

conference

proceedings

Proceedings of the 16th U
SEN

IX Conference on File and Storage Technologies
Oakland, CA

, USA
February 12–15, 2018

Sponsored by

In cooperation with ACM SIGOPS
ISBN 978-1-931971-42-3

16th USENIX Conference on
File and Storage Technologies

Oakland, CA, USA
February 12–15, 2018

Thanks to Our USENIX Supporters

© 2018 by The USENIX Association

All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
 employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.
USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-42-3

Thanks to Our FAST ’18 Sponsors

Media Sponsors and Industry Partners

Gold Sponsors

Bronze Sponsors

General Sponsor

Silver Sponsors

USENIX Patrons
Facebook Google Microsoft
NetApp Private Internet Access

USENIX Benefactors
Oracle Squarespace VMware

USENIX Partners
Booking.com Can Stock Photo Cisco Meraki

Dealslands Fotosearch

Open Access Publishing Partner
PeerJ

ACM Queue
Distributed Management

Task Force (DMTF)

FreeBSD Foundation
No Starch Press

SNIA

USENIX Association

February 12–15, 2018
Oakland, CA, USA

Proceedings of the
16th USENIX Conference on File and

Storage Technologies

Conference Organizers

Program Chairs
Nitin Agrawal, Samsung Research
Raju Rangaswami, Florida International University

Program Committee
Andrea Arpaci-Dusseau, University of Wisconsin—

Madison
Anirudh Badam, Microsoft Research
Mahesh Balakrishnan, Yale
Pramod Bhatotia, University of Edinburgh
Andre Brinkmann, Johannes Gutenberg-University

Mainz
Vijay Chidambaram, University of Texas at Austin
Angela Demke Brown, University of Toronto
Kevin Greenan, Box Inc.
Jorge Guerra, VMWare
Haryadi Gunawi, University of Chicago
Dean Hildebrand, Google
Cheng Huang, Microsoft Azure
Hong Jiang, University of Texas at Arlington
Umesh Maheshwari, Nimble Storage (an HPE company)
Arif Merchant, Google
Ethan L. Miller, University of California, Santa Cruz,

and Pure Storage
Dushyanth Narayanan, Microsoft Research
Ed Nightingale, Microsoft Research
Sam H. Noh, UNIST (Ulsan National Institute of

Science and Technology)
Vijayan Prabhakaran, Amazon
Bianca Schroeder, University of Toronto
Philip Shilane, Dell EMC
Keith A. Smith, NetApp
Vasily Tarasov, IBM Research
Cristian Ungureanu, Google
Ashish Vulimiri, Samsung Research
Andrew Warfield, University of British Columbia
Sage Weil, Red Hat

Youjip Won, Hanyang University
Gala Yadgar, Technion - Israel Institute of Technology
Ming Zhao, Arizona State University

Work-in-Progress/Posters Co-Chairs
Anirudh Badam, Microsoft Research
Gala Yadgar, Technion - Israel Institute of Technology

Test of Time Awards Committee
Bianca Schroeder, University of Toronto
Eno Thereska, Amazon

Tutorial Coordinators
John Strunk, Red Hat
Eno Thereska, Amazon

Steering Committee
Remzi Arpaci-Dusseau, University of Wisconsin—

Madison
Angela Demke Brown, University of Toronto
Greg Ganger, Carnegie Mellon University
Casey Henderson, USENIX Association
Kimberly Keeton, HP Labs
Geoff Kuenning, Harvey Mudd College
Florentina Popovici, Google
Erik Riedel, Dell Technologies
Jiri Schindler, SimpliVity
Bianca Schroeder, University of Toronto
Margo Seltzer, Harvard University and Oracle
Keith A. Smith, NetApp
Eno Thereska, Amazon
Carl Waldspurger, Carl Waldspurger Consulting
Ric Wheeler, Red Hat
Erez Zadok, Stony Brook University

External Reviewers
Ram Alagappan

Peter Alvaro

Leo Prasath Arulraj

Surendar Chandra

Aishwarya Ganesan

Jun He

Sudarsun Kannan

Eunji Lee

Jing Liu

Peter Macko

Vishal Misra

Yuvraj Patel

Radu Sion

Zev Weiss

Kan Wu

Suli Yang

Dennis Zhou

Message from the
FAST ’18 Program Co-Chairs

Welcome to the 16th USENIX Conference on File and Storage Technologies. This year’s conference continues the
FAST tradition of bringing together researchers and practitioners from both industry and academia for a program
of innovative and rigorous storage-related research. We are pleased to present a diverse set of papers on topics such
as reliability, flash and persistent memory, cloud and distributed storage, coding and hashing, and traditional file
 systems. Our authors hail from ten countries on three continents and represent academia, industry, and the open-
source community.

FAST ’18 received 139 submissions. Of these we selected 23, for an acceptance rate of 17%. The Program Com-
mittee used a two-round online review process and then met in person to select the final program. In the first round,
each paper received at least three reviews. For the second round, 56 papers received at least two more reviews. The
Program Committee discussed 40 papers in an all-day meeting on December 8, 2017, at Samsung Research Labora-
tory in Mountain View, California. We used Eddie Kohler’s superb HotCRP software to manage all stages of the
review process, from submission to author notification.

As in the previous years, we included a category of short papers. Short papers provide a vehicle for presenting
completed research that does not require a full-length paper to describe and evaluate. We received 26 short paper
submissions of which 2 were accepted. In what we hope will become a new FAST tradition, we again included a
category of deployed-systems papers, which address experience with the practical design, implementation, analy-
sis or deployment of large-scale, operational systems. We received 10 deployed-systems submissions, of which we
 accepted 3.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all
the authors who submitted their work to FAST ’18. We would also like to thank the attendees of FAST ’18 and the
future readers of these papers. Together with the authors, you form the FAST community and make storage research
vibrant and exciting. We extend our thanks to the USENIX staff, especially Casey Henderson, Hilary Hartman, and
Michele Nelson, who have provided outstanding support throughout the planning and organizing of this conference
with the highest degree of professionalism and friendliness. Most importantly, their behind-the-scenes work makes
this conference actually happen. We would like to thank the Poster and Work-in-Progress session Chairs, Anirudh
Badam and Gala Yadgar, and the Test of Time Awards Chairs, Bianca Schroeder and Eno Thereska. Our thanks also
go also to the members of the FAST Steering Committee, who provided invaluable advice and feedback, and to our
Steering Committee Liaison, Keith Smith, for his guidance and encouragement on many issues, large and small,
over the past year.

Finally, we wish to thank our Program Committee for their many hours of hard work reviewing and discussing the
submissions and for taking time from their busy schedules to travel from around the globe to attend our PC meet-
ing in person. Together with a few external reviewers, they wrote 535 thoughtful and meticulous reviews. HotCRP
recorded over 186,000 words in reviews and comments (excluding HotCRP boilerplate; 377K when included). The
reviewers’ evaluations, and their thorough and conscientious deliberations at the PC meeting, contributed signifi-
cantly to the quality of our decisions. Finally, we also thank Mohammad Ataur Rahman Chowdhury, the scribe for
the PC meeting. We look forward to an interesting and enjoyable conference!

Nitin Agrawal, Samsung Research
Raju Rangaswami, Florida International University
FAST ’18 Program Co-Chairs

FAST ’18: 16th USENIX Conference on File and Storage Technologies
February 12–15, 2018

Oakland, CA, USA

Failing and Recovering
Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems 1
Haryadi S. Gunawi and Riza O. Suminto, University of Chicago; Russell Sears and Casey Golliher, Pure
Storage; Swaminathan Sundararaman, Parallel Machines; Xing Lin and Tim Emami, NetApp; Weiguang Sheng
and Nematollah Bidokhti, Huawei; Caitie McCaffrey, Twitter; Gary Grider and Parks M. Fields, Los Alamos
National Laboratory; Kevin Harms and Robert B. Ross, Argonne National Laboratory; Andree Jacobson, New
Mexico Consortium; Robert Ricci and Kirk Webb, University of Utah; Peter Alvaro, University of California,
Santa Cruz; H. Birali Runesha, Mingzhe Hao, and Huaicheng Li, University of Chicago

Protocol-Aware Recovery for Consensus-Based Storage .15
Ramnatthan Alagappan and Aishwarya Ganesan, University of Wisconsin—Madison; Eric Lee, University of
Texas at Austin; Aws Albarghouthi, University of Wisconsin—Madison; Vijay Chidambaram, University of Texas
at Austin; Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

WAFL Iron: Repairing Live Enterprise File Systems .33
Ram Kesavan, NetApp, Inc.; Harendra Kumar, Composewell Technologies; Sushrut Bhowmik, NetApp, Inc.

Revealing Flashy Secrets
MQSim: A Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices 49
Arash Tavakkol, Juan Gómez-Luna, and Mohammad Sadrosadati, ETH Zürich; Saugata Ghose, Carnegie Mellon
University; Onur Mutlu, ETH Zürich and Carnegie Mellon University

PEN: Design and Evaluation of Partial-Erase for 3D NAND-Based High Density SSDs 67
Chun-yi Liu and Jagadish Kotra, The Pennsylvania State University; Myoungsoo Jung, Yonsei University;
Mahmut Kandemir, The Pennsylvania State University

The CASE of FEMU: Cheap, Accurate, Scalable and Extensible Flash Emulator .83
Huaicheng Li, Mingzhe Hao, and Michael Hao Tong, University of Chicago; Swaminatahan Sundararaman,
Parallel Machines; Matias Bjørling, CNEX Labs; Haryadi S. Gunawi, University of Chicago

Understanding the Meta(data) Story
Spiffy: Enabling File-System Aware Storage Applications .91
Kuei Sun, Daniel Fryer, Joseph Chu, Matthew Lakier, Angela Demke Brown, and Ashvin Goel, University of
Toronto

Towards Robust File System Checkers .105
Om Rameshwar Gatla, Muhammad Hameed, and Mai Zheng, New Mexico State University; Viacheslav
Dubeyko, Adam Manzanares, Filip Blagojevic, Cyril Guyot, and Robert Mateescu, Western Digital Research

The Full Path to Full-Path Indexing .123
Yang Zhan, The University of North Carolina at Chapel Hill; Alex Conway, Rutgers University; Yizheng Jiao,
The University of North Carolina at Chapel Hill; Eric Knorr, Rutgers University; Michael A. Bender, Stony
Brook University; Martin Farach-Colton, Rutgers University; William Jannen, Williams College; Rob Johnson,
VMware Research; Donald E. Porter, The University of North Carolina at Chapel Hill; Jun Yuan, Stony Brook
University

(continued on next page)

Coding, Hashing, Hiding
Clay Codes: Moulding MDS Codes to Yield an MSR Code .139
Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Birenjith Sasidharan, and
P. Vijay Kumar, Indian Institute of Science, Bangalore; Alexandar Barg and Min Ye, University of Maryland;
Srinivasan Narayanamurthy, Syed Hussain, and Siddhartha Nandi, NetApp ATG, Bangalore

Towards Web-based Delta Synchronization for Cloud Storage Services .155
He Xiao and Zhenhua Li, Tsinghua University; Ennan Zhai, Yale University; Tianyin Xu, UIUC; Yang Li and
Yunhao Liu, Tsinghua University; Quanlu Zhang, Microsoft Research; Yao Liu, SUNY Binghamton

Stash in a Flash .169
Aviad Zuck, Technion—Israel Institute of Technology; Yue Li and Jehoshua Bruck, California Institute of
Technology; Donald E. Porter, The University of North Carolina at Chapel Hill; Dan Tsafrir, Technion—Israel
Institute of Technology and VMware Research Group

New Media and Old
Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree .187
Deukyeon Hwang and Wook-Hee Kim, UNIST; Youjip Won, Hanyang University; Beomseok Nam, UNIST

RFLUSH: Rethink the Flush .201
Jeseong Yeon and Minseong Jeong, Chungbuk National University; Sungjin Lee, DGIST; Eunji Lee, Chungbuk
National University, University of Wisconsin—Madison

Barrier-Enabled IO Stack for Flash Storage .211
Youjip Won, Hanyang University; Jaemin Jung, Texas A&M University; Gyeongyeol Choi, Joontaek Oh, and
Seongbae Son, Hanyang University; Jooyoung Hwang and Sangyeun Cho, Samsung Electronics

Long Live the File System!
High-Performance Transaction Processing in Journaling File Systems .227
Yongseok Son, Sunggon Kim, and Heon Young Yeom, Seoul National University; Hyuck Han, Dongduk
Women’s University

Designing a True Direct-Access File System with DevFS .241
Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—
Madison; Yuangang Wang, Jun Xu, and Gopinath Palani, Huawei Technologies

FStream: Managing Flash Streams in the File System .257
Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty, Joo-Young Hwang, Sangyeun Cho, Daniel
DG Lee, and Jaeheon Jeong, Samsung Electronics. Co., Ltd.

Distribute and Conquer
Improving Docker Registry Design based on Production Workload Analysis .265
Ali Anwar, Virginia Tech; Mohamed Mohamed and Vasily Tarasov, IBM Research—Almaden; Michael Littley,
Virginia Tech; Lukas Rupprecht, IBM Research—Almaden; Yue Cheng, George Mason University; Nannan
Zhao, Virginia Tech; Dimitrios Skourtis, Amit S. Warke, Heiko Ludwig, and Dean Hildebrand, IBM Research—
Almaden; Ali R. Butt, Virginia Tech

RAID+: Deterministic and Balanced Data Distribution for Large Disk Enclosures .279
Guangyan Zhang and Zican Huang, Tsinghua University; Xiaosong Ma, Qatar Computing Research Institute,
HBKU; Songlin Yang, Zhufan Wang, and Weimin Zheng, Tsinghua University

Logical Synchronous Replication in the Tintri VMstore File System .295
Gideon Glass, Arjun Gopalan, Dattatraya Koujalagi, Abhinand Palicherla, and Sumedh Sakdeo, Tintri, Inc

(continued on next page)

Dedup: Last but Not Least
ALACC: Accelerating Restore Performance of Data Deduplication Systems Using Adaptive Look-Ahead
Window Assisted Chunk Caching .309
Zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du, Department of Computer Science, University of
Minnesota, Twin Cities

UKSM: Swift Memory Deduplication via Hierarchical and Adaptive Memory Region Distilling 325
Nai Xia and Chen Tian, State Key Laboratory for Novel Software Technology, Nanjing University, China; Yan
Luo and Hang Liu, Department of Electrical and Computer Engineering, University of Massachusetts Lowell,
USA; Xiaoliang Wang, State Key Laboratory for Novel Software Technology, Nanjing University, China

Fail-Slow at Scale: Evidence of Hardware

Performance Faults in Large Production Systems

Haryadi S. Gunawi1, Riza O. Suminto1, Russell Sears2, Casey Golliher2,

Swaminathan Sundararaman3, Xing Lin4, Tim Emami4, Weiguang Sheng5,

Nematollah Bidokhti5, Caitie McCaffrey6, Gary Grider7, Parks M. Fields7,

Kevin Harms8, Robert B. Ross8, Andree Jacobson9, Robert Ricci10, Kirk Webb10,

Peter Alvaro11, H. Birali Runesha12, Mingzhe Hao1, and Huaicheng Li1

1University of Chicago, 2Pure Storage, 3Parallel Machines, 4NetApp, 5Huawei, 6Twitter,
7Los Alamos National Laboratory, 8Argonne National Laboratory, 9New Mexico Consortium,

10University of Utah, 11University of California, Santa Cruz, and 12UChicago Research Computing Center

Abstract

Fail-slow hardware is an under-studied failure mode. We

present a study of 101 reports of fail-slow hardware inci-

dents, collected from large-scale cluster deployments in

12 institutions. We show that all hardware types such as

disk, SSD, CPU, memory and network components can

exhibit performance faults. We made several important

observations such as faults convert from one form to an-

other, the cascading root causes and impacts can be long,

and fail-slow faults can have varying symptoms. From

this study, we make suggestions to vendors, operators,

and systems designers.

1 Introduction

Understanding fault models is an important criteria of

building robust systems. Decades of research has devel-

oped mature failure models such as fail-stop [3, 22, 30,

32, 35], fail-partial [6, 33, 34], fail-transient [26], faults

as well as corruption [7, 18, 20, 36] and byzantine fail-

ures [14].

This paper highlights an under-studied “new” failure

type: fail-slow hardware, hardware that is still running

and functional but in a degraded mode, slower than its

expected performance. We found that all major hardware

components can exhibit fail-slow faults. For example,

disk throughput can drop by three orders of magnitude

to 100 KB/s due to vibration, SSD operations can stall

for seconds due to firmware bugs, memory cards can de-

grade to 25% of normal speed due to loose NVDIMM

connection, CPUs can unexpectedly run in 50% speed

due to lack of power, and finally network card perfor-

mance can collapse to Kbps level due to buffer corrup-

tion and retransmission.

While fail-slow hardware arguably did not surface fre-

quently in the past, today, as systems are deployed at

scale, along with many intricacies of large-scale opera-

tional conditions, the probability that a fail-slow hard-

ware incident can occur increases. Furthermore, as hard-

ware technology continues to scale (smaller and more

complex), today’s hardware development and manufac-

turing will only exacerbate the problem.

Unfortunately, fail-slow hardware is under-studied. A

handful of prior papers already hinted the urgency of this

problem; many different terms have been used such as

“fail-stutter” [4], “gray failure” [25], and “limp mode”

[17, 21, 27]. However, the discussion was not solely fo-

cused on hardware but mixed with software performance

faults as well. We counted roughly only 8 stories per

paper of fail-slow hardware mentioned in these prior pa-

pers, which is probably not sufficient enough to convince

the systems community of this urgent problem.

To fill the void of strong evidence of hardware perfor-

mance faults in the field, we, a group of researchers, en-

gineers, and operators of large-scale datacenter systems

across 12 institutions decided to write this “community

paper.” More specifically, we have collected 101 de-

tailed reports of fail-slow hardware behaviors including

the hardware types, root causes, symptoms, and impacts

to high-level software. To the best of our knowledge,

this is the most complete account of fail-slow hardware

in production systems reported publicly.

Due to space constraints, we summarize our unique

and important findings in Table 1 and do not repeat them

here. The table also depicts the organization of the paper.

Specifically, we first provide our high-level observations

(§3), then detail the fail-slow incidents with internal root

causes (§4) as well as external factors (§5), and finally

provide suggestions to vendors, operators, and systems

designers (§6). We hope that our paper will spur more

studies and solutions to this problem.

2 Methodology

101 reports of fail-slow hardware were collected from

large-scale cluster deployments in 12 institutions (Table

USENIX Association 16th USENIX Conference on File and Storage Technologies 1

Important Findings and Observations

§3.1 Varying root causes: Fail-slow hardware can be induced by internal causes such as firmware bugs or device errors/wear-

outs as well as external factors such as configuration, environment, temperature, and power issues.

§3.2 Faults convert from one form to another: Fail-stop, -partial, and -transient faults can convert to fail-slow faults (e.g., the

overhead of frequent error masking of corrupt data can lead to performance degradation).

§3.3 Varying symptoms: Fail-slow behavior can exhibit a permanent slowdown, transient slowdown (up-and-down perfor-

mance), partial slowdown (degradation of sub-components), and transient stop (e.g., occasional reboots).

§3.4 A long chain of root causes: Fail-slow hardware can be induced by a long chain of causes (e.g., a fan stopped working,

making other fans run at maximal speeds, causing heavy vibration that degraded the disk performance).

§3.4 Cascading impacts: A fail-slow hardware can collapse the entire cluster performance; for example, a degraded NIC made

many jobs lock task slots/containers in healthy machines, hence new jobs cannot find enough free slots.

§3.5 Rare but deadly (long time to detect): It can take hours to months to pinpoint and isolate a fail-slow hardware due to

many reasons (e.g., no full-stack visibility, environment conditions, cascading root causes and impacts).

Suggestions

§6.1 To vendors: When error masking becomes more frequent (e.g., due to increasing internal faults), more explicit signals

should be thrown, rather than running with a high overhead. Device-level performance statistics should be collected and reported

(e.g., via S.M.A.R.T) to facilitate further studies.

§6.2 To operators: 39% root causes are external factors, thus troubleshooting fail-slow hardware must be done online. Due

to the cascading root causes and impacts, full-stack monitoring is needed. Fail-slow root causes and impacts exhibit some

correlation, thus statistical correlation techniques may be useful (with full-stack monitoring).

§6.3 To systems designers: While software systems are effective in handling fail-stop (binary) model, more research is needed

to tolerate fail-slow (non-binary) behavior. System architects, designers and developers can fault-inject their systems with all

the root causes reported in this paper to evaluate the robustness of their systems.

Table 1: Summary of our findings and suggestions.

Institution #Nodes

Company 1 >10,000

Company 2 150

Company 3 100

Company 4 >1,000

Company 5 >10,000

Institution #Nodes

Univ. A 300

Univ. B >100

Univ. C >1,000

Univ. D 500

Nat’l Labs X >1,000

Nat’l Labs Y >10,000

Nat’l Labs Z >10,000

Table 2: Operational scale.

2). At such scales, it is more likely to witness fail-slow

hardware occurrences. The reports were all unformat-

ted text, written by the engineers and operators who still

vividly remember the incidents due to the severity of the

impacts. The incidents were reported between 2000 and

2017, with only 30 reports predating 2010. Each insti-

tution reports a unique set of root causes. For example,

although an institution may have seen a corrupt buffer be-

ing the root cause that slows down networking hardware

(packet loss and retransmission) many times, it is only

collected as one report. Thus, a single report can repre-

sent multiple instances of the incident. If multiple differ-

ent institutions report the same root cause, it is counted

multiple times. However, the majority of root causes

(66%) are unique and only 22% are duplicates (12% re-

ports did not pinpoint a root causes). More specifically,

a duplicated incident is reported on average by 2.4 insti-

tutions; for example, firmware bugs are reported from

5 institutions, driver bugs from 3 institutions, and the

remaining issues from 2 institutions. The raw (partial)

dataset can be downloaded on our group website [2].

We note that there is no analyzable hardware-level per-

formance logs (more in §6.1), which prevents large-scale

log studies. We strongly believe that there were many

more cases that were slipped and unnoticed. Some sto-

ries are also not passed around as operators change jobs.

We do not include known slowdowns (e.g., random IOs

causing slow disks, or GC activities occasionally slow-

ing down SSDs). We only include reports of unexpected

degradation. For example, unexpected hardware faults

that make GC activities work harder is reported.

3 Observations (Take-Away Points)

From this study, we made five important high-level find-

ings as summarized in Table 1.

3.1 Varying Root Causes

Pinpointing the root cause of a fail-slow hardware is a

daunting task as it can be induced by a variety of root

causes, as shown in Table 3. Hardware performance fault

can be caused by internal root causes from within the de-

vice such as firmware issues (FW) or device errors/wear-

outs (ERR), which will be discussed in Section 4. How-

ever, a perfectly working device can also be degraded by

many external root causes such as configuration (CONF),

environment (ENV), temperature (TEMP), and power (PWR)

related issues, which will be presented in Section §5.

2 16th USENIX Conference on File and Storage Technologies USENIX Association

Hardware types

Root SSD Disk Mem Net CPU Total

ERR 10 8 9 10 3 40

FW 6 3 0 9 2 20

TEMP 1 3 0 2 5 11

PWR 1 0 1 0 6 8

ENV 3 5 2 4 4 18

CONF 1 1 0 2 3 7

UNK 0 3 1 2 2 8

Total 22 23 13 29 25 112

Table 3: Root causes across hardware types. The ta-

ble shows the occurrences of the root causes across hardware

types. The table is referenced in Section 3.1. The hardware

types are SSD, disk, memory (“Mem”), network (“Net”), and

processors (“CPU”). The internal root causes are device errors

(ERR) and firmware issues (FW) and the external root causes

are temperature (TEMP), power (PWR), environment (ENV), and

configuration (CONF). Issues that are marked unknown (UNK)

implies that the operators cannot pinpoint the root cause, but

simply replaced the hardware. Note that a report can have mul-

tiple root causes (environment and power/temperature issues),

thus the total (112) is larger than the 101 reports.

Note that a report can have multiple root causes (envi-

ronment and power/temperature issues), thus the total in

Table 3 (112) is larger than the 101 reports.

3.2 Fault Conversions to Fail-Slow

Different types of faults such as fail-stop, -partial, and

-transient can convert to fail-slow faults.

• Fail-stop to fail-slow: As many hardware pieces

are connected together, a fail-stop component can make

other components exhibit a fail-slow behavior. For ex-

ample, a dead power supply throttled the CPUs by 50%

as the backup supply did not deliver enough power; a

single bad disk exhausted the entire RAID card’s perfor-

mance; and a vendor’s buggy firmware made a batch of

SSDs stop for seconds, disabling the flash cache layer

and making the entire storage stack slow. These exam-

ples suggest that fail-slow occurrences can be correlated

to other fail-stop faults in the system. Furthermore, a ro-

bust fail-stop tolerant system should ensure that fail-stop

fault does not convert to fail-slow.

• Fail-transient to fail-slow: Besides fail-stop, many

kinds of hardware can exhibit fail-transient errors, for

example, disks occasionally return IO errors, processors

sometimes produce a wrong result, and from time to time

memory bits get corrupted. Due to their transient and

“rare” nature, firmware/software typically masks these

errors from users. A simple mechanism is to retry the

operation or repair the error (e.g., with ECC or parity).

However, when the transient failures are recurring much

more frequently, error masking can be a “double-edged

sword.” That is, because error masking is not a free op-

eration (e.g., retry delays, repair costs), when the errors

are not rare, the masking overhead becomes the common

case performance.

We observed many cases of fail-transient to fail-slow

conversion. For example, a disk firmware triggered fre-

quent “read-after-write” checks in a degraded disk; a ma-

chine was deemed nonfunctional due to heavy ECC cor-

rection of many DRAM bit-flips; a loose PCIe connec-

tion made the driver retry IOs multiple times; and many

cases of loss/corrupt network packets (between 1-50%

rate in our reports) triggered heavy retries that collapsed

the network throughput by orders of magnitude.

From the stories above, it is clear that there must

be a distinction between rare and frequent fail-transient

faults. While it is acceptable to mask the former, the lat-

ter should be exposed to and not hidden from high-level

software stack and monitoring tools.

• Fail-partial to fail-slow: Some hardware can also ex-

hibit fail-partial fault where only some part of the device

is unusable (i.e., a partial fail-stop). This kind of failure

is typically masked by the firmware/software layer (e.g.,

with remapping). However, when the scale of partial fail-

ure grows, the fault masking brings a negative impact

to performance. For example, in one deployment, the

available memory size decreased over time increasing the

cache miss rate, but did not cause the system to crash;

bad chips in SSDs reduce the size of over-provisioned

space, triggering more frequent garbage collection; and

a more known problem, remapping of a large number of

bad sectors can induce more disk seeks. Similar to the

fail-transient case above, there must be a distinction of

small- vs. large-scale partial faults.

3.3 Varying Fail-Slow Symptoms

We observed the “many faces” of fail-slow symptoms:

permanent, transient, and partial fail-slow and transient

fail-stop, as illustrated in Figure 1. Table 4 shows the

breakdown of these failure modes across different hard-

ware types. Table 5 shows the breakdown of these failure

modes across different root causes.

• Permanent slowdown: The first symptom (Figure 1a)

is a permanent slowdown, wherein the device initially

worked normally but then its performance drops and

does not return to the normal condition (until the problem

is manually fixed). This mode is the simplest among the

four models because operators can consistently see the

issue. As shown in Table 4, this symptom (fortunately)

is the most common one.

• Transient slowdown: The second one (Figure 1b)

is a transient slowdown, wherein the device perfor-

mance fluctuates between normal condition and signifi-

USENIX Association 16th USENIX Conference on File and Storage Technologies 3

P
e
rf
o
rm
a
n
c
e

Time

(a) Permanent Slowdown (b) Transient Slowdown

(d) Transient Stop

P
e
rf
.

Time

(c) Partial Slowdown

P
e
rf
. Healthy sub-component

Degraded
sub-component

Figure 1: Fail-slow symptoms. The figure shows four

types of fail-slow symptom, as discussed in Section 3.3.

cant degradation, which is more difficult to troubleshoot.

For example, disk and network performance can degrade

when the environment is too cold/hot, but will recover

when the temperature is back to normal; occasional vi-

bration when many disks were busy at the same time can

reduce disk speed by orders of magnitude; and applica-

tions that create a massive load can cause the rack power

control to deliver insufficient power to other machines

(degrading their performance), but only until the power-

hungry applications finish.

• Partial slowdown: The third model (Figure 1c) is par-

tial slowdown, where only some parts of the device will

exhibit slowdown. In other words, this is the case of par-

tial fail-stop converting to partial slowdown (§3.2). For

example, some parts of memory that are faulty require

more ECC checks to be performed; some parts of net-

work router’s buffer that are corrupted will only cause the

affected packets to be resent; and in one incident, 40% of

big packets were lost, while none of small packets were

lost. Partial fail-slow model also complicates debugging

as some operations experience the slowdown but others

(on the same device) are not affected.

• Transient stop: The last one (Figure 1d) is the case of

transient stop, where the device occasionally reboots it-

self, thus there are times where the performance degrades

to zero. For example, a buggy firmware made the SSDs

sometimes “disappears” from RAID controller and later

reappears; occasional bit flips in SAS/SCSI commands

caused an host bus adapter to reboot repeatedly; and

nodes automatically rebooted on thermal throttle (e.g.,

when the fan firmware did not react quickly).

In one (hilarious) story, in the datacenter, there is a

convenient table for staging, and one operator put an of-

Symptoms

HW Type Perm. Trans. Partial Tr. Stop

SSD 6 7 3 3

Disk 9 4 3 5

Mem 7 1 0 4

Net 21 0 5 2

CPU 10 6 1 3

Table 4: Fail-slow symptoms across hardware types.

The table depicts the occurrences of fail-slow symptoms across

hardware types. The table is referenced in Section 3.3. The

four symptoms “Perm.”, “Trans.”, “Partial”, and “Tr. Stop”

represent the four symptoms in Figure 1.

Symptoms

Root Perm. Trans. Partial Tr. Stop

ERR 19 8 7 6

FW 11 3 1 4

TEMP 6 2 1 2

PWR 3 2 1 2

ENV 11 3 3 1

CONF 6 1 0 0

UNK 5 1 0 2

Table 5: Fail-slow symptoms across root causes. The

table is referenced in Section 3.3. The root-cause abbreviations

can be found in the caption of Table 3. The four symptoms

“Perm.”, “Trans.”, “Partial”, and “Tr. Stop” represent the four

symptoms in Figure 1.

fice chair adjacent to a storage cluster. The operator liked

to rock in the chair, repeatedly popping hotplug drives

out of the chassis (a hard correlation to diagnose).

3.4 Cascading Causes and Impacts

Another intricacy of fail-slow hardware is the chain of

cascading events: First, between the actual root cause

and the hardware’s fail-slow symptom, there is a chain

of cascading root causes. Second, the fail-slow symptom

then creates cascading impacts to the high-level software

stack, and potentially to the entire cluster.

Below are some of the examples of long cascading

root causes that lead to fail-slow hardware. A fan in a

compute node stopped working, making other fans com-

pensate the dead fan by operating at maximal speeds,

which then caused a lot of noise and vibration that subse-

quently degraded the disk performance. A faulty sensor

in a motherboard reported a false value to the OS mak-

ing the CPUs run slower in energy saving mode. A lack

of power from a broken power supply can cause many

types of hardware, disks, processors, and network com-

ponents to run sub-optimally. Power failure itself can

also be caused by a long cascading causes, for example,

the vendor omitted a 120V fuse that shipped with faulty

4 16th USENIX Conference on File and Storage Technologies USENIX Association

capacitors that have a high probability of shorting when

power is cycled, which then caused minor electrical fires

that cascade into rack-level power failures.

Next, when a hardware becomes fail-slow, not only it

affects the host machine, but it can cause cascading im-

pacts across the cluster. For example, a degraded NIC,

from 1 Gbps to 1 Kbps, in one machine caused a chained

reaction that slowed down the entire cluster of 100 ma-

chines (as the affected connecting tasks held up contain-

ers/slots for a long time, and new jobs cannot run due

to slot shortage). In an HDFS HA (High Availability)

deployment, a quorum of namenodes hang when one of

the disks was extremely slow. In an HBase deployment,

a memory card at 25% of normal speed caused back-

logs, out-of-memory errors, and crashes. Similarly, a de-

graded disk created a backlog all the way to the client

VMs, popping up the “blue screen of death” to users;

3.5 Rare but Deadly: Long TTD

The fail-slow hardware incidents in our report took hours

or even months to detect (pinpoint). More specifically,

1% of the cases are detected in minutes, 13% in hours,

13% in days, 11% in weeks, and 17% in months (and

unknown time in 45%). Some engineers called this a

“costly debugging tail.” In one story, an entire team of

engineers were pulled to debug the problem, costing the

institution tens of thousands of dollar. There are several

reasons why the time-to-detect (TTD) is long.

First, the fact that the incidence of fail-slow hardware

is not as frequent as fail-stop cases implies that today’s

software systems do not completely anticipate (i.e., un-

dermine) such scenarios. Thus, while more-frequent fail-

ures can be solved quickly, less-frequent but more com-

plex failures (that cannot be mitigated by the system) can

significantly cost the engineers time.

Second, as explained before, the root cause might

not originate from the fail-slow hardware (e.g., the case

of transient slowdown caused by power-hungry applica-

tions in §3.3 took months to figure out as the problem was

not rooted in the slow machines nor the power supply).

