extent, thus ensuring the same fault-
isolation properties as physical replication.

6 Efficient Processing of Join Queries
The multi-dimensional partitioning in INSTalytics is designed
to improve performance of join queries in addition to filter
queries. In this section, we first describe the localized shuffle
that is enabled when files are joined on one of the dimensions
of logical replication. We then introduce a new compute-aware
API that the file system provides, to further optimize joins by
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completely eliminating network shuffle.

6.1 Localized Shuffle
Joins on a logically replicated dimension can perform local-
ized shuffle: partition i of the first file only needs to be joined
with partition i of the second file, instead of a global shuf-
fle across all partitions. Localized shuffle has two benefits.
First, it significantly lowers (by 100x) the fan-in of the “re-
duce” phase, eliminating additional intermediate “aggrega-
tion” stages that big-data processing systems introduce just to
reduce the fan-in factor for avoiding small disk I/Os and for
fault-tolerance [29]. Elimination of intermediate aggregation
reduces the number of passes of writes and reads of the data
from disk. Second, it enables network-affinitized shuffle. If all
extents for a partition are placed within a single rack of ma-
chines, local shuffle avoids the shared aggregate switches in
the data center, and can thus be significantly more efficient.

The placement by the file system ensures that extents per-
taining to the same partition across all super-extents in a given
dimension are placed within a single rack of machines. The
file system supports an interface to specify during logical repli-
cation the logical replica of another file to co-affinitize with.

6.2 Sliced Reads
Localized shuffle avoids additional aggregation phases, but
still requires one write and read of intermediate data. If the
individual partitions were small enough, the join of each in-
dividual partition can happen in parallel in memory, avoiding
this disk cost. However, as super-extents limit the number of
partitions to 100, joins of large files (e.g., 10 TB) will be lim-
ited by parallelism and memory needs at compute nodes.

To address this limitation, INSTalytics introduces a new file
system API called a sliced-read, which allows a client to read
a small semantic-slice of an extent that belongs to a sub-range
of a partition, further sub-dividing the partition into 100 (slice-
factor) buckets. For instance, if say the first (out of 100) parti-
tion represents the range 0-10k, a sliced-read can ask for only
records in the range 9k-9.1k, thus providing the equivalent
benefit of having 10,000 partitions on the original file while
the super-extent remains at 100 partitions. Each compute node
would now read one bucket from each super-extent. The abil-
ity to perform per-partition joins enables efficient sliced reads,
as it allows join execution to happen in stages, few partitions
at a time (e.g., 1-10 out of 100). We have modified the job
scheduler to schedule compute nodes in stages.

However, with intra-extent bucketing (§ 4.3), the bucketing
within an extent is by a different dimension, whereas sliced-
read reqiures the bucketing within an extent to be on the same
dimension. Hence, in order to return slices, the storage node
must locally re-order the records within the extent. As multiple
compute nodes will read different slices of the same extent, a
naive implementation that reads the entire extent, repartitions
it and returns only the relevant slice, would result in excessive

disk I/O (e.g., 100x more disk reads for a slice-factor of 100).
In-memory caching of the re-ordered extent data at the storage
nodes can help, but incurs a memory cost proportional to the
working set (the number of extents being actively processed).

To bridge this gap, the storage node performs co-ordinated
lazy request scheduling, as it is aware of the pattern of re-
quests during a join through a sliced-read. In particular, it
knows that slice-factor compute nodes would be reading from
the same extent, so it queues requests until a threshold number
of requests (e.g., 90%) for a particular extent arrives. It then
reads the extent from disk, re-arranges the records by the right
dimension and services the requests, and caches the chunks
pertaining to the stragglers, i.e., the remaining 10%. The
cache usage reduces further by a factor of 10-100 with staging
(above), i.e., to less than 0.1%-1% of the input size. Thus, by
exploiting compute-awareness to perform co-ordinated request
scheduling and selective caching, sliced-read enables join ex-
ecution without incurring any intermediate write to disk.
Discussion: Both localized shuffle and sliced reads for ef-
ficient joins require the cross-extent partitioning that super-
extents provide, and do not work with a naive approach of
simply bucketing within an extent, as all extents will have data
from all partitions in that model. The small fan-in that super-
extent partitioning enables, is crucial to the feasibility of co-
ordinated scheduling.

7 Implementation
We have implemented INSTalytics in the codebase of a produc-
tion analytics stack that handles exabytes of data. A key con-
straint is that to be practically deployable, the changes needed
to be surgical and isolated without changing existing reason-
ing about recovery and failures. We describe in this section
key aspects of the implementation.

7.1 System architecture
The file system in our analytics stack comprises of a Paxos-
replicated Master that holds the metadata in memory, and Stor-
age Nodes that store extents identified by GUIDs. The master
maintains a mapping from a file ID to a list of extents in the
file, and an offset-to-extent map. The master also tracks ex-
tent metadata, tracking their size, the list of replicas, i.e., the
storage nodes on which those instances are placed, etc.. A key
constraint is to avoid increase in the in-memory metadata.

7.2 Changes to Filesystem Master
With logical replication, the extent is no longer a homogenous
entity. For example, the sizes of the replicas in each dimen-
sion may be different due to skews in data distribution. To
handle this, we hide the actual sizes of the extent instances
from the master; the master continues to track extents and
offsets in the physical space. The extent table at the master
continues to track three instances per extent; we map them
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to the same bucket index across the three logical dimensions
(e.g., instances of extent 0 of the stream would track the 0th

bucket of the three dimensions for first super-extent). We add
a super-extent table to the stream metadata, tracking extent in-
dexes that delimit super-extents; the total increase in metadata
is < 1%.

The extent placement logic is changed to handle super-
extent aware fault isolation, and the recovery path is also
changed minimally. Instead of asking a new storage node to
copy extent data from a single source, the master sends a list
of 300 sources for entire super-extent; the storage node talks
to them to perform recovery.

7.3 Changes to Storage Nodes
The storage nodes handle most of the work for creation and
recovery of logical extents. For each super-extent, the master
sends a logically replicate request to an orchestrator
storage node, specifying the 300 physically replicated source
instances, and 300 new destination storage nodes. The orches-
trator sends a create logical extent request to each
destination, on receipt of which the destination sends read re-
quests to 100 source nodes to read one bucket’s worth of data
from each. It then assembles all that data into one extent by
invoking the encoder of the format-specific adapter. The stor-
age nodes that receive the bucketed read request invoke the
decoder of the format-specific adapter to convert the extent
into records, apply bucketing on the column values to return
just the bucket the destination node is interested in; a decoded
cache helps reuse this work across destinations. To amortize
this cost across queries, logical replication is performed only
on files that have a high read-write ratio. The storage nodes
also track logical-extent-specific metadata in SSD that contain
pointers to intra-extent sub-buckets, and additional rowID in-
formation to reconstruct data exactly as they were originally
written. The recovery flow works similar to creating a logical
extent, and handles parity recovery as well.

7.4 Changes to Compute Layers
Because of the adapter-based design at the storage nodes and
the store’s ability to reconstruct data with byte-level fidelity,
compute layers continue to access storage through a block in-
terface. The changes mostly have to deal with how the mul-
tiple dimensions are exposed to layers such as the query opti-
mizer; the QO treats them as multiple clustered indexes. With
our changes, the query optimizer can handle simple filters and
joins by automatically picking the correct partition dimension;
full integration into the query optimizer to handle complex
queries is beyond the scope of this paper. The store provides
a filtered read API which returns only the subset of ex-
tents that match a given filter condition. Also, the store pro-
vides direct access to a specific dimension or specific bucket
with file-name mangling (e.g., filename[0]), for ease of inte-
gration. The client library of the store initiates recovery-on-
demand; instead of trying a different replica for failover, it

Figure 5: Cluster network load during recovery

Figure 6: Cluster disk load during recovery

triggers an online recovery. As described in Section 4, this
cost is identical to reading from another physical replica.

8 Evaluation
We evaluate INSTalytics in a cluster of 500 servers (20 racks of
25 servers each). Each server is a 2.4 GHz Xeon with 24 cores
and 128 GB of RAM, 4 HDDs and 4 SSDs. 450 out of the 500
servers are configured as storage (and compute) nodes, and 5
as store master. We answer three questions in the evaluation:
• What is the recovery cost of the INSTalytics layout?
• What are the availability characteristics of INSTalytics?
• How much do benchmarks and real queries benefit ?
For our evaluation, unless otherwise stated, we use a config-

uration with 100 extents per superextent with an average extent
size of 256MB.
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Figure 7: Storage availability during rack failures

8.1 Recovery performance

For this experiment, we take down an entire (random) rack
of machines out of the 20 racks, thus triggering recovery of
the extent replicas on those 25 machines. We then measure
the load caused by recovery on the rest of the machines in the
cluster. For a fair comparison, we turn off all throttling of
recovery traffic in both physical and logical replication. Dur-
ing the physical/logical replication experiment, we ensure that
all extents recovered belong to physically/logically replicated
files respectively. The number of extents recovered is similar
in the two experiments, about 7500 extents (1̃.5TB). We mea-
sure the network and disk utilization of all the live machines
in the cluster, and plot average and 90th percentiles. Although
the physical and logical recovery are separate experiments, we
overlay them in the same graph with offset timelines.

Figure 5 shows the outbound network traffic on all servers
in the cluster during recovery. The logical recovery is more
bursty because of its ability to read sub-buckets from 100 other
extents. The more interesting graph is Figure 6 that shows
the disk utilization of all other servers; because each server
has 4 disks, the maximum disk utilization is 400%. As can
be seen, the width of the two spikes are similar, which shows
that recovery in both physical and logical complete with sim-
ilar latency. The metric of disk utilization, together with the
overall time for recovery, captures the actual work done by the
disks; for instance, any variance in disk queue lengths caused
by extra load on the disks due to logical recovery, would have
manifested in a higher width of the spike in the graph. The
spike in the physical experiment is slightly higher in the 90th

percentile, likely because it copies the entire extent from one
source while logical replication is able to even out the load
across several source extents. The key takeaway from the
disk utilization graph is that the disk load caused by reading
intra-extent chained buckets from 100 storage nodes, is as ef-
ficient as copying the entire extent from a single node with
physical replication. The logical graph has a second smaller
spike in utilization corresponding to the lag between reads and

Figure 8: Storage availability during machine failures

writes (all sub-buckets need to be read and assembled before
the write can happen). For both disk and network, we summed
up the aggregate across all servers during recovery and they
are within 10% of physical recovery.

8.2 Availability

In this section, we compare the availability of logical and
physical replication under two failure scenarios: isolated ma-
chine failures and co-ordinated rack-level failures. Because
the size of our test cluster is too small to run these tests, we
ran a simulation of a 10K machine cluster with our layout pol-
icy. Because of fault-isolated placement of buckets across di-
mensions, we tolerate up to 5 rack failures without losing any
data (with parity, unavailability needs two failures in each di-
mension). Figure 7 shows the availability during pod failures.
As can be seen, there is a crossover point until which logical
replication with parity provides better availability than phys-
ical replication, and it gets worse after that. The cross-over
point for isolated machine failures is shown in Figure 8 and
occurs at 80 machines, i.e., 0.8%. We also ran a simulation
of double-parity layout; the cross-over points for isolated and
correlated failures occur at 265 and 375 failures respectively.

To calibrate what realistic failure scenarios occur in prac-
tice, we analyzed the storage logs of a large cluster of tens
of thousands of machines over a year to identify dynamic fail-
ures; failures which caused the master to trigger recovery (thus
omitting long-dead machines etc.). We found that isolated ma-
chine failures are rare, typically affecting less than 0.2% of
machines. There were 55 spikes of failures affecting more
machines, but in all but 2 of those spikes, they were concen-
trated on one top-level failure domain, i.e., a set of racks that
share an aggregator switch. INSTalytics places the three di-
mensions of a file across multiple top-level failure domains, so
is immune to these correlated failures, as it affects only one of
three dimensions. The remaining 2 spikes had random failures
of 0.8%, excluding failures from the dominant failure domain.
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Figure 9: Resource cost of AMP queries.

8.3 Query performance

We evaluate the query performance benefits of INSTalytics on
the AMP big-data benchmark [1, 16] and on a slice of queries
from a production big data workload. We use two metrics:
the query latency, and the “resource cost”, i.e., the number of
machine hours spent on the query. All sliced-read joins use
a request threshold of 90% and 10 stages. The baseline is a
production analytics stack handling exabytes of data.

8.3.1 AMP Benchmark

The AMP benchmark has 4 query types: scan, aggregation,
join, and external script query; we omit the last query, as our
runtime does not have python support. As the emphasis is
on large-scale workloads, we use a scale factor of 500 dur-
ing data generation. We logically replicate the uservisits
file (12TB) on 3 dimensons: url, visitDate, and IP and the
rankings file (600GB) on 2: url and pagerank. Figures 9
and 10 show the benefit from INSTalytics in terms of cost and
latency respectively. Queries 1A, 1B which perform heavy
filtering on pagerank column of rankings benefit signifi-
cantly from partitioning; the latency benefit is lower than the
cost benefit because of the fixed startup latency. Query 3
does a join of the two files on the url column, after filtering
uservisits on visitDate. Since both files are partitioned
on url, 3C gets significant benefits while performing the join
using sliced reads. 3A, 3B perform heavly filtering before the
join and hence benefit from partitioning on the visitDate col-
umn. Queries 2A to 2C perform a group-by on a prefix of IP
in uservisits, and get benefits of better local aggregation
enabled by partitioning on IP. In summary, today one can pick
one column out of three and get wins for a subset of queries,
but lose benefits for other queries; INSTalytics simultaneously
benefits all queries by supporting multiple dimensions.

Table 1 focuses on just the join within Q3 (excluding the
aggregation that happens after the join). As can be seen, even
the simple localized shuffle without sliced reads provides rea-
sonable benefits. Further, we find that it reduces the amount

Figure 10: Latency of AMP queries.

Configuration Cost (hrs) Latency (mins)
Baseline 125 11.8
Localized Shuffle 85 8.4
Sliced Reads (10% cache) 40.5 3.8
Sliced Reads (5% cache) 43 4.1

Table 1: Performance of the join in Q3 of AMP benchmark

of cross-rack network traffic by 93.4% compared to baseline.
Sliced reads add to the benefit, providing nearly a 3x win
for the join. To explore sensitivity to co-ordinated request
scheduling, we show two configurations. In the “10% cache”
configuration, the storage nodes wait for 90% of requests to ar-
rive before serving the request; for the remaining 10% slices,
the storage node caches the data. The “5%” configuration
waits for 95% of requests. There is a tradeoff between cache
usage and query performance; while the 5% configuration uses
half the cache, it has a slightly higher query cost.

8.3.2 Production queries

We also evaluate INSTalytics on a set of production queries
from a slice of a telemetry analytics workload. The workload
has 6 queries, all operating on an input file of size about 34
TB, sometimes joining with other files that are smaller. Ta-
ble 2 shows the relative performance of INSTalytics on these
queries. INSTalytics benefit queries Q1-Q4. Q5 and Q6 fil-
ter away very little data (<1%) and do not perform joins, so
there are no gains to be had. Q1 and Q2 benefit from our join

Description Q1 Q2 Q3 Q4 Q5 Q6
Baselinecost 251 414 22 20 398 242
INSTalyticscost 59 206 0.3 1.1 403 239
Baselinelatency 39 66 23 4 50 20
INSTalyticslatency 7 21 1.4 2.3 51 20

Table 2: Performance of production queries. Cost numbers
are in compute hours, latency numbers are in minutes.
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improvements, they both join on one of the dimensions. Q1
performs a simple 2 way join followed by a group-by. We
see a huge (>4x) improvement in both cost and latency as the
join dominates the query performance (the output of the join
is just a few GB). Q2 is more complex, it performs a 3 way
join followed by multiple aggregations and produces multiple
large outputs (3TB+). INSTalytics improves the join by about
3x and does as well as the baseline in the rest of the query. Q3
& Q4 benefit heavily from filters on the other two dimensions
processing 34TB of data at interactive latencies.

As seen from our evaluation, simultaneous partitioning on
multiple dimensions enables significant improvements in both
cost and latency. As discussed in §3, 83% of large files in
our production workload require only 4 partition dimensions
for full query coverage, and hence can benefit from INSTalyt-
ics. The workload shown in §3 pertains to a shared cluster
that runs a wide variety of queries from several diverse prod-
uct groups across Microsoft so we believe the above finding
applies broadly. As we saw in Figure 2, some files need more
than 4 dimensions. Simply creating two different copies of the
file would cover 8 dimensions, as each copy can use logical
replication on a different set of 4 dimensions.

9 Related Work

Co-design The philosophy of cross-layer systems design for
improved efficiency has been explored in data center net-
works [13], operating systems [3] and disk systems [23]. Like
[13], INSTalytics exploits the scale and economics of cloud
data centers to perform cross-layer co-design of big data ana-
lytics and distributed storage.
Logical replication The broad concept of logical redundancy
has also been explored; the Pilot file system [20] employed
logical redundancy of metadata to manage file system consis-
tency, by making file pages self-describing. The technique that
INSTalytics uses to make extents self-describing for format
adapters is similar to the self-describing pages in Pilot. Frac-
tured mirrors [18] leverages the two disks in a RAID-1 mirror
to store one copy in row-major and the other in column-major
order to improve query performance, but it does not handle
recovery of one copy from the other. Another system that ex-
ploits the idea of logical replication to speed-up big-data ana-
lytics is HAIL [8]; HAIL is perhaps the closest related system
to INSTalytics; it employs a simpler form of logical replication
where they only reorder records within a single storage block;
as detailed in Sections 4 and 6, such a layout provides only a
fraction of the benefits that the super-extents based layout in
INSTalytics provides (some benefit to filters but no benefit to
joins). As we demonstrate in this paper INSTalytics achieves
benefits for a wide class of queries without compromising on
availability or recovery cost. Replex [25] is a multi-key value
store for the OLTP scenario that piggybacks on replication to
support multiple indexes for point reads with lower additional

storage cost. The recovery cost problem is dealt with by intro-
ducing additional hybrid replicas. INSTalytics instead capital-
izes on the bulk read nature of analytics queries and exploits
intra-extent data layout to enable more efficient recovery, with-
out the need for additional replicas. Further the authors do
not discuss the availability implications of logical replication,
which we comprehensively address in this paper. Erasure cod-
ing [19, 12] is a popular approach to achieve fault-tolerance
with low storage-cost. However, the recovery cost with era-
sure coding is much higher than 3-way replication; the layout
in INSTalytics achieves similar recovery cost as physical repli-
cation. Many performance sensitive analytics clusters includ-
ing ours use 3-way replication.
Data layout In the big-data setting, the benefits of partition-
ing [30, 27, 24, 21] and co-location [7, 9] are well understood.
INSTalytics enables partitioning and co-location on multiple
dimensions without incurring a prohibitive cost. The tech-
niques in INSTalytics are complementary to column-level par-
titioning techniques such as column stores [15]; in large data
sets, one needs both column group-level filtering and row-level
partitioning. Logical replication in INSTalytics can actually
amplify the benefit of column groups by using different (het-
erogeneous) chocies of column groups in each logical replica
within an intra-extent bucket, a focus of ongoing work.

10 Conclusion
The scale and cost of big data analytics, with exabytes of
data on the cloud, makes it important from a systems view-
point. A common approach to speed up big data analytics is
to throw parallelism or use expensive hardware (e.g., keep all
data in RAM). INSTalytics provides a way to simultaneously
both speed up analytics and drive down its cost significantly.
INSTalytics is able to achieve these twin benefits by funda-
mentally reducing the actual work done to process queries, by
adopting techniques such as logical replication and compute-
aware co-ordinated request scheduling. The key enabler for
these techniques is the co-design between the storage layer and
the analytics engine. The tension in co-design is doing so in
a way that only involves surgical changes to the interface, so
that the system is pragmatic to build and maintain; with a real
implementation in a production stack, we have shown its feasi-
bility. We believe that a similar vertically-integrated approach
can benefit other large-scale cloud applications.
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GRAPHONE: A Data Store for Real-time Analytics on Evolving Graphs

Pradeep Kumar H. Howie Huang
The George Washington University

Abstract
There is a growing need to perform real-time analytics on

evolving graphs in order to deliver the values of big data to
users. The key requirement from such applications is to have
a data store to support their diverse data access efficiently,
while concurrently ingesting fine-grained updates at a high
velocity. Unfortunately, current graph systems, either graph
databases or analytics engines, are not designed to achieve
high performance for both operations. To address this chal-
lenge, we have designed and developed GRAPHONE, a graph
data store that combines two complementary graph storage
formats (edge list and adjacency list), and uses dual ver-
sioning to decouple graph computations from updates. Im-
portantly, it presents a new data abstraction, GraphView, to
enable data access at two different granularities with only a
small data duplication. Experimental results show that GRA-
PHONE achieves an ingestion rate of two to three orders of
magnitude higher than graph databases, while delivering al-
gorithmic performance comparable to a static graph system.
GRAPHONE is able to deliver 5.36× higher update rate and
over 3× better analytics performance compared to a state-of-
the-art dynamic graph system.

1 Introduction
We live in a world where information networks have become
an indivisible part of our daily lives. A large body of re-
search has studied the relationships in such networks, e.g.,
biological networks [33], social networks [20, 41, 46], and
web [9, 31]. In these applications, graph queries and ana-
lytics are being used to gain valuable insights from the data,
which can be classified into two broad categories: batch an-
alytics (e.g. PageRank [61], graph traversal [11, 49, 51]) that
analyzes a static snapshot of the data, and stream analytics
(e. g. anomaly detection [8], topic detection [64]) that stud-
ies the incoming data over a time window of interest. Gen-
erally speaking, batch analytics prefers a base (data) store
that can provide indexed access on the non-temporal prop-
erty of the graph such as the source vertex of an edge, and on
the other hand, stream analytics needs a stream (data) store
where data can be stored quickly and can be indexed by their
arrival order for temporal analysis.

Increasingly, one needs to perform batch and stream pro-
cessing together on evolving graphs [78, 68, 10, 69]. The key
requirement here is to sustain a large volume of fine-grained
updates at a high velocity, and simultaneously provide high-

performance real-time analytics and query support.
This trend poses a number of challenges to the underly-

ing storage and data management system. First, batch and
stream analytics perform different kinds of data access, that
is, the former visits the whole graph while the latter focuses
on the data within a time window. Second, each analytic
has a different notion of real time, that is, data is visible to
the analytics at different granularity of data ingestion (up-
dates). For example, an iterative algorithm such as PageR-
ank can run on a graph that is updated at a coarse granularity,
but a graph query to output the latest shortest path requires
data visibility at a much finer granularity. Third, such a sys-
tem should also be able to handle a high arrival rate of up-
dates, and maintain data consistency while running concur-
rent batch and stream processing tasks.

Unfortunately, current graph systems can neither provide
diverse data access nor at the right granularity in the pres-
ence of a high data arrival rate. Many dynamic graph sys-
tems [47, 54] only support batched updates, and a few oth-
ers [21, 70] offer data visibility at fine granularity of updates
but with a weak consistency guarantee, which as a result
may cause an analytic iteration to run on different data ver-
sions and produce undesired results. Relational and graph
databases such as Neo4j [59] can handle fine-grained up-
dates, but suffer from poor ingestion rate for the sake of
strong consistency guarantee [56]. Also, such systems are
not designed to support high-performance streaming data ac-
cess over a time window. On the other hand, graph stream
engines [58, 17, 32, 72, 75, 67] interleave incremental com-
putation with data ingestion, i.e., graph updates are batched
and not applied until the end of an iteration. In short, the ex-
isting systems manage a private data store in a way to favor
their specialized analytics.

In principle, one can utilize these specialized graph sys-
tems side-by-side to provide data management functions for
dynamic graphs and support a wide spectrum of analytics
and queries. However, such an approach would be subop-
timal [78], as it is only as good as the weakest component,
in many cases the graph database with poor performance for
streaming data. Worse, this approach could also lead to ex-
cessive data duplication, as each subsystem would store a
replica of the same underlying data in their own format.

In this work, we have designed GRAPHONE, a unified
graph data store offering diverse data access at various gran-
ularity levels while supporting data ingestion at a high ar-
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Fig. 1: High-level architecture of GRAPHONE. Solid and dotted
arrows show the data management and access flow respectively.

rival rate. Fig. 1 provides a high-level overview. It leverages
a hybrid graph store to combine a small circular edge log
(henceforth edge log) and an adjacency store for their com-
plementary advantages. Specifically, the edge log keeps the
latest updates in the edge list format, and is designed to ac-
celerate data ingestion. At the same time, the adjacency store
holds the snapshots of the older data in the adjacency list
format that is moved periodically from the edge log, and is
optimized for batch and streaming analytics. It is important
to note that the graph data is not duplicated in two formats,
although a small amount of overlapping is allowed to keep
the original composition of the versions intact.

GRAPHONE enforces data ordering using the temporal na-
ture of the edge log, and keeps the per-vertex edge arrival or-
der intact in the adjacency store. A dual versioning technique
then exploits the fine-grained versioning of the edge list for-
mat and the coarse-grained versioning of the adjacency list
format to create real-time versions. Further, GRAPHONE al-
lows independent execution of analytics that run parallel to
data management, and can fetch a new version at the end
of its own incremental computation step. Additionally, we
provide two optimization techniques, cacheline sized mem-
ory allocation and special handling of high degree vertices
of power-law graphs, to reduce the memory requirement of
versioned adjacency store.

GRAPHONE simplifies the diverse data access by present-
ing a new data abstraction, GraphView, on top of the hybrid
store. Two types of GraphView are supported as shown in
Fig. 1 : (1) the static view offers real-time versioning of the
latest data for batch analytics; and (2) the stream view sup-
ports stream analytics with the most recent updates. These
views offers visibility of data updates to analytics at two lev-
els of granularity where the edge log is used to offer it at the
edge level, while the adjacency store provides the same at
coarse granularity of updates. As a result, GRAPHONE pro-
vides high-level applications with the flexibility to trade-off
the granularity of data visibility for a desired performance.
In other words, the edge log can be accessed if fine-grained
data visibility is required, which can be tuned (§7.3).

We have implemented GRAPHONE as an in-memory
graph datastore with a durability guarantee on external non-

volatile memory express solid-state drives (NVMe SSD). For
comparison, we have evaluated it against three types of in-
memory graph systems: Neo4j and SQLite, two graph data
management systems; Stinger [21], a dynamic graph sys-
tem; and Galois [60], a static graph system, as well as GRA-
PHONE itself working with static graphs. The experimental
results show that GRAPHONE can support a high data inges-
tion rate, specifically it achieves two to three orders of mag-
nitude higher ingestion rate than graph databases, and 5.36×
higher ingestion rate than Stinger. In addition, GRAPHONE
outperforms Stinger by more than 3× on different analytics,
and delivers equivalent algorithmic performance compared
to Galois. The stream processing in GRAPHONE runs par-
allel to data ingestion which offers 26.22% higher ingestion
rate compared to the current practice of interleaving the two.

To summarize, GRAPHONE makes three contributions:
• Unifies stream and base stores to manage the graph data

in a dynamic environment;
• Provides batch and stream analytics through dual ver-

sioning, smart data management, and memory opti-
mization techniques;
• Supports diverse data access of various usecases with

GraphView and data visibility abstractions.

The rest of the paper is organized as follows. We present
a usecase in §2, opportunities and GRAPHONE overview in
§3, the hybrid store in §4, data management internals and
optimizations in §5, GraphView data abstraction in §6, eval-
uations in §7, related work in §8, and conclusion in §9.

2 Use Case: Network Analysis
Graph analytics is a natural choice for data analysis on an en-
terprise network. Fig. 2(a) shows a graph representation of a
simple computer network. Such a network can be analyzed
in its entirety by calculating the diameter [48], and between-
ness centrality [13] to identify the articulation points. This
kind of batch analysis is very useful for network infrastruc-
ture management. In the meantime, as the dynamic data flow
within the network captures the real-time behaviors of the
users and machines, the stream analytics is used to identify
security risks, e.g., denial of service, and lateral movement,
which can be expressed in the form of path queries, parallel
paths and tree queries on a streaming graph [38, 18].

Los Alamos Nation Laboratory (LANL) recently released
a comprehensive data set [37] that captures a wide range of
network information, including authentication events, pro-
cess events, DNS lookups, and network flows. The LANL
data covers over 1.5 billion events, 12,000 users, and 17,000
computers, and spans 58 consecutive days. For example, the
network authentication data captures the login information
that a user logs in to a network machine, and also from that
machine to other machines. When the network defense sys-
tem identifies a malicious user and node, it needs to find all
the nodes that may have been infected. Instead of analyzing
every node of the network, one can quickly run a path traver-
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Fig. 2: Graph traversal can locate possible infected nodes using
real-time authentication graph if infected user and node are known

sal query on the real-time authentication graph to identify the
possible infected nodes, that is, find all the nodes whose lo-
gin has originated from the chain of nodes that are logged in
from the first infected machine [38] as shown in Fig. 2(b).

In summary, a high-performance graph store that captures
dynamic data in the network, combined with user, machine
information and network topology, is advantageous in un-
derstanding the health of the network, accelerating network
service, and protecting it against various attacks. This work
presents a graph storage and APIs for such usecases.

3 Opportunities and Overview
A graph can be defined as G = (V, E, W), where V is the
vertex set, and E is the edge set, and W is the set of edge
weights. Each vertex may also have a label. In this section,
graph formats and their traits are described as relevant for
GRAPHONE, and then we present its high-level overview.

3.1 Graph Representation: Opportunities
Fig. 3 shows three most popular data formats for a sample
graph. First, the edge list is a collection of edges, a pair of
vertices, and captures the incoming data in their arrival order.
Second, the compressed sparse row (CSR) groups the edges
of a vertex in an edge array. There is a metadata structure,
vertex array, that contains the index of the first edge of each
vertex. Third, the adjacency list manages the neighbors of
each vertex in separate per-vertex edge arrays, and the vertex
array stores a count (called degree) and pointer to indicate
the length and the location of the corresponding edge arrays
respectively. This format is better than the CSR for ingesting
graph updates as it affects only one edge array at a time.

In the edge list, the neighbors of each vertex are scattered
across, thus is not the optimal choice for many graph queries
and batch analytics who prefer to get the neighboring edges
of a vertex quickly [34, 29, 30, 12] etc . On the other hand,
the adjacency list format loses the temporal ordering as the
incoming updates get scattered over the edge arrays, thus not
suited for stream analytics. Given their advantages and dis-
advantages, neither format is ideally suited for supporting
both batch and stream analytics on its own. We now identify
two opportunities for this work:
Opportunity #1: Utilize both the edge list and the adja-
cency list within a hybrid store. The edge list format pre-
serves the data arrival order and offers a good support for fast
updates as each update is simply appended to the end of the
list. On the other hand, the adjacency list keeps all the neigh-

(a) Example graph
(b) Edge List Format

(d) Adjacency List Format(c) CSR Format
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Fig. 3: Sample graph and its various storage format

bors of a vertex indexed by the source vertex, which pro-
vides efficient data access for graph analytics. Thus it allows
GRAPHONE to achieve high-performance graph computa-
tion while simultaneously supporting fine-grained updates.
Opportunity #2: Fine-grained snapshot creation with the
edge list format. Graph analytics and queries require an
immutable snapshot of the latest data for the duration of their
execution. The edge list format provides a natural support
for fine-grained snapshot creation without creating a physical
snapshot due to its temporal nature, as tracking a snapshot
is just remembering an offset in the edge list. Meanwhile,
the adjacency list format through its coarse-grained snapshot
capability [54, 26] is used to complement the edge list.

3.2 Overview
GRAPHONE utilizes a hybrid graph data store (discussed in
§4) that consists of a small circular edge log and the adja-
cency store. Fig. 4 shows an high-level overview of GRA-
PHONE architecture. The hybrid store is managed in sev-
eral phases (presented in §5). Specifically, during the log-
ging phase, the edge log records the incoming updates in the
edge list format in their arrival order, and supports a high in-
gestion rate. We define non-archived edges as the edges in
the edge log that are yet to be moved to the adjacency store.
When their number crosses the archiving threshold, a par-
allel archiving phase begins, which merges the latest edges
to the adjacency store to create a new adjacency list snap-
shot. This duration is referred to as an epoch. In the durable
phase, the edge log is written to a disk.

To efficiently create and manage immutable versions for
data analytics in presence of the incoming updates, we pro-
vide a set of GraphView APIs (discussed in §6). Specifically,
static view API is for batch processing, while stream view
API is for stream processing. Internally, the views utilize
dual versioning technique where the versioning capability of
both formats are exploited. For example, a real-time static
view can be composed by using the latest coarse-grained ver-
sion of the adjacency store, and the latest fine-grained ver-
sion of non-archived edges.

It is important to note that the GraphView also provides
analytics with the flexibility to trade-off the granularity of
data visibility for better performance, e.g., the analytics that
prefer running only on the latest adjacency list store will
avoid the cost associated with the access of the latest edges
from the non-archived edges.
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paction Phase is not shown.

4 Hybrid Store
The hybrid store design presented in Fig. 5 consists of a
small circular edge log that is used to record the latest up-
dates in the edge list format. For deletion cases, we use
tombstones, specifically the edge log also adds a new entry
but the most significant bit (MSB) of the source vertex ID of
the edge is set to denote its deletion as shown in Fig 5 for
deleted edge (2,4) at time t7.

The adjacency store keeps the older data in the adjacency
list format. The adjacency store is composed of vertex array,
per-vertex edge arrays, and multi-versioned degree array.
The vertex array contains a per-vertex flag and pointers to
the first and last block of the edge arrays. Addition of a new
vertex is done by setting a special bit in the per-vertex flag.
Vertex deletion sets another bit in the same flag, and adds all
of its edges as deleted edges to the edge log. These bits help
GRAPHONE in garbage collecting the deleted vertex ID.

The edge array contains per-vertex edges of the adjacency
list. It may contain many small edge blocks, each of which
contains a count of the edges in the block and a memory
pointer to the next block. The connection of edge blocks are
referred to as chaining. An edge addition always happens
at the end of the edge array of each vertex, which may re-
quire the allocation of a new edge block and linked to the
last block. Fig. 5 shows chained edge arrays for the vertices
with ID 1 to 4 for data updates that arrive in between t4 to
t7. The adjacency list treats an edge deletion as an addition
but the deleted edge entry in the edge array keeps the nega-
tive position of the original edge, while the actual data is not
modified at all, as shown for edge (2,4). As a result, deletion
never breaks the convergence of a previous computation as it
does not modify the dataset of the computation.

The degree array contains the count of neighboring edges
of each vertex. Thus, a degree array from an older adjacency
store snapshot can identify the edges to be accessed even
from the latest edge arrays due to the latter’s append-only
property. Hence, the degree array in GRAPHONE is multi-
versioned to support adjacency store snapshots. It keeps the
total added and deleted edge counts of each vertex. Both
counts help in efficiently getting the valid neighboring edges,
as a client can do the exact memory allocation (refer to the
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Fig. 5: The hybrid store for the data arrived from time t0 to t9:
The vertex array contains pointers to the first and the last block of
each edge array, while degree array contains deleted and added edge
counts. However, only the pointer to the first block in the vertex
array, and total count in the degree array are shown for brevity.

get-nebrs-*() API in Table 2). When an edge is added or
deleted for a vertex, a new entry is added for this vertex in
the degree array in each epoch. Two different versions S0
and S1 of the degree array are shown in Fig. 5 for two epochs
t0− t3 and t4− t7.

One can note that degree nodes are shared across epochs
if there is no later activity in a vertex. For example, the same
degree nodes for vertices with ID 5 and 6 are valid for both
epochs in Fig. 5. The degree array nodes of an older ver-
sions may be garbage collected when the corresponding ad-
jacency store snapshot retires, i.e., not being used actively by
any analytics, and is tracked using reference counting mech-
anism through the global snapshot list, which will be dis-
cussed shortly. For example, if snapshot S0 is retired, then
the degree nodes of snapshot S0 for vertices with ID 1− 4
can be reused by later snapshots (e.g. S2).

The global snapshot list is a linked list of snapshot ob-
jects to manage the relationship between the edge log and
adjacency store at each epoch. Each node contains an abso-
lute offset to the edge log where the adjacency list snapshot
is created, and a reference count to capture the number of
views using this adjacency list snapshot. A new entry in the
global snapshot list is created after each epoch, and it implies
that the edge log data of the last epoch has been moved to the
adjacency store atomically, and is now visible to the world.
Weighted Graphs. Edge weights are generally embedded in
the edge arrays along with the destination vertex ID. Some
graphs have static weights, e.g., an edge weight in an enter-
prise network can represent the network speed between the
two nodes. A weight change is then treated internally as an
edge deletion followed by an edge addition. On the other
hand, if edge weights are dynamic, such as network data
flow, then such weights are suited for various analytics if
kept for a configurable time window, e.g., anomaly detection
in the network flow. In this case GRAPHONE is configured
to treat weight changes as a new edge to aid such analytics.
Dual Versioning and Data Overlap GRAPHONE uses dual
versioning to create the instantaneous read-only graph views
(snapshot isolation) for data analytics. It exploits both the
fine-grained versioning property of the edge log, and the
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coarse-grained versioning capability of the adjacency list
format. It should be noted that the adjacency list provides
one version per epoch, while the edge log supports multiple
versions per epoch, as many as the number of edges arrived
during the epoch. So the dual versioning provides many ver-
sions within an epoch which is the basis for static views, and
should not be confused with the adjacency list snapshots. In
Fig. 5, static view at the time t6 would be adjacency list snap-
shot S0 plus the edges from t4− t6.

A small amount of data overlap between the two stores
keeps the composition of the view intact. This makes the
view accessible even when the edge log data is moved to the
adjacency store to create a new adjacency list version. Thus
both stores have the copy of a few epochs of the same data.
For one or more long running iterative analytics, we may
use the durable edge log or a private copy of non-archived
edges to provide data overlap, so that analytics can avoid
interfering with data management operations of the edge log.

5 Data Management and Optimizations
Data management faces the key issues of minimizing the size
of non-archived edges, providing atomic updates, data order-
ing, and cleaning of older snapshots. Addition and deletion
of vertices and edges, and edge weight modification are all
considered as an atomic update.

5.1 Data Management Phases
Fig. 4 depicts the internals of the data management opera-
tions. It consists of four phases: logging, archiving, durable
and compaction. Client threads send updates, and the log-
ging to the edge log happens in the same thread context syn-
chronously. The archiving phase moves the non-archived
edges to the adjacency store using many worker threads, and
one of them assumes the role of the master, called the archive
thread. The durable phase happens in a separate thread,
while compaction is multi-threaded but happens much later.

A client thread wakes up the archive thread and durable
thread to start the archiving and durable phases when the
number of non-archived edges crosses a threshold, called
archiving threshold. The logging phase continues as usual in
parallel to them. Also, the archive thread and durable thread
check if any non-archived edges are there at the end of each
phase to repeat their process, or wait for work with a timeout.

The edge log has a distinct offset or marker, head, for log-
ging, which is incremented every time an edge is ingested
as shown in Fig. 6. For archiving, GRAPHONE manages a
pair of markers, i.e. the archiving operation happens from
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Fig. 7: Edge sharding separates the non-archived edges into many
buffers based on their source vertex ID, so that the per-vertex edge
arrays can keep the edge log arrival order, and enables non-atomic
archiving.

the tail archive marker to the head archive marker, because
the head will keep moving due to new updates. The durable
phase also has a pair of markers to work with. Markers are
always incremented and used with the modulo operator.

5.1.1 Logging Phase
The incoming update is converted to numerical identifiers,
and acquires an edge list format. The mapping between ver-
tex label to vertex ID and vice-versa manages this transla-
tion. Then a unique spot is claimed within the edge log by
the atomic increment of the head, and the edge is written to
a spot calculated using the modulo operation on the head,
that also stores the operator (§4), addition or deletion, along
with the edges. The atomicity of updates is ensured by the
atomic increment of the head. The edge log is automatically
reused in the logging phase due to its circular nature, and
thus is overwritten by newer updates. Hence the logging may
get blocked occasionally if the whole buffer is filled as the
archiving or durable phases may not be able to catch up. We
keep sufficiently large edge log to avoid frequent blocking.
In case of blocked client threads, they are woken up when
the archiving or durable phases complete.

5.1.2 Archiving Phase
This phase moves the non-archived edges from the edge log
to the adjacency store. A naive multi-threaded archiving,
where each worker can directly work on a portion of non-
archived edges, may not keep the data ordering intact. If a
deletion comes after the addition of an edge within the same
epoch, the edge may become alive or dead in the edge arrays
depending on the archiving order of the two data points.

An edge sharding stage in the archiving phase (Fig. 7)
maintains per-vertex edges as per the edge log arrival to ad-
dress the ordering problem. It shards the non-archived edges
to multiple local buffers based on the range of their source
vertex ID. For undirected graphs, the total edge count in
the local buffer is twice of the non-archived edge count, as
the ordering of reverse edges is also managed. For directed
edges, both directions have their own local buffers.

The edges in each local buffer are then archived in par-
allel without using any atomic instructions. A heuristic is
required for workload distribution, as the equal division is
not possible among threads, thereby the last thread may get
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more work assigned. To handle the workload imbalance
among worker threads, we create a larger number of local
buffers with smaller vertex range than the available threads,
and assign different numbers of local buffers to each thread
so that each gets an approximately equal number of edges to
archive. The idea here is to assign slightly more than equal
work to each thread, so that all the threads are balanced while
the last thread is either balanced or lightly loaded.

This stage allocates new degree nodes or can reuse the
same from the older degree array versions if they are not
being used by any analytics. We follow these rules for
reusing the degree array from older versions. We track the
degree array usage by analytics using reference counting
per epoch [40], and can be reused if all static views cre-
ated within that epoch have expired, i.e., the references are
dropped to zero (not being used by any running analytics). It
also ensures that a newly created view uses the latest adja-
cency list snapshot that should never be freed.

The stage then populates the degree array, and allocates
memory for edge blocks that are chained before filling those
blocks. We then create a new snapshot object, fill it up with
relevant details, and add it atomically to the global snapshot
list. At the end of the archiving phase, the archive thread sets
the tail archive marker atomically to the value of the head
archive marker, and wakes up any the blocked client threads.

5.1.3 Durable Phase and Recovery
The edge log data is periodically appended to a durable file in
a separate thread context instead of logging immediately to
the disk to avoid the overhead of IO system calls during each
edge arrival. Also this will not guarantee durability unless
fsync() is called. The logging uses buffered sequential write,
and allows the buffer cache to work as spillover buffer for the
access of non-archived edges if the edge log is over-written.

The durable edge log is a prefix of the whole ingested
data, so GRAPHONE may lose some recent data in the case
of an unplanned shutdown. The recovery depends on up-
stream backup that keep the latest data for some time, such as
kafka [42], and replays it for the lost data, and creates the ad-
jacency list on the whole data. Recovery is faster than build-
ing the data structures at an edge level, as only the archiving
phase is involved working on bulk of data. Alternatively,
persistent memory may be used for the edge log to provide
durability at each update [45].

The durable phase also performs an incremental check-
pointing of the adjacency store data from an old time-
window, and frees the memory associated with it. This is
useful for streaming data such as LANL network flow, where
the old adjacency data can be checkpointed in disk, as the
in-memory adjacency store within the latest time window is
sufficient for stream analytics. By default, it is not enabled.
During checkpointing the adjacency store, the vertex ID and
length of the edge array are persisted along with edge arrays
so that data can be read easily later, if required.

5.1.4 Compaction Phase
The compaction of the edge arrays removes deleted data
from per-vertex edge array blocks up to the latest retired
snapshot identified via the reference counting scheme dis-
cussed in §5.1.2. The compaction needs a similar reference
counting for the private static views (§6.1). For each vertex,
it allocates new edge array block and copies valid data up
to the latest retired snapshot from the edge arrays, and cre-
ates a link to the rest of the original edge array blocks. The
newly created edge array block is then atomically replaced
in the vertex array, while freeing happens later to ensure that
cached references of the older data are dropped. This phase
is generally clubbed with archiving phase where the degree
array is updated to reflect the new combination.

5.2 Memory Overhead and Optimizations
The edge log and degree array are responsible for version-
ing. The edge log size is relatively small as it contains only
the latest updates which moves quickly to the base store, e.g,
the archiving threshold of 216 edges translates to only 1MB
for a plain graph assuming 8 byte vertex ID. Thus the edge
log is only several MBs. The memory in degree arrays are
also reused ( §5.1.2). This leaves us to memory analysis of
edge arrays which may consume a lot of memory due to ex-
cessive chaining in their edge blocks. For example, GRA-
PHONE runs archiving phase for 216 times for Kron-28 graph
if the archiving threshold is 216. In this case, the edge arrays
would consume 148.73GB memory and have average 29.18
chain per-vertex. We will discuss the graph datasets used
in this paper shortly. If all the edges were to be ingested in
one archiving phase, this static system needs only an aver-
age 0.45 chain and 33.80GB memory. The chain count is
less than one as 55% vertices do not have any neighbor.

GRAPHONE uses two memory allocation techniques, as
we discuss next, to reduce the level of chaining to make the
memory overhead of edge arrays modest compared to a static
engine. The techniques work proactively, and do not affect
the adjacency list versioning. Compaction further reduces
the memory overhead to bring GRAPHONE at par with static
analytics engine, but is performed less frequently.
Optimization #1: Cacheline Sized Memory Allocation.
Multiples of cacheline sized memory is allocated for the edge
blocks. One cacheline (64 bytes) can store up to 12 neigh-
bors for the plain graph of 32bit type, leaving the rest of the
space for storing a count to track space usage in the block and
a link to the next block. In this allocation method, the ma-

Table 1: Impact of two optimizations on the chain count and mem-
ory consumption on the kronecker graph.

Optimizations Chain Count Memory
Average Maximum Needed (GB)

Baseline System 29.18 65,536 148.73
+Cacheline memory 2.96 65,536 47.42
+Hub Vertex Handling 2.47 3,998 45.79
Static System 0.45 1 33.81
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Table 2: Basic GraphView APIs

Static View APIs
snap-handle create-static-view(global-data, simple, private, stale)
status delete-static-view(snap-handle)
count get-nebr-length-{in/out}(snap-handle, vertex-id)
count get-nebrs-{in/out}(snap-handle, vertex-id, ptr)
count get-nebrs-archived-{in/out}(snap-handle, vertex-id, ptr)
count get-non-archived-edges(snap-handle, ptr)
Stateless Stream View APIs
stream-handle reg-stream-view(global-data, window-sz, batch-sz)
status update-stream-view(stream-handle)
status unreg-stream-view(stream-handle)
count get-new-edges-length(stream-handle)
count get-new-edges(stream-handle, ptr)
Stateful Stream View APIs
sstream-handle reg-sstream-view(global-data, window-sz,

v-or-e-centric, simple, private, stale)
status update-sstream-view(sstream-handle)
status unreg-sstream-view(sstream-handle)
bool has-vertex-changed(sstream-handle, vertex-id)
count get-nebr-length-{in/out}(sstream-handle, vertex-id)
count get-nebrs-{in/out}(sstream-handle, vertex-id, ptr)
count get-nebrs-archived-{in/out}(sstream-handle, vertex-id, ptr)
count get-non-archived-edges(sstream-handle, ptr)
Historic View APIs
count get-prior-edges(global-data, start, end, ptr)

jority of the vertices will need only a few levels of chaining.
For example, in a Twitter graph, 88.43% of the vertices will
need at most 3 cachelines only, and so do 92.49% for Kron-
28 graph. This optimization reduces the average chain count
by 9.88×, and memory consumption by 3.14× in compari-
son to a baseline system as shown in Table 1. The baseline
system uses a dynamic block size which is equivalent to the
number of edges arrived during each epoch for each vertex.
Optimization #2: Hub Vertex Handling. A few vertices,
called hub-vertices, have very high degree in a graph that fol-
lows power-law distribution [22]. They are very common in
real-life graphs, such as for the twitter follower graph whose
degree distribution we analyze. Such vertices are likely to
participate in each archiving phase. Hence they will have a
lot of chaining in their edge arrays, and the aforementioned
memory management technique alone is not enough. In this
case, we allocate in multiples of 4KB page-aligned memory
for vertices that already have 8,192 edges or if the number of
neighbors in any archiving phase crosses 256. The average
chain count is further reduced to 2.47, leading to reduction in
memory utilization by 1.63GB as listed in Table 1. One can
vary the threshold to identify a hub vertex but performance
remains similar to the cacheline sized memory (Fig. 15).

6 GraphView Abstraction
GraphView data abstraction hides the complexity of the hy-
brid store by providing simple data access APIs as shown
in Table 2. The static view is suited for batch analytics and
queries, while the stream view for stream processing. Both
offer diverse data access at two granularities of data visibil-
ity of updates. At any time, a number of views may co-exist
without incurring much memory overhead, as the view data
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Fig. 8: GRAPHONE hybrid store illustrating various views with two
adjacency store versions, S0 and S1, with a small edge log

is composed of the same adjacency store and non-archived
edges as shown in Fig. 8. The access of non-archived edges
provides data visibility at the edge level granularity.

Due to the cost of indexing the non-archived edges,
GraphView provides an option to trade-off the granularity
of data visibility to gain performance. Further, one can use
vertex-centric compute model [73] on the adjacency list plus
edge-centric compute model [81, 43, 66] on non-archived
edges, so there is no need to index the latter as plotted later
to find its optimal minimum size (Fig. 13).

6.1 Static View
Batch analytics and queries prefer snapshots for computa-
tion, which can be created in real-time using create-static-
view() API. It is represented by an opaque handle that iden-
tifies the view composition, i.e., the non-archived edges and
the latest adjacency list snapshot, and serves as input to other
static view APIs. A created handle should be destroyed using
delete-static-view(). Based on the input supplied to create-
static-view() API, many types of static view are defined.
Basic Static View. This view is very useful for advanced
users and higher level library development which prefer
more control and performance. The main low-level API are:
get-nebrs-archived-*() that returns the reference to the per-
vertex edge array; and get-non-archived-edges() that returns
the non-archived edges. On the other hand, it also provides
a high-level API, get-nebrs-*(), that returns the neighbor list
of a vertex by combining the adjacency store and the non-
archived edges in a user supplied memory buffer. It may be
preferable by queries with high selectivity that only need to
scan the non-archived edges for one or a few vertex, e.g. 1-
hop query, and is not apt for long running analytics.

The implementation of get-nebrs() for the non-deletion
case is a simple two step process: copy the per-vertex edge
array to the user supplied buffer, followed by a scan of the
non-archived edges to find and add the rest of the edges of
the vertex to the buffer. For the deletion case, both the steps
track the deleted positions in the edge arrays, and the last
few edges from edge arrays and/or non-archived edge log
are copied into those indexes of the buffer.
Private Static View. For long running analytics, keeping
basic static views accessible have some undesirable impacts:
(1) all the static views may have to use the durable edge log
if the corresponding non-archived edges in the edge log has
been overwritten; (2) the degree array cannot be reused in
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Algorithm 1 Traditional BFS using static view APIs
1: handle← create-static-view(global-data, private=true, simple=true)
2: level = 1; active-vertex = 1; status-array[root-vertex] = level;
3: while active-vertex do
4: active-vertex = 0;
5: for vertex-type v = 0; v < vertex-count; v++ do
6: if status-array[v] == level then
7: degree← get-nebrs-out(handle, v, nebr-list);
8: for j=0; j < degree; j++ do
9: w← nebr-list[j];

10: if status-array[w] == 0 then
11: status-array[w]← level + 1; ++active-vertex;
12: ++level;
13: delete-static-view(handle)

the archiving phase as it is still in use. To solve this, one can
create a private static view by passing private=true in the
create-static-view() API. In this case, a private copy of the
non-archived edges and the degree array are kept inside the
view handle with their global references dropped to make it
independent from archiving. One can pass simple=true in
the create-static-view() to create a temporary in-memory ad-
jacency list from the non-archived edges for optimizing get-
nebr-*() API, as shown in Algorithm 1 for a simplified BFS
(push model) implementation. This approach is more flex-
ible than static analytics engine which converts the whole
data, or dynamic graph system that disallows the user to
choose fine-grained control on snapshot creation.

Creation to many private static views may introduce mem-
ory overhead. To avoid this, a reference of the private degree
array is kept in the snapshot object and is shared by other
static views created within that epoch, and are locally refer-
ence counted for freeing. Thus, creating many private views
within an epoch has overhead of just one degree array. How-
ever, creating many private static views across epochs may
still cause the memory overhead, if older views are still be-
ing accessed by long running analytics. This also means that
the machine is overloaded with computations, and they are
not real-time in nature. In such a case, a user may prefer to
copy the data to another machine to execute them.
Stale Static View. Many analytics are fine with data visi-
bility at coarse-grained ingestions, thus some stale but con-
sistent view of the data may be better for their performance.
In this case, passing stale=true returns the snapshot of the
latest adjacency list only. This view can be combined with
private static view where degree array will be copied.

6.2 Stream View
Stream computations follow a pull method in GRAPHONE,
i.e., the analytics pulls new data at the end of incremental
compute to perform the next phase of incremental compute.
The stream view APIs around the handle simplify the data
access and its granularity in presence of the data ingestion.
Also, checkpointing the computation results and the associ-
ated data offset is the responsibility of the stream engine, so
that the long running computation can be resumed from that
point onwards in case of a fault.

Algorithm 2 A stateless stream compute skeleton
1: handle← reg-stream-view(global-data, batch-sz=10s)
2: init-stream-compute(handle) . Application specific
3: while true do . Or application specific criteria
4: if update-stream-view(handle) then
5: count = get-new-edges(handle, new-edges)
6: for j=0; j < count; j++ do
7: do-stream-compute(handle, new-edges[j]) . Or any method
8: unreg-sstream-view(handle)

Stateless Stream Processing. A stateless computation, e.g.
counting incoming edges (aggregation), only needs a batch
of new edges. It can be registered using the reg-stream-
view() API, and the returned handle contains the batch of
new edges. Algorithm 2 shows how one can use the API to
do stateless stream computation. The handle also allows a
pointer to point to analytics results to be maintained by the
stream compute implementation. The implementation also
needs to checkpoint only the edge log offset and the compu-
tation results as GRAPHONE keeps the edge log durable.

An extension of the model is to process on a data window
instead on the whole arrived data. For sliding window im-
plementation, GRAPHONE manages a cached batch of edge
data around the start marker of the data window in addition to
the batch of new edges. The old cached data can be accessed
by the analytics for updating the compute results, e.g., sub-
tracting the value in aggregation over the data window. The
cached data is fetched from the durable edge log, and shows
sequential read due to the sliding nature of the window. A
tumbling window implementation is also possible where the
batch size of new edges is equal to the window size, and
hence does not require older data to be cached. Additional
checkpointing of the starting edge offset is required along
with the edge log offset and computation results.

Stateful Stream Processing. A complex computation, such
as graph coloring [67], is stateful that needs the streaming
data and complete base store to access the computational
state of the neighbors of each vertex. A variant of static view
is better suited for it because its per-vertex neighbor informa-
tion eases the access of the computational state of neighbors.
It is registered using reg-sstream-view(), and returns sstream-
handle. For edge-centric computation, the handle also con-
tains a batch of edges to identify the changed edges. For
vertex-centric computation, the handle contains per-vertex
one-bit status to denote the vertex with edge updates that can
be identifies using the has-vertex-changed() API. This is up-
dated during update-sstream-view() call that also updates the
degree array. Algorithm 3 shows an example code snippet.

As the degree array plays an important role for a stateful
computation due to its association with the static view, us-
ing an additional degree array at the start marker of the data
window eases the access of the data within the window from
the adjacency store. The sstream-handle manages the degree
array on behalf of the stream engine, and internally keeps a
batch of cached edges around the start marker of the window
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Algorithm 3 A stateful stream compute (vertex-centric) skeleton
1: handle← reg-sstream-view(global-data, v-centric, stale=true)
2: init-sstream-compute(handle) . Application specific
3: while true do . Or application specific criteria
4: if update-sstream-view(handle) then
5: for v=0; v < vertex-count; v++ do
6: if has-vertex-changed(handle, v) then
7: do-sstream-compute(handle, v) . Application specific
8: unreg-sstream-view(handle)

to update the old degree array. The get-nebrs-*() function
returns the required neighbors only. Checkpointing the com-
putational results, the edge log offset at the point of compu-
tation, and window information is sufficient for recovery.

6.3 Historic Views
GRAPHONE provides many views from recent past, but it
is not designed for getting arbitrary historic views from the
adjacency store. However, durable edge log can provide
the same using get-prior-edges() API in edge list format
as it keeps deleted data, behaving similar to existing data
stores [14, 23]. Moreover, in case of no deletion, one can
create a degree array at a durable edge log offset by scanning
the durable edge log, and the degree array will serve older
static or stream view from the adjacency store to gain in-
sights from the historical data. For data access from a histor-
ical time-window in this case, one need to build two degrees
arrays at both the offsets of the durable edge log.

7 Evaluations
GRAPHONE is implemented in around 16,000 lines of C++
code including various analytics. It supports plain graphs
and weighted graphs with either 4 byte or 8 byte vertex sizes.
We store the fixed weights along with the edges, variable
length weights in a separate weight store using indirection.
Any type of value can be stored in place of weight such
as integers, float/double, timestamps, edge-id or any custom
weight as the code is written using C++ templates. So one
can write a small plug-in describing the weight structures and
other functions, and GRAPHONE would be ready to serve a
custom weight. All experiments are run on a machine with 2
Intel Xeon CPU E5-2683 sockets, each having 14 cores with
hyper-threading enabled. It has 512GB memory, Samsung
NVMe 950 Pro 512GB, and CentOS 7.2. Prior results have
also been performed on the same machine.

We choose data ingestion, BFS, PageRank and 1-Hop
query to simulate the various real-time usecases to demon-
strate the impact of GRAPHONE on analytics. BFS and
PageRank are selected because many real-time analytics are
iterative in nature, e.g. shortest path, and many prior graph
systems readily implement them for comparison. 1-Hop
query accesses the edges of random 512 non-zero degree
vertices and sums them up to make sure we access them all.
1-Hop query simulates many small query usecases, such as
listing one’s friends, or triangle completion to get friend sug-
gestions in a social graph, etc. During the ingestion, vertex

name to vertex ID conversion was not needed as we directly
used the vertex ID supplied with these datasets as followed
by other graph systems. All the edges will be stored twice
in the adjacency list: in-edges and out-edges for directed
graphs, and symmetric edges for undirected graphs. No com-
paction was running in any experiments unless mentioned.
Datasets. Table 3 lists the graph datasets. Twitter [3],
Friendster [1] and Subdomain [4] are real-world graphs,
while Kron-28 and Kron-21 are synthetic kronecker graphs
generated using graph500 generator [25], all with 4 byte
vertex size and without any weights. LANL network flow
dataset [74] is a weighted graph where vertex and weight
sizes are 4 bytes and 32 bytes respectively, and weight
changes are treated as new streaming data. We run ex-
periment on first 10 days of data. We test deletions on a
weighted RMAT graph [15] generated with [56] where ver-
tex and weight sizes are 8 bytes. It contains 4 million ver-
tices, and 64 million edges, and a update file containing 40
million edges out of which 2,501,937 edges are for deletions.

7.1 Data Ingestion Performance
Logging and Archiving Rate. Logging to edge log is nat-
urally faster, while archiving rate depends upon the archiv-
ing threshold. Table 3 lists the logging rate of a thread, and
archiving rate at the archiving threshold of 216 edges for our
graph dataset. A thread can log close to 80 million edges per
second, while archiving rate is only around 45 million edges
second at the archiving threshold for most of the graphs.
Both the rates are lower for LANL graph, as the weight size
is 32 bytes, while others have no weights.
Ingestion Rate. It is defined as single threaded ingestion to
the edge log at one edge at a time, and leaving the archive
thread and durable phase to automatically change with the
arrival rate. The number is reported when all the data are
in the adjacency store, and persisted in the NVMe ext4 file.
GRAPHONE achieves an ingestion rate of more than 45 mil-
lion edges per second, except LANL graph. The ingestion
rate is higher than archiving rate (at the archiving threshold)
except in Kron-21, as edges more than the archiving thresh-
old are archived in each epoch due to higher logging rate.
This indicates that GRAPHONE can support a higher arrival
rate as archiving rate can dynamically boost with increased
arrival velocity. The Kron-21 graph is very small graph, and
the thread communication cost affects the ingestion rate.
Compaction Rate. We run compaction as a separate bench-
mark after all the data has been ingested. The graph com-
paction rate is 345.53 million edges per second for the
RMAT graph which has more than 2.5 million deleted edges
out of total 104 million edges. Results for other graphs are
shown in Table 3. The poor rate for LANL graph is due
to long tail for compacting edge arrays of few vertices. As
shown later in Fig. 12, the compaction improves the analytics
performance where the static GRAPHONE serves compacted
adjacency list as it had no link in its edge arrays.
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Table 3: Graph datasets showing vertex and edge counts in millions (M), and different rates in millions edges/s (M/s). The results show that
the ingestion rate would be upper and lower bounded by the logging and archiving rate. D = Directed, U = Undirected. For deletions see §7.2.

Graph Vertex Edge Individual Phases (M/s) In-Memory Rate (M/s) Ext-Memory Rate (M/s) Compaction
Name Type Count (M) Count (M) Logging Archiving Ingestion Recovery Ingestion Recovery Rate (M)
LANL D 0.16 1,521.19 35.98 28.91 26.99 30.23 25.26 29.48 41.85
Twitter D 52.58 1,963.26 82.62 47.98 66.39 71.28 61.13 71.87 541.71

Friendster D 68.35 2,586.15 82.85 49.32 60.40 95.78 58.35 95.44 520.65
Subdomain D 101.72 2,043.20 82.86 43.43 68.25 180.75 61.54 151.96 444.84

Kron-28 U 256 4,096 79.23 43.68 52.39 116.18 49.70 107.61 798.91
Kron-21 U 2 32 78.91 78.40 58.31 90.44 57.02 66.66 1011.68

Durability. The durable phase has less than 10% impact on
the ingestion rate. Table 3 shows the in-memory ingestion
rate and can be compared against that of GRAPHONE, which
uses NVMe SSD for durability. This is because durable
phase runs in a separate thread context, and exhibits only se-
quential write. The NVMe SSD can support up to 1500MB/s
sequential write and that is sufficient for GRAPHONE as it
only needs smaller write IO throughput, as shown in Fig. 9
for Friendster graph. This indicates that a higher logging rate
can easily be supported by using a NVMe SSD.
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Fig. 9: Write throughput for friendster in GRAPHONE comparing
against average requirement and maximum available in an NVMe

Recovery. Recovery only needs to perform archiving phase
at bulk of data. As we will show later in Fig. 13, the archiving
is fastest when around 227–231 edges are cleaned together.
Hence we take the minimum of this size as recovery thresh-
old to minimize the memory requirement of IO buffer and
the recovery time, and also gets an opportunity to pipeline
the IO read time of the data with recovery. Table 3 shows the
total recovery time, including data read from NVMe SSD af-
ter dropping the buffer cache. Clearly, GRAPHONE hides the
IO time when compared against in-memory recovery. The
recovery rate varies a lot for different graph due to different
distribution of the batch of graph data that has profound im-
pact on parallelism and hence locality access of edge arrays.

7.2 Graph Systems Performance
We choose different classes of graph systems to compare
against GRAPHONE. Stinger is a dynamic graph system,
Neo4j and SQLite are graph databases, and Galois and static
version of GRAPHONE are static graph systems. Except
stream computations, all the analytics in this section are per-
formed on private static view containing no non-archived
edges as it is created at the end of the ingestion.
Dynamic Graph System. Stinger is an in-memory graph
system that uses atomic instructions to support fine-grained
updates. So it cannot provide semantically correct analytics

if updates and computations are scheduled at the same time,
as different iteration of the analytics will run on the differ-
ent versions of the data. We used the benchmark developed
in [56] to compare the results on the RMAT graph.

Stinger is able to support 3.49 million updates/sec on the
same weighted RMAT graph, whereas GRAPHONE ingests
18.67 million edges/sec, achieving 5.36× higher ingestion
rate. Part of the reason for poor update rate of Stinger is that
unlike GRAPHONE, it directly updates the adjacency store
using atomic constructs. We have implemented PageRank
and BFS in a similar approach as Stinger. The compari-
son is plotted in Fig. 10. Clearly, GRAPHONE is able to
provide a better support for BFS and PageRank achieving
12.76× and 3.18× speedup respectively. The reason behind
the speedup is explicit optimization to reduce the chaining
which removes a lot of pointer chasing, and better cache ac-
cess locality due to cacheline sized edge blocks.
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Fig. 10: Comparison against Stinger for in-memory setup

Databases. We compare against SQLite 3.7.15.2, a rela-
tional database, Neo4j 3.2.3, a graph database for ingestion
test. SQLite and Neo4j support ACID transaction, and do
not provide native support for graph analytics. It is known
that higher update rate is possible by trading off the strict se-
rializability of databases, however to measure the magnitude
of improvement, it is necessary to conduct experiment.

The in-memory configuration of SQLite can ingest
12.46K edges per second, while GRAPHONE is able to sup-
port 18.67 million edges per second in the same configura-
tion for above dataset. Neo4j could not finish the benchmark
after more than 12 hours, which is along the same line as
observed in [56]. Hence we have tested on a smaller graph
with 32K vertices, 256K edges, and 100K updates. Neo4j
is configured to use disk to make it durable. Neo4j and
GRAPHONE both use the buffer cache while persisting the
graph data. Neo4j can ingest only 14.81K edges per second,
whereas GRAPHONE ingests at 3.63M edges per second.
Static Graph System. We compare against Galois, a rep-
resentative in-memory static graph engine based on CSR
format. It does not provide the data management capabil-
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Fig. 11: Speedup comparison of GRAPHONE with Galois (pre-
processing cost not included).

ity, so the whole graph is constructed in one time, called
pre-processing time, which takes a significant amount of
time [55]. In contrast, GRAPHONE can start the analytics
without any pre-processing. Fig. 11 shows the speed up
of GRAPHONE for PageRank and BFS over Galois (with-
out pre-processing cost) for all the graphs except Kron-28 as
Galois had a memory error. The PageRank results are almost
same as it is compute intensive, thus effect of chaining is not
observed. For Kron-21-16 which is very small, the perfor-
mance of Galois is bad. We suspect that the cost of manual
workload division in Galois for small graphs affects its per-
formance, while we use dynamic scheduling of OpenMP.

For BFS, GRAPHONE performs better than Galois with an
exception in the Subdomain graph. Both systems have same
BFS implementation (direction-optimized BFS [11]) with a
minor implementation difference. Our BFS is implemented
using the status array metadata where the level of each ver-
tex is maintained as one byte word, and tracking the active
vertices requires revisiting whole status array. Galois uses
the frontier queue where active vertices are kept in a sep-
arate work queue. Based on our experience with graph sys-
tems, status array implementation is faster for small diameter
graphs, otherwise frontier queue approach is better. The Sub-
domain graph has 140 BFS levels (the highest of all graphs)
hence we perform poorly, but Kron-21 has only 7 levels (the
least of all the graphs) so the speedup is the highest.
Static GRAPHONE. GRAPHONE is expected to perform
slightly worse than the static graph engine without including
the pre-processing cost, but much better if including. There-
fore to demonstrate the performance overhead of data man-
agement and chaining without any specific algorithm differ-
ences, we compare GRAPHONE against the static configura-
tion of itself where maximum chain count is just one.

Fig. 12 shows this performance drop (without including
pre-processing cost), specifically trading off just 17% av-
erage performance for real-world graphs (26% for all the
graphs plotted) from the static system, one can support high
arrival velocity of fine-grained updates. However, the per-
formance drop is only temporary as the compaction process
will remove the chaining in the background. Moreover, when
adding the pre-processing cost to the static system, GRA-
PHONE is able to perform better. For example, the pre-
processing cost for Kron-28 graph is 32.73s, one or multiple
orders of magnitude longer than the runtime of these algo-
rithms, e.g. 34.12× more than the run-time of BFS.
Stream Graph Engines. The logging and archiving opera-
tions are examples of different categories of stream analyt-
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Fig. 12: Graph analytics performance in GRAPHONE compared to
its static version that have no chaining requirement.

ics: logging is a proxy to continuous stateless stream ana-
lytics, while archiving is same to the discrete stateful stream
analytics. Thus, Table 3 is also an indication of their per-
formance. We have also implemented a streaming weakly
connected components using ideas from COST [57] using
stateless stream view APIs and it can process 33.60 million
stream edges/s on Kron-28 graph.

GRAPHONE runs stream computation and data ingestion
concurrently, while prior stream processing systems inter-
leave them that results into lower ingestion rate. To demon-
strate the advantage of this design decision, we have im-
plemented a streaming PageRank using stateful stream view
APIs that runs in parallel to data ingestion in GRAPHONE.
To simulate the prior stream processing we interleave the
two. The execution shows that GRAPHONE improves the
data ingestion by 26.22% for Kron-28 graph. We leave the
comparison against other stream processing engine as future
work as the focus of this work is on graph data-store.

7.3 System Design Parameters
Performance Trade-off in Hybrid Store. We first charac-
terize the behavior of the hybrid store for different number
of non-archived edges. Fig. 13 shows the performance vari-
ation of archiving rate, BFS, PageRank, and 1-hop query for
Kron-28 graph when the non-archived edge counts are in-
creased, while the rest of the edges are kept in the adjacency
store for Kron-28. The figure shows that up to 217 non-
archived edges in the edge log brings negligible drop in the
analytics performance. Hence, we recommend the value of
archiving threshold as 216 edges as the logging overlaps with
the archiving. GRAPHONE is able to sustain an archiving
rate 43.68 million edges per second at this threshold. The 1-
Hop query latency of all 512 queries together is only 53.766
ms, i.e. 0.105 ms for each query.

The archiving threshold of 216 edges is not unexpected as
it is small compared to total edge count (233) in Kron-28, and
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Fig. 13: Algorithmic performance and archiving rate variation for
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the analytics on non-archived edges are parallelized. Further,
the parallelization cost dominates when the number of non-
archived edges are small (210). Thus the analytics cost drops
only when the number of non-archived edges becomes large.

Fig. 13 also shows that higher archiving threshold leads to
better archiving rate, e.g., a archiving threshold of 1,048,576
(220) edges can sustain a archiving rate of 56.99 million
edges/second. The drawback is that the analytics perfor-
mance will be reduced as it will find more number of non-
archived edges. On the contrary, archiving works contin-
uously and tries to minimize the number of non-archived
edges, so a smaller arrival rate will lead to frequent archiv-
ing, and thus fewer non-archived edges will be observed at
any time. The drop in archiving rate at the tail is due to the
impact of large working set size that leads to more last-level-
cache transactions and misses while filling the edge arrays.
Scalability. The edge sharding stage removes the need
of atomic instruction or locks completely in the archiving
phase, which results into better scaling of archiving rate with
increasing number of threads as plotted in Fig. 14. There is
some super-linear behavior when thread count is increased
from 16 to 32. This is due to the second socket coming
into picture with its own hardware caches, and non-atomic
behavior makes it to scale super-linear. This observation is
confirmed by running the archiving using 16 threads spread
equally across two sockets, and achieves higher archiving
rate compared to the case when the majority of threads be-
long to one socket.
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Memory Allocation. Fig. 15 shows that the cacheline sized
memory allocation and special handling of hub-vertices im-
prove the performance of the archiving and analytics. The
cacheline sized memory optimization improves the archiving
rate at the archiving threshold by 2.20× for Kron-28 graph,
while speeding up BFS, PageRank and 1-Hop query perfor-
mance by 1.37×, 3.11× and 8.82×. Hub vertices handling
additionally improves the query performance (by 7.5%).
Edge Log Size. Fig. 16 shows the effect of edge log size on
overall ingestion rate on Kron-28 graph. Clearly, an edge log
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Fig. 16: Showing Ingestion rate when edge log size increases.

size greater than 4 million edges (32 MB) does not have any
impact on overall ingestion rate.

8 Related Work
Static graph analytics systems [66, 50, 43, 60, 52, 79, 16,
36, 53, 65, 27, 44, 81, 28, 76, 7, 80] support only batch ana-
lytics where pre-processing consumes much more time than
the computation itself [55]. Grapchi [47] and other snap-
shot based systems [35, 54, 62, 39, 26] support bulk up-
dates only. Naiad [58], a timely dataflow framework, sup-
ports iterative and incremental compute but does not offer
the data window on the graph data. Other stream analyt-
ics systems [17, 32, 58, 72] support stream processing and
snapshot creation, some offering data window but all at bulk
updates only. Stream databases [5, 6] provide only stream
processing. TIDE [77] introduces probabilistic edge decay
that samples data from base store.

Prior works [24, 69] follow integrated graph system model
that manage online updates and queries in the database, and
replicate data in an offline analytics engines for long run-
ning graph analytics tasks. As we have identified in §1, they
suffers from excessive data duplication and weakest compo-
nent problem. Zhang et al [78] also argue that such com-
posite design is not optimal. GraPU [71] proposes to pre-
processes the buffered updates instead of making them avail-
able to compute as in GRAPHONE. Trading-off granularity
of data visibility is similar to Lazybase [19], but we addition-
ally tune the access of non-archived edges to reduce perfor-
mance drop in our setup and offer diverse data views.

The in-memory adjacency list in Neo4j [59] is optimized
for read-only workloads, and new updates generally require
invalidating and rebuilding those structures [63]. Titan [2],
an open source graph analytics framework, is built on top of
other storage engines such as HBase and BerkeleyDB, and
thus does not offer adjacency list at the storage layer.

9 Conclusion
We have presented GRAPHONE, a unified graph data store
abstraction that offers diverse data access at different gran-
ularity for various real-time analytics and queries at high-
performance, while simultaneously supporting high arrival
velocity of fine-grained updates.
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Abstract
The I/O forwarding architecture is widely adopted on mod-
ern supercomputers, with a layer of intermediate nodes sit-
ting between the many compute nodes and backend stor-
age nodes. This allows compute nodes to run more effi-
ciently and stably with a leaner OS, offloads I/O coordi-
nation and communication with backend from the compute
nodes, maintains less concurrent connections to storage sys-
tems, and provides additional resources for effective caching,
prefetching, write buffering, and I/O aggregation. However,
with many existing machines, these forwarding nodes are as-
signed to serve a fixed set of compute nodes.

We explore an automatic mechanism, DFRA, for
application-adaptive dynamic forwarding resource alloca-
tion. We use I/O monitoring data that proves affordable to
acquire in real time and maintain for long-term history anal-
ysis. Upon each job’s dispatch, DFRA conducts a history-
based study to determine whether the job should be granted
more forwarding resources or given dedicated forwarding
nodes. Such customized I/O forwarding lets the small frac-
tion of I/O-intensive applications achieve higher I/O perfor-
mance and scalability, meanwhile effectively isolating dis-
ruptive I/O activities. We implemented, evaluated, and de-
ployed DFRA on Sunway TaihuLight, the current No.3 su-
percomputer in the world. It improves applications’ I/O
performance by up to 18.9×, eliminates most of the inter-
application I/O interference, and has saved over 200 million
of core-hours during its test deployment on TaihuLight for 11
months. Finally, our proposed DFRA design is not platform-
dependent, making it applicable to the management of exist-
ing and future I/O forwarding or burst buffer resources.

1 Introduction
Supercomputers today typically organize the many compo-
nents of their storage infrastructure into a parallel and global
controlled file system (PFS). Performance optimization by
manipulating the many concurrent devices featuring differ-
ent performance characteristics is a complicated yet criti-

∗Most work conducted during appointment at Qatar Computing Re-
search Institute.

†Wei Xue is the corresponding author. Email: xuewei@tsinghua.edu.cn

cal task to administrators, application developers, and users.
Moreover, it gets more challenging due to I/O contention and
performance interference caused by concurrent jobs sharing
the same PFS, bringing significant I/O performance fluctu-
ation [28, 38, 40, 44, 61]. Meanwhile, different applications
have vastly different I/O demands and behaviors, making it
impossible for center administrators to decide one-size-for-
all I/O configurations.

The task is even more difficult when it comes to the de-
sign and procurement of future systems. It is hard for ma-
chine owners to gauge the I/O demand from future users
and design a “balanced” system with coordinated computa-
tion, network, and I/O resources. In particular, design and
procurement typically happen years before any application
could test run, while even decades-old programs usually see
very different performance and scalability due to newer ar-
chitecture/hardware/software on the more powerful incom-
ing machine.

Figure 1: Typical I/O forwarding architecture for supercomputers

To give an example, consider the design of an I/O for-
warding infrastructure [19], a widely adopted I/O subsystem
organization that adds an extra forwarding layer between the
compute nodes and storage nodes, as illustrated in Figure 1.
This layer decouples file I/O from the compute nodes (CNi
in Fig 1), shipping those functions to the forwarding nodes
instead, which are additional I/O nodes responsible for trans-
ferring I/O requests. It also enables compute nodes (1) to
adopt a lightweight OS [48, 53, 64] that forwards file system
calls to forwarding nodes, for higher and more consistent ap-
plication performance [19], (2) to maintain fewer concurrent
connections to the storage subsystem than having clients di-
rectly access file system servers, for better operational relia-
bility, and (3) to facilitate the connection between two differ-
ent network domains, typically set up with different topol-
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ogy and configurations, for computation and storage respec-
tively. Finally, it provides an additional layer of prefetch-
ing/caching (or, more recently, burst buffer operations [51]),
significantly improving user-perceived I/O performance and
reducing backend data traffic.

Rank Machine Vendor # C node # F node File system
3 Taihulight [11] NRCPC 40,960 240 Lustre [24]
4 Tianhe-2A [69] NUDT 16,000 256 Lustre + H2FS
5 Piz Daint [9] Cray 6,751 54 Lustre + GPFS [57]
6 Trinity [17] Cray 19,420 576 Lustre
9 Titan [15] Cray 18,688 432 Lustre
10 Sequoia [10] IBM 98,304 768 Lustre
12 Cori [2] Cray 12,076 130 Lustre + GPFS
14 Oakforest-PACS [8] Fujitsu 8,208 50 Lustre
18 K computer [5] Fujitsu 82,944 5184 FEFS [56]

Table 1: I/O forwarding adopters among TOP20 machines (Nov 18)

Due to these advantages, I/O forwarding is quite popular,
adopted by 9 out of the current TOP20 supercomputers (by
the latest TOP500 list [16]). Table 1 summarizes their cur-
rent TOP500 rankings and system configurations, including
the number of compute and forwarding nodes. Note that re-
cent Cray installations such as Cori and Trintiy use forward-
ing nodes with SSD-based burst buffers [3]. Forwarding ar-
chitecture is also targeted in an Exascale storage design [45].

Despite the I/O forwarding layer’s nature in decoupling
compute nodes from backend storage nodes and enabling
flexible I/O resource allocation, to provision a future sys-
tem with forwarding resources (or to manage them for a
current one) is challenging, as reasoned earlier. As a re-
sult, existing systems mostly adopt a fixed forwarding-node
mapping (FFM) strategy between compute nodes and for-
warding nodes, as illustrated in Figure 1. Though compute
nodes are connected to all forwarding nodes, each forward-
ing node is assigned a fixed subset of k compute nodes to
serve [48, 49, 63]. E.g., the compute-to-forwarding mapping
is fixed at 512-1 at the No.3 supercomputer TaihuLight [30],
and 380-1 at the No.5 Piz Daint [55].

This paper proposes a new method of forwarding re-
source provisioning. Rather than making fixed map-
ping decisions based on rough estimates, supercomputer
owners could enable dynamic forwarding resource alloca-
tion (DFRA), with flexible, application-aware compute-to-
forwarding node mappings. We argue that DFRA not only
alleviates center management’s difficult hardware provision-
ing burdens, but significantly improves forwarding resource
utilization and inter-application performance isolation.

DFRA is motivated by results of our whole-system I/O
monitoring at a leading supercomputing center and extensive
experiments. Specifically, we found the common practice of
FFM problematic: (1) while the default allocation suffices on
average in serving applications’ I/O demands, the forwarding
layer could easily become a performance bottleneck, lead-
ing to poor application I/O performance and scalability as
well as low backend resource utilization; meanwhile the ma-
jority of forwarding nodes tend to stay under-utilized. (2)
Forwarding nodes shared among relatively small jobs or par-
titions of large jobs become a contention point, where ap-

plications with conflicting I/O demands could inflict severe
performance interference to each other. Section 2 provides a
more detailed discussion of these issues.

Targeting these two major limitations of FFM, we de-
vised a practical forwarding-node scaling method, which es-
timates the number of forwarding nodes needed by a cer-
tain job based on its I/O history records. We also performed
an in-depth inter-application interference study, based on
which we developed an interference detection mechanism to
prevent contention-prone applications from sharing common
forwarding nodes. Both approaches leverage automatic and
online I/O subsystem monitoring and performance data anal-
ysis that require no user effort.

We implemented, evaluated, and deployed our proposed
approach in the production environment of Sunway Tai-
huLight, currently the world’s No.3 supercomputer. De-
ployment on such a large production system requires us
to adopt practical and robust decision making and reduce
software complexity when possible. In particular, we po-
sitioned DFRA as a “remapping” service, performed only
when projected I/O time savings significantly offset the
node-relinking overhead.

Since its deployment in Feb 2018, DFRA has been ap-
plied to ultra-scale I/O intensive applications on TaihuLight
and has brought savings of bringing around 30 million core-
hours per month, benefiting major users (who together con-
sume over 97% of total core-hours). Our results show that
our remapping can achieve up to 18.9× improvement to real,
large-scale applications’ I/O performance. Finally, though
our development and evaluation are based on the TaihuLight
supercomputer, the proposed dynamic forwarding resource
allocation is not platform-specific and can be applied to other
machines adopting I/O forwarding.

2 Background and Problems

Modern I/O forwarding architectures in HPC machines typ-
ically deploy a static mapping strategy [18] (referred to as
FFM for the rest of the paper), with I/O requests from a
compute node mapped to a fixed forwarding node. Here we
demonstrate the problems associated with this approach, us-
ing the world’s No.3 supercomputer TaihuLight as a sample
platform. Specifically, we discuss resource misallocation,
inter-application interference, and forwarding node anoma-
lies, proceeded by introduction to the platform and the real-
world applications to be discussed.

2.1 Overview of Platform and Applications
Platform Sunway TaihuLight is currently the world’s No.3
supercomputer [30], with over 10M cores and 125-Petaflop
peak performance. Its main storage system is a 10PB Lustre
parallel file system [24], delivering 240GB/s and 220GB/s
aggregating bandwidths for reads and writes respectively,
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using 288 storage nodes and 144 Sugon DS800 disk ar-
rays. Between its compute nodes and the Lustre backend
is a globally-shared layer of 240 I/O forwarding nodes. Each
forwarding node provides a bandwidth of 2.5GB/s and plays
a dual role, both as a Lightweight File System (LWFS) [6]
server to the compute nodes and a client to the Lustre back-
end. Before our DFRA deployment, 80 forwarding nodes
were used for daily service, the other 160 reserved as backup
or for large production runs with whole-system reservations.

In addition, TaihuLight has an online, end-to-end I/O
monitoring system, Beacon [21]. It provides rich profil-
ing information such as average application I/O bandwidth,
I/O time and I/O access mode, as well as real-time system
load and performance measurements across different layers
of TaihuLight’s storage system.
Applications Our test programs include 11 real-world ap-
plications and one parallel I/O benchmark. Six of them
are 2017 and 2018 ACM Gordon Bell Prize contenders:
CESM [37] (Community Earth System Model) is an earth
simulation software system which consists of many cli-
mate models; CAM [59] is a standalone global atmospheric
model deriving from the CESM project for climate simula-
tion/projection; AWP [25] is a widely-used earthquake simu-
lator [26,54]; Shentu [35] is an extreme-scale graph engine;
LAMMPS [68] (Large-scale Atomic/Molecular Massively Par-
allel Simulator) is a popular molecular dynamics software;
Macdrp [23] is a new earthquake simulation tool, special-
izing in accurate replay of earthquake scenarios with com-
plex surface topography. CAM and AWP were among the three
2017 Gordon Bell Prize finalists (AWP being the final win-
ner), while Shentu is in the 2018 finalist.

Note that although all 6 applications above can scale to the
full TaihuLight system’s 40,000+ compute nodes, full-scale
production runs are conducted mostly with pre-arranged
system-wide reservation. In most cases, we do not have such
reservation or the largest-scale input datasets to evaluate their
maximum-scale executions. However, throughout the year,
their developers and users conducted many mid-size runs,
each using hundreds or thousands of compute nodes. Most
of our experiments evaluate at such scale, where I/O perfor-
mance improvement can save shared I/O resources and re-
duce application execution time. Meanwhile, our findings
here remain applicable to larger-scale runs.

The remaining large-scale applications in our testbed are:
DNDC [32] (biogeochemistry application for agroecosystems
simulation), WRF [1] (regional numerical weather prediction
system), APT [67] (particle dynamics simulation code), XCFD
(computational fluid dynamics simulator), and swDNN [29]
(deep neural network engine). For the ease of controlling I/O
behaviors and execution parameters, we also use MPI-IO [7],
a widely-used MPI-IO benchmark by LANL.

These programs represent diverse data access behaviors
regarding request characteristics, I/O volume, I/O library,
and file sharing mode. Table 2 summarizes their I/O pro-

App Throughput IOPS Metadata I/O Lib I/O Mode
MPI-ION High Low Low MPI-IO N-N
DNDC Low Low High POSIX N-N
APT Low High Low HDF5 N-N
WRF1 Low Low Low NetCDF 1-1
WRFN High High Low NetCDF N-N
CAM Low Low Low NetCDF 1-1
AWP Low Low Low MPI-IO N-1

Shentu High High Low POSIX N-N
Macdrp High Low Low POSIX N-N
LAMMPS High Low Low MPI-IO N-N
XCFD High Low Low POSIX N-N
CESM High Low Low NetCDF N-N
swDNN Low Low Low HDF5 N-N

Table 2: Summary of test programs’ I/O characteristics. “N-N”
mode means N processes operate N separate files. “N-1” means N
processes operate on one shared file. “1-1” means only one process
among all processes operates on one file.

files. Here we roughly label each application as “high” or
“low” in three dimensions: I/O throughput, IOPS, and meta-
data operation intensity, using empirical thresholds.1

2.2 Motivation 1: Resource Misallocation
As shown above, applications have drastically different
I/O demands, some requiring a much lower compute-to-
forwarding nodes ratio than others. Traditional FFM does
not account for varying I/O behaviors across applications,
leading to significant resource misallocation. Below we dis-
cuss concrete sample scenarios.
Forwarding node under-provisioning The default I/O for-
warding node allocation of one per 512 compute nodes in
TaihuLight is adequate for the majority of applications we
have profiled, but severely low for the most I/O intensive ap-
plications, where the forwarding nodes become an I/O per-
formance bottleneck. Due to the transparent nature of the
forwarding layer, such bottleneck is often obscure and hard
to detect by application developers or users.

Figure 2 demonstrates the impact of allocating more for-
warding nodes to two representative real-world applications:
XCFD and WRF1. We plot the I/O performance speedup (nor-
malized to that under the default allocation of one forwarding
node), as a function of the number of exclusive forwarding
nodes assigned to the application.

We find that XCFD benefits significantly from increased
forwarding nodes. XCFD adopts an N-N parallel I/O mode,
where each MPI process accesses its own files. Thus many
backend storage nodes and OSTs (Object Storage Targets,
Lustre term for a single exported backend object storage vol-
ume) are involved in each I/O phase, especially when N is
large. In general, applications with such I/O behavior suffer
under FFM, due to the limited processing bandwidth in the
assigned forwarding nodes.

1Calculated by α× per-forwarding-node peak performance. In this pa-
per we set α as 0.4, resulting in thresholds of 1GB/s for throughput, 10,000
for IOPS, and 200/s for metadata operation rate, respectively.
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Figure 2: I/O performance speedup of WRF1 and XCFD with increas-
ing dedicated forwarding node allocation. For the rest of the paper,
the number after application name gives the number of compute
nodes used in execution.

Our I/O profiling on TaihuLight indicates that among
jobs using at least 32 compute nodes, around 9% use the
N-N I/O mode, potentially seeing significant performance
improvement given more forwarding nodes. Such under-
provisioning was observed on other supercomputers, e.g.,
recent Cray systems where I/O requests issued by a single
compute node can saturate a forwarding node [27].

Applications like WRF1, meanwhile, adopt the 1-1 I/O
mode, where they aggregate reads/writes to a single file in
each I/O phase. Intuitively, such applications do not bene-
fit from higher forwarding node allocation. In addition, on
TaihuLight applications with the 1-1 mode typically do not
generate large I/O volumes in a single I/O phase, though they
tend to run longer. Combining these two factors, 1-1 appli-
cations are mostly insensitive to additional forwarding layer
resources beyond the default allocation.

Forwarding node load imbalance Application-oblivious
forwarding resource allocation can lead to severe load im-
balance across forwarding nodes. To verify this, we exam-
ined historical I/O traces collected on TaihuLight’s forward-
ing nodes to check how they are occupied over time.

For every forwarding node, TaihuLight’s profiling system
records its per-second pass-through bandwidth. Analysis of
such results first indicates that during the majority of profiled
time intervals, the forwarding nodes are severely underuti-
lized, echoing other studies’ findings on overall low super-
computer I/O resource utilization [43, 47]. Meanwhile we
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Figure 3: Sample TaihuLight forwarding layer load history

found high variability of loads across forwarding nodes and
high day-to-day variances on forwarding node occupancy.
We illustrate this with the forwarding nodes’ daily occu-
pancy, calculated as the fraction of 1-second windows in a
day where a node’s average bandwidth reaches 80% of the
peak forwarding bandwidth of 2.5 GB/s. Figure 3 plots the
minimum, average, and maximum daily occupancy across

the 80 TaihuLight forwarding nodes, between July 15th and
August 31st, 2017. We see both high variability in overall
load (irregular average and maximum curves) and high load
imbalance (large difference between the two).2

With recent and emerging systems adopting a burst buffer
(BB) layer, such under-utilization and imbalance could bring
wasted NVM spaces, buffer overflow, unnecessary data
swapping, or imbalanced device wear.

2.3 Motivation 2: Inter-job Interference
I/O interference is a serious problem known to modern su-
percomputer users [28, 38, 40, 44, 61]. The common FFM
practice not only neglects individual applications’ I/O de-
mands, but also creates an additional contention point by
sharing forwarding nodes among concurrent jobs with con-
flicting I/O patterns. Figure 4 illustrates this using three real
applications: AWP Shentu, and LAMMPS.All used the default
512-1 compute-to-forwarding mapping.
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Figure 4: I/O performance impact of forwarding node sharing

We tested two execution modes, with each application al-
located dedicated forwarding nodes vs. applications using
shared ones. In both modes all three applications ran si-
multaneously. Note that for Shentu in the shared mode, it
was allocated one dedicated forwarding node and two more
nodes to share with other applications: one with AWP and
one with LAMMPS, which were each running on 256 compute
nodes (and thus allocated half of a forwarding node each).

As expected, all three experienced faster I/O with ded-
icated forwarding nodes. However, some suffered much
higher performance interference. While AWP and LAMMPS

saw mild slowdowns (4% and 23% increase in total I/O
time), Shentu had a 3× increase. This is due to the highly
disruptive behavior of AWP’s N-1 I/O mode (discussed in
more details later), causing severe slowdown of Shentu pro-
cesses accessing the same forwarding node. Given the syn-
chronous nature of many parallel programs, their barrier-
style parallel I/O operations wait for all processes involved to
finish. Thus slowdown from the “problem forwarding node”
shared with AWP is propagated to the entire application, de-
spite that it had one dedicated forwarding node and shared
the final one with a much more friendly LAMMPS.

In Section 5, we present an in-depth inter-application in-
terference study, based on which we perform application-
aware interference estimation to avoid sharing forwarding
nodes among applications prone to interference.

2Our recent paper on TaihuLight’s Beacon monitoring system gives
more details on workload characteristics [21].
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2.4 Motivation 3: Forwarding Node Anomaly
Finally, when certain forwarding nodes show abnormal be-
havior due to software or hardware faults, applications as-
signed to work through these slow nodes under FFM would
suffer. We found TaihuLight forwarding nodes prone to cor-
rectable failures in memory or network, confirming the “fail-
slow” phenomenon observed at data centers [33].
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Figure 5: Forwarding node peak performance. Forwarding nodes
with IDs 3, 8 and 34 show abnormal performance.

Figure 5 shows sample benchmarking results measuring
read/write bandwidth across 96 currently active forward-
ing nodes, conducted during system maintenance. While
most forwarding nodes do report consistent bandwidth lev-
els (with expected variability due to network contention, disk
status, etc.), a small number of them clearly exhibit perfor-
mance anomalies. In particular, forwarding node No.8 (high-
lighted with arrow) is an obvious outlier, with average read
and write bandwidth at 7% and 12% of peak, respectively.

Fortunately, the I/O monitoring system in TaihuLight per-
forms routine, automatic node anomaly detection across all
layers of the I/O infrastructure. As shown in Section 3,
our proposed dynamic forwarding system leverages such
anomaly detection to skip nodes experiencing anomalous be-
havior in its dynamic allocation.

3 System Overview
Given the above multi-faceted problems caused by FFM,
we propose a practical-use and efficient dynamic forward-
ing resource allocation mechanism, DFRA. DFRA works by
remapping a group of compute nodes (scheduled to soon
start executing an application) to other than their default for-
warding node assignments, whenever the remapping is ex-
pected to produce significant application I/O time savings.
It serves three specific purposes: (1) to perform application-
aware forwarding node allocation to avoid resource under-
provisioning for I/O-intensive jobs, (2) to mitigate inter-
application performance interference at the forwarding layer,
and (3) to (temporarily) exclude forwarding nodes identified
as having performance anomalies.

To remap at the job granularity does not pose much tech-
nical difficulty by itself. The challenge lies in developing an
automatic workflow that examines both the application’s I/O
demands and real-time system status, and performs effective
inter-application I/O interference estimation, while remain-
ing as transparent as possible to users and relieving adminis-

trators from labor-intensive manual optimizations.
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Figure 6: DFRA decision-making workflow

To this end, we leverage the Beacon I/O monitoring sys-
tem on TaihuLight to perform continuous application I/O
profiling and learn the I/O characteristics of applications
from history.3 Assisted with all-layer profiling data, from the
compute nodes to the backend OSTs, plus per-job scheduling
history that reveals the mapping of a job’s processes to com-
pute nodes, we obtain a detailed understanding of each past
job’s I/O behavior, including peak bandwidth per compute
node, request type/size distribution, periodic I/O frequency,
I/O mode (N-N, N-1, 1-1, etc.), and metadata access inten-
sity. Given that HPC platforms typically see applications run
repeatedly, with very similar I/O patterns [62], there is high
likelihood that the past reflects the future.

We have designed, implemented, and deployed a dynamic
forwarding resource allocation mechanism on TaihuLight,
as depicted in Figure 6 It determines whether a target job
A, scheduled to begin execution on a certain set of compute
nodes, needs to have forwarding nodes remapped and if so,
to which nodes. Implementation-wise, such proposed dy-
namic forwarding resource allocation component resides on
a single dedicated server (DFRA server). It interacts with the
Beacon I/O monitoring system and the job scheduler. Bea-
con provides an I/O performance database to query using A’s
job information (e.g., application name, project name, user
name, and execution scale) and estimates its I/O characteris-
tics based on historical records.

The job’s expected I/O features, such as I/O mode and the
number of compute nodes performing I/O, are then fed to
the DFRA server. First it checks whether this application
needs to scale out to use more forwarding nodes. If not (the
more likely case), then we incorporate real-time scheduling
information to know about the “neighbor applications” An
(the set of applications currently running on D, the forward-
ing nodes to be assigned under the default allocation). This
allows the DFRA server to check whether the default map-
ping will produce significant performance interference with
neighbors already running there. If significant interference
is expected, we keep the default allocation size D, but would

3Partial I/O traces released at https://github.com/Beaconsys/Beacon

USENIX Association 17th USENIX Conference on File and Storage Technologies    269



remap the compute nodes to dedicated forwarding nodes.4

If scaling is required, we first calculate S, the number of
forwarding nodes needed. We then check I, the number of
idle forwarding nodes currently available, excluding those
undergoing performance anomaly, and allocate the fewer be-
tween S and I. Though more sophisticated “partial-node”
allocation is possible, we choose the more simple scheme
considering the overall forwarding node under-utilization.

In summary, there are two types of “upgrades”: to grant
more forwarding nodes (for capacity) or grant unused for-
warding nodes (for isolation). In both cases, as we only al-
locate dedicated nodes from the idle pool, no interference
check is further needed. In the specific case of TaihuLight,
at the beginning of this research, beside the 80 forwarding
nodes using the default 512-1 mapping, more than 100 are
reserved for backup or manual allocation. For systems with-
out such over-provisioning, we recommend the default allo-
cation be lowered to serve the majority of jobs, who are not
I/O-intensive, and have a set of “spare” forwarding nodes for
ad-hoc remapping.

Note that this is a best-effort system transparent to users.
Additionally, for the majority of applications, who are not
I/O-intensive enough to warrant higher allocation and not
significantly interference-prone with expected neighbors, the
decision is to remain with default mapping.

The actual remapping process is conducted upon the jobs’
dispatch and involves making RPCs from the DFRA server
to the compute nodes concerned, instructing them to drop off
the original connection and connect to newly assigned for-
warding nodes, allocated from the current available forward-
ing node pool. Considering that a job tends to have consis-
tent I/O behavior, this remapping is done once per job execu-
tion, rather than per request. If remapped, when A completes,
its compute nodes will be reset to default mapping, making
DFRA maintenance simple and robust.

4 Automatic Forwarding Node Scaling
To decide on the “upgrade eligibility” of a job, we estimate
its multiple I/O behavior metrics based on the query results
of I/O monitoring database. When historical information is
not sufficient, e.g., as in the case of new applications, our
system does not change the default mapping. I/O monitoring
data collected from these runs will help forwarding resource
allocation in future executions.

Our scaling decision-making adopts a per-job forwarding
node allocation algorithm. It considers both the application-
specific I/O workload characteristics and historical perfor-
mance data of forwarding node load levels while serving this
application. Most of the threshold values are set empirically
according to our extensive benchmarking of the system, and
can be further adjusted based on continuous I/O performance

4This does not consider the jobs’ duration, as history records or job script
specified run times are not reliable indicators. Such conservative strategy is
allowed by the typical abundance of idle forwarding nodes.

monitoring. More specifically, the target job A needs to meet
the following criteria to be eligible for a higher forwarding
resource allocation than the default setting:

1. its total I/O volume is over Vmin during its previous ex-
ecution;

2. it has at least Nmin compute nodes performing I/O; and
3. it is not considered metadata-operation-bound, i.e., its

past average number of metadata operations waiting at
a forwarding node’s queues is under Wmetadata.

The rationale is based on the primary reason for a job to have
an upgraded allocation: it possesses enough I/O parallelism
to benefit from more forwarding resources. For such ben-
efit to offset the forwarding node remapping overhead, first
the application needs to generate a minimum amount of I/O
traffic. Applications diagnosed as metadata-operation-heavy,
regardless of their total I/O volume or I/O parallelism, are
found to not benefit from more forwarding nodes as their
bottleneck is the metadata server (MDS).

If A passes this test, with past history showing that it is
expected to use NA of its compute nodes to perform I/O, the
number of its forwarding node allocation S is calculated as
dNA/Fe. Here F is a scaling factor that reflects typically
how many I/O-intensive compute nodes can be handled by
a forwarding node without reaching its performance cap. In
our implementation, F is set as

⌈
B f /Bc

⌉
, where B f and Bc

are the peak I/O bandwidths of a single forwarding and com-
pute node, respectively. If not enough idle forwarding nodes
are available, we allocate all the available nodes. We expect
this case to be extremely rare, as given the typical system
load, there are enough idle forwarding nodes to satisfy all
allocation upgrades.

In our deployment on TaihuLight, we empirically set
Vmin at 20 GB, Nmin at the F value (32 based on the for-
mula above), and Wmetadata at twice the per-forwarding-node
thread pool size, also 32. These can be easily adjusted based
on machine specifications and desired aggressiveness.

We do not downgrade allocations for the metadata-heavy
or 1-1 I/O mode jobs, considering their baseline per-process
I/O activities (such as executable loading, logging, and
standard output). Also considering TaihuLight’s sufficient
backup forwarding nodes, we opt not to pay the remapping
overhead for downgrading allocations in this deployment,
though downgrading is easy to implement when needed.

Figure 7 shows how application I/O performance, in ag-
gregate I/O bandwidth measured from the application side,
changes with different compute-to-forwarding node ratios.
As these tests used dedicated forwarding nodes, we started
from the 256-1 allocation, rather than the default 512-1.

Here several applications, namely APT, DNDC, WRF1, and
CAM, due to insufficient I/O parallelism or being metadata-
heavy, do not pass the eligibility test. Their I/O performance
results confirm that they would have received very little per-
formance improvement with more forwarding nodes been al-
located. The other applications, however, see substantial I/O
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Figure 7: Aggregate I/O bandwidth under increasing forwarding
node allocation (compute-to-forwarding mapping ratio), normal-
ized to the 16-1 case. All applications ran using 256 compute nodes
(1024 MPI processes). Each test was repeated 5 times, with average
results plotted and error bars giving 95% confidence intervals.

bandwidth enhancement with increased forwarding node al-
locations, by up to a factor of 10.9×. Judging from results
across all such applications, our current F setting of 32 de-
liver best aggregate I/O bandwidth in most cases.

5 Interference Analysis and Avoidance

Our DFRA system attempts to mitigate this performance in-
terference by assigning jobs that are expected to interfere to
different forwarding nodes. Note that prior work on interfer-
ence detection and optimization focused mostly on deriving
offline, analytical interference models (e.g., [28,31]). In con-
trast, our work focuses on designing practical online interfer-
ence estimation techniques that DFRA can use effectively.

5.1 Inter-application Interference Analysis
We first conduct a rather controlled study, to observe I/O in-
terference behavior between pairs of representative I/O ap-
plications. From the applications described in Table 2, we
select eight that cover different I/O resource-consumption
patterns. Next, we perform pairwise co-execution among
these selected applications. For this, we use 256 compute
nodes (1024 MPI processes) each, so that the paired work-
loads have equal execution scale. Under the default alloca-
tion, the 512 compute nodes running the two programs hence
share one forwarding node.

To gauge interference, we measure each application’s I/O
slowdown by calculating the application’s relative slowdown
factor in overall I/O performance (the time spent in the I/O
interference interval) from that of its solo run. Table 3 shows
the pairwise results, with high-interference pairs (with ei-
ther slowdown factor >3) marked in bold, and medium-
interference ones (those among the rest with either slowdown
factor >2) marked with “*”.

The majority of our applications in this study are intensive
in at least one dimension of I/O resource usage and are ex-
pected to see I/O performance slowdown when they share
the same I/O path. Results in Table 3 confirm this. An
application exhibits an I/O slowdown of around 2× when

co-running with itself (another instance of the same appli-
cation), due to the expected resource contention. The re-
maining pairwise slowdown results reveal several interesting
interference behaviors.

First, we find that applications with low demands in all
three dimensions (throughput, IOPS, and metadata opera-
tion rate) do not introduce or suffer significant I/O slowdown
when co-running with other applications, with the exception
of applications using the N-1 I/O mode (recall Table 2).

To understand the reasons behind, we conducted follow-
up investigations. The three applications that fall into the
“Low/Low/Low” category are WRF1, CAM, and AWP. Among
them, AWP turns out to be a highly disruptive workload, caus-
ing high degrees of I/O slowdown to whoever runs with
it. We performed additional experiments, including MPI-IO

tests emulating its behavior with different I/O parameters,
and identified the problem being its N-1 file sharing mode.
While N-1 writes have been notoriously slow (such as with
Lustre [20], also verified by our own benchmarking), our
study reveals that it brings high disturbance (average of
38.4× to other applications tested).

Further examination of profiling results identified the for-
warding layer as the source of interference. Each forwarding
node maintains a fixed thread pool, processing client requests
from the compute nodes it is in charge of. While designed to
allow parallel handling of concurrent client requests, appli-
cations using the N-1 file sharing mode generate a large num-
ber of requests and flood the thread pool. Their occupation
of the forwarding layer thread resources is further prolonged
by the slow Lustre backend processing of such I/O requests
(often involving synchronization via locks). The result is that
other concurrent applications, whose I/O requests might be
far fewer and more efficient, are blocked waiting for thread
resources, while the I/O system remains under-utilized.

Such effect is highlighted by follow-up test results in Fig-
ure 8. We pair 2 benchmarks, MPI-IO1 (N-1) and MPI-ION
(N-N), running at different scales. The bars (left y axis)
show the queue lengths of pending requests at the forward-
ing layer. While the queue length increases proportionally to
the number of compute processes, as expected, the “co-run”
queue length of MPI-ION does not grow significantly from
its solo run. The much greater increase in MPI-ION latency
(red curves using the right y axis), meanwhile, comes from
the slowdown of each MPI-IO1 request.

Secondly, we observe from Table 3 that DNDC introduced
significant slowdown to all other workloads (by a factor
from 2.4× to 33.3×). A closer look finds that DNDC is
the only application in our testbed with significant meta-
data access intensity. DNDC’s production runs are not par-
ticularly large (only using 2048 processes), which simulta-
neously read 64,000 small files (up to several KBs each).
The large number of open/close requests pile up and block
requests from other applications obviously.

More profiling reveals that read requests see much faster
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Apps MPI-ION APT DNDC WRF1 WRFN Shentu CAM AWP

MPI-ION *(2.1, 2.1) (1.1, 9.3) (4.8, 1.1) (1.0, 1.0) *(2.1, 2.0) (1.3, 4.5) (1.0, 1.0) (3.3, 1.1)
APT - *(2.0, 2.1) (33.3, 1.0) (1.0, 1.0) (4.3, 1.4) (6.3, 1.3) (1.0, 1.0) (50.0, 1.1)
DNDC - - *(2.0, 2.0) (1.0, 25.0) (1.0, 11.1) (1.1, 16.7) (1.0, 33.3) *(2.2, 2.4)
WRF1 - - - (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (1.0, 1.0) (50.0, 1.0)
WRFN - - - - *(2.1, 2.1) *(2.0, 2.3) (1.0, 1.0) (12.5, 1.3)
Shentu - - - - - *(2.0, 2.0) (1.0, 1.0) (12.5, 1.1)
CAM - - - - - - (1.0, 1.0) (100.0, 1.0)
AWP - - - - - - - *(2.0, 2.0)

Table 3: I/O slowdown factor pairs of applications listed in row and column headers. E.g., in the 1st row, 2nd column, MPI-ION has slowdown
of 1.1 and APT has 9.3 when they co-execute. (Bold and “*” indicate high- and medium-interference, respectively)
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Figure 8: Interference between MPI-IO1 and MPI-ION . Bar repre-
sents queue length and line represents latency.

processing than open, with only slight increase in pro-
cessing time when DNDC joins a read-heavy job, indicating
bottleneck-free Lustre handling. The wait time, however,
sees almost 4× increase for read and around 2× for open
operations. Besides that the forwarding node thread pool be-
ing the point of contention, the asymmetric delay prompted
us to examine its scheduling policy. We found that metadata
requests were given higher priority over normal file I/O, fa-
voring interactive file system user experience. This, com-
bined with their longer processing time, makes metadata-
heavy applications like DNDC unsuspected disruptive work-
loads. While our ongoing work targets more adaptive poli-
cies, for DFRA we specifically check jobs’ metadata opera-
tion intensity for interference estimate.

Finally, we find that even applications with seemingly or-
thogonal resource usage patterns may not get along well,
with asymmetric performance impact on each other. In par-
ticular, we find that high-bandwidth, low-IOPS applications
impact the performance of low-bandwidth, high-IOPS ones
(but not vice versa). This can be seen from the APT-MPI-ION
results in Table 3, with the high-IOPS APT suffering an al-
most 10× slowdown while the high-bandwidth MPI-ION is
hardly impacted. A closer look reveals that APT reaches
IOPS of over 80,000, with requests sized under 1KB. The
reason behind the asymmetric slowdown is then intuitive:
high-bandwidth applications likely perform sequential I/O
with large request sizes, which force the many small requests
from the high-IOPS applications to wait long.

In summary, we discover that I/O interference not only
comes from bandwidth-intensive applications and problem-
atic access patterns (as assumed by previous studies [31,44]),
but also from applications issuing inefficient I/O requests,
while simultaneously incurring high contention and low uti-
lization, such as in the metadata-heavy and high-IOPS cases.

5.2 Inter-job Interference Estimate for DFRA
We now discuss DFRA’s inter-application interference
check, introduced in Section 5.1. Recall that it is needed only
when we decide that the target job A, which is to be sched-
uled, does not need more forwarding nodes than granted by
the default mapping. The interference check is then per-
formed pairwise, between A and each member of its neighbor
application set An.

As actual I/O interferences incurred during co-executions
of applications depend on other factors such as their I/O
phases’ frequency and interleaving, we use our interference
analysis results to make conservative, qualitative decisions.
More specifically, for A and each of its neighbor in An, we
consider interference is likely if either A or the neighbor is:

1. using the N-1 I/O mode, or
2. considered “metadata operation heavy” (average num-

ber of metadata operations waiting at a forwarding
nodes queue > Wmetadata), or

3. considered “high-bandwidth” or “high-IOPS” (using
criteria described in Section 2.1).

For A, the above check has to be based on our monitor-
ing system’s per-application I/O performance history data.
For jobs in An, however, our history-based I/O behavior in-
ference can and should be complemented with real-time I/O
behavior analysis. In particular, as the inferred I/O behav-
ior includes pattern information such as I/O phase frequency,
I/O volume per process performing I/O, and I/O mode, such
estimates can be verified by actual data collected during the
neighbors’ current execution. E.g., if a forwarding node is
receiving unexpectedly low I/O load from an application run-
ning, DFRA considers the application turns off I/O for this
run, overriding its positive interference estimate. Similarly,
if an application is issuing I/O at intensity not indicated by
its past history, we play safe and use the peak load level mea-
sured during its execution so far on the forwarding node(s)
involved, to determine whether interference is likely.

6 Evaluation
6.1 Job Statistics from I/O History Analysis
First, DFRA’s working relies on applications’ overall con-
sistency in I/O behavior. We verified this with the 18-month
TaihuLight I/O profiling results, confirming observations by
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existing studies [31, 44]. Specifically, if we simply forecast
a new job’s I/O mode and volume as those in its latest run
using the same number of compute nodes, we can success-
fully predict these parameters with under 20% deviation for
96,621 jobs (90.3%) out of 107,001 in total.

Category Count Count(%) Core-hour(%)
Total jobs 107,001 100% 100%

Job benefits from DFRA 14,712 13.7% 79.0%
Job’s I/O volume < Vmin (20 GB) 83,562 78.1% 18.9%

Job’s I/O nodes < Nmin (32) 8,727 8.2% 2.1%
Job’s metadata queue length

> Wmetadata (32) 0 0.0% 0.0%

Table 4: DFRA eligibility screening results, based on using per-job
I/O history between April 2017 and August 2018

We then give statistics about DFRA’s decisions and its po-
tential beneficiaries, by running these 18-month job I/O pro-
files through DFRA’s scaling decision making. For jobs that
were refused allocation upgrades, we categorize them by the
first test failed during the DFRA allocation scaling eligibility
check (Section 4). Table 4 lists the results.

First, 13.7% jobs (minority in count yet accounting for
79.0% of core-hours) are granted upgrades and expected to
benefit from DFRA. This demonstrates that though the I/O
system is overall underutilized, there are substantial amount
of I/O-intensive jobs as potential beneficiaries. Among the
rest, most fail to meet the total I/O volume threshold Vmin,
followed by the number of I/O nodes involved. No job fails
at the metadata-intensity check, as such applications in this
particular job history do not pass the I/O volume test.

Also, throughout this history “replay” using DFRA, the
average forwarding node consumption is 171.2, suggesting
that DFRA can get much better I/O performance while work-
ing well under the total 240-node forwarding capacity.

6.2 Performance/Consistency Improvement
Next we examine the impact of DFRA’s deployment on real
applications’ I/O performance in the TaihuLight production
environment. We run the 11 applications (introduced in Sec-
tion 2.1) each for 10 times at randomly selected times during
a 1-month period, each time under DFRA and FFM within
the same job execution, with remapping done in between. To
control total resource usage, Shentu, LAMMPS, and Macdrp

run with 1,024 compute nodes, with the other applications
run at their typical mid-size run scale (swDNN using 512
nodes while the rest using 256). They are further divided into
two groups: scaling, with more forwarding nodes granted by
DFRA, and non-scaling, with dedicated forwarding node al-
location if deemed interference-prone by DFRA (which may
depend on their neighbor jobs under the default mapping,
though APT and DNDC are always isolated).

DFRA brings an average I/O speedup of 3.5× across all
11 applications, from 1.03×(CAM) to 18.9×(Shentu). As
expected, applications in the scaling group receive higher
speedup (average at 4.8× and up to 18.9×), while non-
scaling applications benefit more from reduced performance

variability (and potential slowdown incurred on their neigh-
bors). However, the scaling group also obtains dramatic im-
provement in I/O performance consistency, with average re-
duction of 91.1% in range of I/O times.

The reason lies in the “mis-alignment” of compute nodes
to forwarding nodes using FFM. Our job history finds over
99% of large-scale jobs (using 512 compute nodes or more)
assigned to share forwarding nodes with other jobs, though
their job scales are often perfect multiples of the default fac-
tor of 512. Intuitively, such fragmentation often also leads to
dramatic load imbalance across forwarding nodes (partially)
serving the same I/O-intensive application.

App Comp. time I/O time w. FFM I/O time w. DFRA Total time reduction
Shentu-1024 1,303s 1,204s 64s 45%
LAMMPS-1024 3,510s 431s 97s 8%
Macdrp-1024 6,932s 260s 105s 2%
swDNN-512 0s 132,710s 31,476s 76%
AWP-256 2,301s 255s 204s 2%
CESM-256 4,742s 942s 846s 2%
WRFN -256 1,640s 135s 89s 3%
DNDC-256 992s 222s 216s 0.5%
WRF1-256 1,640s 513s 479s 2%
APT-256 222s 46s 24s 8%
CAM-256 3,226s 899s 876s 0.6%

Table 5: Per-phase computation and I/O time of applications

Table 5 describes the impact of DFRA on resource-
intensive applications’ overall performance. All applica-
tions but one (swDNN) have clear repeated phases alternat-
ing between computation and I/O, while the number of such
computation-I/O cycles may vary across runs according to
users’ needs. Therefore we illustrate the relative impact by
listing the more stable per-cycle average computation time,
average I/O time (with FFM and DFRA respectively), and
the percentage of total time saving by DFRA. The last col-
umn does not change when a particular production run ad-
justs the number of computation-I/O cycles. swDNN, unlike
timestep numerical simulations, is a parallel deep learning
model training application that has fine-grained, interleaving
computation and I/O, therefore we treat its execution as a
single I/O phase.

As most applications conform to their “total I/O budget”
by adjusting their I/O frequency, by taking one snapshot
every k computation timesteps, DFRA is not expected to
yield significant overall runtime reduction, especially with
the non-scaling ones. However, it does bring impressive to-
tal time savings for I/O-bound applications Shentu (45%)
and swDNN (76%), as well as over 8% savings for APT and
LAMMPS. Meanwhile, making I/O faster also implies that the
applications could afford to output more frequently under the
same I/O budget.

Figure 10 illustrates this scenario using a Shentu test run
using 1024 compute nodes, which are not allocated contigu-
ously. Under DFRA, its 32 dedicated forwarding nodes serve
equal partitions of compute nodes, as each compute node can
be individually remapped to any forwarding node, allowing
almost all compute nodes finishing I/O simultaneously. Un-
der FFM, instead, these dispersed 1024 compute nodes are
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Figure 9: Impact of DFRA on application I/O performance, with
results normalized to median I/O time under FFM
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Figure 10: Sample Shentu-1024 I/O bandwidth timelines

mapped to 7 forwarding nodes. As a result, the same I/O ac-
tivities take much longer, with multiple stair-steps produced
by completion of different forwarding nodes.

(a) Before DFRA (b) After DFRA

Figure 11: Impact of DFRA’s interference avoidance on pairwise
application co-run slowdown. Darkness of each block reflects the
slowdown factor of the application at row header by the applica-
tion at the column header. Blocks with slowdown factor values
give co-running pairs with interference anticipated by DFRA and
hence allocated separate forwarding resources. In all experiments,
the compute-to-forwarding mapping uses the default setting (512-
1), with DFRA allocating dedicated forwarding nodes to applica-
tion pairs it considers interference-prone.

To evaluate our proposed interference avoidance, we re-
run the pairwise experiments (see Section 5) with DFRA on
TaihuLight. Results are in Figure 11. We found DFRA can
detect potential interference with pairs having slowdown fac-
tors over 1.1 at either side. In this test, we only separate these
applications, without scaling up forwarding nodes, to isolate
the benefits brought by interference avoidance.