Third, external environment conditions beyond the

control of the operators can prolong diagnosis (e.g., for

months, a vendor failed to reproduce the fail-slow symp-

toms in its sea-level testing facility as the hardware only

slows down at a high mountain altitude).

Finally, operators do not always have full visibility

of the entire hardware stack (e.g., an incident took days

to solve because the operators had no visibility into the

power supply health).

4 Internal Root Causes

We now discuss internal root causes, primarily firmware

bugs and device errors/wear-outs. We organize the dis-

cussion based on the hardware types (SSD, disk, mem-

ory, network, and processor).

4.1 SSD

Fail-slow SSDs can be triggered by firmware bugs and

NAND flash management complexities.

Firmware bugs: We received three reports of SSD

firmware bugs, admitted by the vendors. First, many

individual IOs that should only take tens of µs were

throttled by exactly multiples of 250µs, as high as 2-

3ms. Even worse, in another report, a bad batch of SSDs

stopped responding for seconds and then recovered. As

mentioned before, an operator found some SSDs “dis-

appeared” from the system and later reappeared. Upon

vendor’s inspection, the SSDs were performing some in-

ternal metadata writes that triggered hardware assertion

failure and rebooted the device. In all these cases, the

reasons why the firmware behaves as such were not ex-

plained (proprietary reasons). However, other incidents

below might shed more light on the underlying problems.

Read retries with different voltages: In order to read

a flash page, SSD controller must set a certain voltage

threshold. As flash chips wear out, the charge in the ox-

ide gates weakens, making the read operation with the

default voltage threshold fail, forcing the controller to

keep retrying the read with different voltage thresholds

[10, 11]. We observed as high as 4 retries in the field.

RAIN/parity-based read reconstruction: Further-

more, if the data cannot be read (i.e., is completely cor-

rupted and fails the ECC checks), the SSD must recon-

struct the page with RAIN (NAND-level RAID) [1, 41].

Three factors can make this situation worse. First, if

the RAIN stripe width is N , N−1 additional reads must

be generated to reconstruct the corrupt page. Second,

the N−1 reads might also experience read retries as de-

scribed above. Third, newer TLC-based SSDs use LDPC

codes [40], which takes longer time to reconstruct the

faulty pages. We observed that this reconstruction prob-

lem occurs frequently in devices nearing end of life.

Moreover, SSD engineers found that the number of bit

flips is a complex function of the time since the last write,

the number of reads since the last write, the temperature

of the flash, and the amount of wear on the flash.

Heavy GC in partially-failing SSD: Garbage collec-

tion (GC) of NAND flash pages is known to be a main

culprit of user SLA violations [23, 28, 41]. However, in

modern datacenter SSDs, the more advanced firmware

successfully reduces GC impacts to users. In reality,

there are SSDs shipped with “bad” chips. We witnessed

that as more chips die, the size of the over-provisioned

area gets reduced, which then triggers GC more fre-

quently with impacts that cannot be hidden.

Broken parallelism by suboptimal wear-leveling:

Ideally, large IOs are mapped to parallel channels/chips,

USENIX Association 16th USENIX Conference on File and Storage Technologies 5

increasing IO parallelism. However, wear-leveling (the

migration of hot/cold pages to hot/cold blocks) causes

the mapping of LPN to PPN changes all the time. It has

been observed that some rare workload behaviors can

make wear-leveling algorithms suboptimal, making se-

quential LPNs mapped behind the same channels/chips

(less parallelism). Furthermore, the problem of bad

page/chip above also forces wear-leveling algorithms to

make sub-optimal, less-parallel page/block mapping.

Hot temperature to wear-outs, repeated erases, and

reduced space: Hot temperature can be attributed to ex-

ternal causes (§5.1), but can cause a chain reaction to

SSD internals [31]. We also observed that SSD pages

wear out faster with increasing temperature and there

were instances of voltage threshold modeling that are

not effective when SSDs operate at a higher temperature

regime. As a result, after a block erase, the bits were

not getting reset properly (not all bits become “1”). Con-

sequently, some blocks had to be erased multiple times.

Note that erase time is already long (e.g., up to 6 ms),

thus repeated erases resulted in observable fail-slow be-

havior. Worse, as some blocks cannot be reset properly

after several tries, the firmware marked those blocks un-

usable, leading to reduced over-provisioned space, and

subsequently more frequent GCs as discussed above.

Write amplification: Faster wear-outs and more fre-

quent GCs can induce higher write amplification. It is

worthy to report that we observed wildly different levels

of amplification (e.g., 5× for model “A”, 600× for model

“B”, and “infinite” for certain workloads due to prema-

ture wear-outs).

Not all chips are created equal: In summary, most of

the issues above originated with the fact that not all chips

are created equal. Bad chips still pass vendor’s testing,

wherein each chip is given a quality value and high qual-

ity chips are mixed with lesser quality chips as long as

the aggregate quality passes the quality-control standard.

Thus, given an SSD, there are unequal qualities [10, 36].

Some workloads may cause more apparent wear-outs on

the low quality chips, causing all the issues above.

4.2 Disk

Similar to SSDs, fail-slow disks can also be caused by

firmware bugs and device errors/wear-outs.

Firmware bugs: We collected three reports related

to disk firmware bugs causing slowdowns. There was a

case where a disk controller delayed I/O requests for tens

of seconds. In another problem, the disk “jitters” every

few seconds, creating a problem that is hard to debug.

In a large testbed, a RAID controller on the master node

stalled, but then after restarted, the controller worked but

with occasional timeouts and retries. Finally, there was

an incident where a single bad disk exhausted the RAID

card resources causing many IO timeouts (a failed case

of bad-disk masking).

Device errors: Triggered by extensive disk rots, a

RAID controller initiated frequent RAID rebuilding dur-

ing run time; the fix reformatted the file systems so that

bad sectors are collected and not used within the stor-

age stack. Disk errors can be recurrent; in one case,

disks with “bad” status were removed automatically from

the storage pool but then added back when their status

changed to “good,” but the good-bad continuous transi-

tions caused issues that affected user VMs. Some oper-

ators also observed media failures that forced the disks

to retry every read operation multiple times before re-

turning to the OS. A recent proposal advocates disks to

automatically disable bad platters and continue working

partially (with reduced bandwidth) [9].

Weak heads: This issue of disk “weak” heads is com-

mon in troubleshooting forums [17, 38], but the root

cause is unclear. A report in our study stated that gunk

that spills from actuator assembly and accumulates be-

tween the disk head and the platter can cause slow move-

ment of the disk head. As disks are becoming “slimmer,”

the probability of trapped gunk increases. This problem

can be fixed by performing random IOs to make the disk

head “sweep the floor.”

Other causes: Fail-slow disks can also be caused by

environment conditions (e.g., noises and vibrations from

fans operating at the maximum speed) or temperature

(e.g., disks entering read-after-write mode in a colder en-

vironment [19]), which will be discussed later (§5).

4.3 Memory

Memory systems are considered quite robust, but we

managed to collect a few evidence showing that mem-

ory hardware can also exhibit fail-slow faults.

Device errors: In cases of partial memory errors,

there were reports of custom chips masking the errors

and not exposing bad addresses. Here, as more errors in-

crease over time, the available memory size decreases,

causing higher cache misses. Unlike disk/SSD usage

where out-of-space error is thrown when space runs out,

memory usage is different; as long as the minimum

memory space requirement is met, applications can still

run albeit with slower performance due to more frequent

page swapping from the reduced cache size.

External causes: There were two cases of memory

cards slowing down due to the environment condition

(specifically a high altitude deployment that introduces

more cosmic events that cause frequent multi-bit up-

sets) and human mistakes (an operator plugged in a new

NVDIMM card in a rush and the loose connection made

the card still functional, but with slower performance).

Unknown causes: There were other fail-slow mem-

ory incidents with unknown causes. In an HBase deploy-

6 16th USENIX Conference on File and Storage Technologies USENIX Association

ment, a memory card ran only 25% of normal speed. In

another non-deterministic case, low memory bandwidth

was observed under a certain benchmark, but not under

different benchmarks.

SRAM errors: Much attention is paid to DRAM er-

rors [37] and arguably DRAM reliability is largely a

solved problem – most errors can be masked by ECC (by

sacrificing predictable latency) or lead to fail-stop behav-

ior of the impacted program. Besides DRAM, SRAM

usage is pervasive in device controllers (e.g., FPGAs,

network cards, and storage adapters). Unlike DRAM,

SRAM works by constantly holding the voltage of each

memory cell at the desired level; it does not incorporate

refresh cycles that can cause read/write to stall. It is most

commonly used by circuits that cannot afford to incur

stalls or buffer data between RAM and the combinatorial

logic that consumes the data.

SRAM errors on data paths are typically transparently

masked; they ultimately lead to a CRC validation error,

and the network packet or disk I/O is simply retried.

However, SRAM is also incorporated in control paths.

We observed SRAM errors that caused occasional re-

boots of the device from broken control path (among

many other problems), inducing a transient-stop symp-

tom (as discussed in §3.3). SRAM per-bit error rates un-

fortunately have not improved [8]. Therefore in practice,

SRAM errors are a regular occurrence in large-scale in-

frastructure, a major culprit of service disruptions.

4.4 Network

Network performance variability is a well-known prob-

lem, typically caused by load fluctuations. This paper

highlights that fail-slow networking hardware can be a

major cause of network performance degradation.

Firmware bugs: We collected three reports of “bad”

routing algorithms in switch firmware. In one case, the

network performance decreased to half of the maximum

performance due to a dynamic routing algorithm on stock

driver/firmware that did not work “as promised [by the

vendor].” Due to lack of visibility to what is happening

in the firmware, the operators must hack the kernel to

perform ping between the switches, which consumed a

long time. In another story, MAC learning was not being

responsive and special types of traffic such as multicast

were not working well, creating traffic floods. The third

story is similar to the first one.

NIC driver bugs: Four instances of NIC driver bugs

were reported, dropping many packets and collapsing

TCP performance. In one story, 5% package loss caused

many VMs to go into “blue screen of death.” Another

NIC driver bug caused a “very poor” throughput and the

operators had to disable TCP offload to work around the

problem. In another case, the developers found a non-

deterministic network driver bug in Linux that only sur-

faced on one machine, making the 1 Gbps NIC card

transmit only at 1 Kbps. Finally, a bug caused an un-

expected auto-negotiation between a NIC and a TOR

switch that capped the bandwidth between them, under-

utilizing the available bandwidth.

Device errors: In one interesting story, the physical

implementation of the network cards did not match the

design specification – there is a distant corner of the

chip that is starving from electrons and not performing

at full speed; the vendor re-manufactured all the network

cards, a very costly ramification. Similarly, a bad VS-

CEL laser degraded switch to switch performance; this

bad design affected hundreds of cables. In one deploy-

ment, a router’s internal buffer memory was introducing

occasional bit errors into packets, causing failed end-to-

end checksums and subsequently TCP retries.

External causes: Some fail-slow networking compo-

nents were also caused by environment conditions (e.g.,

loose network cables, pinched fiber optics), configura-

tion issues (e.g., a switch environment not supporting

jumbo frames such that MTU size must be configured

to 1500 bytes), and temperature (e.g., clogged air filter,

bad motherboard design that puts NIC behind CPU).

Unknown causes: There are other reports of through-

put degradation at the hardware level or severe loss rates

without known root causes. For example, a 7 Gbps fibre

channel collapsed to 2 Kbps, a 1 Gbps throughput de-

graded to 150 Mbps with just 1% loss rate, 40% of big

packets were lost (but no small-package loss), and some

observed error/loss rates as high as 50%. TCP perfor-

mance is highly sensitive to loss rate.

4.5 Processor

We find processors are quite reliable and do not self-

inflict fail-slow mode. Most of the fail-slow CPUs are

caused by external factors, which we briefly discuss be-

low, but will be detailed in the next section (§5).

External causes: We observed fail-slow processors

caused by configuration mistakes (e.g., a buggy BIOS

firmware incorrectly down-clocked the CPUs), environ-

ment conditions (e.g., a high-altitude deployment made

the CPUs enter thermal throttle), temperature issues

(e.g., CPU heat-sinks were not in physical contact with

the CPUs, a fan firmware did not react quickly to cool

down the CPUs), and power shortage (e.g., insufficient

capacitors in the motherboard’s power control logic did

not deliver enough power when the load is high).

5 External Root Causes

We now describe external root causes of fail-slow hard-

ware such as temperature variance, power shortage, en-

vironment condition, and configuration mistakes. These

external causes complicate troubleshooting because the

USENIX Association 16th USENIX Conference on File and Storage Technologies 7

symptoms can be non-deterministic and only repro-

ducible in the same online scenario, but not observable

in offline (in-office) testing.

5.1 Temperature

To keep temperature in normal operating condition, fans

or heat-sinks must work correctly. Below are root causes

of temperature variance that went undetected by the

monitoring tools.

Clogged air filter: In one report, a clogged air filter

caused optics in the switch to start failing due to a high

temperature, generating a high 10% packet loss rate. Af-

ter the air filter was cleaned, the switch returned to nor-

mal speed but only temporarily. It is likely that the high

temperature had broken the switch’s internal parts.

Cold environment: Cold temperature can induce fail-

slow faults as well [19]. In one deployment, some of the

disks went into read-after-write mode. Upon inspection,

the machine room had a “cold-air-under-the-floor” sys-

tem, which was more common in the past. The disks at

the bottom of the racks had a higher incidence of slow

performance. This suggests that temperature variance

can originate from deployment environment as well.

Broken fans: Cooling systems such as fans some-

times work as a cluster, rather than individually. There

was a case where a fan in a compute node stopped work-

ing, and to compensate this failing fan, fans in other

compute nodes started to operate at their maximal speed,

which then generated heavy noise and vibration that de-

graded the disk performance. Again, this is an example

of cascading root causes (§3.4).

Buggy fan firmware: Fans can be fully functional,

but their speeds are controlled by the fan firmware. In

one condition, a fan firmware would not react quickly

enough when CPU-intensive jobs were running, and as a

result the CPUs entered thermal throttle (reduced speed)

before the fans had the chance to cool down the CPUs.

Improper design/assembly/operation: A custom

motherboard was “badly” designed in such a way that

the NIC was soldered on the motherboard behind the

CPU and memory. The heat from the CPU affected the

NIC causing many packet errors and retries. In a related

story, due to bad assembly, CPU heat-sinks were not in

physical contact with the CPUs, causing many nodes to

overheat. In another case, new disks were plugged into

machines with “very old” fans. The fans did not give

enough cooling for the newer disks, causing the disks to

run slowly.

5.2 Power

Reduced power can easily trigger fail-slow hardware.

Below are some of the root causes of power shortage.

Insufficient capacitors: In one custom motherboard

design, the capacitor on the motherboard’s power con-

trol logic did not provide adequate voltage to the CPUs

under certain load. This put the processors out of spec-

ification, causing corruptions and recomputations. The

diagnosis time was months due to the fact that the prob-

lem could not be reliably reproduced. To fix the prob-

lem, a small capacitor was added to each motherboard

on site for thousands of nodes. In a similar story, an in-

adequate capacitor caused voltage drop, but only when

multiple cores transition from parked to turbo-boost si-

multaneously (a corner-case situation). Thus, indepen-

dent testing of the updated BIOS and software did not

reproduce the issue.

PCU firmware bugs: In one scenario, the firmware of

the power control units (PCUs) entered a “weird” state

and did not deliver enough power, and the whole rack

failed off the power control. This was a transient fault

that sometimes can be fixed by resetting the controller,

sometimes by re-flashing the firmware, and in rare in-

stances, by replacing the PCUs.

Fail-partial power supply: In one deployment, every

four machines share two power supplies. However, when

one power supply failed, there was not enough power to

run all the four machines at normal capacity, thus throt-

tling the CPUs on each machine by 50%. The problem

cascaded as the machines were used for indexing service

and could not keep up with the number of requests. The

problem took days to solve because the operators had no

visibility into the power supply health. This problem is

also interesting as two power supplies do not imply that

one of them is a full-working backup, but rather a re-

duced power, enough to keep the machines alive.

Power-hungry neighbors: Some nodes were running

slow because other nodes in the same rack were drawing

more power, causing the rack power supply to go unsta-

ble, and dropping power to various parts of the rack. It

took months to diagnose the problem as it was not rooted

in the slow machines and only happened when power-

hungry applications were running in neighboring nodes.

Faulty motherboard sensors: After a long period of

debugging a slow machine, the operator discovered that

the motherboard had a faulty sensor that reported faulty

value to the OS, making the OS configure the CPUs to

run in slower speed in energy saving mode.

5.3 Environment

Fail-slow hardware can be induced by a variety of envi-

ronment conditions, as listed below.

Altitude and cosmic events: One of the most inter-

esting reports we collected is from a deployment at al-

titude of 7500 feet. At this height, some CPUs would

become hot and enter thermal throttle (reduced perfor-

mance). Apparently, the fault was not in the CPUs, but

8 16th USENIX Conference on File and Storage Technologies USENIX Association

rather in the vendor’s cooling design that was not pro-

viding enough cooling at such a high altitude. In another

report, still at the same altitude, some memory systems

experienced more frequent multi-bit upsets than usual

(increased ECC checks and repairs), which then were

shipped back to the vendor and re-assembled with more

memory protection.

Loose interconnects: Loose network cables and

pinched fiber optics caused network delays up to hun-

dreds of milliseconds, making the storage cluster behave

abnormally. It took several days to diagnose the problem,

as the symptom was not deterministic. The reason behind

loose/pinched cables can be vibration or human factor.

In some other cases, loose PCIe connections between the

SSDs and the PCIe slots made the device driver layer

retry the operations multiple times. In another story, an

NVDIMM was not plugged in properly when the opera-

tor was rushed in fixing the machine. The machine was

still functional albeit with a much lower speed.

Vibrations: The performance of some disk drives col-

lapsed to 100 KB/s when deployed in the racks, but

performed maximally 100 MB/s when tested in office.

Apparently, faulty chassis fans surrounding the nodes

caused such a strong vibration, making the drives go

into recovery mode. The solution was to add vibration

dampers to each of the eight hard drive screws and re-

place roughly 10% system fans in all nodes.

Environment and operating condition mismatch:

In one institution, a system was configured correctly at

the advertised clock rate, temperature range, and voltage

range. However, due to an unknown environment condi-

tion, it was not working optimally, and the solution was

turning down the clock slightly, putting a software mon-

itor on processor temperature and voltage, and killing

the node if voltage/temperature got close to the edge of

the binned values (i.e., a dead node is better than a slow

node). Time to diagnose was months due to not reliably

able to reproduce. In another case, a switch environment

did not support “jumbo frames” and caused the 10 Gbps

throughput network to have a poor throughput. The fix

was to reconfigure the MTU size to be 1500 bytes.

Unknown causes: In one interesting report, billions

of SAS errors simultaneously reported by all the inde-

pendent drives in the cluster, lasting for five minutes.

The report stated that this happened when a technician

was performing maintenance on another machine.

5.4 Configuration

While hardware typically runs in default configuration,

today’s hardware has “knobs” that allow configurable pa-

rameters. Such configurations can be modified by hu-

man operators or software/firmware layers (e.g., BIOS).

In our findings, fail-slow hardware can be induced by the

following misconfiguration mistakes.

Buggy BIOS firmware: In one institution, one of

the systems typically ingested 2.8 billion metrics per

minute, however at one time the metric write time in-

creased, taking more than a minute to process all the

metrics from previous minutes. The operators added

more nodes (thinking that it will load balance the request

spikes). Counter-intuitively, adding more nodes resulted

in increased write time. The diagnosis spanned a month.

The root cause was the BIOS was incorrectly down-

clocking the CPUs of the new machines being added

to the database cluster. These machines were “limping”

along but were assigned the same number of load (as if a

correctly clocked machine). Similarly, as reported else-

where [16, §3.6], a buggy initialization configuration can

also disable the processor caches.

Human mistakes: Regarding SSD connections, not

all PCIe slots have the same number of lanes. Mistakes

in mapping PCIe cards to PCIe slots with different num-

ber of lanes had occasionally been made by human op-

erators, which results in under-utilization of full connec-

tion bandwidth. In a different case, an incorrect parame-

ter set in xtnird.ini, a network configuration that man-

ages High Speed Networking (HSN) over InfiniBand,

was not set up properly and the network was throttling.

There is plethora of related work on configuration mis-

takes [5, 42]. We believe there are many more instances

of configuration mistakes that trigger fail-slow hardware,

not recorded in production logs.

6 Suggestions

In addition to cataloguing instances of fail-slow hard-

ware, a goal of this paper is to offer vendors, operators

and systems designers insights about how to address this

poorly-studied failure mode.

6.1 To Vendors

• Making implicit error masking explicit: Fail-slow

hardware can be categorized as an “implicit” fault, mean-

ing they do not always return any explicit hard errors, for

example due to error masking (§3.2). However, there

were many cases of slowly increasing error rates that

would eventually cause cascading performance failures.

Although statistics of error rates are obtainable from the

device (e.g., number of ECC repairs, corrupt packets),

they are rarely monitored by the overall system. Vendors

might consider throwing explicit error signals when the

error rates far exceed the expected rate.

We understand that this could be a far-from-reach re-

ality because vendors often hide internal statistics (e.g.,

most recent SSDs no longer expose the number of in-

ternal writes, as some users were upset to learn about

the write amplification). In fact, the trend of moving to

USENIX Association 16th USENIX Conference on File and Storage Technologies 9

white-box storage makes the situation worse. That is,

black-box storage such as commodity disks and SSDs

conform to some standards (e.g., S.M.A.R.T data), how-

ever as more institutions now compose the entire hard-

ware/software storage stack (e.g., fully host-managed

flash), the hardware designers might not conform to ex-

isting standards, making software-level error manage-

ment more difficult.

• Exposing device-level performance statistics: Two

decades ago, statistical data of hard errors was hard to

obtain, but due to user demands, modern hardware now

exposes such information (e.g., via S.M.A.R.T), which

then spurred many statistical studies of hardware fail-

ures [6, 7, 30, 34, 35, 36] However, the situation for

hardware-level performance studies is bleak. Our con-

versations with operators suggest that the information

from S.M.A.R.T is “insufficient to act on.” In some

institutions, hardware-level performance logs are only

collected hourly, and we could not pinpoint whether a

slow performance was due to the workload or the de-

vice degradation. With these limitations, many impor-

tant statistical questions are left unanswered (e.g., how

often fail-slow hardware occurs, how much performance

was degraded, what correlations fail-slow faults exhibit

with other metrics such as device age, model, size, and

vendor). We hope vendors will expose device-level per-

formance data to support future statistical studies.

6.2 To Operators

• Online diagnosis: In our study, 39% of the cases

were caused by external root causes, which suggests that

blames cannot be directed towards the main hardware

components. Some reports suggest that operators took

days or even months to diagnose, as the problems cannot

be reproduced in offline (“in-office”) testing. Thus, on-

line diagnosis is important, but also not straightforward

because not all hardware components are typically mon-

itored, which we discuss next.

• Monitoring of all hardware components: Today,

in addition to main hardware components (e.g., disks,

NICs, switches, CPUs), other hardware components and

environment conditions such as fan speeds and tempera-

ture are also monitored. Unfortunately, not all hardware

is monitored in practice. For example, multiple organiza-

tions failed to monitor network cables, and instead used

the flow of traffic as a proxy for cable health. The diagno-

sis took much longer time because performance blames

are usually directed towards the main hardware compo-

nents such as NICs or switches. The challenge is then to

prevent too much data being logged.

Another operational challenge is that different teams

are responsible for different parts of the data center

(e.g., software behavior, machine performance, cooling,

power). Thus, with limited views, operators cannot fully

diagnose the problem. In one incident, the operators,

who did not have access to power supply health, took

days to diagnose the reason behind the CPUs running

only at 50% speed. In another example, power supply

health information was available, but basic precautions,

such as adding fuses to the input line, were overlooked.

Another challenge to come is related to proprietary

full-packaged solution like hyper-converged or rack-

scale design. Such design usually comes with the ven-

dor’s monitoring tools, which might not monitor and ex-

pose all information to the operators. Instead, vendors

of such systems often monitor hardware health remotely,

which can lead to fragmentation of monitoring infras-

tructure as the number of vendors increases.

• Correlating full-stack information: With full-stack

performance data, operators can use statistical ap-

proaches to pinpoint and isolate the root cause [15].

Although most of the cases in our study were hard-to-

diagnose problems, fortunately, the revealed root causes

were relatively “simple.” For example, when a power-

hungry application was running, it drained the rack

power and degraded other nodes. Such a correlation can

be easily made, but requires process- to power-level in-

formation. As another example, when a fan stopped, and

to compensate, the other fans ran in maximum speed to

compensate, the resulting vibration degraded disk per-

formance. This 3-level correlation between fan sta-

tus, vibration level, and disk performance can also be

correlated. Future research can be done to evaluate

whether existing statistical monitoring approaches can

detect such correlations.

While the metrics above are easy to monitor, there

are other fine-grained metrics that are hard to correlate.

For example, in one configuration issue, only multicast

network traffic was affected, and in another similar one,

only big packets (>1500 bytes) experienced long laten-

cies. In these examples, the contrast between multicast

and unicast traffics and small and big packets is clear.

However, to make the correlation, detailed packet char-

acteristics must be logged as well.

Finally, monitoring algorithms should also detect

“counter-intuitive” correlations. For example, when

users performance degrades, operators tend to react by

adding more nodes. However, there were cases where

adding more nodes did not translate to better perfor-

mance, as the underlying root cause was not isolated.

6.3 To Systems Designers

While the previous section focuses on post-mortem

remedies, this section provides some suggestions on how

to anticipate fail-slow hardware better in future systems.

10 16th USENIX Conference on File and Storage Technologies USENIX Association

• Making implicit error-masking explicit: Similar to

the error masking problem at the hardware level, error

masking (as well as “tail” masking) in higher software

stack can make the problem worse. We have observed

fail-slow hardware that caused many jobs to timeout and

be retried again repeatedly, consuming many other re-

sources and converting the single hardware problem into

larger cluster-wide failures. Software systems should not

just silently work around fail-slow hardware, but need to

expose enough information to help troubleshooting.

• Fail-slow to fail-stop: Earlier, we discussed about

many fault conversions to fail-slow faults (§3.2). The

reverse can be asked: can fail-slow faults be converted

into fail-stop mode? Such a concept is appealing be-

cause modern systems are well equipped to handle fail-

stop failures [12]. Below we discuss opportunities and

challenges of this concept.

Skip non-primary fail-slow components: Some re-

sources such as (e.g., caching layers) can be considered

non-primary components. For example, in many deploy-

ments, SSDs are treated as a caching layer for the back-

end disks. The assumption that SSD is always fast and

never stalls does not always hold (§4.1). Thus, when fail-

slow SSDs (acting as a caching layer) introduce more

latencies than the back-end disks, they can be skipped

temporarily until the problem subsides. However, con-

sistency issues must be taken into account. In one story,

the operators had to disable the flash cache layer for one

month until the firmware was fixed. Another sugges-

tion is to run in “partial” mode rather than in full mode

but with slow performance. For example, if many disks

cause heavy vibration that degrades the disk throughput

significantly, it is better to run fewer disks to eliminate

the throughput-degrading vibration [13].

Detect fail-slow recurrences: Another method to

make slow-to-stop conversion is to monitor the recur-

rence of fail-slow faults. For example, disks/SSDs that

continue to “flip-flop” in online/offline mode (§4.1), trig-

gering RAID rebalancing all the time, is better to be put

offline. As another example, if I/O communication to a

hardware requires many retries, the device perhaps can

be removed. We observed several cases of transient fail-

slow hardware that was taken offline but after passing the

in-office diagnosis, the device was put online again, only

to cause the same problem.

Challenges: While the concept of slow-to-stop con-

version looks simple, there are many challenges that im-

pedes its practicality in the field, which we hope can

trigger more research in the community. First, an au-

tomated shutdown algorithm should be robust (no bugs

or false positives) such that healthy devices are not in-

correctly shut down. Second, some storage devices can-

not be abruptly taken offline as it can cause excessive re-

replication load. Third, similarly, removing slow nodes

can risk availability; in one deployment, some machines

exhibited 10-20% performance degradation but if they

were taken out, availability would be reduced, and data

loss could ensue. Fourth, a node is an expensive resource

(e.g., with multiple NICs, CPUs, memory cards, SSDs,

disks), thus there is a need for capability to shut off de-

vices at fine-grained level. Fifth, and more importantly,

due to the cascading nature (§3.4), fail-slow hardware

can be induced by external factors; here, the solution is

to isolate the external factors, not to shutdown the slow

device.

• Fail-Slow fault injections: System architects can in-

ject fail-slow root causes reported in this paper to their

systems and analyze the impacts.

For example, one can argue that asynchronous dis-

tributed systems (e.g., eventual consistency) should nat-

urally tolerate fail-slow behaviors. While this is true,

there are many stateful systems that cannot work in

fully asynchronous mode; for example, in widely-used

open-sourced distributed systems, fail-slow hardware

can cause cascading failures such as thread pool exhaus-

tion, message backlogs, and out-of-memory errors [17].

Another type of systems is tail-tolerant distributed sys-

tems [16]. However, another recent work shows that

the “tail” concept only targets performance degradation

from resource contention, which is different than fail-

slow hardware model such as slow NICs, and as a result

not all tail-tolerant systems (e.g., Hadoop, Spark) can cut

tail latencies induced by degraded NICs [39].

Beyond networking components, the assumption that

storage latency is stable is also fatal. It has been reported

that disk delays causes race condition or deadlock in dis-

tributed consistency protocols [29]. The problem is that

some consistency protocols, while tolerating network de-

lays, do not incorporate the possibility of disk delays, for

the sake of simplicity.

With fail-slow injections, operators can also evaluate

whether their systems or monitoring tools signal the right

warnings or errors. There were a few cases in our reports,

where wrong signals were sent, causing the operators to

debug only the healthy part of the system.

Overall, we strongly believe that injecting root causes

reported in this paper will reveal many flaws in existing

systems. Furthermore, all forms of fail-slow hardware

such as slow NICs, switches, disks, SSD, NVDIMM, and

CPUs need to be exercised as they lead to different symp-

toms. The challenge is then to build future systems that

enable various fail-slow behaviors to be injected easily.

7 Discussions

• Limitations (and Failed Attempts): We acknowledge

the major limitation of our methodology: the lack of

USENIX Association 16th USENIX Conference on File and Storage Technologies 11

quantitative analysis. Given the reports in the form of

anecdotes, we were not able to answer statistical ques-

tions such as how often fail-slow hardware occurs, how

much performance was degraded, what correlations fail-

slow faults exhibit with other metrics such as device age,

model, size, and vendor, etc.

We initially had attempted to perform a quantitative

study. However, many institutions do not maintain a

database of hardware-level performance data. Many in-

stitutions that we asked to join in this community paper

responded with either “we do not have clearance” or “we

do not collect such data (but have unformatted reports).”

In the former category (no clearance), it is inconclusive

whether they have such data available or the nature of

this public study was not allowed in the first place.

An institution told us that they collect large perfor-

mance data at the software level, but direct inference to

fail-slow hardware is challenging to perform. In our prior

work, we only collected hourly aggregate of disk/SSD-

level performance data [24], but the coarse hourly gran-

ularity has limitations and the findings cannot be directly

tied to “hard proof” of the existence of fail-slow hard-

ware.

We also managed to obtain ticket logs (in unformat-

ted text) from a large institution, but searching for fail-

slow hardware instances in tens of thousands of tickets

is extremely challenging as the operators did not log the

full information and there is no standard term for “fail-

slow/limping/jittery” hardware. For example, searching

for the word “slow” produces hundreds of results that do

not directly involve hardware issues.

Indeed, we believe that the lack of easily accessible

and analyzable data is a reason that the study in this pa-

per is valuable. Regardless of the limitation of our study,

we believe we have successfully presented the most com-

plete account of fail-slow hardware in production sys-

tems that can benefit the community.

• “Honorable Mentions”: While this paper focuses on

fail-slow faults, our operators shared to us many other in-

teresting anecdotes related to data loss, which we believe

are “honorable” to mention as the details were rarely

mentioned in literature.

Triple replication is (sometimes) not enough: In one

large Hadoop cluster, many machines were failing regu-

larly such that data loss was unavoidable even with triple

replication. Apparently, this was caused by a large batch

of malfunctioning SSDs. The controller on this brand

of SSDs was “bad” and would stop responding. About

3-5% of the drives would be failing each week. Worse,

the servers would not shut down properly because the

shutdown required a successful write to the SSD to do

so. Thus, there were lower success rates because broken

machines with failed SSDs would try to serve traffic and

could not shut themselves down.

Single point of failure (in unseen parts): While at

a high level, datacenter operators ensures that there is

no single hardware failure (redundant machines, power,

cooling, etc.), there was a case of redundant EEPROMS

that rely on single capacitor (a part that was unobservable

by the operators and only known by the vendor). Un-

fortunately, the capacitor failed and triggered correlated

failures on both SAS paths, causing a complete 24-hour

outage in production.

In a related story, a healthy-looking system was ac-

tually miscabled, without apparent performance issues,

but the miscabling led to multiple single points of fail-

ure. There was no cable topology monitoring, thus the

technicians had to devise recabling strategies that main-

tain the expected redundancy level.