Compared with the left plot, where just by sharing a for-
warding node, certain applications could perceive a 2× to
100× I/O slowdown, the right plot reduces such slowdown to
uniformly under 1.1×. With many jobs on TaihuLight shar-
ing forwarding nodes, DFRA removes the infrequent (yet
highly damaging) inter-application interference cases.

Finally, we evaluate an alternative approach, RR, which
maps compute nodes to forwarding nodes in a round-robin

manner. We test RR 32-1, where each group of contiguous
32 compute nodes are assigned to one forwarding node. Fig-
ure 12 gives the speedup (again over the 512-1 fixed alloca-
tion) of running one of the 5 applications given at the x-axis
simultaneously with either DNDC or AWP. Each application
runs on 256 compute nodes, with two co-running applica-
tions sharing 8 forwarding nodes using RR. For fair com-
parison, DFRA uses 64-1 allocation here, so that all co-run
experiments enlist 8 forwarding nodes in total. RR spreads
the load of each application to all 8 forwarding nodes, but
does not offer the performance isolation brought by DFRA,
when two applications running on disjoint compute nodes
get mapped to common forwarding nodes. DFRA gives the
two applications each a 64-1 dedicated allocation, delivering
much higher I/O speedup in most cases, plus performance
isolation from co-executing applications.

6.3 DFRA Decision Analysis
We now validate DFRA’s forwarding node scaling deci-
sions. Figure 13 shows, in log scale, performance of MPI-IO
benchmarks with parameters uniformly sampled from a
range, to adopt different I/O modes (N-1, N-N and N-M),
I/O performing nodes, I/O request sizes, and metadata oper-
ation ratios. All tests are again divided into the scaling and
non-scaling groups, referring to cases where the DFRA au-
tomatic scaling decision making processes chose to upgrade
a job’s forwarding node allocation, or retain the default one.
The final results for both cases are consistent with the esti-
mations projected by DFRA. Scaling cases can achieve on
average 2.6× speedup (min at 1.1× and max at 7.1×), while
the non-scaling ones’ performance receives only trivial per-
formance improvement (up to 1.05×).

Next we further examine the effectiveness of DFRA scal-
ing, by measuring the queue length and I/O bandwidth of
real-world applications on TaihuLight. Figure 14 shows re-
sults, again in log scale, with representative applications cov-
ering all I/O categories mentioned in Table 2. Among them,
DNDC and APT are “non-scaling”: DNDC is metadata-intensive
and APT issues a large number of small-size I/O requests. We
find their performance bottleneck not at the forwarding layer,
explaining their little improvement in queue length and band-
width when given more forwarding nodes. AWP adopts an
N-1 I/O mode, generating high request pressure for forward-
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Figure 12: Speedup over 512-1 fixed allocation baseline, with two
applications co-running, each using 256 compute nodes. Note that
with its dedicated allocation, DFRA’s performance is not impacted
by co-running applications.
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Figure 13: Scaling decision validation using MPI-IO benchmark
instances. All experiments fix the total number of compute nodes
to 256, with different number of them performing I/O, and run with
2 different compute-to-forwarding mapping ratios: 512-1 and 32-1.
Results are sorted by speedup. Above the bars we list the minimum,
average, and maximum speedup for each group.

DNDC (H
igh M

DS)

APT (H
igh IO

PS)

AWP (N
-1)

Shentu(H
igh BW Read)

LAMMPS(H
igh BW W

rite
)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Q
u

eu
e 

le
n

g
th

256-1 128-1 64-1 32-1 16-1

(a) Average queue length

DNDC (H
igh M

DS)

APT (H
igh IO

PS)

AWP (N
-1)

Shentu(H
igh BW Read)

LAMMPS(H
igh BW W

rite
)

10
0

10
1

10
2

10
3

10
4

10
5

I/O
 b

an
d

w
id

th
 (

M
B

/s
) 256-1 128-1 64-1 32-1 16-1

(b) Average aggregate bandwidth

Figure 14: Average queue length (average number of requests pend-
ing in the queue, sampled at 0.01-second intervals) and I/O band-
width with varying compute-to-forwarding mapping ratios during
I/O execution. All applications use 256 compute node (1024 pro-
cesses), with dedicated forwarding nodes.

ing nodes, thus receiving significant queue length improve-
ment. Both Shentu and LAMMPS are bandwidth-hungry, ben-
efiting significantly from the bandwidth side. In particu-
lar, Shentu gets a higher speedup as scaled-up allocation
soothes its forwarding-side cache trashing.

6.4 Node Anomaly Screening

DFRA could screen out the abnormal forwarding nodes au-
tomatically. During our investigation, anomaly on forward-
ing nodes occurs for 6 times from Apr 2017 to Aug 2018.
Jobs using such abnormal forwarding nodes typically experi-
ence substantial performance degradation. Figure 15 shows
the performance impact when jobs get allocated an abnor-
mal forwarding node. The I/O performance could see a 20×
slowdown, due to the explicit barriers common with parallel
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Figure 15: Performance impact when jobs run on abnormal for-
warding nodes. All applications run with computing-forwarding
ratio of 32-1.

I/O, forcing all processes to wait for the slow progress of the
impaired forwarding node.

6.5 Overhead and Overall Resource Saving
Here we assess DFRA’s overhead in performing the actual
node remapping, while the allocation decision itself takes
under 0.1s in all tests on TaihuLight. Figure 16 shows the
average remapping time cost for different job sizes, plus the
corresponding job dispatch time (without remapping) for ref-
erence. Though the remapping overhead increases linearly
when more compute nodes are involved, it composes a mi-
nor addition to the baseline job dispatch overhead (the lat-
ter mainly due to compute nodes’ slow wake-up from their
power saving mode).

Note that this overhead is offset by our conservative
screening based on jobs’ past I/O profile. Even with 16,384
compute nodes, such minor delay in job dispatch is negligi-
ble compared with the total time saved in I/O phases, espe-
cially for long-running jobs. Since its deployment in Feb
2018, DFRA has brought an average execution time sav-
ing of over 6 minutes (up to several hours) to I/O-intensive
jobs eligible for its remapping, estimated by comparing the
I/O bandwidth benchmarked with the same application at the
same job scale, before and after DFRA. Going over the ac-
tual TaihuLight job history, we thus estimate DFRA’s overall
resource saving at over 200 million of core-hours.
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Figure 16: Average dynamic forwarding node remapping overhead

6.6 Extension to Burst Buffer Allocation
Finally, we briefly report our recent effort to apply DFRA
techniques to dynamic allocation of burst buffer (BB) re-
sources. We setup a testbed following the BB construction
adopted by a previous study [41], containing 8 forwarding
nodes, each with one 1.2TB Memblaze SSD to compose re-
mote shared burst buffers.
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Figure 17: I/O speedup with different compute-to-BB node ratio,
over performance with a baseline 256-1 allocation. Results are av-
erage from 3 tests, with error bars omitted due to small variance.

Figure 17 shows the performance impact of scaling up BB
node allocations. All runs use 256 compute nodes. Not sur-
prisingly, the more I/O-intensive applications (using N-N or
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N-1) benefit significantly from more BB nodes, while the 1-1
mode WRF1 sees little improvement. The similarity between
such result and that with forwarding resource scaling sug-
gests that DFRA is promising for BB layer management as
well. To this end, the next generation Sunway supercomputer
will adopt DFRA, including for its planned BB layer.

7 Related Work
I/O forwarding design and optimization Cplant [12] first
introduces the I/O forwarding layer, but without support for
data caching or request aggregation. I/O forwarding then be-
came popular at extreme scale in IBM Blue Gene (BG) plat-
forms [14, 36, 48]. IOFSL [13] is an open-source, portable,
high performance I/O forwarding solution that provides a
POSIX-like view of a forwarded file system to an applica-
tion. The Cray XC series uses Data Virtualization Service
(DVS) [4] for I/O forwarding. Our proposed DFRA method-
ology is compatible with recent trends in I/O forwarding
adoption at large supercomputers, such as the Cray series.

For better I/O forwarding performance, Ohta et al. [50]
present two optimization methods to reduce I/O bottlenecks:
I/O pipelining and request scheduling. Vishwanath et al. [63]
boost I/O forwarding through a work-queue model to sched-
ule I/O and asynchronous data staging. PLFS adds an inter-
position software layer that transparently partitions files to
improve N-1 performance [20]. DFRA is orthogonal to these
optimizations and focuses on application-aware forwarding
allocation and performance isolation.
Resource-aware scheduling This work echoes efforts in
resource-aware scheduling, such as approaches improving
utilization of datacenters/cloud resources, including CPU,
cache, memory, and storage [22,34,58]. Our focus, however,
is on HPC systems. To this end, AID [44] identifies appli-
cations’ I/O patterns and reschedules heavy I/O applications
to avoid congestion. CALCioM [28] coordinates applica-
tions’ I/O activities dynamically via inter-application com-
munication. Gainaru et al. propose a global scheduler [31],
which based on system condition and applications’ histor-
ical behavior prioritizes I/O requests across applications to
reduce I/O interference. The libPIO [65] library monitors
resource usage at the I/O routers and based on the loads al-
locates OSTs to specific I/O clients.

Regarding application-level I/O aware scheduling, AS-
CAR [40] is a storage traffic management framework that
improves bandwidth utilization by I/O pattern classification.
Lofstead et al. [46] propose an adaptive approach that groups
processes and directs their output to particular storage tar-
gets, with inter-group coordination. IOrchestrator [71] builds
a monitoring program to retrieve spatial locality information
and schedules future I/O requests.

Our proposed scheme takes a different path that does not
require any application or I/O middleware modification. It
observes application and system I/O performance, and based

on both real-time monitoring results and past monitoring his-
tory, automatically adjusts its default allocation to grant more
or dedicated forwarding resources.
I/O interference analysis On detecting and mitigating in-
terference, Yildiz et al. [70] examine sources of I/O interfer-
ence in HPC storage systems and identify the bad flow con-
trol across the I/O path as a main cause. CALCiom [28] and
Gainaaru’s study [31] show that concurrent file system ac-
cesses lead to I/O bursts, and propose scheduling strategy en-
hancements. On relieving burst buffer congestion, Kougkas
et al. [39] leverage burst buffer coordination to stage applica-
tion I/O. TRIO [66] orchestrates application’s write requests
in the burst buffer and Thapaliya et al. [60] manage interfer-
ence in the shared burst buffer through I/O request schedul-
ing. The ADIOS I/O middleware manages interference by
dynamically shifting workload from heavily used OSTs to
those less loaded [42]. Qian et al. [52] present a token bucket
filter in Lustre to guarantee QoS under interference.

This work is complementary to the above studies and uses
interference analysis as a tool, achieving performance isola-
tion using interference avoidance.

8 Conclusion
In this work, we explore adaptive storage resource provision-
ing for the widely used I/O forwarding architecture. Our
experience of deploying it on the No.3 supercomputer and
evaluating with ultra-scale applications finds dynamic, per-
application forwarding resource allocation highly profitable.
Judiciously applied to a minor fraction of jobs expected
to be sensitive to forwarding node mapping, our remap-
ping scheme both generates significant I/O performance im-
provement and mitigates inter-application I/O interference.
We also report multiple prior findings by other researchers
as confirmed or contradicted by our experiments. Finally,
though this study has focused on the allocation of forward-
ing nodes, the same approach can apply to other resource
types, such as burst buffer capacity/bandwidth allocation.

Acknowledgement

We thank Prof. Zheng Weimin for his valuable guidance and
advice. We appreciate the thorough and constructive com-
ments/suggestions from all reviewers. We thank our shep-
herd, Rob Johnson, for his guidance during the revision pro-
cess. We would like to thank the National Supercomput-
ing Center in Wuxi for great support to this work, as well
as the Sunway TaihuLight users for providing test appli-
cations. This work is partially supported by the National
Key R&D Program of China (Grant No. 2017YFA0604500
and 2016YFA0602100), and National Natural Science Foun-
dation of China (Grant No. 61722208, 41776010, and
U1806205).

276    17th USENIX Conference on File and Storage Technologies USENIX Association



References

[1] A description of the advanced research WRF version 3. http://

www2.mmm.ucar.edu/wrf/users/.

[2] Cori supercomputer. http://www.nersc.gov/users/

computational-systems/cori/.

[3] Cray burst buffer in Cori. http://www.nersc.gov/

users/computational-systems/cori/burst-buffer/

burst-buffer/.

[4] Cray data virtualization service (DVS). https:

//pubs.cray.com/content/S-0005/CLE%206.0.

UP05/xctm-series-dvs-administration-guide/

introduction-to-dvs.

[5] K supercomputer. http://www.aics.riken.jp/en/.

[6] Lightweight file systems. https://software.sandia.gov/trac/
lwfs.

[7] MPI-IO test. http://freshmeat.sourceforge.net/projects/
mpiiotest.

[8] Oakforest-PACS supercomputer. http://jcahpc.jp/eng/ofp_

intro.html.

[9] Piz Daint supercomputer. https://www.cscs.ch/computers/

dismissed/piz-daint-piz-dora/.

[10] Sequoia supercomputer. https://computation.llnl.gov/

computers/sequoia.

[11] Sunway TaihuLight supercomputer. https://www.top500.org/

system/178764.

[12] The computational plant. http://www.sandia.gov/~rbbrigh/

slides/conferences/salinas-cplant-lci02-slides.pdf.

[13] The IOFSL project. https://www.mcs.anl.gov/research/

projects/iofsl/about/.

[14] The ZeptoOS project. http://www.mcs.anl.gov/research/

projects/zeptoos/.

[15] Titan supercomputer. https://www.olcf.ornl.gov/

olcf-resources/compute-systems/titan/.

[16] Top 500 list. https://www.top500.org/resources/

top-systems/.

[17] Trinity supercomputer. http://www.lanl.gov/projects/

trinity/.

[18] ADIGA, N. R., ALMASI, G., ALMASI, G. S., ARIDOR, Y., BARIK,
R., BEECE, D. K., BELLOFATTO, R., BHANOT, G., BICKFORD,
R., BLUMRICH, M. A., ET AL. An overview of the Blue Gene/L
supercomputer. In ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC) (2002).

[19] ALI, N., CARNS, P., ISKRA, K., KIMPE, D., LANG, S., LATHAM,
R., ROSS, R., WARD, L., AND SADAYAPPAN, P. Scalable I/O
forwarding framework for high-performance computing systems. In
IEEE International Conference on Cluster Computing (CLUSTER)
(2009).

[20] BENT, J., GIBSON, G., GRIDER, G., MCCLELLAND, B., AND
ET AL. PLFS: A checkpoint file system for parallel applications. In
Proceedings of Supercomputing (2009).

[21] BIN YANG, XU JI, X. M. T. Z. X. Z. X. W. N. E.-S. J. Z. W. L.
W. X. End-to-end I/O Monitoring on a Leading Supercomputer. In
16th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI) (2019).

[22] BINDSCHAEDLER, L., MALICEVIC, J., SCHIPER, N., GOEL, A.,
AND ZWAENEPOEL, W. Rock you like a hurricane: Taming skew in
large scale analytics. In European Conference on Computer Systems
(EuroSys) (2018).

[23] BINGWEI CHEN, HAOHUAN FU, Y. W. C. H. W. Z. Y. L. W. W.-W.
Z. L. G. W. Z. Z. Z. G. Y. X. C. Simulating the Wenchuan Earth-
quake with accurate surface topography on Sunway TaihuLight. In
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC) (2018).

[24] BRAAM, P. J., AND ZAHIR, R. Lustre: A scalable, high performance
file system. Cluster File Systems, Inc (2002).

[25] CUI, Y., OLSEN, K. B., JORDAN, T. H., LEE, K., ZHOU, J.,
SMALL, P., ROTEN, D., ELY, G., PANDA, D. K., CHOURASIA, A.,
ET AL. Scalable earthquake simulation on petascale supercomputers.
In ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC) (2010).

[26] CUI, Y., POYRAZ, E., OLSEN, K. B., ZHOU, J., WITHERS, K.,
CALLAGHAN, S., LARKIN, J., GUEST, C., CHOI, D., CHOURASIA,
A., ET AL. Physics-based seismic hazard analysis on petascale het-
erogeneous supercomputers. In ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC) (2013).

[27] DALEY, C. S., GHOSHAL, D., LOCKWOOD, G. K., DOSANJH, S.,
RAMAKRISHNAN, L., AND WRIGHT, N. J. Performance character-
ization of scientific workflows for the optimal use of burst buffers.
Future Generation Computer Systems (2017).

[28] DORIER, M., ANTONIU, G., ROSS, R., KIMPE, D., AND IBRAHIM,
S. CALCioM: Mitigating I/O interference in HPC systems through
cross-application coordination. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2014).

[29] FANG, J., FU, H., ZHAO, W., CHEN, B., ZHENG, W., AND YANG,
G. swDNN: A library for accelerating deep learning applications on
Sunway Taihulight. In IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (2017).

[30] FU, H., LIAO, J., YANG, J., WANG, L., SONG, Z., HUANG, X.,
YANG, C., XUE, W., LIU, F., QIAO, F., ZHAO, W., YIN, X., HOU,
C., ZHANG, C., GE, W., ZHANG, J., WANG, Y., ZHOU, C., AND
YANG, G. The Sunway TaihuLight supercomputer: System and ap-
plications. Science CHINA Information Sciences (2016).

[31] GAINARU, A., AUPY, G., BENOIT, A., CAPPELLO, F., ROBERT, Y.,
AND SNIR, M. Scheduling the I/O of HPC applications under con-
gestion. In IEEE International Parallel and Distributed Processing
Symposium (IPDPS) (2015).

[32] GILTRAP, D. L., LI, C., AND SAGGAR, S. DNDC: A process-based
model of greenhouse gas fluxes from agricultural soils. Agriculture,
Ecosystems & Environment (2010).

[33] GUNAWI, H. S., SUMINTO, R. O., SEARS, R., GOLLIHER,
C., SUNDARARAMAN, S., LIN, X., EMAMI, T., SHENG, W.,
BIDOKHTI, N., MCCAFFREY, C., ET AL. Fail-slow at scale: Evi-
dence of hardware performance faults in large production systems. In
16th USENIX Conference on File and Storage Technologies (FAST)
(2018).

[34] HELGI SIGURBJARNARSON, PETUR ORRI RAGNARSSON, Y. V.
M. B. Harmonium: Elastic cloud storage via file motifs. In 6th
USENIX Workshop on Hot Topics in Storage and File Systems (Hot-
Storage) (2014).

[35] HENG LIN, XIAOWEI ZHU, B. Y. X. T. W. X. W. C. L. Z.-T. H. X.
M. X. L. W. Z., AND XU, J. ShenTu: Processing multi-trillion edge
graphs on millions of cores in seconds. In ACM/IEEE International
Conference for High Performance Computing, Networking, Storage
and Analysis (SC) (2018).

[36] ISKRA, K., ROMEIN, J. W., YOSHII, K., AND BECKMAN, P. ZOID:
I/O-forwarding infrastructure for petascale architectures. In ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP) (2008).

USENIX Association 17th USENIX Conference on File and Storage Technologies    277

http://www2.mmm.ucar.edu/wrf/users/
http://www2.mmm.ucar.edu/wrf/users/
http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/burst-buffer/
https://pubs.cray.com/content/S-0005/CLE%206.0.UP05/xctm-series-dvs-administration-guide/introduction-to-dvs
https://pubs.cray.com/content/S-0005/CLE%206.0.UP05/xctm-series-dvs-administration-guide/introduction-to-dvs
https://pubs.cray.com/content/S-0005/CLE%206.0.UP05/xctm-series-dvs-administration-guide/introduction-to-dvs
https://pubs.cray.com/content/S-0005/CLE%206.0.UP05/xctm-series-dvs-administration-guide/introduction-to-dvs
http://www.aics.riken.jp/en/
https://software.sandia.gov/trac/lwfs
https://software.sandia.gov/trac/lwfs
http://freshmeat.sourceforge.net/projects/mpiiotest
http://freshmeat.sourceforge.net/projects/mpiiotest
http://jcahpc.jp/eng/ofp_intro.html
http://jcahpc.jp/eng/ofp_intro.html
https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
https://www.cscs.ch/computers/dismissed/piz-daint-piz-dora/
https://computation.llnl.gov/computers/sequoia
https://computation.llnl.gov/computers/sequoia
https://www.top500.org/system/178764
https://www.top500.org/system/178764
http://www.sandia.gov/~rbbrigh/slides/conferences/salinas-cplant-lci02-slides.pdf
http://www.sandia.gov/~rbbrigh/slides/conferences/salinas-cplant-lci02-slides.pdf
https://www.mcs.anl.gov/research/projects/iofsl/about/
https://www.mcs.anl.gov/research/projects/iofsl/about/
http://www.mcs.anl.gov/research/projects/zeptoos/
http://www.mcs.anl.gov/research/projects/zeptoos/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/
https://www.top500.org/resources/top-systems/
https://www.top500.org/resources/top-systems/
http://www.lanl.gov/projects/trinity/
http://www.lanl.gov/projects/trinity/


[37] KAY, J., DESER, C., PHILLIPS, A., MAI, A., HANNAY, C.,
STRAND, G., ARBLASTER, J., BATES, S., DANABASOGLU, G., ED-
WARDS, J., ET AL. The Community Earth System Model (CESM)
large ensemble project: A community resource for studying climate
change in the presence of internal climate variability. Bulletin of the
American Meteorological Society (2015).

[38] KIM, Y., ATCHLEY, S., AND SHIPMAN, G. M. LADS: Optimizing
data transfers using layout-aware data scheduling. In 13th USENIX
Conference on File and Storage Technologies (FAST) (2015).

[39] KOUGKAS, A., DORIER, M., LATHAM, R., ROSS, R., AND SUN,
X. H. Leveraging burst buffer coordination to prevent I/O interfer-
ence. In IEEE International Conference on E-Science (2017).

[40] LI, Y., LU, X., MILLER, E. L., AND LONG, D. D. E. ASCAR: Au-
tomating contention management for high-performance storage sys-
tems. In IEEE International Conference on Massive Storage Systems
and Technology (MSST) (2015).

[41] LIU, N., COPE, J., CARNS, P., CAROTHERS, C., ROSS, R.,
GRIDER, G., CRUME, A., AND MALTZAHN, C. On the role of
burst buffers in leadership-class storage systems. In IEEE Inter-
national Conference on Massive Storage Systems and Technology
(MSST) (2012).

[42] LIU, Q., LOGAN, J., TIAN, Y., ABBASI, H., PODHORSZKI, N.,
CHOI, J. Y., KLASKY, S., TCHOUA, R., LOFSTEAD, J., OLDFIELD,
R., ET AL. Hello ADIOS: The challenges and lessons of develop-
ing leadership class I/O frameworks. Concurrency and Computation:
Practice and Experience (2014).

[43] LIU, Y., GUNASEKARAN, R., MA, X., AND VAZHKUDAI, S. S. Au-
tomatic identification of application I/O signatures from noisy server-
side traces. In 12th USENIX Conference on File and Storage Tech-
nologies (FAST) (2014).

[44] LIU, Y., GUNASEKARAN, R., MA, X., AND VAZHKUDAI, S. S.
Server-side log data analytics for I/O workload characterization and
coordination on large shared storage systems. In ACM/IEEE Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis (SC) (2016).

[45] LOFSTEAD, J., JIMENEZ, I., MALTZAHN, C., KOZIOL, Q., BENT,
J., AND BARTON, E. DAOS and friends: A proposal for an exascale
storage system. In ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC) (2016).

[46] LOFSTEAD, J., ZHENG, F., LIU, Q., KLASKY, S., OLDFIELD, R.,
KORDENBROCK, T., SCHWAN, K., AND WOLF, M. Managing
variability in the I/O performance of petascale storage systems. In
ACM/IEEE International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC) (2010).

[47] LUU, H., WINSLETT, M., GROPP, W., ROSS, R., CARNS, P.,
HARMS, K., PRABHAT, M., BYNA, S., AND YAO, Y. A multiplat-
form study of I/O behavior on petascale supercomputers. In Proceed-
ings of the 24th International ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC) (2015).

[48] MOREIRA, J., BRUTMAN, M., CASTANO, J., AND ENGELSIEPEN,
T. Designing a highly-scalable operating system: The Blue Gene/L
story. In ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis (SC) (2006).

[49] OBERG, M., TUFO, H. M., AND WOITASZEK, M. Exploration of
parallel storage architectures for a Blue Gene/L on the TeraGrid. In 9th
LCI International Conference on High-Performance Clustered Com-
puting (2008).

[50] OHTA, K., KIMPE, D., COPE, J., ISKRA, K., ROSS, R., AND
ISHIKAWA, Y. Optimization techniques at the I/O forwarding layer.
In IEEE International Conference on Cluster Computing (CLUSTER)
(2010).

[51] PETERSEN, T. K., AND BENT, J. Hybrid flash arrays for HPC storage
systems: An alternative to burst buffers. In IEEE High Performance
Extreme Computing Conference (HPEC) (2017).

[52] QIAN, Y., LI, X., IHARA, S., ZENG, L., KAISER, J., SÜSS, T., AND
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Abstract

Flash memory-based SSDs are popular across a wide range
of data storage markets, while the underlying storage
medium—flash memory—is becoming increasingly unreli-
able. As a result, modern SSDs employ a number of in-
device reliability enhancement techniques, but none of them
offers a one size fits all solution when considering the multi-
dimensional requirements for SSDs: performance, reliabil-
ity, and lifetime.

In this paper, we examine the design tradeoffs of exist-
ing reliability enhancement techniques such as data re-read,
intra-SSD redundancy, and data scrubbing. We observe that
an uncoordinated use of these techniques adversely affects
the performance of the SSD, and careful management of the
techniques is necessary for a graceful performance degrada-
tion while maintaining a high reliability standard. To that
end, we propose a holistic reliability management scheme
that selectively employs redundancy, conditionally re-reads,
judiciously selects data to scrub. We demonstrate the effec-
tiveness of our scheme by evaluating it across a set of I/O
workloads and SSDs wear states.

1 Introduction

From small mobile devices to large-scale storage servers,
flash memory-based SSDs have become a mainstream stor-
age device thanks to flash memory’s small size, energy ef-
ficiency, low latency, and collectively massive parallelism.
The popularity of SSDs is fueled by the continued drop in
cost per GB, which in turn is achieved by storing multiple
bits in a memory cell [7, 42] and vertically stacking memory
layers [41, 48].

However, the drive for high storage density has caused
the flash memory to become less reliable and more error-
prone [9, 20]. Raw bit error rate measurement of a single-
level cell flash memory in 2009 was in the order of 10−8 [19],
but this increased to 10−7–10−4 in 2011 for a 3x-nm multi-
level cell [52] and to 10−3–10−2 in 2017 for a 1x-nm mem-
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Figure 1: SSD reliability enhancement techniques.

ory [10]. The high error rates in today’s flash memory are
caused by various reasons, from wear-and-tear [11,19,27], to
gradual charge leakage [11,14,51] and data disturbance [13,
19].

In order to mask out the error-prone nature of flash mem-
ory, the state-of-the-art SSDs employ a number of in-device
reliability enhancement techniques, as shown in Figure 1.
These techniques originate from a wide range of domains,
from device physics that tunes threshold voltage levels for
sensing memory states [12, 14, 38], coding theory that cor-
rects errors using computed parity information [18, 35], to
system-level approaches such as scrubbing that preventively
relocates data [22, 37]. This variety is caused by the fact
that there is no one size fits all solution for data protection
and recovery: each technique has a multi-dimensional design
tradeoff that makes it necessary to compositionally combine
complementary solutions. This is much easier said than done
as reliability is only one of the many design goals for SSDs: a
study spanning across multiple institutions reveals that these
reliability enhancements, in fact, cause performance degra-
dation in SSDs [21].

In this paper, we examine the design tradeoffs of existing
techniques across multiple dimensions such as average and
tail performance, write amplification, and reliability. Our in-
vestigation is inspired by studies in the HDD domain that
evaluate the effectiveness of different reliability enhance-
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ments [24, 40, 49], but our findings deviate from those work
due to the difference in the underlying technology and the
SSD’s internal management. We make the following three
observations from our experiments. First, the use of data
re-read mechanisms should be managed, as the repeated re-
reads further induce errors, especially for read disturbance-
vulnerable cells. Second, in the absence of random and
sporadic errors, the overheads of intra-SSD redundancy out-
weigh its benefits in terms of performance, write amplifica-
tion, and reliability. Lastly, SSD-internal scrubbing reduces
the error-induced long-tail latencies, but it increases the in-
ternal traffic that negates its benefits.

Based on our observation, we propose a holistic reliabil-
ity management scheme that selectively employs intra-SSD
redundancy depending on access characteristics of the data,
conditionally uses data re-read mechanism to reduce the ef-
fects of read disturbance, and judiciously selects data to
scrub so that the internal relocation traffic is managed. Re-
dundancy is applied only to infrequently accessed cold data
to reduce write amplification, and frequently read read-hot
data are selected for scrubbing based on a cost-benefit analy-
sis (overhead of internal traffic vs. reduction in re-reads). In
this paper, we present the following:

• We construct and describe an SSD architecture that
holistically incorporates complementary reliability en-
hancement techniques used in modern SSDs. (§ 3)

• We evaluate the state-of-the-art solutions across a wide
range of SSD states based on a number of flash mem-
ory error models, and discuss their tradeoffs in terms of
performance, reliability, and lifetime. (§ 4)

• We propose a holistic reliability management scheme
that self-manages the use of multiple error-handling
techniques, and we demonstrate its effectiveness across
a set of real I/O workloads. (§ 5)

2 Background

In this section, we describe the causes of flash memory errors
and their modeling, and the existing reliability enhancement
techniques that correct and prevent errors. For more detailed
and in-depth explanations, please refer to Mielke et al. [43]
for error mechanisms and modeling, and Cai et al. [9] for
error correction and prevention techniques.

2.1 Errors in Flash Memory
We focus on three major sources of flash memory errors:
wear, retention loss, and disturbance.

Wear. Repeated programs and erases (also known as P/E
cycling) wear out the flash memory cells that store electrons
(data), and cause irreversible damage to them [9, 11, 19].
Flash memory manufacturers thus specify an endurance

limit, a number of P/E cycles a flash memory block can with-
stand, and this limit has been steadily decreasing for every
new generation of flash memory. However, the endurance
limit is not a hard limit: not all blocks are created equally
due to process variations, and a number of studies dynami-
cally measure the lifetime of a block to extend its usage [27].

Retention loss. Electrons stored in flash memory cells
gradually leak over time, making it difficult to correctly read
the data stored, and errors caused by retention loss increase
as cells wear [9, 14, 43]. While a number of studies indicate
that retention loss is a dominant source of errors [11, 14],
retention errors are fortunately transient: they reset once the
block is erased [43].

Disturbance. Reading a wordline in a block weakly pro-
grams other wordlines in the block, unintentionally inserting
more electrons into their memory cells [9, 19, 43]. Distur-
bance and retention errors are opposing error mechanisms,
but they do not necessarily cancel each other out: distur-
bance mainly affects cells with fewer electrons (erased state),
but charge leakage affects those with more (programmed
state) [9,43]. Similar to retention loss, errors caused by read
disturbances increase as cells wear and reset once the block
is erased [43].

These three sources of errors are used to model the raw
bit error rate (RBER) of flash memory with the following
additive power-law variant [36, 43]:

RBER(cycles, time,reads) (1)

= ε +α · cyclesk (wear)
+β · cyclesm · timen (retention)
+ γ · cyclesp · readsq (disturbance)

where ε , α , β , and γ are coefficients and k, m, n, p, and q are
exponents particular to a flash memory. These nine parame-
ters define the RBER of a flash memory chip, and Mielke et
al. [43] and Liu et al. [36] further explain the validity for the
additive power-law model in detail.

2.2 SSD Reliability Enhancement Techniques

Table 1 outlines the tradeoffs for the commonly used relia-
bility enhancement techniques.

Error correction code (hard-decision). Hard-decision
ECC such as BCH (code developed by Bose, Ray-
Chaudhuri, and Hocquenghem) [35] is the first line of de-
fense against flash memory errors. When writing, the ECC
encoder computes additional parity information based on
the data, which is typically stored together in the same
page. Flash memory manufacturers conveniently provide ad-
ditional spare bytes within a page for this purpose. When
reading, the hard-decision ECC decoder returns the error-
corrected data or reports a failure after a fixed number of
cycles. With the continued decline in flash reliability, it is
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Table 1: Comparison of SSD reliability enhancement techniques.

Techniques
Impact on average
performance

Impact on tail
performance

Write
amplification

Management
overhead

Related work

ECC
(hard-decision)

Negligible None Negligible None BCH, LDPC [35]

ECC
(soft-decision)

None High Negligible Negligible LDPC [18, 35]

Threshold voltage
tuning

None High None Voltage levels
Read retry [12]
Voltage prediction [14, 38]

Intra-SSD
redundancy

High for small stripes;
low for large stripes

Low for small stripes;
high for large stripes

High
Stripe group
information

Dynamic striping [31, 33]
Intra-block striping [46]
Parity reduction [25, 34]

Background data
scrubbing

Depends Depends Depends
Block metadata
such as erase count
or read count

Read reclaim [22]
Read refresh [37]

becoming increasingly inefficient to rely solely on stronger
ECC engines [15].

Error correction code (soft-decision). Soft-decision
ECC such as LDPC (low-density parity-check) [18, 35] also
encodes additional parity, but uses soft-information—the
probability of each bit being 1 or 0—for decoding. This re-
quires the data in flash memory to be read multiple times.
The error correction strength of soft-decision decoding is or-
ders of magnitude greater than its hard-decision counterpart,
but this is achieved at an expense of multiple flash memory
reads.

Threshold voltage tuning. The electrons stored in flash
memory cells gradually shift over time due to charge leak-
age [11, 14] and disturbance [13, 19]. To counteract this
drift, threshold voltages for detecting the charge levels are
adjustable through special flash memory commands [12]. In
SSD designs without soft-decision ECC, data are re-read af-
ter tuning the threshold voltages if the hard-decision ECC
fails [9]. Although the underlying mechanisms are different,
both soft-decision ECC and threshold voltage tuning share
the same high-level design tradeoff: the greater the probabil-
ity of correcting errors with repeated reads.

Intra-SSD redundancy. SSDs can internally add redun-
dancy across multiple flash memory chips [31, 33, 46], sim-
ilar to how RAID [47] protects data by adding redundancy
across multiple physical storage devices. While both ECC
and RAID-like redundancy enhance the SSD’s reliability by
adding extra parity information, striping data across multi-
ple chips protects the SSD against chip and wordline failures
that effectively renders the traditional ECC useless. In gen-
eral, increasing the stripe size trades the overhead of parity
writes for the penalty of reconstructing data. In the context of
SSDs, employing redundancy amplifies the write traffic not
only because of parity writes, but also because the effective
over-provisioning factor is decreased.

Data scrubbing. We use this as an umbrella term in
this paper for the variety of SSD’s housekeeping tasks
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Figure 2: The overall error-handling architecture of an SSD, and its
associated configuration parameters.

that enhance reliability. This includes read reclaim [22]
that addresses read disturbance-induced errors, and read re-
fresh [37] that handles retention errors. While ECC and volt-
age tuning correct errors, these tasks prevent errors: by mon-
itoring SSD-internal information, data are preventively relo-
cated before errors accumulate to a level beyond error cor-
rection capabilities. In effect, background data scrubbing re-
duces the overhead of error correction by creating additional
internal traffic, but this traffic also affects the QoS perfor-
mance and accelerates wear.

3 Design Tradeoffs for SSD Reliability

To understand how data protection and recovery schemes
in modern SSDs ensure data integrity in the midst of flash
memory errors, we construct an SSD model that holistically
considers the existing reliability enhancement techniques.
Figure 2 illustrates this SSD model with particular emphasis
on error-related components and their configurable parame-
ters.
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Table 2: RBER model parameters. Parameters ε , α , β , γ , k, m, n, p, and q describe the RBER model in Equation 1. R2 represents the
goodness of fit and is computed using the log values of the data and model, and N is the sample size.

Flash memory Year ε α β γ k m n p q R2 N

3x-nm MLC [52] 2011 5.06E-08 1.05E-14 9.31E-14 4.17E-15 2.16 1.80 0.80 1.07 1.45 0.984 98
2y-nm MLC [13, 14] 2015 8.34E-05 3.30E-11 5.56E-19 6.26E-13 1.71 2.49 3.33 1.76 0.47 0.988 173
72-layer TLC 2018 1.48E-03 3.90E-10 6.28E-05 3.73E-09 2.05 0.14 0.54 0.33 1.71 0.969 54
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Figure 3: Projected RBER graphs based on model parameters in Table 2. Each graph shows the error rate caused by the three mechanisms:
wear, retention loss, and disturbance. In the first half of the x-axis, RBER increases due to repeated programs and erases (up to 10K cycles).
In the second half, the cells are kept at 10K P/E cycle, but the data are repeatedly read (up to 10K reads) to induce disturbance errors or are
left unaccessed (up to 1 year) for retention errors.

3.1 Error-Prone Flash Memory

Flash memory is becoming increasingly unreliable in favor
of high-density [20], and we observe this trend across er-
ror datasets we analyzed. Table 2 shows the nine RBER

parameters (see Equation 1 in § 2.1) for three different
flash memory chips: 3x-nm MLC, 2y-nm MLC, and 72-
layer TLC. We curve-fit the parameters of the three chips
through simulated annealing. The datasets for the 3x-nm
MLC [52] and 2y-nm MLC [13, 14]1 are extracted from the
figures in the publications using plot digitization [3], while
the dataset for the 72-layer TLC is provided by a flash mem-
ory manufacturer.

Figure 3 illustrates the contributing factors of errors for
these chips. The graphs are generated based on the RBER
model parameters in Table 2, and show that the overall er-
ror rate increases with the newer and denser flash memories.
The most interesting observation, however, is the dominance
of disturbance errors in the 72-layer TLC. This is in stark
contrast with the 2y-nm MLC whose dominant error is due
to retention loss.

In this work, we neither argue the importance of one error
type over the other, nor claim a shifting trend in dominant
errors. In fact, the sample space and sample size of the three
datasets for the flash memory chips are different, making it
difficult to compare equally. For example, we do not claim
that the 2y-nm MLC in Figure 3b will have a 100% error rate
after 1 year: the projected retention loss error is computed
based on a limited number of RBER data samples that cover
a smaller subset of the sample space. Rather, the graphical

representation of Figure 3 is only used to illustrate the wide
variation in error characteristics, and that an error-handling
technique tailored for one particular memory chip may fail
to meet the reliability requirements in others.

3.2 Mechanism in Flash Memory Controller
The flash memory controller not only abstracts the opera-
tional details of flash memory, but also handles common-
case error correction. In addition to hard-decision ECC, soft-
decision ECC and threshold voltage tuning are implemented
in the controller as their mechanisms simply iterate through
a pre-defined set of threshold voltage levels for successive
reads (although setting appropriate voltage levels may in-
volve the firmware).

The hard-decision ECC tolerates up to n-bit errors, de-
fined by the correction strength. Increasing the ECC
correction strength not only increases the logic complexity
and power consumption, but also inflates the amount of par-
ity data that needs to be stored in flash. The fixed number of
bytes per page (including the spare) is thus the limiting fac-
tor for the ECC’s capability. Errors beyond the hard-decision
ECC’s correction strength are subsequently handled by the
flash memory controller with data re-reads. In these cases,
the same data are accessed again, repeatedly if needed. If
the data cannot be recovered after max retry count, the
firmware is notified of a read error. We model threshold
voltage tuning and soft-decision decoding in a way that each
successive reads effectively reduces the RBER of the data
by retry scale factor. This model is general enough to
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cover both mechanisms, and they will be referred to as data
re-reads henceforth.

3.3 Role of Flash Translation Layer
The flash translation layer (FTL) consists of a number of
SSD-internal housekeeping tasks that collectively hide the
quirks of flash memory and provide an illusion of a tradi-
tional block device. Mapping table management and garbage
collection are the widely known FTL tasks, but these will not
be discussed in detail. In the context of reliability, we focus
on intra-SSD redundancy and data scrubbing.

Intra-SSD redundancy is used to reconstruct data when
ECC (both hard-decision and data re-read) fails. In this
work, we focus on constructing redundancy based on the
physical addresses. Upon writes, one parity is added for
every s data writes, defined by the stripe size. The s
data and one parity create a stripe group, and the parity is
distributed among the stripe group, akin to the workings
of RAID 5. If the flash memory controller reports an un-
correctable error, the firmware handles the recovery mecha-
nism by identifying the stripe group that dynamically formed
when the data were written [31, 32]. If any of the other data
in the same stripe group also fails in the ECC layer, the SSD
reports an uncorrectable error to the host system. If the data
are not protected by redundancy (stripe size of ∞), any
ECC failure causes an uncorrectable error.

While the techniques discussed so far correct errors, data
scrubbing prevent errors from accumulating by relocating
them in the background. The scrubber activates and
deactivates under certain conditions, which depends on
the implementation: it can trigger periodically and scan the
entire address space [6, 45], it can activate once the number
of reads per block exceeds a threshold [22, 30], or it can re-
locate data based on the expected retention expiration [37].

These firmware-oriented reliability enhancements pay a
cost in the present to reduce the penalty in the future. For
intra-SSD redundancy, the increased frequency of writing
parity data reduces the number of reads to reconstruct the
data. For data scrubbing, proactive relocation of data pre-
vents the ECC in the controller from failing. At the same
time, both techniques increase the write amplification and
accelerate wear, not only reducing the lifetime of the SSD,
but also effectively increasing the chance of future errors.
This cyclical dependence makes it difficult to quantify the
exact benefits and overheads of these techniques.

4 Evaluation of SSD Reliability

We implement the flash memory error model and the reliabil-
ity enhancements on top of the DiskSim environment [1] by
extending its SSD extension [5]. We construct three SSDs,
each with three different initial wear states: The 3x-nm MLC
blocks are initialized with 10K, 30K, and 50K P/E cycles on

Table 3: System configuration.

Parameter Value Parameter Value

# of channels 8 Read latency 50µs
# of chips/channel 4 Program latency 500µs
# of planes/chip 2 Erase latency 5ms
# of blocks/plane 1024 Data transfer rate 667MB/s
# of pages/block 256 Physical capacity 256GiB
Page size 16KiB Logical capacity 200GiB

average, the 2y-nm MLC blocks to 2K, 5K, and 10K P/E cy-
cles, and the 72-layer TLC to 1K, 3K, and 5K. These nine
SSD states have different error rates, but are otherwise iden-
tical in configuration. Realistically, these SSDs should have
different capacities (page size, number of pages per block,
number of blocks, etc.) and even operation latencies, but we
use the same internal organization to isolate the effects of re-
liability enhancement techniques on the overall performance.
Table 3 summarizes the SSD’s internal configuration.

We extend our prior work [30] that includes all essen-
tial FTL functionalities such as host request handling and
garbage collection (GC) and implement the discussed relia-
bility enhancement schemes. Host requests are handled in
a non-blocking manner to fully utilize the underlying par-
allelism, and all FTL tasks run independently and concur-
rently. Flash memory requests from these tasks are gener-
ated with some delay to model the think time, and up to eight
tasks can be active concurrently to model the limited num-
ber of embedded processors in SSDs. Host addresses are
translated in 4KiB mapping granularity, and the entire map
is resident in DRAM. Host data, GC data, and data from the
scrubber are written to different sets of blocks to separate hot
and cold data, and they are arbitrated by a prioritized sched-
uler: host requests have the highest priority, then garbage
collection, and lastly scrubbing.

For evaluation, we use synthetic workloads of 4KiB
read/write with a 70:30 mixture, and the access pattern has
a skewed distribution to mimic the SSD endurance workload
specification [2]. I/O requests arrive at the SSD every 0.5ms
on average (2K IOPS): the I/O intensity is intentionally set
so that the garbage collector’s impact on the overall perfor-
mance is properly reflected. The workload runs for an hour,
executing 7.2 million I/Os in total. Prior to each experiment,
data are randomly written to the entire physical space to em-
ulate a pre-conditioned state.

4.1 Error Correction Code
We first investigate how the SSDs perform when relying
solely on the flash memory controller. In this scenario, back-
ground scrubbing is disabled, and no intra-SSD redundancy
is used. We test a number of correction strength, in-
cluding ∞ that corrects all errors. Realistically, stronger ECC
engines require larger ECC parity, but we assume that the
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Figure 4: Average read response time for the three SSDs at various wear states. For each graph, the x-axis shows the correction strength for
the ECC, and the performance is normalized to that with ∞ error correction strength. The response time increases not only when the SSD is
more worn out, but also when weaker ECC is used.
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Figure 5: CDF of raw bit errors with varying ECC correction
strength for the 72-layer TLC SSD of 5K initial wear state. With a
∞-bit ECC, 85% of data have less than 75-bit errors, but at 25-bit
ECC, only 51% of data are. With more data being re-read, read
disturbance increases the bit error rate.

flash memory page always has sufficient spare bytes. When
ECC fails, data is re-read after adjusting the threshold volt-
age. Each data re-read reduces the RBER by 50% (retry
scale factor of 2), repeating until the error is corrected
(max retry count of ∞).

Figure 4 shows the average response time for read requests
for the three types of SSDs at various wear states. We chose
the ECC correction strengths based on the relative RBER of
the three flash memories. We observe that the performance
degrades not only when the SSD is more worn out but also
with weaker ECC correction strength. In the higher SSD
wear states, errors are more frequent, and weaker ECC in-
duces more data re-reads.

Compared to the 3x-nm (Figure 4a) and 2y-nm MLC (Fig-
ure 4b), the 72-layer TLC in Figure 4c shows a greater per-
formance degradation. This is not only because of the higher
overall RBER, but also because of relatively higher vulnera-
bility to read disturbances (cf. Figure 3c). Figure 5 illustrates
this case: it shows the cumulative distribution of measured
raw bit errors with different ECC strengths for the 72-layer
TLC at 5K P/E cycle wear state. When no data re-reads occur
(∞-bit ECC), 85% of the ECC checks have less than 75-bit
errors. With weaker ECC, however, the subsequent data re-

reads induce additional read disturbance, lowering the CDF
curve. Only 74% of the data have less than 75-bit errors
when using a 75-bit ECC, but this further drops to 51% with
a 25-bit ECC correction strength.

Thus, for read disturbance-sensitive memories, avoiding
frequent data re-reads is critical for improving the perfor-
mance. However, as illustrated in the upper portion of Fig-
ure 5, increasing the ECC strength has diminishing returns.
This necessitates the use of ECC-complementary schemes
that read pages in other blocks to reconstruct data (intra-
SSD redundancy) or reduce the probability of data re-reads
through preventive data relocations (data scrubbing).

4.2 Intra-SSD Redundancy
If data cannot be corrected after a given number of data re-
read attempts, the data are reconstructed using other data
within the stripe group. In this experiment, we examine
the performance, reliability, and write amplification aspect
of intra-SSD redundancy. We present the results from the
72-layer TLC using 75-bit ECC.

Figure 6 shows the results when max retry count is
one: the flash memory controller attempts a data re-read
scheme once before notifying the firmware. As shown in
Figure 6a and Figure 6b, attempting frequent data recon-
struction degrades performance especially in terms of long-
tail latency because of increased internal traffic. The degra-
dation is more severe for higher wear states (more errors),
and greater stripe size (more pages accessed). This perfor-
mance penalty is in addition to the increase in write am-
plification illustrated in Figure 6c. Even though host data
programs are amplified due to parity writes, GC data pro-
grams are amplified at a greater rate because of the reduced
effective capacity: without redundancy, the effective over-
provisioning factor is 28%, but this drops to 20% when
s=15, and to 12% when s=7. Furthermore, using intra-SSD
redundancy does not guarantee full data recovery: accessing
other pages in the stripe group can be uncorrectable through
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Figure 6: Performance, write amplification, and reliability for the 72-layer TLC SSD when max retry count is one. The performances in
Figure 6a and Figure 6b are normalized to a system with ∞ correction strength. Using intra-SSD redundancy increases write amplification
(Figure 6c), but moreover does not warrant full data recovery (Figure 6d).

0

0.5

1

1.5

s = 15 s = 7

N
o
rm

. 
a
v
g
. 
R

T
 

Stripe size 

1K cycles 3K cycles 5K cycles

(a) Average response time.

0

0.5

1

1.5

2

2.5

3

s = 15 s = 7

N
o

rm
. 

3
 m

in
es

 Q
o

S
 

Stripe size 

1K cycles 3K cycles 5K cycles

(b) Three nines QoS.

0

2

4

6

8

s = ∞ s = 15 s = 7

W
ri

te
 a

m
p

li
fi

ca
ti

o
n

 

Stripe size 

Host GC

(c) Write amplification.

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

s = 15 s = 7

R
ec

o
v

er
y

 f
a

il
u

re
 r

a
te

 

Stripe size 

1K cycles 3K cycles 5K cycles

(d) Recovery failure.

Figure 7: Performance, write amplification, and reliability for the 72-layer TLC SSD when max retry count is three. The performance
degradation is not as severe as shown in Figure 6, but the write amplification (Figure 7c) remains similar. Reliability improves, but not all
data can be reconstructed fully in the 5K wear state (Figure 7d).

ECC, causing data recovery to fail. Given identical error
rates, s=15 should have a higher failure rate as only one er-
ror is tolerated within a stripe group. While this is observed
in Figure 6d in the lower 1K wear state, s=7 exhibits failure
rates as high as those for s=15 in the higher wear states due
to higher RBER.

Setting the max retry count to one reveals more weak-
ness of intra-SSD redundancy than its strength. In Figure 7,
we increase this parameter to three and observe the differ-
ences. In this setting, the average performance (Figure 7a)
show a negligible difference to the scheme relying solely on
ECC (cf. Figure 4c, 75-bit ECC), and only the 3 nines QoS
(Figure 7b) show a more pronounced difference between
s=15 and s=7. In this scenario, the performance changes are
due to the increase in traffic for writing parity data, and, as
expected, the write amplification measurements in Figure 7c
are similar to that of Figure 6c. Most data recovery attempts
succeed, but still does not warrant full data reconstruction
(Figure 7d): While data are fully recovered in the lower wear
states, recovery failures are observed in the higher 5K wear
state. Further increasing the max retry count suppresses
the use of data reconstruction through redundancy. In such
cases, the benefits of using redundancy scheme are elimi-
nated while the penalty of accelerated wear and increased
write amplification remain.

Unlike the proven-effectiveness in the HDD environment,
redundancy in SSDs falls short in our experiments. Com-
pared to the scheme that relies on data re-read mechanisms
in § 4.1, it performs no better, accelerates wear through in-
creased write amplification, and, what’s worse, may not fully
recover data due to correlated failures. We expect correlated
failures in SSDs to be more prevalent than in HDDs because
of flash memory’s history-dependence: the error rate in flash
memory is a function of its prior history of operations such
as the number of erases, number of reads, and time since its
last program, and these values are likely to be similar across
blocks within a stripe group. With that said, however, the
data re-read mechanism is modeled optimistically in our set-
ting, and in the event of a complete chip or wordline failures,
SSDs have no other way to recover data aside from device-
internal redundancy.

4.3 Background Scrubbing

We perform a set of experiments that measure the effective-
ness of data scrubbing, and for this purpose, we assume an
oracle data scrubber that knows the expected number of er-
rors2 for each data. This is possible in simulation (though
not feasible in practice) as all the error-related parameters
for each physical location in the SSD can be tracked to com-
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(c) Write amplification at the 5K wear state.

Figure 8: Performance and write amplification for the 72-layer TLC SSD using oracle scrubbing. The performances are normalized to an
SSD with ∞ ECC strength. The oracle scrubber’s (de)activation condition uses the expected number of errors per block. The ECC engine
corrects up to 75-bit errors, so the E(err)=50 represents an aggressive scrubber.

pute the RBER at any given point in time. The all-knowing
scrubber activates once the expected number of errors for
any data exceeds a threshold, relocating that data to another
location, and deactivates when the expected number for
all data drops below that threshold. We use the oracle scrub-
ber to illustrate the upper-bound benefits. Similar to § 4.2, we
show the results from the 72-layer TLC using 75-bit ECC.

Figure 8 illustrates the average response time, 3 nines
QoS, and write amplification of the oracle scrubber with
three different trigger conditions. E(err)=50 relocates data
most aggressively, while E(err)=100 does so lazily. There is
little performance loss for the lower wear states, but for the
5K wear state, the difference between the aggressive and the
lazy scrubber can be observed in the 3 nines QoS (Figure 8b).
By proactively relocating data, the scrubber avoids the long-
tail latencies caused by data re-reads. However, this comes
at an increase in write amplification in the high wear states,
as illustrated in Figure 8c. This shows the relative amount
of write amplification per source, including that caused by
the read scrubber. The aggressive scrubber in (E(err)=50)
moves more data than garbage collection, resulting in a much
higher write amplification; this increases the SSD’s internal
traffic, adding back some of the long-tail latency it reduced.
The lazy counterpart, on the other hand, minimally relocates
data.

Scrubbing is not a panacea, but it is more suitable than
intra-SSD redundancy for complementing the underlying
ECC. The scrubber’s performance overhead is less than the
redundancy scheme, and the increase in write amplification
only occurs towards the end-of-life phase. There are several
factors that contribute to our results. First, the out-of-place
update for flash amplifies the overhead of garbage collec-
tion when using intra-SSD redundancy. Second, the history-
dependent error patterns of flash memory work against re-
dundancy because of correlated failures, but they make pre-
ventive mechanisms more effective because of error pre-
dictability.

4.4 Retention Test
While the experiments so far considered a range of wear
states (erase count) and the dynamicity of internal data ac-
cesses (read count), the 1 hour experiment is too short to ex-
ercise scenarios where data are lost due to retention errors:
that is, all the pre-conditioned data are assumed to be written
just prior to starting each workload. In this subsection, we
explore the effects of data loss due to charge leakage by ini-
tializing a non-zero time-since-written value for each data.

Figure 9 shows how the representative error-handling ap-
proaches (ECC+re-read of § 4.1, s=15 redundancy of § 4.2,
and aggressive scrub of § 4.3) perform when emulating non-
zero time-since-written values. SSDs are all at the end-of-
life state (50K cycles for the 3x-nm MLC, 10K cycles for
the 2y-nm MLC, and 5K cycles for the 72-layer TLC), and
they have an ECC correction strength of 4-bits for the 3x-nm,
10-bits for the 2y-nm, and 75-bits for the 72-layer (cf. Fig-
ure 4). All performances are normalized to that with an SSD
with ∞-bit ECC. We observe that the performance difference
between the background scrub approach and others becomes
more noticeable. The scrubber proactively relocates data to
fresh blocks to prevent upcoming reads from experiencing
long-tail latencies. This is particularly more effectively for
the 2y-nm MLC that exhibits vulnerability to retention er-
rors (cf. Figure 3b). Compared to the scheme that relies
on data re-reads, the aggressive scrubber reduces the perfor-
mance degradation by 23% for the [30,90] days setting.

4.5 Discussion
We briefly summarize our findings:

• In the high wear states, data re-reads (§ 4.1) severely de-
grade the performance, increasing the average response
time by up to 3.2× when a weak ECC engine is used.
Each data re-read further increases the bit error rate that,
in turn, cause subsequent accesses to perform more data
re-reads.
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(b) 2y-nm MLC at the 10K wear state.
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(c) 72-layer TLC at the 5K wear state.

Figure 9: Average read response time for the three SSDs (all at end-of-life wear state) with various initial time-since-written states. For 0
days, all blocks starts with no retention loss penalty. For [0,30] days, each block starts with an initial time-since-written between 0 and 30
days. Similarly, [30,90] days initializes blocks with values between 30 and 90 days. Performance is normalized to ∞-bit ECC.

• Intra-SSD redundancy (§ 4.2) shows more disadvan-
tages than its merits, in terms of performance, write
amplification, and reliability. However, when encoun-
tering a random chip and wordline failure, it is the only
mechanism to recover data.

• Background scrubbing (§ 4.3) is not a cure-for-all, but
is more robust, reducing the performance degradation
to as low as 1.25× compared to the ideal no-error sce-
nario even at the end-of-life states. The effectiveness of
scrubbing depends on the accuracy of error prediction
and internal traffic management. The oracle scrubber
circumvents the first issue and reduces the probability
of data re-reads, but the created internal traffic degrades
performance.

Our experiments, however, are not without limitations.
First, the data re-read mechanism we modeled is too opti-
mistic, as it eventually corrects errors given enough re-reads.
Because of this, uncorrectable data errors are only observed
in the intra-SSD redundancy experiments in the form of re-
covery failures, while the other experiments are not able to
produce such scenarios. A more accurate approach requires
an analog model for each flash memory cell, integrated with
the SSD-level details such as FTL tasks and flash memory
scheduling. Second, the short 1 hour experiments are insuf-
ficient to show UBER < 10−15. I/Os in the order of petascale
are required to experimentally show this level of reliability.
Lastly, while Equation 1 models flash memory errors as a
function of history-dependent parameters, real flash memo-
ries nevertheless exhibit random and sporadic faults. These
manifest as not only as chip and wordline failures, but also
as runtime bad blocks.

5 Holistic Reliability Management

Our experiments on the effectiveness of existing reliability
enhancements across a wide range of SSD states show that

Flash memory

ECC and read retry

SSD

Flash Translation Layer

Flash Memory Controller

Intra-SSD 

redundancy

Cost-benefit

RS

Cost-benefit

GCHost

request

handling

Figure 10: The overall SSD architecture for holistic reliability
management. Data written by the garbage collector are protected
through redundancy, and read scrubber selects data based on its cost
(number of valid data) and benefit (re-read count).

there is no one size fits all solution. Data re-read mecha-
nism, even though optimistic in our model, not only causes
long-tail latencies for that data, but also increase the error
rate for other data in the same block. Intra-SSD redundancy,
while relevant against random errors, does not offer signif-
icant advantages due to its high write amplification. Back-
ground data scrubbing, though relatively more robust than
other techniques, accelerates wear, and the internal traffic
generated by it negates the benefits of error prevention.

Based on our observation, we propose that these exist-
ing techniques should be applied in a coordinated manner
as shown in Figure 10. Redundancy should be selectively
applied only to infrequently accessed cold data to reduce
write amplification while providing protection against reten-
tion errors. Frequently read read-hot data should be relo-
cated through scrubbing to reduce the data re-reads, but the
benefit of scrubbing should be compared against the cost of
data relocation. Update-frequent write-hot data require less
attention as it is likely written to a fresh block due to the out-
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Table 4: Trace workload characteristics. Access footprint is the size of the logical address space accessed, and Data accessed is the
total amount of data transferred. Hotness is the percentage of data transferred in the top 20% of the frequently accessed address.