Failed NVRAM dump under power fault: To handle

write idiosyncrasies of NAND flash, writes are “per-

sisted” to NVRAM (capacitor-backed RAM) with the

promise that under a power fault the content of the RAM

should be flushed (“dumped”) to the non-volatile NAND

flash. However, there was a non-deterministic case

where in 1 out of 10,000 power losses, the firmware did

not trigger the NVRAM dump. Apparently, the FPGA

design assumed a pin was grounded, but the pin was at-

tached to a test pad instead, and the RFI led to propaga-

tion of “nonsense” from the pin into the NVRAM dump

logic. More studies of SSD robustness under power fault

are needed.

8 Conclusion

Today’s software systems are arguably robust at logging

and recovering from fail-stop hardware – there is a clear,

binary signal that is fairly easy to recognize a and inter-

pret. We believe fail-slow hardware is a fundamentally

harder problem to solve. It is very hard to distinguish

such cases from ones that are caused by software per-

formance issues. It is also evident that many modern,

advanced deployed systems do not anticipate this failure

mode. We hope that our study can influence vendors, op-

erators, and systems designers to treat fail-slow hardware

as a separate class of failures and start addressing them

more robustly in future systems.

9 Acknowledgments

We thank Dean Hildebrand, our shepherd, and the anony-

mous reviewers for their tremendous feedback and com-

ments. We also would like to thank Tracy Carver for con-

tributing anecdotes and Jeffrey Heller for his support of

this work. This material was supported by funding from

NSF (grant Nos. CCF-1336580, CNS-1350499, CNS-

1526304, and CNS-1563956).

12 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] NAND Flash Media Management Through RAIN.

Micron, 2011.

[2] http://ucare.cs.uchicago.edu/projects/

failslow/, 2018.

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj

Patel, Thanumalayan Sankaranarayana Pillai, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Correlated Crash Vulnerabilities. In Proceedings of the

12th Symposium on Operating Systems Design and

Implementation (OSDI), 2016.

[4] Remzi H. Arpaci-Dusseau and Andrea C.

Arpaci-Dusseau. Fail-Stutter Fault Tolerance. In The

Eighth Workshop on Hot Topics in Operating Systems

(HotOS VIII), 2001.

[5] Mona Attariyan and Jason Flinn. Automating

Configuration Troubleshooting with Dynamic

Information Flow Analysis. In Proceedings of the 9th

Symposium on Operating Systems Design and

Implementation (OSDI), 2010.

[6] Lakshmi N. Bairavasundaram, Garth R. Goodson,

Shankar Pasupathy, and Jiri Schindler. An Analysis of

Latent Sector Errors in Disk Drives. In Proceedings of

the 2007 ACM Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), 2007.

[7] Lakshmi N. Bairavasundaram, Garth R. Goodson,

Bianca Schroeder, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. An Analysis of Data

Corruption in the Storage Stack. In Proceedings of the

6th USENIX Symposium on File and Storage

Technologies (FAST), 2008.

[8] Robert C. Baumann. Radiation-Induced Soft Errors in

Advanced Semiconductor Technologies. IEEE

Transactions on Device and Materials Reliability

(TDMR), 5(3), September 2005.

[9] Eric Brewer. Spinning Disks and Their Cloudy Future

(Keynote). In Proceedings of the 14th USENIX

Symposium on File and Storage Technologies (FAST),

2016.

[10] Yu Cai, Yixin Luo, Saugata Ghose, and Onur Mutlu.

Read Disturb Errors in MLC NAND Flash Memory:

Characterization and Mitigation. In Proceedings of the

International Conference on Dependable Systems and

Networks (DSN), 2015.

[11] Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and

Onur Mutlu. Data Retention in MLC NAND Flash

Memory: Characterization, Optimization, and Recovery.

In Proceedings of the 15th International Symposium on

High Performance Computer Architecture (HPCA-21),

2015.

[12] George Candea and Armando Fox. Crash-Only

Software. In The Ninth Workshop on Hot Topics in

Operating Systems (HotOS IX), 2003.

[13] Christine S. Chan, Boxiang Pan, Kenny Gross, Kenny

Gross, and Tajana Simunic Rosing. Correcting

vibration-induced performance degradation in enterprise

servers. In The Greenmetrics workshop (Greenmetrics),

2013.

[14] Allen Clement, Edmund L. Wong, Lorenzo Alvisi,

Michael Dahlin, and Mirco Marchetti. Making

Byzantine Fault Tolerant Systems Tolerate Byzantine

Faults. In Proceedings of the 6th Symposium on

Networked Systems Design and Implementation (NSDI),

2009.

[15] Daniel J. Dean, Hiep Nguyen, Xiaohui Gu, Hui Zhang,

Junghwan Rhee, Nipun Arora, and Geoff Jiang.

PerfScope: Practical Online Server Performance Bug

Inference in Production Cloud Computing

Infrastructures. In Proceedings of the 5th ACM

Symposium on Cloud Computing (SoCC), 2014.

[16] Jeffrey Dean and Sanjay Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters. In

Proceedings of the 6th Symposium on Operating Systems

Design and Implementation (OSDI), 2004.

[17] Thanh Do, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, and Haryadi S. Gunawi. Limplock:

Understanding the Impact of Limpware on Scale-Out

Cloud Systems. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SoCC), 2013.

[18] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi S.

Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.

Arpaci-Dusseau. HARDFS: Hardening HDFS with

Selective and Lightweight Versioning. In Proceedings of

the 11th USENIX Symposium on File and Storage

Technologies (FAST), 2013.

[19] Nosayba El-Sayed, Ioan A. Stefanovici, George

Amvrosiadis, Andy A. Hwang, and Bianca Schroeder.

Temperature Management in Data Centers: Why Some

(Might) Like It Hot. In Proceedings of the 2012 ACM

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2012.

[20] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Redundancy Does Not Imply Fault Tolerance: Analysis

of Distributed Storage Reactions to Single Errors and

Corruptions. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),

2017.

[21] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn

Leesatapornwongsa, Tiratat Patana-anake, Thanh Do,

Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono,

Jeffrey F. Lukman, Vincentius Martin, and Anang D.

Satria. What Bugs Live in the Cloud? A Study of 3000+

Issues in Cloud Systems. In Proceedings of the 5th ACM

Symposium on Cloud Computing (SoCC), 2014.

[22] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,

Agung Laksono, Anang D. Satria, Jeffry Adityatama,

and Kurnia J. Eliazar. Why Does the Cloud Stop

Computing? Lessons from Hundreds of Service Outages.

USENIX Association 16th USENIX Conference on File and Storage Technologies 13

http://ucare.cs.uchicago.edu/projects/failslow/
http://ucare.cs.uchicago.edu/projects/failslow/

In Proceedings of the 7th ACM Symposium on Cloud

Computing (SoCC), 2016.

[23] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,

Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,

Andrew A. Chien, and Haryadi S. Gunawi. MittOS:

Supporting Millisecond Tail Tolerance with Fast

Rejecting SLO-Aware OS Interface. In Proceedings of

the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[24] Mingzhe Hao, Gokul Soundararajan, Deepak

Kenchammana-Hosekote, Andrew A. Chien, and

Haryadi S. Gunawi. The Tail at Store: A Revelation

from Millions of Hours of Disk and SSD Deployments.

In Proceedings of the 14th USENIX Symposium on File

and Storage Technologies (FAST), 2016.

[25] Peng Huang, Chuanxiong Guo, Lindong Znhou,

Jacob R. Lorch, Yingnong Dang, Murali Chintalapati,

and Randonph Yao. Gray Failure: The Achilles’ Heel of

Cloud Scale Systems. In The 16th Workshop on Hot

Topics in Operating Systems (HotOS XVII), 2017.

[26] Asim Kadav, Matthew J. Renzelmann, and Michael M.

Swift. Tolerating Hardware Device Failures in Software.

In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP), 2009.

[27] Michael P. Kasick, Jiaqi Tan, Rajeev Gandhi, and Priya

Narasimhan. Black-Box Problem Diagnosis in Parallel

File Systems. In Proceedings of the 8th USENIX

Symposium on File and Storage Technologies (FAST),

2010.

[28] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards

SLO Complying SSDs Through OPS Isolation. In

Proceedings of the 13th USENIX Symposium on File and

Storage Technologies (FAST), 2015.

[29] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan

Lu, and Haryadi S. Gunawi. TaxDC: A Taxonomy of

Non-Deterministic Concurrency Bugs in Datacenter

Distributed Systems. In Proceedings of the 21st

International Conference on Architectural Support for

Programming Languages and Operating Systems

(ASPLOS), 2016.

[30] Ao Ma, Fred Douglis, Guanlin Lu, Darren Sawyer,

Surendar Chandra, and Windsor Hsu. RAIDShield:

Characterizing, Monitoring, and Proactively Protecting

Against Disk Failures. In Proceedings of the 13th

USENIX Symposium on File and Storage Technologies

(FAST), 2015.

[31] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur

Mutlu. A Large-Scale Study of Flash Memory Failures

in the Field. In Proceedings of the 2015 ACM

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2015.

[32] Thanumalayan Sankaranarayana Pillai, Ramnatthan

Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

Application Crash Consistency and Performance with

CCFS. In Proceedings of the 15th USENIX Symposium

on File and Storage Technologies (FAST), 2017.

[33] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,

Nitin Agrawal, Haryadi S. Gunawi, Andrea C.

Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. IRON

file system. In Proceedings of the 20th ACM Symposium

on Operating Systems Principles (SOSP), 2005.

[34] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill.

Understanding Latent Sector Errors and How to Protect

Against Them. In Proceedings of the 8th USENIX

Symposium on File and Storage Technologies (FAST),

2010.

[35] Bianca Schroeder and Garth A. Gibson. Disk Failures in

the Real World: What Does an MTTF of 1,000,000

Hours Mean to You? In Proceedings of the 5th USENIX

Symposium on File and Storage Technologies (FAST),

2007.

[36] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.

Flash Reliability in Production: The Expected and the

Unexpected. In Proceedings of the 14th USENIX

Symposium on File and Storage Technologies (FAST),

2016.

[37] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich

Weber. DRAM Errors in the Wild: A Large-Scale Field

Study. In Proceedings of the 2009 ACM International

Conference on Measurement and Modeling of Computer

Systems (SIGMETRICS), 2009.

[38] Brian D. Strom, SungChang Lee, George W. Tyndall,

and Andrei Khurshudov. Hard Disk Drive Reliability

Modeling and Failure Prediction. IEEE Transactions on

Magnetics (TMAG), 43(9), September 2007.

[39] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,

Huan Ke, Tanakorn Leesatapornwongsa, Bo Fu,

Daniar H. Kurniawan, Vincentius Martin, Uma

Maheswara Rao G., and Haryadi S. Gunawi. PBSE: A

Robust Path-Based Speculative Execution for

Degraded-Network Tail Tolerance in Data-Parallel

Frameworks. In Proceedings of the 8th ACM Symposium

on Cloud Computing (SoCC), 2017.

[40] Eitan Yaakobi, Laura Grupp, Paul H. Siegel, Steven

Swanson, and Jack K. Wolf. Characterization and

Error-Correcting Codes for TLC Flash Memories. In

International Conference on Computing, Networking

and Communications (ICNC), 2012.

[41] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao

Tong, Swaminathan Sundararaman, Andrew A. Chien,

and Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect

Elimination of Garbage Collection Tail Latencies in

NAND SSDs. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),

2017.

[42] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou,

Lakshmi N. Bairavasundaram, and Shankar Pasupathy.

An Empirical Study on Configuration Errors in

Commercial and Open Source Systems. In Proceedings

of the 23rd ACM Symposium on Operating Systems

Principles (SOSP), 2011.

14 16th USENIX Conference on File and Storage Technologies USENIX Association

Protocol-Aware Recovery for Consensus-Based Storage
Ramnatthan Alagappan, Aishwarya Ganesan, Eric Lee†, Aws Albarghouthi,

Vijay Chidambaram†, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

University of Wisconsin – Madison † University of Texas at Austin

Abstract
We introduce protocol-aware recovery (PAR), a new ap-
proach that exploits protocol-specific knowledge to cor-
rectly recover from storage faults in distributed sys-
tems. We demonstrate the efficacy of PAR through
the design and implementation of corruption-tolerant
replication (CTRL), a PAR mechanism specific to repli-
cated state machine (RSM) systems. We experimentally
show that the CTRL versions of two systems, LogCabin
and ZooKeeper, safely recover from storage faults and
provide high availability, while the unmodified versions
can lose data or become unavailable. We also show that
the CTRL versions have little performance overhead.

1 Introduction
Failure recovery using redundancy is central to improved
reliability of distributed systems [14, 22, 31, 35, 61, 67].
Distributed systems recover from node crashes and net-
work failures using copies of data and functionality on
several nodes [6,47,55]. Similarly, bad or corrupted data
on one node should be recovered from redundant copies.

In a static setting where all nodes always remain
reachable and where clients do not actively update data,
recovering corrupted data from replicas is straightfor-
ward; in such a setting, a node could repair its state by
simply fetching the data from any other node.

In reality, however, a distributed system is a dynamic
environment, constantly in a state of flux. In such
settings, orchestrating recovery correctly is surprisingly
hard. As a simple example, consider a quorum-based
system, in which a piece of data is corrupted on one node.
When the node tries to recover its data, some nodes may
fail and be unreachable, some nodes may have recently
recovered from a failure and so lack the required data or
hold a stale version. If enough care is not exercised, the
node could “fix” its data from a stale node, overwriting
the new data, potentially leading to a data loss.

To correctly recover corrupted data from redundant
copies in a distributed system, we propose that a recovery
approach should be protocol-aware. A protocol-aware
recovery (PAR) approach is carefully designed based on
how the distributed system performs updates to its repli-
cated data, elects the leader, etc. For instance, in the pre-
vious example, a PAR mechanism would realize that a
faulty node has to query at least R (read quorum) other
nodes to safely and quickly recover its data.

In this paper, we apply PAR to replicated state ma-
chine (RSM) systems. We focus on RSM systems for
two reasons. First, correctly implementing recovery is
most challenging for RSM systems because of the strong
consistency and durability guarantees they provide [58];
a small misstep in recovery could violate the guaran-
tees. Second, the reliability of RSM systems is crucial:
many systems entrust RSM systems with their critical
data [45]. For example, Bigtable, GFS, and other sys-
tems [7,26] store their metadata on RSM systems such as
Chubby [16] or ZooKeeper [4]. Hence, protecting RSM
systems from storage faults such as data corruption will
improve the reliability of many dependent systems.

We first characterize the different approaches to han-
dling storage faults by developing the RSM recovery
taxonomy, through experimental and qualitative analy-
sis of practical systems and methods proposed by prior
research (§2). Our analyses show that most approaches
employed by currently deployed systems do not use any
protocol-level knowledge to perform recovery, leading to
disastrous outcomes such as data loss and unavailability.

Thus, to improve the resiliency of RSM systems to
storage faults, we design a new protocol-aware recov-
ery approach that we call corruption-tolerant replication
or CTRL (§3). CTRL constitutes two components: a lo-
cal storage layer and a distributed recovery protocol;
while the storage layer reliably detects faults, the dis-
tributed protocol recovers faulty data from redundant
copies. Both the components carefully exploit RSM-
specific knowledge to ensure safety (e.g., no data loss)
and high availability.

CTRL applies several novel techniques to achieve
safety and high availability. For example, a crash-
corruption disentanglement technique in the storage
layer distinguishes corruptions caused by crashes from
disk faults; without this technique, safety violations or
unavailability could result. Next, a global-commitment
determination protocol in the distributed recovery sepa-
rates committed items from uncommitted ones; this sep-
aration is critical: while recovering faulty committed
items is necessary for safety, discarding uncommitted
items quickly is crucial for availability. Finally, a novel
leader-initiated snapshotting mechanism enables identi-
cal snapshots across nodes to greatly simplify recovery.

We implement CTRL in two storage systems that are
based on different consensus algorithms: LogCabin [43]

USENIX Association 16th USENIX Conference on File and Storage Technologies 15

(based on Raft [50]) and ZooKeeper [4] (based on
ZAB [39]) (§4). Through experiments, we show that
CTRL versions provide safety and high availability in the
presence of storage faults, while the original systems re-
main unsafe or unavailable in many cases; we also show
that CTRL induces minimal performance overhead (§5).

2 Background and Motivation
We first provide background on storage faults and RSM
systems. We then present the taxonomy of different ap-
proaches to handling storage faults in RSM systems.

2.1 Storage Faults in Distributed Systems
Disks and flash devices exhibit a subtle and complex fail-
ure model: a few blocks of data could become inaccessi-
ble or be silently corrupted [8, 9, 32, 59]. Although such
storage faults are rare compared to whole-machine fail-
ures, in large-scale distributed systems, even rare failures
become prevalent [60, 62]. Thus, it is critical to reliably
detect and recover from storage faults.

Storage faults occur due to several reasons: media er-
rors [10], program/read disturbance [60], and bugs in
firmware [9], device drivers [66], and file systems [27,
28]. Storage faults manifest in two ways: block errors
and corruption. Block errors (or latent sector errors)
arise when the device internally detects a problem with a
block and throws an error upon access. Studies of both
flash [33,60] and hard drives [10,59] show that block er-
rors are common. Corruption could occur due to lost and
misdirected writes that may not be detected by the de-
vice. Studies [9, 51] and anecdotal evidence [36, 37, 57]
show the prevalence of data corruption in the real world.

Many local file systems, on encountering a storage
fault, simply propagate the fault to applications [11, 54,
64]. For example, ext4 silently returns corrupted data
if the underlying device block is corrupted. In contrast,
a few file systems transform an underlying fault into a
different one; for example, btrfs returns an error to appli-
cations if the accessed block is corrupted on the device.
In either case, storage systems built atop local file sys-
tems should handle corrupted data and storage errors to
preserve end-to-end data integrity.

One way to tackle storage faults is to use RAID-like
storage to maintain multiple copies of data on each node.
However, many distributed deployments would like to
use inexpensive disks [22, 31]. Given that the data in
a distributed system is inherently replicated, it is waste-
ful to store multiple copies on each node. Hence, it is
important for distributed systems to use the inherent re-
dundancy to recover from storage faults.

2.2 RSM-based Storage Systems
Our goal is to harden RSM systems to storage faults.
In an RSM system, a set of nodes compute identical

states by executing commands on a state machine (an in-
memory data structure on each node) [58]. Typically,
clients interact with a single node (the leader) to exe-
cute operations on the state machine. Upon receiving
a command, the leader durably writes the command to
an on-disk log and replicates it to the followers. When
a majority of nodes have durably persisted the command
in their logs, the leader applies the command to its state
machine and returns the result to the client; at this point,
the command is committed. The commands in the log
have to be applied to the state machine in-order. Losing
or overwriting committed commands violates the safety
property of the state machine. The replicated log is kept
consistent across nodes by a consensus protocol such as
Paxos [41] or Raft [50].

Because the log can grow indefinitely and exhaust disk
space, periodically, a snapshot of the in-memory state
machine is written to disk and the log is garbage col-
lected. When a node restarts after a crash, it restores
the system state by reading the latest on-disk snapshot
and the log. The node also recovers its critical metadata
(e.g., log start index) from a structure called metainfo.
Thus, each node maintains three critical persistent data
structures: the log, the snapshots, and the metainfo.

These persistent data structures could be corrupted
due to storage faults. Practical systems try to safely
recover the data and remain available under such fail-
ures [15, 17]. However, as we will show, none of the
current approaches correctly recover from storage faults,
motivating the need for a new approach.

2.3 RSM Recovery Taxonomy
To understand the different possible ways to handling
storage faults in RSM systems, we analyze a broad range
of approaches. We perform this analysis by two means:
first, we analyze practical systems including ZooKeeper,
LogCabin, etcd [25], and a Paxos-based system [24] us-
ing a fault-injection framework we developed (§5); sec-
ond, we analyze techniques proposed by prior research
or used in proprietary systems [15, 17].

Through our analysis, we classify the approaches into
two categories: protocol-oblivious and protocol-aware.
The oblivious approaches do not use any protocol-level
knowledge to perform recovery. Upon detecting a
fault, these approaches take a recovery action locally
on the faulty node; such actions interact with the dis-
tributed protocols in unsafe ways, leading to data loss.
The protocol-aware approaches use some RSM-specific
knowledge to recover; however, they do not use this
knowledge correctly, leading to undesirable outcomes.
Our taxonomy is not complete in that there may be other
techniques; however, to the best of our knowledge, we
have not observed other approaches apart from those in
our taxonomy.

16 16th USENIX Conference on File and Storage Technologies USENIX Association

S1
S2
S3
S4
S5

2 3

1 2 3
1 2 3

1 2 3
1 2 3

1 2 3
1 2 3

1 3
1 2

2 3
1 3

2 3
1 3

1 2 3

2 3
1 2 3

1 2 3

2 3
1 2 3

2 3
1 3
1 2
2 3

1 3
(i) (ii) (iii) (iv) (v) (vi)

1 2 3
1 2 3
1 2 3

Figure 1: Sample Scenarios. The figure shows sample scenarios in
which current approaches fail. Faulty entries are striped. Crashed and
lagging nodes are shown as gray and empty boxes, respectively.

To illustrate the problems, we use Figure 1. In all
cases, log entries† 1, 2, and 3 are committed; losing these
items will violate safety. Table 1 shows how each ap-
proach behaves in Figure 1’s scenarios. As shown in
the table, all current approaches lead to safety violation
(e.g., data loss), low availability, or both. A recovery
mechanism that effectively uses redundancy should be
safe and available in all cases. Table 1 also compares the
approaches along other axes such as performance, main-
tenance overhead (intervention and extra nodes), recov-
ery time, and complexity. Although Figure 1 shows only
faults in the log, the taxonomy applies to other structures
including the snapshots and the metainfo.
NoDetection. The simplest reaction to storage faults is
none at all: to trust every layer in the storage stack to
work reliably. For example, a few prototype Paxos-based
systems [24] do not use checksums for their on-disk data;
similarly, LogCabin does not protect its snapshots with
checksums. NoDetection trivially violates safety; cor-
rupted data can be obliviously served to clients. How-
ever, deployed systems do use checksums and other in-
tegrity strategies for most of their on-disk data.
Crash. A better strategy is to use checksums and han-
dle I/O errors, and crash the node on detecting a fault.
Crash may seem like a good strategy because it in-
tends to prevent any damage that the faulty node may
inflict on the system. Our experiments show that the
Crash approach is common: LogCabin, ZooKeeper, and
etcd crash sometimes when their logs are faulty. Also,
ZooKeeper crashes when its snapshots are corrupted.

Although Crash preserves safety, it suffers from se-
vere unavailability. Given that nodes could be unavail-
able due to other failures, even a single storage fault re-
sults in unavailability, as shown in Figure 1(i). Similarly,
a single fault even in different portions of data on a ma-
jority (e.g., Figure 1(v)) renders the system unavailable.
Note that simply restarting the node does not help; stor-
age faults, unlike other faults, could be persistent: the
node will encounter the same fault and crash again until
manual intervention, which is error-prone and may cause
a data loss. Thus, it is desirable to recover automatically.
Truncate. A more sophisticated action is to truncate

†A log entry contains a state-machine command and data.

Class Approach Sa
fe

ty
A

va
ila

bi
lit

y
Pe

rf
or

m
an

ce
N

o
In

te
rv

en
tio

n
N

o
ex

tr
a

no
de

s
Fa

st
R

ec
ov

er
y

L
ow

C
om

pl
ex

ity

(i
)

(i
i)

(i
ii)

(iv
)

(v
)

(v
i)

Pr
ot

oc
ol

O
bl

iv
io

us NoDetection ×
√√√√

na
√

E E E E E E
Crash

√
×
√
×
√

na
√

U C U C U U
Truncate ×

√√√√
×
√

C L C L L L
DeleteRebuild ×

√√
×
√
×
√

C L C L L L

Pr
ot

oc
ol

A
w

ar
e

MarkNonVoting × ×
√√√

×
√

U C U C U U
Reconfigure

√
×
√
×× ×

√
U C U C U U

Byzantine FT
√
××
√
× na × U C U U U U

CTRL
√√√√√√√

C C C C C C

E- Return Corrupted, L- Data Loss, U- Unavailable, C- Correct

Table 1: Recovery Taxonomy. The table shows how different
approaches behave in Figure 1 scenarios. While all approaches are
unsafe or unavailable, CTRL ensures safety and high availability.

(possibly faulty) portions of data and continue operat-
ing. The intuition behind Truncate is that if the faulty
data is discarded, the node can continue to operate (un-
like Crash), improving availability.

However, we find that Truncate can cause a safety vi-
olation (data loss). Consider the scenario shown in Fig-
ure 2 in which entry 1 is corrupted on S1; S4, S5 are lag-
ging and do not have any entry. Assume S2 is the leader.
When S1 reads its log, it detects the corruption; however,
S1 truncates its log, losing the corrupted entry and all
subsequent entries (Figure 2(ii)). Meanwhile, S2 (leader)
and S3 crash. S1, S4, and S5 form a majority and elect S1
the leader. Now the system does not have any knowledge
of committed entries 1, 2, and 3, resulting in a silent data
loss. The system also commits new entries x, y, and z in
the place of 1, 2, and 3 (Figure 2(iii)). Finally, when S2
and S3 recover, they follow S1’s log (Figure 2(iv)), com-
pletely removing entries 1, 2, and 3.

In summary, although the faulty node detects the cor-
ruption, it truncates its log, losing the data locally. When
this node forms a majority along with other nodes that
are lagging, data is silently lost, violating safety. We find
this safety violation in ZooKeeper and LogCabin.

Further, Truncate suffers from inefficient recovery.
For instance, in Figure 1(i), S1 truncates its log after a
fault, losing entries 1, 2, and 3. Now to fix S1’s log,
the leader needs to transfer all entries, increasing S1’s re-
covery time and wasting network bandwidth. ZooKeeper
and LogCabin suffer from this slow recovery problem.
DeleteRebuild. Another commonly employed action is
to manually delete all data on the faulty node and restart
the node. Unfortunately, similar to Truncate, DeleteRe-
build can violate safety; specifically, a node whose data
is deleted could form a majority along with the lagging
nodes, leading to a silent data loss. Surprisingly, admin-
istrators often use this approach hoping that the faulty

USENIX Association 16th USENIX Conference on File and Storage Technologies 17

S1

(i) S4, S5 lagging;
1 faulty at S1

1 2 3

2 3
1 2 3

x y z

x y z
x y z x y z

x y z
x y z
x y z
x y z

(ii) S1 truncates 1,2,3;
S2, S3 down

(iii) 1,2,3 lost;
overwritten by x,y,z

(iv) S2, S3 follow
 S1’s log

1 2 3
1 2 3

1 2 3
1 2 3

S2
S3
S4
S5

Figure 2: Safety Violation Example. The figure shows the se-
quence of events which exposes a safety violation in Truncate.

node will be “simply fixed” by fetching the data from
other nodes [63, 65, 73]. DeleteRebuild also suffers from
the slow recovery problem similar to Truncate.
MarkNonVoting. In this approach, used by a Paxos-
based system at Google [17], a faulty node deletes all its
data on a fault and marks itself as a non-voting mem-
ber; the node does not participate in elections until it
observes one round of consensus and rebuilds its data
from other nodes. By marking a faulty node as non-
voting, safety violations such as the one in Figure 2 are
avoided. However, MarkNonVoting can sometimes vio-
late safety as noted by prior work [70]. The underlying
reason for unsafety is that a corrupted node deletes all
its state including the promises† given to leaders. Once
a faulty node has lost its promise given to a new leader,
it could accept an entry from an old leader (after observ-
ing a round of consensus on an earlier entry). The new
leader, however, still believes that it has the promise from
the faulty node and so can overwrite the entry, previously
committed by the old leader.

Further, this approach suffers from unavailability. For
example, when only a majority of nodes are alive, a sin-
gle fault can cause unavailability because the faulty node
cannot vote; other nodes cannot now elect a leader.
Reconfigure. In this approach, a faulty node is removed
and a new node is added. However, to change the con-
figuration, a configuration entry needs to be committed
by a majority. Hence, the system remains unavailable in
many cases (for example, when a majority are alive but
one node’s data is corrupted). Although Reconfigure is
not used in practical systems to tackle storage faults, it
has been suggested by prior research [15, 44].
BFT. An extreme approach is to use a Byzantine-fault-
tolerant algorithm which should theoretically tolerate
storage faults. However, BFT is expensive to be used in
practical storage systems; specifically, BFT can achieve
only half the throughput of what a crash-tolerant proto-
col can achieve [21]. Moreover, BFT requires 3 f + 1
nodes to tolerate f faults [2], thus remaining unavailable
in most scenarios in Figure 1.
Taxonomy Summary. None of the current approaches
effectively use redundancy to recover from storage faults.

†In Paxos, a promise for a proposal numbered p is a guarantee given
by a follower (acceptor) to the leader (proposer) that it will not accept
a proposal numbered less than p in the future [41].

Most approaches do not use any protocol-level knowl-
edge to recover; for example, Truncate and DeleteRe-
build take actions locally on the faulty node and so inter-
act with the distributed protocol in unsafe ways, causing
a global data loss. Although some approaches (e.g., Mar-
kNonVoting) use some RSM-specific knowledge, they do
not do so correctly, causing data loss or unavailability.
Thus, to ensure safety and high availability, a recovery
approach should effectively use redundancy by exploit-
ing protocol-specific knowledge. Further, it is benefi-
cial to avoid other problems such as manual intervention
and slow recovery. Our protocol-aware approach, CTRL,
aims to achieve these goals.

3 Corruption-Tolerant Replication
Designing a correct recovery mechanism needs a careful
understanding of the underlying protocols of the system.
For example, the recovery mechanism should be cog-
nizant of how updates are performed on the replicated
data and how the leader is elected. We base CTRL’s de-
sign on the following important protocol-level observa-
tions common to most RSM systems.
Leader-based. A single node acts as the leader; all data
updates flow only through the leader.
Epochs. RSM systems partition time into logical units
called epochs. For any given epoch, only one leader is
guaranteed to exist. Every data item is associated with
the epoch in which it was appended and its index in the
log. Since the entries could only be proposed by the
leader and only one leader could exist for an epoch, an
〈epoch, index〉 pair uniquely identifies a log entry.
Leader Completeness. A node will not vote for a can-
didate if it has more up-to-date data than the candidate.
Since committed data is present at least in a majority of
nodes and a majority vote is required to win the election,
the leader is guaranteed to have all the committed data.

CTRL exploits these protocol-level attributes common
to RSM systems to correctly recover from storage faults.
CTRL divides the recovery responsibility between two
components: the local storage layer and the distributed
recovery protocol; while the storage layer reliably de-
tects faulty data on a node, the distributed protocol recov-
ers the data from redundant copies. Both the components
use RSM-specific knowledge to perform their functions.

In this section, we first describe CTRL’s fault model
(§3.1) and safety and availability guarantees (§3.2). We
then describe the local storage layer (§3.3). Finally, we
describe CTRL’s distributed recovery in two parts: first,
we show how faulty logs are recovered (§3.4) and then
we explain how faulty snapshots are recovered (§3.5).

3.1 Fault Model
Our fault model includes the standard failure assump-
tions made by crash-tolerant RSM systems: nodes could

18 16th USENIX Conference on File and Storage Technologies USENIX Association

Fault Outcome Possible Causes
D

at
a corrupted data misdirected and lost writes in ext

inaccessible data LSE, corruptions in ZFS and btrfs

FS
M

et
ad

at
a missing files/directories directory entry corrupted, fsck may

remove a faulty inode

unopenable files/directories sanity check fails after inode cor-
ruption, permission bits corrupted

files with more or fewer bytes i size field in the inode corrupted
file system read-only journal corrupted; fsck not run
file system unmountable superblock corrupted; fsck not run

Table 2: Storage Fault Model. The table shows storage faults
included in our model and possible causes that lead to a fault outcome.

crash at any time and recover later, and nodes could be
unreachable due to network failures [21, 42, 50]. Our
model adds another realistic failure scenario where per-
sistent data on the individual nodes could be corrupted
or inaccessible. Table 2 shows a summary of our storage
fault model. Our model includes faults in both user data
and the file-system metadata blocks.

User data blocks in the files that implement the sys-
tem’s persistent structures could be affected by errors
or corruption. A number of (possibly contiguous) data
blocks could be faulty as shown by studies [12,59]. Also,
a few bits/bytes of a block could be corrupted. Depend-
ing on the local file system in use, corrupted data may be
returned obliviously or transformed into errors.

File-system metadata blocks can also be affected by
faults; for example, the inode of a log file could be cor-
rupted. Our fault model considers the following out-
comes that can be caused by file-system metadata faults:
files/directories may go missing, files/directories may be
unopenable, a file may appear with fewer or more bytes,
the file system may be mounted read-only, and in the
worst case, the file system may be unmountable. Some
file systems such as ZFS may mask most of the above
outcomes from applications [72]; however, our model
includes these faulty outcomes because they could real-
istically occur on other file systems that provide weak
protection against corruption (e.g., ext2/3/4). Through
fault-injection tests, we have verified that the metadata
fault outcomes shown in Table 2 do occur on ext4.

3.2 Safety and Availability Guarantees
CTRL guarantees that if there exists at least one correct
copy of a committed data item, it will be recovered or the
system will wait for that item to be fixed; committed data
will never be lost. In unlikely cases where all copies of
a committed item are faulty, the system will correctly re-
main unavailable. CTRL also guarantees that the system
will make a decision about an uncommitted faulty item
as early as possible, ensuring high availability.

3.3 CTRL Local Storage Layer
To reliably recover, the storage layer (CLSTORE) needs
to satisfy three key requirements. First, CLSTORE must
be able to reliably detect a storage fault. Second,

ei- ith log entry; idi - identifier of entry ei
idi = <index(ei), epoch(ei), offset(ei), cksum>
idi also serves as persist record for ei

log len

data = <index, epoch,
command, ...>

entry identifiers

Update:
write(log, ei)

fsync(log)

...

(a
) T

yp
ica

l
fo

rm
at

(b
) C

LS
TO

RE
 fo

rm
at

Update:
pwrite(log, ei)
pwrite(log, idi)

fsync(log)

cksum len
entry

e1 e2

e1 e2id1 id2
... ...

data

Figure 3: Log Format. (a) shows the format and update protocol
of a typical RSM log; (b) shows the same for CLSTORE.

CLSTORE must correctly distinguish crashes from corrup-
tions; safety can be violated otherwise. Third, CLSTORE

must identify which pieces of data are faulty; only if
CLSTORE identifies which pieces have been affected, can
the distributed protocol recover those pieces.

3.3.1 Persistent Structures Overview
As we discussed, RSM systems maintain three persis-
tent structures: the log, the snapshots, and the metainfo.
CLSTORE uses RSM-specific knowledge of how these
structures are used and updated, to perform its functions.
For example, CLSTORE detects faults at a different granu-
larity depending on the RSM data structure: faults in the
log are detected at the granularity of individual entries,
while faults in the snapshot are detected at the granular-
ity of chunks. Similarly, CLSTORE uses the RSM-specific
knowledge that a log entry is uniquely qualified by its
〈epoch, index〉 pair to identify faulty log entries.
Log. The log is a set of files containing a sequence of
entries. The format of a typical RSM log is shown in
Figure 3(a). The log is updated synchronously in the crit-
ical path; hence, changes made to the log format should
not affect its update performance. CLSTORE uses a mod-
ified format as shown in Figure 3(b) which achieves this
goal. A corrupted log is recovered at the granularity of
individual entries.
Snapshots. The in-memory state machine is periodi-
cally written to a snapshot. Since snapshots can be huge,
CLSTORE splits them into chunks; a faulty snapshot is re-
covered at the granularity of individual chunks.
Metainfo. The metainfo is special in that faulty metainfo
cannot be recovered from other nodes. This is because
the metainfo contains information unique to a node (e.g.,
its current epoch); recovering metainfo obliviously from
other nodes could violate safety. CLSTORE uses this
knowledge correctly and so maintains two copies of the
metainfo locally; if one copy is faulty, the other copy is
used. Fortunately, the metainfo is only a few tens of bytes
in size and is updated infrequently; therefore, maintain-
ing two copies does not incur significant overheads.

3.3.2 Detecting Faulty Data
CLSTORE uses well-known techniques for detection: in-
accessible data is detected by catching return codes (e.g.,

USENIX Association 16th USENIX Conference on File and Storage Technologies 19

EIO) and corrupted data is detected by a checksum mis-
match. CLSTORE assumes that if an item and its check-
sum agree, then the item is not faulty. In the log, each
entry is protected by a checksum; similarly, each chunk
in a snapshot and the entire metainfo are checksummed.

CLSTORE also handles file-system metadata faults.
Missing and unopenable files/directories are detected by
handling error codes upon open. Log and metainfo
files with fewer or more bytes are detected easily be-
cause these files are preallocated and are of a fixed size;
snapshot sizes are stored separately, and CLSTORE cross-
checks the stored size with the file-system reported size
to detect discrepancies. A read-only/unmountable file
system is equivalent to a missing data directory. In most
cases of file-system metadata faults, CLSTORE crashes
the nodes. Crashing reliably on a metadata fault pre-
serves safety but compromises on availability. However,
we believe this is an acceptable behavior because there
are far more data blocks than metadata blocks; therefore,
the probability of faults is significantly less for metadata
than data blocks.

3.3.3 Disentangling Crashes and Corruption in Log
An interesting challenge arises when detecting corrup-
tions in the log. A checksum mismatch for a log entry
could occur due to two different situations. First, the
system could have crashed in the middle of an update; in
this case, the entry would be partially written and hence
cause a mismatch. Second, the entry could be safely per-
sisted but corrupted at a later point. Most log-based sys-
tems conflate these two cases: they treat a mismatch as
a crash [30]. On a mismatch, they discard the corrupted
entry and all subsequent entries, losing the data. Discard-
ing entries due to such conflation introduces the possibil-
ity of a global data loss (as shown earlier in Figure 2).

Note that if the mismatch were really due to a crash,
it is safe to discard the partially written entry. It is safe
because the node would not have acknowledged to any
external entity that it has written the entry. However, if
an entry is corrupted, the entry cannot be simply dis-
carded since it could be globally committed. Further, if a
mismatch can be correctly attributed to a crash, the faulty
entry can be quickly discarded locally, avoiding the dis-
tributed recovery. Hence, it is important for the local
storage layer to distinguish the two cases.

To denote the completion of an operation, many sys-
tems write a commit record [13,18]. Similarly, CLSTORE

writes a persist record, pi, after writing an entry ei. For
now, assume that ei is ordered before pi, i.e., the se-
quence of steps to append an entry ei is write(ei), fsync(),
write(pi), fsync(). On a checksum mismatch for ei, if pi
is not present, we can conclude that the system crashed
during the update. Conversely, if pi is present, we can
conclude that the mismatch was caused due to a corrup-

tion and not due to a crash. pi is checksummed and is
very small; it can be atomically written and thus cannot
be “corrupted” due to a crash. If pi is corrupted in addi-
tion to ei, we can conclude that it is a corruption and not
a crash.

The above logic works when ei is ordered before pi.
However, such ordering requires an (additional) expen-
sive fsync in the critical path, affecting log-update per-
formance. For this reason, CLSTORE does not order
ei before pi; thus, the append protocol is t1:write(ei),
t2:write(pi), t3:fsync().† Given this update sequence, as-
sume a checksum mismatch occurs for ei. If pi is not
present, CLSTORE can conclude that it is a crash (before
t2) and discard ei. Contrarily, if pi is present, there are
two possibilities: either ei could be affected by a corrup-
tion after t3 or a crash could have occurred between t2
and t3 in which pi hit the disk while ei was only partially
written. The second case is possible because file systems
can reorder writes between two fsync operations and ei
could span multiple sectors [3, 19, 52, 53]. CLSTORE can
still conclude that it is a corruption if ei+1 or pi+1 is
present. However, if ei is the last entry, then we cannot
determine whether it was a crash or a corruption.∗

The inability to disentangle the last entry when its
persist record is present is not specific to CLSTORE, but
rather a fundamental limitation in log-based systems. For
instance, in ext4’s journal async commit mode (where a
transaction is not ordered before its commit record), a
corrupted last transaction is assumed to be caused due to
a crash, possibly losing data [38,69]. Even if crashes and
corruptions can be disentangled, there is little a single-
machine system can do to recover the corrupted data.
However, in a distributed system, redundant copies can
be used to recover. Thus, when the last entry cannot
be disentangled, CLSTORE safely marks the entry as cor-
rupted and leaves it to the distributed recovery to fix or
discard the entry based on the global commitment.

The entanglement problem does not arise for snap-
shots or metainfo. These files are first written to a tempo-
rary file and then atomically renamed. If a crash happens
before the rename, the partially written temporary file is
discarded. Thus, the system will never see a corrupted
snapshot or metainfo due to a crash; if these structures
are corrupted, it is because of a storage corruption.

3.3.4 Identifying Faulty Data
Once a faulty item is detected, it has to be identified; only
if CLSTORE can identify a faulty item, the distributed
layer can recover the item. For this purpose, CLSTORE

redundantly stores an identifier of an item apart from the
item itself; duplicating only the identifier instead of the
whole item obviates the (2×) storage and performance

†The final fsync is required for durability.
∗The proof of this claim is available [1].

20 16th USENIX Conference on File and Storage Technologies USENIX Association

overhead. However, storing the identifier near the item is
less useful; a misdirected write can corrupt both the item
and its identifier [9,10]. Hence, identifiers are physically
separated from the items they identify.

The 〈epoch, index〉 pair serves as the identifier for a
log entry and is stored separately at the head of the log,
as shown in Figure 3(b). The offset of an entry is also
stored as part of the identifier to enable traversal of subse-
quent entries on a fault. The identifier of a log entry also
conveniently serves as its persist record. Similarly, for
a snapshot chunk, the 〈snap-index, chunk#〉 pair serves
as the identifier; the snap-index and the snapshot size are
stored in a separate file than the snapshot file. The iden-
tifiers have a nominal storage overhead (32 bytes for log
entries and 12 bytes for snapshots), can be atomically
written, and are also protected by a checksum.

It is highly unlikely an item and its identifier will both
be faulty since they are physically separated [9, 10, 12,
59]. In such unlikely and unfortunate cases, CLSTORE

crashes the node to preserve safety. Table 3 (second col-
umn) summarizes CLSTORE’s key techniques.

3.4 CTRL Distributed Log Recovery
The local storage layer detects faulty data items and
passes on their identifiers to the distributed recovery
layer. We now describe how the distributed layer recov-
ers the identified faulty items from redundant copies us-
ing RSM-specific knowledge. We first describe how log
entries are recovered and subsequently describe snapshot
recovery. As we discussed, metainfo files are recovered
locally and so we do not discuss them any further. We
use Figure 4 to illustrate how log recovery works.
Naive Approach: Leader Restriction. RSM systems
do not allow a node with an incomplete log to become
the leader. A naive approach to recovering from storage
faults could be to impose an additional constraint on the
election: a node cannot be elected the leader if its log
contains a faulty entry. The intuition behind the naive
approach is as follows: since the leader is guaranteed to
have all committed data and our new restriction ensures
that the leader is not faulty, faulty log entries on other
nodes could be fixed using the corresponding entries on
the leader. Cases (a)(i) and (a)(ii) in Figure 4 show sce-
narios where the naive approach could elect a leader. In
(a)(i), only S1 can become the leader because other nodes
are either lagging or have at least one faulty entry. As-
sume S1 is the leader also in case (a)(ii).
Fixing Followers’ Logs. When the leader has no faulty
entries, fixing the followers is straightforward. For ex-
ample, in case (a)(i), the followers inform S1 of their
faulty entries; S1 then supplies the correct entries. How-
ever, sometimes the leader might not have any knowl-
edge of an entry that a follower is querying for. For in-
stance, in case (a)(ii), S5 has a faulty entry at index 3 but

with a different epoch. This situation is possible because
S5 could have been the leader for epoch 2 and crashed
immediately after appending an entry. As discussed ear-
lier, an entry is uniquely identified by its 〈epoch, index〉;
thus, when querying for faulty entries, a node needs to
specify the epoch of the entry in addition to its index.
Thus, S5 informs the leader that its entry 〈epoch:2, in-
dex:3〉 is faulty. However, S1 does not have such an entry
in its log. If the leader does not have an entry that the fol-
lower has, then the entry must be an uncommitted entry
because the leader is guaranteed to have all committed
data; thus, the leader instructs S5 to truncate the faulty
entry and also replicates the correct entry.

Although the naive approach guarantees safety, it has
availability problems. The system will be unavailable
in cases such as the ones shown in (b): a leader cannot
be elected because the logs of the alive nodes are either
faulty or lagging. Note that even a single storage fault
can cause an unavailability as shown in (b)(i). It is possi-
ble for a carefully designed recovery protocol to provide
better availability in these cases. Specifically, since at
least one intact copy of all committed entries exists, it is
possible to collectively reconstruct the log.

3.4.1 Removing the Restriction Safely
To recover from scenarios such as those in Figure 4(b),
we remove the additional constraint on the election.
Specifically, any node that has a more up-to-date log can
now be elected the leader even if it has faulty entries.
This relaxation improves availability; however, two key
questions arise: first, when can the faulty leader proceed
to accept new commands? second, and more importantly,
is it safe to elect a faulty node as the leader?

To accept a new command, the leader has to append
the command to its log, replicate it, and apply it to the
state machine. However, before applying the new com-
mand, all previous commands must be applied. Specif-
ically, faulty commands cannot be skipped and later ap-
plied when they are fixed; such out-of-order application
would violate safety. Hence, it is required for the leader
to fix its faulty entries before it can accept new com-
mands. Thus, for improved availability, the leader needs
to fix its faulty entries as early as possible.

The crucial part of the recovery to ensure safety is to
fix the leader’s log using the redundant copies on the fol-
lowers. In simple cases such as (b)(i) and (b)(ii), the
leader S1 could fix its faulty entry 〈epoch:1, index:1〉 us-
ing the correct entries from the followers and proceed
to normal operation. However, in several scenarios, the
leader cannot immediately recover its faulty entries; for
example, none of the reachable followers might have any
knowledge of the entry to be recovered or the entry to be
recovered could also be faulty on the followers.

USENIX Association 16th USENIX Conference on File and Storage Technologies 21

faulty entry,
epoch: 1

faulty entry,
epoch: e

correct entry,
data: d, epoch: e

correct entry,
data:d, epoch: 1

(a)(ii)

b caS1
L

S2
S3
S4
S5

ba

ba
ba
ba
ba

b c ba

ba
ba
ba

ba
b ca ba

ba

ba
ba
ba

ba
ba
ba

ba

ba

c3b

b ca

a
c3ba
c3ba
c3ba
 2ba

b c
ca

(a)(i) (b)(i) (b)(ii) (c)(i) (c)(ii) (d)(i) (d)(ii) (d)(iii)
Leader restriction

works
Leader restriction

unavailability
Waiting to determine

commitment

L L

 Discard faulty
uncommitted entries

L L L L L
Legend

d

de

 e

1 2 3 1 32 1 32 1 32 1 32 1 32 1 321 321 2 3

b ca b ca
ba
ba

ba
ba
b ca
b ca

b cL

ba
ba

b c
ca

ba
ba

Figure 4: Distributed Log Recovery. The figure shows how CTRL’s log recovery operates. All entries are appended in epoch 1 unless explicitly
mentioned. For entries appended in other epochs, the epoch number is shown in the superscript. Entries shown as striped boxes are faulty. A gray
box around a node denotes that it is down or extremely slow. The leader is marked with L on the left. Log indexes are shown at the top.

3.4.2 Determining Commitment
The main insight to fix the leader’s faulty log safely and
quickly is to distinguish uncommitted entries from possi-
bly committed ones; while recovering the committed en-
tries is necessary for safety, uncommitted entries can be
safely discarded. Further, discarding uncommitted faulty
entries immediately is crucial for availability. For in-
stance, in case (c)(i), the faulty entry on S1 cannot be
fixed since there are no copies of it; waiting to fix that
entry results in indefinite unavailability. Sometimes, an
entry could be partially replicated but remain uncommit-
ted; for example, in case (c)(ii), the faulty entry on S1 is
partially replicated but is not committed. Although there
is a possibility of recovering this entry from the other
node (S2), this is not necessary for safety; it is completely
safe for the leader to discard this uncommitted entry.

To determine the commitment of a faulty entry, the
leader queries the followers. If a majority of the follow-
ers respond that they do not have the entry (negative ac-
knowledgment), then the leader concludes that the entry
is uncommitted. In this case, the leader safely discards
that and all subsequent entries; it is safe to discard the
subsequent entries because entries are committed in or-
der. Conversely, if the entry were committed, at least
one node in this majority would have that entry and in-
form the leader of it; in this case, the leader can fix its
faulty entry using that response.
Waiting to Determine Commitment. Sometimes, it
may be impossible for the leader to quickly determine
commitment. For instance, consider the cases in Fig-
ure 4(d) in which S4 and S5 are down or slow. S1 queries
the followers to recover its entry 〈epoch:1, index:3〉. S2
and S3 respond that they do not have such an entry (neg-
ative acknowledgment). S4 and S5 do not respond be-
cause they are down or slow. The leader, in this case,
has to wait for either S4 or S5 to respond; discarding the
entry without waiting for S4 or S5 could violate safety.
However, once S4 or S5 responds, the leader will make a
decision immediately. In (d)(i), S4 or S5 would respond
with the correct entry, fixing the leader. In (d)(ii), S4 or
S5 would respond that it does not have the entry, accu-

mulating three (a majority out of five) negative acknowl-
edgments; hence, the leader can conclude that the entry
is uncommitted, discard it, and continue to normal oper-
ation. In (d)(iii), S4 would respond that it has the entry
but is faulty in its log too. In this case, the leader has to
wait for the response from S5 to determine commitment.
In the unfortunate and unlikely case where all copies of
an entry are faulty, the system will remain unavailable.

3.4.3 The Complete Log Recovery Protocol
We now assemble the pieces of the log recovery protocol.
First, fixing faulty followers is straightforward; the com-
mitted faulty entries on the followers can be eventually
fixed by the leader because the leader is guaranteed to
have all committed data. Faulty entries on followers that
the leader does not know about are uncommitted; hence,
the leader instructs the followers to discard such entries.

The main challenge is thus fixing the leader’s log. The
leader queries the followers to recover its entry 〈epoch:e,
index:i〉. Three types of responses are possible:
Response 1: have – a follower could respond that it has
the entry 〈epoch:e, index:i〉 and is not faulty in its log.
Response 2: dontHave – a follower could respond that it
does not have the entry 〈epoch:e, index:i〉.
Response 3: haveFaulty – a follower could respond that
it has 〈epoch:e, index:i〉 but is faulty in its log too.

Once the leader collects these responses from the fol-
lowers, it takes the following possible actions:
Case 1: if it gets a have response from at least one fol-
lower, it fixes the entry in its log.
Case 2: if it gets a dontHave response from a majority
of followers, it confirms that the entry is uncommitted,
discards that entry and all subsequent entries.
Case 3: if it gets a haveFaulty response from a follower,
it waits for either Case 1 or Case 2 to happen.

Case 1 and Case 2 can happen in any order; both order-
ings are safe. Specifically, if the leader decides to discard
the faulty entry (after collecting a majority dontHave re-
sponses), it is safe since the entry was uncommitted any-
ways. Conversely, there is no harm in accepting a correct
entry (at least one have response) and replicating it. The

22 16th USENIX Conference on File and Storage Technologies USENIX Association

first to happen out of these two cases will take prece-
dence over the other.

The leader proceeds to normal operation only after its
faulty data is discarded or recovered. However, CTRL

discards uncommitted data as early as possible and min-
imizes the recovery latency by recovering faulty data at
a fine granularity (as we show in §5.2), ensuring that the
leader proceeds to normal operation quickly.

The leader could crash or be partitioned while recov-
ering its log. On a leader failure, the followers will elect
a new leader and make progress. The partial repair done
by the failed leader is harmless: it could have either fixed
committed faulty entries or discarded uncommitted ones,
both of which are safe.

3.5 CTRL Distributed Snapshot Recovery
Because the logs can grow indefinitely, periodically,
the in-memory state machine is written to disk and the
logs are garbage collected. Current systems including
ZooKeeper and LogCabin do not handle faulty snapshots
correctly (§2.3): they either crash or load corrupted snap-
shots obliviously. CTRL aims to recover faulty snapshots
from redundant copies. Snapshot recovery is different
from log recovery in that all data in a snapshot is com-
mitted and already applied to the state machine; hence,
faulty snapshots cannot be discarded in any case (unlike
uncommitted log entries which can be discarded safely).

3.5.1 Leader-Initiated Identical Snapshots
Current systems [43] have two properties with respect to
snapshots. First, they allow new commands to be applied
to the state machine while a snapshot is in progress. Sec-
ond, they take index-consistent snapshots: a snapshot Si
represents the state machine in which log entries exactly
up to i have been applied. One of the mechanisms used
in current systems to realize the above two properties is
to take snapshots in a fork-ed child process; while the
child can write an index-consistent image to the disk, the
parent can keep applying new commands to its copy of
the state machine. CTRL should enable snapshot recovery
while preserving the above two properties.

In current systems, every node runs the snapshot pro-
cedure independently, taking snapshots at different log
indexes. Because the snapshots are taken at different in-
dexes, snapshot recovery can be complex: a faulty snap-
shot on one node cannot be simply fetched from other
nodes. Further, snapshots cannot be recovered at the
granularity of chunks because they will be byte-wise
non-identical; entire snapshots have to be transferred
across nodes, slowing down recovery.

This complexity can be significantly alleviated if the
nodes take the snapshot at the same index; identical snap-
shots also enable chunk-based recovery.

However, coordinating a snapshot operation across
nodes can, in general, affect the common-case perfor-

Local Storage Distributed Recovery
Log granularity: entry;

identifier:〈epoch, index〉;
crash-corruption disentanglement

global-commitment de-
termination to fix leader,
leader fixes followers

Snapshot granularity: chunk;
identifier:〈snap-index, chunk#〉;
no entanglement

leader-initiated identical
snapshots,
chunk-based recovery

Metainfo granularity: file;
identifier: n/a;
no entanglement

none (only internal re-
dundancy)

Table 3: Techniques Summary. The table shows a summary of
techniques employed by CTRL’s storage layer and distributed recovery.

mance. For example, one naive way to realize identi-
cal snapshots is for the leader to produce the snapshot,
insert it into the log as yet another entry, and repli-
cate it. However, such an approach will affect update
performance since the snapshot could be huge and all
client commands must wait while the snapshot com-
mits [49]. Moreover, transferring the snapshot to the fol-
lowers wastes network bandwidth.

CTRL takes a different approach to identical snapshots
that preserves common-case performance. The leader
initiates the snapshot procedure by first deciding the in-
dex at which a snapshot will be taken and informing the
followers of the index. Once a majority agree on the in-
dex, all nodes independently take a snapshot at the index.
When the leader learns that a majority (including itself)
have taken a snapshot at an index i, it garbage collects its
log up to i and instructs the followers to do the same.

CTRL implements the above procedure using the log.
When the leader decides to take a snapshot, it inserts
a special marker called snap into the log. When the
snap marker commits, and thus when a node applies the
marker to the state machine, it takes a snapshot (i.e., the
snapshot corresponds to the state where commands ex-
actly up to the marker have been applied). Within each
node, we reuse the same mechanism used by the original
system (e.g., a fork-ed child) to allow new commands
to be applied while a snapshot is in progress. Notice
that the snapshot operation happens independently on all
nodes but the operation will produce identical snapshots
because the marker will be seen at the same log index by
all nodes when it is committed. When the leader learns
that a majority of nodes (including itself) have taken a
snapshot at an index i, it appends another marker called
gc for i; when the gc marker is committed and applied,
the nodes garbage collect their log entries up to i.

3.5.2 Recovering Snapshot Chunks
With the identical-snapshot mechanism, snapshot recov-
ery becomes easier. Once a faulty snapshot is detected,
the local storage layer provides the distributed protocol
the snapshot index and the chunk that is faulty. The dis-
tributed protocol recovers the faulty chunk from other

USENIX Association 16th USENIX Conference on File and Storage Technologies 23

Sy
st

em

Recovery
Scenario To

ta
lT

es
tC

as
es Original CTRL

Original
Approach

Outcomes Outcomes

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

L
og

C
ab

in Possible 2401
truncate 0 2355 46 0 0 2401

crash 2355 0 46 0 0 2401
Not

possible
1695

truncate 0 1695 0 1695 0 0
crash 1695 0 0 1695 0 0

Z
oo

K
ee

pe
r

Possible 2401
truncate 0 2355 46 0 0 2401

crash 2355 0 46 0 0 2401
Not

possible
1695

truncate 0 1695 0 1695 0 0
crash 1695 0 0 1695 0 0

Sy
st

em Experi-
ment To

ta
lT

es
tC

as
es Outcomes

Original CTRL

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

L
og

C
ab

in Corrupt-
ions

5000 738 793 3469 0 0 5000

Errors 5000 2497 0 2503 0 0 5000

Z
oo

K
ee

pe
r Corrupt-

ions
5000 807 656 3537 0 0 5000

Errors 5000 2469 0 2531 0 0 5000

Sy
st

em

To
ta

lT
es

tC
as

es Outcomes
Original CTRL

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

L
og

C
ab

in

5000 4194 141 665 0 0 5000

Z
oo

K
ee

pe
r

5000 1306 1806 1888 0 0 5000

(a) Targeted Corruptions (b) Random Block Corruptions and Errors (c) Corruptions with Lagging Nodes

Table 4: Log Recovery. (a) shows results for targeted corruptions; we trigger two policies (truncate and crash) in the original systems. (b)
shows results for random block corruptions and errors. (c) shows results for random corruptions with crashed and lagging nodes.

nodes. First, the leader recovers its faulty chunks from
the followers and then fixes the faulty snapshots on fol-
lowers. Three cases arise during snapshot recovery.

First, the log entries for a faulty snapshot may not be
garbage collected yet; in this case, the snapshot is recov-
ered locally from the log (after fixing the log if needed).

Second, if the log is garbage collected, then a faulty
snapshot has to be recovered from other nodes. However,
if the log entries for a snapshot are garbage collected,
then at least a majority of the nodes must have taken the
same snapshot. This is true because the gc marker is
inserted only after a majority of nodes have taken the
snapshot. Thus, faulty garbage-collected snapshots are
recovered from those redundant copies.

Third, sometimes, the leader may not know a snapshot
that a follower is querying for (for example, if a follower
took a snapshot and went offline for a long time and the
leader replaced that snapshot with an advanced one); in
this case, the leader supplies the full advanced snapshot.

3.6 CTRL Summary
The storage layer detects and identifies faulty data. Atop
the storage layer, the distributed protocol recovers the
faulty items from redundant copies. Both the layers ex-
ploit RSM-specific knowledge to correctly perform their
functions. A summary of CTRL’s local storage and dis-
tributed recovery techniques is shown in Table 3.

4 Implementation
We implement CTRL in two different RSM systems, Log-
Cabin (v1.0) and ZooKeeper (v3.4.8); while LogCabin is
based on Raft, ZooKeeper is based on ZAB. Implement-
ing CTRL’s storage layer and distributed recovery took
only a moderate developer effort; CTRL adds about 1500
lines of code to each of the base systems.

4.1 Local Storage Layer
We implemented CLSTORE by modifying the storage en-
gines of LogCabin and ZooKeeper. In both systems, the

log is a set of files, each of a fixed size and preallocated.
The header of each file is reserved for the log-entry iden-
tifiers. The size of the reserved header is proportional to
the file size. CLSTORE ensures that a log entry and its
identifier are at least a few megabytes physically apart.
Both systems batch many log entries to improve update
performance. With batching, CLSTORE performs crash-
corruption disentanglement as follows: the first faulty
entry without an identifier and its subsequent entries are
discarded; faulty entries preceding that point are marked
as corrupted and passed on to the distributed layer.

In both systems, the state machine is a data tree. We
modified both the systems to take index-consistent iden-
tical snapshots: when a snap marker is applied, the state
machine (i.e., the tree) is serialized to the disk. The snap-
index and snapshot size are stored separately. CLSTORE

uses a chunk size of 4K, enabling fine-grained recovery.
In LogCabin, the metainfo contains the currentTerm

and votedFor structures. Similarly, in ZooKeeper,
structures such as acceptedEpoch and currentEpoch

constitute the metainfo. CLSTORE stores redundant
copies of metainfo and protects them using checksums.

Log entries, snapshot chunks, and metainfo are pro-
tected by a CRC32 checksum. CLSTORE detects inac-
cessible data items by catching errors (EIO); it then pop-
ulates the item’s in-memory buffer with zeros, causing
a checksum mismatch. Thus, CLSTORE deals with both
corruptions and errors as checksum mismatches.

4.2 Distributed Recovery
LogCabin. In Raft, terms are equivalent to epochs.
Thus, a log entry is uniquely identified by its 〈term, in-
dex〉 pair. To fix the followers, we modified the Append-
Entries RPC used by the leader to replicate entries [50].
The followers inform the leader of their faulty log en-
tries and snapshot chunks in the responses of this RPC;
the leader sends the correct entries and chunks in a sub-
sequent RPC. A follower starts applying commands to
its state machine once its faulty data is fixed. To fix the

24 16th USENIX Conference on File and Storage Technologies USENIX Association

leader, we added a new RPC which the leader issues to
the followers. The leader does not proceed to normal op-
eration until its faulty data is fixed. After a configurable
recovery timeout, the leader steps down if it is unable to
recover its faulty data (for example, due to a partition),
allowing other nodes to become the leader. Several en-
tries and chunks are batched in a single request/response,
avoiding multiple round trips.
ZooKeeper. In ZAB, the epoch and index are packed
into the zxid which uniquely identifies a log entry [5].
Followers discover and connect to the leader in Phase 1.
We modified Phase 1 to send information about the fol-
lowers’ faulty data. The followers are synchronized with
the leader in Phase 2. We modified Phase 2 so that the
leader sends the correct data to the followers. The leader
waits to hear from a majority during Phase 1 after which
it sends a newEpoch message; we modified this message
to send information about the leader’s faulty data. The
leader does not proceed to Phase 2 until its data is fixed.

5 Evaluation
We evaluate the correctness and performance of CTRL

versions of LogCabin and ZooKeeper. We conducted our
performance experiments on a three-node cluster on a 1-
Gb network; each node is a 40-core Intel Xeon CPU E5-
2660 machine with 128 GB memory running Linux 3.13,
with a 500-GB SSD and a 1-TB HDD managed by ext4.

5.1 Correctness
To verify CTRL’s safety and availability guarantees, we
built a fault-injection framework that can inject stor-
age faults (targeted corruptions and random block cor-
ruptions and errors). The framework can also inject
crashes. By injecting crashes at different points in time,
the framework simulates lagging nodes. After injecting
faults, we issue reads from clients to determine whether
the target system remains available and preserves safety.

We first exercise different log-recovery scenarios.
Then, we test snapshot recovery, and finally file-system
metadata fault recovery.

5.1.1 Log Recovery
Targeted Corruptions. We initialize the cluster with
four log entries, replicated to all three nodes. We ex-
ercise all combinations of entry corruptions across the
three nodes ((24)3 = 4096 combinations). Out of the
4096 cases, a correct recovery is possible in 2401 cases
(at least one non-faulty copy of each entry exists). In the
remaining 1695 cases, recovery is not possible because
one or more entries are corrupted on all the nodes. We
inject targeted corruptions into two different sets of on-
disk structures. In the first set, on a corruption, the origi-
nal systems invoke the truncate action (i.e., they truncate
faulty data and continue). In the second set, the origi-
nal systems invoke the crash action (i.e., node crashes

Sy
st

em

To
ta

lT
es

tC
as

es Outcomes
Original CTRL

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

L
og

-
C

ab
in

1000 297 257 446 0 0 1000

Z
oo

-
K

ee
pe

r

1000 417 200 383 0 0 1000

To
ta

lT
es

tC
as

es Outcomes
Original CTRL

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

U
na

va
ila

bl
e

U
ns

af
e

C
or

re
ct

1000 405 36 559 434 0 566

1000 329 192 479 502 0 498

(a) Snapshot Recovery (b) FS Metadata Faults

Table 5: Snapshot and FS Metadata Faults. (a) and (b) show how
CTRL recovers from snapshot and FS metadata faults, respectively.

on detection). For example, while ZooKeeper truncates
when the tail of a transaction is corrupted, it crashes the
node if the transaction header is corrupted. CTRL always
recovers the corrupted data from other replicas.

Table 4(a) shows the results. When recovery is possi-
ble, the original systems recover only in 46/2401 cases.
In those 46 cases, no node or only one node is corrupted.
In the remaining 2355 cases, the original systems are
either unsafe (for truncate) or unavailable (for crash).
In contrast, CTRL correctly recovers in all 2401 cases.
When a recovery is not possible (all copies corrupted),
the original systems are either unsafe or unavailable in
all cases. CTRL, by design, correctly remains unavailable
since continuing would violate safety.
Random Block Corruptions and Errors. We initialize
the cluster by replicating a few entries to all nodes. We
first choose a random set of nodes. In each such node, we
then corrupt a randomly selected file-system block (from
the files implementing the log). We repeat this process,
producing 5000 test cases. We similarly inject block er-
rors. Since we inject a fault into a block, several entries
and their checksums within the block will be faulty.

Table 4(b) shows the results. For block corruptions,
original LogCabin is unsafe or unavailable in about
30% ((738 + 793)/5000) of cases. Similarly, original
ZooKeeper is incorrect in about 30% of cases. On a
block error, original LogCabin and ZooKeeper simply
crash the node, leading to unavailability in about 50% of
cases. In contrast, CTRL correctly recovers in all cases.
Faults with Crashed and Lagging Nodes. In the previ-
ous experiments, all entries were committed and present
on all nodes. In this experiment, we inject crashes at
different points on a random set of nodes while insert-
ing entries. Thus, in the resultant log states, nodes could
be lagging, entries could be uncommitted, and have dif-
ferent epochs on different nodes for the same log index.
〈S1 : [a1, ,],S2 : [b2,c3,],S3 : [b2, ,]〉 is an example
state where S1 appends a at index 1 in epoch 1 (shown
in superscript) and crashes, S2 appends b at index 1 in
epoch 2, replicates to S3, then S2,S3 crash and recover,

USENIX Association 16th USENIX Conference on File and Storage Technologies 25

0

100

200

300

400

500
T

h
ro

u
g
h
p
u
t(

o
p
s
/s

e
c
)

Number of clients
2 4 8 16 32

0
.8

2

0
.8

3 0
.8

5

0
.9

0
.9

Original CTRL

0

200

400

600

800

1000

T
h
ro

u
g
h
p
u
t(

o
p
s
/s

e
c
)

Number of clients
2 4 8 16 32

0
.8

4

0
.8

8

0
.8

9 0
.8

9

0
.9

2Original CTRL

0

1

2

3

4

T
h
ro

u
g
h
p
u
t(

K
o
p
s
/s

e
c
)

Number of clients
2 4 8 16 32

0
.9

8 0
.9

9 0
.9

9

0
.9

7

0
.9

6

Original CTRL

0

5

10

15

T
h
ro

u
g
h
p
u
t(

K
o
p
s
/s

e
c
)

Number of clients
2 4 8 16 32

1
.0

4

0
.9

8 0
.9

7 0
.9

7

0
.9

6Original CTRL

(a) LogCabin: Write (HDD) (b) ZooKeeper: Write (HDD) (c) LogCabin: Write (SSD) (d) ZooKeeper: Write (SSD)

Figure 5: Common-Case Write Performance. (a) and (b) show the write throughput in original and CTRL versions of LogCabin and ZooKeeper
on an HDD. (c) and (d) show the same for SSD. The number on top of each bar shows the performance of CTRL normalized to that of original.