Workload Application
description

Duration
(hrs)

Access footprint (GiB) Data accessed (GiB) Hotness (%)

Write Read Write Read Write Read

DAP-DS Advertisement caching tier 23.5 0.2 3.5 1.0 40.5 77.8 35.3
DAP-PS Advertisement payload 23.5 35.1 35.1 42.9 35.2 34.6 20.3
LM-TBE Map service backend 23.0 192.7 195.5 543.7 1760.0 34.4 45.1

MSN-BEFS Storage backend file 5.9 30.8 45.8 102.3 193.7 56.9 58.7
MSN-CFS Storage metadata 5.9 5.7 14.6 14.0 27.0 58.5 56.6
RAD-AS Remote access authentication 15.3 4.8 1.2 18.7 2.4 63.3 53.1
RAD-BE Remote access backend 17.0 14.7 8.3 53.3 97.0 49.0 32.7

of-place updates in SSDs. For data classification, we take
advantage of SSD’s existing mechanisms: data gathered by
the read scrubber (RS) is read-hot, while the leftover data se-
lected by the garbage collector (GC) is cold. Write-hot data
will be naturally invalided in GC and RS’s blocks, and will
be re-written to new blocks allocated for host data. This ap-
proach for data classification is reactive and conservative as
it relies on GC and RS’s selection algorithm after the data is
first written by the host request handler.

The background data scrubbing in § 4.3 used an oracle
scrubber that knows the expected error rate for all data. This
is impractical in implementation and was only used to illus-
trate the best-case usage of scrubbing. In the cost-benefit
analysis for selecting victims to scrub, the number of valid
data is used to represent the cost of relocation. The benefit
is the reduction in re-reads after scrubbing, and we use the
number of past re-reads for each block since its last erasure
as a proxy. That is, if the number of re-reads for a block
is large, the potential benefit of scrubbing that block is also
large.

5.1 Workload and Test Settings

We use real-world I/O traces from Microsoft production
servers [29] to evaluate the representative error-handling ap-
proaches and our proposed holistic reliability management
(HRM). The traces are modified to fit into the 200GiB range,
and all the accesses the aligned to 4KiB boundaries, the same
as the mapping granularity for the SSD. Similarly to the syn-
thetic workload evaluation, the logical address range is ran-
domly written to pre-condition the SSD. Table 4 summarizes
the trace workload characteristics with particular emphasis
on data access pattern. Access footprint is the size of
the logical address space accessed (of the total 200GiB),
and Data accessed is the total amount of data transferred.
Hotness is the percentage of data transferred in the top 20%
of the frequently accessed addresses.

We evaluate the following four schemes. Intra-SSD re-
dundancy is omitted as it performed badly due to high write
amplification.

∞-bit ECC corrects all errors, and any performance degra-
dation is caused by queueing delays and garbage collec-
tion. This represents the baseline performance.

ECC + re-read (§ 4.1) relies on the ECC engine of the flash
memory controller, and repeatedly re-reads the data un-
til the error is corrected. 4-bit ECC is used for the 3x-
nm SSD, 10-bit ECC for the 2y-nm SSD, and 75-bit for
the 72-layer.

Oracle scrub (§ 4.3) knows the expected number of errors
for all data and preventively relocates them before er-
rors accumulate. In an unfortunate event of an ECC
failure, it falls back to the ECC + re-read approach.

HRM (§ 5) selectively employs redundancy to data gathered
by the garbage collector, conditionally re-reads data de-
pending on its redundancy level, and judiciously man-
ages data scrubbing through a cost-benefit analysis.

5.2 Experimental Results
Figure 11 shows the performance of ECC+re-read, Oracle
scrub, and the proposed HRM, normalized to the perfor-
mance of ∞-bit ECC on the three SSDs, each at its end-
of-life phase. One of the most noticeable results is the per-
formance under DAP-DS, which shows that repeated data re-
reads severely degrade the performance. DAP-DS has a small
write footprint (0.2GiB accessed), a high read/write ratio
(40.5GiB read vs. 1.0GiB write), and a high write-hotness
(77.8% of write data are to 20% of the address). This means
that without preventive data relocation, only a small write-
hot region will be frequently relocated during garbage col-
lection, and a large region of read-only data suffers from read
disturbance. In some cases, HRM even performs better than
the baseline, as shown in DAP-DS of Figure 11b. This is due
to data relocation (unexpectedly) improving parallelism.

Though marginal, ECC+re-read achieves better perfor-
mance under DAP-PS in Figure 11c. The lack of read skew in
the workload (only 20.3% of reads from the top 20% of the
address) reduces the effects of read disturbance, as accesses
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(b) 2y-nm MLC at the 10K wear state.
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(c) 72-layer TLC at the 5K wear state.

Figure 11: Average read response time on three SSDs, all at their
end-of-life phase. In order to ensure data integrity, ECC+re-read
adds 18.7%, 5.0%, and 155.1% overhead on average for the 3x-
nm MLC, 2y-nm MLC, and 72-layer TLC, respectively. Preven-
tive measures reduce this overhead in general: Oracle scrub adds
12.3%, 1.7%, and 64.5% overhead, and HRM adds 10.4%, 0.9%,
and 59.0% overhead, respectively.

are not concentrated to a particular block. On the other hand,
workloads with high read skew (LM-TBE, MSN-BEFS, and
MSN-CFS) show that the performance degradation can be re-
duced by preventively relocating data when the read accesses
are concentrated. In particular, Oracle scrub outperforms
HRM under MSN-BEFS for all three SSDs. This performance
gap between Oracle scrub and HRM, however, is very small:
3% at most.

Overall, ECC+re-read adds 18.7%, 5.0%, and 155.1%
overhead on average for reliability to the 3x-nm MLC (Fig-
ure 11a), 2y-nm MLC (Figure 11b), and 72-layer TLC (Fig-
ure 11c), respectively. Oracle scrub that knows the error
rate for all data reduces this overhead to 12.3%, 1.7%, and

64.5%, respectively. By judiciously selecting data to relo-
cate, HRM further reduces the overhead to 10.4%, 0.9%,
and 59.0%, respectively. In HRM, data not relocated by the
scrubber are protected by selective redundancy. Even though
Oracle scrub represents the upper-bound benefit of scrub-
bing, HRM achieves better performance overall by reducing
the relocation traffic and delegating the responsibility of data
protection for unaccessed data to redundancy.

6 Related Work

To the best of our knowledge, our work first presents a holis-
tic study on the interactions between multiple reliability en-
hancement techniques and their overall impact on perfor-
mance in modern SSDs. Our work builds upon a number
of prior work from the reliability enhancement techniques to
QoS-conscious SSD designs for large-scale deployments.

6.1 Reliability Enhancement
LDPC is widely used in the communications domain and is
slowly gaining attention for storage due to its error correc-
tion capability. In the context of flash memory-based stor-
ages, LDPC-in-SSD [54] reduces the LDPC’s long response
time by speculatively starting the soft-decision decoding and
progressively increasing the iterative memory-sensing level.
However, its interaction with other reliability enhancement
techniques is not examined.

A series of work exists on threshold voltage prediction for
flash memory reads. HeatWatch [38] predicts the change
in threshold voltage level caused by the self-recovery effect
of flash memory, RDR [13] predicts the changes caused by
read disturbance, and ROR [14], by retention error. While
these techniques reduce the raw bit error rate by 36%–93.5%,
the system-level implications (particularly for QoS perfor-
mance) are not extensively covered.

Aside from threshold voltage tuning, other tunable volt-
ages exist in flash memory, and several prior work study the
performance and reliability tradeoff for these settings. Re-
ducing the read pass-through voltage mitigates the effects
of read disturbance [13, 22], and tuning the program volt-
ages tradeoff the flash memory’s wear and SSD’s write per-
formance [26, 36, 51]. These approaches complement our
study and further diversify the system parameters in the
performance-reliability spectrum.

Prior work on intra-SSD redundancy techniques focus on
reducing the overhead of parity updates [25,34], dynamically
managing the stripe size [31,33], and intra-block incremental
redundancy [46]. While these approaches are relevant for
enhancing the SSD’s reliability, we focus on the interaction
of these techniques with error correction and error prevention
schemes.

In addition to considering multiple reliability enhance-
ment techniques, our work borrows ideas from prior work
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on judicious data placement that supplements data protec-
tion. LDPC-in-SSD [54] splits a single ECC codeword
across multiple memory chips to guard against asymmet-
ric wears; WARM [37] groups write-hot data together and
relaxes the management overhead for preventing retention-
induced errors; RedFTL [22] identifies frequently read pages
and places them in reliable blocks to reduce the overhead of
read reclaim. In our work, we holistically cover all causes of
errors and study the interactions among multiple reliability
enhancements.

Our investigation of SSD’s multiple reliability enhance-
ment schemes is inspired by HDD’s sector error studies that
evaluate intra-HDD redundancy schemes and disk scrubbing
techniques [24, 40, 49]. However, we re-assess the effec-
tiveness of these techniques in the context of SSDs for the
following three reasons. First, the out-of-place update in
SSDs makes intra-SSD redundancy techniques [31,33,46] to
be fundamentally different from intra-HDD techniques [17]
that allow in-place update of parity data. Second, the ex-
isting need for SSD-internal data relocations amortizes the
overhead of implementing read reclaim/refresh inside the
SSD, while disk scrubbing for HDDs requires external man-
agement [6, 45]. Lastly, error patterns in flash memory are
history-dependent (number of erase, time-since-written, and
number of reads), and can be monitored and controlled to
manage the error rate; this is in contrast to errors in HDD
that are mostly random events (though temporally and spa-
tially bursty) [8, 45, 49].

6.2 QoS Performance

Improving the QoS performance of SSDs is of great inter-
est in large-scale systems [16, 21, 23], and few recent work
suggest several methods in designing SSDs with short tail la-
tencies. AutoSSD [30] dynamically manages the intra-SSD
housekeeping tasks (such as garbage collection and read
scrubbing) using a control theoretic-approach for a stable
performance state, and RLGC [28] schedules garbage col-
lection by predicting the host’s idle time using reinforcement
learning. ttFlash [53] exploits the existing intra-SSD redun-
dancy scheme and reconstructs data when blocked by SSD-
internal tasks to improve QoS performance. We expect QoS-
aware scheduling to become increasingly important as more
flash memory quirks are introduced, and reliability manage-
ment in conjunction with scheduling is a central design deci-
sion for reducing tail latencies.

Despite the various efforts at the SSD device-level for QoS
performance, large-scale systems nevertheless replicate data
across devices, servers, data centers for responsiveness and
fault-tolerance [16]. Thus, fail-fast SSDs are desirable over
fail-slow ones under such circumstances so that replicated
data are instead retrieved. This has culminated in the pro-
posal of read recovery level [4] that allows a configurable
tradeoff between QoS performance and device error rate.

Such tunable service-level agreement between the system
and the device further necessitates an comprehensive relia-
bility management.

The increasingly unreliable trend of flash memory incites
large production environments to independently study the
failure patterns of SSDs [39, 44, 50]. While these stud-
ies provide valuable insight on correlating SSD failures and
monitored information (such as erase counts, number of
reads, amount of data written), they do not directly address
how SSD reliability enhancement techniques should be con-
structed internally.

7 Conclusion

In this work, we examine the design tradeoffs of the exist-
ing reliability enhancement techniques in SSDs across mul-
tiple dimensions such as performance, write amplification,
and reliability. Our findings show that existing solutions ex-
hibit both strengths and weaknesses, and based on our ob-
servations, we propose a reliability management scheme that
selectively applies appropriate techniques to different data.

There are several research directions that need further in-
vestigation. First, the limitation of our study reveals the ne-
cessity to integrate the SSD-level design framework (FTL
and flash controller) and memory cell-level models that ac-
curately describe electron distributions. Second, there exists
a need to mathematically model the effectiveness of data re-
reads and data scrubbing, so that device reliability can be
demonstrated without petascale I/O workloads.
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Notes
1 The dataset for the 2y-nm MLC comes from two different papers by

the same author. The author informed us that the two papers used different
chips of the same manufacturer. Due to lack of publically available RBER
data of similar generation, however, we assume that the two chips are simi-
lar enough to create a representative 2y-nm MLC. One paper provided error
rate as a function of wear and time-since-written, while the other, as a func-
tion of wear and read disturbance.

2 During ECC checks, errors are generated randomly using the binomial
probability distribution, but the expected number of errors for the oracle
scrubber is deterministically computed using the RBER at that moment.
This means that ECC may fail even if the expected number of errors is
below the correction strength, and vice versa.
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Abstract
Multi-streamed SSDs can significantly improve both the
performance and lifetime of flash-based SSDs when their
streams are properly managed. However, existing stream
management solutions do not adequately support the multi-
streamed SSDs for their wide adoption. No existing stream
management technique works in a fully automatic fashion
for general I/O workloads. Furthermore, the limited num-
ber of available streams makes it difficult to effectively man-
age streams when a large number of streams are required. In
this paper, we propose a fully automatic stream management
technique, PCStream, which can work efficiently for general
I/O workloads with heterogeneous write characteristics. PC-
Stream is based on the key insight that stream allocation de-
cisions should be made on dominant I/O activities. By iden-
tifying dominant I/O activities using program contexts, PC-
Stream fully automates the whole process of stream alloca-
tion within the kernel with no manual work. In order to over-
come the limited number of supported streams, we propose
a new type of streams, internal streams, which can be im-
plemented at low cost. PCStream can effectively double the
number of available streams using internal streams. Our eval-
uations on real multi-streamed SSDs show that PCStream

achieves the same efficiency as highly-optimized manual al-
locations by experienced programmers. PCStream improves
IOPS by up to 56% over the existing automatic technique by
reducing the garbage collection overhead by up to 69%.

1 Introduction

In flash-based SSDs, garbage collection (GC) is inevitable
because NAND flash memory does not support in-place up-
dates. Since the efficiency of garbage collection significantly
affects both the performance and lifetime of SSDs, garbage
collection has been extensively investigated so that the
garbage collection overhead can be reduced [1, 2, 3, 4, 5, 6].
For example, hot-cold separation techniques are commonly
used inside an SSD so that quickly invalidated pages are not

mixed with long-lived data in the same block. For more effi-
cient garbage collection, many techniques also exploit host-
level I/O access characteristics which can be used as useful
hints on the efficient data separation inside the SSD [7, 8].

Multi-streamed SSDs provide a special interface mecha-
nism for a host system, called streams1. With the stream in-
terface, data separation decisions on the host level can be
delivered to SSDs [9, 10]. When the host system assigns
two data D1 and D2 to different streams S1 and S2, respec-
tively, a multi-streamed SSD places D1 and D2 in differ-
ent blocks, which belong to S1 and S2, respectively. When
D1 and D2 have distinct update patterns, say, D1 with a
short lifetime and D2 with a long lifetime, allocating D1
and D2 to different streams can be helpful in minimizing
the copy cost of garbage collection by separating hot data
from cold data. Since data separation decisions can be made
more intelligently on the host level over on the SSD level,
when streams are properly managed, they can significantly
improve both the performance and lifetime of flash-based
SSDs [10, 11, 12, 13, 14]. We assume that a multi-streamed
SSD supports m+1 streams, S0, ..., Sm.

In order to maximize the potential benefit of multi-
streamed SSDs in practice, several requirements need to be
satisfied both for stream management and for SSD stream
implementation. First, stream management should be sup-
ported in a fully automatic fashion over general I/O work-
loads without any manual work. For example, if an applica-
tion developer should manage stream allocations manually
for a given SSD, multi-streamed SSDs are difficult to be
widely employed in practice. Second, stream management
techniques should have no dependency on the number of
available streams. If stream allocation decisions have some
dependence on the number of available streams, stream allo-
cation should be modified whenever the number of streams
in an SSD changes. Third, the number of streams supported
in an SSD should be sufficient to work well with multiple
concurrent I/O workloads. For example, with 4 streams, it

1In this paper, we use “streams” and “external streams” interchangeably.
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would be difficult to support a large number of I/O-intensive
concurrent tasks.

Unfortunately, to the best of our knowledge, no exist-
ing solutions for multi-streamed SSDs meet all these re-
quirements. Most existing techniques [10, 11, 12, 13] re-
quire programmers to assign streams at the application level
with manual code modifications. AutoStream [14] is the only
known automatic technique that supports stream manage-
ment in the kernel level without manual stream allocation.
However, since AutoStream predicts data lifetimes using the
update frequency of the logical block address (LBA), it
does not work well with append-only workloads (such as
RocksDB [15] or Cassandra [16]) and write-once workloads
(such as a Linux kernel build). Unlike conventional in-place
update workloads where data are written to the same LBAs
often show strong update locality, append-only or write-once
workloads make it impossible to predict data lifetimes from
LBA characteristics such as the access frequency.

In this paper, we propose a fully-automatic stream man-
agement technique, called PCStream, which works effi-
ciently over general I/O workloads including append-only,
write-once as well as in-place update workloads. The key
insight behind PCStream is that stream allocation decisions
should be made at a higher abstraction level where I/O ac-
tivities, not LBAs, can be meaningfully distinguished. For
example, in RocksDB, if we can tell whether the current I/O
is a part of logging activity or a compaction activity, stream
allocation decisions can be made a lot more efficiently over
when only LBAs of the current I/O is available.

In PCStream, we employ a write program context2 as such
a higher-level classification unit for representing I/O activity
regardless of the type of I/O workloads. A program context
(PC) [17, 18], which uniquely represents an execution path
of a program up to a write system call, is known to be ef-
fective in representing dominant I/O activities [19]. Further-
more, most dominant I/O activities tend to show distinct data
lifetime characteristics. By identifying dominant I/O activi-
ties using program contexts during run time, PCStream can
automate the whole process of stream allocation within the
kernel with no manual work. In order to seamlessly support
various SSDs with different numbers of streams, PCStream
groups program contexts with similar data lifetimes depend-
ing on the number of supported streams using the k-means
clustering algorithm [20]. Since program contexts focus on
the semantic aspect of I/O execution as a lifetime classifier,
not on the low-level details such as LBAs and access pat-
terns, PCStream easily supports different I/O workloads re-
gardless of whether it is update-only or append-only.

Although many program contexts show that their data life-
times are narrowly distributed, we observed that this is not
necessarily true because of several reasons. For example,

2Since we are interested in write-related system calls such as write() in
Linux, we use write program contexts and program contexts interchangeable
where no confusion arises.

when a single program context handles multiple types of data
with different lifetimes, data lifetime distributions of such
program contexts have rather large variances. In PCStream,
when such a program context PC j is observed (which was
mapped to a stream Sk), the long-lived data of PC j are moved
to a different stream Sk′ during GC. The stream Sk′ prevents
the long-lived data of the stream Sk from being mixed with
future short-lived data of the stream Sk.

When several program contexts have a large variance in
their data lifetimes, the required number of total streams can
quickly increase to distinguish data with different lifetimes.
In order to effectively increase the number of streams, we
propose a new stream type, called an internal stream, which
can be used only for garbage collection. Unlike external
streams, internal streams can be efficiently implemented at
low cost without increasing the SSD resource budget. In the
current version of PCStream, we create the same number of
internal streams as the external streams, effectively doubling
the number of available streams.

In order to evaluate the effectiveness of PCStream, we
have implemented PCStream in the Linux kernel (ver. 4.5)
and extended a Samsung PM963 SSD to support internal
streams. Our experimental results show that PCStream can
reduce the GC overhead as much as a manual stream man-
agement technique while requiring no code modification.
Over AutoStream, PCStream improves the average IOPS by
28% while reducing the average write amplification factor
(WAF) by 49%.

The rest of this paper is organized as follows. In Section
2, we review existing stream management techniques. Before
describing PCStream, its two core components are presented
in Sections 3 and 4. Section 5 describes PCStream in detail.
Experimental results follow in Section 6, and related work is
summarized in Section 7. Finally, we conclude with a sum-
mary and future work in Section 8.

2 Limitations of Current Practice in Multi-
Streamed SSDs

In this section, we review the key weaknesses of existing
stream management techniques as well as stream implemen-
tation methods. PCStream was motivated to overcome these
weaknesses so that multi-streamed SSDs can be widely em-
ployed in practice.

2.1 No Automatic Stream Management for
General I/O Workloads

Most existing stream management techniques [10, 11, 12]
require programmers to manually allocate streams for their
applications. For example, in both ManualStream3 [10] and
[11], there is no systematic guideline on how to allocate

3For brevity, we denote the manual stream allocation method used in
[10] by ManualStream.
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Fig. 1: Lifetime distributions of append-only workload over addresses and times.
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Fig. 2: IOPS changes over the number of
streams.

streams for a given application. The efficiency of stream allo-
cations largely depends on the programmer’s understanding
and expertise on data temperature (i.e., frequency of updates)
and internals of database systems. Furthermore, many tech-
niques also assume that the number of streams is known a
priori. Therefore, when an SSD with a different number of
streams is used, these techniques need to re-allocate streams
manually. vStream [12] is an exception to this restriction by
allocating streams to virtual streams, not external streams.
However, even in vStream, virtual stream allocations are left
to programmer’s decisions.

Although FStream [13] and AutoStream [14] may be con-
sidered as automatic stream management techniques, their
applicability is quite limited. FStream [13] can be useful
for separating file system metadata but it does not work for
the user data separation. AutoStream [14] is the only known
technique that works in a fully automatic fashion by mak-
ing stream allocation decisions within the kernel. However,
since AutoStream predicts data lifetimes using the access fre-
quency of the same LBA, AutoStream does not work well
when no apparent locality on LBA accesses exists in appli-
cations. For example, in recent data-intensive applications
such as RocksDB [15] and Cassandra [16], the majority of
data are written in an append-only manner, thus no LBA-
level locality can be detected inside an SSD.

In order to illustrate a mismatch between an LBA-based
data separation technique and append-only workloads, we
analyzed the write pattern of RocksDB [15], which is a pop-
ular key-value store based on the LSM-tree algorithm [21].
Fig. 1(a) shows how LBAs may be related to data lifetimes
in RocksDB. We define the lifetime of data as the interval
length (in terms of the logical time based on the number of
writes) between when the data is first written and when the
data is invalidated by an overwrite or a TRIM command [22].
As shown in Fig. 1(a), there is no strong correlation between
LBAs and their lifetimes in RocksDB.

We also analyzed if the lifetimes of LBAs change under
some predictable patterns over time although the overall life-
time distribution shows large variances. Figs. 1(b) and 1(c)
show scatter plots of data lifetimes over the logical time
for two specific 1-MB chunks with 256 pages. As shown
in Figs. 1(b) and 1(c), for the given chunk, the lifetime of

data written to the chunk varies in an unpredictable fashion.
For example, at the logical time 10 in Fig. 1(b), the lifetime
was 1 but it increases about 2 million around the logical time
450 followed by a rapid drop around the logical time 500.
Our workload analysis using RocksDB strongly suggests that
under append-only workloads, LBAs are not useful in pre-
dicting data lifetimes reliably. In practice, the applicability
of LBA-based data separation techniques is quite limited to
a few cases only when the LBA access locality is obvious
in I/O activities such as updating metadata files or log files.
In order to support general I/O workloads in an automatic
fashion, stream management decisions should be based on
higher-level information which does not depend on lower-
level details such as write patterns based on LBAs.

2.2 Limited Number of Supported Streams
One of the key performance parameters in multi-streamed
SSDs is the number of available streams in SSDs. Since the
main function of streams is to separate data with different
lifetimes so that they are not mixed in the same block, it is
clear that the higher the number of streams, the more effi-
cient the performance of multi-streamed SSDs. For example,
Fig. 2 shows how IOPS in RocksDB changes as the number
of streams increases on a Samsung PM963 multi-streamed
SSD with 9 streams. The db bench benchmark was used for
measuring IOPS values with streams manually allocated. As
shown in Fig. 2, the IOPS is continuously improving until 6
streams are used when dominant I/O activities with different
data lifetimes are sufficiently separated. In order to support a
large number of streams, both the SBC-4 and NVMe revision
1.3, which define the multi-stream related specifications, al-
low up to 65,536 streams [9, 23]. However, the number of
streams supported in commercial SSDs is quite limited, say,
4 to 16 [10, 11, 14], because of several implementation con-
straints on the backup power capacity and fast memory size.

These constraints are directly related to a write buffering
mechanism that is commonly used in modern SSDs. In or-
der to improve the write throughput while effectively hid-
ing the size difference between the FTL mapping unit and
the flash program unit, host writes are first buffered before
they are written to flash pages in a highly parallel fashion for
high performance. Buffering host writes temporarily inside
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Fig. 3: An illustration of (simplified) execution paths of two
dominant I/O activities in RocksDB.

SSDs, however, presents a serious data integrity risk for stor-
age systems when a sudden power failure occurs. In order to
avoid such critical failures, in data centers or storage servers
where multi-streamed SSDs are used, SSDs use tantalum or
electrolytic capacitors as a backup power source. When the
main power is suddenly failed, the backup power is used to
write back the buffered data reliably. Since the capacity of
backup power is limited because of the limited PCB size and
its cost, the maximum amount of buffered data is also lim-
ited. In multi-streamed SSDs where each stream needs its
own buffered area, the amount of buffered data increases as
the number of streams increases. The practical limit in the
capacity of backup power, therefore, dictates the maximum
number of streams as well.

The limited size of fast memory, such as TCM [24] or
SRAM, is another main hurdle in increasing the number of
streams in multi-streamed SSDs. Since multi-stream related
metadata which includes data structures for the write buffer-
ing should be accessed quickly as well as frequently, most
SSD controllers implement data structures for supporting
streams on fast memory over more common DRAM. Since
the buffered data is the most recent one for a given LBA,
each read request needs to check if the read request should
be served from the buffered data or not. In order to support a
quick checkup of buffered data, probabilistic data structures
such as a bloom filter can be used along with other efficient
data structures, for accessing LBA addresses of buffered data
and for locating buffer starting addresses. Since the latency
of a read request depends on how fast these data structures
can be accessed, most SSDs place the buffering-related data
structure on fast memory. Similarly, in order to quickly store
buffered data in flash chips, these data structure should be
placed on fast memory as well. However, most SSD man-
ufacturers are quite sensitive in increasing the size of fast
memory because it may increase the overall SSD cost. The
limited size of fast memory, unfortunately, restricts the num-
ber of supported streams quite severely.

3 Automatic I/O Activity Management
In developing an efficient data lifetime separator for gen-
eral I/O workloads, our key insight was that in most appli-
cations, the overall I/O behavior of applications is decided

by a few dominant I/O activities (e.g., logging and flush-
ing in RocksDB). Moreover, data written by dominant I/O
activities tend to have distinct lifetime patterns. Therefore,
if such dominant I/O activities of applications can be auto-
matically detected and distinguished each other in an LBA-
oblivious fashion, an automatic stream management tech-
nique can be developed for widely varying I/O workloads
including append-only workloads.

In this paper, we argue that a program context can be used
to build an efficient general-purpose classifier of dominant
I/O activities with different data lifetimes. Here, a PC rep-
resents an execution path of an application which invokes
write-related system call functions such as write() and
writev(). There could be various ways of extracting PCs,
but the most common approach [17, 18] is to represent each
PC with its PC signature which is computed by summing
program counter values of all the functions along the execu-
tion path which leads to a write system call.

3.1 PC as a Unit of Lifetime Classification

In order to illustrate that using PCs is an effective way to
distinguish I/O activities of an application and their data
lifetime patterns, we measured data lifetime distributions
of PCs from various applications with different I/O work-
loads. In this section, we report our evaluation results for
three applications with distinct I/O activities: RocksDB [15],
SQLite [25], and GCC [26]. RocksDB shows the append-
only workload while SQLite shows a workload that updates
in place. Both database workloads are expected to have dis-
tinct I/O activities for writing log files and data files. GCC
represents an extensive compiler workload (e.g., compiling
a Linux kernel) that generates many short-lived temporary
files (e.g., .s, .d, and .rc files) as well as some long-lived
files (e.g., object files and kernel image files).

In RocksDB, dominant I/O activities include logging,
flushing, and compaction. Since these I/O activities are
invoked through different function-call paths, we can
easily identify dominant I/O activities of RocksDB us-
ing PCs. For example, Fig. 3 shows (simplified) execu-
tion paths for logging and compaction in RocksDB. The
sum of program counter values of the execution path
WriteImpl()→WriteToWAL()→ AddRecord() is used to
represent a PC for the logging activity while that of the
execution path Run()→ ProcessKeyValueCompaction()

→ FinishCompactionFile() is used for the compaction
activity. In SQLite, there exist two dominant I/O activities
which are logging and managing database tables. Similar to
the RocksDB, SQLite writes log files and database files us-
ing different execution paths. In GCC, there exist many dom-
inant I/O activities of creating various types of temporal files
and object files.

To confirm our hypothesis that data lifetimes can be dis-
tinguished by tracking dominant I/O activities and a PC is
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(a) RocksDB: Logging
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(b) RocksDB: Flushing
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(c) RocksDB: Compaction
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(d) SQLite: Logging
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(e) SQLite: Updating
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(f) GCC: Outputting Temp
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(g) GCC: Outputting Executable

Fig. 4: Data lifetime distributions of dominant I/O activities in RocksDB, SQLite and GCC.

a useful unit of classification for different I/O activities, we
have analyzed how well PCs work for RocksDB, SQLite and
GCC. Fig. 4 shows data lifetime distributions of dominant
I/O activities which were distinguished by computed PC val-
ues. As expected, Fig. 4 validates that dominant I/O activities
show distinct data lifetime distributions over the logical ad-
dress space. For example, as shown in Figs. 4(a)∼4(c), the
logging activity, the flushing activity and the compaction ac-
tivity in RocksDB clearly exhibit quite different data life-
time distributions. While the logged data written by the log-
ging activity have short lifetimes, the flushed data by the
flushing activity have little bit longer lifetimes. Similarly, for
SQLite and GCC, dominant I/O activities show quite distinct
data lifetime characteristics as shown in Figs. 4(d)∼4(g). As
shown in Fig. 4(d), the logging activity of SQLite generates
short-lived data. This is because SQLite overwrites logging
data in a small and fixed storage space and then removes
them soon. Lifetimes of temporary files generated by GCC
are also relatively short as shown in Fig. 4(f), because of the
write-once pattern of temporary files. But, unlike the other
graphs in Fig. 4, data lifetime distributions of Figs. 4(c)
and 4(e), which correspond to the compaction activity of
RocksDB and the updating activity of SQLite, respectively,
show large variances. These outlier I/O activities need a spe-
cial treatment, which will be described in Section 4.

Note that if we used an LBA-based data separator instead
of the proposed PC-based scheme, most of data lifetime
characteristics shown in Fig. 4 could not have been known.
Only the data lifetime distribution of the logging activity of
SQLite, as shown in Fig. 4(d), can be accurately captured by
the LBA-based data separator. For example, the LBA-based
data separator cannot decide that the data lifetime of data
produced from the outputting temp activity of GCC is short
because temporary files are not overwritten each time they
are generated during the compiling step.

3.2 Extracting PCs

As mentioned earlier, a PC signature, which is used as a
unique ID of each program context, is defined to be the sum
of program counters along the execution path of function
calls that finally reaches a write-related system function. In
theory, program counter values in the execution path can be
extracted in a relatively straightforward manner. Except for
inline functions, every function call involves pushing the ad-
dress of the next instruction of a caller as a return address to
the stack, followed by pushing a frame pointer value. By re-
ferring to frame pointers, we can back-track stack frames of a
process and selectively get return addresses for generating a
PC signature. Fig. 5(a) illustrates a stack of RocksDB corre-
sponding to Fig. 3, where return addresses are pushed before
calling write(), AddRecord() and WriteToWAL(). Since
frame pointer values in the stack hold the addresses of pre-
vious frame pointers, we can easily obtain return addresses
and accumulate them to compute a PC signature.

The frame pointer-based approach for computing a PC
signature, however, is not always possible because modern
C/C++ compilers often do not use a frame pointer for im-
proving the efficiency of register allocation. One example is
a -fomit-frame-pointer option of GCC [26]. This option
enables to use a frame pointer as a general-purpose register
for performance but makes it difficult for us to back-track
return addresses along the call chains.

We employ a simple but effective workaround for back-
tracking a call stack when a frame pointer is not available.
When a write system call is made, we scan every word in the
stack and check if it belongs to process’s code segment. If the
scanned stack word holds a value within the address range
of the code segment, it assumes that it is a return address.
Fig. 5(b) shows the scanning process. Since scanning the en-
tire stack may take too long, we stop the scanning step once
a sufficient number of return address candidates are found.
The larger the return address candidates, the longer the com-
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Fig. 5: Examples of PC extraction methods.

putation time. On the other hand, if the number of return
addresses is too small, two different paths can be regarded as
the same path. When the minimum number of addresses that
can distinguish the two paths of the program is found, the
scanning should be stopped to minimize the scanning over-
head. In our evaluation, five return addresses were enough to
distinguish execution paths.

Even though it is quite ad-hoc, this restricted scan is quite
effective in distinguishing different PCs because it is very
unlikely that two different PCs reach the same write() sys-
tem call through the same execution subpath that covers five
proceeding function calls. In our evaluation on a PC with
3.4 GHz Intel CPU, the overhead of the restricted scan was
almost negligible, taking only 300∼400 nsec per write()
system call.

4 Support for Large Number of Streams

The number of streams is restricted to a small number be-
cause of the practical limits on the backup power capac-
ity and the size of fast memory. Since the number of sup-
ported streams critically impacts the overall performance of
multi-streamed SSDs, in this section, we propose a new type
of streams, called internal streams, which can be supported
without affecting the capacity of a backup power as well as
the size of fast memory in SSDs. Internal streams, which are
restricted to be used only for garbage collection, significantly
improve the efficiency of PC-based stream allocation, espe-
cially when PCs show large lifetime variances in their data
lifetime distributions.

4.1 PCs with Large Lifetime Variances

For most PCs, their lifetime distributions tend to have small
variances (e.g., Figs. 4(a), 4(d), and 4(f)). However, we ob-
served that it is inevitable to have a few PCs with large life-
time variances because of several practical reasons. For ex-
ample, when multiple I/O contexts are covered by the same
execution path, the corresponding PC may represent several
I/O contexts whose data lifetimes are quite different. Such a
case occurs, for example, in the compaction job of RocksDB.
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(a) RocksDB: L2 Compaction
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(b) RocksDB: L4 Compaction

Fig. 6: Lifetime distributions of the compaction activity at
different levels.

RocksDB maintains several levels, L1, ..., Ln, in the persis-
tent storage, except for L0 (or a memtable) stored in DRAM.
Once one level, say L2, becomes full, all the data in L2 is
compacted to a lower level (i.e., L3). It involves moving data
from L2 to L3, along with the deletion of the old data in L2.
In the LSM tree [21], a higher level is smaller than a lower
level (i.e., the size of (L2) < the size of (L3)). Thus, data
stored in a higher level is invalidated more frequently than
those kept in lower levels, thereby having shorter lifetimes.

Unfortunately, in the current RocksDB implementation,
the compaction step is supported by the same execution
path (i.e., the same PC) regardless of the level. Therefore,
the PC for the compaction activity cannot effectively sepa-
rate data with short lifetimes from one with long lifetimes.
Fig. 6(a) and 6(b) show distinctly different lifetime distribu-
tions based on the level of compaction: data written from the
level 4 have a large lifetime variance while data written from
the level 2 have a small lifetime variance.

Similarly, in SQLite and GCC, program contexts with
large lifetime variations are also observed. Fig. 4(e) shows
large lifetime variances of data files in SQLite. Since client
request patterns will decide how SQLite updates its tables,
the lifetime of data from the updating activity of SQLite
is distributed with a large variance. Similarly, the lifetime
of data from the outputting temporary files of GCC can
significantly fluctuate as well depending on when the next
compile step starts. Fig. 4(g) shows long lifetimes of ob-
ject files/executable files after a Linux build was completed
(with no more re-compiling jobs). However, the lifetime of
the same object files/executable files may become short when
if we have to restart the same compile step right after the pre-
vious one is finished (e.g., because of code changes).

For these outlier PCs with large lifetime variations, it is
a challenge to allocate streams in an efficient fashion un-
less there are more application-specific hints (e.g., the com-
paction level in RocksDB) are available. As an ad-hoc (but
effective) solution, when a PC shows a large variance in its
data lifetime, we allocate an additional stream, called an in-
ternal stream, to the PC so that the data written from the PC
can be better separated between the original stream and its
internal stream. In order to support internal streams, the to-
tal number of streams may need to be doubled so that each
stream can be associated with its internal stream.

300    17th USENIX Conference on File and Storage Technologies USENIX Association



Write

PC Extractor

Write Req (LBA, size, sID, …)

Kernel

Device

Lifetime Manager

PC2Stream Mapper
PC Attribute Table

Stream 0

Stream M

……

Delete

PC Lifetime Stream ID

Internal Stream M

LBA wtime PC valid

Live LBA Table

Internal Stream 0Internal 
Stream 

Manager

…

Fig. 7: An overall architecture of PCStream.

4.2 Implementation of Internal Streams

As described in Section 2.2, it is difficult to increase the num-
ber of (normal) streams. However, if we restrict that inter-
nal streams are used only for data movements during GC,
they can be quite efficiently implemented without the con-
straints on the backup power capacity and fast memory size.
The key difference in the implementation overhead between
normal streams and internal streams comes from a simple ob-
servation that data copied during GC do not need the same
reliability and performance support as for host writes. Un-
like buffered data from host write requests, valid pages in
the source block during garbage collection have no risk of
losing their data from the sudden power-off conditions be-
cause the original valid pages are always available. There-
fore, even if the number of internal streams increases, unlike
normal streams, no higher-capacity backup capacitor is nec-
essary for managing buffered data for internal streams.

The fast memory requirement is also not directly increased
as the number of internal streams increases. Since internal
streams are used only for GC and most GC can be handled
as background tasks, internal streams have a less stringent
performance requirement. Therefore, data structures for sup-
porting internal streams can be placed on DRAM without
much performance issues. Furthermore, for a read request,
there is no need to check if a read request can be served
by buffered data as in normal streams because the source
block always has the most up-to-date data. This, in turn, al-
lows data structures for internal streams to be located in slow
memory. Once an SSD reaches the fully saturated condition
where host writes and GC are concurrently performed, the
performance of GC may degrade a little because of the slow
DRAM used for internal streams. However, in our evalu-
ation, such cases were rarely observed under a reasonable
overprovisioning storage capacity.

5 Design and Implementation of PCStream

In this section, we explain the detailed implementation of
PCStream. Fig. 7 shows an overall architecture of PCStream.
The PC extractor is implemented as part of a kernel’s system

call handler as already described in Section 3, and is respon-
sible for computing a PC signature from applications. The
PC signature is used for deciding the corresponding stream
ID4 from the PC attribute table. PCStream maintains vari-
ous per-PC attributes in the PC attribute table including PC
signatures, expected data lifetimes, and stream IDs. In order
to keep the PC attribute table updated over changing work-
loads, the computed PC signature with its LBA information
is also sent to the lifetime manager, which estimates expected
lifetimes of data belonging to given PCs. Since commer-
cial multi-streamed SSDs only expose a limited number of
streams to a host, the PC2Stream mapper groups PCs with
similar lifetimes using a clustering policy, assigning PCs in
the same group to the same stream. Whenever the lifetime
manager or the PC2Stream mapper are invoked, the PC at-
tribute table is updated with new outputs from these mod-
ules. Finally, the internal stream manager, which was imple-
mented inside an SSD as firmware, is responsible for han-
dling internal streams associated with external streams.

5.1 PC Lifetime Management
The responsibility of the lifetime manager is for estimating
the lifetime of data associated with a PC. Except for outlier
PCs, most data from the same PC tend to show similar data
lifetimes with small variances.

Lifetime estimation: Whenever a new write request R ar-
rives, the lifetime manager stores the write request time, the
PC signature, PCi, and the LBA list of R into the live LBA
table. The live LBA table, indexed by an LBA, is used in
computing the lifetime of data stored at a given LBA which
belongs to PCi. Upon receiving TRIM commands (that delete
previously written LBAs) or overwrite requests (that update
previously written LBAs), the lifetime manager searches the
live LBA table for a PC signature PC f ound with the LBA
list which includes the deleted/updated LBAs. The new life-
time lnew of PC f ound is estimated using the lifetime of the
matched LBA from the live LBA table. The average of the
existing lifetime lold for PC f ound and lnew is used to update
the PC f ound entry in the PC attribute table. Note that the writ-
ten time entry of the live LBA table is updated differently
depending on TRIM commands or overwrite requests. The
written time entry becomes invalid for TRIM while it is up-
dated by the current time for an overwrite request.

Maintaining the live LBA table, which is indexed by an
LBA unit, in DRAM could be a serious burden owing to its
huge size. In order to mitigate the DRAM memory require-
ment, the lifetime manager slightly sacrifices the accuracy
of computing LBA lifetime by increasing the granularity of
LBA lifetime prediction to 1 MB, instead of 4 KB. The live
LBA table is indexed by 1 MB LBA, and each table entry
holds PC signatures and written times over a 1 MB LBA
range. For example, for a 256 GB SSD, 4 KB-granularity

4We call i the stream ID of Si.
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requires 4 billion entries while 1 MB-granularity requires 16
million entries. For a 9 byte-sized entry, LBA table requires
about 144 MB memory. Due to the coarse-grained mapping,
multiple requests within an address unit are considered as re-
quests to the same address, which are updates. Therefore, the
data lifetime can be recognized shorter than the real lifetime.
However, even if long-lived data are misallocated to the short
lifetime stream, the internal stream effectively suppresses the
increase in WAF.

PC attribute table: The PC attribute table keeps PC sig-
natures and its expected lifetimes. To quickly retrieve the ex-
pected lifetime of a requested PC signature, the PC attribute
table is managed through a hash data structure. Each hash
entry requires only 12 bytes: 64-bit for a PC signature and
32-bit for a predicted lifetime. The table size is thus small
so that it can be entirely loaded in DRAM. From our evalua-
tions, the maximum number of unique PCs was up to 30. So
the DRAM size of the PC attribute table was sufficient with
360 KB.

In addition to the main function of the PC attribute ta-
ble that maintains the data lifetime for a PC, the memory−
resident PC attribute table has another interesting benefit for
the efficient stream management. Since a PC signature of
an I/O activity is virtually guaranteed to be globally unique
across all applications (the uniqueness property), and a PC
signature does not change over different executions of the
same application (the consistency property), the PC attribute
table can capture a long-term history of programs’ I/O be-
haviors. Because of the uniqueness and consistency of a PC
signature, PCStream can exploit the I/O behavior of even
short-lived processes (e.g., cpp and cc1 for GCC) that are
launched and terminated frequently. When short-lived pro-
cesses are frequently executed, the PC attribute table can
hold their PC attributes from their previous executions, thus
enabling quick but accurate stream allocation for short-lived
processes.

The consistency property is rather straightforward because
each PC signature is determined by the sum of return ad-
dresses inside a process’s virtual address space. Unless a pro-
gram’s binary is changed after recompilation, those return
addresses remain the same, regardless of the program’s ex-
ecution. The uniqueness property is also somewhat obvious
from the observation that the probability that distinct I/O ac-
tivities that take different function-call paths have the same
PC signature is extremely low. This is even true for multiple
programs. Even though they are executed in the same vir-
tual address space, it is very unlikely that I/O activities of
diverged programs taking different function-call paths have
the same PC. In our experiment, there was no alias for the
PC value. Consequently, this immutable property of the PC
signature for a given I/O activity makes it possible for us to
characterize the given I/O activity in a long-term basis with-
out risk of PC collisions.

5.2 Mapping PCs to SSD streams

After estimating expected lifetimes of PC signatures, the
PC2Stream mapper attempts to group PCs with similar life-
times into an SSD stream. This grouping process is neces-
sary because while commercial SSDs only support a limited
number of streams (e.g., 9), the number of unique PCs can be
larger (e.g., 30). For grouping PCs with similar lifetimes, the
PC2Stream mapper module uses the k-means algorithm [20]
which is widely used for similar purposes. In PCStream, we
use the difference in the data lifetime between two PCs as a
clustering distance and generates m clusters of PCs for m
streams. This algorithm is particularly well suited for our
purpose because it is lightweight in terms of the CPU cycle
and memory requirement. To quickly assign a proper stream
to incoming data, we add an extra field to the PC attribute
table which keeps a stream ID for each PC signature. More
specifically, when a new write request comes, a designated
SSD stream ID is obtained by referring to the PC attribute
table using request’s PC value as an index. If there is no such
a PC in the table, or a PC does not have a designated stream
ID, the request gets default stream ID, which is set to 0.

For adapting to changing workloads, re-clustering opera-
tions should be performed regularly. This re-clustering pro-
cess is done in a straightforward manner. The PC2Stream
mapper scans up-to-date lifetimes for all PCs in the PC at-
tribute table. Note that PC’s lifetimes are updated whenever
the lifetime manager gets new lifetimes while handling over-
writes or TRIM requests, as explained in Section 5.1. With
the scanned information, the PC2Stream mapper recomputes
stream IDs and updates stream fields of the PC attribute
table. In order to minimize the unnecessary overhead of
frequent re-clustering operations, re-clustering is triggered
when 10% of the PC lifetime entries in the PC attribute table
is changed.

5.3 Internal Stream Management

As explained in Section 4.1, there are a few outlier PCs with
large lifetime variances. In order to treat these PCs in an ef-
ficient fashion, we devise a two-phase method that decides
SSD streams in two levels: the main stream in the host level
and its internal stream in the SSD level. Conceptually, long-
lived data in the main stream are moved to its internal stream
so that (future) short-lived data will not be mixed with long-
lived data in the main stream. Although moving data to the
internal stream may increase WAF, the overhead can be hid-
den if we restrict data copies to the internal stream during
GC only. Since long-lived data (i.e., valid pages) in a victim
block are moved to a free block during GC, blocks belong
to an internal stream tend to contain long-lived data. For in-
stance, PCStream assigns the compaction-activity PC1 to the
main stream S1 in the first phase. To separate the long-lived
data of PC1 (e.g., L4 data) from future short-lived data of the
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same PC1 (e.g., L1 data), valid pages of the S1 are assigned
to its internal stream for the second phase during GC.

We have implemented the internal stream manager with
the two-phase method in Samsung’s PM963 SSD [27]. To
make it support the two-phase method, we have modified its
internal FTL so that it manages internal streams while per-
forming GC internally. Since the internal stream manager as-
signs blocks for an internal stream and reclaims them inside
the SSD, no host interface changed is required.

5.4 PC Extraction for Indirect Writes
One limitation of using PCs to extract I/O characteristics is
that it only works with C/C++ programs that directly call
write-related system calls. Many programs, however, often
invoke write system calls indirectly through intermediate
layers, which makes it difficult to track program contexts.

The most representative example may be Java programs,
such as Cassandra, that run inside a Java Virtual Machine
(JVM). Java programs invoke write system calls via the Java
Native Interface (JNI) [28] that enables Java programs to call
a native I/O library written in C/C++. For Java programs,
therefore, the PC extractor shown in Fig. 7 fails to capture
Java-level I/O activities as it is unable to inspect the JVM
stack from the native write system call which is indirectly
called through the JNI. Another example is a program that
maintains a write buffer that is dedicated to dealing with all
the writes from an application. For example, in MySQL [29]
and PostgreSQL [30], every write is first sent to a write
buffer. Separate flush threads later materialize buffered data
to persistent storage. In that case, the PC extractor only cap-
tures PCs of flush threads, not PCs of I/O activities that orig-
inally generate I/Os, because the I/O activities were executed
in different threads using different execution stacks.

The problem of indirect writes can be addressed by col-
lecting PC signatures at the front-end interface of an inter-
mediate layer that accepts write requests from other parts
of the program. In the case of Java programs, a native I/O
library can be modified to capture write requests and com-
putes their PC signatures. Once a native library is modified,
PCStream can automatically gather PC signatures without
modifying application programs. Fig. 8 illustrates how PC-

Stream collects PC signatures from Java programs. We have
modified the OpenJDK [31] source to extract PC signatures
for most of the write methods in write related classes, such
as OutputStream. The stack area in the Runtime Data

Areas of JVM is used to calculate PC signatures. The calcu-
lated PC is then passed to the write system call of the kernel
via the modified native I/O libraries. For the JIT compila-
tion, the codes are dynamically compiled and optimized, so
the computed PC value of the same path can be different.
However, if the code cache space is sufficient, the compiled
code is reused, so there is no problem in using the PC. In the
experiment, there was enough space in the code cache.

Unlike Java, there is no straightforward way to collect PCs
from applications with write buffers. This is because the im-
plementation of write buffering is different depending on ap-
plications. Additional efforts to manually modify code are
unavoidable. However, the scope of this manual modifica-
tion is limited only to the write buffering code, and applica-
tion logics themselves don’t need to be edited or annotated.
Moreover, in the virtual machine (VM) environment, modifi-
cation of the VM itself is inevitable. PCStream can get PC of
guest OS, but it is difficult to transfer directly to the device.
We can transfer PC information to the system call layer of
host OS through modification of virtualization layer.

6 Experimental Results

6.1 Experimental Settings
In order to evaluate PCStream, we have implemented it
in the Linux kernel (version 4.5) on a PC host with Intel
Core i7-2600 8-core processor and 16 GB DRAM. As a
multi-streamed SSD, we used Samsung’s PM963 480 GB
SSD. The PM963 SSD supports up to 9 streams; 8 user-
configurable streams and 1 default stream. When no stream
is specified with a write request, the default stream is used.
To support internal streams, we have modified the existing
PM963 FTL firmware. For detailed performance analysis,
we built a modified nvme-cli [32] tool that can retrieve the
internal profiling data from PCStream-enabled SSDs. Using
the modified nvme-cli tool, we can monitor WAF values
and per-block data lifetimes from the extended PM963 SSD
during run time.

We compared PCStream with three existing schemes:
Baseline, ManualStream [10], and AutoStream [14]. Base-

line indicates a legacy SSD that does not support multi-
ple streams. ManualStream represents a multi-streamed SSD
with manual stream allocation. AutoStream represents the
LBA-based stream management technique proposed in [14].

We have carried out experiments with various bench-
mark programs which represent distinct write characteristics.
RocksDB [15] and Cassandra [16] have append-only write
patterns. SQLite [25] has in-place update write patterns and
GCC [26] has write-once patterns. For more realistic evalu-
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Fig. 9: A comparison of normalized IOPS.

ations, we also used mixed workloads running two different
benchmark programs simultaneously.

In both RocksDB and Cassandra experiments, Yahoo!
Cloud Serving Benchmark (YCSB) [33] with 12-million
keys was used to generate update-heavy workloads (work-
load type A) which consist of 50/50 reads and writes. Since
both RocksDB and Cassandra are based on the append-only
LSM-tree algorithm [21], they have three dominant I/O ac-
tivities (such as logging, flushing, and compaction). Cassan-
dra is written in Java, so its PC is extracted by the modi-
fied procedure described in Section 5.4. In SQLite evalua-
tions, TPC-C [34] was used with 20 warehouses. SQLite has
two dominant I/O activities such as logging and updating ta-
bles. In GCC experiments, a Linux kernel was built 30 times.
For each build, 1/3 of source files, which were selected ran-
domly, were modified and recompiled. Since GCC creates
many temporary files (e.g., .s, .d, and .rc) as well as long-
lived files (e.g., .o) from different compiler tools, there are
more than 20 dominant PCs. To generate mixed workloads,
we run RocksDB and GCC scenarios together (denoted by
Mixed 1), and run SQLite and GCC scenarios at the same
time (denoted by Mixed 2). In order to emulate an aged SSD
in our experiments, 90% of the total SSD capacity was ini-
tially filled up with user files before benchmarks run.

6.2 Performance Evaluation

We compared the IOPS values of three existing techniques
with PCStream. Fig. 9 shows normalized IOPS for six bench-
marks with four different techniques. For all the measured
IOPS values5, PCStream improved the average IOPS by 45%
and 28% over Baseline and AutoStream, respectively. PC-

Stream outperformed AutoStream by up to 56% for com-
plex workloads (i.e., GCC, Mixed1 and Mixed 2) where the
number of extracted PCs far exceeds the number of sup-
ported streams in PM963. The high efficiency of PCStream

under complex workloads comes from two novel features
of PCStream: (1) LBA-oblivious PC-centric data separation

5For RocksDB, Cassandra, and SQLite, the YCSB benchmark and TPC-
C benchmark compute IOPS values as a part of the benchmark report. For
GCC, where an IOPS value is not measured during run time, we computed
the IOPS value as a ratio between the total number of write requests (mea-
sured at the block device layer) and the total elapsed time of running GCC.
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Fig. 10: A comparison of WAF under different schemes.

and (2) a large number of streams supported using internal
streams. AutoStream, on the other hands, works poorly ex-
cept for SQLite where the LBA-based separation can be ef-
fective. Even in SQLite, PCStream outperformed AutoStream

by 10%.

6.3 WAF Comparison
Fig. 10 shows WAF values of four techniques for six bench-
marks. Overall, PCStream was as efficient as ManualStream;
Across all the benchmarks, PCStream showed similar WAF
values as ManualStream. PCStream reduced the average WAF
by 63% and 49% over Baseline and AutoStream, respectively.

As expected, Baseline showed the worst performance
among all the techniques. Owing to the intrinsic limitation of
LBA-based data separation, AutoStream performs poorly ex-
cept for SQLite. Since PCStream (and ManualStream) did not
depend upon LBAs for stream separations, they performed
well consistently, regardless of write access patterns. As a re-
sult, PCStream reduced WAF by up to 69% over AutoStream.

One interesting observation in Fig. 10 is that PCStream

achieved a lower WAF value than even ManualStream for
GCC, Mixed 1, and Mixed 2 where more than the maxi-
mum number of streams in PM963 are needed. In Manual-
Stream, DB applications and GCC were manually annotated
at offline, so that write system calls were statically bound
to specific streams during compile time. When multiple pro-
grams run together as in three complex workloads (i.e., GCC,
Mixed 1 and Mixed 2), static stream allocations are difficult
to work efficiently because they cannot adjust to dynamically
changing execution environments. However, unlike Manual-

Stream, PCStream continuously adapts its stream allocations
during run time, thus quickly responding to varying execu-
tion environments. For example, 10 PCs out of 25 PCs are
remapped by 7 reclustering operations for Mixed 1 work-
load.

6.4 Per-stream Lifetime Distribution Analysis
To better understand the benefit of PCStream on the WAF
reduction, we measured per-stream lifetime distributions for
the Mixed 1 scenario. Fig. 11 shows a box plot of data life-
times from the 25th to the 75th percentile. As shown in
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Fig. 11: A Comparison of per-stream lifetime distributions.

Fig. 11, streams in both PCStream and ManualStream are
roughly categorized as two groups, G1 = {S1, S2, S3, S4, S5}
and G2 = {S6, S7, S8}, where G1 includes streams with short
lifetimes and small variances (i.e., S1, S2, S3, S4, and S5) and
G2 includes streams with large lifetimes and large variances
(i.e., S6, S7, and S8). The S0 does not belong to any groups as
it is assigned to requests whose lifetimes are unknown. Even
though the variance in the S0 is wider than that in Manual-

Stream, PCStream showed similar per-stream distributions as
ManualStream. In particular, for the streams in G2, PCStream
exhibited smaller variance than ManualStream, which means
that PCStream separates cold data from hot data more effi-
ciently. Since PCStream moves long-lived data of a stream
to its internal stream, the variance of streams with large life-
times tend to be smaller over ManualStream.

AutoStream was not able to achieve small per-stream vari-
ances as shown in Fig. 11 over PCStream and ManualStream.
As shown in Fig. 11, all the streams have large variances
in AutoStream because hot data are often mixed with cold
data in the same stream. Since the LBA-based data separa-
tion technique of AutoStream does not work well with both
RocksDB and GCC, all the streams include hot data as well
as cold data, thus resulting in large lifetime variances.

6.5 Impact of Internal Streams

In order to understand the impact of internal streams on dif-
ferent stream management techniques, we compared the two
versions of each technique, one with internal streams and
the other without internal streams. Since internal streams
are used only for GC, they can be combined with any ex-
isting stream management techniques. Fig. 12 shows WAF
values for five benchmarks with four techniques. Overall, in-
ternal streams worked efficiently across the four techniques
evaluated. When combined with internal streams, Baseline,
AutoStream, PCStream, and ManualStream reduced the aver-
age WAF by 25%, 22%, 17%, and 12%, respectively. Since
the quality of initial stream allocations in Baseline and Au-

toStream was relatively poor, their WAF improvement ratios
with internal streams were higher over PCStream and Man-

ualStream. Although internal streams were effective in sepa-
rating short-lived data from long-lived data in both Baseline

and AutoStream, the improvement from internal streams in
these techniques is not sufficient to outperform PCStream

and ManualStream. Poor initial stream allocations, which
keep putting both hot and cold data to the same stream, un-
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Fig. 12: The effect of internal streams on WAF.

fortunately, offset a large portion of benefits from internal
streams.

6.6 Impact of the PC Attribute Table
As explained in Section 5, the PC attribute table is useful to
maintain a long-term history of applications’ I/O behavior by
exploiting the uniqueness of a PC signature across different
applications. To evaluate the effect of the PC attribute table
on the efficiency of PCStream, we modified the implemen-
tation of the PC attribute table so that the PC attribute table
can be selectively disabled on demands when a process ter-
minates its execution. For example, in the kernel compilation
scenario with GCC, the PC attribute table becomes empty
after each kernel build is completed. That is, the next kernel
build will start with no existing PC to stream mappings.

Fig. 13 show how many requests are assigned to the de-
fault S0 stream over varying sizes of the PC attribute table.
Since S0 is used when no stream is assigned for an incoming
write request, the higher the ratio of requests assigned to S0,
the less effective the PC attribute table. As shown in Fig. 13,
in RocksDB, Cassandra, and SQLite, the PC attribute table
did not affect much the ratio of writes on S0. This is because
these programs run continuously for a long time while per-
forming the same dominant activities repeatedly. Therefore,
although the PC attribute table is not maintained, they can
quickly reconstruct it. On the other hand, the PC attribute ta-
ble was effective for GCC, which frequently creates and ter-
minates multiple processes (e.g., cc1). When no PC attribute
table was used, about 16% of write requests were assigned
to S0. With the 4-KB PC attribute table, this ratio was re-
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duced to 12%. With the 360-KB PC attribute table, only 9%
of write requests were assigned to S0. This reduction in the
S0 allocation ratio reduced the WAF value from 1.96 to 1.54.

6.7 CPU Overhead Evaluation

As described in Sections 3 and 5, PCStream requires addi-
tional CPU usage to compute and clustering PCs. We used
the sar command in linux to evaluate the additional CPU
load on PCStream. Fig. 14 shows the CPU utilization of the
baseline (BS) and PCStream (PC) technique. The percent-
age of CPU utilization that occurred while executing at the
user level and kernel level was represented by user and sys-
tem, respectively. idle indicates the percentage of time that
the CPU was idle. For all cases, the increased CPU load due
to PCStream was less than 5%.