S2 appends c in epoch 3 and crashes. From each such
state, we corrupt different entries, generating 5000 test
cases. For example, from the above state, we corrupt a
on S1 and b,c on S2. If S2 is elected the leader, S2 needs
to fix b from S3 (since b is committed), discard c (c is
uncommitted and cannot be recovered), and also instruct
S1 to discard a (a is uncommitted) and replicate correct
entry b. As shown in Table 4(c), CTRL correctly recov-
ers from all such cases, while the original versions are
unsafe or unavailable in many cases.
Model Checking. We also model checked CTRL’s log
recovery since it involves many corner cases, using a
python-based model that we developed. We explored
over 2.5M log states all of in which CTRL correctly re-
covered. Also, when key decisions are tweaked, the
checker finds a violation immediately: for example, the
leader concludes that a faulty entry is uncommitted only
after gathering bN/2c+ 1 dontHave responses; if this
number is reduced, then the checker finds a safety viola-
tion. We have also added the specification of CTRL’s log
recovery to the TLA+ specification of Raft [23] and con-
firmed that it correctly recovers from corruptions, while
the original specification violates safety.

5.1.2 Snapshot Recovery
We trigger the nodes to take a snapshot, crashing them at
different points, producing three possible states for each
node: l, t, and g, where l is a state where the node has
only the log (it has not taken a snapshot), t is a snapshot
for which garbage collection has not been performed yet,
and g is a snapshot which has been garbage collected. We
produce all possible combinations of states across three
nodes. On each such state, we randomly pick a set of
nodes to inject faults, and corrupt a random combination
of snapshots and log entries, generating 1000 test cases.
For example, 〈S1 : t,S2 : g,S3 : l〉 is a base state on which
we corrupt snapshot t and a few preceding log entries
on S1 and g on S2. In such a state, if S1 becomes the
leader, it has to fix its log from S3, then has to locally
recover its t snapshot, after which it has to fix g on S2.
S1 also needs to install the snapshot on S3. As shown in
Table 5(a), CTRL correctly recovers from all such cases.
Original LogCabin is incorrect in about half of the cases
because it obliviously loads faulty snapshots sometimes
and crashes sometimes. Original ZooKeeper crashes the

node if it is unable to locally construct the data from the
snapshot and the log, leading to unavailability; unsafety
results because a faulty log is truncated in some cases.

5.1.3 File-system Metadata Faults
To test how CTRL recovers from file-system metadata
faults, we corrupt file-system metadata structures (such
as inodes and directory blocks) resulting in unopenable
files, missing files, and files with fewer or more bytes.
We inject such faults in a randomly chosen file on one or
two nodes at a time, creating 1000 test cases. Table 5(b)
shows the results. In some cases, the faulty nodes in orig-
inal versions crash because of a failed deserialization or
assertion. However, sometimes original LogCabin and
ZooKeeper do not detect the fault and continue operat-
ing, violating safety in 36 and 192 cases, respectively. In
contrast, CTRL reliably crashes the node on a file-system
metadata fault, preserving safety always.

5.2 Performance
We now compare the common-case performance of the
CTRL versions against the original versions. In both Log-
Cabin and ZooKeeper, reads are served from memory
and the read paths are not affected by CTRL. Hence,
we show only performance of write workloads. The
workload runs for 300 seconds, inserting entries each of
size 1K. Both systems batch writes to improve through-
put. Snapshots are taken periodically during the updates.
Numbers reported are the average over five runs.

Figure 5(a) and (b) show the throughput on an
HDD for varying number of clients in LogCabin and
ZooKeeper, respectively. CLSTORE physically separates
the identifier from the entry; this separation induces a
seek on disks in the update path. However, the seek cost
is amortized when more requests are batched; CTRL has
an overhead of 8%-10% for 32 clients on disks. Fig-
ure 5(c) and (d) show throughput on an SSD; CTRL adds
very minimal overhead on SSDs (4% in the worst case).
Note that our workload performs only writes and there-
fore shows CTRL’s overheads in the worst case; for more
realistic workloads that predominantly perform reads,
the overheads should be even lower.
Fast Log Recovery. To show the potential reduction in
log-recovery time, we insert 30K log entries (each of size
1K) and corrupt the first entry on one node. In origi-

26 16th USENIX Conference on File and Storage Technologies USENIX Association

nal LogCabin, the faulty node detects the corruption but
truncates all entries; hence, the leader transfers all entries
to bring the node up-to-date. CTRL fixes only the faulty
entry, reducing recovery time. The faulty node is fixed in
1.24 seconds (32MB transferred) in the original system,
while CTRL takes only 1.2 ms (7KB transferred). We see
a similar reduction in log-recovery time in ZooKeeper.

6 Related Work
Our analysis of how RSM-based systems react to storage
faults (§2.3) builds upon several fault-injection studies.
Our design of CTRL (§3) builds upon several efforts on
tolerating practical faults in distributed systems.
Storage Faults. Several studies on storage faults [34,46,
48, 59, 60] motivated our work. Our previous work [29,
30] discovered fundamental reasons why distributed sys-
tems are not resilient to storage faults. However, the
study did not uncover any safety or availability viola-
tions reported in §2.3; this is because the fault model in
our previous study considers injecting only storage faults
(precisely, a single storage fault on a single node at a
time). In contrast, our fault model in this work considers
crashes and network failures in addition to storage faults,
exposing previously unknown safety and availability vi-
olations in RSM systems.
Targeted Approaches. Prior research describes two ap-
proaches [15, 17] to tackle storage faults in RSM sys-
tems. However, these approaches suffer from unavail-
ability. Furthermore, the MarkNonVoting approach [17]
can violate safety because important metainfo such as
promises can be lost on a storage fault [70]. CTRL avoids
such safety violations by storing two copies of metainfo
on each node. Approaches that improve the reliability of
other specific systems have also been proposed [68, 71].
Generic Approaches. Many generic approaches to han-
dling practical faults other than crashes have been pro-
posed. PASC [21] hardens systems to tolerate corrup-
tions by maintaining two copies of the entire state on
each node and assumes that both the copies will not be
faulty at the same time. This approach does not work
well for storage faults; having two copies of on-disk state
incurs 2× space overhead. Furthermore, in most cases,
PASC crashes the node on a fault, causing unavailability.
XFT [42] is designed to tolerate non-crash faults. How-
ever, it can tolerate only a total of b(N−1)/2c crash and
non-crash faults. Similarly, UpRight [20] has an upper
bound on the total faults to remain safe and available.

CTRL differs from the generic approaches through its
special focus on storage faults. This focus brings two
main advantages. First, CTRL attributes faults at a fine
granularity: while the generic approaches consider a
node as faulty if any of its data is corrupted, CTRL con-
siders faults at the granularity of individual data items.
Second, because of such fine-granular fault treatment,

CTRL can be available as long as a majority of nodes
are up and at least one non-faulty copy of a data item
exists even though portions of data on all nodes could
be corrupted. CTRL cannot tolerate arbitrary non-crash
faults [40] (e.g., memory errors). However, CTRL can
augment the generic approaches: for example, a sys-
tem can be hardened against memory faults using PASC
while making it robust to storage faults using CTRL.

7 Conclusions
Recovering from storage faults in distributed systems is
surprisingly hard. We introduce protocol-aware recov-
ery (PAR), a new approach that exploits protocol-specific
knowledge of the underlying distributed system to cor-
rectly recover from storage faults. We design CTRL, a
protocol-aware recovery approach for RSM systems. We
experimentally show that CTRL correctly recovers from a
range of storage faults with little performance overhead.

Our work is only a first step in hardening distributed
systems to storage faults: while we have successfully ap-
plied the PAR approach to RSM systems, other classes of
systems (e.g., primary-backup, Dynamo-style quorums)
still remain to be analyzed. We believe the PAR approach
can be applied to such classes as well. We hope our work
will lead to more work on building reliable distributed
storage systems that are robust to storage faults.

Acknowledgments
We thank Mahesh Balakrishnan (our shepherd), the
anonymous reviewers, and the members of ADSL
for their excellent feedback. We also thank Cloud-
Lab [56] for providing a great environment to run our
experiments. This material was supported by fund-
ing from NSF grants CNS-1421033 and CNS-1218405,
DOE grant DE-SC0014935, and donations from EMC,
Huawei, Microsoft, and VMware. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the authors and may not reflect
the views of NSF, DOE, or other institutions.

References
[1] Crash-Corruption Disentanglement Proof.

http://research.cs.wisc.edu/adsl/
Publications/par/.

[2] Ittai Abraham, Gregory Chockler, Idit Keidar, and
Dahlia Malkhi. Byzantine Disk Paxos: Optimal
Resilience with Byzantine Shared Memory. Dis-
tributed Computing, 18(5):387–408, 2006.

[3] Ramnatthan Alagappan, Aishwarya Ganesan, Yu-
vraj Patel, Thanumalayan Sankaranarayana Pillai,

USENIX Association 16th USENIX Conference on File and Storage Technologies 27

http://research.cs.wisc.edu/adsl/Publications/par/
http://research.cs.wisc.edu/adsl/Publications/par/

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Correlated Crash Vulnerabilities. In Pro-
ceedings of the 12th USENIX Conference on Op-
erating Systems Design and Implementation (OSDI
’16), Savannah, GA, November 2016.

[4] Apache. ZooKeeper. https://zookeeper.
apache.org/.

[5] Apache. ZooKeeper Guarantees, Prop-
erties, and Definitions. https://
zookeeper.apache.org/doc/r3.2.
2/zookeeperInternals.html#sc_
guaranteesPropertiesDefinitions.

[6] Apache Cassandra. Cassandra Replication. http:
//docs.datastax.com/en/cassandra/
2.0/cassandra/architecture/
architectureDataDistributeReplication_
c.html.

[7] Apache ZooKeeper. Applications and Or-
ganizations using ZooKeeper. https:
//cwiki.apache.org/confluence/
display/ZOOKEEPER/PoweredBy.

[8] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 0.91 edition, May 2015.

[9] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R.
Goodson, and Bianca Schroeder. An Analysis of
Data Corruption in the Storage Stack. In Proceed-
ings of the 6th USENIX Symposium on File and
Storage Technologies (FAST ’08), San Jose, CA,
February 2008.

[10] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis
of Latent Sector Errors in Disk Drives. In Proceed-
ings of the 2007 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS ’07), San Diego, CA, June 2007.

[11] Lakshmi N. Bairavasundaram, Meenali Rungta,
Nitin Agrawal, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Michael M. Swift.
Analyzing the Effects of Disk-Pointer Corruption.
In Proceedings of the International Conference
on Dependable Systems and Networks (DSN ’08),
Anchorage, Alaska, June 2008.

[12] Lakshmi Narayanan Bairavasundaram. Character-
istics, Impact, and Tolerance of Partial Disk Fail-
ures. PhD thesis, University of Wisconsin, Madi-
son, 2008.

[13] Mahesh Balakrishnan, Dahlia Malkhi, Vijayan
Prabhakaran, Ted Wobber, Michael Wei, and
John D. Davis. CORFU: A Shared Log Design for
Flash Clusters. In Proceedings of the 9th Sympo-
sium on Networked Systems Design and Implemen-
tation (NSDI ’12), San Jose, CA, April 2012.

[14] Andrew D. Birrell, Roy Levin, Michael D.
Schroeder, and Roger M. Needham. Grapevine:
An Exercise in Distributed Computing. Commun.
ACM, 25(4):260–274, April 1982.

[15] William J. Bolosky, Dexter Bradshaw, Randolph B.
Haagens, Norbert P. Kusters, and Peng Li. Paxos
Replicated State Machines As the Basis of a High-
performance Data Store. In Proceedings of the 8th
Symposium on Networked Systems Design and Im-
plementation (NSDI ’11), Boston, MA, April 2011.

[16] Mike Burrows. The Chubby Lock Service for
Loosely-Coupled Distributed Systems. In Proceed-
ings of the 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), Seattle,
WA, November 2006.

[17] Tushar D Chandra, Robert Griesemer, and Joshua
Redstone. Paxos Made Live: An Engineering Per-
spective. In Proceedings of the 26th ACM Sympo-
sium on Principles of Distributed Computing, Port-
land, OR, August 2007.

[18] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP ’13),
Farmington, PA, November 2013.

[19] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Consistency Without Ordering. In Proceedings of
the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), San Jose, CA, February
2012.

[20] Allen Clement, Manos Kapritsos, Sangmin Lee,
Yang Wang, Lorenzo Alvisi, Mike Dahlin, and Tay-
lor Riche. Upright Cluster Services. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), Big Sky, Montana, October
2009.

[21] Miguel Correia, Daniel Gómez Ferro, Flavio P. Jun-
queira, and Marco Serafini. Practical Hardening of
Crash-Tolerant Systems. In 2012 USENIX Annual
Technical Conference (USENIX ATC 12), Boston,
MA, June 2012.

28 16th USENIX Conference on File and Storage Technologies USENIX Association

https://zookeeper.apache.org/
https://zookeeper.apache.org/
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
https://zookeeper.apache.org/doc/r3.2.2/zookeeperInternals.html#sc_guaranteesPropertiesDefinitions
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
http://docs.datastax.com/en/cassandra/2.0/cassandra/architecture/architectureDataDistributeReplication_c.html
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy
https://cwiki.apache.org/confluence/display/ZOOKEEPER/PoweredBy

[22] Jeff Dean. Building Large-Scale Internet Services.
http://static.googleusercontent.
com/media/research.google.com/en/
/people/jeff/SOCC2010-keynote-
slides.pdf.

[23] Diego Ongaro. Raft TLA+ Specification. https:
//github.com/ongardie/raft.tla.

[24] epaxos. epaxos source code. https://github.
com/efficient/epaxos.

[25] etcd. etcd. https://coreos.com/etcd.

[26] Etcd. Etcd: Production users. https:
//coreos.com/etcd/docs/latest/
production-users.html.

[27] Daniel Fryer, Dai Qin, Jack Sun, Kah Wai Lee, An-
gela Demke Brown, and Ashvin Goel. Checking
the Integrity of Transactional Mechanisms. In Pro-
ceedings of the 12th USENIX Symposium on File
and Storage Technologies (FAST ’14), Santa Clara,
CA, February 2014.

[28] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao
Cheng, Shaun Benjamin, Ashvin Goel, and An-
gela Demke Brown. Recon: Verifying File System
Consistency at Runtime. In Proceedings of the 10th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’12), San Jose, CA, February 2012.

[29] Aishwarya Ganesan, Ramnatthan Alagappan, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Redundancy Does Not Imply Fault Tol-
erance: Analysis of Distributed Storage Reac-
tions to File-System Faults. ACM Trans. Storage,
13(3):20:1–20:33, September 2017.

[30] Aishwarya Ganesan, Ramnatthan Alagappan, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Redundancy Does Not Imply Fault Toler-
ance: Analysis of Distributed Storage Reactions to
Single Errors and Corruptions. In Proceedings of
the 15th USENIX Conference on File and Storage
Technologies (FAST ’17), Santa Clara, CA, Febru-
ary 2017.

[31] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proceedings
of the 19th ACM Symposium on Operating Systems
Principles (SOSP ’03), Bolton Landing, New York,
October 2003.

[32] Matthias Grawinkel, Thorsten Schafer, Andre
Brinkmann, Jens Hagemeyer, and Mario Por-
rmann. Evaluation of Applied Intra-disk Redun-
dancy Schemes to Improve Single Disk Reliability.

In Proceedings of the 19th Annual Meeting of the
IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), Washington, DC,
July 2011.

[33] Kevin M Greenan, Darrell DE Long, Ethan L
Miller, Thomas Schwarz, and Avani Wildani.
Building Flexible, Fault-Tolerant Flash-Based Stor-
age Systems. In The 5th Workshop on Hot Topics in
System Dependability (HotDep ’09), Lisbon, Portu-
gal, June 2009.

[34] Laura M Grupp, Adrian M Caulfield, Joel Coburn,
Steven Swanson, Eitan Yaakobi, Paul H Siegel,
and Jack K Wolf. Characterizing Flash Memory:
Anomalies, Observations, and Applications. In
Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MI-
CRO’09), New York, New York, December 2009.

[35] James Hamilton. On Designing and Deploying
Internet-Scale Services. In Proceedings of the 21st
Annual Large Installation System Administration
Conference (LISA ’07), Dallas, Texas, November
2007.

[36] James Myers. Data Integrity in Solid State Drives.
http://intel.ly/2cF0dTT.

[37] John Goerzen. Silent Data Corruption Is
Real. http://changelog.complete.
org/archives/9769-silent-data-
corruption-is-real.

[38] Jonathan Corbet. Responding to ext4 journal
corruption. https://lwn.net/Articles/
284037/.

[39] Flavio P Junqueira, Benjamin C Reed, and Marco
Serafini. Zab: High-Performance Broadcast for
Primary-Backup Systems. In Proceedings of the
International Conference on Dependable Systems
and Networks (DSN ’11), Hong Kong, China, June
2011.

[40] Dmitrii Kuvaiskii, Rasha Faqeh, Pramod Bhato-
tia, Pascal Felber, and Christof Fetzer. HAFT:
Hardware-assisted Fault Tolerance. In Proceedings
of the EuroSys Conference (EuroSys ’16), London,
United Kingdom, April 2016.

[41] Leslie Lamport. Paxos Made Simple. ACM Sigact
News, 32(4):18–25, 2001.

[42] Shengyun Liu, Paolo Viotti, Christian Cachin,
Vivien Quéma, and Marko Vukolic. XFT: Practical
Fault Tolerance Beyond Crashes. In Proceedings

USENIX Association 16th USENIX Conference on File and Storage Technologies 29

http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
http://static.googleusercontent.com/media/research.google.com/en//people/jeff/SOCC2010-keynote-slides.pdf
https://github.com/ongardie/raft.tla
https://github.com/ongardie/raft.tla
https://github.com/efficient/epaxos
https://github.com/efficient/epaxos
https://coreos.com/etcd
https://coreos.com/etcd/docs/latest/production-users.html
https://coreos.com/etcd/docs/latest/production-users.html
https://coreos.com/etcd/docs/latest/production-users.html
http://intel.ly/2cF0dTT
http://changelog.complete.org/archives/9769-silent-data-corruption-is-real
http://changelog.complete.org/archives/9769-silent-data-corruption-is-real
http://changelog.complete.org/archives/9769-silent-data-corruption-is-real
https://lwn.net/Articles/284037/
https://lwn.net/Articles/284037/

of the 12th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI ’16), Sa-
vannah, GA, November 2016.

[43] LogCabin. LogCabin. https://github.com/
logcabin/logcabin.

[44] Jacob R Lorch, Atul Adya, William J Bolosky,
Ronnie Chaiken, John R Douceur, and Jon Howell.
The SMART Way to Migrate Replicated Stateful
Services. In Proceedings of the EuroSys Confer-
ence (EuroSys ’06), Leuven, Belgium, April 2006.

[45] Parisa Jalili Marandi, Christos Gkantsidis, Flavio
Junqueira, and Dushyanth Narayanan. Filo: Con-
solidated Consensus As a Cloud Service. In 2016
USENIX Annual Technical Conference (USENIX
ATC 16), Denver, CO, June 2016.

[46] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur
Mutlu. A Large-Scale Study of Flash Memory Fail-
ures in the Field. In Proceedings of the 2015 ACM
SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (SIG-
METRICS ’15), Portland, Oregon, June 2015.

[47] MongoDB. MongoDB Replication.
https://docs.mongodb.org/manual/
replication/.

[48] Iyswarya Narayanan, Di Wang, Myeongjae Jeon,
Bikash Sharma, Laura Caulfield, Anand Sivasubra-
maniam, Ben Cutler, Jie Liu, Badriddine Khessib,
and Kushagra Vaid. SSD Failures in Datacenters:
What? When? And Why? In Proceedings of
the 9th ACM International on Systems and Stor-
age Conference (SYSTOR ’16), Haifa, Israel, June
2016.

[49] Diego Ongaro. Consensus: Bridging Theory and
Practice. PhD thesis, Stanford University, 2014.

[50] Diego Ongaro and John Ousterhout. In Search of
an Understandable Consensus Algorithm. In 2014
USENIX Annual Technical Conference (USENIX
ATC 14), Philadelphia, PA, June 2014.

[51] Bernd Panzer-Steindel. Data Integrity. CERN/IT,
2007.

[52] Thanumalayan Sankaranarayana Pillai, Ram-
natthan Alagappan, Lanyue Lu, Vijay Chi-
dambaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Application Crash
Consistency and Performance with CCFS. In
Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST ’17), Santa
Clara, CA, February 2017.

[53] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All File Systems Are
Not Created Equal: On the Complexity of Crafting
Crash-consistent Applications. In Proceedings of
the 11th Symposium on Operating Systems Design
and Implementation (OSDI ’14), Broomfield, CO,
October 2014.

[54] Vijayan Prabhakaran, Lakshmi N. Bairavasun-
daram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON File Systems. In Proceedings of the
20th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’05), Brighton, UK, October 2005.

[55] Redis. Redis Replication. http://redis.io/
topics/replication.

[56] Robert Ricci, Eric Eide, and CloudLab Team. In-
troducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), 2014.

[57] Robert Harris. Data corruption is worse than you
know. http://www.zdnet.com/article/
data-corruption-is-worse-than-
you-know/.

[58] Fred B. Schneider. Implementing Fault-tolerant
Services Using the State Machine Approach: A Tu-
torial. ACM Comput. Surv., 22(4):299–319, De-
cember 1990.

[59] Bianca Schroeder, Sotirios Damouras, and Phillipa
Gill. Understanding Latent Sector Errors and How
to Protect Against Them. In Proceedings of the 8th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’10), San Jose, CA, February 2010.

[60] Bianca Schroeder, Raghav Lagisetty, and Arif Mer-
chant. Flash Reliability in Production: The Ex-
pected and the Unexpected. In Proceedings of
the 14th USENIX Conference on File and Storage
Technologies (FAST ’16), Santa Clara, CA, Febru-
ary 2016.

[61] Michael D. Schroeder, Andrew D. Birrell, and
Roger M. Needham. Experience with Grapevine:
The Growth of a Distributed System. ACM Trans.
Comput. Syst., 2(1):3–23, February 1984.

[62] Thomas Schwarz, Ahmed Amer, Thomas Kroeger,
Ethan L. Miller, Darrell D. E. Long, and Jehan-
Franois Pris. RESAR: Reliable Storage at Exabyte

30 16th USENIX Conference on File and Storage Technologies USENIX Association

https://github.com/logcabin/logcabin
https://github.com/logcabin/logcabin
https://docs.mongodb.org/manual/replication/
https://docs.mongodb.org/manual/replication/
http://redis.io/topics/replication
http://redis.io/topics/replication
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/
http://www.zdnet.com/article/data-corruption-is-worse-than-you-know/

Scale. In Proceedings of the 24th Annual Meet-
ing of the IEEE International Symposium on Mod-
eling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), London,
United Kingdom, September 2016.

[63] Romain Slootmaekers and Nicolas Trangez.
Arakoon: A Distributed Consistent Key-Value
Store. In SIGPLAN OCaml Users and Developers
Workshop, volume 62, 2012.

[64] Stackoverflow. Can ext4 detect corrupted file
contents? http://stackoverflow.
com/questions/31345097/can-ext4-
detect-corrupted-file-contents.

[65] Stackoverflow. ZooKeeper Clear State. http:
//stackoverflow.com/questions/
17038957/org-apache-hadoop-hbase-
pleaseholdexception-master-is-
initializing.

[66] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the Reliability of Commodity
Operating Systems. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP ’03), Bolton Landing, New York, October
2003.

[67] D. B. Terry, M. M. Theimer, Karin Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Man-
aging Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In Proceedings
of the 15th ACM Symposium on Operating Systems
Principles (SOSP ’95), Copper Mountain Resort,
CO, December 1995.

[68] Thanh Do, Tyler Harter, Yingchao Liu, Haryadi
S. Gunawi, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau. HARDFS: Hardening HDFS with
Selective and Lightweight Versioning. In Pro-
ceedings of the 11th Conference on File and Stor-
age Technologies (FAST ’13), San Jose, California,
February 2013.

[69] Theodore Ts’o. What to do when the journal
checksum is incorrect. https://lwn.net/
Articles/284038/.

[70] Robbert Van Renesse, Nicolas Schiper, and Fred B
Schneider. Vive La Différence: Paxos vs. View-
stamped Replication vs. Zab. IEEE Transactions
on Dependable and Secure Computing, 12(4):472–
484, 2015.

[71] Yang Wang, Manos Kapritsos, Zuocheng Ren,
Prince Mahajan, Jeevitha Kirubanandam, Lorenzo

Alvisi, and Mike Dahlin. Robustness in the Salus
Scalable Block Store. In Proceedings of the 10th
Symposium on Networked Systems Design and Im-
plementation (NSDI ’13), Lombard, IL, April 2013.

[72] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
End-to-end Data Integrity for File Systems: A
ZFS Case Study. In Proceedings of the 8th
USENIX Symposium on File and Storage Technolo-
gies (FAST ’10), San Jose, CA, February 2010.

[73] ZooKeeper Jira Issues. Unable to load database
on disk when restarting after node freeze.
https://issues.apache.org/jira/
browse/ZOOKEEPER-1546.

USENIX Association 16th USENIX Conference on File and Storage Technologies 31

http://stackoverflow.com/questions/31345097/can-ext4-detect-corrupted-file-contents
http://stackoverflow.com/questions/31345097/can-ext4-detect-corrupted-file-contents
http://stackoverflow.com/questions/31345097/can-ext4-detect-corrupted-file-contents
http://stackoverflow.com/questions/17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing
http://stackoverflow.com/questions/17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing
http://stackoverflow.com/questions/17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing
http://stackoverflow.com/questions/17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing
http://stackoverflow.com/questions/17038957/org-apache-hadoop-hbase-pleaseholdexception-master-is-initializing
https://lwn.net/Articles/284038/
https://lwn.net/Articles/284038/
https://issues.apache.org/jira/browse/ZOOKEEPER-1546
https://issues.apache.org/jira/browse/ZOOKEEPER-1546

WAFL Iron: Repairing Live Enterprise File Systems

Ram Kesavan Harendra Kumar* Sushrut Bhowmik
NetApp, Inc. Composewell Technologies NetApp, Inc.

ram.kesavan@gmail.com harendra.kumar@gmail.com sushrut@netapp.com

Abstract
Consistent and timely access to an arbitrarily damaged
file system is an important requirement of enterprise-
class systems. Repairing file system inconsistencies is
accomplished most simply when file system access is
limited to the repair tool. Checking and repairing a file
system while it is open for general access present unique
challenges. In this paper, we explore these challenges,
present our online repair tool for the NetApp® WAFL®

file system, and show how it achieves the same results
as offline repair even while client access is enabled. We
present some implementation details and evaluate its per-
formance. To the best of our knowledge, this publica-
tion is the first to describe a fully functional online repair
tool.

1 Introduction
File system state can be corrupted by hardware failures
[9, 38, 41, 45, 35, 53] including misdirected or lost writes
and media errors, software bugs [4, 14, 51], and even hu-
man errors such as inserting a device in the wrong shelf
or slot. Journaling [25, 49, 37, 44, 10], shadow paging
[29, 13, 50], and soft updates [22] are all techniques that
provide file system crash consistency. Recon [21], in-
cremental checksum, and digest-based transaction audit
[34] are well-understood mechanisms to prevent some
hardware and software bugs from corrupting the file sys-
tem. Despite such defenses, corruptions are still an un-
fortunate reality for file systems, and our customer de-
ployment confirms that reality.

Corruption can affect both user data and metadata. A
corrupted user data block affects client access only to it
and not to the rest of the file system. However, a cor-
rupted metadata block not only affects access to user data
but can also compromise other metadata when client op-
erations are processed. Repair of user data is limited to
recovery from backup, whereas metadata can be repaired

*Research performed while working at NetApp.

using consistency properties of the file system. Corrup-
tion in metadata is detected either when a metadata block
fails some checks as it is read into memory or later when
some operation detects a violation of a file system invari-
ant. Some corruption can be fixed on-the-fly using tech-
niques such as RAID or erasure coding. If not, the file
system is placed in a restricted mode while it is repaired
by an offline repair tool, such as fsck [26]. Restricting
access serves two purposes: it greatly simplifies the task
of repair, and it prevents the inconsistency from causing
further damage.

Several approaches have been proposed to speed up or
to improve offline repair [36, 12, 27, 24] but the time to
completion remains proportional to the amount of meta-
data that must be checked, which in turn is a function of
the size of the file system. Enterprises require continuous
access to data; any disruption outside of scheduled main-
tenance windows is highly undesirable. The damaged
file system must be made completely available to clients
as soon as possible, and repair must therefore not pre-
clude client access. Repair should also not invalidate any
data that is accessed or modified by clients after repair is
initiated. Additionally, the impact to client performance
must be within acceptable limits.

The NetApp® WAFL® file system [29, 20] validates the
consistency of its data structures during normal opera-
tion. In the rare event of a detected inconsistency that can
be neither trivially recovered by RAID nor tolerated, the
file system is marked as inconsistent and taken offline.
WAFLIron [31] (henceforth called Iron) repairs the file
system even while allowing full access to clients. This
paper presents the challenges inherent to this mode of
file system repair. It describes the high-level design and
implementation of Iron, and evaluates its performance.
Most importantly, it explains the theory behind Iron to
show that it fixes file system inconsistencies with prac-
tically the same assurances as offline repair. Our field
experience has shown that Iron is extremely reliable, and
meets high performance goals. Although online repair
is available for ReFS [30], to the best of our knowledge,
there is no prior published work on this topic.

USENIX Association 16th USENIX Conference on File and Storage Technologies 33

2 Motivation

A file system can be damaged in several ways [52], but a
repair tool is required in only some cases.

2.1 When Is Repair Required?

NetApp is a storage and data management company that
offers software, systems, and services to manage and
store data, including the proprietary NetApp ONTAP®

software, which is built on the WAFL file system. Al-
though fsck [40] was originally designed to fix incon-
sistencies created by an unclean shutdown, WAFL and
other file systems use well-understood techniques such
as copy-on-write (COW) and journaling to guarantee
file system consistency after a crash. WAFL logs re-
cent client operations in a stand-alone nonvolatile jour-
nal, and those operations are replayed after a crash to
recover them [29]. Because the replay of each operation
re-creates all necessary file system state, a corruption of
the journal cannot corrupt the persistent file system; at
worst, it might result in the loss of logged operations.
Furthermore, this loss is limited because WAFL’s trans-
action mechanism ensures the journal typically has client
operations only from the past few seconds.

Each block in WAFL is written out to storage media
together with a checksum and with some file system
specific context that helps further identify the block
[8, 13, 48, 47]. If a write is misdirected or lost by the de-
vice or if a previously-persisted block is damaged, a sub-
sequent read results in a context or checksum mismatch.
The damaged block can be recomputed and fixed by us-
ing the underlying RAID [43, 15]. This fixup is done
on-the-fly when servicing a read or through a periodic
background scrub [3]. Other file systems such as ZFS
and Btrfs also leverage RAID or data mirroring [1, 5, 46]
to provide similar protection. In the rare case of mul-
tidevice failures, reconstruction of damaged blocks can
become impossible. If such blocks contain metadata that
are critical to the functioning of WAFL, the file system
is marked as inconsistent and is brought offline, so that it
can be repaired.

Despite rigorous testing and prevention mechanisms,
rarely occurring software bugs [4, 14, 51] and hardware
errors [9, 38, 41, 45, 35, 53] might corrupt a block be-
fore its checksum is computed. Such faults cannot be de-
tected by using the persistent checksum or context, and
they cannot be repaired by using underlying redundancy
[52]. WAFL detects such corruptions when it reads or
uses metadata, and if the code path is unable to navigate
past it, the file system is marked as inconsistent and is
brought offline, so that it can be repaired.

2.2 Traditional Offline Repair

Exclusive access to the file system greatly simplifies of-
fline repair, which walks the metadata of the file system
exhaustively, checks them for inconsistencies, lists out
each inconsistency with a recommended fix, and pro-
vides the choice to commit each fix [40]. Such an au-
dit requires accounting metadata to track progress. Re-
pair tools were designed to avoid writing to the physi-
cal storage that hosts the file system under repair until
the administrator chooses to commit the recommended
changes. Thus, the tools keep all their accounting data
structures in memory until that time. In general, the
amount of metadata increases with file system size,
which means an increase in the memory that is re-
quired by the tool. This increase is typically offset ei-
ther by breaking the file system into disjointed chunks
of storage [28] or by the tool making multiple passes of
the file system, thereby lowering memory requirements.
WAFLCheck, the first and now obsolete offline tool for
repairing the WAFL file system, suffered from similar
drawbacks.