7 Related Work
There have been many studies for multi-streamed SSDs
[10, 11, 12, 13, 14, 35]. Kang et al. first proposed a multi-
streamed SSD that supported manual stream allocation for
separating different types of data [10]. Yang et al. showed
that a multi-streamed SSD was effective for separating data
of append-only applications like RocksDB [11]. Yong et al.
presented a virtual stream management technique that al-
lows logical streams, not physical streams, to be allocated
by applications. Unlike these studies that involve modifying
the source code of target programs, PCStream automates the
stream allocation with no manual code modification.

Yang et al. presented an automatic stream management
technique at the block device layer [14]. Similar to hot-cold
data separation technique used in FTLs, it approximates the
data lifetime of data based on update frequencies of LBAs.
The applicability of this technique is, however, quite limited
to in-place update workloads only. PCStream has no such
limitation on the workload characteristics, thus effectively
working for general I/O workloads including append-only,
write-once as well as in-place update workloads.

Ha et al. proposed an idea of using PCs to separate hot data
from cold one in an FTL layer [19]. Kim et al. extended it
for multi-streamed SSDs [35]. Unlike these works, our study
treats the PC-based stream management problem in a more
complete fashion by (1) pinpointing the key weaknesses of

existing multi-streamed SSD solutions, (2) extending the ef-
fectiveness of PCs for more general I/O workloads including
write-once patterns, and (3) introducing internal streams as
an effective solution for outlier PCs. Furthermore, PCStream
exploits the globally unique nature of a PC signature for sup-
porting short-lived applications that run frequently.

8 Conclusions

We have presented a new stream management technique,
PCStream, for multi-streamed SSDs. Unlike existing tech-
niques, PCStream fully automates the process of mapping
data to a stream based on PCs. Based on observations that
most PCs are effective to distinguish lifetime characteristics
of written data, PCStream allocates each PC to a different
stream. When a PC has a large variance in their lifetimes,
PCStream refines its stream allocation during GC and moves
the long-lived data of the current stream to the correspond-
ing internal stream. Our experimental results show that PC-
Stream can improve the IOPS by up to 56% over the existing
automatic technique while reducing WAF by up to 69%.

The current version of PCStream can be extended in sev-
eral directions. First, PCStream does not support applications
that rely on a write buffer (e.g., MySQL). To address this, we
plan to extend PCStream interfaces so that developers can
easily incorporate PCStream into their write buffering mod-
ules with minimal efforts. Second, we have only considered
write-related systems calls to collect PCs, but many applica-
tions (e.g., MonetDB [36]) heavily access files with mmap-
related functions (e.g., mmap() [37] and msync()). We plan
to extend PCStream to work with mmap-intensive applica-
tions.
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Abstract

Graph processing is becoming commonplace in many appli-

cations to analyze huge datasets. Much of the prior work in

this area has assumed I/O devices with considerable laten-

cies, especially for random accesses, using large amount of

DRAM to trade-off additional computation for I/O accesses.

However, emerging storage devices, including currently pop-

ular SSDs, provide fairly comparable sequential and random

accesses, making these prior solutions inefficient. In this pa-

per, we point out this inefficiency, and propose a new graph

partitioning and processing framework to leverage these new

device capabilities. We show experimentally on an actual plat-

form that our proposal can give 2X better performance than a

state-of-the-art solution.

1 Introduction

Graph processing is heavily employed as the fundamental

computing platform for analyzing huge datasets in many

applications such as social networks, web search, and ma-

chine learning. Processing large graphs leads to many random

and fine-grained accesses to memory and secondary storage,

which is detrimental to application performance. Prior work

have attempted to develop optimized frameworks for graph

processing either in a distributed system [11, 17, 19, 23, 25]

or for a single machine [8, 9, 12, 13, 15, 16, 18, 20, 22, 26], by

partially/completely storing the graph data in main memory

(DRAM memory).

Recent efforts on single machine approaches aim at storing

Vertex data in the main memory to serve their fine-grained

accesses in the byte-addressable DRAM memory, while the

Edge data which usually has coarser accesses, is stored in

the secondary storage. With growing graph dataset size, even

partially storing them on DRAM memory is not cost-effective.

On the other hand, emerging storage devices, including cur-

rently popular Solid State Drives (SSDs), continue to scale

and offer larger capacity with lower access latency, and can be

used to accommodate voluminous graph datasets and deliver

good performance. However, an SSD’s large access granu-

larity (several KB’s) is an impediment towards exploiting its

substantial bandwidth for graph processing.

Prior works [9, 15] attempt to alleviate this issue by either

storing some part of graph data in the main memory or ef-

fectively partition the graph data. Such techniques are either

designed for the conventional Hard Disk Drives (HDDs) and

are not able to saturate an SSD’s substantial bandwidth, or

are not readily applicable when the vertex data is stored on

secondary storage. GraFBoost [13] is a recent fully external

graph processing framework that stores all graph data on the

SSD, and tries to provide global sequentiality for I/O accesses.

Despite yielding performance benefits, providing global se-

quentiality hinders its scalability as graph dataset sizes in-

crease dramatically. On the other hand, since NVMe SSDs

deliver comparable performance for random and sequential

page-level I/O accesses [2–4], such perfect sequentiality may

not be all that essential.

In this paper, we first study the performance issues of ex-

ternal graph processing, and propose a partitioning for vertex

data to relax the global sequentiality constraint. More specif-

ically, we address the performance and scalability issues of

state-of-the-art external graph processing, where all graph

data resides on the SSD. To this end, we devise a partitioning

technique for vertex data such that, in each sub-iteration of

graph algorithm execution, instead of randomly updating any

vertices in the graph, updates occur to only a subset of vertices

(which is sufficiently small to fit in main memory).

With our proposed partitioning, after transferring the vertex

data associated with a partition into main memory from SSD,

the subsequent information required to generate updates –to

the vertices present in the memory– will be streamed from

SSD. Thus, the fine-grained updates will be only applied to

the set of vertices in the memory, eliminating the need for

coalescing all the intermediate updates to provide perfect

sequentiality. Our proposed enhancements can give more than

2X better performance than a state-of-the-art solution.
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2 Background and Related Work

Graph Data Representation: Graphs are represented by (i)

Vertex data that refers to a set of vertices with vertex attributes

including its ID, value, and its neighboring information (i.e.,

byte offset of its neighbors), and (ii) Edge data that contains

the set of edges connected to each vertex along with its prop-

erties. Edge data is usually stored in a compressed format. A

common compressed representation of graph data is called

Compressed Sparse Column (CSC) wherein vertex file stores

the vertex information along with the byte offset of its neigh-

bors in the edge file.

Programming Model: Due to its unique characteristics,

large-scale graph processing is inherently not suited to the

parallelism offered by previous parallel programming mod-

els. Among different models to facilitate processing of large

graphs, Vertex-Centric programming model [19] has received

much attention, as this iterative model is properly designed to

distribute and parallelize large graph analytics. In this model,

each vertex runs a vertex program which reads its attributes

as well as its neighboring vertices, and generates updates to

itself and/or its neighbors.

Graph Processing Frameworks: Numerous prior efforts

incorporate vertex-centric model and disperse graph data

amongst several machines, with each machine storing its por-

tion on DRAM memory, to expedite the fine-grained and

random accesses to the graph data. Distributing the graph

data, on the other hand, necessitates frequent communications.

Such approaches employ various partitioning techniques to

minimize the communication overhead [11, 17, 19, 25], and

balance the load.

Apart from distributed graph analytic frameworks, single-

machine techniques have also been proposed [7–9, 12, 13, 15,

16,18,20–22,26]. When a single machine is used, it may fully

or partially store graph data on the secondary storage, and

transfer it to main memory in fairly large chunks to achieve

high I/O sequentiality. It is common in such techniques to

store vertex data on main memory, and edge data on the

secondary storage. GraphChi [15], specifically designed for

HDDs, splits graph data into different partitions, where par-

titions are processed consecutively. Their enhancements has

two consequences: (i) with increasing graph data size, the

number of partitions can proportionally increase, resulting in

high I/O costs, and (ii) when only a portion of graph data is re-

quired (e.g., when running a sparse graph algorithm), all graph

data has to be transferred to main memory. FlashGraph [9]

stores vertex data on DRAM memory while edge data resides

on an array of SSDs. However, with graph data continuing

to grow, even storing the vertex data–which is usually orders

of magnitude smaller than edge data– requires considerable

amount of expensive DRAM memory. Thus, it is important

to consider completely external graph processing approaches.

External Graph Processing: Storing vertex data on SSD

has performance and lifetime penalty due to fine-grained I/O

accesses. For example, in push-style vertex-centric model,

the value of different vertices (e.g., the rank in PageRank

algorithm) needs be updated at the end of each iteration. Such

updates are usually in the range of a few bytes (e.g., 4 byte

integer), whereas the SSD page size is a few kilobytes (e.g.,

4KB∼16KB). Apart from its poor performance, an important

consequence of the miss-match between the granularity of

vertex updates and SSD page size, is its detrimental impact

on SSD’s endurance.

GraFBoost [13] proposes a sort-reduce scheme to coalesce

all the fine-grained updates and submit large and sequential

writes to the SSD. In each iteration of GraFBoost after run-

ning an edge program for the edges connected to a vertex v,

a set of updates are generated for the neighbors of v. These

updates are in the form of < key,value > pairs, where key is

the neighbor’s ID, and value refers to the value of v (source

vertex). The number of intermediate updates can be commen-

surate with the number of edges, denoted as |E|, with many

duplicate keys generated for each destination vertex.

GraFBoost sorts and reduces the < key,value > pairs to

convert the fine-grained updates to large sequential SSD

writes. Since the number of updates can reach well beyond the

size of available DRAM memory, the graph data is streamed

from SSD, processed and sorted in main memory in large

parts (e.g., 512MB), and then logged on the SSD. Subse-

quently, these 512MB chunks are streamed from SSD, merge-

reduced and written back to the SSD. Despite providing sig-

nificant benefits, GraFBoost, or any external graph processing

approach which tries to provide perfect sequentiality for all

vertex updates, incurs high computation overhead. This com-

putation could be avoided for SSDs which provide quite good

page-level random access performance, unlike HDDs.

3 Motivation

In this section, we study the performance and scalability is-

sues of GraFBoost, a state-of-the-art external graph process-

ing framework. To investigate its performance, we run various

graph algorithms, using different input graphs. For our exper-

iments, we use a system with 48 Intel Xeon cores, 256 GB

of DRAM, and two datacenter-scale Samsung NVMe SSDs

with 3.2 TB capacity in total, which provide up to 6.4 GB/s

sequential Read speed. We run two algorithms, Breadth First

Search (BFS) and PageRank on various input graphs (details

can be found in Table 1) including web crawl graph [6], twit-

ter graph [5], and synthetic graphs generated based on Graph

500 benchmark [1]. This synthetic set of input graphs enables

us to generate and examine graphs with various size.

Performance Analysis. We give the breakdown of normal-

ized execution time for BFS and PageRank in Figure 1, run-

ning on three graphs: web, twitter, and kron30. The latency

of different steps of GraFBoost, including (i) reading/writing

vertex data, (ii) reading edge data and running edge program,

and (ii) the sort-reduce phase, are reported in Figure 1. As
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Figure 1: Execution time breakdown of GraFBoost.

Figure 2: Percentage of execution time spent on sorting.

shown in this figure, the sort phase is the major contributor to

the overall execution time, by accounting for nearly 61% of

the total execution time for running PageRank on web graph.

GraFBoost, despite effectively eliminating fine-grained I/O

accesses, requires to expend considerable part of its execution

time only for the sorting phase. In other words, it trades off

the additional computation for I/O accesses. This is, in fact,

very common in many graph processing frameworks, to mini-

mize the communication/transfer overhead at the expense of

adding more computation.

Scalability. To investigate the scalability of GraFBoost,

we present a simplified analysis of its execution time. As-

suming a graph with N edges, the latency of SSD accesses is

linear with respect to N, i.e., O(N). Moreover, Sorting in the

memory takes O(N ∗ log(N)) to complete, on average. With

DRAM access speed k times faster than SSD, if the number

of edges grows, such that log(N)> k, the sorting phase can

dominate the total execution time and hinder its scalability.

To quantitatively confirm our analysis, we run PageRank on a

synthetic graph with different edge factors (ratio of number

of edges to vertices). We report the percentage of time spent

in the sort phase, in Figure 2, for kron graphs with 1 billion

vertices and edge factors of 8∼32. As it is evident, increasing

the number of edges results in larger sorting overheads, as

more number of updates are generated, which in turn, takes

longer time to sort.

Summary. Even though the computation cost that GraF-

Boost introduces may appear to be an acceptable trade-off for

Figure 3: Data structures in our design.

current systems and graph datasets, its benefits are expected

to dramatically drop as the graph data sizes grow. Preserv-

ing comprehensive sequentiality and sorting of intermediate

data, seems to be unnecessary with SSDs providing nearly

identical page-level random and sequential access latencies.

Instead, if graph vertices can be placed on SSD pages such

that each page contains a set of vertices which are likely to

be updated at almost the same time, the sorting phase could

be eliminated altogether. However, perfectly clustering the

graph vertices is known to be an NP-hard problem [14]. In

this paper, we aim to provide a local sequentiality which, un-

like prior works, does not require any sorting of intermediate

updates to achieve lower execution times.

4 Proposed Mechanism

In this section, we describe our proposed partitioning tech-

nique that re-organizes vertex data and splits them into several

partitions, so that each can fit on a limited DRAM space. The

high-level idea is to change the order in which graph vertices

are updated, so that at each time, the updates are directed at a

subset of vertices residing in main memory. Specifically, we

propose to partition the vertex data and process each parti-

tion by reading its respective vertex data into main memory,

followed by streaming the required edge data from the SSD.

Figure 3 shows different data structures employed in our de-

sign. Since in each iteration, updates happen to the destination

vertices, we (i) split the destination vertices and assign each

subset of them to a partition (Destination Vertex Data in this

figure), and (ii) store source vertices and their neighboring in-

formation –a pointer to the out-edges of each vertex1– for each

partition, separately (Source Vertex Data in the figure). Lastly,

we organize the edge data for each partition as shown in this

1e is called an out-edge of vertex u, if e : u => v.
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figure (Edge Data). Note that, our proposed enhancements

are based on the push-style vertex-centric graph processing

model.

4.1 Partitioning Vertex Data

There has already been extensive prior work on partitioning

graph data. However, they are not well suited for fully exter-

nal graph processing, due to a number of reasons: (i) some

of these studies [9, 15, 18] require all vertex data be present

in the main memory when processing the graph, which as

prior work [13] shows, they sometimes even fail to finish their

execution when the available DRAM space is not enough

to store the vertex data; (ii) some others [9, 11, 23, 24, 26]

propose 2-D partitioning where graph data is assigned to

each partition with the rows/columns corresponding to the

source/destination vertices, respectively. These proposals typ-

ically do not decouple vertex data from edge data, needing

the vertices and edges assigned to a partition be completely

present in main memory, or cache, to process it. This con-

straint results in dramatic rise in the number of partitions

which, in turn, accentuates the cross-partition communication

overhead. Instead, we devise a mechanism that only requires

the vertex data of a partition be present in main memory while

edge data can be streamed from SSD, as needed. Based on

our proposed greedy partitioning algorithm, destination ver-

tices are uniquely assigned to each partition, whereas source

vertices can have duplicates (mirrors) on different partitions.

The goal of this greedy partitioning is to minimize the number

of mirrors for source vertices while preserving the uniqueness

of destination vertices. Based on this partitioning, for each

edge e : u => v,

• If v is already assigned to a partition, u will be added to

the same partition, if it does not already exist on that.

• Else if, v is not assigned to any partition yet,

– If u is assigned to a set of partitions {P1,P2, ...},

we choose the partition with the least number of

edges corresponding to it.

– Else, we assign u and v to the partition with least

number of edges corresponding to it.

This partitioning guarantees that each destination vertex

is uniquely assigned to a partition and it does not have any

mirrors. After this phase, the destination vertex IDs are up-

dated with respect to their new order. These changes are also

reflected on the respective source vertices and the edge data.

The size of partitions are adjusted such that destination ver-

tices for each partition can fit in main memory. Note that,

partitioning is done off-line, as a pre-processing step, latency

of which does not impact the execution time.

Figure 4: Overhead of the proposed partitioning.

4.1.1 Partitioning Overhead

We study the efficacy of our proposed partitioning, based on

the replication factor, i.e., the average number of mirrors that

each vertex has, and the space overhead. To this end, we run

our partitioning algorithm on twitter graph, for different

number of partitions, and report results in Figure 4. As shown

in this figure, with increasing number of partitions, the repli-

cation factor increases sub-linearly according to the number

of partitions, and it is fairly below the worst case. For instance,

with 8 partitions, the replication factor and the space over-

head are around 4.5 and 12%, respectively. These overheads

happen to be smaller for other graphs listed in Table 1 (3.07

replication factor, on average).

4.2 Execution Model

Different partitions are processed consecutively. For each:

1. The destination vertex data associated with that partition is

transferred to main memory from SSD.

2. Source vertex data (their attributes and neighboring infor-

mation) for this partition, are streamed from SSD in 32 MB

chunks. This can be done in parallel with each thread reading

different chunks. Decisions regarding which vertex data is

currently required to be processed (i.e., is active), can be made

either on-the-fly or after the source vertex data is transferred

into main memory.

3. After determining the set of active vertices (active vertex

list), for each active vertex, byte offset of its neighbors on the

edge data file is extracted and the required edges are trans-

ferred to main memory. Thus, for a chunk of source data, all

the required information to run the graph algorithm exists in

main memory, including the source vertex attributes, desti-

nation vertices in the current partition, and the neighboring
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Figure 5: Meta-data for updating mirrors.

Figure 6: Pseudo code for updating mirrors.

information. This implies that, all the updates generated by

this source vertex chunk will happen to the set of destination

vertices present in main memory.

4. The graph algorithm runs, and the updates are generated for

the destination vertices. As an example, in PageRank, the rank

(value) of each source vertex is sent to the destination vertices.

The ranks are accumulated in each destination vertex and

dampened by a factor specified for this algorithm (e.g., 0.15).

In this step, multiple threads are attempting to update ele-

ments of the same vertex (destinations) list in memory, which

can incur high synchronization cost. Instead, we perform the

vertex data updates in two steps: (i) first, threads push up-

dates (in large chunks, e.g., 1MB) to multiple buffers, each

dedicated to a portion of the vertex list, and (ii) subsequently,

writer threads pull data from these buffers and update their

specified portion (similar to Map-Reduce [10] paradigm).

5. When processing for a partition completes, the meta-data

(depicted in Figure 5) required for updating its mirrors on

other partitions, is read from SSD. The meta-data includes

the partition IDs of mirrors of each vertex2, and the chunk

offset for each partition. To minimize the overhead of mirror

updates, all source vertex tables store the vertices in the order

of their IDs to enables sequential updates to the mirrors.

6. The mirror updates are generated and written on SSD.

2We keep Partition IDs in a bitmap to minimize space overhead.

Table 1: Characteristics of the evaluated graph data.

Graph webgraph twitter kron30 kron32

Num Vertices 3.5B 41M 1B 4B

Num Edges 128B 1.47B 17B 32B

Text Size 2.7TB 25GB 351GB 295GB

Rep. Factor 3.7 4.5 1.91 2.2

Space Overhead 10.5% 12% 10.3% 11.5%

4.3 Updating Mirrors

We give pseudo code for mirror updates, in Figure 6. For each

vertex in destination vertices, we determine on which parti-

tions its mirrors are located (line 3). In line 4, we insert the

value of that vertex to a buffer assigned to destined partition.

Lastly, the generated updates are written to the source vertex

files on SSD (line 7∼9)3. Generating mirrors for different

partitions is proportional to the number of destination vertices

in each partition, resulting in overall running time of O(|V |),
with |V | referring to the number of vertices.

5 Experimental Evaluation

5.1 Evaluation Environment

We evaluate the performance of our proposed mechanism

against software version of GraFBoost. GraFBoost also has a

hardware implementation, using hardware accelerators. Since

the hardware implementation is not available to us, we extract

its performance numbers from the original paper [13]. To

make a fair comparison, we use the same configuration as

GraFBoost: we use 32 processing cores (out of 48 available

in our system), 128 GB of memory, and two Samsung NVMe

SSDs, totalling 3.2 TB of capacity with nearly identical band-

width as GraFBoost, i.e., 6.4 GB/s sequential read bandwidth.

Similarly, we use the same set of graph data, details of which

are reported in Table 1. In this table, we also present the

replication factor and space overhead of our partitioning tech-

nique, for 8 partitions4, as it is sufficient for the evaluated

graph datasets.

5.2 Evaluation Results

Figure 7 shows the amount of reduction in total execution

time (higher is better) for PageRank and BFS, for our proposal

(V-Part), and software and hardware versions of GraFBoost

(GraFSoft and GraFHard). All performance numbers are

normalized to that of GraFSoft. We also show the execu-

tion time (in seconds) for PageRank and BFS algorithms, for

GraFSoft and V-Part in Figure 8. As illustrated in these two

figures, our proposed partitioning provides better performance

3This can be done in parallel for mirror updates on different partitions.
4We fix the memory size assigned to a partition’s vertex data (e.g., 2GB),

and find the proper number of partitions, accordingly.
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Figure 7: Execution time improvement results.

Figure 8: Execution time for (i) a PageRank iteration,

and (ii) BFS.

than GraFSoft by around 2.2X (when running PageRank on

kron32), and 1.8X and 1.6X, on average, as a result of elimi-

nating the burdensome sorting phase of GraFBoost when run-

ning PageRank and BFS algorithms, respectively. Moreover,

our proposed approach reaps higher benefits when the graph

Figure 9: Execution time breakdown for PageRank.

size is larger (web and kron32). As shown in Figure 7, our

optimizations can get very close to GraFHard performance

in some cases (e.g., for PageRank on web), without incurring

any of its hardware and implementation costs. In fact, our

mechanism can also use the hardware accelerators to off-load

some computation to provide even higher benefits, which we

leave it to future work.

In Figure 9 we present the breakdown of execution time for

PageRank algorithm. This figure reveals the contribution of

each part to the total execution time, including SSD accesses

(I/O), processing the in-memory graph data (Memory), and

the time spent on updating mirrors (Mirror Update). The

I/O part does not include SSD accesses for updating mir-

rors (this part is calculated in Mirror Update). As shown in

this figure, the extra work that is introduced to the system

for updating mirrors, is less than 15% across the evaluated

graphs (even less than 10% in some cases such as kron30).

This figure also demonstrates that, despite common wisdom,

I/O is not the main contributor to the total execution time in

graph processing. In some cases, memory accesses delays

the processing time more than I/O. Incorporating more effi-

cient caching and pre-fetching techniques, can help lower the

memory overhead.

6 Conclusion

In this paper, we study the performance and scalability issues

of external graph processing, and devise a mechanism to parti-

tion graph vertices to alleviate extra computation overhead of

state-of-the-art external graph processing. Our optimizations

yield significant performance benefits compared to the state-

of-the-art, with more than 2X reduction in total execution

time.
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Fast Erasure Coding for Data Storage: A Comprehensive Study of the
Acceleration Techniques

Tianli Zhou and Chao Tian
Texas A&M University

Abstract

Various techniques have been proposed in the literature to
improve erasure code computation efficiency, including op-
timizing bitmatrix design, optimizing computation sched-
ule, common XOR operation reduction, caching manage-
ment techniques, and vectorization techniques. These tech-
niques were largely proposed individually previously, and
in this work, we seek to use them jointly. In order to ac-
complish this task, these techniques need to be thoroughly
evaluated individually, and their relation better understood.
Building on extensive test results, we develop methods to
systematically optimize the computation chain together with
the underlying bitmatrix. This led to a simple design ap-
proach of optimizing the bitmatrix by minimizing a weighted
cost function, and also a straightforward erasure coding pro-
cedure: use the given bitmatrix to produce the computation
schedule, which utilizes both the XOR reduction and caching
management techniques, and apply XOR level vectorization.
This procedure can provide a better performance than most
existing techniques, and even compete against well-known
codes such as EVENODD, RDP, and STAR codes. More-
over, the result suggests that vectorizing the XOR operation
is a better choice than directly vectorizing finite field oper-
ations, not only because of the better encoding throughput,
but also its minimal migration efforts onto newer CPUs.

1 Introduction

A leading technique to achieve strong fault-tolerance in data
storage systems is to utilize erasure codes. Erasure codes
have been widely used in various data storage systems, rang-
ing from disk array systems [5], peer-to-peer storage sys-
tems [22], to distributed storage systems [9, 11], and cloud
storage systems [4]. The root of erasure codes can be traced
back to the well-known Reed-Solomon codes [20], or more
generally, maximum distance separable codes [10]. Roughly
speaking, such erasure codes allow a fixed number of com-
ponent failures in the overall system, and it has the lowest

storage overhead (i.e., redundancy) among all strategies that
can tolerate the same number of failures. One example is
Quantcast File System (QFS) [13], which is an implementa-
tion of the data storage backend for the MapReduce frame-
work; it can save 50% of storage space over the original
HDFS which uses 3-replication, while maintaining the same
failure-tolerance capability.

It has long been recognized that encoding data into its
erasure-coded form will incur a much heavier computa-
tion load than simple data replication [21], thus more time-
consuming. In order to complete the coding computation
more efficiently, various techniques have been proposed in
the literature to either directly reduce this computation load
[2,5–8,18], or to accelerate the computation by better utiliz-
ing the resources in modern CPUs [12, 16].

Erasure codes rely on finite field operations, and in com-
puter systems, the fields are usually chosen to be GF(2w),
that is, an extension field of the binary field. Using the fact
that such finite field operations can be effectively performed
using binary XOR between the underlying binary vectors
and matrices [3], Plank et al. [18] proposed efficient meth-
ods to encode using the “bitmatrix” representation. Several
techniques were introduced in the same work to reduce the
number of the XOR operations in the computation, and the
overall encoding procedure can be viewed as a sequence
of such XOR operations, i.e., organized in a computation
schedule. Huang et al. [7] (see also the Liberation codes [14]
where a similar idea was mentioned) made the observation
that some chains of XORs to compute different parity bits
may have common parts, and thus by computing the com-
mon parts first, the overall computation can be reduced. A
matching strategy was proposed to identify such common
parts, which leads to more efficient computation schedules.
Further heuristic methods to reduce the number of XOR’s
along these lines were investigated by Plank et al. [17], and
lower bounds on the total number of XOR’s have also been
found [15].

Though with the same goal of reducing the computation
load in mind, the coding theory community addresses the is-
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sue from another perspective, where specific code construc-
tions have been proposed. Several notable examples of such
codes can be found in [2, 5, 6, 8]. These codes usually allow
only two or three parities, instead of the flexible choices seen
in generic erasure codes.

In contrast to the approaches discussed above where the
computation load can be fundamentally reduced, a different
approach to improve the encoding speed is to better utilize
the existing computation resources in modern computers,
i.e., hardware acceleration. Particularly, since modern CPUs
are typically built with the capability of “single-instruction-
multiple-data” (SIMD), sometimes referred to as vectoriza-
tion, it was proposed that instead of using the bitmatrix im-
plementation, erasure coding can be efficiently performed by
vectorizing finite field operations directly [16]. It was shown
that this approach can provide significant improvements over
the approach based on the afore-mentioned bitmatrix repre-
sentation without vectorization. Also related to this approach
of optimizing resource utilization, Luo et al. [12] noted that
the order of operations in the computation schedule of the
bitmatrix-based approach can affect the performance, due to
CPU cache miss penalty, and thus steps can be taken to opti-
mize the cache access efficiency.

Although these existing works have improved the coding
efficiency of erasure codes to more acceptable levels, the
sheer amount of data in modern data storage systems im-
plies that even a small improvement of the coding efficiency
may provide significant cost saving and be an important per-
formance differentiator. Particularly, virtualization has been
widely adopted for cloud computing, and erasure coding on
such cloud platform will be more resource-constrained than
on the native platform, thus reducing the computation load is
very meaningful. Against this general backdrop, in this work
we seek to answer the following questions:

1. Which methods are the most effective, i.e., can provide
the most significant improvement? Particularly, how to
make a fair comparison of the two distinct approaches
of optimizing bitmatrix schedules and vectorization?

2. Can and should these techniques be utilized together, in
order to maximize the encoding throughput?

3. If these techniques can be utilized together, which com-
ponent should be optimized and how to optimize them?

In the process of answering these question, we discov-
ered a particularly effective approach to accelerate erasure
encoding: selecting bitmatrices optimized for the weight
sum of the number of XOR and copying operations, taking
into consideration of the reduction from the common XOR
chains, then using XOR-level vectorization for hardware ac-
celeration. The resulting encoding process we propose can
provide significant improved encoding throughput compared
to [12,16,18], ranging from 20% to 500% for various param-
eters. Moreover, in most cases, the proposed approach can

compete with the well-known EVENODD code [2], RAID-6
code [14], RDP code [6], STAR code [8], and triple-parity
Reed-Solomon code in Quantcast-QFS [13], which were
specifically designed for fast encoding and only for restricted
parameters.

Our result also suggests that instead of vectorizing the fi-
nite field operation directly, we should vectorize the XOR
operations based on the bitmatrix representation. In addi-
tion to the throughput advantage, this approach in fact has
an important practical advantage: vectorizing general finite
field operation involves software implementation of a larger
set of relevant operations using the CPU-specific instructions
(for different finite field sizes and different finite field op-
erations), while vectorizing XOR operations essentially in-
volves only a single such instruction. As newer versions of
CPUs and instruction sets are introduced, the proposed ap-
proach only requires minimal migration effort, since most of
the bitmatrix implementation is hardware agnostic.

2 Background and Review

2.1 Erasure Codes and Reed-Solomon Codes
Erasure codes are usually specified by two parameters: the
number of data symbols k to be encoded, and the number
of coded symbols n to be produced. The data symbols and
the coded symbols are usually assumed to be in finite field
GF(2w) in computer systems. Such erasure codes are usu-
ally referred to as the (n,k) erasure codes.

To be more precise, let k linearly independent vectors
g0,g1, . . . ,gk−1 (of length n each) be given, whose compo-
nents are in the finite field GF(2w). Denote the data (some-
times referred to as the message) as u = (u0,u1, . . . ,uk−1),
whose components are also represented as finite field ele-
ments in GF(2w). The codeword for the message u is then

v = u0g0 +u1g1 + · · ·+uk−1gk−1.

This encoding process can alternatively be represented using
the generator matrix G of dimension k×n as

v = u ·G, (1)

where

G =


g0
g1
...

gk−1

=


g0,0 g0,1 · · · g0,n−1
g1,0 g1,1 · · · g1,n−1

...
...

. . .
...

gk−1,0 gk−1,1 · · · gk−1,n−1

 .

In most data storage applications, the erasure codes have
the maxmium distance separable (MDS) property, meaning
that the data can be recovered from any k coded symbols
in the vector v. In other words, it can tolerate loss of any
m = n−k symbols. This property can be guaranteed, as long
as any k-by-k submatrix of G, which is created by deleting
any m columns from G, is invertible.
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2.1.1 Reed-Solomon Code

The original Reed-Solomon code relies on a Vandermonde
matrix to guarantee that this invertibility condition is satis-
fied, i.e.,

G =


1 · · · 1 · · · 1
a0 · · · ai · · · an−1
a2

0 · · · a2
i · · · a2

n−1
...

...
...

. . .
...

ak−1
0 · · · ak−1

i · · · ak−1
n−1

 (2)

where ai’s are distinct symbols in GF(2w).
Using a generator matrix of the Vandermonde form will

produce a non-systematic form of the message, i.e., the mes-
sage u is not an explicit part of the codeword v. We can
convert G through elementary row operations (see e.g., [10])
to obtain an equivalent generator matrix G′

G′ = [I,P] =


1 0 · · · 0 p0,0 · · · p0,m−1
0 1 · · · 0 p1,0 · · · p1,m−1
...

...
. . .

...
...

. . .
...

0 0 . . . 1 pk−1,0 · · · pk−1,m−1


where the left portion is the identity matrix Ik of dimension
k-by-k, and the right portion is the “parity coding matrix” P.
As a consequence, we have

v = u ·G′ = (u0,u1, · · · ,uk−1, p0, p1, · · · , pm−1), (3)

where

(p0, p1, · · · , pm−1) = (u0,u1, · · · ,uk−1) ·P. (4)

The matrix P is sometimes also referred to as the coding dis-
tribution matrix [19].

2.1.2 Cauchy Reed-Solomon Codes

Instead of reducing from a Vandermonde generator matrix,
we can also directly assign the matrix P such that the invert-
ible condition can be satisfied. One well-known choice is
to let P be a Cauchy matrix, and the corresponding erasure
code is often referred to as Cauchy Reed-Solomon (GRS)
codes [3].

More precisely, denote X = (x1, . . . ,xk) and Y =
(y1, . . . ,ym), where xi’s and yi’s are distinct elements of
GF(2w). Then the element in row-i column- j in the Cauchy
matrix is 1/(xi + y j). It is clear that any submatrix of a
Cauchy matrix is still a Cauchy matrix. Particularly, let C`

be an order-` square submatrix of a Cauchy matrix:

Cn =



1
x1 + y1

1
x1 + y2

· · · 1
x1 + y`

1
x2 + y1

1
x2 + y2

· · · 1
x2 + y`

...
...

. . .
...

1
x`+ y1

1
x`+ y2

· · · 1
xn + y`


,

then C` is invertible, and the elements of the inverse of the
Cauchy matrix C−1

` have an explicit analytical form [3].
One advantage of using Cauchy Reed-Solomon code in-

stead of the classical Reed-Solomon code based on Van-
dermonde matrix is that inverting an order-n Vandermonde-
based matrix is of time complexity O(n3), while inverting a
Cauchy matrix has a time complexity O(n2). Following [18],
we adopt Cauchy Reed-Solomon codes in this work, instead
of the Vandermonde matrix based approach.

2.2 Encoding by Bitmatrix Presentation
Finite field operations in GF(2w) can be implemented us-
ing the underlying bit vectors and matrices [3], and thus all
the computations can be conducted using direct copy or bi-
nary XOR. Based on this representation, reducing erasure
code computation is equivalent to reducing the number of
XOR and copying in the computation schedule. Various
techniques to optimize this metric have been proposed in the
literature, which we also briefly review in this subsection.

2.2.1 Convert Parity Matrix to Bitmatrix

Each element e in GF(2w) can be represented as a row vec-
tor V (e) of 1×w or a matrix M(e) of w×w, where each
element in the new representation are in GF(2). V (e) will be
identical to the binary representation of e, and the ith row in
M(e) is V (e2i−1

). If we apply this representation, the parity
coding matrix of size k×m will be converted to a new parity
coding matrix of size wk×wm in GF(2), i.e., a binary ma-
trix. Using the bitmatrix representation, erasure coding can
be accomplished by XOR operations, together with an initial
copying operation. A simple example of bitmatrix encod-
ing is shown in Figure 1, where the matrix multiplications
are now converted to XORs of data bits corresponding to the
ones in the binary parity coding matrix, together with some
copying operations.

The number of 1’s in the bitmatrix is the number of XOR
operations in encoding. Choosing different X = (x1, . . . ,xk)
and Y = (y1, . . . ,ym) vectors will produce different encoding
bitmarices, which have different numbers of 1’s and thus dif-
ferent numbers of XOR operations in the computation sched-
ule. In [19], exhaustive search and several other heuristics
were used to find better assignments of the (X ,Y ) vector such
that the number of 1’s in the bitmatrix can be reduced. It was
shown that these techniques can lead to encoding throughput
improvement ranging from 10%-17% for different (n,k,w)
parameters.

2.2.2 Normalization of the Parity Coding Matrix

A simple procedure to reduce the encoding computations is
to multiply each row and each column of G= [I,P] by certain
non-zero values, such that some of the coefficients are more
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Figure 1: Encoding in bitmatrix representation for k = 5,m=
2,w = 3: the parity coding matrix is first converted to its
bitmatrix form (blue as bit 1, and gray as 0), and the encoding
is done as a multiplication of the length-15 binary vector and
the 15×6 binary matrix.

suitable for computation (e.g., to make some elements be the
multiplicative unit 1), which is referred to as bitmatrix nor-
malization [18]. Clearly this does not change the invertibility
property of the original generator matrix. More precisely, for
any parity coding matrix P, we can use the following proce-
dure:

1. For each row-i in P, divide each element by pi,0, after
which all elements in column-0 will be the multiplica-
tive unit in the finite field.

2. For each column- j except the first:

(a) Count the number of ones in the column (in the
bitmatrix representation of this column).

(b) Divide column- j by pi, j for each i, and count the
number of ones in this column (in the bitmatrix
representation).

(c) Using the pi, j which yields the minimum number
of ones from the previous two steps, let the new
column- j be the values after the division of pi, j. In
other words, we normalize column- j with the el-
ement in the column which induces the minimum
number of ones in the bitmatrix.

An example given by Plank et al. [18] shows that for m = 3,
this procedure can reduce the number of ones in the bitma-
trix to 34 ones from the original 46. This method is rather
straightforward to implement and does not require any addi-
tional optimization.

2.2.3 Smart Scheduling

The idea of reusing some parity computation to reduce over-
all computation can be found in the code construction pro-
posed by Plank [14], and this idea materialized as the smart

scheduling component in the software package [18]. The un-
derlying idea is as follows: if a parity bit can be written as
the XOR of another parity bit and a small number of data
bits, then it can be computed more efficiently. The follow-
ing example should make this idea clear. Suppose the two
parities are given as

p0 = u0⊕u2⊕u3⊕u4, p1 = u0⊕u2⊕u3⊕u5. (5)

A direct implementation to generate p1 will use 3 XOR op-
erations, but by utilizing p0, p1 can be computed as

p1 = p0⊕u4⊕u5,

which requires only two XORs. This technique requires
slightly more effort to implement and optimize than the pre-
vious technique, however the computation schedule can es-
sentially be generated offline and thus it does not contribute
significantly to the encoding computation.

2.2.4 Matching

The idea of smart scheduling in fact has a related form.
Huang et al. [7] recognized that instead of restricting to
reusing computed parity bits, any common parts of the XOR
chains in computing the parity bits can be reused, which re-
duces the total number of XOR computations. A grouping
strategy was consequently proposed to optimize the number
of necessary XORs. The proposed method focuses only on
common XOR operations involving a pair of data bits, but
not common operations involving three or more data bits.
This is because common operations of three or more data
bits are scarce in practical codes, and at the same time iden-
tifying them can be time consuming.

The core idea of the proposed approach by Huang et al.
(common operation first) is to represent the demand data pair
of parities in a graph, each vertex of which corresponds to an
input data bit, and the weight of edge between vertex i and j
represents the number of parities demands ui⊕u j. A greedy
procedure is used to extract a sub-graph with the edges of
the largest weights, then the maximum cardinality match-
ing algorithm can be used on the sub-graph to find a set of
edges, where none of them have shared vertices. Each edge
such found indicates a pair of input data bits whose XOR
is common in some XOR chains. The algorithm then re-
moves these edges and vertices from the original graph, and
repeat this subgraph extraction and matching procedure on
the remaining graph. This technique requires further effort
to implement and optimize than smart scheduling, but the
computation schedule can also be generated offline.

In the matching phase on the sub-graphs, two different
strategies were introduced:

1. Unweighted matching. This method views all edges in
the graph as having the same weight.
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2. Weighted matching. This method uses the heuristic of
making the matching covers as few dense nodes in the
sub-graph (defined as degrees of nodes) as possible, by
adjusting the assignments of the weights on the edges
according to the sum of degrees of both ends in the orig-
inal graph.

In our work, an implementation of Edmond’s blossom
shrinking algorithm in the LEMON graph library [1] is uti-
lized to implement these matching algorithms.

Generalizing the matching technique, a few more heuristic
methods to reduce the number of XOR’s were investigated
by Plank et al. [17]. However, these methods themselves can
be extremely time-consuming, and the observed improve-
ments in encoding throughput appear marginal. Therefore,
we do not pursue these heuristic methods in this work.

2.3 Optimizing Utilization of CPU Resources
Speeding-up erasure coding computation can also be ob-
tained through more efficient utilization of CPU resources,
such as vectorization and avoiding cache misses.

2.3.1 Vectorization for Hardware Acceleration

Modern CPUs typically have SIMD capability, which can
dramatically improve the computation speed. Most of the
computation in erasure coding can be done in parallel, in-
cluding XOR operations and more general finite field oper-
ations, since the same operations need to be applied on an
array of data.

Directly vectorizing finite field operations has been previ-
ously investigated and implemented for finite fields GF(28),
GF(216), and GF(232) [16]. This was accomplished through
invoking the 128-bit SSE vectorization instruction set for IN-
TEL and AMD CPUs. More recently, 256-bit AVX2 vector-
ization instructions and 512-bit AVX-512 vectorization in-
structions are becoming more common in newer generations
of CPUs. In this work, we only report results based on the
128-bit SSE instruction set in order to make the comparison
fair, however, our implementation can indeed utilize 256-bit
AVX2 vectorization instructions and 512-bit AVX-512 vec-
torization instructions without any essential change to the
software program, exactly because of the reason mentioned
at the end of Section 1.

2.3.2 Reducing Cache Misses

The sequence of operations can affect the coding perfor-
mance due to cache misses, and more efficient cache-in and
cache-out can be accomplished by choosing a streamlined
computation order. A detailed analysis of the CPU-cache
handling and the effects of different operation orders was
given by Luo et al. [12]. The conclusion is that increased
spatial data locality can help to reduce cache miss penalty.

Consequently, a computation schedule was proposed where a
data chunk is accessed only once sequentially, each of which
is then used to update all related parities. More precisely, this
strategy will read the data symbol u0 first, update all parities
which involves u0, then u1,u2, ...,uk−1. In contrast, the naive
strategy of computing the parity symbols p0, p1, ..., pm−1 se-
quentially suffers a performance loss, which was reported to
be roughly 23%∼36%.

3 Effects of Individual Techniques and Possi-
ble Combinations

As mentioned earlier, the first step of our work is to better
understand the effects of the existing techniques in speeding
up the erasure coding computation. For this purpose, we first
conduct tests on encoding procedures with each individual
component enabled. The relation of different techniques will
be discussed later, which allows us to utilize them together
in the proposed design procedure.

3.1 Analyzing Individual Techniques
The existing techniques we consider individually are:
XOR bitmatrix normalization (BN), XOR operation smart
scheduling (SS), common XOR reduction using unweighted
matching (UM), common XOR reduction using weighted
matching (WM), scheduling for caching optimization (S-
CO), and direct vectorization of XOR operation (V-XOR).
The first four techniques can be viewed as optimization on
the bitmatrix such that the total number of XOR (and copy)
operations is reduced, as discussed in Section 2.2. The last
technique, though has not been systematically investigated
in the literature, is in fact a rather natural choice and is thus
included in our test. The latter two methods aim to bet-
ter utilize the CPU resources such that the computation can
be done more efficiently without reducing fundamentally the
computation load, and they are more hardware platform de-
pendent.

We conducted encoding throughput tests for a range of
(n,k,w) parameters most relevant for data storage applica-
tions, the results of which are reported in Table 1, in terms
of the improvement over the baseline approach of taking a
simple Cauchy Reed-Solomon code without any additional
optimization. For the first four techniques, the improvement
is measured in terms of the reduction of the number of 1’s
in the bitmatrix, while for the latter two, the improvement
is measured in terms of the encoding throughput increase.
Multiple tests are performed for each parameter, and we re-
port the average over them. In the last row of Table 1, the
average encoding throughput over all the tested parameters
is included. All tests in this work are conducted on a work-
station with an AMD Ryzen 1700X CPU (8 cores) running
at 3.4GHz, 16GB DDR4 memory, which runs the Ubuntu
18.04 64-bit operating system and the compiler is GCC 7.3.0
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Table 1: Performance improvements by individual techniques

(n,k,w)
The number of XOR’s Reduction in the number of XOR’s Throughput increase

in the baseline code BN SS UM WM S-CO V-XOR
(8,6,4) 104 42.31% 17.31% 31.73% 31.73% 2.14% 98.44%
(8,6,8) 362 53.31% 33.70% 34.53% 34.81% 0.52% 126.36%
(9,6,4) 152 32.89% 19.74% 32.89% 32.89% 3.54% 90.48%
(9,6,8) 549 44.63% 29.14% 38.25% 38.25% 4.51% 152.87%

(10,6,4) 200 27.50% 22.00% 36.00% 36.00% 0.60% 91.30%
(10,6,8) 736 40.90% 28.80% 38.59% 38.59% 1.23% 130.71%
(12,8,4) 256 23.44% 23.44% 35.94% 35.94% 9.21% 118.26%
(12,8,8) 1028 36.38% 24.81% 39.79% 39.79% 0.10% 156.88%
(16,10,4) 496 18.95% 21.77% 37.70% 37.70% 8.28% 138.93%
(16,10,8) 1920 30.16% 21.98% 40.89% 40.89% 5.00% 179.00%

Average over
all tested cases 35.05% 24.27% 36.63% 36.66% 4.81% 130.4%

which is the default compiler of the OS. During compila-
tion, O3 optimization, SSE4 and AVX2 instruction sets are
enabled. Using different compilers and different compiler
options may yield slightly different coding throughputs, but
will not change the relative relationship among different cod-
ing methods, when the same compiler and compiler options
are used across them.

It can be seen that among the first four techniques, BN
usually provides roughly 35% improvement over the base-
line on average. The variation among different (n,k,w) pa-
rameter settings is not negligible, which is likely caused by
the specific field chosen and the number of possible choices
of (X ,Y ) coefficients in the Cauchy Reed-Solomon codes.
In comparison, smart scheduling can provide a more modest
∼ 24% improvement. Both versions of matching algorithms
can also provide significant improvements over the baseline,
however, there is not a clear winner between the two versions
of the matching algorithms.

Between the latter two techniques, S-CO can provide a
gain of ∼5%, while V-XOR is able to improve the cod-
ing speed by roughly 100%− 200%. The improvement ob-
served in our work by S-CO is considerably less significant
compared to the 23-36% improvement reported by Luo et
al. [12], which we suspect is due to the improvement in
cache size and cache prediction algorithm in modern CPUs.
Indeed, when we test the same approach on different oper-
ating systems and CPUs, different (sometimes significantly
different) amounts of improvement can be observed. Among
all the techniques, V-XOR appears to be able to provide the
most significant performance improvement.

The performance of directly vectorizing finite field oper-
ations [16] is not included in the set of tests above, because
it belongs to a completely different computation chain. It
does not utilize the bitmatrix representation at all, and thus
completely bypasses all other techniques. This observation
in fact raises the following question: can vectorizing XORs

Bitmatrix Tier
Normalization 

(BN)

Smart Scheduling 
(SS)

Matching
(UM, WM)

Scheduling for Caching 
Optimization (S-CO)

Vectorization 
(V-XOR)

Scheduling 
Tier

Hardware Tier

Figure 2: Operation tiers of the individual techniques

within the bitmatrix framework be a better choice than vec-
toring finite field operations directly? Surprisingly, the ques-
tion has not been answered in the existing literature. As we
shall discuss in the next section, our result suggests that the
answer to this question indeed appears to be positive.

3.2 Combining the Individual Techniques

Equipped with individual improvements reported above, we
are interested in whether and how these techniques can be
combined to achieve more efficient erasure encoding. The
techniques we test can be categorized into three tiers: the
bitmatrix tier, the scheduling tier, and the hardware-related
tier, as shown in Figure 2.

Since these techniques mostly reside in different tiers, they
can be applied in tandem. The only exception is among the
SS, UM, and WM techniques, since they are essentially op-
timizing the same component in the computation chain. As
such, we need choose the technique or techniques to adopt.
Additionally, although BN is able to provide improvement
and can be applied together with other techniques, it is es-
sentially also a procedure to optimize the bitmatrix, and the
set of tests does not indicate whether it is still going to be
effective when combined with SS, UM, or WM. The S-CO
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Table 2: Combination of individual strategies
i j

BN disabled (0) no XOR reuse (0)
SS (1)

BN enabled (1) UM (2)
WM (3)

technique is basically independent of the other techniques,
and thus we can always invoke it for any combined strate-
gies. Similarly, V-XOR can be applied directly together with
all the other techniques. In fact, because of the significance
of the improvement offered by V-XOR, including it should
be a priority when using the techniques jointly.

We use a pair of indices (i, j) to enumerate the eight
possible combinations of bitmatrix-based techniques, where
i ∈ {0,1} and j ∈ {0,1,2,3}, as shown in Table 3.2. For
example, strategy-(1,3) means both BN and WM are used.
These combinations are the candidate strategies, within the
bitmatrix framework, that we need to select from.

4 Selecting Coding Strategy under Optimized
Bitmatrices

Our next task is to select one of eight strategies which can
offer the best performance. The complication here is that
since different choices of the (X ,Y ) vector in Cauchy Reed-
Solomon code can lead to different computation load dur-
ing erasure coding computation (see [19]), the (X ,Y ) coef-
ficients need to be optimized. In other words, the strategies
should be evaluated with such optimized bitmatrices. For
this purpose, we first conduct heuristic optimizations to min-
imize the cost function of the total number of XOR and copy
operations, under these eight strategies, the result of which is
used to determine the best strategy. At the end of the section,
we discuss possible improvement to the cost function.

4.1 Bitmatrix Optimization Algorithms
For a fixed choice of (X ,Y ) which determines the Cauchy
parity coding matrix P, a given (i, j)-strategy will induce
a given number of total computation operations, including
XORs and copyings. Let us denote the function mapping
from (X ,Y ) to this cost function as ci, j(X ,Y ). To compute,
for example, c1,2(X ,Y ), we first conduct bitmatrix normalzi-
ation on the Cauchy matrix induced by (X ,Y ), then apply
the unweighted matching algorithm to obtain the number of
XOR operations and the number of copying operations in the
encoding computation, and finally compute the total number
of the operations. Our goal here is thus to find the choice
of (X ,Y ) vector that minimizes this cost function. Due to the
complex relation between the choice of (X ,Y ) vector and the
cost function value, it is not possible to find the optimal so-
lution using standard optimization techniques. Instead, we

adopt two heuristic optimization procedures: simulated an-
nealing (SA) and genetic algorithm (GA).

In the simulated annealing, there are several parameters
that need to be set, however, we found that the results in this
application is not sensitive to them. The only parameter of
material importance is the annealing factor ∆, which control
the rate of cooling.

For the genetic algorithm, we defined the population as a
set of (X ,Y ) vectors. There is also a set of standard parame-
ters in genetic algorithm (such as the crossover rate and the
mutation rate), but the most important factor appears to be
the crossover procedure in this setting. We considered two
crossover methods to generate a child Cauchy matrix.

1. Random crossover: From the set of finite field elements
which appear in the parent vectors (X ,Y ), choose k+m
elements at random and produce a random assignment
of the new (X ,Y ) as the child.

2. Common elements first crossover: The finite field ele-
ments which appear in both parents are selected first as
the element of child, and the others are chosen at ran-
dom from the other elements which appear only in one
of the parents.

The second approach tends to provide better new bitmatrices,
which appears to match our intuition that some assignments
are better than others, and keeping the good trait in the chil-
dren may produce even better assignments.

In Table 3, we include a subset of (n,k,w) parameter
choices we have attempted using the two optimization ap-
proaches together with the case when (X ,Y ) vector is as-
signed according to the sequential order in the finite field;
the other test results are omitted due to space constraint. It
can be seen that the genetic algorithm provides better solu-
tions than simulated annealing in most cases, and for this
reason we shall adopt GA in the subsequent discussion.

Due to the heuristic nature of the two algorithms, the read-
ers may question whether the optimized (X ,Y ) choice can in-
deed provide any performance gain. It can be seen in Table 3,
that both SA and GA can provide significant improvement on
the total number of operations by finding good bitmatrices.
In Figure 3, we further plot the amounts of cost reduction for
different (n,k,w) parameters, from the baseline approach of
without any optimization. It can be seen for most (n,k,w) pa-
rameters, meaningful (sometime significant) gains of ∼ 5%
to ∼ 25% can be obtained. Thus, although the two heuristic
optimization methods cannot guarantee finding the optimal
solutions, they do lead to considerably improved bitmatrix
choices.

4.2 Choosing the Best (i, j)-Strategy
We can now select the best (i, j)-strategy, using the opti-
mized bitmatrices obtained by the genetic algorithm. In Fig-
ure 4, the cost function values of different (i, j)-strategies
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Table 3: Comparison of the total number of XOR and copy operations for all (i, j)-strategies, when the bitmatrices are obtained
without optimization, by simulated annealing, and by the genetic algorithm, respectively, as the three columns in each box.

(i, j) (n,k,w) = (8,6,4) (n,k,w) = (9,6,4) (n,k,w) = (10,6,4) (n,k,w) = (12,8,4) (n,k,w) = (16,10,4)
(0,0) 112 77 77 164 122 117 216 173 162 272 232 232 520 462 464
(0,1) 94 70 68 134 102 100 172 137 134 212 190 188 412 368 368
(0,2) 90 72 68 127 103 101 164 134 132 204 186 180 376 344 345
(0,3) 90 72 68 127 102 101 164 132 132 204 184 182 376 343 345
(1,0) 68 58 58 114 99 98 161 142 141 212 198 198 426 419 419
(1,1) 64 58 58 99 90 89 138 120 120 189 174 171 365 352 352
(1,2) 64 58 57 98 87 87 133 118 118 176 165 164 326 317 316
(1,3) 64 58 57 98 90 87 132 118 118 175 164 164 326 316 316
(i, j) (n,k,w) = (8,6,8) (n,k,w) = (9,6,8) (n,k,w) = (10,6,8) (n,k,w) = (12,8,8) (n,k,w) = (16,10,8)
(0,0) 378 291 247 573 467 425 768 611 582 1060 880 841 1968 1685 1681
(0,1) 256 234 225 413 393 349 556 518 479 805 740 684 1546 1432 1374
(0,2) 286 227 217 408 346 321 532 474 450 726 636 591 1304 1180 1170
(0,3) 286 216 197 408 357 329 532 460 450 726 636 627 1304 1180 1170
(1,0) 185 151 142 328 286 262 467 434 419 686 613 563 1389 1293 1246
(1,1) 164 155 133 285 270 230 411 383 371 593 557 544 1264 1184 1133
(1,2) 167 143 134 272 244 225 377 343 335 520 487 462 998 951 922
(1,3) 167 144 130 273 249 233 377 337 337 520 473 467 995 941 932
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Figure 3: Cost reductions obtained by the genetic algorithm
for different (n,k,w) parameters (sorted by n).

are shown, under various (n,k,w) parameters. Here again
we have chosen a subset of representative test results, and
omit others due to space constraint. It can be seen that the
strategies (1,2) and (1,3) are the best among all the possi-
bilities, and they do not show any significant difference be-
tween themselves.

4.3 Refining the Cost Function
We have so far used the total number of XORs and copying
operations as the cost function in the optimization of bitma-
trices. However, this choice may not accurately capture all
the computation operations, and as such, we next consider
three possible cost functions: 1) the total number of XORs,
2) the total number of operations, including XORs and copy-

ings, and 3) a weighted combination of the number of XORs
and that of copying operations. In the last option, we set
the weight according to the empirical testing result of these
operation on the target workstation: the time taken for copy-
ing (memcpy) and that for XORing the same amount of data
are measured. On our platform, the weight given to XOR is
roughly 1.5 the weight given to memory copying. To distin-
guish from the cost function ci, j(X ,Y ), we write this last cost
function as c′i, j(X ,Y ).

The effectiveness of these three cost functions is evalu-
ated and shown in Table 4 by using the genetic algorithm to
find the optimized bitmatrices. The resulting bitmatrices ob-
tained under the three cost functions are used to encode the
data with the (1,3)-strategy, and we compare the encoding
throughput values. It can be seen that the third cost func-
tion is able to most accurately capture the encoding compu-
tation cost in practice. The improvements obtained by the
refined cost function c′i, j(X ,Y ), in most cases, are not ex-
tremely large, ranging from 0%− 10%, and occasionally it
does cause a minor performance degradation than the cost
function ci, j(X ,Y ).

5 The Proposed Design and Coding Proce-
dure, and Performance Evaluation

From the previous discussion, the proposed bitmatrix design
procedure is quite clear: perform a suitable optimization al-
gorithm (the genetic algorithm is used in this work) with the
weighted cost function c′1,2(X ,Y ) or c′1,3(X ,Y ). The pro-
posed erasure coding procedure then naturally involves the
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Figure 4: Total number of XOR and copying operations for all (i, j) strategies with optimized bitmatrices

Table 4: Encoding throughput (GB/s) using bitmatrices ob-
tained by the genetic algorithm under different cost functions

Cost Function

(n,k,w) # of XOR
# of XOR

and copying Weighted

(8,6,4) 4.64 4.66 4.68
(8,6,8) 4.30 4.35 4.32
(9,6,4) 3.72 3.73 3.80
(9,6,8) 3.28 3.28 3.44

(10,6,4) 2.33 2.51 2.52
(10,6,8) 1.99 1.97 2.11
(12,8,4) 2.96 3.11 3.16
(12,8,8) 2.54 2.56 2.58

(16,10,4) 2.29 2.29 2.32
(16,10,8) 1.71 1.72 1.74

corresponding components: from the selected (X ,Y ), pro-
duce the corresponding bitmatrix by bitmatrix normaliza-
tion, then generate the computation schedule from the pro-
duced bitmatrix using the selected matching algorithm and
following the cache-friendly order, and perform the vector-
ized XOR operations using the necessary CPU instructions.

In the sequel, we discuss a few details in integrating these
techniques, and then provide performance evaluation in com-
parison to the existing approaches.

5.1 Integrating XOR Matching and S-CO
As described in 2.3.2, ordering the encoding operation se-
quence according to the data order can increase spatial data

locality, which helps reduce cache miss penalty. The sched-
ules in [12] contain only data to parity operations

ui→ p j,

where the arrow indicates the direction of data flow for either
a memory copy or an XOR operation. Because of the UM
procedure or the WM procedure in the computation chain,
the common XOR pairs need to be computed and stored as
intermediate results, denoted as intl . As such, in the pro-
posed procedure, the schedule contains three types of opera-
tions

ui→ p j, ui→ intl , intl → p j.

To reduce cache misses, we need to extend the ordering
method to handle these three cases. This can be accom-
plished by following the sequential order of (XORing and
copying) the data bits to the parity bits or intermediate bits
first, then the intermediate bits to the parity bits, e.g.,

u0→ p0
u0→ int0
· · ·

u1→ p3
· · ·

int0→ p4
· · ·


.