2.3 Enterprise Needs

Enterprise file systems are usually hundreds of TiB in
size, and depending on the features supported their meta-
data can be both large (several GiB) and complex. Thus,
the repair of a 100 TiB file system can take hours or
even weeks depending on the I/O capability of the un-
derlying media. Businesses require uninterrupted data
availability; an hour-long outage can cost millions in lost
revenue. Furthermore, an enterprise storage system typ-
ically hosts and exports multiple file systems. Because
CPU and memory on such a system are shared resources,
the repair of one file system can affect the performance
of the others. Therefore, NetApp invested in building on-
line repair instead of making incremental improvements
to WAFLCheck. NetApp support staff get involved when
a WAFL file system is marked as inconsistent and is
taken offline. Under their supervision, the file system
is brought online with an option to enable Iron. Clients
gain full access to the data even while the persistent file
system is checked and repaired. Iron logs its progress
and completion, at which point the file system is marked
as consistent. The time required for completion depends
on several factors, such as file system size and client load
on the system. All client ops that were logged in the non-
volatile journal are replayed; as implied earlier, Iron does
not repair any corruptions in the journal.

One version of “online” repair [39] argues that orphaned
blocks and inodes are the primary outcomes of file sys-
tem inconsistency. Hence, a snapshot of the file system is
taken, the file system is made available, and background

34 16th USENIX Conference on File and Storage Technologies USENIX Association

fsck runs on the snapshot to reclaim orphaned blocks
and inodes into the active version of the file system. In
general, the WAFL file system easily survives orphaned
blocks and inodes, and is taken offline only when it en-
counters an inconsistency that prevents continued opera-
tion. Therefore, this approach does not apply.

2.4 Considerations With Online Repair

[1] Unconditional commit: Iron fixes corruptions as it
encounters them so that the file system can continue op-
erations. This means, unlike fsck, the administrator is
not given the option to accept or decline repairs. With
fsck, if the damage is truly extensive it is likely that the
administrator would choose not to commit and restore
the entire file system from backup. Online repair does
not preclude this option, but all intervening client muta-
tions are lost when the entire file system is restored from
backup. There is one scenario in which offline repair is
preferable. A customer with poor practices might have
no (recent) backup of the file system, and might want
to conservatively use offline repair and carefully choose
which of the recommended fixes are committed.

[2] Speed of repair: An ONTAP system hosts multi-
ple file systems. An aggressive repair process can affect
the performance of the clients of all those file systems. A
customer might prioritize the completion of Iron because
the full repair of the dataset is more important to their
business than are the IOPS made available to the appli-
cations on that storage system—especially if the backup
copies of the corrupted dataset are not sufficiently recent.
The ability to control the speed of the repair process is
therefore important.

3 Metadata and Inconsistencies
This section presents a simplified version of the WAFL
file system (persistent) metadata, and the the inconsisten-
cies that can affect them.

3.1 Persistent Metadata

WAFL is a UNIX-style file system that uses inodes to
represent its files, which are the basic construct for stor-
ing both metadata and user data. An inode stores meta-
data (permissions, timestamps, block count) about the
file and its data in a symmetric tree of fixed-size blocks,
henceforth called the inode’s blocktree. Only leaf nodes
(L0s) of the blocktree hold the file’s data; interior nodes
are called indirect blocks. An inode that stores file
system metadata in its leaves is called a metafile. In-
odes themselves are stored in the leaves of the inodefile
metafile, and its blocktree is rooted in the superblock of

the file system. All together, they constitute the WAFL
file system tree [29].

Each directory is stored in a file that contains a list of en-
tries, where each entry is the name of a file or subdirec-
tory and its corresponding inode number; the root direc-
tory is stored in a well-known inode. The reference count
(refcnt) metafile stores a list of integers where the ith inte-
ger tracks the number of references to the ith block of the
file system1. Multiple references occur because of fea-
tures such as deduplication that result in block-sharing.
The file system stores several counters, some that reside
in structures such as inodes, and others that are global.

From the viewpoint of repair, we classify WAFL file sys-
tem metadata into two broad categories.

[1] Primary metadata constitute the blocks of the file
system required to read user data. In WAFL, this com-
prises the superblock, the inodefile blocktree, directo-
ries, inodes (for user files) and their blocktrees. WAFL
stores copies of some key data structures primarily to
protect against storage media failures; corruption due to
most software bugs will damage both copies. Impor-
tantly, corrupted primary metadata in WAFL cannot be
reconstructed by using other metadata. A damaged indi-
rect block in a blocktree cannot be repaired, and there-
fore, at best, its child sub-tree can be recovered in the
lost+found folder [40] on completion of the repair pro-
cess. Similarly, the corresponding inode of a damaged
directory entry can be recovered only in lost+found. It
should be noted that, to avoid single points of failure,
a file system could build redundancy into its primary
metadata—each block could encode its location in the
file system tree; however, that comes with additional
complexity and the run-time cost of maintaining it. To
protect against storage media failures, ONTAP uses ef-
ficient redundancy techniques: dual-parity RAID [15],
triple-parity RAID [2], and remote synchronous mirror-
ing [6].

[2] Derived metadata track the usage of resources, such
as blocks and inodes, by the file system and can be re-
computed by walking the primary metadata. They are
typically maintained by the file system software for its
efficient functioning, or for enabling specific features,
such as file system quotas. The block count of an in-
ode, the refcnt file, and various global counters are all
examples of such metadata in WAFL. Damage to derived
metadata can usually be repaired based on primary or
other derived metadata.

Note that although derived metadata can eventually be
reconstituted, they are needed for basic file system op-

1In reality, a bitmap tracks the first and the refcnt tracks additional
references to blocks [32, 33]. Without loss of generality, the bitmap is
subsumed into the refcnt metafile for the purposes of this paper.

USENIX Association 16th USENIX Conference on File and Storage Technologies 35

eration. For example, the file system must consult and
update the refcnt metadata to process new mutations, but
that metadata is not fully validated until repair completes.
Therefore, the primary complexity of online repair cen-
ters around the repair of derived metadata even while the
metadata are used by file system operations. The refcnt
metafile is the largest and most complex derived meta-
data in WAFL, and is therefore deliberately used as a
running example in this paper.

3.2 Inconsistencies

The enablement of Iron does not change how corruption
in WAFL is detected; only the action precipitated by such
detection. If Iron is not enabled and the software cannot
navigate past the inconsistency, the file system is marked
as inconsistent and is taken offline. Otherwise, it is re-
paired. Metadata can be corrupted in one of two ways.

[1] Manifest corruption: This form of corruption is
detected either when the block is read into memory—
checksum or context mismatch—or when some of its
contents are used for the first time—well-known signa-
tures appear wrong or some data structures are outside
acceptable bounds. Such a block needs repair only if it
cannot be recomputed by the underlying RAID, which
can happen either because multiple hardware elements
have failed or the block was corrupted before the associ-
ated parity was computed.

[2] Latent corruption: File system invariants typically
define relationships across different metadata. A latent
corruption violates a relationship even while each partici-
pant block is devoid of manifest corruption. The relation-
ship might involve primary metadata only. For example,
a directory L0 and an inodefile L0 might each be inde-
pendently reliable, but the former maps a dir entry to an
inode that is marked as free in the latter. Sec. 4.5 presents
examples of latent corruption across primary and/or de-
rived metadata. Latent corruption is detected only when
a metadata consistency invariant in the code trips up. Be-
fore its detection, it can create further inconsistencies if
used by the file system; Sec. 4.5 has more details.

Both forms of corruption can be caused by bugs in the
file system logic or memory scribbles. Device failures
and media errors typically result in manifest corruption
only; the block will appear to be unreliable.

4 Basics of WAFL Iron
Much as offline repair would, Iron walks all primary
metadata, checks consistency with other metadata, and
makes repairs where necessary. However, full client ac-
cess is enabled early on. After a file’s blocktree has

been completely checked, all derived metadata for the
file (such as its block count) is verified. As mentioned
earlier, WAFL stores all user data and metadata (both
primary and derived) in files. Therefore, after all files
in a file system have been checked, all derived metadata
is verified and the file system is marked as consistent.

The first version of Iron (circa 2003) focused on miti-
gating the main drawbacks of WAFLCheck: (1) scaling
of the metadata needed for checking the file system, and
(2) allowing early file system access while still providing
the same assurances as WAFLCheck, aside from the un-
conditional commit highlighted in Sec. 2.4. This paper
focuses primarily on proving parity in functionality with
offline repair, and therefore does not do justice to the de-
tails of implementation. This section presents the rules
for addressing the complications from allowing client ac-
cess, and presents the main design.

4.1 Rules for Iron

Rule #1, Interposition: Every block is processed by Iron
before the rest of the file system software can use it. This
rule lets Iron make repairs early, which prevents the rest
of the file system software from making decisions based
on inconsistencies. This rule necessitates a filter in the
read-from-storage code path so that all blocks are exam-
ined by Iron first.

Rule #2, Irreversibility: After Iron starts, any state that
is exposed to the client cannot be revoked by any future
repair done by Iron. Practicality requires that the data
served to a client, as well as the results of any client mu-
tation, not be revoked by subsequent repair2. To satisfy
this rule, a file system op (client or internal) waits when
loading a block until Iron validates any metadata re-
quired to ensure that block’s continued survival through
the completion of Iron. This approach has two obvious
implications: (1) The latency of an op can be signifi-
cantly affected; later sections explore this impact. (2)
Iron needs a definition of the metadata required to ensure
a block’s survival; we look at that implication next.

Let the relationship b→ bi define a WAFL consistency
invariant where metadata block bi must exist and contain
the “right” information to ensure that block b belongs to
the file system; b can be user data or metadata. In other
words, Iron must either move b to lost+found, or create
or modify bi to preserve the relationship. This relation-
ship is obviously transitive, i.e., if b→ bi and bi → b j,
then b→ b j. We define the essential set, Ψ(b), of all
metadata blocks, such that bi ∈Ψ(b) =⇒ b→ bi. When
an op loads b, Iron uses the filter described in Rule #1

2In fact, this invariant is extended to include state exposed to all
internal file system ops. It simplifies the interaction of Iron with several
file system modules.

36 16th USENIX Conference on File and Storage Technologies USENIX Association

to load, check, and potentially repair all metadata blocks
in Ψ(b) before allowing the op to proceed. Thereafter
(with help from Rule #3), Iron does not change anything
in Ψ(b) that revokes that state of b, thereby preserving
Rule #23. This is true even if b is modified by the op.

Let’s look a little closer at the essential set. All ancestor
blocks of b in the file system tree (Sec. 3.1) trivially be-
long to Ψ(b). This includes any ancestor indirect blocks
of b within its inode, the corresponding inodefile L0, the
ancestor indirect blocks of the inodefile, including the su-
perblock. Iron is invoked through the mount command,
and so no blocks of the file system are in memory at the
start of Iron. Thus, Rule #2 is trivially satisfied for an an-
cestor block because it is always loaded before its child.
In fact, all primary metadata in Ψ(b) can be exhaustively
shown to satisfy this rule; for brevity, we do not list them
here. However, as an example, if b belongs to a user file,
the directory block L0 with the corresponding directory
entry also belongs in Ψ(b), and it is loaded and accessed
before b. Derived metadata associated with b, such as
the refcnt L0 with its refcnt entry, also must be loaded
and checked for consistency. Sec. 4.3 explores an impor-
tant complication with the essential set.

Rule #3, Convergence: As Iron incrementally checks
and repairs metadata, it monotonically expands the por-
tion of the file system metadata that is self-consistent.
Iron ensures that file system metadata is never checked
more than once, and therefore the extra cost of check-
ing the essential set when loading any block diminishes
with the progression of Iron. For example, when a sec-
ond child of block b is loaded, Iron does not repeat the
checking of all primary metadata performed on the first
load of a child of b. Rule #2 ensures that all metadata
associated with new mutations to the file system have
also been checked and are included in the portion of the
file system metadata that is considered self-consistent.
Thus, convergence is guaranteed. This rule implies that
Iron maintains data structures to track its progress, which
leads us to the next rule.

Rule #4, Scalability: Data structures that Iron needs to
track progress must scale with file system size without
requiring additional system memory. The previous two
rules make it clear that Iron makes a single pass over the
file system metadata. Iron scales its data structures with
file system size by storing them in files that are paged
in and out of the WAFL buffer cache [19] much like any
other metafile; they are called Iron status files. Much like
any other file in the file system, all previous rules apply
to the creation, consultation, and mutation of the status
files. In other words, the ever expanding portion of self-
consistent metadata (of Rule #3) includes all status files.

3A new corruption introduced to a block after it has been checked
may violate this statement; Sec. 5 discusses that topic in more detail.

4.2 Iron Status Files

Status files are created and used by Iron for each file
system that it repairs. All status files are deleted upon
completion of Iron. Status files can be broadly classi-
fied into progress indicator metafiles and derived shadow
metafiles.

Progress indicator metafiles: This class of status files
tracks the progress of Iron and avoids repeated work,
both of which are necessary for ensuring Rule #3. One
example is the checked bitmap status file, which is a vec-
tor of bits where the ith bit indicates that the ith block of
the file system has been checked, and repaired if neces-
sary. Because a metadata block can be scavenged from
the buffer cache and subsequently re-read from storage,
this bitmap ensures a given block is processed exactly
once.

Derived shadow metafiles: Iron computes shadow ver-
sions of some derived metadata as it walks the file sys-
tem. On completion, Iron compares the shadow version
with the original version, repairs both manifest and la-
tent corruption in that derived metadata, and discovers
any orphaned resources that are tracked by that meta-
data. One example is the claimed refcnt status file, a list
of shadow integers where the ith integer tracks the refer-
ences to block bi that Iron encounters. On completion,
Iron replaces each refcnt integer with its claimed refcnt
counterpart; a count that changes to zero represents an
orphaned block. Thus, Iron can ignore the correspond-
ing refcnt block when it processes the essential set for
a block; the refcnt L0 in Ψ(bi) is replaced by the cor-
responding claimed refcnt L0. Until Iron completes, the
WAFL write allocator [18] consults both refcnt integers
to decide if a block is free, and freeing a block requires
decrementing both refcnt integers. The claimed refcnt
integer can never underflow because Rule #2 guarantees
that Iron claims a block before freeing it. Sec. 4.4.2 and
Sec. 4.5 discuss the underflow and overflow of a dam-
aged refcnt integer. Iron uses other shadow derived meta-
data in a similar fashion, but all of them are smaller in
size and in complexity than the claimed refcnt file, and
are therefore not discussed here.

4.3 Recursivity Within the Essential Set

Let’s say that bi ∈Ψ(b). When Iron loads bi on behalf of
b, Rule #2 forces a recursive load of all metadata blocks
from Ψ(bi). Although this recursivity implies indefi-
nitely long response times for client ops, we will show
why that is not true in reality; let us look at each type of
metadata in Ψ(b).

[1] Primary metadata: For every primary metadata
block bi ∈ Ψ(b), all primary metadata blocks in Ψ(bi)

USENIX Association 16th USENIX Conference on File and Storage Technologies 37

also belong in Ψ(b) (and will therefore have already been
loaded and checked earlier). For example, if bi is an an-
cestor of b, then all ancestors of bi are also ancestors of
b. A similar argument can be made for directory blocks
of Ψ(b) when walking a pathname.

[2] Derived metadata: Depending on the specific de-
rived metadata, let’s say M, Iron breaks this recursion in
one of two ways: (1) It loads and checks all of M during
mount and before client access is allowed, and Rule #3
ensures M is not checked again. This approach is taken
for smaller metadata. (2) Iron does not load or consult M
when it processes the essential set. Instead, it maintains
and updates a derived shadow metafile that corresponds
to M; M is checked only when it is loaded for other file
system activity. We illustrate this approach by using the
refcnt file example.

Let b j be the refcnt L0 block that contains the ith refcnt
integer; clearly, b j ∈ Ψ(bi). Then, the L0 block of the
refcnt file with the jth integer, let’s say bk, belongs in
Ψ(b j). This means that Iron would need to check b j,
bk, and so on, possibly checking the entire refcnt file to
load bi, which would result in unpredictable operational
latencies. As described in Sec. 4.2, instead of loading
and checking b j, Iron increments the ith claimed refcnt
integer4. This breaks the recursion, and b j is checked
later.

Thus, the number of yet-to-be-checked blocks in Ψ(b)
is quite small in practice. The analysis in this section
can be used to prove freedom from deadlocks even when
essential sets of concurrent client ops happen to overlap;
we cannot present a formal proof due to lack of space.

4.4 Repairing Manifest Corruption

Depending on the type of metadata, Iron chooses from
two techniques—tombstoning and quarantining—to han-
dle manifest corruption.

4.4.1 Tombstoning Primary Metadata

Sec. 3.1 explains why damaged primary metadata in
WAFL cannot be repaired, which is true with offline re-
pair as well. Before making the file system available to
clients, Iron checks the higher part of the file system tree
hierarchy, such as the superblock, the inodefile blocktree,
and the root directory. Iron aborts if corruption is de-

4Because WAFL is a COW file system, a claimed refcnt increment
results in that claimed refcnt L0 getting written to a new location, let’s
say block bn, which in turn requires the nth claimed refcnt integer to
be incremented, and so on. This is a different type of recursion that
impacts most allocation bitmaps in WAFL. The WAFL block allocator
finds free blocks colocated in the block number space, and therefore
this recursion converges very quickly. Previous publications [32, 33]
detail how recursion during decrements (due to frees) converge.

tected there; the file system is not considered repairable.
The customer can then choose between restoration from
a recent snapshot (stored locally or remotely) or manual
stitch-up of the file system by skilled technicians with
direct access to the storage media.

Data structures in the lower part of the file system tree
hierarchy with manifest corruptions are tombstoned by
setting them to a corresponding zero value or to a spe-
cial value that WAFL code paths recognize. If the whole
block is unreliable, its entire content is tombstoned. A
client read op that encounters it—say, a tombstoned child
pointer in an indirect block of a user file—returns an ap-
propriate error. A subsequent mutation can change the
tombstone to a legal value. For example, a client op
that writes to an offset in that file corresponding to the
range covered by that child pointer replaces the tomb-
stone. Tombstoning a child pointer results in an orphaned
sub-tree, which is eventually recovered and placed into
lost+found by Iron. Much as in traditional repair, the ad-
ministrator can choose to stitch it back into the file sys-
tem, but in concert with the application accessing it. If
the administrator chooses otherwise, the data structures
remain tombstoned until they are overwritten or deleted
by new mutations. Given Rule #2, and that WAFL es-
chews redundancy within primary metadata (to avoid the
associated performance overhead), we conclude:

Conclusion 1. The repair of manifest corruption in pri-
mary metadata of WAFL by offline repair is no better
than repair by Iron.5

4.4.2 Quarantining Derived Metadata

If Iron encounters manifest corruption in a derived data
structure, it quarantines the data structure by setting it to
a corresponding well-known and conservative value that
protects the resource that it tracks. The well-known value
never overflows or underflows, which allows WAFL code
paths to navigate past invariants that use it. If an entire
block of derived metadata is deemed to be unreliable,
then every data structure in it is quarantined. On com-
pletion, all quarantined structures are set to their corre-
sponding values computed by Iron. Thus, given that all
damage to derived metadata is quarantined before con-
sulted by file system operations, and that the quarantined
value conservatively protects the resource that it tracks,
we conclude:

Conclusion 2. Iron guarantees that mutations to the file
system can never cause new or additional corruption due
to existing manifest corruption in derived metadata.

5Offline repair in a file system with redundancy in primary metadata
could stitch an orphaned subtree back into its correct location, repair
the damaged child pointer, and avoid data loss. Online repair for such
a file system would need to suspend client access to the tombstoned
structure until the orphaned subtree is found.

38 16th USENIX Conference on File and Storage Technologies USENIX Association

The following example helps illustrate this conclusion.
Let’s say that Iron determines a refcnt file L0 to be unre-
liable when it is first loaded, and let’s say that L0 stores
refcnt integers for blocks bi through b(i+n−1) of the file
system. Iron then sets each of those refcnt integers in the
L0 to the quarantined value, thereby ensuring all potential
references to blocks bi to bi+n−1 are conservatively pro-
tected. In other words, the WAFL write allocator consid-
ers them unavailable for new mutations; note that WAFL
uses COW, and no block is ever written in place. On
completion, Iron resets each quarantined integer to its
claimed refcnt counterpart and returns any unused blocks
back to the free space in the file system.

Given sufficient damage to a specific derived metadata,
Iron might decide that the file system has run out of the
resource tracked by that derived metadata. Sec. 4.6 de-
scribes how this case is handled.

4.5 Repairing Latent Corruption

As Sec. 3.2 explained, a latent corruption is a violation of
some specific file system invariant, and is detected when
a code-path trips on it. We reason about latent corruption
by discussing the different permutations of metadata that
are involved in the violated invariant.

Primary metadata only: Let’s say that all the blocks
involved in the violated invariant are of primary meta-
data. In WAFL, all relationships between primary meta-
data are captured in Ψ(b) for a given primary metadata
block b. In the example from Sec. 3.2, a client op can
access the damaged inode only after accessing that di-
rectory. Therefore, a violation of such an invariant is
conveniently detected as and when each primary meta-
data block is loaded, which leads to:

Conclusion 3. The offline repair of a latent corruption
that violates an invariant across primary metadata of
WAFL can be no better than repair by Iron.

Derived and derived/primary metadata: Derived
metadata typically track persistent resources consumed
by the file system, such as inodes and blocks. We ex-
plore this problem for blocks, and then extend the results
to other derived metadata. The refcnt integer ri tracks the
consumption of the ith block by the file system. Thus, ri
encodes a relationship with block bi; bi may be user data
or metadata (primary or derived).

Let’s say that a latent corruption had made ri incorrect.
As described next, several mutations might be persisted
to the file system before this corruption is eventually de-
tected. WAFL relies exclusively on the child pointer in
bi’s parent block when it frees bi (say due to a file trun-
cation) and decrements ri. On the other hand, the WAFL

write allocator relies exclusively on ri to check if block
bi is free. Thus, code paths that allocate and free blocks
depend exclusively on derived and primary metadata, re-
spectively, and expect them to be consistent. This split-
brain behaviour can result in the morphing of this latent
corruption even before it is detected. The corrupted ri
might be (A) higher or (B) lower than the true value.
If (A), WAFL might eventually leak bi when all refer-
ences to it have been dropped and ri remains non-zero.
The leaked block will be detected by a subsequent run
of Iron. Two possibilities exist with (B): In case (B1):
an eventual decrement causes ri to underflow, which is
detected as a violation. In case (B2), the WAFL write
allocator might incorrectly assign bi to a new write when
ri becomes zero, and the original contents of bi are lost
to the file system. If bi originally contained metadata,
any access through an older reference would detect man-
ifest corruption (signature and context mismatch)6. In
this case as well as case (B1), the file system is marked
as inconsistent, is taken offline, and repair is invoked.

Conclusions 1 and 2 show that Iron handles the manifest
corruption of case (B2) no worse than offline repair does.
In case (B1), if the decrement has been triggered by a
client op, Iron increments the ith claimed refcnt integer
almost immediately after mount because WAFL replays
all client ops after any disruption. Thus, the subsequent
decrement finds a zero value ri but a nonzero claimed re-
fcnt integer. Iron prevents any file system activity from
underflowing a refcnt integer as long as it can decrement
the corresponding claimed refcnt integer. If the decre-
ment has not been triggered by a client op, bi remains
unclaimed until Iron gets to the file that refers to it. Dur-
ing this window, both ri and its claimed refcnt counter-
part are zero, and the WAFL write allocator may use bi
for a new block; that scenario is subsumed by case (B2).

Although offline repair averts the previously mentioned
window because no new blocks are being written to the
file system, it should be noted that case (B2) may also
occur during runtime before the latent corruption is de-
tected and recovery is initiated. Thus, in practice, the
use of Iron does not introduce significant additional risk
beyond what existed earlier.

This entire argument can be replicated for any resource
that is similarly tracked by derived metadata and tracked
separately by Iron shadow metadata. Latent corruption
in derived metadata that is checked before client access
is allowed to the file system can be found and repaired
early on. This leads to:

Conclusion 4. The repair by Iron of latent corruption
6If bi contained user data, it is lost. Independent of whether bi con-

tained user data or metadata, its re-allocation does not create a security
risk because access via the original parent of bi will fail the context
check, and return an error instead of the new content stored in bi.

USENIX Association 16th USENIX Conference on File and Storage Technologies 39

that violates a relationship across derived and/or pri-
mary metadata is no worse than that by offline repair.

Miscellaneous metadata: WAFL maintains extensive
auxiliary metadata that are computed using information
from other derived metadata. Such auxiliary metadata
typically are used to enable specific features or better file
system performance. The WAFL file system can typi-
cally survive corruption to such metadata, but when Iron
is invoked, it can repair these structures while the file
system runs with decreased performance or with those
specific features disabled. We have found that customers
are willing to tolerate such temporal deficiencies for con-
tinued data availability.

4.6 Running Out of a Resource

The end of Sec. 4.4.2 discussed a problem scenario that
relates to the quarantining of a sufficiently large amount
of derived metadata. It might result in premature exhaus-
tion of the file system resource tracked by that metadata,
before Iron completes. For example, sufficient quaran-
tining of the refcnt metadata might cause the file system
to run out of space. The WAFL block allocator is de-
signed to offline the file system gracefully in this case.
Because the file system is still marked as corrupt (Iron
never completed), the file system is now repaired by us-
ing Iron in offline mode (more information in Sec. 6). It
is important to note that no mutations are lost in this sce-
nario. To the best of our knowledge, this problem has not
been encountered in the field thus far.

4.7 Three Phases of Iron

[1] Mount: ONTAP mounts the inconsistent WAFL file
system when it is brought online with the Iron option.
To allow faster access to clients, Iron limits the amount
of metadata that is checked at mount. As described in
Sec. 4.4.1, key metadata in the upper part of the file sys-
tem tree hierarchy are checked. Based on the physical
storage devices, various limits on file system resources
are computed (such as number of blocks) and are used as
ceilings for various global counters. Auxiliary metadata,
such as hints for speeding up the search for free space,
are checked. Based on those hints, the block allocator
is primed by prefetching refcnt file blocks. Detection of
manifest corruption results in the quarantining of refcnt
integers and further loading of refcnt blocks until suffi-
cient free space has been confirmed. The Iron status files
are created and updated to reflect the checking performed
thus far. As described in Sec. 4.4.1, Iron aborts if mount-
time checks do not complete. Otherwise, client access is
allowed.

[2] File system scan: Metadata are checked on-demand
(based on client access) and through background scans,
each of which selects an inode and walks its blocktree.
Leaf nodes of metafiles are also checked. Progress indi-
cator status files ensure that each block is checked once.

As client mutations are processed, the WAFL write al-
locator prefetches more blocks of the refcnt file to find
more free space. The background walk of crucial de-
rived metadata, such as the refcnt file, typically com-
pletes early, and all quarantining that affects free space
accounting is in place. Recall that Iron status files track
both validated and new data written by clients, so the
validated portion of the file system continually increases.
Due to space constraints, we do not describe our imple-
mentation in more detail.

[3] Completion: After the entire file system has
been walked, the derived shadow metadata—which,
now accurately represent all resource consumption—are
swapped with their counterparts; quarantined structures
are removed. Status files are deleted subsequently and
the file system is marked as consistent.

5 Analysis and Some History
This section describes some deficiencies in the initial
version of Iron and some improvements that were made
over the years.

[1] New corruption: Regular file system access is al-
lowed during online repair, which means that if the file
system was originally corrupted by a software bug, it
could reoccur during the repair process. Therefore, it is
difficult for any efficient online repair tool to guarantee
file system consistency on completion. Earlier versions
of Iron also have this “flaw”. Although it has never been
observed, it is possible for the Iron status metadata to
be corrupted by such a bug, which might have a bigger
impact on the guarantees that Iron provides. Sec. 5.1 ad-
dresses this issue.

[2] Mount-time performance: The first version of Iron
(circa 2003) checked the indirect blocks of the blocktrees
of all derived metadata during mount. However, this
meant longer mount times, and therefore a longer wait
for restoration of client access to the file system. The
mount phase was subsequently thinned, and larger de-
rived metadata (that scale linearly with file system size)
are now checked asynchronously post mount. Quaran-
tining occurs at any level of the indirect blocktree of a
derived metafile. Latent corruption in derived metadata
is addressed by the hardening techniques of Sec. 5.1.

[3] Performance of client ops: In its original version,
Iron checked the entire indirect blocktree of a given in-

40 16th USENIX Conference on File and Storage Technologies USENIX Association

ode before a client (or internal) op could access any block
of that file. Thus, the original definition of Ψ(b) in-
cluded all indirect blocks in the blocktree of any inode
in the ancestory hierarchy of b, thereby ensuring Rule
#2 when exposing file attribute state to clients, such as
size or block count. In its early days, WAFL was primar-
ily optimized for homedir-style engineering workloads
with many small to medium-sized files, and so the time
to first-access of a file was not too significant. With the
deployment of critical database and virtualization work-
loads on WAFL, GiB- and TiB-sized files became in-
creasingly common. Irreversibility of attributes such as
block count for files that host databases or VM disks
is not a strict requirement. Thereafter, the definition of
Ψ(b) was refined (to that in Sec. 4.1) to exclude non-
ancestor blocks of b in the file system tree, but without
any risk to the repair process. Sec. 5.2 describes addi-
tional performance improvement.

5.1 WAFL Metadata Integrity Protection

Two techniques, incremental checksums and digest-
based auditing [34], were introduced circa 2012 to pro-
tect much of the WAFL file system metadata from mem-
ory scribbles and logic bugs [23]. Sec. 7.5 of [34]
shows the resultant drop in corruption incidents in cus-
tomer systems, thereby dramatically reducing the need
for Iron. In addition, there are two crucial implications
for Iron: (1) Iron status files are now protected by these
techniques, which squarely addresses the first deficiency
described in Sec. 5; (2) it removes one key reason for
the on-demand update of shadow derived metadata while
processing client ops; more in the next section.

5.2 Lazy Block Claiming (LBC)

After mount-time outages were reduced, the one im-
portant remaining problem with Iron was the impact to
client ops. As explained earlier, Iron must process the
corresponding essential set before a file system op can
be given access to a block. Because recursivity in de-
rived metadata has been solved, the cost of processing
any block in Ψ is dominated by: (1) loading and con-
sulting/updating checked bitmap blocks, and (2) loading
and updating claimed refcnt blocks. These steps require
additional CPU cycles and random I/Os to storage; the
randomness is also a function of client access patterns.
Lazy Block Claiming (LBC) was introduced to address
this overhead.

The on-demand update of claimed refcnt metadata (or
any derived metadata) guarantees that resources accessed
by a client op are henceforth protected, thereby preserv-
ing Rule #2. Thus, when a client op accesses block bi,

the on-demand increment of the ith claimed refcnt inte-
ger protects bi from being re-allocated due to a corrupted
refcnt integer. Latent corruption in the refcnt metadata is
eliminated by the integrity techniques of Sec. 5.1. And,
given that manifest corruption results in quarantining,
Rule #2 is now preserved even without on-demand up-
dates of derived metadata, such as claimed refcnts. Thus,
LBC avoids the afore-mentioned costs and enables im-
proved client performance, independent of file size.

This means, after the file system is mounted, the claiming
of the references to each block in the file system occurs
only through the background scans. More importantly,
knobs are provided that control the speed of those back-
ground scans. Thus, the customer can choose between
reducing the impact of Iron scans to client workloads
and how quickly Iron completes processing the entire file
system.

5.3 Additional Enhancements to Iron

This section outlines in-progress and productized im-
provements; a future paper will cover them. First, con-
current access of Iron status files within the WAFL par-
allelism model [17] is required to truly minimize the im-
pact of Iron on client performance. Second, the customer
still experiences outage from the time the WAFL aggre-
gate is offlined until Iron is started. Incremental Autoheal
Iron [11] builds on the principles described in Sec. 4.1 to
provide true zero disruption. When Autoheal detects a
corruption at runtime, it tombstones or quarantines, sim-
ulates a minimal emptying of the buffer cache, and op-
tionally kicks off a background scan to check and repair
a defined set of metadata based on the corruption. De-
pending on the results of the scan, a larger subset of the
metadata might be scanned next. Such incremental gran-
ular repair is ideal because, as mentioned earlier, only
a few metadata blocks are typically damaged in WAFL.
ONTAP 9.1 introduced FlexGroup technology [7, 42]—
it allows a file system to span multiple physical nodes in
a cluster. Offlining an entire FlexGroup on the detection
of a corruption is obviously not an option; ONTAP 9.1
includes an early version of Autoheal.

6 Topics in Practice
This section presents some selected topics that relate to
the implementation of Iron.

Location of status files: The implementation allows for
Iron status files to be stored within the file system being
repaired or in a different WAFL file system; both choices
are equally safe. By storing it remotely, the customer can
isolate to a separate set of storage devices the extra I/Os

USENIX Association 16th USENIX Conference on File and Storage Technologies 41

required to read and update status files.

Offline mode for Iron: In this mode, Iron provides
WAFLCheck-like behaviour. Thus, client access is disal-
lowed and Iron cannot write to the physical storage of the
file system. Iron stores its status files remotely. Corrup-
tions that Iron fixes are appended as a sequence of tuples
to a log file stored in a different file system. Each tu-
ple includes the contents of the file system block and its
physical location that the WAFL write allocator chose.
Eventually, the administrator is given the choice to com-
mit all or none of the repair. If the former choice is made,
the log file is “replayed” and the content of the log is
written out at the appropriate locations in the file system.

Aggregates and FlexVols: ONTAP hosts and exports
hundreds of FlexVol® volumes on a shared pool of of
physical storage called an aggregate [20]. Each FlexVol
and aggregate is a WAFL file system. When corruption
is detected, the aggregate file system is tagged as corrupt,
is offlined, and is eventually remounted with Iron. Hun-
dreds of applications hosted on the FlexVols gain early
access to their data. Our field data show that typically a
handful of blocks from a few FlexVols are damaged. At
worst, a few of the applications might be halted if they
access tombstoned structures; they can be restarted after
that data is recovered from backup or from lost+found.
However, other applications see minimal disruption.

Field data: In an analysis of corruptions seen across
∼250,000 customer systems during a recent six-month
period, approximately a third were attributed to software
bugs, another third to media errors (while RAID was run-
ning in degraded mode), and the rest to a mix of manual
configuration error or unknown reasons. In each case, the
total number of corrupted metadata blocks was less than
10. In very rare cases when hundreds of blocks are dam-
aged (due to silent hardware failures), customers typi-
cally restore from backup/snapshots or use offline repair.

7 Evaluation

In this section, we present the performance characteris-
tics of Iron. As explained earlier, a WAFL file system
being repaired has at worst tens of damaged metadata
blocks. The extra cost of repairing those blocks is un-
detectable compared with the cost of checking the entire
file system.. Therefore, no actual corruption is required
in the datasets of the following experiments. We discuss
client outage times, the overhead of running Iron, and
how it interferes with a real-world workload. Unless oth-
erwise mentioned, all experiments were conducted on a
lower-end system with 16 Intel Sandy Bridge cores and
64 GiB DRAM to accentuate the impact of Iron.

Figure 1: Client outage time in seconds on a logarithmic scale
with increasing file system size.

7.1 Memory and Storage Overhead

Iron metafiles are paged in and out of the buffer cache
like any other file in the file system. The storage space
that the metafiles consume is approximately 32 MiB
(checked bitmap) and 0.5 GiB (claimed refcnt) per TiB
of file system size, and is 4 MiB (link count) per million
inodes in the file system. Together with other metafiles
(not presented in this paper), it adds up to around 0.05%
of the file system size. The in-memory data structures
that Iron uses add up to a few KiB of extra memory. This
extra requirement in memory and storage is negligible on
all configurations of ONTAP.

7.2 Outage Time with Iron

Fig. 1 plots on a logarithmic scale client outage time with
increasing file system size (used space) on the lower-end
system. Outage was measured from when the command
to online the WAFL file system (with the Iron option)
was issued to when the file system was first exposed to
clients. Thus, this experiment measured the time taken
to check metadata during mount. Numerous drives were
used to avoid I/O bottlenecks, and no other load was
applied on the system. The experiment was run thrice:
with Iron in offline mode, with classic Iron (mentioned in
Sec. 5) in which derived metadata were checked during
mount, and with the current version of Iron in which in-
direct blocks of all large derived metafiles were checked
post-mount. Iron employs the same level of parallelism
for checking metadata in each mode, thereby ensuring
fairness.

Iron in offline mode performs similarly to the now-
obsolete WAFLCheck tool, and outage time is obviously
the time to complete Iron. Offline repair is clearly im-
practical for enterprises—a 10 TiB file system takes 2+
hours to repair. Outage times with the current version
of Iron are an order of magnitude less than the times re-
ported by classic Iron; 6.9s and 100s, respectively, for 10

42 16th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: CPU cost (µs/op) of random reads

TiB. Outage times with the current Iron tool are almost
independent of the file system size; mount without Iron
(not shown) takes around 1s for any file system size.

7.3 Performance Overhead of Iron

Next, we present the overhead associated with Iron in
terms of CPU cycles and storage I/Os—the two impor-
tant metrics that IT architects use for sizing storage sys-
tems and applications. LBC was instrumental in mak-
ing Iron’s overhead more predictable and therefore prac-
tical. The worst case overhead on low-end systems is
25%. Note that most of our systems do not experience
that level of overhead. We used a worst-case random read
workload—it reduced the overlap between the essential
set for a given client read with that of a previous one—
thereby maximizing the amount of on-demand work that
Iron performs. A read-only workload was used to keep
the analysis simple; there was no material change in the
results when client writes were added in.

7.3.1 Cost in CPU Cycles

Several NFS clients directed a random read workload of
25 MiB/s to a 18 TiB dataset that comprised 450 files,
each of size 40 GiB on the lower-end system. To avoid
perturbation from I/O bottlenecks, the storage was all-
SSD. The experiment was run without Iron, with Iron and
LBC disabled, and with current Iron (LBC enabled). To
make the comparison fair, the background Iron scan was
disabled for the first one hour of the run without LBC—
so all Iron work was triggered only on-demand by the
client reads.

CPU cost is computed by adding up all the cycles that
the file system code paths (including Iron) use and divid-
ing that value by the number of client operations serviced
for a given time interval. Fig. 2 compares that cost (mea-

Figure 3: Throughput in MiB/s when random reads are di-
rected to a repairing (without LBC) file system

sured as µs/op) on a logarithmic scale. The baseline read
op cost averages 160 µs’ worth of CPU cycles; it includes
the processing for misses in the buffer cache.

In the Iron run without LBC, about 4 to 8 primary meta-
data blocks are checked for each client read in the early
portion of the experiment. Each checked indirect block
may have up to 256 children that are unlikely to be colo-
cated, and requires random updates to the claimed re-
fcnt metafile. In the early portion of the experiment,
this costs an extra 7.8 ms’ worth of cycles. Over time,
a client read finds that more of its essential set is already
checked, and the Iron overhead drops. Almost all meta-
data has been checked by the 40-min mark, and the cost
flattens to about 190 µs; the extra 30 µs is the unavoid-
able cost of consulting the checked bitmap. The small
bump at the 60-min mark coincides with the start of the
background scan (which completes soon after because
on-demand checking has already done the job). With
LBC, the overhead of random I/Os to the claimed refcnt
metafile is moved from client ops to the slow-running
background scan. Thus, after the initial spike to check
important metadata, such as inodes and directory entries,
the cost flattens to 200 µs; the still-running background
scan costs the extra 10 µs.

7.3.2 Cost in I/O Bandwidth

The previous experiment was modified to use SATA hard
drives (so storage I/Os were no longer “cheap”), and the
client load was lowered to 11.5 MiB/s which is commen-
surate with the I/O capability of that storage media.

Fig. 3 shows the client throughput and the raw reads and
writes to the drives in MiB/s. To simplify the analy-
sis, Iron without LBC was started at the 10-min mark of
the experiment, and the background walk of the file sys-
tem was disabled (until the 110-min mark). The client

USENIX Association 16th USENIX Conference on File and Storage Technologies 43

Figure 4: Impact of Iron with and without LBC on latency
(right-side y-axis) and on throughput (left-side y-axis) at a
steady applied load of 40k SPC-1 IOPS.

throughput and raw reads are identical until the 10-min
mark. The remount (to start Iron) at the 10-min mark
empties the buffer cache. This is followed by a spike
in writes to storage as Iron status metafiles undergo fre-
quent updates. The remaining disk bandwidth is divided
between reading the user inode leaf nodes and Iron sta-
tus files. Thus, for the first 40 mins of Iron only about
10% to 18% of the disk bandwidth is used for read-
ing the leaf nodes of user files. By 90 mins the essen-
tial set for most client reads has already been checked,
but checked bitmap consultations require a continual and
fixed amount of read bandwidth. The impact due to back-
ground scans is seen after the 110-min mark. With LBC
enabled (not shown here), the drop in client throughput
is mostly a function of the rate at which Iron background
scans run, which is typically set to a low default.

7.4 Impact on Clients

Several clients were used to apply a steady load
of reads/writes to model the query/update ops of a
database/OLTP application; this was based on the Stor-
age Performance Council Benchmark-1 (SPC-1) [16].
Iron was started soon after. LBC was designed primarily
for helping database/OLTP applications, which are quite
latency-sensitive to any additional CPU or I/O overhead.
To accentuate the impact of Iron, the experiment was
configured on a low-end system with 8 AMD Opteron
cores, 32 GiB DRAM, and SATA HDDs. The back-
ground Iron scans were allowed to run in this experiment.

Fig. 4 shows that without Iron the clients achieve the en-
tire applied throughput of 40k IOPS with average laten-
cies under 30 ms. With Iron, both metrics improve as
a larger portion of the metadata is checked. With LBC,
these metrics are 2 to 5 times better early on, and they

soon converge to a steady 75% of the applied through-
put. In theory, WAFL parallelism should be unaffected
by Iron because checking (both on-demand and by way
of scan) can run concurrently with other client opera-
tions in the WAFL MP model [17]. However, one last
project to achieve full parallelism is still in progress, af-
ter which we expect the impact of Iron (with LBC) to
be much smaller. Because the background scans limit
some of the potential parallelism, client operations in the
run with LBC show poorer latencies past the half-way
point. In the run without LBC, the on-demand work has
finished much of the scan’s job by that point. The slow
increase in latency in the baseline run (until 20 min) is
due to the initial aging of the file system.

Many of our customer systems use SSDs and are not
low-end, and therefore see less impact with Iron. As
mentioned earlier, Iron is run under the supervision of
NetApp support, and customers are aware that an incon-
sistent file system is being recovered. We find that they
greatly appreciate the continued uptime for their applica-
tions, even with reduced performance. As improvements
to Iron have reduced the impact to clients over the years,
we also find that customers have become less concerned
with Iron completion times as long as progress indicators
provide a time estimate. But, as an example, Iron com-
pletion time with a default scan speed on the lower-end
system is 0.48 hour per TiB dataset resident on SSDs and
1 hour per TiB dataset resident on hard drives, even while
sustaining a random-read client workload of 470 MiB/s
and 255 MiB/s, respectively. Impact on home-directory
style workloads is not presented due to lack of space.
The impact is typically less than that on database/OLTP
workloads because the files themselves are small, and
each indirect block has few children. However, datasets
with very large directories (millions of entries) are af-
fected to a greater extent; future work is planned to make
the checking of directories truly asynchronous to client
operations.

8 Conclusion
This paper explains the importance of online repair to en-
terprises. It explains how Iron provides the same quality
of repair as offline repair does, even while allowing client
access to the file system. It presents some implemen-
tation detail, history, and performance evaluation. To
the best of our knowledge, this publication is the first to
present fully functional enterprise quality online repair.
A follow-up paper will present implementation details
and the enhancements mentioned in Sec. 5.3. We thank
the many WAFL engineers who contributed to Iron over
the years; they are too many to list. We also thank our
reviewers and shepherd for their invaluable feedback.

44 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Checking ZFS file system integrity.
https://docs.oracle.com/cd/E23823_01/html/

819-5461/gbbwa.html#scrolltoc.
[2] Disks and aggregates power guide. https:

//library.netapp.com/ecm/ecm_download_file/

ECMLP2496263.
[3] How you schedule automatic raid-

level scrubs. https://library.

netapp.com/ecmdocs/ECMP1196912/html/

GUID-A2F3A870-5C8D-4A68-AC8C-912946CECAC0.

html.
[4] Kernel Bug Tracker. http://bugzilla.kernel.org/.
[5] Linux btrfs blog posts. http://marc.merlins.

org/perso/btrfs/post_2014-03-19_Btrfs-Tips_

-Btrfs-Scrub-and-Btrfs-Filesystem-Repair.

html.
[6] Metrocluster for clustered data ontap 8.3.2.

https://storageconsortium.de/content/sites/

default/files/WP_NetApp%20Metrocluster%

20for%20Clustered%20Data%20ONTAP%208.3.2.

pdf.
[7] Scalability and performance using flex-

group volumes power guide. http:

//docs.netapp.com/ontap-9/index.jsp?

topic=%2Fcom.netapp.doc.pow-fg-mgmt%

2FGUID-A304BBC1-C00C-4E7A-989E-7C5A0E505146.

html.
[8] Wendy Bartlett and Lisa Spainhower. Commercial

Fault Tolerance: A Tale of Two Systems. IEEE
Transactions on Dependable and Secure Comput-
ing, 1(1):87–96, 2004.

[9] Robert Baumann. Soft errors in advanced com-
puter systems. IEEE Design & Test of Computers,
22(3):258–266, 2005.

[10] Steve Best. JFS Overview. http://www.ibm.com/

developerworks/library/l-jfs.html, 2000.
[11] Sushrut Bhowmik, Vinay Kumar, Sreenath Kor-

rakuti, Arun Pandey, and Sateesh Pola. Automatic
incremental repair of granular filesystem objects.
pending patent application.

[12] Eric J. Bina and Perry A. Emrath. A Faster fsck for
BSD Unix. In Proceedings of the USENIX Winter
Conference, January 1989.

[13] Jeff Bonwick and Bill Moore. ZFS: The Last Word
in File Systems. http://opensolaris.org/os/

community/zfs/docs/zfs_last.pdf, 2007.
[14] John Chapin, Mendel Rosenblum, Scott Devine,

Tirthankar Lahiri, Dan Teodosiu, and Anoop
Gupta. Hive: Fault Containment for Shared-
Memory Multiprocessors. In Proceedings of the

fifteenth ACM Symposium on Operating Systems
Principles (SOSP), pages 12–25, 1995.

[15] Peter Corbett, Bob English, Atul Goel, Tomis-
lav Grcanac Steven Kleiman, James Leong, and
Sunitha Sankar. Row-diagonal parity for double
disk failure correction. In Proceedings of Con-
ference on File and Storage Technologies (FAST),
2004.

[16] Storage Performance Council. Stor-
age performance council-1 benchmark.
www.storageperformance.org/results/#spc1_

overview.
[17] Matthew Curtis-Maury, Vinay Devadas, Vania

Fang, and Aditya Kulkarni. To waffinity and be-
yond: A scalable architecture for incremental par-
allelization of file system code. In Proceedings of
USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 419–434, 2016.

[18] Matthew Curtis-Maury, Ram Kesavan, and Mri-
nal K. Bhattacharjee. Scalable write allocation
in the WAFL file system. In Proceedings of the
International Conference on Parallel Processing
(ICPP), August 2017.

[19] Peter Denz, Matthew Curtis-Maury, and Vinay De-
vadas. Think global, act local: A buffer cache
design for global ordering and parallel process-
ing in the WAFL file system. In Proceedings of
the International Conference on Parallel Process-
ing (ICPP), August 2016.

[20] John K. Edwards, Daniel Ellard, Craig Everhart,
Robert Fair, Eric Hamilton, Andy Kahn, Arkady
Kanevsky, James Lentini, Ashish Prakash, Keith A.
Smith, and Edward Zayas. FlexVol: flexible, effi-
cient file volume virtualization in WAFL. In Pro-
ceedings of the 2008 USENIX Annual Technical
Conference, pages 129–142, Jun 2008.

[21] Daniel Fryer, Kuei Sun, Rahat Mahmood, Ting-
Hao Cheng, Shaun Benjamin, Ashvin Goel, and
Angela Demke Brown. Recon: Verifying file sys-
tem consistency at runtime. In Proceedings of 10th
USENIX Conference on File and Storage Technolo-
gies (FAST), February 2012.

[22] Gregory R. Ganger and Yale N. Patt. Metadata
Update Performance in File Systems. In Proceed-
ings of 1st USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI), Novem-
ber 1994.

[23] Jim Gray. Why do computers stop and what can be
done about it? Tandem Technical Report 85.7, June
1985.

[24] Haryadi S. Gunawi, Abhishek Rajimwale, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-

USENIX Association 16th USENIX Conference on File and Storage Technologies 45

Dusseau. SQCK: A Declarative File System
Checker. In Proceedings of 8th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), 2008.

[25] Robert Hagmann. Reimplementing the Cedar File
System Using Logging and Group Commit. In Pro-
ceedings of the 11th ACM Symposium on Operating
Systems Principles (SOSP), November 1987.

[26] Val Henson. The Many Faces of fsck.
http://lwn.net/Articles/248180/, 2007.

[27] Val Henson, Zach Brown, Theodore Ts’o, and Ar-
jan van de Ven. Reducing fsck time for ext2 file sys-
tems. In Linux Symposium, pages 395–407, 2006.

[28] Val Henson, Arjan van de Ven, Amit Gud, and Zach
Brown. Chunkfs: Using divide-and-conquer to im-
prove file system reliability and repair. In Proceed-
ings of the 2nd Conference on Hot Topics in System
Dependency (HotDep), 2006.

[29] Dave Hitz, James Lau, and Michael Malcolm. File
system design for an NFS file server appliance.
In Proceedings of USENIX Winter 1994 Technical
Conference, pages 235–246, Jan 1994.

[30] Microsoft Inc. Building the next gen-
eration file system for windows: Refs.
https://blogs.msdn.microsoft.com/b8/2012/01/16/
building-the-next-generation-file-system-for-
windows-refs/, 2012.

[31] NetApp Inc. Overview of wafliron.
https://kb.netapp.com/support/index?page=

content\&id=3011877, 2016.
[32] Ram Kesavan, Rohit Singh, Travis Grusecki, and

Yuvraj Patel. Algorithms and data structures for
efficient free space reclamation in wafl. In 15th
USENIX Conference on File and Storage Technolo-
gies (FAST), 2017.

[33] Ram Kesavan, Rohit Singh, Travis Grusecki, and
Yuvraj Patel. Efficient free space reclamation in
WAFL. ACM Transactions on Storage (TOS), 13,
October 2017.

[34] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and
Sumith Makam. High performance metadata in-
tegrity protection in the WAFL copy-on-write file
system. In 15th Usenix Conference on File and
Storage Technologies (FAST), 2017.

[35] Xin Li, Kai Shen, Michael C. Huang, and Lingkun
Chu. A memory soft error measurement on produc-
tion systems. In USENIX Annual Technical Confer-
ence (ATC), June 2007.

[36] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau,
Remzi H. Arpaci-Dusseau, and Marshall Kirk
Mckusick. Ffsck: The fast file-system checker.
ACM Transactions on Storage (TOS), 10(1):2:1–

2:28, January 2014.
[37] Joshua MacDonald, Hans Reiser, and Alex

Zarochentcev. http://www.namesys.com/txn-
doc.html, 2002.

[38] T. C. May and M. H. Woods. Alpha-particle-
induced soft errors in dynamic memories. IEEE
Tranactions on Electron Devices, 26(1), 1979.

[39] Marshall Kirk McKusick. Running ’fsck’ in the
Background. In BSDCon ’02, 2002.

[40] Marshall Kirk McKusick, Willian N. Joy, Samuel J.
Leffler, and Robert S. Fabry. Fsck - The UNIX File
System Check Program. Unix System Manager’s
Manual - 4.3 BSD Virtual VAX-11 Version, 1986.

[41] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F.
Ziegler, H. P. Muhlfeld, C. J. Montrose, H. W. Cur-
tis, and J. L. Walsh. Field testing for cosmic ray soft
errors in semiconductor memories. IBM Journal of
Research and Development, 40(1):41–50, 1996.

[42] Justin Parisi. Netapp flexgroup volumes: An evo-
lution of nas. https://blog.netapp.com/blogs/

netapp-flexgroup-volumes-an-evolution-of-nas/.
[43] David Patterson, Garth Gibson, and Randy Katz.

A Case for Redundant Arrays of Inexpensive Disks
(RAID). In ACM SIGMOD International Confer-
ence on Management of Data, pages 109–116, June
1988.

[44] Mendel Rosenblum and John Ousterhout. The De-
sign and Implementation of a Log-Structured File
System. ACM Transactions on Computer Systems,
10(1), 1992.

[45] Bianca Schroeder, Eduardo Pinheiro, and Wolf-
Dietrich Weber. DRAM errors in the wild: A
Large-Scale Field Study. In Proceedings of the
2009 Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIG-
METRICS/Performance ’09), Seattle, Washington,
June 2007.

[46] Thomas J.E. Schwarz, Qin Xin, Ethan L. Miller,
Darrell D.E. Long, Andy Hospodor, and Spencer
Ng. Disk Scrubbing in Large Archival Storage Sys-
tems. In IEEE 12th International Symposium on
Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 2004.

[47] Christopher A. Stein, John H. Howard, and
Margo I. Seltzer. Unifying File System Protection.
In Proceedings of USENIX Annual Technical Con-
ference, pages 79–90, June 2001.

[48] Rajesh Sundaram. The Pri-
vate Lives of Disk Drives.
http://www.netapp.com/go/techontap/matl/sample/
0206tot resiliency.html, 2006.

[49] Stephen C. Tweedie. Journaling the Linux ext2fs

46 16th USENIX Conference on File and Storage Technologies USENIX Association

File System. In The Fourth Annual Linux Expo,
Durham, North Carolina, 1998.

[50] Wikipedia. Btrfs. en.wikipedia.org/wiki/Btrfs,
2009.

[51] Yichen Xie, Andy Chou, and Dawson Engler.
ARCHER: using symbolic, path-sensitive analysis
to detect memory access errors. In Proceedings of
the 9th European software engineering conference
(FSE), pages 327–336, September 2003.

[52] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
End-to-end data integrity for file systems: A ZFS
case study. In Proceedings of the 8th USENIX Con-
ference on File and Storage Technologies (FAST),
2010.

[53] J. F. Ziegler and W. A. Lanford. Effect of
cosmic rays on computer memories. Science,
206(4420):776–788, 1979.

USENIX Association 16th USENIX Conference on File and Storage Technologies 47

MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices

Arash Tavakkol†, Juan Gómez-Luna†, Mohammad Sadrosadati†, Saugata Ghose‡, Onur Mutlu†‡

†ETH Zürich ‡Carnegie Mellon University
Abstract

Solid-state drives (SSDs) are used in a wide array of
computer systems today, including in datacenters and en-
terprise servers. As the I/O demands of these systems
continue to increase, manufacturers are evolving SSD ar-
chitectures to keep up with this demand. For example,
manufacturers have introduced new high-bandwidth in-
terfaces to replace the conventional SATA host–interface
protocol. These new interfaces, such as the NVMe proto-
col, are designed specifically to enable the high amounts
of concurrent I/O bandwidth that SSDs are capable of
delivering.

While modern SSDs with sophisticated features such
as the NVMe protocol are already on the market, exist-
ing SSD simulation tools have fallen behind, as they do
not capture these new features. We find that state-of-the-
art SSD simulators have three shortcomings that prevent
them from accurately modeling the performance of real
off-the-shelf SSDs. First, these simulators do not model
critical features of new protocols (e.g., NVMe), such as
their use of multiple application-level queues for requests
and the elimination of OS intervention for I/O request
processing. Second, these simulators often do not accu-
rately capture the impact of advanced SSD maintenance
algorithms (e.g., garbage collection), as they do not prop-
erly or quickly emulate steady-state conditions that can
significantly change the behavior of these algorithms in
real SSDs. Third, these simulators do not capture the
full end-to-end latency of I/O requests, which can incor-
rectly skew the results reported for SSDs that make use
of emerging non-volatile memory technologies. By not
accurately modeling these three features, existing sim-
ulators report results that deviate significantly from real
SSD performance.

In this work, we introduce a new simulator, called
MQSim, that accurately models the performance of
both modern SSDs and conventional SATA-based SSDs.
MQSim faithfully models new high-bandwidth protocol
implementations, steady-state SSD conditions, and the
full end-to-end latency of requests in modern SSDs. We
validate MQSim, showing that it reports performance re-
sults that are only 6%-18% apart from the measured ac-
tual performance of four real state-of-the-art SSDs. We
show that by modeling critical features of modern SSDs,
MQSim uncovers several real and important issues that
were not captured by existing simulators, such as the per-
formance impact of inter-flow interference. We have re-
leased MQSim as an open-source tool, and we hope that
it can enable researchers to explore directions in new and
different areas.

1 Introduction
Solid-state drives (SSDs) are widely used in today’s
computer systems. Due to their high throughput, low re-

sponse time, and decreasing cost, SSDs have replaced
traditional magnetic hard disk drives (HDDs) in many
datacenters and enterprise servers, as well as in consumer
devices. As the I/O demand of both enterprise and con-
sumer applications continues to grow, SSD architectures
are rapidly evolving to deliver improved performance.

For example, a major innovation has been the intro-
duction of new host interfaces to the SSD. In the past,
many SSDs made use of the Serial Advanced Technology
Attachment (SATA) protocol [67], which was originally
designed for HDDs. Over time, SATA has proven to be
inefficient for SSDs, as it cannot enable the fast I/O ac-
cesses and millions of I/O operations per second (IOPS)
that contemporary SSDs are capable of delivering. New
protocols such as NVMe [63] overcome these barriers
as they are designed specifically for the high through-
put available in SSDs. NVMe enables high throughput
and low latency for I/O requests through its use of the
multi-queue SSD (MQ-SSD) concept. While SATA ex-
poses only a single request port to the OS, MQ-SSD pro-
tocols provide multiple request queues to directly expose
applications to the SSD device controller. This allows
(1) an application to bypass OS intervention for I/O re-
quest processing, and (2) the SSD controller to schedule
I/O requests based on how busy the SSD’s resources are.
As a result, the SSD can make higher-performance I/O
request scheduling decisions.

As SSDs and their associated protocols evolve to keep
pace with changing system demands, the research com-
munity needs simulation tools that reliably model these
new features. Unfortunately, state-of-the-art SSD simu-
lators do not model a number of key properties of mod-
ern SSDs that are already on the market. We evaluate
several real modern SSDs, and find that state-of-the-art
simulators do not capture three features that are critical
to accurately model modern SSD behavior.

First, these simulators do not correctly model the
multi-queue approach used in modern SSD protocols. In-
stead, they implement only the single-queue approach
used in HDD-based protocols such as SATA. As a result,
existing simulators do not capture (1) the high amount of
request-level parallelism and (2) the lack of OS interven-
tion in modern SSDs.

Second, many simulators do not adequately model
steady-state behavior within a reasonable amount of sim-
ulation time. A number of fundamental SSD main-
tenance algorithms, such as garbage collection [11–
13, 23], are not executed when an SSD is new (i.e., no
data has been written to the drive). As a result, manufac-
turers design these maintenance algorithms to work best
when an SSD reaches the steady-state operating point
(i.e., after all of the pages within the SSD have been
written to at least once) [71]. However, simulators that
cannot capture steady-state behavior (within a reasonable

USENIX Association 16th USENIX Conference on File and Storage Technologies 49

simulation time) perform these maintenance algorithms
on a new SSD. As such, many existing simulators do
not adequately capture algorithm behavior under realistic
conditions, and often report unrealistic SSD performance
results (as we discuss in Section 3.2).

Third, these simulators do not capture the full end-to-
end latency of performing I/O requests. Existing sim-
ulators capture only the part of the request latency that
takes place during intra-SSD operations. However, many
emerging high-speed non-volatile memories greatly re-
duce the latency of intra-SSD operations, and, thus, the
uncaptured parts of the latency now make up a signif-
icant portion of the overall request latency. For exam-
ple, in Intel Optane SSDs, which make use of 3D XPoint
memory [9, 25], the overhead of processing a request and
transferring data over the system I/O bus (e.g., PCIe) is
much higher than the memory access latency [16]. By
not capturing the full end-to-end latency, existing simu-
lators do not report the true performance of SSDs with
new and emerging memory technologies.

Based on our evaluation of real modern SSDs, we find
that these three features are essential for a simulator to
capture. Because existing simulators do not model these
features adequately, their results deviate significantly
from the performance of real SSDs. Our goal in this
work is to develop a new SSD simulator that can faith-
fully model the features and performance of both modern
multi-queue SSDs and conventional SATA-based SSDs.

To this end, we introduce MQSim, a new simulator that
provides an accurate and flexible framework for evaluat-
ing SSDs. MQSim addresses the three shortcomings we
found in existing simulators, by (1) providing detailed
models of both conventional (e.g., SATA) and modern
(e.g., NVMe) host interfaces; (2) accurately and quickly
modeling steady-state SSD behavior; and (3) measuring
the full end-to-end latency of a request, from the time
an application enqueues a request to the time the request
response arrives at the host. To allow MQSim to adapt
easily to future SSD developments, we employ a mod-
ular design for the simulator. Our modular approach
allows users to easily modify the implementation of a
single component (e.g., I/O scheduler, address mapping)
without the need to change other parts of the simulator.
We provide two execution modes for MQSim: (1) stan-
dalone execution, and (2) integrated execution with the
gem5 full-system simulator [8]. We validate the perfor-
mance reported by MQSim using several real SSDs. We
find that the response time results reported by MQSim
are very close to the response times of the real SSDs,
with an average (maximum) error of only 11% (18%) for
real storage workload traces.

By faithfully modeling the major features found in
modern SSDs, MQSim can uncover several issues that
existing simulators are unable to demonstrate. One such
issue is the performance impact of inter-flow interference
in modern MQ-SSDs. For two or more concurrent flows
(i.e., streams of I/O requests from multiple applications),
there are three major sources of interference: (1) the
write cache, (2) the mapping table, and (3) the I/O sched-
uler. Using MQSim, we find that inter-flow interference
leads to significant unfairness (i.e., the interference slows

down each flow unequally) in modern SSDs. This is
a major concern, as fairness is a first-class design goal
in modern computing platforms [4, 17, 19, 31, 37, 56–
60, 66, 73–76, 80, 84, 88]. Unfairness reduces the pre-
dictability of the I/O latency and throughput for each
flow, and can allow a malicious flow to deny or delay
I/O service to other, benign flows.

We have made MQSim available as an open source
tool to the research community [1]. We hope that
MQSim enables researchers to explore directions in sev-
eral new and different areas.

We make the following key contributions in this work:
• We use real off-the-shelf SSDs to show that state-

of-the-art SSD simulators do not adequately capture
three important properties of modern SSDs: (1) the
multi-queue model used by modern host–interface
protocols such as NVMe, (2) steady-state SSD behav-
ior, and (3) the end-to-end I/O request latency.

• We introduce MQSim, a simulator that accurately
models both modern NVMe-based and conventional
SATA-based SSDs. To our knowledge, MQSim is
the first publicly-available SSD simulator to faithfully
model the NVMe protocol. We validate the results re-
ported by MQSim against several real state-of-the-art
multi-queue SSDs.

• We demonstrate how MQSim can uncover important
issues in modern SSDs that existing simulators cannot
capture, such as the impact of inter-flow interference
on fairness and system performance.

2 Background
In this section, we provide a brief background on multi-
queue SSD (MQ-SSD) devices. First, we discuss the in-
ternal organization of an MQ-SSD (Section 2.1). Next,
we discuss host–interface protocols commonly used by
SSDs (Section 2.2). Finally, we discuss how the SSD
flash translation layer (FTL) handles requests and per-
forms maintenance tasks (Section 2.3).

2.1 SSD Internals
Modern MQ-SSDs are typically built using NAND flash
memory chips. NAND flash memory [11, 12] supports
read and write operations at the granularity of a flash
page (typically 4 kB). Inside the NAND flash chips, mul-
tiple pages are grouped together into a flash block, which
is the granularity at which erase operations take place.
Flash writes can take place only to pages that are erased
(i.e., free). To minimize the write latency, MQ-SSDs per-
form out-of-place updates (i.e., when a logical page is
updated, its data is written to a different, free physical
page, and the logical-to-physical mapping is updated).
This avoids the need to erase the old physical page dur-
ing a write operation. Instead, the old page is marked as
invalid, and a garbage collection procedure [11–13, 23]
reclaims invalid physical pages in the background.

Figure 1 shows the internal organization of an MQ-
SSD. The components inside the MQ-SSD are divided
into two groups: (1) the back end, which includes the
memory devices; and (2) the front end, which includes
the control and management units. The memory de-
vices (e.g., NAND flash memory [11, 12], phase-change

50 16th USENIX Conference on File and Storage Technologies USENIX Association

Host DRAMHost DRAM
HIL

Device-level
I/O Request Queue

FTL

C
ac

h
ed

WRQ

RDQ

Front end

Chip 0 Chip 1

Back end

Request i,
 Page 1

GC-WRQ

GC-RDQ

Channel0

Chip 3 Queue

M
Q

-S
SD

Request i,
 Page M

SQ 1
CQ 1

SQ: I/O Submission Queue
CQ: I/O Completion Queue

PCIe Bus

SQ 2
CQ 2

SQ N
CQ N

Root
Complex

PCIe
Switch i

DRAM

Write
Cache

PPALPA

Chip 0 Queue

Chip 2 Queue

Chip 1 Queue

FCCFCC

Chip 2 Chip 3
Channel1

FCCFCC

LPA

 Multi-queue request
processing in MQSim

• Detailed request processing delay model, and
• Support for multi-queue-aware cache and

address mapping in MQSim

Fast and efficient
preconditioning in MQSim

Detailed host-to-device
data transmission model

in MQSim

Address
Translation

Address
Translation

Transaction
Scheduling
Transaction
Scheduling

Cache
Management

Cache
Management

D
ie

 0

Plane0
Plane1

D
ie

 0

Plane0
Plane1

D
ie

 1

Plane0
Plane1

D
ie

 1

Plane0
Plane1

M
u

ltip
lexe

d

In
terface

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

B
u

s In
terface

M
u

ltip
lexe

d

In
terface

B
u

s In
terface

1 2
3

3

Figure 1: Organization of an MQ-SSD. As highlighted in the figure (1 , 2 , 3), our MQSim simulator captures
several aspects of MQ-SSDs not modeled by existing simulators.

memory [42], STT-MRAM [40], 3D XPoint [9]) in the
back end are organized in a highly-hierarchical manner
to maximize I/O concurrency. The back end contains
multiple independent bus channels, which connect the
memory devices to the front end. Each channel con-
nects to one or more memory chips. For a NAND flash
memory based SSD, each NAND flash chip is typically
divided into multiple dies, where each die can indepen-
dently execute memory commands. All of the dies within
a chip share a common communication interface. Each
die is made up of one or more planes, which are arrays of
flash cells. Each plane contains multiple blocks. Multi-
ple planes within a single die can execute memory oper-
ations in parallel only if each plane is executing the same
command on the same address offset within the plane.