This order ensures that each data bit ui will be read exactly
once, which maintains the spatial data locality.
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5.2 Vectorizing XOR Operations
Each step in the computation schedule is either a copying
operation, or an XOR operation. In practice, instead of per-
forming them in a bit-wise manner, a set of bits is processed
at a time, i.e., using an extended word format. The small-
est such extension is a byte (8bits) in computer systems, and
similarly a long long word has 64 bits. For CPUs with an
SIMD instruction set, the extended word can be 128 bits,
256 bits, or 512 bits. A single instruction thus completes
the operation on 8 bits, 64 bits, 128 bits, 256 bits, or 512
bits, respectively. The instructions we used in this work are
included in Intel R© Intrinsics instruction set, which has also
been adopted in AMD CPUs.

The C code to perform the XOR operation is as follows:

#include <x86intrin.h>

void fast_xor( char *r1, /* region 1 */

char *r2, /* region 2 */

char *r3, /* r3 = r1 ^ r2 */

int size) /* bytes of region */

{

__m128i *b1, *b2, *b3;

int vec_width = 16,j;

int loops = size / vec_width;

for(int j = 0;j<loops;j++)

{

b1 = (__m128i *)(r1 + j*vec_width);

b2 = (__m128i *)(r2 + j*vec_width);

b3 = (__m128i *)(r3 + j*vec_width);

*b3 = _mm_xor_si128(*b1, *b2);

}

}

The SSE data type m128i is a vector of 128 bits, which
can be easily converted from any common data types such as
char, int, or long. The instruction mm xor si128 computes
the bitwise XOR of 128 bits. To utilize the 256 bits AVX2
instructions or the 512 bits AVX-512 instructions, the migra-
tion is rather straightforward in the proposed computation
procedure as follows:

1. Update the data format:
AVX2 : m128i→ m256i

AVX-512: m128i→ m512i

2. Update the bitwidth parameter:
AVX2 : vec width = 16;→ vec width = 32;

AVX-512: vec width = 16;→ vec width = 64;

3. Update the instruction:
AVX2 : mm xor si128→ mm256 xor si256

AVX-512: mm xor si128→ mm512 xor epi32

In our experience, performing the XOR operation on the
same amount of data with 64 bitwidth (long long format)
is 30% slower than mm xor si128, and it is 50% slower than
mm256 xor si256. Note that our tests are performed on an

Table 5: Encoding throughput (GB/s) for methods that allow
general (n,k) parameters and w = 8

(n,k) Proposed
Vectorized
XOR-based
CRS code

Vectorized
GF-based

RS code [16]
(7,5) 4.64 4.73 2.52
(8,6) 5.21 5.22 2.70
(9,7) 5.32 5.45 2.74
(10,8) 5.36 5.59 2.77

(12,10) 5.72 5.88 2.81
(8,5) 3.19 2.75 1.76
(9,6) 3.49 2.84 1.77
(10,7) 3.67 2.79 1.80
(11,8) 3.72 2.92 1.82

(13,10) 3.82 3.10 1.84
(10,6) 2.55 2.15 1.31
(11,7) 2.75 2.17 1.32
(12,8) 2.86 2.20 1.35

(14,10) 2.86 2.19 1.40
(15,10) 2.30 1.79 1.11
(16,10) 1.96 1.48 0.92

AMD CPU, however INTEL CPUs may have somewhat dif-
ferent characteristics. The instruction mm512 xor epi32 is
expected to be even faster, however we currently do not have
such a platform for testing.

5.3 Encoding Performance Evaluation

Here we provide comprehensive encoding throughput test re-
sults between the proposed approach and several well-known
efficient erasure coding methods in the literature, as well as
the erasure array codes designed for high throughput. The
latter class includes EVENODD code [2], RDP code [6],
Linux Raid-6 [14], STAR code [8], and Quantcast-QFS [13]
code. EVENODD code, RDP code, Raid-6 are specially de-
signed to have two parities, and STAR code and Quantcast-
QFS are specially designed to have only three parities; in
order to make the comparison fair, we use 128-bit vectorized
XOR discussed in Section 5.2 for these codes as well. Since
open source implementations for these codes are not avail-
able, we have implemented these coding procedures, with
and without vectorization, to use in our comparison. The for-
mer class of codes includes several efficient Cauchy Reed-
Solomon code implementations based on bitmatrices (XOR-
based CRS) [12, 16, 18], and finite field vectorized Reed-
Solomon code (GF-based RS code) [16]; the source code for
them can be found in the Jerasure library 2.0 [16] publicly
available online, which is used in our comparison. The im-
plementation in Jerasure library 2.0 is based on vectorizing
(through 128-bit instruction) finite field operation in GF(28),
GF(216), and GF(232). The Cauchy Reed-Solomon code
implementation in Jerasure library 1.2 [18] can be adapted
to utilize with XOR-level vectorization, however, it would
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Table 6: Encoding throughputs (GB/s): Three parities

(n,k,w) Proposed
Vectorized
XOR-based
CRS code

STAR
code [8]

Quancast
QFS [13]

(8,5,4) 3.59 3.25 2.97 2.92
(8,5,8) 3.19 2.75 2.97 2.92
(9,6,4) 3.52 3.72 3.42 3.04
(9,6,8) 3.49 2.84 3.42 3.04

(10,7,4) 4.15 3.86 3.76 3.25
(10,7,8) 3.67 2.79 3.76 3.25
(11,8,4) 4.36 4.13 3.94 3.27
(11,8,8) 3.72 2.92 3.94 3.27

(13,10,4) 4.51 4.08 4.37 3.41
(13,10,8) 3.82 3.10 4.37 3.41

Table 7: Encoding throughputs (GB/s): Two parities

(n,k,w) Proposed
Vectorized
XOR-based
CRS code

Vectorized
Raid-6

EVEN
ODD [2] RDP [6]

(7,5,4) 5.16 4.85 n/a 4.28 4.37
(7,5,8) 4.64 4.73 2.18 4.28 4.37
(8,6,4) 4.67 5.22 n/a 4.83 4.95
(8,6,8) 5.21 5.22 2.15 4.83 4.95
(9,7,4) 5.77 5.59 n/a 5.20 5.32
(9,7,8) 5.32 5.45 2.16 5.20 5.32
(10,8,4) 5.90 5.23 n/a 5.50 5.69
(10,8,8) 5.36 5.59 2.17 5.50 5.69

(12,10,4) 6.23 6.00 n/a 6.02 6.24
(12,10,8) 5.72 5.88 2.17 6.02 6.24

not include the UM (or WM) component and the refinement
of the cost function discussed in Section 4.3.

In the tests reported below, the parameters k varies from
5 to 10, m from 2 to 6, and w from 4 to 8. Some of these
parameters do not apply for some of the reference codes and
coding methods, which will be indicated as n/a in the result
tables. The comparison is first presented in three groups.

• In Table 5, the proposed approach is compared with
vectorized XOR-based Cauchy Reed-Solomon code,
and vectorized finite field Reed-Solomon code, when
w = 8. All three approaches are applicable for general
(n,k) coding parameters, however the implementation
of vectorized finite field operations in [16] can only use
w = 8,w = 16 or w = 32; in contrast, the other two
approaches can use other w values. Here we choose
w = 8 for a fair comparison. When m = n− k = 2,
it is seen that vectorized XOR-based Cauchy Reed-
Solomon code is slightly faster than the proposed ap-
proach, because the SS technique in these cases in fact
provides a slighter better scheduling than WM. When m
is larger than 2, the proposed procedure can provide a
more significant throughput advantage. Vectorizing fi-
nite field operations is always the worse choice among

Table 8: Encoding throughput improvements over references

Reference codes or methods Improvement
by proposed code

General (n,k) Codes
GF-based RS code w/o vectorization 552.27%

XOR-based CRS code w/o vectorization 53.65%
Vectorized GF-based RS code [16] 99.82%
Vectorized XOR-based CRS code 14.98%

Three Parities Codes
STAR [8] 5.59%

Quancast-QFS [13] 21.68%
Two Parities Codes

Raid-6 w/o vectorization 206.88%
Vectorized Raid-6 142.07%

RDP [6] 5.85%
EVENODD [2] 8.79%

the three by a large margin.

• In Table 6, the proposed approach is compared with
well-known codes with three parities. It is seen that the
proposed approach is able to compete with these coding
theory based techniques. It should be noted that STAR
code and Quantcast QFS code do not rely on the param-
eter w, and thus the throughput performances for w = 4
and w = 8 are the same for each (n,k) parameter.

• In Table 7, the proposed approach is compared with
well-known codes with two parities. It is again seen that
the proposed approach is able to compete with these
established coding techniques. EVENODD code and
RDP code do not rely on the parameter w, and thus the
throughput performances for w = 4 and w = 8 are the
same.

In Table 8, we list the amounts of improvements of the
proposed approach over other reference approaches or codes,
averaged over all tested (n,k,w) parameters. It is seen that
the proposed approach can provide improvements over all
existing techniques, some by a large margin. The result
in this table is included here to provide a summary on the
performance by various techniques, however for individual
(n,k,w) parameter, the performance may vary as indicated
by the previous three tables.

5.4 Decoding Performance Evaluation
In practical systems, data is usually read out directly with-
out using the parity symbols, unless the device storing the
data symbols becomes unavailable, i.e., in the situation of
degraded read. Therefore, the most time consuming compu-
tation in erasure code decoding is in fact invoked much less
often, which implies that the decoding performance should
be viewed as of secondary importance. However, it is still
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Table 9: Decoding throughput (GB/s) for methods that allow
general (n,k) parameters and w = 8

(n,k) Proposed
Vectorized
XOR-based
CRS code

Vectorized
GF-based

RS code [16]
(7,5) 3.87 4.56 2.58
(8,6) 5.45 4.86 2.67
(9,7) 4.46 5.06 2.70
(10,8) 4.89 5.11 2.75

(12,10) 4.45 5.52 2.79
(8,5) 3.04 2.11 1.71
(9,6) 2.94 2.20 1.74
(10,7) 3.28 2.29 1.76
(11,8) 3.08 2.31 1.71

(13,10) 3.21 2.37 1.88
(10,6) 2.38 1.80 1.31
(11,7) 2.35 1.85 1.32
(12,8) 2.54 1.87 1.33

(14,10) 2.47 1.89 1.38
(15,10) 2.00 1.48 1.09
(16,10) 1.77 1.30 0.91

Table 10: Decoding throughputs (GB/s): Three parities

(n,k,w) Proposed
Vectorized
XOR-based
CRS code

STAR
code [8]

Quancast
QFS [13]

(8,5,4) 4.28 3.08 3.20 1.77
(8,5,8) 3.04 2.11 3.20 1.77
(9,6,4) 4.13 3.41 3.23 1.74
(9,6,8) 2.94 2.20 3.23 1.74

(10,7,4) 4.55 3.53 3.52 1.77
(10,7,8) 3.28 2.29 3.52 1.77
(11,8,4) 4.70 3.78 3.13 1.68
(11,8,8) 3.08 2.31 3.13 1.68

(13,10,4) 4.86 3.71 3.50 1.71
(13,10,8) 3.21 2.37 3.50 1.71

important to understand the impact of optimizing the encod-
ing bitmatrix and procedure, which was our main focus. In
this section, we present the decoding performance of vari-
ous methods, along the similar manner as for the encoding
performance. Only the performance for the worst case fail-
ure pattern (the most computationally expensive case) is re-
ported, when m data symbols are lost.

As seen in Table 9, the proposed approach can provide
better decoding throughput comparing to vectorized XOR-
based Cauchy Reed-Solomon code and vectorized GF-based
RS code, except for some cases when m = 2. For codes with
three parities, it can be seen from Table 10 that the decoding
throughput of the proposed approach still outperforms well-
known codes in the literature specifically designed for this
case. For codes with two parities, as shown in Table 7, the

Table 11: Decoding throughputs (GB/s): Two parities

(n,k,w) Proposed
Vectorized
XOR-based
CRS code

Vectorized
Raid-6

EVEN
ODD [2] RDP [6]

(7,5,4) 5.52 4.85 n/a 6.66 7.28
(7,5,8) 3.87 4.65 2.64 6.66 7.28
(8,6,4) 5.43 5.14 n/a 7.42 8.00
(8,6,8) 5.45 4.86 2.67 7.42 8.00
(9,7,4) 6.03 5.37 n/a 7.65 8.13
(9,7,8) 4.46 5.06 2.73 7.65 8.13
(10,8,4) 5.88 5.73 n/a 7.93 8.44
(10,8,8) 4.89 5.11 2.77 7.93 8.44

(12,10,4) 6.23 5.89 n/a 7.49 9.10
(12,10,8) 4.45 5.52 2.81 7.49 9.10

decoding throughput of proposed approach is usually lower
than EVEN-ODD and RDP codes.

In summary, the optimized encoding procedure we pro-
pose does not appear to significantly impact the performance
of the decoding performance in most cases (when m ≥ 3),
which itself is a less important performance measure in prac-
tice than the encoding performance that we focus on in this
work.

6 Conclusion

We performed a comprehensive study of the erasure coding
acceleration techniques in the literature. A set of tests was
conducted to understand the improvements and the relation
among these techniques. Based on these tests, we consider
combining the existing techniques and jointly optimize the
bitmatrix. The study led us to a simple procedure: produce a
computation schedule based on an optimized bitmatrix (us-
ing a cost function matching the computation strategy and
workstation characteristic), together with the BN and WM
(or UM) technique, then use vectorized XOR operation in
the computation schedule. The proposed approach is able to
provide improvement over most existing approaches, partic-
ularly when the number of parity is greater than two. One
particularly important insight of our work is that vectoriza-
tion at the XOR-level using the bitmatrix framework is a
much better approach than vectorization of the finite field
operations in erasure coding, not only because of the better
throughput performance, but also because of the simplicity
in migration to new generation CPUs.
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Abstract

Erasure coding becomes a practical redundancy technique
for distributed storage systems to achieve fault tolerance with
low storage overhead. Given its popularity, research stud-
ies have proposed theoretically proven erasure codes or effi-
cient repair algorithms to make erasure coding more viable.
However, integrating new erasure coding solutions into ex-
isting distributed storage systems is a challenging task and
requires non-trivial re-engineering of the underlying storage
workflows. We present OpenEC, a unified and configurable
framework for readily deploying a variety of erasure coding
solutions into existing distributed storage systems. OpenEC
decouples erasure coding management from the storage work-
flows of distributed storage systems, and provides erasure
coding designers with configurable controls of erasure coding
operations through a directed-acyclic-graph-based program-
ming abstraction. We prototype OpenEC on two versions
of HDFS with limited code modifications. Experiments on a
local cluster and Amazon EC2 show that OpenEC preserves
both the operational performance and the properties of erasure
coding solutions; OpenEC can also automatically optimize
erasure coding operations to improve repair performance.

1 Introduction
Erasure coding provides a low-cost redundancy mechanism
for fault-tolerant storage, and is now widely deployed in
today’s distributed storage systems (DSSs). Examples in-
clude enterprise-level DSSs [15,21,30] and many open-source
DSSs [1, 3, 7, 31, 54, 55]. Unlike replication that simply cre-
ates identical data copies for redundancy protection, erasure
coding introduces much less storage overhead through the
coding operations of data copies, while preserving the same
degree of fault tolerance [53]. Modern DSSs mostly realize
erasure coding based on the classical Reed-Solomon (RS)
codes [43], yet RS codes have high performance penalty, es-
pecially in repairing lost data when failures happen. Thus,
research studies have proposed new erasure coding solutions
with improved performance, such as erasure codes with the-
oretical guarantees and efficient repair algorithms that are
applicable to general erasure-coding-based storage (§6).

However, deploying new erasure coding solutions in DSSs
is a daunting task. Existing studies often integrate new era-
sure coding solutions into specific DSSs by re-engineering
the DSS workflows (e.g., the read/write paths). The tight

coupling between erasure coding management and the DSS
workflows makes new erasure coding solutions hard to be gen-
eralized for other DSSs and further enhanced. Some DSSs
with built-in erasure coding features (e.g., HDFS with era-
sure coding [1, 5], Ceph [54], and Swift [7]) provide certain
configuration capabilities, such as interfaces for implement-
ing various erasure codes and controlling erasure-coded data
placement, yet the interfaces are rather limited and it is non-
trivial to extend the DSSs with more advanced erasure codes
and repair algorithms (§2.2). How to fully realize the power
of erasure coding in DSSs remains a challenging issue.

We present OpenEC, a unified and configurable frame-
work for erasure coding management in DSSs, with the pri-
mary goal of bridging the gap between designing new erasure
coding solutions and enabling the feasible deployment of
such new solutions in DSSs. Inspired by software-defined
storage [16, 48, 51], which aims for configurable storage man-
agement without being constrained by the underlying storage
architecture, we apply this concept into erasure coding man-
agement. Our main idea is to decouple erasure coding man-
agement from the DSS workflows. Specifically, OpenEC
runs as a middleware system between upper-layer applications
and the underlying DSS, and is responsible for performing
all erasure coding operations on behalf of the DSS. Such a
design relaxes the stringent dependence on the erasure cod-
ing support of DSSs. More importantly, OpenEC takes the
full responsibility of erasure coding management, and hence
provides flexibility for erasure coding designers to (i) incor-
porate a variety of erasure coding solutions, (ii) configure
the workflows of erasure coding operations, and (iii) decide
the placement of both erasure-coded data and erasure cod-
ing operations across storage nodes. Our contributions are
summarized as follows:
• We propose a new programming model for erasure coding

implementation and deployment. Our model builds on an
abstraction called an ECDAG, a directed acyclic graph that
defines the workflows of erasure coding operations. We
show how we feasibly realize a general erasure coding
solution through the ECDAG abstraction.

• We design OpenEC, which translates an ECDAG into
erasure coding operations atop a DSS. OpenEC supports
encoding operations on or off the write path as well as
various state-of-the-art repair operations. In particular, it
can automatically optimize an ECDAG for hierarchical
topologies to improve repair performance.
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• We implement a prototype of OpenEC on HDFS-RAID
[5] and Hadoop 3.0 HDFS (HDFS-3) [1]. Its integrations
into HDFS-RAID and HDFS-3 only require limited code
changes (with no more than 450 LoC).

• We evaluate OpenEC on a local cluster and Amazon EC2.
OpenEC incurs negligible performance overhead in DSS
operations, supports various state-of-the-art erasure codes
and repair algorithms, and increases the repair through-
put by at least 82% through automatically customizing an
ECDAG for a hierarchical topology.

The source code of our OpenEC prototype is available at:
http://adslab.cse.cuhk.edu.hk/software/openec.

2 Background and Motivation
2.1 Erasure Coding Basics
Consider a DSS that comprises multiple storage nodes and
organizes data in units of blocks. We construct erasure coding
as an (n,k) code with two configurable parameters n and k,
where k < n. For every k fixed-size original blocks (called
data blocks), an (n,k) code encodes them into n−k redundant
blocks of the same size (called parity blocks), such that any
k out of the n erasure-coded blocks (including both data and
parity blocks) can decode the k data blocks; that is, any n− k
block failures can be tolerated. We call the collection of n
erasure-coded blocks a coding group. A DSS encodes differ-
ent sets of k data blocks independently, and distributes the n
erasure-coded blocks of each coding group across n storage
nodes to protect against any n− k storage node failures. In
this paper, our discussion focuses on the coding operations
(i.e., encoding or decoding) of a single coding group.

For performance reasons, a DSS implements coding opera-
tions in small-size units called packets, while the read/write
units are in blocks; for example, our experiments set the
default packet and block sizes as 128 KiB and 64 MiB, respec-
tively). It divides a block into multiple packets, and encodes
the packets at the same block offsets in a coding group to-
gether. Thus, instead of first reading the whole blocks to start
coding operations, a DSS can perform packet-level coding
operations, while reading the whole blocks, in a pipelined
manner. To simplify our discussion, we use blocks as the
units of coding operations, and only differentiate packets and
blocks in our implementation (§4.5).

Given the prevalence of failures, repairs are frequent op-
erations in DSSs [40]. We consider two types of repairs: (i)
degraded reads, which decode the unavailable data blocks
that are being requested, and (ii) full-node recovery, which
decodes all lost blocks of a failed storage node. Since re-
pairs trigger substantial traffic [40], achieving high repair
performance is important in erasure coding deployment. RS
codes [43] are the most popular erasure codes that are widely
used in production [5, 7, 15, 31, 54, 55], but they incur high
repair costs. Thus, many repair-friendly erasure codes have
been proposed. Since single-failure repairs (i.e., repairing a

single lost block of a coding group in degraded reads or a
single failed node in full-node recovery) are the most com-
mon repair scenarios [21, 40], existing repair-friendly erasure
codes aim to minimize the repair bandwidth or I/O in single-
failure repairs. Examples are regenerating codes [14], in-
cluding minimum-storage regenerating (MSR) and minimum-
bandwidth regenerating (MBR) codes, as well as locally re-
pairable codes (LRCs) [21, 23, 44, 49].

Our work focuses on practical erasure codes. In particular,
we target linear codes, which include RS codes, MSR and
MBR codes, as well as LRCs. Linear codes perform linear
coding operations based on the Galois field arithmetic [17].
Mathematically, for an (n,k) code, let d0, · · · ,dk−1 be the k
data blocks, and p0, · · · , pn−k−1 be the n− k parity blocks.
Each parity block p j (0 ≤ j ≤ n− k− 1) can be expressed
as p j = ∑

k−1
i=0 γ jidi, where γ ji is some coding coefficient for

computing p j. Note that the linear operations are additive
associative (i.e., independent of how additions are grouped).

Also, our work addresses sub-packetization, which is used
in various designs of MSR and MBR codes [14, 18, 32, 39, 42,
45,50,52]. Sub-packetization divides each block into smaller-
size sub-blocks, so that repairs can be done by retrieving
sub-blocks rather than whole blocks.

Most DSSs assume that all erasure-coded blocks are im-
mutable and do not support in-place updates. Thus, we focus
on four basic operations: writes, normal reads, degraded
reads, and full-node recovery (§4.2), while we address in-
place updates in future work.

2.2 Limitations of Erasure Coding Management
Modern DSSs now support erasure coding, yet existing era-
sure coding management in such DSSs remains stringent and
still faces practical limitations. To motivate our study, we
review six state-of-the-art DSSs that currently realize erasure-
coded storage: HDFS-RAID [5], HDFS-3 [1], QFS [31],
Tahoe-LAFS [55], Ceph [54], and Swift [7]. HDFS-RAID is
the erasure coding extension of HDFS [46] in the earlier ver-
sion of Hadoop. Here, we focus on Facebook’s HDFS-RAID
implementation [3], which builds on Hadoop version 0.20.
HDFS-3 builds on the newer Hadoop version 3.0, which in-
cludes erasure coding by design. QFS resembles HDFS and
includes erasure coding by design. All HDFS-RAID, HDFS-
3, and QFS organize data in fixed-size blocks. In contrast,
Tahoe-LAFS, Ceph, and Swift organize data in variable-size
objects and partition each object into equal-size data blocks
for erasure coding.

(L1) Limited support for adding advanced erasure codes:
Existing DSSs provide encoding/decoding interfaces for im-
plementing new erasure codes. However, most DSSs do
not provide interfaces for adding erasure codes with sub-
packetization (e.g., MSR and MBR codes [14, 18, 32, 39, 42,
45, 50, 52]) and handling erasure-coded blocks at the granu-
larity of sub-blocks, while only recently Ceph includes the
sub-packetization feature in its master codebase [52]. Also,

332    17th USENIX Conference on File and Storage Technologies USENIX Association

http://adslab.cse.cuhk.edu.hk/software/openec


recent erasure codes [19,38] address the hierarchical nature of
DSSs to reduce cross-rack [19] (or cross-cluster [38]) repair
traffic, yet realizing such hierarchy-aware erasure codes needs
modifications to the DSS workflows.
(L2) Limited configurability for workflows of coding op-
erations: Enabling configurable workflows of coding opera-
tions allows better resource usage within a DSS. Take repairs
(degraded reads or full-node recovery) as an example. DSSs
execute repairs at different entities upon the detection of fail-
ures. For a degraded read, it is executed at the client (in
HDFS-RAID, HDFS-3, QFS, and Tahoe-LAFS), the proxy
(in Swift), or a storage node (in Ceph); for full-node recovery,
it is executed at either storage nodes (in HDFS-RAID, HDFS-
3, QFS, Ceph, and Swift) or the client (in Tahoe-LAFS). Both
degraded reads and full-node recovery operate in a fetch-and-
compute manner, in which the entity that executes the repair
will retrieve available blocks from other non-failed storage
nodes and reconstruct the lost blocks. On the other hand, be-
sides the fetch-and-compute approach, we cannot configure
a DSS to adopt different repair workflows or distribute the
repair loads across storage nodes. For example, recent repair
algorithms [25,29] decompose a single-block repair operation
into partial sub-block repair operations that are parallelized
across storage nodes for better bandwidth usage, but existing
DSSs do not support this feature by design.
(L3) Limited configurability for placement of coding op-
erations: All DSSs we consider ensure that the n erasure-
coded blocks of each coding group are stored in n distinct
storage nodes, and most of them additionally allow config-
urable block placement. For example, both HDFS-RAID and
HDFS-3 provide a base class for configuring block placement
policies; QFS provides an in-rack placement option to store
multiple blocks in a rack; Ceph uses placement groups, while
Swift uses object rings, to control how erasure-coded blocks
are placed in different storage nodes.

However, existing DSSs focus on how erasure-coded
blocks are placed after encoding, but do not specify where
to perform the coding operations. For example, in encod-
ing operations, we may want to co-locate the computations
of parity blocks at one storage node (rather than distribute
the computations across different storage nodes) to limit the
I/Os of retrieving data blocks. Also, the repair algorithms
in [25,29] require some storage nodes that store available data
blocks to first compute partially decoded blocks and send the
results to other storage nodes for further decoding. In this
case, we need to place the partial decoding operations at spe-
cific storage nodes. Such fine-grained placement of coding
operations is currently not supported in existing DSSs.

2.3 Lessons Learned and Goals
The root cause of the limitations in §2.2 is that the current
erasure coding management is tightly coupled with the DSS
workflows. Realizing erasure coding in DSSs needs to ad-
dress how coding operations are performed (i.e., the control

flow) and how erasure-coded blocks are stored and accessed
(i.e., the data flow). The current practice is that erasure coding
designers only define an erasure code and its coding opera-
tions (e.g., the coding coefficients used in coding operations),
while DSS developers require dedicated engineering efforts
to integrate the coding operations into the read/write paths of
DSSs without compromising the correctness of upper-layer
applications. Such tight coupling makes the extensions of
erasure coding features inflexible.

OpenEC decouples erasure coding management from the
underlying DSS by providing a unified and configurable
framework for erasure coding management, such that era-
sure coding designers can leverage OpenEC to realize new
erasure coding solutions and configure the workflows of cod-
ing operations, without worrying how they are integrated into
the DSS workflows. Specifically, OpenEC addresses the
limitations in §2.2 with the following goals: (i) extensibility
of new erasure codes; (ii) configurable workflows of coding
operations; and (iii) configurable placement of both erasure-
coded blocks and coding operations. To achieve these goals,
OpenEC builds on a programming model for erasure coding
management, as elaborated in the following sections.

3 Programming Model
We propose a programming model that allows erasure coding
designers to not only define an erasure code structure and its
coding operations, but also configure how coding operations
are performed in a DSS. We present a new erasure coding
abstraction called an ECDAG (§3.1), followed by three primi-
tives for constructing an ECDAG (§3.2). We then propose a
programming interface for realizing an erasure code based on
the ECDAG abstraction (§3.3).

3.1 ECDAG Overview
At a high level, an ECDAG is a directed acyclic graph that de-
scribes the workflows of coding operations of a coding group
of an erasure code. Each vertex represents a block in the cod-
ing group, and the connections among vertices describe how
vertices are related by linear combinations. To address the
limitations in §2.2, we design ECDAGs to work for general
linear codes (L1 addressed). Also, we can construct different
ECDAGs to configure how and where coding operations are
performed (L2 and L3 addressed, respectively).

Consider a coding group of an (n,k) code with n erasure-
coded blocks; to simplify our discussion, we do not con-
sider sub-packetization first. We index the blocks from 0 to
n−1, and let bi denote the block with index i. Without loss
of generality, we refer to b0, · · · ,bk−1 as k data blocks, and
bk, · · · ,bn−1 as n−k parity blocks. In some cases (see below),
the coding operations may generate some intermediately com-
puted blocks that will not be finally stored (as opposed to
blocks b0,b1, · · · ,bn−1). We call such blocks virtual blocks,
and denote a virtual block by bi′ for some i′ ≥ n.

In an ECDAG, let vi (i≥ 0) be a vertex that maps to block
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Figure 1: Example of an ECDAG for a (5,4) code.
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Figure 2: Example for an ECDAG for a (4,2) code with w = 2.

bi; we call a vertex vi′ (i′ ≥ n) that maps to a virtual block bi′

a virtual vertex. Let ei, j (i, j ≥ 0) be a directed edge from vi
to v j indicating that bi is an input to the linear combination
for computing b j. Each edge is associated with a coding
coefficient for the linear combination. If there exists an edge
ei, j, we say that v j is the parent of vi, while vi is a child of v j.
A vertex can have any number of parents and children.

Both encoding and decoding operations are each associated
with an ECDAG. The ECDAG for encoding is constructed at
the beginning of the encoding operation to describe how data
blocks are linearly combined to form each parity block. In
contrast, the ECDAG for decoding is constructed on demand
depending on what blocks are currently available.

For example, consider a (5,4) code (i.e., (4+1)-RAID-5).
Figure 1(a) shows the ECDAG for the encoding operation,
which states that the parity block b4 is a linear combination
of the four data blocks b0, b1, b2, and b3. Suppose now
that block b0 is lost. Figure 1(b) shows the ECDAG for the
decoding operation for b0, which can be computed from other
available blocks b1, b2, b3, and b4.

We can parallelize partial decoding operations as in PPR
[29] by constructing another ECDAG for decoding b0 (see
Figure 1(c)), in which we first compute in parallel the partially
decoded blocks b5 and b6 (both of which are virtual blocks)
from b1 and b2 and from b3 and b4, respectively, followed
by computing b0 from b5 and b6. This shows that we can
flexibly configure coding operations by constructing different
ECDAGs. Note that PPR needs to compute b5 and b6 at the
storage nodes where data blocks (e.g., b2 and b4, respectively)
are stored (see [29] for details). We address this issue in §3.2.

We can also construct an ECDAG for erasure codes with
sub-packetization. Let w be the number of sub-blocks per
block (w = 1 means no sub-packetization). We index the
sub-blocks of block b0 from 0 to w−1, those of b1 from w
to 2w−1, and so on. Each vertex vi (i≥ 0) now corresponds
to the sub-block with index i, while any vertex vi′ for i′ ≥ nw
is a virtual vertex. For example, consider the (4,2) MISER
code [45] (an MSR code based on interference alignment),
where w = 2. Figure 2(a) shows how the sub-blocks are

void Join(int pidx, vector<int> cidxs, vector<int> coefs);

int BindX(vector<int> idxs);

void BindY(int pidx, int cidx);

Listing 1: Primitives for ECDAG construction.

indexed. Figure 2(b) shows the ECDAG for the encoding
operation, in which the sub-blocks of parity blocks b2 and b3
are computed from the sub-blocks of data blocks b0 and b1.
Suppose that block b0 is lost. Figure 2(c) shows the ECDAG
for decoding b0 based on MISER codes [45], in which we first
compute an encoded sub-block from each of other available
blocks b1, b2, and b3 (represented by the virtual vertices v8,
v9, and v10, respectively), followed by using the encoded
sub-blocks to decode the lost sub-blocks of b0.

3.2 ECDAG Primitives
An ECDAG can be constructed from three primitives: Join,
BindX, and BindY. Join is used for constructing an ECDAG,
while BindX and BindY control the placement of coding
operations. Listing 1 shows their definitions in C++ format.

Join: It specifies how a parent vertex (with index pidx) is
formed by the linear combinations of a list of child vertices
(with indices in cidxs) and the corresponding coding coeffi-
cients (in coefs). For example, we deploy the (6,4) RS code
and encode four data blocks b0, b1, b2, and b3 into two new
parity blocks b4 and b5. We can construct an ECDAG with
Join as follows (see Figure 3(a)):

ECDAG* ecdag = new ECDAG();

ecdag->Join(4, {0,1,2,3}, {1,1,1,1});

ecdag->Join(5, {0,1,2,3}, {1,2,4,8});

BindX: It co-locates the coding operations of multiple ver-
tices (with indices in idxs) that reside at the same level of an
ECDAG (i.e., in the x-direction), so as to reduce I/O in coding
operations. For example, in Figure 3(a), suppose that the data
blocks being encoded are stored in different storage nodes.
Without BindX, we need to compute b4 and b5 separately and
retrieve each data block twice. Instead, we can call BindX on
vertices v4 and v5 to create a new virtual vertex v6 as follows
(see Figure 3(b)):

int vidx = ecdag->BindX({4,5});

This indicates that blocks b4 and b5 are first computed to-
gether at the same storage node before being distributed to
different storage nodes. Now we only need to retrieve each
data block once. Note that the index of v6 (i.e., 6) is generated
randomly and returned as vidx by BindX.

BindY: It co-locates the coding operations of a parent vertex
(with index pidx) and its child vertex (with index cidx) at
different levels (i.e., in the y-direction). Consider the same
example in Figure 3(b) after we call BindX. We can call
BindY on vertices v0 and v6 as follows (see Figure 3(c)):

ecdag->BindY(vidx, 0);
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class ECBase {

int n, k, w; // coding parameters

vector<int> ecoefs; // encoding coefficients

public:

ECDAG* Encode();

ECDAG* Decode(vector<int> from, vector<int> to);

vector<vector<int>> Place();

};

Listing 2: Erasure coding programming interface.

Thus, we compute parity blocks b4 and b5 at the same storage
node that stores b0, thereby saving the I/Os of retrieving b0.

Note that BindY enables us to implement the repair algo-
rithms (e.g., PPR [29] and repair pipelining [25]) that need
to compute partially decoded blocks at the storage nodes that
store the data blocks. For example, referring to Figure 1(c)
for PPR, we can call BindY on v2 and v5, and on v4 and v6, to
co-locate the computations of the partially decoded blocks b4
and b5 at the storage nodes that store b2 and b4, respectively.

Remarks: We provide flexibility for erasure coding designers
to construct any ECDAG using the above three primitives,
yet this also puts burdens on erasure coding designers to
configure coding operations. Nevertheless, OpenEC can
also automatically call BindX and BindY on some specific
subgraph structures of an ECDAG (§4.4).

3.3 Erasure Coding Interfaces
We provide a programming interface for realizing an erasure
code. Unlike the traditional approach that takes data blocks
as input and generates parity blocks, we program an erasure
code through the construction of ECDAGs. OpenEC then
parses the ECDAGs to perform the actual coding operations
and store the erasure-coded blocks.

Listing 2 shows the erasure coding programming interface
as a base class ECBase. To realize an erasure code, we (as
erasure coding designers) inherit ECBase and first define all
necessary member variables (e.g., n, k, w, and encoding coeffi-
cients) in the constructor method as in traditional erasure code
programming. Note that we can store encoding coefficients
in a generator matrix [35] and compute decoding coefficients
later based on the available blocks. We then implement three
functions, namely Encode, Decode, and Place.

Encode: It constructs an ECDAG that describes the encoding
operation. For example, to encode the (6,4) RS code based
on Figure 3(c), we can construct an ECDAG as in Listing 3.

Decode: It constructs an ECDAG that takes the available
blocks (with indices in from) as input and decodes any lost

ECDAG* Encode() {

ECDAG* ecdag = new ECDAG();

ecdag->Join(4, {0,1,2,3}, {1,1,1,1});

ecdag->Join(5, {0,1,2,3}, {1,2,4,8});

int vidx = ecdag->BindX({4,5});

ecdag->BindY(vidx, 0);

return ecdag;

}

Listing 3: Encode function.

ECDAG* Decode(vector<int> from, vector<int> to) {

ECDAG* ecdag = new ECDAG();

vector<int> dcoefs; // decoding coefficients

// compute dcoefs based on the available blocks

ecdag->Join(to[0], from, dcoefs);

return ecdag;

}

Listing 4: Decode function.

vector<vector<int>> Place() {

vector<vector<int>> groups;

for (int i=0; i<n/2; ++i) groups[0].push_back(i);

for (int i=n/2; i<n; ++i) groups[1].push_back(i);

return groups;

}

Listing 5: Place function.

blocks (with indices in to). For example, we can implement
Decode for a single lost block as in Listing 4, in which the
decoding coefficients are computed based on the available
blocks in from. In general, Decode constructs an ECDAG
for one of the two scenarios: (i) decoding one lost block,
in which we can choose an efficient single-failure repair ap-
proach (e.g., see Figure 2(c) for the (4,2) MISER code); or
(ii) decoding multiple lost blocks, in which we can choose
any k available blocks (e.g., the first k blocks in from) to
compute the decoding coefficients and decode all lost blocks.

Place: It configures how erasure-coded blocks are placed
with hierarchy awareness. In addition to storing erasure-
coded blocks in different storage nodes, we can configure how
the blocks are grouped (e.g., in the same rack in rack-based
DSSs). This supports fine-grained block placement configura-
tions as in existing DSSs (§2.2), and allows the realization of
hierarchy-aware erasure codes [19, 38]. For example, we can
divide n erasure-coded blocks into two groups via Place as
in Listing 5. Note that BindX and BindY in ECDAG construc-
tion (§3.2) address the placement of coding operations, while
Place addresses the placement of erasure-coded blocks.

4 OpenEC Design
We design OpenEC to provide erasure coding management
for a DSS. We show its architecture (§4.1) and supported basic
operations (§4.2). We then describe how it parses ECDAGs to
realize coding operations (§4.3). We further show how it au-
tomatically optimizes coding operations (§4.4). We conclude
this section with the implementation details (§4.5).
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4.1 Architectural Overview
OpenEC runs as a middleware system atop a DSS. As a
proof of concept, we design OpenEC atop two implemen-
tations of HDFS [46]: HDFS-RAID [5] and HDFS-3 [1]1.
HDFS (including both HDFS-RAID and HDFS-3) comprises
a NameNode that coordinates the storage in units of blocks
across multiple DataNodes (storage nodes). Figure 4 shows
how OpenEC is integrated into HDFS. OpenEC comprises
a centralized controller, which coordinates multiple agents.
An application interacts with OpenEC via an OECClient.

Controller: The controller parses ECDAGs and instructs all
agents how to perform coding operations and store erasure-
coded blocks. It keeps erasure coding metadata and all
ECDAGs in local disk for persistence. There are three types
of metadata: (i) the information of blocks associated with
each file; (ii) the information of blocks associated with each
coding group; and (iii) the block locations. The controller
interacts with the NameNode in two aspects. First, it accesses
or updates the block locations of the NameNode to configure
the placement of blocks. Second, it receives the reports of
lost blocks from the NameNode and coordinates the repair
operations among the agents.

We assume that the controller is reliable (i.e., no single-
point-of-failure). Our measurements show that the controller
can serve a request of parsing an ECDAG for coding opera-
tions in less than 0.3 ms in our local cluster (§5), and hence it
incurs limited overhead to basic operations.

Agent: Each agent performs coding operations as instructed
by the controller. It accesses the erasure-coded blocks in
HDFS through the HDFS client interface. Note that agents
can communicate among themselves to perform coding op-
erations and exchange erasure-coded blocks. We currently
deploy each agent at a DataNode, so that the agent can access
the local storage of the DataNode without network transfers.

OECClient: Each OECClient is associated with an agent,
and serves as an interface between an upper-layer applica-
tion and the agent. It connects to the agent via Redis-based
communication (§4.5). An application now accesses HDFS
through an OECClient instead of an HDFS client.

1We also implement OpenEC atop QFS [31]. See [27] for details.

4.2 Basic Operations
OpenEC supports four basic operations: (i) writes; (ii) nor-
mal reads; (iii) degraded reads; and (iv) full-node recovery.
Writes: Note that HDFS-3 supports online encoding (i.e.,
clients perform encoding on the write path), while HDFS-
RAID supports offline encoding (i.e., clients first write the
data blocks in uncoded form, and the data blocks are later
encoded in the background). OpenEC is currently designed
to support both online and offline encoding. An OECClient
specifies which encoding mode to use in a write request. For
online encoding, OpenEC encodes data on a per-file basis.
When an OECClient writes a file, its agent encodes every k
data blocks into n− k parity blocks and writes the n erasure-
coded blocks to n DataNodes through the HDFS client. For
offline encoding, an OECClient first writes file data via its
agent to HDFS. When OpenEC receives an encoding request,
the controller parses the specified ECDAG (§4.3) and instructs
all agents to perform encoding, such that every k blocks are
encoded into n erasure-coded blocks as a coding group.
Normal reads: An OECClient issues normal reads (under no
failures) via its agent, which connects to the DataNodes that
store the uncoded data blocks and retrieves the data blocks
from the DataNodes.
Degraded reads: An OECClient issues degraded reads (un-
der failures) via its agent, which connects to non-failed DataN-
odes and retrieves the available blocks for decoding the lost
blocks based on the ECDAG specification.
Full-node recovery: The controller coordinates the full-node
recovery operation. When it receives a report of lost blocks
from the NameNode, it informs the agents to repair the lost
blocks based on the ECDAG specification.

4.3 Parsing an ECDAG
OpenEC parses ECDAGs to perform coding operations in
writes (online or offline encoding), degraded reads, and full-
node recovery. Given an ECDAG, OpenEC decomposes a
coding operation into multiple tasks, each of which is exe-
cuted by an agent. Each task operates in blocks (or sub-blocks
in sub-packetization). There are four types of tasks:

• Load: It loads a block into memory from the agent’s input
stream, which could be either the OECClient if the block
is from upper-layer applications, or the HDFS client if the
block is from HDFS.

• Fetch: It retrieves blocks from other agents.
• Compute: It computes a block based on the linear combi-

nation of blocks and coding coefficients.
• Persist: It either writes a block to HDFS via the HDFS

client, or returns the block to an OECClient.

Parsing procedure: OpenEC performs topological sorting
of an ECDAG (based on depth-first search) to identify the
vertex sequence of coding operations. It then assigns tasks to
each vertex based on the ECDAG structure. Depending on the
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Vertices Nodes Tasks
v0 C Load b0
v1 C Load b1
v2 C Load b2
v3 C Load b3

v6 C

Compute b4 from {b0, b1, b2, b3} with
coding coefficients {1,1,1,1};

Compute b5 from {b0, b1, b2, b3} with
coding coefficients {1,2,4,8}

v4 C –
v5 C –

– C
Persist b0; Persist b1; Persist b2;
Persist b3; Persist b4; Persist b5

(a) Online encoding

Vertices Nodes Tasks
v0 N0 Load b0
v1 N1 Load b1
v2 N2 Load b2
v3 N3 Load b3

v6 N0

Fetch b1 from N1;
Fetch b2 from N2;
Fetch b3 from N3;
Compute b4 from {b0, b1, b2, b3} with

coding coefficients {1,1,1,1};
Compute b5 from {b0, b1, b2, b3} with

coding coefficients {1,2,4,8}
v4 N4 Fetch b4 from N0; Persist b4
v5 N5 Fetch b5 from N0; Persist b5

(b) Offline encoding

Table 1: Vertex sequence of coding operations, including the nodes
that are responsible for processing the vertices as well as the tasks
that are performed.

types of basic operations, OpenEC may perform coding op-
erations on the client side (for online encoding and degraded
reads) or distribute the coding operations across storage nodes
(for offline encoding and full-node recovery).

OpenEC associates tasks with different types of vertices.
At a high level, the Load task is associated with a vertex with-
out any child; the Fetch task is associated with a parent vertex
that has a child vertex; the Compute task is associated with a
vertex with more than one child for the linear combination;
the Persist task is associated with a vertex without any parent,
while it is also associated with a vertex without any child in
the case of online encoding (see the example below).
Example: We show the parsing procedure via an example.
Suppose that we encode four data blocks (i.e., b0, b1, b2,
and b3) to generate two parity blocks (i.e., b4 and b5) using
the (6,4) RS code, based on the ECDAG in Figure 3(c) and
the Encode function in Listing 3. Table 1 shows the vertex
sequence of tasks for both online and offline encoding.

For online encoding (see Table 1(a)), the client-side agent
(denoted by C) performs all coding operations. It finally
persists all data blocks and parity blocks into HDFS.

For offline encoding (see Table 1(b)), OpenEC distributes

the coding operations across storage nodes. To elaborate,
suppose that bi is stored in storage node Ni, for 0 ≤ i ≤ 5.
First, since v0, v1, v2, and v3 have no child, OpenEC creates
tasks for the agents in storage nodes N0, N1, N2, and N3 to
load the blocks b0, b1, b2, and b3, respectively, from HDFS
(via HDFS clients) into memory. Second, since vertex v6 is
created from BindX on vertices v4 and v5, OpenEC computes
both b4 and b5 from the blocks in the child vertices (i.e., b0,
b1, b2, and b3). Also, since BindY is called on v6 and v0,
OpenEC assigns the tasks of v6 to the agent in N0. Finally,
v4 and v5 retrieve blocks b4 and b5 from v6, respectively.
Since v4 and v5 have no parent and are the last vertices in the
topological order, they persist the blocks to HDFS.

Note that OpenEC can parallelize the coding operations
on the vertices that have no dependencies on others. For
example, OpenEC can simultaneously execute the tasks for
v0, v1, v2, and v3, and similarly the tasks for v4 and v5.

4.4 Automated Optimizations
In addition to letting erasure coding designers construct
ECDAGs, OpenEC can automatically customize ECDAGs
for performance optimizations to save manual configuration
efforts. We address this in two aspects.
Automated BindX and BindY: OpenEC can automatically
call BindX and BindY for some specific subgraph structures
of an ECDAG. For BindX, OpenEC examines all parent
vertices that have more than one child vertex in an ECDAG.
If multiple parent vertices have the same set of child vertices,
OpenEC calls BindX on those parent vertices (e.g., v4 and
v5 in Figure 3(b)). For BindY, for any parent vertex (with one
or more child vertices), OpenEC calls BindY on the parent
vertex and any one of the child vertices (e.g., the parent vertex
v6 and the child vertex v0 in Figure 3(c)).
Hierarchy awareness: OpenEC can further enhance the re-
pair performance based on the physical DSS topology. One
scenario is that a DSS hierarchically organizes storage nodes
in racks [19] (or clusters [38]), such that the cross-rack band-
width is much more constrained than the inner-rack band-
width. OpenEC can transform an ECDAG into a pipelined
ECDAG, so as to mitigate the cross-rack traffic. Our idea
is based on repair pipelining [25], which pipelines partial
coding operations across multiple storage nodes. We addition-
ally perform all partial coding operations within a rack before
sending the partial coding results to another rack. To illustrate,
suppose that we deploy an (n,k) RS code with k = 6. We
want to repair a lost block b0 from six other available blocks
b1, b2, b3, b4, b5, and b6, such that blocks b1, b3, and b5 are
in one rack, while blocks b2, b4, and b6 are in another rack.
We also want to store the reconstructed block b0 at the same
rack as b2, b4, and b6. The conventional repair approach is to
retrieve all six available blocks and construct an ECDAG as
in Figure 5(a). Then we need to transfer three blocks (i.e., b1,
b3, and b5) across racks. Instead, OpenEC can automatically
construct another ECDAG as in Figure 5(b), in which it first
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Figure 5: Example of constructing a pipelined ECDAG; vertices of
the same color mean that their blocks are in the same rack.

computes the partially decoded block b8 (corresponding to
vertex v8) based on b1, b3, and b5 in the same rack, followed
by combining b8 with b0, b2, and b4 in another rack to recon-
struct block b0. In this case, we only need to transfer one
block (i.e., b8) across racks.

4.5 Implementation
We implement an OpenEC prototype in C++ with around 7K
LoC. We use Intel’s Intelligent Storage Acceleration Library
(ISA-L) [6] to implement erasure coding functionalities. Here,
we highlight several implementation details of OpenEC.
From blocks to packets: OpenEC performs coding opera-
tions in units of packets to improve performance, while the
read/write operations are still in units of blocks (§2.1). By
default, the packet size is 128 KiB. For encoding (both online
and offline), OpenEC writes n erasure-coded packets to n
DataNodes; in the case of sub-packetization, each packet is
divided into sub-packets. If a DataNode receives an amount
of packet data equal to the HDFS block size (64 MiB by de-
fault), it seals the block and stores additional packets in a
different block. The n sealed erasure-coded blocks then form
a coding group. Note that while OpenEC is sending packets
to DataNodes, it can start encoding for the next group of pack-
ets. Thus, both the sending and encoding operations can be
done in parallel. Similarly, OpenEC performs decoding (for
degraded reads and full-node recovery) at the packet level.

As OpenEC performs packet-level coding operations, the
block layouts differ in online and offline encoding. For online
encoding, OpenEC adopts a striped layout as in HDFS-3 [4],
as it stripes file data across blocks at the granularities of
packets. For offline encoding, OpenEC adopts a contiguous
layout, as the file data is first stored in a block before encoding.
Figure 6 depicts both block layouts.
Internal communication: OpenEC uses Redis [8] for inter-
nal communications among the controller, agents, and OEC-
Client. Each agent maintains a local in-memory key-value
Redis store. The controller sends the task instructions of
coding operations to an agent via the Redis client, and the
task instructions are buffered at the agent for subsequent pro-
cessing. Agent-to-agent communications are pull-based via
the Fetch tasks (§4.3), such that the sender agent buffers the
blocks to be sent in its local Redis store, and the receiver
fetches the buffer via the Redis client. Each OECClient also
communicates with its associated agent via Redis.
Integration: We integrate OpenEC into HDFS-RAID and
HDFS-3 as follows. We realize a new block placement policy
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Figure 6: Block layouts for the (6,4) RS code. Suppose that each
block stores four packets. We partition file data into 16 packets,
ordered as p0, p1, · · ·, and p15. We place the packets across k = 4
blocks. Packets at the same offset (e.g., in dashed boxes) are encoded
together. In sub-packetization, each packet is further divided into
sub-packets for encoding.

called BlockPlacementPolicyOEC, which redirects block
placement requests to the controller to manage erasure-coded
block placement. We also modify the FSNamesystem class
in HDFS-RAID and the BlockManager class in HDFS-3 to
redirect any lost block information to the controller so that
OpenEC manages repair operations. Note that our integra-
tions into HDFS-RAID and HDFS-3 only require limited
modifications to their codebases, with around 300 LoC and
450 LoC, respectively2.

5 Evaluation
We conduct testbed experiments on OpenEC. We summarize
our major findings on OpenEC: (i) it preserves the perfor-
mance of HDFS-RAID and HDFS-3 in erasure coding deploy-
ment (§5.2); (ii) it supports various state-of-the-art erasure
coding solutions and preserves their properties, especially in
network-bound environments (§5.3); (iii) it can automatically
optimize the repair performance for a hierarchical topology
(§5.4); and (iv) it achieves scalable performance in real cloud
environments (§5.5).

5.1 Setup
Testbeds: We evaluate OpenEC on both a local cluster (§5.2-
§5.4) and Amazon EC2 (§5.5). Our local cluster testbed com-
prises 16 machines, each of which has a quad-core 3.4 GHz In-
tel Core i5-3570, 16 GiB RAM, and a Seagate ST1000DM003
7200 RPM 1 TiB SATA hard disk. All machines are intercon-
nected via a 10 Gb/s Ethernet switch. On the other hand,
our Amazon EC2 testbed comprises 30 instances of type
m5.xlarge, connected via a 10 Gb/s network, in the US
East (North Virginia) region. Each instance has four vCPUs
with Intel AVX-512 instruction sets and 16 GiB RAM. Both
testbeds support optimized coding operations based on ISA-L.
Default setup: We set the HDFS block size as 64 MiB and
the packet size for erasure coding as 128 KiB. We set HDFS-3

2We compare the amounts of code changes in OpenEC with those in our
previously built prototypes CORE [26] and DoubleR [19], both of which
modify HDFS-RAID to realize new erasure codes. Excluding the implemen-
tation of erasure codes (e.g., coding operations), CORE and DoubleR make
around 2,300 LoC and 4,100 LoC of changes to the HDFS-RAID codebase
for the integration of erasure codes, respectively.

338    17th USENIX Conference on File and Storage Technologies USENIX Association



33
4.

9
34

3

62
9.

2
61

1.
9

59
9.

1
57

3.
8

0

200

400

600

800

Write Normal
Read

Degraded
Read

Th
pt

 (M
iB

/s
)

HDFS-3 OpenEC

8
2

7
.5

8
4

4

1
1

8
5

.4

1
0

5
0

.4

1
1

3
2

.2

1
0

3
9

0

500

1000

1500

2000

Write Normal
Read

Degraded
Read

T
h

p
t 

(M
iB

/s
)

HDFS-3 OpenEC

1
4

8
4

.5

6
2

4
.9

3
0

8
.3

2
8

5
.6

0

500

1000

1500

2000

Offline
Encoding

Full-node
Recovery

T
h

p
t 

(M
iB

/s
)

HDFS-RAID

OpenEC

0

200

400

600

800

1 2 4 8 16 32 64
File Size (MiB)

T
h

p
t 

(M
iB

/s
)

Online (Normal)
Offline (Normal)
Online (Degraded)
Offline (Degraded)

(a) Online (single client) (b) Online (multiple clients) (c) Offline (d) Online vs. offline

Figure 7: Performance of basic operations in online and offline encoding.

as the default DSS for OpenEC, except when we compare
OpenEC with HDFS-RAID. Regarding the automated opti-
mization features (§4.4), our experiments enable automated
BindX and BindY, except when we evaluate the original per-
formance of erasure codes without OpenEC optimization in
§5.3 and when we evaluate BindX and BindY in §5.4. We
also disable hierarchy-aware repairs until we evaluate this
feature in §5.4. We assign a dedicated machine to serve both
the OpenEC controller and the HDFS NameNode, while
each remaining machine serves an OECClient, an OpenEC
agent, an HDFS client, and an HDFS DataNode. We plot the
average results over 10 runs, including the error bars showing
the maximum and minimum of the 10 runs.

5.2 Performance of Basic Operations
We compare OpenEC with HDFS-RAID and HDFS-3 in
terms of basic operations using our local cluster. As OpenEC
adds another software layer between upper-layer applications
and the underlying DSS, it may incur extra overhead. We
show that such overhead (if any) is limited; in some cases,
OpenEC even significantly improves performance. We also
compare OpenEC with native coding performance and eval-
uate its performance for different block and packet sizes.

Single-client performance in online encoding: We first
compare the single-client performance between HDFS-3 and
OpenEC, both of which are configured with online encoding
to generate erasure-coded data. Here, we use the (9,6) RS
code (as in QFS [31]). We first write a file of size 384 MiB
(i.e., six times the block size), and issue a normal read to the
file without failures. We also issue a degraded read to the file
with one data block deleted. Figure 7(a) shows the through-
put results of writes, normal reads, and degraded reads. Both
OpenEC and HDFS-3 have similar performance: OpenEC’s
throughput is slightly less than HDFS-3’s by 2.36% in writes,
and is slightly higher than HDFS-3’s by 2.83% and 4.41% in
normal reads and degraded reads, respectively.

Multi-client performance in online encoding: We compare
the multi-client performance between HDFS-3 and OpenEC.
We run a total of five clients, each of which writes a file of
size 384 MiB under the (9,6) RS code. Figure 7(b) shows
the aggregate throughput of all five clients in writes, normal
reads, and degraded reads. OpenEC has lower aggregate

throughput than HDFS-3 in writes by 1.95%, but higher ag-
gregate throughput in normal reads and degraded reads by
12.9% and 8.97%, respectively. Nevertheless, considering the
error bars in the figure, we do not see significant performance
differences between OpenEC and HDFS-3.

Offline encoding: We compare the performance between
HDFS-RAID and OpenEC in offline encoding. We now
deploy OpenEC on HDFS-RAID for fair comparisons. We
write 180 blocks, and use offline encoding to generate erasure-
coded blocks using the (9,6) RS code (i.e., a total of 30 cod-
ing groups). We then delete the blocks of one storage node
and trigger full-node recovery. Here, we measure the offline
encoding throughput (i.e., the amount of input data being
encoded per unit time) and the full-node recovery through-
put (i.e., the amount of lost data being recovered per unit
time). Note that HDFS-RAID performs offline encoding and
full-node recovery via MapReduce. To exclude the MapRe-
duce startup overhead in our evaluation, we start an empty
MapReduce job to measure its latency, and subtract this la-
tency (which is around 20 s) in our evaluation of HDFS-RAID.
Note that OpenEC does not use MapReduce in offline encod-
ing and full-node recovery.

Figure 7(c) shows the results. Interestingly, OpenEC in-
creases the offline encoding throughput of HDFS-RAID by
137%. We study the HDFS-RAID source code and find that
the performance difference is mainly due to the extra step
of HDFS-RAID in reading and re-writing all parity blocks
into a single HDFS file after parity regeneration. For full-
node recovery, OpenEC has slightly higher throughput than
HDFS-RAID by 7.9%, yet the two systems have limited dif-
ferences considering the error bars.

Online vs. offline encoding: We further compare online and
offline encoding in OpenEC versus the file size, and study the
performance difference between the striped layout (in online
encoding) and the contiguous layout (in offline encoding). We
deploy OpenEC atop HDFS-3, and show that it allows both
online and offline encoding atop HDFS-3 (which currently
supports online encoding only).

We consider the single-client performance, in which a
client uses the (12,8) RS code and writes a file of size ranging
from 1 MiB to 64 MiB (assuming that the file size is divisi-
ble by eight). For online encoding, OpenEC stripes the file
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Figure 8: Comparisons with native coding operations.

in packets across eight blocks and seals the blocks after the
file write is completed (note that each block is less than the
default block size 64 MiB); for offline encoding, OpenEC
stores the file in a block and later encodes it with seven other
blocks (§4.2). We compare their performance in a normal
read (without failures) and a degraded read (with one data
block deleted) to the file; in offline encoding, we delete the
data block that stores the file in our degraded read evaluation.

Figure 7(d) shows the results. The throughput increases
with the file size, since the data transfer performance becomes
more dominant as the blocks become larger. We also see
the performance differences in online and offline encoding.
In online encoding, both normal reads and degraded reads
show similar performance, in which the client issues reads
to eight blocks in parallel. In offline encoding, its normal
read throughput is much higher than that in online encoding
(by 44-718%), as any slowdown in one of the parallel reads
to online-encoded data can degrade the overall performance.
However, the degraded read throughput in offline encoding is
much less than that in online encoding especially for larger file
sizes, as it needs to retrieve eight blocks (i.e., seven additional
blocks over the original file) to recover the file. To validate
our results, we conduct similar experiments using the original
erasure coding implementations in HDFS-3 and HDFS-RAID
(which realize online and offline encoding, respectively) and
they show similar performance differences as in OpenEC
(we omit the results here in the interest of space).

Comparisons with native coding operations: We compare
the computational performance of the ECDAG-based coding
operations with that of the native coding operations using ISA-
L in HDFS-3. Figure 8(a) shows the encoding throughput
for k 64-MiB blocks under (n,k) RS codes. ECDAG-based
encoding has 29-38% lower throughput than native encod-
ing, mainly because there is additional overhead for creating
multiple compute tasks for computing the n− k parity blocks.
Figure 8(b) shows the decoding throughput for decoding one
block, in which ECDAG-based decoding has only slightly less
throughput (by 0.6-3.2%) than native decoding, as there is
only one compute task for decoding a single block. Neverthe-
less, compared to the overall read/write operations (Figure 7),
the computations of ECDAG-based coding are much faster
and incur limited overhead.
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Figure 9: Impact of block and packet sizes.

Impact of block and packet sizes: We study how the perfor-
mance of OpenEC varies with block and packet sizes. We
focus on the single-client throughput of online encoding and
degraded reads under the (9,6) RS codes as in §5.2. Fig-
ure 9(a) shows the throughput versus the block size, where
the packet size is fixed as 128 KiB. The throughput of both op-
erations increases with the block size as the disk and network
bandwidths are better utilized, and stabilizes when the block
size is at least 64 MiB. Figure 9(b) shows the throughput ver-
sus the packet size, where the block size is fixed as 64 MiB.
The performance degrades if the packet size is too small since
there are many function calls for retrieving individual packets,
or if the packet size is too large since there is less parallelism.
To achieve high performance, our default setup chooses the
block size as 64 MiB and the packet size as 128 KiB.

5.3 Support of Erasure Coding Designs
We realize several state-of-the-art repair-friendly erasure cod-
ing solutions based on the ECDAG abstraction. Recall from
§2.1 that existing repair-friendly codes are designed to min-
imize the repair bandwidth or I/O in single-failure repairs.
Thus, we focus on evaluating their performance of repairing
one lost block in a coding group under OpenEC. We config-
ure two bandwidth settings in our local cluster: 1 Gb/s and
10 Gb/s. For the 1 Gb/s case, network transfer becomes the
bottleneck (compared to coding computations and disk I/O),
and we expect that the empirical performance conforms to
the theoretical gains.

We use the conventional repair approach of RS codes as
our baseline, in which it retrieves k blocks from k non-failed
DataNodes to decode the lost block in a fetch-and-compute
manner (§2.2). We compare the conventional repair approach
with the following solutions:

• LRC (Figure 10(a)): We compare RS codes with Azure’s
LRC [21]. For RS codes, we set (n,k) = (9,6); for LRC,
we set (n,k) = (10,6), in which there are two local parity
blocks, each of which is encoded from a local group of
three data blocks, and two global parity blocks that are
encoded from all six data blocks.

• MSR codes (Figure 10(b)): We compare RS codes with
MSR codes [14], which leverage sub-packetization to min-
imize the repair bandwidth. We focus on two variants of
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Figure 10: Support of erasure coding designs.

LRC (10,6)
vs. RS (9,6)

Butterfly (6,4)
vs. RS (6,4)

MISER (8,4)
vs. RS (6,4)

PPR (9,6)
vs. RS (9,6)

Pipeline (9,6)
vs. RS (9,6)

DRC (6,4)
vs. RS (6,4)

DRC (9,6)
vs. RS (9,6)

Gain 2× 1.6× 2.28× 2× 6× 1.5× 2×

Table 2: Theoretical gains of state-of-the-art erasure codes or repair algorithms over the conventional repair of RS codes.

MSR codes: MISER codes [45] (which require n ≥ 2k)
and Butterfly codes [32] (which require n = k+ 2). We
consider the (6,4) RS code, the (6,4) Butterfly code, and
the (8,4) MISER code.

• Repair algorithms (Figure 10(c)): We study how the
repair algorithms, namely PPR [29] and repair pipelin-
ing [25], improve the repair performance of RS codes by
parallelizing partial repair operations. We compare them
with the conventional repair under the (9,6) RS code.
• Double Regenerating Codes (DRC) (Figure 10(d)): We

compare RS codes with DRC [19] in a hierarchical net-
work setting. We divide our local cluster into three logical
racks. We use the Linux tc command to limit the band-
width between any two storage nodes at different logical
racks as 1 Gb/s [44], while the bandwidth between any two
storage nodes within the same logical rack remains 10 Gb/s.
We compare RS codes and DRC under (n,k) = (6,4) and
(n,k) = (9,6). In both cases, we distribute the erasure-
coded blocks of each coding group evenly across different
nodes in three racks (with n/3 erasure-coded blocks each).

Figure 10 shows the results; for our comparisons, Table 2
also shows the theoretical throughput gains of the erasure
coding solutions over the conventional repair approach for
RS codes. For the 1 Gb/s network, we observe that the em-
pirical throughput gains of the erasure coding solutions are
consistent (with only slight degradations) with the theoretical
throughput gains. For the 10 Gb/s network, the empirical
gains decrease since the coding computation and disk I/O
overheads become more significant. For example, MISER
codes have less throughput than Butterfly codes in the 10 Gb/s
network; the throughput gain of MISER codes drops to 1.25×,
while that of Butterfly codes drops to 1.35× (Figure 10(b)).
The reason is that both MSR codes retrieve data from n−1
non-failed storage nodes for repairs, and MISER codes con-
nect to more storage nodes than Butterfly codes (seven versus
five) and incur higher disk I/O overhead. Overall, OpenEC
preserves the properties of the erasure coding solutions.

5.4 Improvements with Automated Optimizations
We now evaluate how OpenEC achieves performance gains
via automated optimizations (§4.4) for a hierarchical topology.
We again configure a three-rack logical topology in our local
cluster as in our DRC experiments in §5.3.

We first compare the offline encoding performance for
three configurations: (i) automated optimization is disabled,
(ii) only automated BindX is enabled, and (iii) both auto-
mated BindX and BindY are enabled (our default setting).
We consider the (8,6), (10,8), and (12,10) RS codes. We
measure the throughput of offline encoding by writing 30
coding groups of blocks into HDFS-3 via OpenEC, which
evenly distributes the blocks across three racks. Figure 11(a)
shows that enabling only BindX increases the throughput by
37-42%, while enabling both BindX and BindY increases the
throughput by 38-44%.

We also evaluate how OpenEC automatically improves
the repair performance via the construction of a pipelined
ECDAG. We delete all blocks of one storage node and trigger
full-node recovery on the same node. Figure 11(b) shows
that the repair optimization increases the repair throughput of
OpenEC by 82-128%.

5.5 Performance in Amazon EC2
We finally evaluate OpenEC in Amazon EC2. We configure
three settings with N instances, where N = 10, 20, and 30 (see
§5.1 for the instance type). One instance hosts the OpenEC
controller and the HDFS NameNode, and each of the remain-
ing N−1 instances hosts an OECClient, an OpenEC agent,
an HDFS client, and an HDFS DataNode. We consider the
(9,6) RS code, and all N−1 clients issue different basic oper-
ations as in §5.2. Figure 12 shows the results when OpenEC
realizes online and offline encoding atop HDFS-3. We ob-
serve consistent throughput patterns as in our local cluster
experiments in §5.2 (e.g., both normal reads and degraded
reads have similar throughput). Also, the performance of
OpenEC scales well with the number of instances.
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Figure 12: Performance in Amazon EC2.

6 Related work
New erasure coding solutions: RS codes [43] are widely
deployed today (e.g., [5, 7, 15, 31, 54, 55]), mainly for two
reasons. First, RS codes are maximum distance separable
(MDS), meaning that under the coding parameters (n,k), the
fault tolerance against n− k block failures is achieved with
the minimum storage redundancy (i.e., n/k times the original
data). Second, RS codes support general coding parameters
n and k (provided that k < n). However, RS codes have high
repair costs, and hence many new erasure coding solutions
have been proposed to reduce the repair bandwidth or I/O.

One direction of research is to design new erasure codes.
Minimum-storage regenerating (MSR) codes [14] minimize
the repair bandwidth and preserve the MDS property. Follow-
up studies design new MSR codes [18, 32, 39, 42, 45, 50, 52],
some of which are evaluated in open-source DSSs (e.g., PM-
RBT codes [39] are evaluated in HDFS, while Butterfly [32]
and Clay [52] codes are evaluated in Ceph). Aside MSR
codes, some MDS codes incur slightly more repair bandwidth
than the minimum point but can be easily constructed with
any (n,k) (e.g., [24,41]), while some non-MDS erasure codes
trade more storage redundancy than MDS codes for less repair
I/O (e.g., [21–23, 33, 44, 49]). DRC [19] minimizes the cross-
rack repair bandwidth in hierarchical topologies.

Another direction of research is to design efficient repair
algorithms that apply to general erasure codes. Lazy re-
pair [11, 47] reduces repair executions by deferring a repair
until a threshold number of failures occurs. PPR [29] and
repair pipelining [25] parallelize a single-failure repair across
storage nodes. Proactive degraded reads [20] mitigate tail

latencies via the load balancing of read requests.
Unlike the above studies, OpenEC targets a different per-

spective and focuses on unified and configurable erasure cod-
ing management. It supports different new erasure codes and
repair algorithms in a unified framework.
Erasure coding programming: Several open-source li-
braries are available for erasure coding programming. Zfec
[10] implements RS codes and is used by Tahoe-LAFS [55].
Jerasure [36] is a C library that supports various erasure
codes. It is later extended with GF-Complete [34] to en-
able fast Galois Field arithmetic. ISA-L [6] is another C
library that supports various erasure codes, and it optimizes
Galois Field arithmetic for Intel hardware. Both Jerasure and
ISA-L libraries are widely used in production (e.g., Ceph and
Hadoop 3.0). PyEClib [9] is a Python library used by Open-
Stack Swift. It builds on liberasurecode [2], which unifies
different erasure coding libraries including both Jerasure and
ISA-L. OpenEC emphasizes the deployment of erasure codes
in DSSs, and it can leverage the above libraries to implement
erasure codes via the ECDAG abstraction.
Configurable storage: There is an increasing demand of
providing flexibility for storage system management and con-
figuring different storage policies based on application re-
quirements. Existing approaches rely on either client-side
customization [12, 13, 28, 37] or the coordination by a cen-
tralized controller under the software-defined storage (SDS)
framework [16, 48, 51]. OpenEC borrows the same principle
from SDS, but specifically focuses on configurable erasure
coding management in distributed environments.

7 Conclusions and Future Work
This paper presents OpenEC, a new framework that pro-
vides unified and configurable erasure coding management
for distributed storage. It leverages the ECDAG abstraction to
define erasure codes and configure the workflows of coding
operations. Our OpenEC prototype achieves effective per-
formance atop HDFS in both local cluster and Amazon EC2
environments, while supporting a variety of state-of-the-art
erasure codes and repair algorithms. Our work sheds light on
how to facilitate erasure coding designers to deploy erasure
coding solutions in a simple and flexible manner.

This paper currently focuses on HDFS, which organizes
data in fixed-size blocks. Our technical report [27] also de-
scribes how we integrate OpenEC into QFS [31]. In future
work, we study how OpenEC can be deployed in other DSSs,
especially object-storage-based DSSs (e.g., Ceph and Swift)
that organize data in variable-size objects.
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Cluster storage systems gotta have HeART:
improving storage efficiency by exploiting disk-reliability heterogeneity

Saurabh Kadekodi, K. V. Rashmi, Gregory R. Ganger
Carnegie Mellon University

Abstract
Large-scale cluster storage systems typically consist of

a heterogeneous mix of storage devices with significantly
varying failure rates. Despite such differences among de-
vices, redundancy settings are generally configured in a one-
scheme-for-all fashion. In this paper, we make a case for
exploiting reliability heterogeneity to tailor redundancy set-
tings to different device groups. We present HeART, an
online tuning tool that guides selection of, and transitions
between redundancy settings for long-term data reliability,
based on observed reliability properties of each disk group.
By processing disk failure data over time, HeART identifies
the boundaries and steady-state failure rate for each deployed
disk group (e.g., by make/model). Using this information,
HeART suggests the most space-efficient redundancy option
allowed that will achieve the specified target data reliability.
Analysis of longitudinal failure data for a large production
storage cluster shows the robustness of HeART’s failure-rate
determination algorithms. The same analysis shows that a
storage system guided by HeART could provide target data
reliability levels with fewer disks than one-scheme-for-all
approaches: 11–16% fewer compared to erasure codes like
10-of-14 or 6-of-9 and 33% fewer compared to 3-way repli-
cation.

1 Introduction
Large cluster storage systems almost always include a het-

erogeneous mix of storage devices, even when using devices
that are all of the same type (e.g., Flash SSDs or mechani-
cal HDDs). Commonly, this heterogeneity arises from incre-
mental deployment combined with per-acquisition optimiza-
tion of which make/model to acquire, such as targeting the
lowest cost-per-byte option available at the time. As a re-
sult, a given cluster storage system can easily include several
makes/models, each in substantial quantity.

Beyond performance and capacity differences, different
makes/models can also have substantially different reliabil-
ities. For example, Fig. 1 shows the average annualized
failure rates (AFRs) during the useful life (stable operation

Figure 1: Annualized failure rate (AFR) for the six disk groups
that make up >90% of the 100,000+ HDDs used for the Backblaze
backup service [5]. Details of each disk group are given in Sec-
tion 2.

period) for the 6 HDD make/model-based disk groups that
make up more than 90% of the cluster storage system (with
100,000+ disks) used for the Backblaze backup service [5].
The highest failure rate is over 3.5⇥ greater than the low-
est, and no two are the same. Schroeder et al. [32] recently
showed that different Flash SSD makes/models similarly ex-
hibit substantial failure rate differences.

Despite such differences, the degree of redundancy em-
ployed in cluster storage systems for the purpose of long
term data reliability (e.g., the degree of replication or erasure
code parameters) is generally configured as if all of the de-
vices have the same reliability. Unfortunately, this approach
leads to configurations that are overly resource-consuming,
overly risky, or a mix of the two. For example, if the redun-
dancy settings are configured to achieve a given data reliabil-
ity target (e.g., a specific mean time to data loss (MT T DL))
based on the highest AFR of any device make/model (e.g.,
S-4 from Fig. 1), then too much space will be used for re-
dundancy associated with data that is stored fully on lower
AFR makes/models (e.g., H-4A). Continuing this example,
our evaluations show that the overall wasted capacity can
be up to 16% compared to uniform use of erasure code set-
tings stated as being used in real large-scale storage clus-
ters [13, 25, 26, 28] and up to 33% compared to using 3-
replication for all data—the direct consequence is increased
cost, as more disks are needed. If redundancy settings for
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all data are based on lower AFRs, on the other hand, then
data stored fully on higher-AFR devices is not sufficiently
protected to achieve the data reliability target.

This paper presents HeART (Heterogeneity-Aware Re-
dundancy Tuner), an online tool for guiding exploitation of
reliability heterogeneity among disks to reduce the space
overhead (and hence the cost) of data reliability. HeART
uses failure data observed over time to empirically quantify
each disk group’s reliability characteristics and determine
minimum-capacity redundancy settings that achieve speci-
fied target data reliability levels. For the Backblaze dataset
of 100,000+ HDDs over 5 years, our analysis shows that us-
ing HeART’s settings could achieve data reliability targets
with 11–33% fewer HDDs, depending on the baseline one-
scheme-for-all settings. Even when the baseline scheme is a
10-of-14 erasure code whose space-overhead is already low,
HeART further reduces disk space used by up to 14%.

Online (real-time) use of observed device reliability re-
quires careful design. HeART uses robust statistical ap-
proaches to identify not only a steady-state AFR estimate
for each disk group, but also the transitions between deploy-
ment stages: infancy!useful life!wearout, as in bathtub
curve visualizations. HeART assumes that administrators
have a baseline redundancy configuration that would be used
in HeART’s absence; that same configuration should be used
for a disk group, when it is initially deployed. HeART pro-
cesses failure data for that disk group, during this initial pe-
riod of 3–5 months, to determine both when infancy ends
and a conservative AFR estimate for the useful life period.
It also suggests the most space-efficient redundancy settings
supported by the storage system that will achieve the speci-
fied data reliability target.

Naturally, the useful life period does not last forever.
HeART continues to process failure data for each disk group,
automatically identifying the onset of the wearout period. At
this point, a transition to more conservative redundancy (e.g.,
the original baseline), and possibly decommisioning, is war-
ranted. Importantly, HeART distinguishes between anoma-
lous failure occurrences (e.g., one-time device-independent
events, like a power surge, in which many devices fail to-
gether) and true changes in the underlying AFR.

This paper makes four primary contributions. First, it
highlights an often overlooked aspect of device heterogene-
ity (reliability) that should be exploited in cluster storage sys-
tems, and quantifies potential cost–and/or–reliability bene-
fits. Second, it confirms the above observation and quan-
tification with analysis of multi-year reliability data from a
sizable cluster storage deployment (Backblaze), showing up
to 11–33% reduction in the overall number of disks needed
to achieve target data reliability. Third, it describes an online
tool (HeART) that automatically determines per-disk-group
useful life AFRs and durations, and identifies the right re-
dundancy scheme settings for each. Fourth, it shows that
HeART’s algorithms are effective using data from a large-

Make/Model Disk group
shorthand

# of
disks

Oldest
disk age

Seagate ST4000DM000 S-4 37015 5 yrs
HGST HMS5C4040ALE640 H-4A 8715 4.77 yrs
HGST HMS5C4040BLE640 H-4B 15048 4.2 yrs
Seagate ST8000DM002 S-8C 9885 1.99 yrs
Seagate ST8000NM0055 S-8E 14395 1.2 yrs
Seagate ST12000NM0007 S-12E 21581 8 mts

Table 1: The disk groups identified from the Backblaze dataset for
reliability heterogeneity analysis. The disk group shorthand above
is used to represent the respective makes/models throughout the pa-
per.

scale production cluster (Backblaze) and are able to expose
the expected capacity savings opportunities without compro-
mising data reliability.

2 Having HeART can make you rich
This section builds a case for HeART by showing the ben-

efits of using different redundancy schemes for disk groups
exhibiting different reliability characteristics in the same
commercially used cluster storage system. To support the
case, we quantify space overhead reductions that can be
achieved by adopting the different redundancy schemes.

2.1 The Backblaze dataset
Our analysis is based on an open source dataset from a

data backup organization, Backblaze [5]. This dataset con-
sists of over 5 years of disk reliability statistics from a pro-
duction cluster storage system with over 100,000 HDDs.

We use the standard metric, annualized failure rate (AFR),
to describe a disk’s fail-stop rate1 [9, 33]. As the name sug-
gests, it is the expected percentage of disks that will fail-stop
in a given year from a population of disks. AFR is calculated
on day d, based on the past d days of reliability data, using
the following formula:

AFR (%) =
fd

n1 +n2 + . . .+nd
⇥365⇥100 (1)

where fd is the number of disks failed in the past d days and
ni is the number of disks operational during day i.

Note that the AFR calculation is dependent on the number
of days a disk was in operation. This can be tricky to estimate
from the Backblaze dataset since the “death” of a disk in this
dataset may also indicate its decommissioning, which may
or may not imply its failure. We argue that, in the case of
Backblaze, the date of decommissioning a disk only affects
the absolute date at which it would have fail-stopped, but
does not affect its rate of failure. Backblaze adopts a proac-
tive disk replacement strategy that is driven by monitoring
a combination of five S.M.A.R.T. (Self-Monitoring, Anal-

1Storage devices can exhibit partial failures and fail-stops (complete
failures). Partial failures might involve a particular read or write failing
because of a sector error or checksum failure, while the disk as a whole is
still functional. In the case of fail-stop, the disk stops functioning altogether.
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Figure 2: AFR comparison between all 4TB disks grouped together
and disk groups broken down by make/model. The AFR differences
in make/model-based grouping enables HeART to perform finer-
grained specialization leading to higher benefits.

ysis and Reporting Technology) statistics.2 The increased
probability of failure indicated by grown defects in a disk is
supported by several previous studies [7, 20, 24, 29]. In fact,
Pinheiro et al. [24] show that the critical threshold for several
S.M.A.R.T. attributes before their imminent failure is one—
that is, the probability of failure of a disk in the next two
months increases manifold when any of these S.M.A.R.T.
attributes show a value greater than zero. Ma et al. [20] also
show the high likelihood of disk failure by monitoring the
reallocated sectors count (S.M.A.R.T. attribute 5), which is
one of the signals used by Backblaze as a disk replacement
indicator. Therefore, we believe that Backblaze’s proactive
disk replacement rate is a reasonable approximation for the
actual disk failure rate.

2.2 Disk group formation and varying AFRs
To effectively exploit heterogeneity in AFRs of different

disk groups, we need to categorize the disks using some pa-
rameter that (1) groups disks with similar AFRs together
and (2) has substantially different AFRs across groups. In
whichever manner we choose to group the disks, in order to
gain statistical confidence in the AFR value, we need to en-
sure that each disk group has a sizeable population. Our def-
inition of a sizeable population is approximately 10,000 or
more disks. This is in line with disk populations considered
in previous reliability studies [21]. We identify the following
four ways to categorize disks:

• By make/model: Economies of scale result in large quan-
tities of disks being purchased from the same vendor. Prior
studies have shown that AFR may vary significantly by
vintage [10, 20, 24].

• By capacity: Grown defects can be a function of disk ca-

2Backblaze uses S.M.A.R.T. 5 (Reallocated Sectors Count), S.M.A.R.T.
187 (Reported Uncorrectable Errors), S.M.A.R.T. 188 (Command Time-
out), S.M.A.R.T. 197 (Current Pending Sector Count) and S.M.A.R.T. 198
(Uncorrectable Sector Count) as indicators that a disk is about to fail. [6]
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Figure 3: The canonical bathtub curve used to represent disk failure
characteristics.
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Figure 4: An abstract timeline of a disk group from deployment
to failure or decommissioning, with the three distinct periods. The
notations below the timeline (rde f and rDG) denote the redundancy
scheme employed during the respective stage.

pacity, thus causing disks of similar capacity to fail at a
similar rate.

• By operational conditions: Disks that share similar vi-
bration or temperature experiences may cause them to fail
similarly. Thus, chassis placement and other operational
conditions may influence failure rates.

• By usage: Increased space utilization or higher I/O rates
may result in different disks showing different failure
characteristics.

Unfortunately since we do not have access to the oper-
ational conditions or usage patterns, we can only analyze
grouping on the basis of make/model or capacity.

Fig. 2 shows the AFR by considering all 4TB disks as one
disk group (red curve with circular marks) and the AFRs
of the three make/models of 4TB disks as individual disk
groups (black curves). We see significant differences be-
tween AFRs when disks are grouped by make/model, sug-
gesting that grouping by capacity is insufficient. HeART
groups disks by make/model.

Table 1 shows the six make/model disk groups that make
up over 90% of the Backblaze deployment, with their pop-
ulation size, the age of their oldest disk, and the shorthand
names we will use throughout the paper.

AFR variation over time. As expected, AFR values of
each disk group vary over the lifetime of disks. It is well
known that the AFR values over a disk’s lifetime follow a
bathtub curve [11, 12, 45]. Fig. 3 shows the canonical repre-
sentation of a bathtub curve. The lifetime is typically divided
into three distinct periods:

• Infant mortality: A higher failure rate in the early days
after deployment. This is also called the burn-in period.

• Useful life period: The stable region of operation, where
rate of failure is lower.

• Wearout stage: A higher failure rate towards the disks’
end of life due to wear and aging.
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(a) S-4 (b) H-4A (c) H-4B

(d) S-8C (e) S-8E (f) S-12E
Figure 5: Cumulative raw AFR versus age (in days) for all six disk groups being analyzed.

Fig. 5 shows the AFR behavior versus age of the six disk
makes/models. The three disks in the top row clearly exhibit
all three stages of the bathtub curve.3 This is because the
oldest disks from the S-4, H-4A and H-4B disk groups in the
dataset are old enough to have entered their wearout stages.
Since the deployment of S-8C, S-8E and S-12E disks has
been more recent, these disk groups have ended their infant
mortality, but are yet to enter their wearout stages.

2.3 Space savings from heterogeneous AFRs
Our goal is to reduce storage overhead by tailoring the

redundancy scheme employed to the failure rate of a disk
group during its useful life period. We parameterize a redun-
dancy scheme using two parameters n (called “length”) and
k (called “dimension”), and call it a (n,k) scheme.4 For any
replication based scheme, k = 1 and n represents the total
number of replicas. For any erasure coding based scheme, k
represents the number of data chunks and (n�k) is the num-
ber of parity chunks, thus resulting in n chunks in total.5 For
an (n,k) redundancy scheme, the storage overhead is given
by n

k .
HeART achieves reduction in storage overhead by ex-

plicitly factoring in the group-specific AFR values in decid-

3Fig. 5c corresponding to disk H-4B does not completely conform to the
bathtub shape. We will discuss this case later in detail.

4This notation follows the standard notation employed in the coding the-
ory literature.

5Although the description of the notation applies only to “systematic”
codes, and most of the codes employed in storage systems are indeed sys-
tematic, HeART is applicable to storage systems employing non-systematic
codes as well.

ing the appropriate redundancy scheme for each disk group.
Based on the canonical bathtub curve (Fig. 3), and the AFR
curves shown in Fig. 5, we conclude that the safest stage
to apply lower redundancy (without risking not meeting the
reliability target) during a disk group’s lifetime is in its use-
ful life period. Fig. 4 shows the abstract timeline of a disk
group, where r denotes the redundancy scheme applied in
each stage. Since all cluster storage systems today use some
redundancy scheme whose resilience is acceptable to them,
we assume that to be the default redundancy scheme. Since
infancy and wearout periods have higher and less stable
AFRs compared to useful life, for every disk group, HeART
employs the default redundancy scheme for all infancy and
wearout periods. This is shown as rde f in Fig. 4.

HeART suggests lower redundancy than the default
scheme only during the useful life period, during which AFR
values are relatively stable. Data redistribution and issues re-
lated to data placement and scheme transitions are discussed
in Section 5.

We use the standard metric for reliability of data em-
ployed in storage systems, mean time to data loss (MT T DL).
MT T DL is calculated based on two rates – mean time to
failure (MT T F) and mean time to repair (MT T R) [23, 38]
MT T F is directly related to the disk’s AFR. MT T R is the
time it takes to reconstruct the lost data on the failed disk.
Following prior work, we model the time to repair based
on the time it takes to detect that a disk has failed (which
is approximately 15 minutes) [13, 17]. We note that, by
choosing the failure detection time as a proxy for the re-
pair time, we are effectively choosing a lower bound on
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the repair time. Reliability differences between redundancy
schemes are higher when repair times are higher, leading to
even greater potential for space saving through HeART.

When a disk group enters its useful life period, HeART
chooses a redundancy scheme (rDG) that meets the following
conditions:

1. is as reliable as rde f , i.e. MT T DLrDG � MT T DLrde f

2. tolerates at least as many failures as rde f

According to condition 1 above, we need to set a tar-
get MT T DL in order to compare the resilience of different
redundancy schemes. Although prior studies have shown
MT T DL targets to be as low as 10,000 years [27], in order
to ensure that we do not regress on reliability that disks in
our dataset can currently offer, we set the target MT T DL
to be the MT T DL of the default redundancy scheme ap-
plied on the disk group with the highest AFR. S-4 is the
disk group with highest useful life AFR in the Backblaze
dataset (refer Fig. 1). Therefore, for every default redun-
dancy scheme, we will use S-4’s MT T DL for that scheme as
the target MT T DL.

Multiple redundancy schemes can achieve the same or
similar MT T DL values. These schemes can differ in their
dimension (k) or the number of parity chunks per stripe
(n � k) or both. It is well known that, generally speak-
ing, codes with a longer dimension can provide the same
MT T DL with lower space overhead compared to shorter
codes. However, long codes consume significantly higher
cluster bandwidth for reconstruction, since many more disks
have to be accessed when performing reconstruction of failed
data [17, 25, 26, 28]. The cluster bandwidth consumed dur-
ing reconstruction is a major concern in erasure-coded stor-
age systems. This has been highlighted in several works in
the past [17, 25, 26, 28] and is consistent with our discus-
sions with cluster storage system administrators. We, there-
fore, limit our cost reduction analysis to codes with at most
2⇥ the dimension (i.e., parameter k) of the default redun-
dancy scheme.

Table 2 shows space savings for one disk group (H-4A)
as an example. We will first highlight the space reduction
when erasure coding schemes are used as the default, focus-
ing on the (14,10) and (9,6) schemes known to have been
used in large data centers [13, 25, 26, 28]. For (14,10) as
the default scheme, the MT T DL difference between H-4A
and S-4 disks is over 580⇥. Thus, we can choose a weaker
redundancy scheme (a scheme with lower storage overhead
n
k ), so long as conditions 1 and 2 above are fulfilled. In fact,
the high AFR differences allow us to use the longest allowed
optimized code (2⇥ the dimension of the default redundancy
scheme) for H-4A disks, i.e. (24,20) leading to a useful life
space reduction of 14%. Similarly, when using (9,6) as the
default scheme, the MT T DL difference between H-4A and
S-4 is over 160⇥. This again allows us to choose the longest
code for H-4A when rde f = (9,6), i.e. (15,12), providing a
space reduction of 16%.

Disk groups rrrde f === (14, 10) rrrde f === (9, 6) rrrde f === (3, 1)

DG AFR rDG Cost# rDG Cost# rDG Cost#

S-4 3.29% (14, 10) NA (9, 6) NA (3, 1) NA
H-4A 0.92% (24, 20) 14% (15, 12) 16% (4, 2) 33%

Table 2: A sample of the estimated savings achievable through
HeART. The space reductions obtained on H-4A disks by using
redundancy schemes with lower storage overhead while meeting
the reliability target set by applying the default redundancy scheme
(rde f ) on S-4 disks.

For rde f = 3-replication (recall that, under the (n, k) nota-
tion introduced above, 3-replication is denoted as the (3,1)
erasure code), we can tune the redundancy on H-4A disks
to (4,2) to respect our 2⇥ default stripe dimension limit and
still achieve an MT T DL that is approximately 11⇥ that of S-
4’s MT T DL. Using a (4,2) scheme leads to a 33% reduction
in disk space.

Large internet services companies try very hard to mini-
mize free space (as low as 5%, according to some admin-
istrators) in order to minimize capital and operating costs.
We are told that space savings translate directly into reduced
numbers of disks needed, and even modest space savings
(e.g., 10%) would build a solid case for tailoring redundancy
schemes to heterogeneous disk AFRs.

We note that much of the reduction in storage overhead
arises from allowing codes up to 2⇥ in dimension (i.e., pa-
rameter k). However, simply employing an erasure code with
twice the dimension for all data is not generally a suitable
solution. First, the AFR for certain disk groups might be
high enough to make codes with 2⇥ dimension not accept-
able causing them to miss the target reliability. Second, and
more broadly, the reconstruction overheads can be unaccept-
able. For popular codes employed in practice, the amount of
cluster bandwidth required for reconstruction is proportional
to k⇥AFR, where k is the dimension of the code. The sta-
ble and lower AFR during a disk group’s useful life period
allows the I/O generated for reconstruction to be contained
even if longer codes are employed, which is why HeART op-
timizes redundancy schemes only during a disk group’s use-
ful life. Using longer codes on data stored on disk groups in
their infancy and wearout stages would exacerbate the clus-
ter bandwidth consumption for reconstruction due to higher
failure rates in these stages.

3 The ways of the HeART
This section describes the challenges, design and imple-

mentation of HeART. We also quantify the cost reductions
achieved by HeART for the Backblaze dataset.

3.1 Challenges
There are several challenges in taking the idea presented

in Section 2 to practice.
Challenge 1: Function online and be quick. In mak-

ing our case for HeART, we made use of the complete fail-
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Figure 6: Schematic diagram of HeART. Components include an
anomaly detector, an online change point detector, and a redun-
dancy tuner.

ure information (e.g., the full bathtub curve) for the disk
groups. This helped in clearly identifying the 3 stages of
a disk group’s lifetime and AFR values in each of the stages.
In practice, however, AFR values for disk groups deployed in
cluster storage systems can only be known in an online fash-
ion (i.e., as a continuous stream of reliability data, as it is
observed). Furthermore, the crux of the cost reduction from
HeART comes from quickly tuning the redundancy scheme
as soon as we are confident of a disk group having entered
its useful life period. Thus, our first challenge in building
HeART is that it needs to function in an online fashion taking
a continuous stream of disk health data as input and quickly
react to the changes in the failure rate.

Challenge 2: Be accurate. It is important to correctly
identify the three different stages of the bathtub curve for
each disk group (recall Fig. 3). If we are hasty in declaring
the end of the infancy period or lax in identifying end of
useful life, we might not meet the reliability target because
of having tailored the redundancy to a relatively low failure
rate during the useful life period. In contrast, if we are too
lax about declaring end of infancy or too hasty in declaring
onset of the wearout stage, the opportunity of cost reduction
will diminish.

Challenge 3: Filter-out anomalies. Events such as power
outages, natural disasters or human error can cause large
numbers of disks to fail at once It is important to distinguish
between an accidental rise in AFR due to such anomalous
events versus the rise in AFR due to onset of the wearout
stage. Our third challenge is to perform AFR anomaly detec-
tion to avoid prematurely declaring end of useful life, conse-
quently reducing the window of opportunity for cost reduc-
tion. At the same time, HeART needs to exercise caution so
as to not treat a genuine rise in AFR as an anomaly, which
risks not meeting reliability targets.

3.2 HeART architecture
Fig. 6 shows the primary components of HeART. HeART

assumes the existence of a disk health monitoring/logging
mechanism already in place, which is common in large-
scale cluster storage deployments. From the time of deploy-
ment till the end of infancy, the default redundancy scheme

(rde f ) is used to protect the data stored on a disk group.
Periodically, disk health data for each disk group is passed
through an anomaly detector. Following an anomaly check,
the cumulative AFR of every disk group is passed through
a change point detector, which checks if a transition to dif-
ferent phase of life has occurred. Once the change point de-
tector announces start of the useful life period, HeART sug-
gests a new redundancy mechanism for the useful life of the
disk group (rDG). It computes a determined useful life AFR
(AFRDG), which is the AFR at the end of infancy padded
with a tunable buffer, and uses it to calculate MT T DLrDG

for different redundancy scheme (rDG) options. The buffer
is introduced to tolerate the fluctuation of AFR during the
useful life period (see Section 4.3). HeART keeps check-
ing for anomalies and change points throughout the useful
life period. When the change point detector marks the end
of useful life, HeART raises an alert to reset the redundancy
scheme to rde f to handle the increased AFR during wearout,
as was handled in the absence of HeART.6

The remainder of this section describes our approach to
addressing the above mentioned challenges. We leverage es-
tablished tools and algorithms from online services and time-
series analysis literature. While other options may perform
even better, our evaluations indicate that these established
tools are effective. We show the efficacy of HeART using
the Backblaze dataset in Section 4.

3.3 Online anomaly detection
Incidents like losing power to a rack of disks, a natural

disaster, or an accident, can cause a large number of fail-
ures resulting in a sudden rise in AFR. Such bulk failures
can easily exceed the limits of any reasonable redundancy
scheme, so administrators seek to mitigate them by defining
appropriate failure domains and spreading data+redundancy
across the failure domains [25, 26]. Such failures are not
reflective of the true rise in AFR because of wearout, and
therefore HeART considers these incidents as anomalies. It
is important to note that the benefits we extract from exploit-
ing the reliability heterogeneity are proportional to the length
of the useful life period, and therefore prematurely announc-
ing wearout stage due to an anomaly would significantly di-
minish achievable gains.

We use the H-4B disks as a motivating example for
anomaly detection (shown in Fig. 7). The raw AFR curve
(red curve) shows that just after a few days into its useful
life, there are large spikes in the AFR curve for drives that
are about 235 days old (point A) and 380 days old (point B).
Further along, we observe three more spikes that are in suc-
cession for disks that are about 1200 days old (points C, D
and E). The failures corresponding to points A and B are all
caused because of 322 drives failing on one particular date.

6We note that the current architecture of HeART determines one useful
life AFR for all disks belonging to a disk group and does not handle changes
in the intra-disk-group reliability distribution over time.
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Figure 7: Raw and HeART-curated AFR curves for the H-4B disk
group. Five spikes in AFR (points A–E), which correspond to four
(anomalous) bulk failure events, are automatically filtered out by
HeART.

Here, failure of disks of two different ages correspond to a
failure event on the same day because these disks were de-
ployed on different dates. Fig. 8 shows the total number of
disks running and the per-day number of disk failures of H-
4B as a function of the date. The left y-axis shows the cu-
mulative disks of H-4B running on each day. The steps in
the black curve show the incremental deployments of H-4B
disks. The right y-axis shows the number of H-4B disks fail-
ing on each day (red curve). The tallest red spike in Fig. 8
corresponds to points A and B from Fig. 7. Points C, D and
E occurred because of disks failing on different days.

In the absence of anomaly detection, HeART would have
incorrectly concluded that the disk group’s wearout stage be-
gan as early as point A.

3.4 Online change point detection
We refer to a transition in the AFR curve of a disk group

as a change point. There are two major change points for
each disk group: end of infant mortality stage and the onset
of the wearout stage. This subsection describes our methods
of identifying the two change points.

Onset of useful life period. HeART uses prior studies
about infant mortality in HDDs along with change point de-
tection to decide a disk group’s end of infancy. Prior studies
performed on the Google and EMC disk fleets [20, 24] have
shown that infant mortality lasts for approximately one quar-
ter. Therefore, in order to be conservative, HeART exempts
the first quarter from being assessed for end of infant mortal-
ity. Since disk reliability data is collected periodically, each
time data is collected after the first 90 days, we run change
point detection on the AFR curve generated by a sliding win-
dow of the past 30 days. HeART declares end of infancy if
the last change point marked by the detector is over 30 days
old, and the failure rate during the last 30 days is relatively
constant. More precisely, HeART declares end of infancy
when the difference between the observed maximum and

Figure 8: Total number of disks and number of disk failures by date
for H-4B disks. The step-wise jumps in the black curve represent
incremental deployments. The largest red spike represents the disks
that failed on July 23, 2017, causing anomalies A and B in Fig. 7.

minimum AFR values in at least 30 days past the last change
point is less than a certain threshold Tf lat . Tf lat is the thresh-
old for flatness and is a tunable parameter in HeART. Sensi-
tivity to Tf lat is evaluated in Section 4.3. Note that HeART
takes a conservative approach in declaring the onset of the
useful life period of a disk group in order to increase confi-
dence about reducing redundancy for data stored on that disk
group.

End of useful life period. Being lax in declaring the
end of useful life period (i.e., onset of wearout) can risk in
HeART not meeting the intended reliability target. Hence,
HeART takes a conservative approach and marks the end
of useful life for the first AFR observed that is greater than
the determined useful life AFR. Since HeART checks for
anomalous AFR fluctuations before checking for change
points, if the anomaly detection phase does not filter out an
increase in AFR, HeART assumes it to be a true increase in
AFR. Thus, here too HeART takes a conservative approach
and errs on the side of exiting the useful life period early and
reverting to the default redundancy scheme.7

4 Measuring HeART
This section describes implementation details of various

components that make up HeART and presents an evaluation
of HeART on the Backblaze dataset.

4.1 Implementation of the components
Our current implementation of HeART leverages existing,

standard algorithms for anomaly detection and change point

7Although the H-4A graph in Fig. 5b appears to show a sudden, huge
rise in AFR, we believe that it is an artifact of Backblaze’s recording of
decommissioned disks as failed, based on the device removal pattern seen
in the failure data. Data from more sources are needed to confirm this hy-
pothesis. If some disks do exhibit such transitions, then strategies for pre-
dicting failures (and wearout onset), such as by using S.M.A.R.T. statis-
tics [4, 21, 44, 48], will be needed to use any but the most conservative
redundancy schemes.
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(a) S-4 with HeART-determined AFR (b) H-4A with HeART-determined AFR (c) H-4B with HeART-determined AFR

(d) S-8C with HeART-determined AFR (e) S-8E with HeART-determined AFR (f) S-12E with HeART-determined AFR
Figure 9: HeART in action on all disk groups, showing successful identification of infant mortality, useful life and wearout periods as well
as automatic removal of anomalies.

detection. Employing more sophisticated algorithms might
lead to even better results.

Anomaly detector: For anomaly detection, our current
implementation of HeART uses the RRCF algorithm [3] ex-
posed by Amazon’s data analytics service offering called Ki-
nesis [2].8 The anomaly detector acts on a reliability data
stream made available by the disk health monitoring sys-
tem. The output from the anomaly detector is also a data
stream containing anomaly scores produced by the RRCF
algorithm. Potential anomalies identified by RRCF have a
higher anomaly score than data that the algorithm considers
non-anomalous. RRCF generates the anomaly score based
on how different the new data is compared to the recent past.
For consistency with change point detection, we set the win-
dow size of the recent past to be one month. If the anomaly
score is above a certain threshold, HeART considers that
snapshot of reliability data as anomalous. RRCF advises
to only consider the highest anomaly scores as true anoma-
lies [3]. The anomaly score threshold is a tunable parameter
in HeART. Lowering the score makes HeART more sensitive
to fluctuations in AFRs.

Change point detector: Our current implementation of
HeART uses a standard window-based change point detec-
tion algorithm, which compares the discrepancy between ad-
jacent sliding windows within the AFR curve to determine
if a change point has been encountered. In particular, we
employ the Ruptures library for online change point detec-

8We use Amazon’s service so as to avoid re-implementing a state-of-the-
art algorithm.

tion [39, 40]. We set the sliding window size to one month,
because AFRs at a lower granularity than a month are jittery.

4.2 Evaluation on the Backblaze dataset
Identifying useful life period. Fig. 9 shows the results

from HeART running on all 6 disk groups of the Backblaze
dataset. HeART accurately identifies the infancy, useful life
and wearout stages of the S-4, H-4A and H-4B disk groups
shown in Figs. 9a, 9b and 9c, respectively. For the S-8C,
S-8E and S-12E disk groups (Figs. 9d, 9e and 9f), HeART
identifies the end of infancy and correctly shows that they
are still in their useful life. The width of the shaded region
of each disk group highlights the “savings region”, i.e. the
useful life period determined by HeART for which HeART
potentially suggests a lower redundancy scheme. The height
of the shaded region in Fig. 9 denotes the AFR values pro-
tected by the useful life AFR value determined by HeART
for that disk group.

It is important to note that even though Fig. 9 shows cu-
mulative AFR behavior, HeART performs anomaly detection
and online change point detection on AFRs calculated using
monthly sliding windows. Thus, not only is the cumulative
AFR always inside the shaded region, but the instantaneous
failure rate for any 30-day period is also less than the de-
termined AFR value. In fact, the first rise in the instanta-
neous failure rate is what determines the end of the useful
life period. Fig. 10 shows the instantaneous failure rate of
S-4 disks being lower than the determined useful life AFR
value throughout the useful life period.
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Disk groups rrrde f ===MT T DL(14,10)
4.01%AFR = 1.46E +21 rrrde f ===MT T DL(9,6)

4.01%AFR = 3.31E +16 rrrde f ===MT T DL(3,1)
4.01%AFR = 6.36E +12

DG AFR MT T DLrde f rDG MT T DLrDG Cost# MT T DLrde f rDG MT T DLrDG Cost# MT T DLrde f rDG MT T DLrDG Cost#
S-4 4.01% 1.46E +21 (14, 10) 1.46E +21 NA 3.31E +16 (9, 6) 3.31E +16 NA 6.36E +12 (3, 1) 6.36E +12 NA
H-4A 1.82% 7.57E +22 (24, 20) 3.56E +21 14% 7.80E +17 (15, 12) 7.20E +16 16% 6.80E +13 (4, 2) 1.70E +13 33%

H-4B 2.04% 4.28E +22 (24, 20) 2.01E +21 14% 4.94E +17 (15, 12) 4.56E +16 16% 4.83E +13 (4, 2) 1.21E +13 33%
S-8C 2.07% 3.98E +22 (24, 20) 1.87E +21 14% 4.66E +17 (15, 12) 4.30E +16 16% 4.62E +13 (4, 2) 1.16E +13 33%

S-8E 2.48% 1.61E +22 (21, 17) 1.58E +21 11% 2.26E +17 (13, 10) 3.99E +16 13% 2.69E +13 (4, 2) 6.72E +12 33%
S-12E 2.44% 1.75E +22 (21, 17) 1.72E +21 11% 2.41E +17 (13, 10) 4.26E +16 13% 2.82E +13 (4, 2) 7.06E +12 33%

Table 3: Disk space saved by HeART by tuning the redundancy in the useful life of a disk group according to the observed disk group-specific
AFRs. The units for MT T DLs is years. The cost savings are calculated for 3 default schemes: (14, 10) on AFR 4.01% disks, (9, 6) on AFR
4.01% disks and 3-replication (i.e. (3, 1)) on AFR 4.01% disks. Thus, the target reliability is the MT T DL of the respective default redundancy
schemes using a 4.01% AFR (the rde f table header). The max dimension of the scheme permitted during useful life for each disk group has
at most twice the dimension of default redundancy scheme, i.e. 20 data chunks for (14,10), 12 data chunks for (9,6) and 2 data chunks for
3-replication.

Figure 10: AFR of the S-4 disk group using a sliding window of 30
days. The determined useful life AFR value by HeART is conser-
vative enough to subsume even the 30-day AFR values which vary
more than the cumulative AFRs.

In contrast to S-4 (Fig. 9a), the H-4A (Fig. 9b) and H-4B
(Fig. 9c) disk groups have a sudden occurrence of their re-
spective wearout stages. The quick reactivity requirement
explained in Section 3.1 comes into effect for these disk
groups. How quickly HeART reacts to changes in the AFR
is determined by how quickly failure data is provided to
HeART. Since Backblaze maintains daily snapshots of disk
health, the quickest reaction to an increased failure rate is on
the day that the failures occur. In our evaluation, HeART
successfully identifies the increased AFR on the very day it
was provided with the increased AFR data.

Anomaly detection. As explained in Section 3.3, the
anomaly detector successfully detects five anomalies in the
lifetime of H-4B disks. Additionally, two anomalies are also
detected for the H-4A disks. Correctly identifying anoma-
lous events increased the identified useful life period of H-4B
disks by over 5⇥. In the absence of anomaly detection, the
end of useful life period would have been incorrectly identi-
fied at age 235 days (shown by point A in Fig. 7).

Cost savings per disk group. Table 3 summarizes the
cost savings of employing disk group specific redundancy in
their respective useful lifespans. Disk groups with similar
AFRs are grouped together. As discussed in Section 2, we
restrict the dimension (k) of the optimized code to at most 2⇥
that of the default redundancy scheme (rde f ). In each case of
rde f , we set the target reliability to the MT T DL achieved
by using the highest-AFR disk group, which in the case of
Backblaze are the S-4 disks.

It is important to note that the useful life AFRs determined
by HeART are higher than the useful life AFRs shown in
Fig. 1. Recall from Section 2, that HeART adds a (tunable)
buffer above the useful life AFR determined at the end of
infancy (which is an additional 25% by default). HeART
chooses to be conservative in determining a useful life AFR
value to ensure that reliability targets are comfortably met
and to elongate the length of the useful life period to maxi-
mize benefits.

As in Section 2, we exemplify the space reduction for
erasure coding schemes using (14,10) and (9,6) schemes,
which are known to have been employed in large-scale data
centers [13, 25, 26, 28].

First, we evaluate using (14,10) as the default redundancy
scheme. (14,10) has the lowest storage overhead (1.4⇥)
among the default redundancy schemes we evaluate, mak-
ing it the hardest to find codes that meet the target MT T DL
and reduce overhead even further. Despite these constraints,
HeART enables a 14% space reduction for H-4A, H-4B and
S-8C disks by suggesting a (24,20) code and a reduction of
11% for S-8E and S-12E disks by suggesting a (21,17) code.

Next, we measure HeART’s performance when using
(9,6) as the default redundancy scheme. We observe a space
reduction of 16% on H-4A, H-4B and S-8C disks by using
the maximum allowed (15,12) redundancy scheme. For S-
8E and S-12E disks, HeART suggests shorter (13,10) code
lengths compared to the above three disk groups in order to
address their relatively higher determined AFR values, lead-
ing to a space reduction of 13%.
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Figure 11: Overall space reduction achieved by HeART on the
Backblaze dataset over the complete lifetime of every disk group,
for erasure codes as the default scheme. For a maximum code di-
mension of up to 2 ⇥ rde f , we observe between 6 � 7.5% space
reduction and for a maximum code dimension of up to 4⇥ rde f , we
observe between 10 � 12% space reduction, translating to actual
space savings of 40�80 PBs.

Finally, we also include the cost reduction for the canoni-
cal redundancy scheme, 3-replication, for completeness. We
see that HeART enables 33% space reduction for all disk
groups. We note that if replication is employed primarily
for availability, that data may not be a candidate for tuning
redundancy through HeART.

For H-4A, H-4B and S-8C disks, HeART chose the 2⇥
max stripe-length for all three evaluated default redundancy
schemes, extracting the maximum cost reduction (as ex-
plained in Table 2). Even with the maximum allowed stripe
length, the MT T DLs for the above disks are approximately
2.5⇥ higher than the target MT T DL value, suggesting fur-
ther storage cost reductions if one is allowed even longer
codes.

Overall cost reduction. To highlight the overall cost re-
duction achieved on the Backblaze disk fleet, we show the
capacity-weighted cost savings in Fig. 11. This cost re-
duction is over the whole lifetime of the disks (including
the unoptimized infancy and wearout periods) and for all
six disk groups (including the unoptimized S-4 disks). We
only show the benefits for the erasure coding schemes we
evaluated, leaving out 3-way replication, since erasure codes
are the more popular choice for data durability. The overall
cost reduction achieved with the maximum stripe dimension
being 2⇥ the default redundancy scheme is approximately
6% when using (14,10) and approximately 7.5% when us-
ing (9,6) as the default. If we relax the constraint of the
maximum stripe dimension to 4⇥ the dimension of the de-
fault redundancy scheme, we can expect to achieve between
10� 12% overall space reduction. These modest percent-
age savings translate to significant savings in terms of actual
storage space in large-scale clusters. For example, as shown
on the right-side y-axis in Fig. 11, savings in storage space
for the the Backblaze cluster range between 40�80 PBs.

Figure 12: The effect of varying Tf lat (AFR flatness threshold) on
the H-4B disk group’s AFR curve. Larger Tf lat implies a higher
useful life AFR along with a larger useful life period. The default
value for Tf lat in HeART is 0.5.

4.3 Sensitivity analysis
There are several configuration parameters that govern the

behavior of HeART, of which most are dependent on the
ready-made tools we have used for different components
of our system (e.g., the threshold for anomaly scores when
using RRCF for anomaly detection). There are, however,
two fundamental parameters that are independent of which
anomaly detector or change point detector is used.

Before going into the details about the two parameters, we
note that the modulation of both the parameters only has an
effect on the gains that our optimization can yield. Neither
of them affects correctness of our framework or protection
of data in any way. This allows operators of cluster storage
systems to start with conservative values, observe the AFR
behavior of their disks and accordingly choose apt values to
minimize their costs without risking not reaching their relia-
bility target. We next discuss the two parameters.

Flatness parameter (Tf lat ): Tf lat is used to deduce the
end of the infant mortality period. As mentioned in Sec-
tion 3.4, the end of infancy is defined as the first 30+ day
period beyond the change point detected after the first quar-
ter such that the difference between maximum and minimum
observed AFR is below the threshold Tf lat . Thus, Tf lat essen-
tially determines the flatness in the AFR curve for a given pe-
riod. Currently, we define Tf lat to be 0.5. A larger Tf lat value
will reduce the length of infancy until it reaches 90 days, be-
yond which it will have no effect. A lower Tf lat will enforce
a stricter flatness criteria, typically causing end of infancy to
be declared late. Ending infancy sooner potentially causes
HeART to choose a larger value as the determined useful life
AFR. This, in turn causes HeART to choose a stronger re-
dundancy scheme (with higher space overhead) compared to
one that would have been chosen with the determined AFR
value derived as a result of a lower Tf lat value. This reduces
the achievable savings within the useful life period of the
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disk group. As a tradeoff, we get a larger useful life period
with a larger Tf lat , since not only does infancy end sooner,
but also the onset of wearout stage is postponed, since the
increased useful life AFR now has higher tolerance to AFR
variances throughout the useful life.

Fig. 12 shows the effect of varying Tf lat on H-4B disks.
We show the results for two different values Tf lat = 0.3 and
Tf lat = 0.5. When Tf lat was set to 0.3, we can see HeART
declaring end of infancy at close to 100 days. Despite the
buffer added to the determined useful life AFR at the end
of infancy, the fluctuation in monthly AFRs caused a spike
on day 394 to rise above the determined useful life AFR,
causing HeART to announce end of useful life. In contrast,
when Tf lat = 0.5, infancy was declared to end on day 91,
and the determined AFR value was high enough to tolerate
the spike on day 394, increasing the useful life period by a
significant amount.

Useful life AFR buffer: The AFR buffer is the conserva-
tive padding added to the useful life AFR determined at the
end of infancy. Currently, the useful life AFR is determined
as the AFR value at the end of infancy plus an additional
buffer, the tunable AFR buffer parameter. The choice of the
buffer value has similar tradeoffs to the flatness parameters
discussed above. A high buffer value implies a more con-
servative approach to setting the determined useful life AFR.
This will prolong the useful life period, but restrict the tuning
of the redundancy scheme due to the high useful life AFR
value determined (and thus reducing benefits). In contrast,
setting a low buffer value will shorten the useful life period
but allow more cost reductions during the useful life. Opera-
tors can set the buffer based on AFR fluctuations observed in
their storage systems, which can stem anywhere from work-
load patterns to operational conditions.

5 Changes of the HeART (discussion)
HeART suggests redundancy schemes for use with each

disk group during its useful life period, enabling safe redun-
dancy tuning based on observed failure data. HeART rec-
ommends using the default redundancy scheme employed in
the cluster during infancy and wearout periods. Exploiting
HeART’s recommendations in a cluster storage system re-
quires some minor data placement policy changes and some
online data redistribution. This section discusses both. Fur-
thermore, since HeART changes redundancy schemes in re-
sponse to the observed AFR curve, we also discuss estimat-
ing the required sample size (number of disks) for statistical
confidence.

Data placement. HeART suggests per-disk-group redun-
dancy schemes for hitting a particular data reliability target,
based on observed AFRs. To use HeART safely, all data
stored using a tailored redundancy scheme must be fully
stored within the corresponding disk group—that is, all n
chunks (data and parity chunks) of a stripe must be stored on
disks within the same group. This restriction may be incom-

patible with some data placement schemes, such as Ceph’s
CRUSH [42, 43], and will add some complexity (conform-
ing to disk group boundaries) to schemes that choose based
on considerations like available capacity and load balancing.

Data redistribution. Many cluster storage systems in-
clude data redistribution mechanisms to deal with planned
decommissioning and capacity/load balancing. Use of
HeART will also require their use for transitioning from the
default redundancy scheme (rde f ) to a disk-group-specific
scheme (rDG), after infancy, and back again upon onset of
wearout. Although this introduces extra redistribution load,
we expect it to have a small impact on overall cluster load—
at worst, it is two redistributions of the data over the 3–5 year
deployment time of the disks.

Bulk changes should not be needed. On its face,
HeART’s redundancy scheme transitions appear to require
massive redistributions, all at once. Not only would this be
a load spike concern, not assuaged by the “not much load
over the lifetime” argument, but it also potentially creates
a capacity concern: a bulk transition from rDG to the less
space-efficient rde f , at the end of the useful life period, could
require more space than is available. Fortunately, we do not
expect this issue to arise in practice, as disks of a disk group
are deployed over time rather than all at once (e.g., see Fig. 8)
Since end of useful life is determined based on deployment
age, rolling deployment will mean rolling wearout. Capac-
ity exhaustion due to any given transition (of one subset of
disks from one disk group to another) should not be as large
a driver of slack capacity requirements, in practice, as other
sources of variability (e.g., user demand). Furthermore, tran-
sitions from rde f to rDG at the onset of useful life period can
be gradually executed as this only reduces the achieved ca-
pacity savings and does not affect correctness or reliability
guarantees.

Accurately characterizing bathtub curves. HeART
is an online framework actively engaging with each disk
group’s bathtub curve. Naturally, it is important to under-
stand how many disks one needs to observe before one can
be confident of behavior of the bathtub curve of a particular
disk group. There are several statistical bounds on the num-
ber of samples needed to reach a specified statistical confi-
dence level. One technique is to use the Chernoff-Hoeffding
Theorem [16, 1] to obtain a bound on the sample size (num-
ber of disks) required. For example, to achieve 99% con-
fidence that the AFR of S-4 disks (which have an AFR of
3.29%, refer Table 2) is within the configured AFR-buffer of
its determined useful life AFR (recall from Section 4, that
the default AFR-buffer is an additional 25% over the useful
life AFR value determined by HeART), the number of disks
required is approximately 4,000. More advanced statistical
techniques may provide tighter bounds and thereby indicate
fewer required devices in a disk group.
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6 HeART-less alternatives (related work)
The closest related work can be classified into disk re-

liability studies that identify reliability heterogeneity, tech-
niques to predict disk failures using reliability data, and sys-
tems that automate redundancy scheme selection.

Numerous studies have been conducted to characterize
disk failures [7, 10, 15, 18, 20, 23, 24, 29, 30, 31, 34].
Among the studies conducted on large production systems,
Shah and Elerath [10, 34], Pinheiro et al. [24] and Ma et
al. [20] independently verify that failure rates are highly cor-
related with disk manufacturers. These studies were con-
ducted on the NetApp, Google and EMC disk fleets, respec-
tively. Schroeder and Gibson also conducted a similar re-
liability study on disks from a high performance comput-
ing environment [30], not only highlighting reliability het-
erogeneity between disks deployed across systems, but also
pointing out that disk datasheet reliability is very different
from reliability observed in the field. Recently, Schroeder
et al. [32] highlighted the heterogeneity in the reliability of
different SSD technologies from four different manufactur-
ers. Also, Schroeder et al. [29] reported heterogeneity of
partial disk failures (sector errors) across makes/models for
NetApp’s disk fleet.

There have been numerous works that predict disk fail-
ures [14, 22, 36, 41, 47]. Among the more recent ones,
Mahdisoltani et al. [21] use machine learning techniques to
predict occurrence of partial disk errors using S.M.A.R.T.
data. Anantharaman et al. [4] use random forests and re-
current neural networks to predict remaining useful life for
HDDs. Both studies were performed on the Backblaze
dataset.

Thereska et al. [37] built a self-prediction capability in
cluster storage systems to assist in making informed redun-
dancy and data placement decisions by answering what-if
questions. It differs from HeART in that it does not per-
form and adapt to online analysis of reliability characteris-
tics, relying on pre-knowledge of reliability metrics. Keeton
et al. [19] built an optimization framework that automatically
provided data dependability solutions to protect against site-
level disasters by using information like workload patterns,
and cost of recovery. This work also assumes prior knowl-
edge of failure rates. Tempo [35] is a system that proac-
tively creates replicas to ensure high durability in wide-area
network distributed systems. It does this economically by
allowing the user to specify a maximum maintenance band-
width, and its design revolves around the efficient use of a
distributed hash table. Carbonite [8] is a replica maintenance
solution for distributed storage systems spread over the Inter-
net, which makes efficient use of bandwidth in maintaining
redundancy in the face of transient failures.

7 Conclusion
HeART enables more cost-effective data reliability for

cluster storage systems. By robustly estimating per-disk-

group AFRs and selecting the best redundancy settings for
each, it avoids the space-inefficiency of one-size-fits-all re-
dundancy schemes. Analysis of failure data for a large-scale
production storage cluster shows that using HeART could
achieve target data reliabilities with 11–33% fewer disks than
popular configurations, offering huge potential cost savings.
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Abstract

We present SCALECHECK, an approach for discovering

scalability bugs (a new class of bug in large storage systems)

and for democratizing large-scale testing. SCALECHECK

employs a program analysis technique, for finding potential

causes of scalability bugs, and a series of colocation tech-

niques, for testing implementation code at real scales but

doing so on just a commodity PC. SCALECHECK has been

integrated to several large-scale storage systems, Cassan-

dra, HDFS, Riak, and Voldemort, and successfully exposed

known and unknown scalability bugs, up to 512-node scale

on a 16-core PC.

1 Introduction

Being a critical backend of many today’s applications and

services, storage systems must be highly reliable. Decades

of research address a variety of storage dependability issues,

including availability [44, 55], consistency [41, 77], durabil-

ity [51, 72], integrity [36, 56], security [53, 71], and reliabil-

ity [73, 74].

The dependability challenge grows as storage systems

continue to scale in large distributed manners, especially in

the last couple of years where the field witnesses a phenome-

nal deployment scale; Netflix runs tens of 500-node Cassan-

dra clusters [34], Apple deploys a total of 100,000 Cassandra

nodes [2], Yahoo! revealed the largest Hadoop/HDFS clus-

ter with 4500 nodes [35], and Cloudera’s customers deploy

Spark on 1000 nodes [24, 27].

Is scale a friend or a foe [68]? On the positive side, scale

surpasses the limit of a single machine in meeting increasing

demands of compute and storage. On the negative side, this

new era of “cloud-scale” storage systems has given birth to

a new class of bug, scalability bugs, as defined in Figure 1.

From our in-depth study of scalability bugs (§2), we iden-

tified two challenges. First, scalability bugs are not easy to

discover; their symptoms only surface in large deployment

scales (e.g.,N>100 nodes). Protocol algorithms might seem

scalable in design sketch, but until real deployment takes

place, some bugs remain unforeseen (i.e., there are specific
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Scalability bugs: Latent bugs that are

scale dependent, whose symptoms surface

in large-scale deployments (e.g., N>100
nodes), but not necessarily in small/medium-

scale (e.g., N<100) deployments.

Examples:

“obvious symptom in 1000 nodes” [Cassandra bug #6127],

“with >500 nodes, ... trouble” [# 6409];

“16800 maps [recovery] was slow” [Hadoop #3711],

“1900 nodes, [namenode’s] queue overflowed” [#4061];

“with >200 nodes, it doesn’t work” [HBase #12139].

Figure 1: Scalability bugs. Definition and quotes from scala-

bility bug reports. Detailed examples are in §2a and §5.1.

implementation choices whose impacts at scale are unpre-

dictable). Last but not least, their root causes are often hid-

den in the rarely tested background and operations protocols.

Second, the common practice of debugging scalability

bugs is arduous, slow and expensive. For example, when

customers report scalability issues, the developers might not

have direct access to the same cluster scale and must wait for

a “higher-level” budget approval for using large test clusters.

As it stands today, many developers are heavily reliant on

test clusters operated by large companies to do scale testing

and only accessible to expert developers [26].

These realities raise the following question: how to dis-

cover latent scalability bugs and democratize large-scale test-

ing? To this end, we introduce SCALECHECK, a concept

that emphasizes the need to scale-check distributed system

implementations at real scales, but do so cheaply on just

one machine, hence empowering more developers to perform

large-scale testing and debugging.

We design SCALECHECK with two components (SFIND

and STEST) to address the two challenges. First, to reveal

hidden scalability bugs, we build SFIND, a program analy-

sis support for finding “scale-dependent loops.” This strat-

egy is based on our findings that the common root cause of

scalability bugs is loops that iterate on data structures that

grow as the system scales out (e.g., an O(N3) loop that

iterates through lists of node descriptors). Such loops can

span across multiple functions and classes and iterate a va-
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riety of data structures, hence the need for an automated ap-

proach. With SFIND output, developers can setup the nec-

essary workloads that will exercise the loops and reveal any

potential impacts to performance or availability.

Next, to democratize large-scale testing, we build STEST,

a single-machine scale-testing framework. We target one

machine because arguably the most popular testing practice

is via unittests, which only requires a PC. Developers already

invest a significant effort on unittests; their LOC can reach

20% of the system’s code itself. However, current distributed

systems and their unittests are not built with single-machine

scale-testing in mind. For example, naively packing nodes as

processes/VMs onto one machine quickly hits a colocation

limit of 50 nodes/machine and we found no way to achieve

a high colocation factor with black-box methods (no target

system modification). Thus, we introduce novel colocation

techniques such as global-event driven architecture (GEDA)

in single-process cluster and processing illusion (PIL) with

non-intrusive modification.

To show the generality and effectiveness of

SCALECHECK, we have integrated SCALECHECK to a

variety of large-scale storage systems, Cassandra [58],

HDFS [18], Riak [30], and Voldemort [29], across a total

of 15 earlier and newer releases. We scale-checked a total

of 18 protocols (bootstrap, rebalance, add/decommission

nodes, etc.), reproduced 10 known bugs and discovered 4

unknown critical scalability bugs (in Cassandra and HDFS).

By only modifying the target systems in 179 to 918 LOC

(and with a generic STEST library), we can colocate up to

512 nodes on a 16-core 32-GB commodity PC with high

result accuracy (i.e., observe a similar behavior as in the

real-scale deployment).

SCALECHECK is unique compared to related work. For

example, scalability simulation [39, 57] only checks mod-

els, but SCALECHECK checks implementation code. Ex-

trapolation from “mini clusters” [57, 75, 80] does not work

if the bug symptoms do not surface in small deployments,

but SCALECHECK checks at real scales. Finally, emula-

tion “tricks” run implementation code at real scale but in a

smaller emulated environment [10, 48, 78] (the same cate-

gory SCALECHECK can be put in), however existing tech-

niques have limitations such as not addressing CPU con-

tention and not finding potential causes automatically (more

in §7). We also acknowledge many other works in improv-

ing storage scalability [42, 70], while our work emphasizes

on scalability faults.

In summary, scalability bugs are new-generation bugs to

combat in modern cloud-scale storage. Finding them with-

out dependence of large clusters is a new research area to

explore. In fact, this problem was discussed in a recent large

meeting of Hadoop committee [26]. Currently, many new

features in the alpha releases of Hadoop/HDFS still “sit on

the shelf,” i.e., it is hard to test alpha (or even beta) releases

at real scales as large production systems are not always ac-

    (Y5, map[N]) {

    O(N3)

} node X

f
Y5Y9 Y7...

backlog

gossip(Y1)

gossips node Z

...

Y=dead
(no new
gossip)

a

b

c
d

e

Figure 2: An example bug (Section 2a). (a) Every second

every node gossips to its peers its ring view and version number

(e.g., Y gossiped up to version Y9), (b) the receiving node (e.g., X)

executes “f()” to synchronize the view, (c) when N is large, this

O(N3) scale-dependent process creates a backlog of new gossips,

(d) thus X keeps gossiping only the latest (old) versions (e.g., Y1),

(e) as Y ’s recent gossips are not propagated on time, other nodes

(e.g., Z) mark Y as dead.

cessible for testing. Some new features are still pushed and

deployed but without much confidence. With this unideal re-

ality, the committee agrees on the need for this new research,

that it will increase their confidence on new releases [26].

Some companies began to invest in building scale-testing

frameworks. For example, LinkedIn just released their scale-

testing framework this year [9, 10] but it only emulates stor-

age space specifically for HDFS.

For interested readers, we provide a supplemental file [1].

In the following sections, we present an extended motiva-

tion (§2), SCALECHECK design, application and implemen-

tation, and evaluation (§3-5) discussion, related work, and

conclusion (§6-8).

2 Scalability Bugs

Scalability bugs are not a well-understood problem. To the

best of our knowledge, we provide the first in-depth look at

scalability bugs in scale-out systems.

(a) What is an example of scalability bugs? In Cas-

sandra issue #c6127 in Figure 2 [7], the bug surfaced when

bootstrapping a large cluster. Here, every node receives gos-

sips from peer nodes (with their ring views), then find any

difference to synchronize their views of the ring. The root

cause is that during bootstrapping with many view changes,

the gossip processing is scale-dependent, O(N3), as it iter-

ates through the node’s and peer’s ring data structures and

uses a list-copy mechanism. When N is large, this CPU-

intensive process creates a backlog of new gossips, hence

many nodes are inadvertently declared dead (and then alive

after the gossips arrive). This repeating process leads to a

cluster instability with thousands of “flappings” as N grows;

a “flap” is when a node marks a peer as down and alive again.

More detailed examples are presented in §5.1.

(b) Do they exist in many scalable systems? We have

collected a total of 55 bugs in many modern distributed

systems (13 in Cassandra, 5 in Couchbase, 6 in Hadoop,

13 in HBase, 16 in HDFS, 1 in Riak, and 1 in Voldemort).

This is an arduous process due to the lack of searchable key-

words for “scalability bugs”; we might have missed some

other bugs. We post the full list in Section 2 of [1]. All

the bugs were reported from large deployments (100-1900
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nodes). We emphasize again that all these bugs can only be

reproduced at scale.

(c) What are the root causes? We study the buggy code,

patches, and developer discussions and find that the majority

(52) of the bugs are caused by scale-dependent loops, which

iterate scale-dependent data structures (e.g., list of nodes);

the rest is about logic bugs that can be caught with single-

function testing. We break them down to three categories:

(1) CPU-intensive loops (15 bugs); Figure 2 shows an exam-

ple. (2) Disk IO loops (26 bugs); the pattern is similar to

Figure 2 but the nested-loops contain disk IOs. (3) Locking-

related loops (11 bugs); they can be in the form of locks in-

side the loops or vice versa. These patterns suggest that this

problem lends itself to program analysis (§3.1).

(d) Where are they located? The bugs are within the

user-facing read/write calls (12 bugs) and operational proto-

cols (40 bugs) such as block report, bootstrap, consistency

repair, decommission, de-replication, distributed fsck, heart-

beat, job recovery, log cleaning, rebalance, and region as-

signment. This suggests that scalability correctness is not

merely about the user-facing paths. Large systems are full of

operational paths that must be scale-tested as well.

(e) When do they happen? User-facing read/write proto-

cols run “all the time” in deployment, hence are continuously

tested. Operational protocols, however, are not frequently

exercised. In a stable-looking cluster, scalability bugs can

linger silently until the buggy operational protocols are trig-

gered (akin to buggy error handling). For the bugs in user-

facing calls, most were triggered by unique workloads such

as large deletions or writes after decommission.

(f) How do scalability bugs impact users? Scalability

bugs can cause both performance and availability problems.

Although many of the bugs are in the operational protocols,

they can cascade to user-visible impacts. For example, when

nodes are incorrectly declared dead, some data become un-

reachable; or scale-dependent operations in the master node

(e.g., in HDFS) can cause global lock contention, hence

longer time to process user read/write requests.

(g) Why were the bugs not found before? First, the

workloads and the necessary scales to cover the buggy pro-

tocols are not captured in the unittests as creating a scal-

able test platform is not straightforward [26]. Second, pro-

tocols might be scalable in design, but not in practice. Re-

lated to c6127 (Figure 2), the failure detector/gossiper [50]

was adopted for its “scalable” design [58]. However, the de-

sign does not account for the gossip processing time during

bootstrap/cluster-changes, which can be long, and the sub-

sequent backlogs. To debug, the developers tried to “do

the [simple] math” but failed [7]. Specific implementa-

tion choices such as overloading gossips with many other

purposes (e.g., announcing boot/rebalance changes) deviate

from the original design sketch, hence the need for scale-

testing the implementation code at real scales.

applyStateLocally (epStateMap) 

   for (e : epStateMap)  

      if (!localStateMap.get(e.key))

         handleChange(ep, e.val); 

handleChange (ep, epState) 

   for (subscriber : subscribers)

      subscriber.onJoin(ep, epState); 

onJoin (ep, epState) 

   for (e : epState)

      onChange (ep, e.key, e.val); 

onChange (ep, state, val) 

   if (state == STATUS)

      if (val.val[0] == NORMAL)

         handleNormal(ep, val.val); 

handleStateNormal (ep, pieces) 

   calcPendingRanges();  

calcPendingRanges () 

   for (tab : nonSysTabs)

      calcPendingRanges(tab); 

calcPendingRanges (tab) 

   for (r : affectedRanges) 

      tm.cloneOnlyTokenMap(); 

cloneOnlyTokenMap () 

   HashMap.create(ep.map); 

create(map) 

   for (m : map) 

      newmap.add(m);

O(N3)

O(N2)

O(N)

Figure 3: O(N3) scale-depended loops (§3.1). The partial

code segment above depicts the O(N3) loops in Figure 2. SFIND

automatically tags epStateMap, affected- Ranges, and map as

scale-dependent collections.

(h) Are scalability bugs easy to debug and fix? The bugs

took 1 month to fix on average with tens of back-and-forth

discussions. One big factor of delayed fixes is the lack of

budget for large test clusters as such luxury tends to only be

accessible in large companies, but not to open-source devel-

opers [26]. Another factor is that debugging and fixing are

not a single-iteration task; developers must repeatedly instru-

ment the system and re-run at scale to pinpoint the root cause

and test the patch.

3 SCALECHECK

We now present the design of SCALECHECK, which is com-

posed of two parts to achieve two goals: SFIND (§3.1), a pro-

gram analysis that exposes scale-dependent loops to devel-

opers, and STEST (§3.2), a set of colocation techniques that

enable hundreds of nodes to be colocated on one machine

for testing. While STEST produces accurate bug symptoms

in most cases, it does not deliver accurate results when all

nodes are CPU intensive. For this, we introduce PIL (§3.3),

an emulation technique that provides processing illusion.

3.1 SFIND

The first challenge to address is: how to find scale-dependent

loops? Unfortunately, it is not trivial as such loops can span

multiple functions and iterate many scale-dependent collec-

tions (iterable data-structure instances such as list). In Fig-

ure 3, the O(N3) loops span 1000+ LOC, 3 classes, and

10 functions and iterate 3 scale-dependent collections. This

difficulty motivates SFIND, a generic program analysis that

helps developers pinpoint scale-dependent loops. Below are

the three main steps of SFIND. For space, the pseudo-code

can be found in our supplement, Section 3.1 of [1].

(1) Auto-tagging of scale-dependent collections: SFIND

first automatically tags scale-dependent collections. This is

done by growing the cluster and data sizes (e.g., add nodes

and add files/blocks) in steps. After each step, we record

the size of each instantiated collection. When all the steps

are done, we check each collection’s growth tendency and
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mark as scale dependent those whose size increases as the

cluster/data size grows.

This, however, is insufficient due to two reasons. First,

there are collections that only grow when background/oper-

ational tasks are triggered (§2d); thus, we must also run all

non-foreground tasks. Second, there are “ephemeral” collec-

tions (e.g., messages) whose content are scale-dependent but

might have been garbage collected by the runtime. Given

that the measurements are taken in steps, garbage collection

can happen in between them so these collections will not be

detected consistently, thus this phase must be iterated multi-

ple times to remove such noise.

For Java systems, we track heap objects and map them to

their instance names by writing around 1042 LOC of analy-

sis on top of Java language supports such as JVMTI [67] and

Reflection [22]. This phase also performs a dataflow analysis

to taint all other variables derived from scale-dependent col-

lections. In our experience, by scaling out to just 30 nodes

(30 steps), which can be done easily on one machine, scale-

dependent collections can be clearly observed (though not

the symptoms). This phase found 32 scale-dependent collec-

tions in Cassandra (three in Figure 3) and 12 in HDFS.

(2) Finding scale-dependent loops: With the tagging,

SFIND then automatically searches for scale-dependent

loops, specifically by tainting loops (for, while) as well as

recursive functions that iterate through the scale-dependent

collections, performing a control-flow analysis to construct

the nested Big O complexity of each loop, and identify-

ing the loop contents (CPU/instructions only, IOs, or locks).

With these steps, in Figure 3 for example, SFIND can mark

applyStateLocally as an O(N3) function.

We also cover a special “implicit loop” – a synchronized

(locking) function in a node that is being called by all the

peer nodes. A common example is in the master-worker ar-

chitecture where all the N worker nodes RPC into a master’s

lock-protected function. When N grows, there is a potential

of lock contention (congestion) to the function (examples are

in §5.1). SFIND also handles such scenarios by tagging RPC

classes and searching for functions called by the peer nodes.

(3) Reporting and triaging: SFIND finds 131 scale-

dependent loops in Cassandra and 92 in HDFS, hence the

need for triaging. For example, if a function g has lower

complexity than f , and g is within the call path of f , then

testing f can be prioritized. For every nested loop to test,

SFIND reports the relevant control- and data-flows from the

outer-most to inner-most loop, along with the entry points

(either client/admin RPCs or background daemon threads).

The entry points are finally ranked by counting the num-

ber of spanned scale-dependent lines of code, the theoreti-

cal complexity (in terms of scale-dependent data structures),

the number of IO operations (including reads/writes) and

the number of blocking operations (including locking and

operations that block waiting for a future result) in that

path. The theoretical complexity is not by itself a com-

plete indicator of potential bottlenecks. For example, an

entry point reported with high complexity ,e.g. O(N3), but

with no IO/Blocking operations on its code path might not

be as bottleneck prone as one reported with less complex-

ity, e.g. O(N), but many IO/Blocking operations on its code

path. This ranking helps developers prioritize and create

the necessary test workloads. For example, in Figure 3, the

O(N3) path is only exercised if the cluster bootstraps from

scratch when peers do not know about each other (hinted

from the “if(!localStateMap.get())”, “onChange()”,

“state==STATUS” and “val==NORMAL”). SFIND reports that

this entry point spans over 6700 scale-dependent lines of

code and performs over 20N IO and 4N blocking opera-

tions, which implies that it is likely to become a bottleneck

as the cluster size grows and should be prioritized.

Creating test workloads from SFIND report is a manual

process. Automated test generation is possible for single-

machine programs/libraries [38], however, we are not aware

of any work that automates such process in the context of

real-world, complex, large-scale distributed systems. We put

our work in the context of DevOps culture [62] where devel-

opers are testers and vice versa, which (hopefully) simplifies

test workload creation.

3.2 STEST

The next challenge is: how to test scale-dependent loops

at real scales (hundreds of nodes) on one machine? Many

scale-dependent loops were unfortunately not subjected to

testing because existing unittest frameworks do not scale.

Below we describe the hurdles to achieve a high colocation

factor. Starting in Section 3.2.1, we began with black-box

methods (no/small target system modification).

Unfortunately, we found that existing systems are not

built with single-machine scale-testing in mind (the theme of

this section); we faced many colocation bottlenecks (memo-

ry/CPU contentions and context switching delays) that limit

large colocation. In Section §3.2.2, we will describe our so-

lutions to achieve single-machine scale-testable systems with

minimal changes. All the methods we use are summarized

in Table 1 using Cassandra as an example. Abbreviations of

our methods (e.g., NP, SPC, GEDA) are added for ease of

reference in the evaluation.

3.2.1 Black-Box Approaches

• Naive Packing (NP): The easiest setup is (naively) pack-

ing all nodes as processes on a single machine. However, we

did not reach a large colocation factor, which is caused by

the following reasons.

(a) Memory bottlenecks: Many distributed systems today

are implemented in managed languages (e.g., Java, Erlang)

whose runtimes consume non-negligible memory overhead.

Java and Erlang VMs, for example, use around 70 and 64
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#Nodes LOC Colocation

per PC added bottlenecks

Black/gray-box approaches (§3.2.1)

(a) Naive (NP) 50 – Memory, proc. switch

(b) SPC 70 – User-kernel switch

(c) SPC+Stub 120 +91 Context switch

White-box approaches (§3.2.2)

(d) GEDA 130 +581 CPU

(e) GEDA+PIL 512 +246 CPU

Table 1: Colocation strategies and bottlenecks (§3.2).

MB of memory per process respectively. We also tried run-

ning nodes as Linux KVM VMs and using KSM (kernel

samepage merging) tool. Interestingly, the tool does not find

many duplicate pages even though the VMs/processes are

supposed to be similar (as reported elsewhere [65]). Over-

all, including Cassandra’s memory usage, per-node memory

consumption reaches 100 MB. Thus, a 32-GB machine can

only colocate around 300 nodes.

(b) Process context switches: Before we hit the memory

bottleneck (e.g., reach 300 nodes), we observed that the tar-

get systems’ “inaccuracy” is already high when we colocate

just 50 nodes. For measuring inaccuracy, we measure sev-

eral application-level metrics; for example, in Cassandra, if

gossips should be sent every 1 second, but are sent every

1.3 second, then the inaccuracy is 30%. We use 10% as the

maximum acceptable inaccuracy/event lateness. We noticed

high inaccuracies even before we hit the CPU bottlenecks

(i.e., CPU has not reached 90% utilization). We suspected

that the process context switches could be the reasons.

(c) Managed-language VM limitations: We also found

that managed-language VMs are backed by advanced ser-

vices. For example, Erlang VMM contains a DNS service

that sends heartbeat messages among connected VMs. When

hundreds of Erlang VMs (one for each Riak node) run on

one Erlang VMM, the heartbeat messages cause a “network”

overflow that undesirably disconnects Erlang VMs (also re-

ported in [40]). Naive packing is infeasible.

• Single-Process Cluster (SPC) + Network Stub: To ad-

dress the bottlenecks above, we deployed all nodes as threads

in a single process. Surprisingly, our target systems are not

easy to run in this “single-process cluster.” For example,

Cassandra developers bemoan the fact that their gossip/fault-

detector protocols are not adequately scale-tested [15, 28]

because Cassandra (and many other systems) uses “single-

ton” design pattern for simplicity (but bad for modularity)

[32]. That is, most global states are static variables that can-

not be modularized to per-node isolated variables.

Our strawman attempt was a redesign to a more modu-

lar one, which costs us almost 3000 LOC (and no longer a

black-box method); Cassandra developers also attempted a

similar method to no avail [15, 28]. We found another way:

leveraging class loader isolation support from the language

runtime [23], which is rarely used but fits SPC purpose. In
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x
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Figure 4: Global Event Driven Arch. (Section 3.2.2). The

figure format follows [79, Figure 6].

Java systems, we can manipulate the class loader hierarchy

such that a node’s main thread (and all child threads) use an

isolated set of Java class resources, not shared with those be-

longed to other nodes, hence no target system modification.

Very recently, we found that Cassandra developers also begin

to develop a similar method to address this problem [8].

By SPC-ing Cassandra, we now hit a colocation limit of

70 nodes (Table 1b), but still have not reached the memory

or CPU bottlenecks. We suspected thread and/or user-kernel

context switching as a root cause. We removed the latter by

creating a generic network stub that (de)marshalls inter-node

messages and skips the OS. This stub is also helpful in re-

ducing network memory footprints under higher colocation.

For example, in Voldemort, the nodes communicate via Java

NIO [25] which is fast but contains buffers and connection

metadata that take up memory space and prevent >200-node

colocation (more in §5.4). For Cassandra, the network stub

allows up to 120-node colocation (Table 1c).

3.2.2 A White-Box Approach

Adding network stub is our last black-box approach as we

found no other way to reduce thread context switching in a

black-box way. In fact, we observed a massive thread con-

text switching issue. In P2P systems such as Cassandra, each

node spawns a thread to listen from a peer. Thus, just for

messaging, there are N2 threads to manage for the whole

cluster. This can be solved by using select()-like system

call [21], which would reduce the problem to N threads.

However, we still observed around N×26 active threads –

each node still runs multiple service stages (gossiper, failure

detector, etc.), each can be multi-threaded. A high colocation

factor will spawn thousands of threads.

• Global Event Driven Arch. (GEDA): To address the

problem, we must redesign the target system, but with min-

imal changes. We leverage the staged event-driven architec-

ture (SEDA) [79] (Figure 4a), common in server code, in

which each service/stage (in each node) exclusively has an

event queue and a thread pool. In STEST mode, we convert

SEDA to a global-event driven architecture (GEDA; Figure
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4b). That is, for every stage, there is only one queue and one

thread pool for the whole cluster. As an example, let’s con-

sider a periodic gossip service. With 500-node colocation,

there are 500 threads in SPC, each sending a gossip every

second. With GEDA, we only deploy a few threads (matched

with the number of available cores) shared among all the

nodes for sending gossips. As another example, for gossip

processing stage, there is only one global gossip-receiving

queue shared among all the nodes.

GEDA works with a minimal code change to the tar-

get system. Logically, as events are about to be enqueued

into the original per-node event queues ( 1© in Figure 4), we

redirect them to GEDA-level event queues, to be later pro-

cessed by GEDA worker threads. This only requires ∼10

LOC change per stage (as we use aspect-oriented program-

ming [3]). While simple, care must be taken for single-

threaded/serialized stage. For example, Cassandra’s gossip

processing is intentionally single-threaded to prevent concur-

rency issues. This is illustrated in case 2© in Figure 4 where

the per-node stage is serialized (i.e., y must be processed af-

ter x). Here, if the events are forwarded down during en-

queue, GEDA’s multiple threads will break the program se-

mantic (e.g., x and y can be processed concurrently). Thus,

for single-threaded/serialized stage, we must interpose at de-

queue time ( 3© in Figure 4), which costs ∼50 LOC change

per stage (details in §3.2 of [1]). Thus, by default we inter-

pose at enqueue (small changes) and at dequeue for single-

threaded stage (more changes).

Adding GEDA to Cassandra only costs us 581 LOC (Ta-

ble 1d) and is simple; the same 10-50 LOC method above is

simply repeated across all the stages. Overall, GEDA does

not change the logic of the target systems, but successfully

removes some delays that should have never existed in the

first place, as if the nodes run exclusively on independent

machines. For HDFS tests, GEDA enables 512-node colo-

cation (§5.4) but for some Cassandra tests, it only enables

around 130-node colocation (Table 1d), which we elaborate

in the next section.

3.3 Processing Illusion (PIL)

Finally, the last challenge we address is: how to produce

accurate results (i.e., the same bug symptoms observed in

real-scale deployment) when colocating hundreds of CPU-

intensive nodes? We found that STEST is sufficient for ac-

curately revealing bug symptoms in scale-dependent lock-

related loops or IO serializations, as these root causes do

not contend for CPUs. For CPU-intensive loops, STEST is

also sufficient for master-worker architecture where only one

node is CPU intensive (e.g., HDFS master).

However, for CPU-intensive loops in P2P systems such as

Cassandra, where all nodes are busy, the bug symptoms re-

ported by STEST are not accurate. For example, for Cassan-

dra issue #c6127 (§2a), in 256-node real deployment, we ob-

served around 2000 flappings (the bug symptom) but 21,000

flappings in STEST. The inaccuracy gets worse as we scale;

with N CPU-intensive nodes on a C-core machine, roughly

N/C nodes contend on a given core.

To address this, we need to emulate CPU-intensive pro-

cessing by supplementing STEST with processing illusion

(PIL), an approach that replaces an actual processing with

sleep(). For example, for c6127, we can replace the expen-

sive gossip/stage-changes processing (see Figures 2 and 3),

with sleep(t) where t is an accurate timing of how long the

processing takes.

The intuition behind PIL is similar to the intuition behind

other emulation techniques. For example, Exalt provides an

illusion of storage space; their insight was “how data is pro-

cessed is not affected by the content of the data being writ-

ten, but only by its size” [78]. Similarly, PIL provides an

illusion of compute processing; our insight is that “the key

to computation is not the intermediate results, but rather the

execution time and eventual output.” In other words, with

PIL, we will still observe the overall timing behaviors and

the corresponding impacts accurately.

PIL might sound outrageous, but it is feasible as we ad-

dress the following concerns: how a function (or code block)

can be safely replaced with sleep() without changing the

whole processing semantic (§3.3.1) and how we can produce

the output and predict the timing “t” if the actual compute is

skipped (§3.3.2)?

3.3.1 PIL-Safe Functions

Our first challenge is to ensure that functions (or code

blocks) can be safely replaced with sleep(), but still retain

the cluster-wide behavior and unearth the bug symptoms. We

name such functions as “PIL-safe functions.” We identify

two main characteristics of such functions: (1) Memoizable

output: a PIL-safe function must have a memoizable (deter-

ministic) output based on the input of the function. (2) Non-

pertinent IOs: if a function performs local/remote disk IOs

that are not pertinent to the correctness of the corresponding

protocol, the function is PIL-safe. For example, in c6127,

there is a ring-table checkpoint (not shown) needed for fault

tolerance but is irrelevant (never read) during bootstrapping.

We extend SFIND to SFINDPIL, which includes a static

analysis that finds code blocks in scale-dependent loops that

can be safely PIL-ed. SFINDPIL analyzes the content of

each loop in functions related to the relevant cluster state and

checks for two cases: (1) The loop performs operations that

affect the cluster state, so we need to insert pre-memoization

and replay code to record/reconstruct the cluster state [1,

§3.3]. We consider all variables involved in the execution of

a target protocol as relevant states. While our static analysis

tool eases the identification of these variables, programmer

intervention can help for additional verification. In (2), the

loop performs non-pertinent operations only (such as IO). In

this case, we can automatically replace the loop with a sleep

call without affecting the behavior of the protocol.
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  in  = modVars;
  t = getTime(in);
  sleep(t);
  // F();
  modVars = getOut(in);  

list L1, L2, L3; 
    scale-dep list

func F(){
 for(...L1)
  for(...L2)
   for(...L3)
     ...; }

  in  = modVars;
  t1  = time();
  F();
  t   = time()-t1;   
  out = modVars;
  store(in,out,t);
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Figure 5: SCALECHECK complete automated flow (Section 3.4). ”SCk” represents SCALECHECK. The left-most figure illustrates

testing in real deployments, where testing time is fast (T ) but requires N machines. Stages (a) to (d) reflect the automated SCALECHECK

process as described in Section 3.4. STESTmez in stage (c) runs on one machine but will take some time (>T ). STESTPIL in stage (d) still

runs on one machine but only consumes a similar time as in deployment testing (T+e) and can be replayed numerous times.

3.3.2 Pre-Memoization (with Determinism)

As PIL-safe functions no longer perform the actual compu-

tation, the next question to address is: how do we manu-

facture the output such that the global behavior is not al-

tered (e.g., rebalancing protocol should terminate success-

fully)?. For functions with no pertinent outputs, we just

need to do time profiling but not output recording. For func-

tions with pertinent outputs, our solution is pre-memoization,

which records input-output pairs and the processing time,

specifically a tuple of three items (ByteString in, out, long

nanoSec) indexed by hash(in)), which represent the to-be-

modified variables before and after the function is executed

and the processing time, respectively (Figure 5b).

Another challenge encountered is non-determinism: the

state of each node (the input) depends on the order of ar-

riving messages (which are typically random). Let’s con-

sider Riak’s bootstrap+rebalance protocol where eventually

all nodes own a similar number of partitions. A node initially

has an unbalanced partition table, receives another partition

table from a peer node, then inputs it to a rebalance function,

and finally sends the output to a random node via gossiping.

Every node repeats the same process until the cluster is bal-

anced. In a Riak cluster with N=256 and P=64, there are

in total 2489 rebalance iterations with a set of specific inputs

in one run. Another run of the protocol will result in a differ-

ent set of inputs due to gossip randomness. Our calculation

shows that there are (NNP )2 possible inputs.

To address this, during pre-memoization, we also record

non-determinism such as message orderings such that or-

der determinism is enforced during replay. For example,

across different runs, a Riak node now receives gossips from

the same sequence of nodes. With order determinism, pre-

memoization and SCALECHECK work as follow: (1) We

first run the whole cluster on a real deployment and inter-

pose sleep-safe functions. (2) When sleep-safe functions are

executed, we record the inputs and corresponding outputs

to a memoization database (SSD-backed files). (3) Dur-

ing this pre-memoization phase, we record message non-

determinism (e.g., gossip send-receive pairs and their tim-

ings). (4) After pre-memoization completes, we can repeat-

edly run SCALECHECK wherein order determinism is en-

forced (e.g., no randomness), sleep-safe functions replaced

with PIL, and their outputs retrieved from the memoization

database. Note that steps 1-3 are the only steps that require

real deployment.

Other than this, similar to the theme in the previous section

that existing systems are not amenable to single-machine

testing, we found similar issues such as the use of wall-

clock time which essentially incapacitates memoization and

replay. Here, we convert wall-clock time to “cluster start

time + elapse time” in 296 LOC (Table 1e).

3.4 Putting It All Together

Figure 5a-d summarizes the complete four stages of

SCALECHECK: a© SFIND searches for scale-dependent

loops which helps developers create test workloads. b©
For test workloads that show CPU busyness in all nodes,

SFINDPIL finds PIL-safe functions and inserts our pre-

memoization library calls. Next, STEST now works in two

parts. c© STESTmez (without PIL) will run the test on a

real cluster, but just one time, to pre-memoize PIL-safe func-

tions and store the tuples to a SSD-backed database file. d©
STESTPIL (with PIL) will then run by having SFINDPIL re-

move the pre-memoization library calls, replace the expen-

sive PIL-safe function with sleep(t), and insert our code

that constructs the memoized output data. SCALECHECK

also records message ordering during STESTmez and replays

the same order in STESTPIL (not shown).

As another benefit, SCALECHECK can also ease real-scale

debugging efforts. First, the only step that consumes more

time is the no-PIL pre-memoization phase (Figure 5c), up

to 6x longer time than real-deployment testing (§5.5). How-

ever, this is only a one-time overhead. Most importantly,

developers can repeatedly re-run STESTPIL (Figure 5d) as

many times as needed (tens of iterations) until the bug be-

havior is completely understood. In STESTPIL, the protocol

under test runs in a similar duration as if all the nodes run on

independent machines.

Second, some fixes can be tested by only re-running the

last step; for example, fixes such as changing the failure

detector Φ algorithm (for c6127), caching slow methods

(c3831), changing lock management (c5456), and enabling

parallel processing (v1212). However, if the fixes involve

a complete redesign (e.g., optimized gossip processing in

c3881, decentralized to centralized rebalancing in r3926),

STESTmez must be repeated.
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Cass HDFS Riak Vold

STEST-able systems 918 179 217 800

SFIND code 4026 (generic)

STEST library 6047 (generic)

Table 2: Integrations LOC (Section 4). More explanations

are in Section 4 of [1]. We will release our code publicly.

4 Application and Implementation

Table 2 quantifies the application of SCALECHECK tech-

niques to a variety of distributed systems, Cassandra [58],

HDFS [18], Riak [30], and Voldemort [29]. The major

system-specific change is achieving “STEST-able systems”

(i.e., supporting SPC and GEDA), which range between 179

to 918 LOC (less than 1 % of the target code size). This

is analogous to how file systems code are modified to make

them “friendlier” to fsck [52, 63]. The rest is the generic

SFIND and STEST library code (pre-memoization, auto PIL

insertion, message order determinism support, AspectJ util-

ities). SFIND was built with Eclipse AST Parser [11] to

support Java programs. We leave porting to Erlang’s parser

[12, 13] as future work.

Generality: We show the generality of SCALECHECK with

two major efforts. First, we scale-checked a total of 18 pro-

tocols: 8 Cassandra (e.g., bootstrap, scale-out, decommis-

sion), 8 HDFS (e.g., decommission, block reports, snapshot),

1 Riak (rebalance), and 1 Voldemort (rebalancing) protocols

(full list in §4 of [1]). A protocol can be built on top of

other protocols (e.g., bootstrap on gossip and failure detec-

tion protocols). Second, for exposing known bugs, we ap-

plied SCALECHECK to a total of 10 earlier releases: 4 Cas-

sandra, 4 HDFS, 1 Riak, and 1 Voldemort old releases. For

finding unknown bugs, we also ran SCALECHECK on recent

releases of the four systems.

5 Evaluation

We now evaluate SCALECHECK: Is SCALECHECK effective

in exposing scalability bugs (§5.1-5.2), accurate (§5.3), scal-

able and efficient (§5.4-5.5)? We compare SCALECHECK

with real deployments of 32 to 512 nodes, deployed on at

most 128 machines (testbed group limit), each has 16-core

AMD Opteron(tm) with 32-GB DRAM.Our target protocols

only make at most 2 busy cores per node, which justifies

why we pack 8 nodes per one 16-core machine for the real

deployment.

5.1 Exposing Scalability Bugs

Table 3 lists the 10 real-world bugs we use for benchmark-

ing SCALECHECK. We chose these 10 bugs (among the 55

bugs we studied) because the reports contain detailed de-

scriptions of the bugs, which is important for us to create

the “input” (i.e., the test cases). Figure 6 shows the accuracy

Bug# N Protocol Metric Tm Tpil

c6127 [7] ≥256 Bootstrap #flaps 2h 15m

c3831 [6] ≥256 Decomm. #flaps 17m 9m

c3881 [5] ≥64 Add nodes #flaps 7m 5m

c5456 [4] ≥256 Add nodes #flaps 16m 4m

r3926 [31] ≥128 Rebalance TComp 6h 2h

v1212 [33] ≥128 Rebalance TComp 22h –

h9198 [19] ≥256 Blk. report QSize 8m –

h4061 [17] ≥256 Decomm. TLock 6h –

h1073 [16] ≥512 Pick nodes TComp 1m –

h395 [20] ≥512 Blk. report TComp 5m –

Table 3: Bug benchmark (§5.1). The table lists the scal-

ability bugs we use for benchmarking SCALECHECK. “c” stands

for Cassandra, “h” for HDFS, “r” for Riak, and “v” for Volde-

mort. The “N” column represents the #nodes for the bug symptoms

to surface. The “Metric” column lists the quantifiable metrics of

the bug symptoms; TComp, TLock, and QSize denote computation

time, lock time, and queue size, respectively. The “Tm” and “ Tpil”

columns quantify the duration of the pre-memoization (STESTmez)

and PIL replay (STESTPIL) stages when N≥256, as discussed in

§5.5. “–” implies PIL is unnecessary.

of SCALECHECK in exposing the 10 bugs using the “bug-

symptom” metrics in Table 3 (the first bug c6127 will be

shown later in Section 5.3 and the last bug h395 is omitted

in Figure 6 for space).

Results summary: First, SCALECHECK is effective and ac-

curate in exposing scalability bugs, some of which only sur-

face in 256+ nodes. As shown, for Cassandra and Riak bugs

where all nodes are CPU intensive, PIL is needed for accu-

racy (SCk+PIL vs. Real lines in Figures 6a-d), but for the rest,

STEST suffices (SCk vs. Real in 6e-f).

Second, SCALECHECK can help developers prevent recur-

ring bugs; the series of Cassandra bugs (as described later

below) involves the same protocols (gossip, rebalance, and

failure detector) and create the same symptom (high #flaps).

As code evolves, it can be continuously scale-checked with

SCALECHECK.

Third, different systems of the same type (e.g., key-value

stores, master-worker file systems) implement similar proto-

cols. The effectiveness of SCALECHECK methods in scale-

checking the different protocols above can be useful to many

other distributed systems.

Bug descriptions: We now briefly describe the bugs.

Longer descriptions can be found in Section 5.1 of [1].

(a) Figure 6a: In Cassandra c3831 [6] when a node X is

removed, all other nodes must own X’s key-partitions. This

scale-dependent, CPU-intensive “pending keyrange calcula-

tion” cause cluster-wide flapping (the y-axis), observable in

256+ nodes. The fix caches the outputs of slow methods.

(b) Figure 6b: c3881 [5] is similar to the previous bug

(c3831), but the fix was obsolete as the concept of multi-
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Figure 6: SCALECHECK effectiveness in exposing scalability bugs (Section 5.1). ”SCk” represents SCALECHECK. The bugs

are listed in Table 3. The x-axis represents the number of nodes (N ). The figure title describes the y-axis, i.e., the bug symptom metrics

as recorded in “Real” deployment vs. SCALECHECK. For Cassandra and Riak bugs (a-d), where all nodes are CPU-intensive, the bug

symptoms are inaccurate without PIL (“SCk” lines). However, with PIL (“SCk+PIL” lines), the bug symptoms are relatively accurate as in

the real deployment scenarios. For Voldemort and HDFS bugs (e-h), where there is no concurrent CPU busyness, PIL is not needed.

ple key-partitions per node was added. The calculation is

now scale-dependent on N×P . This causes CPU spikes

and massive flapping during scaling out; the bug surfaced in

64+ nodes (when 32+ new nodes are added to existing 32+

nodes). The bug was fixed with a complete redesign of the

pending keyrange calculation.

(c) Figure 6c: Interestingly, c5456 [4] is a bug in the same

protocol as above. The previous fix was obsolete again as

pending range calculation is now multi-threaded; range cal-

culations can happen concurrently. However, this new design

introduces a new coarse-grained lock that can block gossip

processing for a long time, thus introduces flapping (in 256+

nodes). The fix changed the lock management.

(d) Figure 6d: In r3926 [31], Riak’s rebalancing algorithm

employed 3 complex stages (claim-target, claim-hole, full-

rebalance) to converge to a perfectly balanced ring. Each

node runs this CPU-intensive algorithm on every bootstrap-

gossip received. The larger the cluster, the longer time the

perfect balance is achieved (a high y value in 128+ nodes).

(e) Figure 6e: In v1212 [33], Voldemort’s rebalancing was

not optimized for large clusters; it led to more stealer-donor

partition transitions as the cluster size grows (128+ nodes).

The fix changed the stealer-donor transition algorithm.

(f) Figure 6f: In h9198 [19], incremental block reports

(IBRs) from HDFS datanodes to the namenode acquire the

global master lock (i.e., a special worker-to-master “loop”

as explained in §3.1). As N grows, more IBR calls acquire

the lock. The IBR requests quickly backlog the namenode’s

IPC queue; with 256 nodes, the IPC queue hits the max of

1000 pending requests; y=1 (×1000). When this happens,

user requests are undesirably dropped by the namenode. The

fix batches the IBR request processing. In HDFS, to emu-

late large blocks, we reuse the “TinyDataNode” class (1KB

blocks) that the developers already use in the unit tests.

(g) Figure 6g: In h4061 [17], when D datanodes are de-

commissioned, the blocks must be replicated to the other

N−D nodes. Every 5 minutes, the DecommissionMonitor

thread in the namenode iterates all the block descriptors to

check if the D nodes can be safely decommissioned (when

all data replications complete). This thread, unfortunately,

must hold the global file system lock. When N is 256+, this

process can hold the lock (i.e., stall user requests) for more

than 10 seconds (y>10). The fix used a dedicated thread to

manage decommissioning and refined the algorithm.

(h) Figure 6h: In h1073 [16], for a new file creation,

the namenode calls a chooseTarget function to sort a list

of target datanodes from their distances from the writer and

choose the best nodes. When N and the replication factor

are large, it can take more than one second to choose. The

fix modified the sorting algorithm.

(i) Finally, in h395 [20] (figure not shown for space),

datanodes send block reports too frequently and when

N>512 nodes, the namenode spends more time in this back-

ground process as opposed to serving users.

5.2 Discovering Unknown Bugs

We also integrated SCALECHECK to recent stable versions

of Cassandra, HDFS, Riak, and Voldemort, and found 1 un-

known bug in Cassandra and 3 bugs in HDFS.

For Cassandra, SFIND pointed us to another nested scale-

dependent loop. We created the corresponding test case and

SCALECHECK showed that cluster-wide flapping resurfaces

again but only in 512-node deployment. As an example,

decommissioning just only one node already caused almost

100,000 flaps. The developers confirmed that the bug is re-

lated to a design problem. To prevent flappings, the devel-
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a) #flaps = f( Φ > 8 )
b) Φ = f( TavgGossip, TlastGossip )

TavgGossip = avg. of last 1000 TlastGossip

c) TlastGossip = f( #hops, TgossipExec )
#hops = log(N) on average

TgossipExec = TstateUpdate (if new state changes)

d) TstateUpdate = f( SizeringTable, SizenewStates )
SizeringTable ≤N×P and SizenewStates ≤N

Figure 7: Cassandra internal metrics (§5.3). Above are the

metrics we measured within the Cassandra bootstrap protocol for

measuring SCALECHECK accuracy (Figure 8). “f” represents “a

function of” (i.e., an arbitrary function).

opers suggested us to add/remove node one at a time with 2-

minute separation, which means scaling-out/down 100 nodes

will take over 3 hours (i.e., this bug impedes instant elas-

ticity). The developers recently started a new initiative for

designing “Gossip 2.0” to scale to 1000+ nodes [14].

For Riak and Voldemort, we found that their latest-stable

bootstrap/rebalance protocols do not exhibit any scalability

bug, up to 512 nodes.

For HDFS, we found 3 instances of scale-dependent loops

that hold the entire namenode read/write lock (also con-

firmed by the developers). Specifically, SFIND reports the

following number of lines executed:

FSNamesystem.getSnapshotDiff N*(85*B+17)

DatanodeManager.refreshDatanodes N*(136*B+137)

FSNamesystem.metaSave N*(50*B+21)

Here, “B” represents the number of blocks per datanode

(e.g., 10,000). The first function, getSnapshotDiff, contains

a bug that the HDFS developers were hunting for 4 weeks, as

the unresponsive-namenode impact recently affected a cus-

tomer. In this path, there is a recursive function iterating

on a list of files and blocks and a conditional path that makes

ACL lookups which causes the namenode to be unresponsive

for more than 40 seconds in at least a 512-node deployment.

Similar symptoms were also reproduced for the second and

third bugs (refreshDatanodes and metaSave). The develop-

ers say these bugs are dangerous because if the namenode is

paused for 45 seconds, it will cause a heavy failover. They

also say these bugs are hard to find in a million-plus lines of

code. More details/graphs are in §5.2 of [1].

5.3 Accuracy

The goal of our next evaluation is to show that PIL-

infused SCALECHECK mimics similar behaviors as in real-

deployment testing and is accurate not only in the final bug-

symptom metric but also in the detailed internal metrics. For

this, we collected roughly 18 million values. For space, we

only focus on c6127 [7] (see §2a).

Figure 7a-d shows the internal metrics that we measured

within Cassandra failure detection protocol for every pair of

nodes; the algorithm runs on every node A for every peer

B. Figures 8a-d compare in detail the accuracy of STEST
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Figure 8: Accuracy in exposing c6127 (§5.3). The fig-

ures represent the metrics presented in Figure 7, measured in real

deployment (“Real”) and in SCALECHECK (”SCk”) with different

cluster sizes (32, 64, 128, 256, and 512 in the x-axis). The y-axes

(the metrics) are described in the figure titles.

without PIL (“SCk”) and STESTPIL with PIL (“SCk+PIL”),

respective to the real-deployment testing (“Real”).

(a) Figure 8a shows the total number of flaps (alive-

to-dead transitions) observed in the whole cluster during

bootstrapping. STEST by itself will not be accurate if

all nodes are CPU intensive (§3.3). However, with PIL,

SCALECHECK closely mimics real deployment scenarios.

Next, Figure 7a defines that #flaps depends on Φ [50]. Every

node A maintains a Φ for a peer B (a total of N×(N−1)
variables to monitor).

(b) Figure 8b shows the maximum Φ values observed for

every peer node; for graph clarity, from here on we only

show with-PIL results. For example, for the 512-node setup,

the whisker plots show the distribution of the maximum Φ
values observed for each of the 512 nodes. As shown, the

larger the cluster, more Φ values exceeds the threshold value

of 8, hence the flapping. Figure 7b points that Φ depends on

the average inter-arrival time of when new gossips about B

arrives at A (TavgGossip) and the time since A heard the last

gossip about B (TlastGossip). The point is that TlastGossip

should not be much higher than TavgGossip.

(c) Figure 8c shows the whisker plots of gossip inter-

arrival times (TlastGossip) that we collected for every A-B

pair (millions of gossips as a gossip message contains N
gossips of the peer nodes). The figure shows that in larger

clusters, new gossips do not arrive as fast as in smaller clus-

ters, especially at high percentiles. Figure 7c shows that

TlastGossip depends on how far B’s new gossips propagate

through other nodes to A (#hops) and the gossip processing

time in each hop (TgossipExec). The latter (TgossipExec) is

essentially the state-update processing time (TstateUpdate),

triggered whenever there are state changes.
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(d) Figure 8d (in log scale) shows the whisker plots of

the state-update processing time (TstateUpdate). In the 512-

node setup, we measured around 25,000 state-update invoca-

tions. The figure shows that at high percentiles, TstateUpdate

is scale dependent (the culprit). As shown in Figure 7d,

TstateUpdate complicatedly depends on a scale-dependent

2-dimensional input (SizeringTable and SizenewStates).

A node’s SizeringTable depends on how many nodes it

knows, including the partition arrangement (≤N×P ) and

SizenewStates (≤N ), which increases as cluster size grows.

5.4 Colocation Factor

This section shows the maximum colocation factor

SCALECHECK can achieve as each technique is added one

at a time on top of the other. To recap, the techniques are:

single-process cluster (SPC), network stub (Stub), global

event driven architecture (GEDA), and processing illusion

(PIL). The results are based on a 16-core machine.1

Maximum colocation factor (“MaxCF”): A maximum

colocation factor is reached when the system behavior in

SCALECHECK mode starts to “deviate” from the real deploy-

ment behavior. Deviation happens when one or more of the

following bottlenecks are reached: (1) high average CPU uti-

lization (>90%), (2) memory exhaustion (nodes receive out-

of-memory exceptions and crash), and (3) high event “late-

ness.”

Queuing delays from thread context switching can make

events late to be processed, although the CPU utilization is

not high. We instrument our target systems to measure event

lateness of relevant events (as described in §3.2.2). We use

10% as the maximum acceptable event lateness. Note that

the residual limiting bottlenecks come from the main logic

of the target protocols, not removable with general methods.

Results and observations: Figure 9 shows different se-

quences of integration to our four target systems and the re-

sulting maximum colocation factors. We make several im-

portant observations from this figure.

First, when multiple techniques are combined, they col-

lectively achieve a high colocation factor (up to 512 nodes

for the three systems respectively). For example, in Figure

9a, without using PIL in Cassandra, MaxCF only reaches

136. But with PIL, MaxCF significantly jumps to 512. When

we increased the colocation factor (+100 nodes) beyond the

maximum, we hit the residual bottlenecks mentioned before;

at this point, we did not measure MaxCF with small incre-

ments (e.g., +1 node) due to time limitation.

Second, distributed systems are implemented in different

ways. Thus, integrations to different systems face different

sequences of bottlenecks. To show this, we tried different

sequences of integration sequences. For example, in Cas-

sandra (Figure 9a), our integration sequence is +SPC, +Stub,

1So far, we consistently use the same testbed, but a higher-end machine

can be used in the future.

 0
64

128

256

512

(a
)C

as
s

(b
)R

ia
k

(c
)V

ol
d

(d
)H

D
FS

#
N

o
d

e
s

MaxCF: Max Colo. Factor

Naive
+SPC
+Stub

+GEDA
+PIL

Figure 9: Maximum colocation factor (Section 5.4). The

colocation factor reached as each technique is added.

+GEDA, and +PIL (as we hit context switching overhead be-

fore CPU). For Riak (Figure 9b), we began with PIL as we

hit CPU limitation first before hitting Erlang VMM network

overflow which requires SPC (§3.2.1), and Riak does not re-

quire GEDA because Erlang, as an event-driven language,

manages thread executions as events (more in Section 5.4 of

[1]). For Voldemort (Figure 9c), we began with SPC and

then network stub to reduce Java VM and Java NIO mem-

ory overhead respectively, and PIL so far is not needed as

the tested workload does not involve parallel CPU-intensive

operations. For HDFS (Figure 9d), we only need SPC and

GEDA but not PIL as only the master node that is CPU in-

tensive (but not the datanodes).

Finally, it is the combination of all techniques that make

SCALECHECK effective. For example, while in Figure 9a

we apply the sequence of SPC+Stub+GEDA+PIL resulting

in PIL as the dominant factor, in another experiment we ap-

plied a different sequence PIL+SPC+Stub and failed to hit

512 nodes, not until GEDA is added and becomes the domi-

nant factor.

5.5 Pre-Memoization and Replay Time

The “Tm” and “Tpil” columns in Table 3 on page quanti-

fies the duration of the pre-memoization (STESTmez) and

PIL-based replay (STESTPIL) stages when N≥256. For

example, for CPU-intensive bugs such as c6127, the pre-

memoization time takes 2 hours while the PIL-based replay

is only 15 minutes (similar to the real-deployment test); for

r3926, it is 6 vs. 2 hours. Pre-memoization does not neces-

sarily take N× longer time because one node only consumes

2 cores (while the machine has 16 cores) and also not every

node is busy all the time.

5.6 Test Coverage

SFIND labeled 32 collections in Cassandra and 12 in HDFS

as scale dependent. From these, SFIND identified 131 and 92

scale-dependent loops in Cassandra and HDFS (out of more

than 1500 and 1900 total loops) respectively. So far, we have

tested 57 (44%) and 64 (69%) of the loops in Cassandra and

HDFS. The time-consuming factor is the manual creation of

new test cases that will exercise the loops (see end of §3.1).
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We emphasize that SFIND is not a bug-finding tool, hence

the reason why we do not report false positives. A more

complete picture of SFIND’s output can be found in Section

5.6 of our supplemental document [1].

6 Discussion

At the moment, our work focuses on scale-dependent

CPU/processing time (§2c), and the “scale” here implies the

scale of cluster size. However, there are other scaling prob-

lems that lead to IO and memory contentions [46, 69, 76],

usually caused by the scale of load [37, 47] or data size [64].

For emulating data size, we are only aware of one work, Ex-

alt [78], which is orthogonal to SCALECHECK (more in §7).

In our bug study, we learn that some load or data-size related

bugs can be addressed with accurate modeling [47] (e.g., d
dead nodes will add d/(N−d) load to every live node) and

some others can already be reproduced with a single ma-

chine (e.g., loading as much file metadata to check the limit

of HDFS memory bottleneck [76]). Nevertheless, we will

continue our study of these other scaling dimensions, espe-

cially as scaling bugs in datacenter distributed systems is not

a well-understood problem.

So far, SCALECHECK is limited as a single-machine

framework, which integrates well to the de-facto unit-test

style. To increase colocation factor, a higher-end machine

can be used. Another approach is to extend SCALECHECK

to run on multiple machines. However, this means that we

need to enable back the networking library, which originally

already caused a colocation bottleneck. We also acknowl-

edge as a limitation that adding new code will also add new

maintenance costs. In future work, we intend to approach

zero-effort emulation.

Finally, SFIND by itself is not sufficient to reveal scalabil-

ity bugs. Building a program analysis that covers all paths

and understands the cascading impacts is challenging. Not

all scale-dependent loops imply buggy code.

7 Related Work

In Section 1, we briefly discussed related work in four cate-

gories: real-scale testing/benchmarking (direct, but not eco-

nomical) [26, 59], large-scale simulation (easy to run, but

rarely used for server infrastructure code) [39, 54, 57], ex-

trapolation (easy to run, but missing bugs in small training

scale) [57, 61, 75, 80], and emulation. SCALECHECK falls

in this category and below discuss three closely related works

[10, 48, 78].

Exalt [78] targets IO-intensive (Big Data) scalability prob-

lems where storage capacity is the colocation bottleneck.

Exalt’s library (Tardis) compresses users’ data to zero bytes

on disk. With this, Exalt can co-locate 100 space-emulated

HDFS datanodes per machine. As the authors stated, their

approach “may not discover scalability problems that arise

at the nodes that are being emulated” [78]. Thus, it can-

not cover P2P systems where the scale-dependent code is in

all the nodes. However, as Exalt targets storage space em-

ulation and SCALECHECK addresses processing time emu-

lation, we believe they complement each other. LinkedIn’s

Dynamometer is similar to Exalt [10].

DieCast [48], invented for network emulation, can colo-

cate processes/VMs on a single machine as if they run indi-

vidually, by “dilating” time. The trick is adding a “time di-

lation factor” (TDF) support [49] into the VMM. For exam-

ple, TDF=5 implies that for every second of wall-clock time,

each emulated VM believes that time has advanced by only

200 ms (1/TDS second). DieCast was only evaluated with a

colocation factor (TDF) of 10 as the testing time significantly

increases proportionally to the TDF; colocating 500 nodes

will increase testing time by 500 times. DieCast was intro-

duced for answering “what if the network is much faster?”,

but not specifically for single-machine scale-testing. An-

other significant difference is that both Exalt and DieCast

papers do not present an in-depth bug study.

In terms of related work in the static/program analysis

space, Clarity [66] and Speed [45] use static analysis to look

for potential performance bottlenecks by focusing on redun-

dant traversals and precise complexity bounding. Both ap-

proaches are evaluated in libraries. However, for distributed

systems, real-scale testing can help reveal unintended com-

plex component interactions, and not all scale-dependent

loops cause problems.

Finally, a recent work also highlights the urgency of com-

bating scalability bugs [60]. The work, however, does not

employ methodical and incremental changes, only suggests

a manual approach, and reproduces only 4 bugs in 1 system.

8 Conclusion

Technical leaders of a large cloud provider emphasized that

“the most critical problems today is how to improve test-

ing coverage so that bugs can be uncovered during testing

and not in production” [43]. It is now evident that scala-

bility bugs are new-generation bugs to combat, that exist-

ing large-scale testing is arduous, expensive, and slow, and

that today’s distributed systems are not single-machine scale-

testable. Our work addresses these contemporary issues and

will hopefully spur more solutions in this new area.
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