In an MQ-SSD, the front end includes three major
components [47]. (1) The host–interface logic (HIL)
implements the protocol used to communicate with the
host (Section 2.2). (2) The flash translation layer (FTL)
manages flash resources and processes I/O requests (Sec-
tion 2.3). (3) The flash chip controllers (FCCs) send
commands to and transfer data to/from the memory chips
in the back end. The front end contains on-board DRAM,
which is used by the three components to cache applica-
tion data and store data structures for flash management.

2.2 Host–Interface Logic
The HIL plays a critical role in leveraging the inter-
nal parallelism of the NAND flash memory to provide
higher I/O performance to the host. The SATA pro-
tocol [67] is commonly used for conventional SSDs,
due to widespread support for SATA on enterprise and
client systems. SATA employs Native Command Queu-
ing (NCQ), which allows the SSD to concurrently exe-
cute I/O requests. NCQ allows the SSD to schedule mul-
tiple I/O requests based on which back end resources are
currently idle [29, 50].

The NVM Express (NVMe) protocol [63] was de-
signed to alleviate the bottlenecks of SATA [90], and to
enable scalable, high-bandwidth, and low-latency com-
munication over the PCIe bus. When an application is-
sues an I/O request in NVMe, it bypasses the I/O stack
in the OS and the block layer queue, and instead directly
inserts the request into a submission queue (SQ in Fig-
ure 1) dedicated to the application. The SSD then selects
a request from the SQ, performs the request, and inserts

the request’s job completion information (e.g., ack, read
data) into the request completion queue (CQ) for the cor-
responding application. NVMe has already been widely
adopted in modern SSD products [30, 64, 79, 85, 86].

2.3 Flash Translation Layer
The FTL executes on a microprocessor within the SSD,
performing I/O requests and flash management proce-
dures [11, 12]. Handling an I/O request in the FTL re-
quires four steps for an SSD using NVMe. First, when
the HIL selects a request from the SQ, it inserts the re-
quest into a device-level queue. Second, the HIL breaks
the request down into multiple flash transactions, where
each transaction is at the granularity of a single page.
Next, the FTL checks if the request is a write. If it is,
and the MQ-SSD supports write caching, the write cache
management unit stores the data for each transaction in
the write cache space within DRAM, and asks the HIL
to prepare a response. Otherwise, the FTL translates the
logical page address (LPA) of the transaction into a phys-
ical page address (PPA), and enqueues the transaction
into the corresponding chip-level queue. There are sepa-
rate queues for reads (RDQ) and for writes (WRQ). The
transaction scheduling unit (TSU) resolves resource con-
tention among the pending transactions in the chip-level
queue, and sends transactions that can be performed to its
corresponding FCC [20, 78]. Finally, when all transac-
tions for a request finish, the FTL asks the HIL to prepare
a response, which is then delivered to the host.

The address translation module of the FTL plays a
key role in implementing out-of-place updates. When
a transaction writes to an LPA, a page allocation scheme
assigns the LPA to a free PPA. The LPA-to-PPA mapping
is recorded in a mapping table, which is stored within the
non-volatile memory and cached in DRAM (to reduce
the latency of mapping lookups) [24]. When a trans-
action reads from an LPA, the module searches for the
LPA’s mapping and retrieves the PPA.

The FTL is also responsible for memory wearout
management (i.e., wear-leveling) and garbage collection
(GC) [11–13, 23]. GC is triggered when the number
of free pages drops below a threshold. The GC proce-
dure reclaims invalidated pages, by selecting a candidate
block with a high number of invalid pages, moving any
valid pages in the block into a free block, and then eras-
ing the candidate block. Any read and write transactions

USENIX Association 16th USENIX Conference on File and Storage Technologies 51

generated during GC are inserted into dedicated read
(GC-RDQ) and write (GC-WRQ) queues. This allows
the transaction scheduling unit to schedule GC-related
requests during idle periods.

3 Simulation Challenges for
Modern MQ-SSDs

In this section, we compare the capabilities of state-of-
the-art SSD simulators to the common features of the
modern SSD devices. As shown in Figure 1, we identify
three significant features of modern SSDs that are not
supported by current simulation tools: 1 multi-queue
support, 2 fast modeling of steady-state behavior, and
3 proper modeling of the end-to-end request latency.

While some of these features are also present in some
conventional SSDs, their lack of support in existing sim-
ulators is more critical when we evaluate modern and
emerging MQ-SSDs, resulting in large deviations be-
tween simulation results and measured performance.

3.1 Multi-Queue Support
A fundamental difference of a modern MQ-SSD from a
conventional SSD is its use of multiple queues that di-
rectly expose the device controller to applications [90].
For conventional SSDs, the OS I/O scheduler coordi-
nates concurrent accesses to the storage devices and en-
sures fairness for co-running applications [66, 68]. MQ-
SSDs eliminate the OS I/O scheduler, and are them-
selves responsible for fairly servicing I/O requests from
concurrently-running applications and guaranteeing high
responsiveness. Exposing application-level queues to the
storage device enables the use of many optimized man-
agement techniques in the MQ-SSD controller, which
can provide high performance and a high level of both
fairness and responsiveness. This is mainly due to the
fact that the device controller can make better schedul-
ing decisions than the OS, as the device controller knows
the current status of the SSD’s internal resources.

We investigate how the performance of a flow1

changes when the flow is concurrently executed with
other flows on real MQ-SSDs. We conduct a set of ex-
periments where we control the intensity of synthetic
workloads that run on four new off-the-shelf MQ-SSDs
released between 2016 and 2017 (see Table 4 and Ap-
pendix A). In each experiment, there are two flows,
Flow-1 and Flow-2, where each flow always keeps its
I/O queue full with only sequential read accesses of 4 kB
average request size. We control the intensity of a flow
by adjusting its I/O queue depth. A deeper I/O queue
results in a more intensive flow. We hold the I/O queue
depth of Flow-1 constant in all experiments, setting it to
8 requests. We sweep eight different values for the I/O
queue depth of Flow-2, ranging from 8 to 1024 requests.

To quantify the I/O service fairness of each device, we
measure the average slowdown of each executed flow,
and then use the slowdown to calculate fairness using
Equation 1. We define the slowdown of a flow fi as
S fi =RT shared

fi
/RT alone

fi
, where RT shared

fi
is the response time

of fi when it is run concurrently with other flows, and

1We assume that each I/O flow uses a separate I/O queue.

RT alone
fi

is the response time of fi when it runs alone. Fair-
ness (F) is calculated as [22, 56, 58]:

F =
MIN

i
{S fi}

MAX
i
{S fi}

(1)

According to the above definition: 0 < F ≤ 1. Lower F
values indicate higher differences between the minimum
and maximum slowdowns of all concurrently-running
flows, which we say is more unfair to the flow that is
slowed down the most. Higher F values are desirable.

Figure 2 depicts the slowdown, normalized throughput
(IOPS), and fairness results when we execute Flow-1
and Flow-2 concurrently on our four target MQ-SSDs
(which we call SSD-A, SSD-B, SSD-C, and SSD-D).
The x-axes in all of the plots in Figure 2 represent the
queue depth (i.e., the flow intensity) of Flow-2 in the ex-
periments. For each SSD, we show three plots from left
to right: (1) the slowdown and normalized throughput of
Flow-1, (2) the slowdown and normalized throughput of
Flow-2, and (3) fairness.

 0

 5

 10

 15

 20

 25

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1
S

lo
w

do
w

n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-A

 0

 5

 10

 15

 20

 25

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

 0

 7

 14

 21

 28

 35

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-B

 0

 7

 14

 21

 28

 35

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

 0

 6

 12

 18

 24

 30

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-C

 0

 6

 12

 18

 24

 30

8 16 32 64 128 256
 0

 0.2

 0.4

 0.6

 0.8

 1

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

 0

 0.4

 0.8

 1.2

 1.6

 2

8 16 32 64 128 256
 0

 0.3

 0.6

 0.9

 1.2

 1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

SSD-D

 0

 0.4

 0.8

 1.2

 1.6

 2

8 16 32 64 128 256
 0

 0.3

 0.6

 0.9

 1.2

 1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

 0

 0.2

 0.4

 0.6

 0.8

 1

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0
0.25
0.5
0.75
1

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

Figure 2: Performance of Flow-1 (left) and Flow-2

(center), and fairness (right), when flows are concur-
rently executed with different intensities on four real
MQ-SSDs.

We make four major observations from Figure 2.
First, in SSD-A, SSD-B, and SSD-C, the throughput of
Flow-2 substantially increases proportionately with the
queue depth. Aside from the maximum bandwidth avail-
able from the SSD, there is no limit on the through-
put of each I/O flow. Second, Flow-1 is slowed down
significantly due to interference from Flow-2 when the
I/O queue depth of Flow-2 is much greater than that
of Flow-1. Third, for SSD-A, SSD-B, and SSD-C, the
slowdown of Flow-2 becomes almost negligible (i.e., its

52 16th USENIX Conference on File and Storage Technologies USENIX Association

value approaches 1) as the intensity of Flow-2 increases.
Fourth, SSD-D limits the maximum throughput of each
flow, and thus the negative impact of Flow-2 on the per-
formance of Flow-1 is well controlled. Further experi-
ments with a higher number of flows reveal that one flow
cannot exploit more than a quarter of the full I/O band-
width of SSD-D, indicating that SSD-D has some level
of internal fairness control. In contrast, one flow can un-
fairly exploit the full I/O capabilities of the other three
SSDs.

We conclude that (1) the relative intensity of each
flow significantly impacts the throughput delivered to
each flow; and (2) MQ-SSDs with fairness controls, such
as SSD-D, perform differently from MQ-SSDs with-
out fairness controls when the relative intensities of
concurrently-running flows differ. Thus, to accurately
model the performance of MQ-SSDs, an SSD simula-
tor needs to model multiple queues and enable multiple
concurrently-running flows.

3.2 Steady-State Behavior
SSD performance evaluation standards explicitly clar-
ify that the SSD performance should be reported in the
steady state [71].2 As a consequence, pre-conditioning
(i.e., quickly reaching steady state) is an essential re-
quirement for SSD device performance evaluation, in or-
der to ensure that the results are collected in the steady
state. This policy is important for three reasons. First, the
garbage collection (GC) activities are invoked only when
the device has performed a certain number of writes,
which causes the number of free pages in the SSD to
drop below the GC threshold. GC activities interfere
with user I/O activity and can significantly affect the
sustained device performance. However, a fresh out-of-
the-box (FOB) device is unlikely to execute GC. Hence,
performance results on an FOB device are unrealistic as
they would not account for GC [71]. Second, the steady-
state benefits of the write cache may be lower than the
short-term benefits, particularly for write-heavy work-
loads. More precisely, in the steady state, the write cache
is filled with application data and warmed up, and it is
highly likely that no free slot can be allocated to new
write requests. This leads to cache evictions and in-
creased flash write traffic in the back end [33]. Third,
the physical data placement of currently-running appli-
cations is highly dependent on the device usage history
and the data placement of previous processes. For exam-
ple, which physical pages are currently free in the SSD
depends on how previous I/O requests wrote to and in-

2Based on the SNIA definition [71], a device is in the steady state
if its performance variation is limited to a deterministic range.

validated physical pages. As a result, channel- and chip-
level parallelism in SSDs is limited in the steady state.

Although a number of works do successfully precon-
dition and simulate steady-state behavior, many previous
studies have not explored the effect of steady-state be-
havior on their proposals. Instead, their simulations start
with an FOB SSD, and never reach steady state (e.g.,
when each physical page of the SSD has been written
to at least once). Most well-known storage traces are not
large enough to fill the entire storage space of a modern
SSD. Figure 3 shows the total write volume of popular
storage workloads [6, 53–55, 61]. We observe that most
of the workloads have a total write volume that is much
smaller than the storage capacity of most SSDs, with an
average write volume of 60 GB. Even for the few work-
loads that are large enough to fill the SSD, it is time con-
suming for many existing simulators to simulate each I/O
request and reach steady state (see Section 5). Therefore,
it is crucial to have a simulator that enables efficient and
high-performance steady-state simulation of SSDs.

3.3 Real End-to-End Latency
Request latency is a critical factor of MQ-SSD perfor-
mance, since it affects how long an application stalls on
an I/O request. The end-to-end latency of an I/O request,
from the time it is inserted into the host submission queue
to the time the response is sent back from the MQ-SSD
device to the completion queue, includes seven different
parts, as we show in Figure 4. Existing simulation tools
model only some parts of the end-to-end latency, which
are usually considered to be the dominant parts of the
end-to-end latency [3, 26, 27, 35, 38].

Figure 4a illustrates the end-to-end latency diagram
for a small 4 kB read request in a typical NAND flash-
based MQ-SSD. It includes I/O job enqueuing in the sub-
mission queue (SQ) 1 , host-to-device I/O job transfer
over the PCIe bus 2 , address translation and transac-
tion scheduling in the FTL 3 , read command and ad-
dress transfer to the flash chip 4 , flash chip read 5 ,
read data transfer over the Open NAND Flash Interface
(ONFI) [65] bus 6 , and device-to-host read data transfer
over the PCIe bus 7 . Steps 5 and 6 are assumed to be
the most time-consuming parts in the end-to-end request
processing. Considering typical latency values for an
8 kB page read operation, the I/O job insertion (< 1 µs, as
measured on our real SSDs), the FTL request processing
on a multicore processor (1 µs) [47] (assuming a mapping
table cache hit), and the I/O job and data transfer over the
PCIe bus (4 µs) [41, 46] make negligible contributions
compared to the flash read (50-110 µs) [49, 51, 52, 69]
and the ONFI NV-DDR2 [65] flash transfer (20 µs).

However, the above assumption is unrealistic due to
two major reasons. First, for some I/O requests, FTL re-

 0

 40

 80

 120

 160

 200

fin1
fin2

w
srch-1

w
srch-2

w
srch-3

dev
exchange

m
snfs

m
sncfs

rad-be

rad-ps

tpcc
tpce

hm
-0
hm

-1
m

ds-0

m
ds-1

prn-0
prn-1

proj-0

proj-1

proj-2

proj-3

proj-4

prxy-0

prxy-1

rsrch-0

rsrch-1

rsrsch-2

src1-0

src1-1

src1-2

src2-0

src2-1

src2-2

stg-0
stg-1

ts-0
usr-0

usr-1
usr-2

w
eb-0

w
eb-1

w
eb-2

w
eb-3

w
ebdev-0

w
ebdev-1

w
ebdev-2

w
ebdev-3

M
ean

To
ta

l W
ri

te
V

o
lu

m
e

(G
B

)

7
2

4

8
0

9

Figure 3: Total amount of data written by commonly-used storage workloads [6, 53–55, 61].

USENIX Association 16th USENIX Conference on File and Storage Technologies 53

Enqueue I/O job
in the SQ

ti
m

e

Request
processing

ONFI data
Xfer (TONFI Xfer)

I/O job Xfer
over PCIe 5

Fl
as

h
 r

ea
d

(T
Fl

a
sh

 R
ea

d
)

Response data
Xfer over PCIe

Highest contribution
to end-to-end latency

6

3
2

7

1 Read request
Xfer to chip

4

MQ-SSD
HIL

Host
Memory

MQ-SSD
Firmware

User
Application

NAND flash
Chip

(a) NAND flash memory

3D
 X

p
o

in
t

re
ad

(T

3
D

X
p

o
in

t
R

ea
d
)

MQ-SSD
HIL

Host
Memory

MQ-SSD
Firmware

Enqueue I/O job
in the SQ

ti
m

e

Request
processing

User
Application

3D Xpoint
Chip

I/O job Xfer
over PCIe

5

Response data
Xfer over PCIe

Highest contribution
to end-to-end latency

6

3

2

7

1

Read request
Xfer to chip

4

Fast data
Xfer (TFast Xfer)

(b) 3D XPoint memory

Figure 4: Timing diagram for a 4 kB read request in
(a) NAND-flash and (b) 3D XPoint MQ-SSDs.

quest processing may not always be negligible, and can
even become comparable to the flash read access time.
For example, prior work [26] shows that if the FTL uses
page-level address mapping, then a workload without lo-
cality incurs a large number of misses in the cached map-
ping table (CMT). In case of a miss in the CMT, the user
read operation stalls until the mapping data is read from
the SSD back end and transferred to the front end [24].
This can lead to a substantial increase in the latency of
Step 3 in Figure 4a, which can become even longer than
the combined latency of Steps 5 and 6 . In an MQ-SSD,
as a greater number of I/O flows execute concurrently,
there is more contention for the CMT, leading to a larger
number of CMT misses.

Second, as shown in Figure 4b, cutting-edge non-
volatile memory technologies, such as 3D XPoint [7, 9,
16, 48], dramatically reduce the access and data trans-
fer times of the MQ-SSD back end, by as much as
three orders of magnitude compared to that of NAND
flash [25, 40, 42, 43]. The total latency of the 3D
XPoint read and transfer (< 1 µs) contributes less than
10% to the end-to-end I/O request processing latency
(<10 µs) [7, 16]. In this case, a conventional simulation
tool would be inaccurate, as it does not model the major
steps contributing to the end-to-end latency.

In summary, a detailed, realistic model of end-to-end
latency is key for accurate simulation of modern SSD de-
vices with (1) multiple I/O flows that can potentially lead
to a significant increase in CMT (cached mapping table)
misses, and (2) very-fast NVM technologies such as 3D
XPoint that greatly reduce raw memory read/write laten-
cies. Existing simulation tools do not provide accurate
performance results for such devices.

4 Modeling a Modern MQ-SSD with
MQSim

To our knowledge, there is no SSD modeling tool that
supports multi-queue I/O execution, fast and efficient
modeling of the SSD’s steady-state behavior, and a full
end-to-end request latency estimation. In this work, we
present MQSim, a new simulation framework that is de-
veloped from scratch to support all of these three im-
portant features that are required for accurate perfor-
mance modeling and design space exploration of mod-
ern MQ-SSDs. Although mainly designed for MQ-SSD
simulation, MQSim also supports simulation of the con-
ventional SATA-based SSDs that implement native com-
mand queuing (NCQ). Our new simulator models all of
the components shown in Figure 1, which exist in mod-
ern SSDs. Table 1 provides a quick comparison between
MQSim and previous SSD simulators.

MQSim is a discrete-event simulator written in C++
and is released under the permissive MIT License [1].
Figure 5 depicts a high-level view of MQSim’s main
components and their interaction. In this section, we
briefly describe these components and explain their novel
features with respect to the previous simulators.

Front endFront end Back end

Data Cache Manager

N
V

M
 C

h
an

n
e

l

N
V

M
 C

h
ip

Flash Block Manager

Cached Mapping Table

Address Mapping Unit

GC and WL Unit

N
V

M
 P

H
Y

Input Stream Manager

Request Fetch Unit

Host Interface

Tr
an

sa
ct

io
n

Sc

h
ed

u
lin

g
U

n
it

 (
TS

U
)

FTL

Figure 5: High-level view of MQSim components.

4.1 SSD Back End Model
MQSim provides a simple yet detailed model of the flash
memory chips. It considers three major latency compo-
nents of the SSD back end: (1) address and command
transfer to the memory chip; (2) flash memory read/

Table 1: A quick comparison between MQSim and existing SSD modeling tools.

Tool Multi-Queue Support Preconditioning End-to-end Latency Built-in Implementation
of SSD Components

MQSim Multi-queue scheduling
and prioritization

Fast and automatic
(enabled by default)

Detailed model of the
end-to-end latency

All major components that
exist in modern SSDs

Existing Tools Not supported Manual, optional,
and long execution time

Missing some constant- or
variable-latency components

Implementation is missing for
some major components

54 16th USENIX Conference on File and Storage Technologies USENIX Association

write execution for different technologies that store 1,
2, or 3 bits per cell [32]; and (3) data transfer to/from
memory chips. MQSim’s flash model considers the con-
straints of die- and plane-level parallelism, and advanced
command execution [65]. One important new feature of
MQSim is that it can be configured or easily modified to
simulate new NVM chips (e.g., those that do not need
erase-before-write). Due to decoupling of the NVM chip
communication interface from the chip’s internal imple-
mentation of the memory operations, one can modify the
NVM chip of MQSim without the need to change the
implementation of the other MQSim components.

Another new feature of MQSim is that it decouples the
sizes of read and write operations. This feature helps to
exploit large page sizes of modern flash memory chips in
that can enable better write performance, while prevent-
ing the negative effects of large page sizes on read per-
formance. For flash chip writes, the operation is always
page-sized [11, 12]. MQSim’s data cache controller can
delay writes to eliminate write-back of partially-updated
logical pages (where the update size is smaller than the
physical page size). When a partially-updated logical
page should be written back to the flash storage, the un-
changed sub-pages (sectors) of the logical page are first
read from the physical page that stores page data. Then,
unchanged and updated pieces of the page are merged. In
the last step, the entire page data is written to a new free
physical page. For flash chip reads, the operation could
be smaller than the physical page size. When a read op-
eration finishes, only the data pieces that are requested
in the I/O request are transferred from flash chips to the
SSD controller, avoiding the data transfer overhead of
large physical pages.

4.2 SSD Front End Model
The front end model of MQSim includes all of the basic
components of a modern SSD controller and provides
many new features that do not exist in previous SSD
modeling tools.

4.2.1 Host–Interface Model
The host interface component of MQSim provides both
NVMe multi-queue (MQ) and SATA native command
queue models for a modern SSD. To our knowledge,
MQSim is the first modeling tool that supports MQ I/O
request processing. There is a request fetch unit within
the host interface of MQSim that fetches and schedules
application I/O requests from different input queues. The
NVMe host interface provides users with a parameter,
called QueueFetchSize, that can be used to tune the
behavior of the request fetch unit, in order to accurately
model the behavior of real MQ-SSDs. This parameter
defines the maximum number of I/O requests from each
SQ that can be concurrently serviced in the MQ-SSD.
More precisely, at any given time, the number of I/O re-
quests that are fetched from a host SQ to the device-level
queue is always less than or equal to QueueFetchSize.
This parameter has a large impact on the MQ-SSD multi-
flow request processing characteristics discussed in Sec-
tion 3.1 (i.e., on maximum achievable throughput per
I/O flow and probability of inter-flow interference). Ap-

pendix A.3 analyzes the effect of this parameter on per-
formance.

MQSim also models different priority classes for host-
side request queues, which are part of the NVMe stan-
dard specification [63].

4.2.2 Data Cache Manager
MQSim has a data cache manager component that im-
plements a DRAM-based cache with the least-recently-
used (LRU) replacement policy. The DRAM cache can
be configured to cache (1) recently-written data (de-
fault mode), (2) recently-read data, or (3) both recently-
written and recently-read data. A new feature of
MQSim’s cache manager, compared to previous SSD
modeling tools, is that it implements a DRAM access
model in which the contention among the concurrent ac-
cesses to DRAM chips and the latency of DRAM com-
mands are considered. The DRAM cache models in
MQSim can be extended to make use of detailed and
fast DRAM simulators, such as Ramulator [2, 39], to
perform detailed studies of the effect of DRAM cache
performance on the overall MQ-SSD performance. We
leave this to future work.

4.2.3 FTL Components
MQSim implements all the main FTL components, in-
cluding (1) the address translation unit, (2) the garbage
collection (GC) and wear-leveling (WL) unit, and (3) the
transaction scheduling unit. MQSim provides different
options for each of these components, including state-of-
the-art address translation strategies [24, 78], GC candi-
date block selection algorithms [10, 18, 23, 45, 81, 91],
and transaction scheduling schemes [34, 87]. MQSim
also implements several state-of-the-art GC and flash
management mechanisms, including preemptible GC I/O
scheduling [44], intra-plane data movement from one
physical page to another physical page using copyback
read and write command pairs [27], and program/erase
suspension [87] to reduce the interference of GC op-
erations with application I/O requests. One novel fea-
ture of MQSim is that all of its FTL components sup-
port multi-flow (i.e., multi-input queue) request process-
ing. For example, the address mapping unit can partition
the cached mapping table space among the concurrently
running flows. This inherent support of multi-queue-
aware request processing facilitates the design space ex-
ploration of performance isolation and QoS schemes for
MQ-SSDs.

4.3 Modeling End-to-End Latency
In addition to the flash operation and internal data trans-
fer latency (steps 3 , 4 , 5 , and 6 in Figure 4), there
is a mix of variable and constant latencies that MQSim
models to determine the end-to-end request latency.
Variable Latencies. These are the variable request pro-
cessing times in FTL that result from contention in the
cached mapping table and the DRAM write cache. De-
pending on the request type (either read or write) and the
request’s logical address, the request processing time in
FTL includes some of the following items: (1) the time
required to read/write from/to the data cache, and (2) the

USENIX Association 16th USENIX Conference on File and Storage Technologies 55

time to fetch mapping data from flash storage in case of
a miss in the cached address mapping table.
Constant Latencies. These include the times required to
transmit the I/O job information, the entire user data, and
the I/O completion information over the PCIe bus, and
the firmware (FTL) execution time on the controller’s
microprocessor. The PCIe transmission latencies are cal-
culated based on a simple packet latency model provided
by Xilinx [41] that considers: (1) the PCIe communica-
tion bandwidth, (2) the payload and header sizes of the
PCIe Transaction Layer Packets (TLP), (3) the size of
the NVMe management data structures, and d) the size
of the application data. The firmware execution time is
estimated using both a CPU and cache latency model [1].

4.4 Modeling Steady-State Behavior
The basic assumption of MQSim is that all simulations
should be executed when the modeled device is in steady
state. To model the steady-state behavior, MQSim, by de-
fault, automatically executes a preconditioning function
before starting the actual simulation process. This func-
tion performs preconditioning in a short time (e.g., less
than 8 min when running tpcc [53] on an 800 GB MQ-
SSD) without the need to execute additional I/O requests.
During preconditioning, all available physical pages of
the modeled SSD are transitioned to either a valid or in-
valid state, based on the steady-state valid/invalid page
distribution model provided in [82] (only very few flash
blocks are assumed to remain free and are added to the
free block pool). MQSim pre-processes the input trace to
extract the LPA (logical page address) access characteris-
tics of the application I/O requests in the trace, and then
uses the extracted information as inputs to the valid/in-
valid page distribution model. In addition, input trace
characteristics, such as the average write arrival rate and

the distribution of write addresses, are used to warm up
the write cache.

4.5 Execution Modes
MQSim provides two modes of operation: (i) standalone
mode, where it is fed a real disk trace or a synthetic work-
load, and (ii) integrated mode, where it is fed disk re-
quests from an execution-driven engine (e.g., gem5 [8]).

5 Comparison with Previous Simulators
The increasing usage of SSDs in modern computing sys-
tems has boosted interest in SSD design space explo-
ration. To this end, several simulators have been devel-
oped in recent years. Table 2 summarizes the features of
MQSim and popular existing SSD modeling tools. The
table also shows the average error rates for the perfor-
mance of real storage workloads reported by each simu-
lator, compared to the performance measured on four real
MQ-SSDs (see Appendix A.1 for our methodology).

Existing tools either do not model some major com-
ponents of modern SSDs or provide very simplistic com-
ponent models that lead to unrealistic I/O request latency
estimation. In contrast, MQSim provides detailed imple-
mentations for all of the major components of modern
SSDs. MQSim is written in C++ and has 13K lines of
code (LOC). Next, we discuss the main advantages of
MQSim compared to the previous tools.
Host–Interface Logic. As Table 2 shows, most of the
existing simulators assume a very simplistic HIL model
with no explicit management mechanism for the I/O re-
quest queue. This leads to an unrealistic SSD model re-
garding the requirements of both NVMe and SATA pro-
tocols. As we mention in Section 3, the concurrent exe-
cution of I/O flows presents many challenges for perfor-
mance predictability and fairness in MQ-SSDs. No ex-

Table 2: Comparison of MQSim with previous SSD modeling tools.

Simulator

HIL Protocol Execution Mode End-to-End Latency Front-End Components Simulation Error (%)
NVMe SATA

A
lo

ne
1

Fu
ll2

E
m

ul
3

Pr
ec

4

N
V

M
R

/W
5

N
V

M
X

fe
r

FT
L

Pr
oc

6

C
ac

he
A

cc
.7

H
os

tX
fe

r8

M
ap

P9

M
ap

H
10

G
C

W
ri

te
C

ac
he

T
SU

11

W
R

L
12

M
Q

FT
L

13

L
O

C
14

SS
D

-A

SS
D

-B

SS
D

-C

SS
D

-D

MQ NCQ

MQSim X X X X X X X X X X X X X X X X X 13K 8 6 18 14

SSDModel [3] X X X X X X X 1K 91 155 196 136

FlashSim [38] X X X X X X X X 8K 99 259 310 138

SSDSim [27] X X X X X X 5K 70 68 74 85

NANDFlashSim [32] X X 7K – – – –

VSSIM [92] X X X X X X X X 6K – – – –

WiscSim [26] X X X X X X X X X 7K 95 277 324 135

SimpleSSD [35] X X X X X X X X 7K – – – –

1 Standalone execution 2 Integrated execution with full-system simulator 3 SSD emulation for real system
4 Fast and accurate preconditioning of the modeled SSD to enable accurate steady-state results
5 Flash (NVM) read/write timing 6 FTL request processing overhead 7 Accurate modeling of write cache access latency
8 Host-to-device and device-to-host data transfer delay 9 Page-level address mapping 10 Hybrid address mapping
11 FTL transaction scheduling unit 12 FTL wear-leveling unit 13 Built-in support for multi-queue-aware request processing in FTL
14 Lines of source code

56 16th USENIX Conference on File and Storage Technologies USENIX Association

isting simulator implements NVMe and multi-queue I/O
request management, and, hence, accurately models the
behavior of MQ-SSDs. Also, except for WiscSim, we
find that no existing simulator implements an accurate
model of the SATA protocol and NCQ request process-
ing. This leads to unrealistic SATA device simulation, as
NCQ-based I/O scheduling plays a key role in the per-
formance of real SSD devices [15, 26].
Steady-State Simulation. To our knowledge, accurate
and fast steady-state behavior modeling is not provided
by many existing SSD modeling tools. Among the tools
listed in Table 2, only SSDSim provides a function,
called make aged, to change the status of a set of phys-
ical pages to valid before starting the actual execution
of an input trace. This simple method cannot accurately
replicate the steady-state behavior of an SSD for two rea-
sons. First, after the execution of make aged, the phys-
ical blocks would include only valid pages or only free
pages. This is far from the steady-state status of blocks
in real devices, where each non-free block has a mix of
valid and invalid pages [28, 81, 82]. Second, the steady-
state status of the data cache is not modeled, i.e., the sim-
ulation starts with a completely empty write cache.

In general, it is possible to bring these simulators to
steady state. However, there is no fast pre-conditioning
support for them, and pre-conditioning must be per-
formed by executing traces. Preconditioning an exist-
ing simulator requires users to generate traces with a
large enough number of I/O requests, and can signifi-
cantly slow down the simulator, especially when a high-
capacity SSD is modeled. For example, our studies with
SSDSim show that pre-conditioning may increase the
simulation time up to 80x if an 800 GB SSD is modeled.3

Detailed End-to-End Latency Model. As described in
Section 3.3, the end-to-end latency of an application I/O
request includes different components. Table 2 shows
that latency modeling in existing simulators is mainly fo-
cused on the latency of the flash chip operation and the
SSD internal data transfer. As we explain in Section 3.3,
this is an unrealistic model of the end-to-end I/O request
processing latency, even for a conventional SSD.

To study the accuracy of the existing tools in model-
ing real devices, we create four models for the four real
SSDs shown in Table 4 in each simulator, and execute
three real traces, i.e., tpcc, tpce, and exchange. We
exclude the simulators that do not support trace-based
execution. The four rightmost columns of Table 2 show
the average error rate of each simulator in modeling the
performance (i.e., read and write latency) of these four
real devices. The error rates of the four evaluated simu-
lators are almost one order of magnitude higher than that
of MQSim. We believe that these high error rates are due
to four major reasons: (1) the lack of write cache or inac-
curate modeling of the write cache access latency, (2) the
lack of built-in support for steady-state modeling, (3) in-
complete modeling of the request processing latency in
FTL, and (4) the lack of modeling of the host-to-device
communication latency.

3The increase in simulation time depends on the access pattern, in-
tensity, and mix of I/O requests (read vs. write) of the workload.

6 Research Directions Enabled by MQSim
MQSim is a flexible simulation tool that enables differ-
ent studies on both modern and conventional SSD de-
vices. In this section, we discuss two new research di-
rections enabled by MQSim, which could not be ex-
plored easily using existing simulation tools. First, we
use MQSim to perform a detailed analysis of inter-flow
interference in a modern MQ-SSD (Section 6.1). We ex-
plain how sharing different internal resources in an MQ-
SSD, such as the write cache, cached mapping table, and
back end resources, can introduce fairness issues. Sec-
ond, we explain how the full-system simulation mode
of MQSim can enable detailed application-level studies
(Section 6.2).

6.1 Design Space Exploration of Fairness
and QoS Techniques for MQ-SSDs

As we describe in Section 1, fairness and QoS should be
considered as first-class design criteria for modern dat-
acenter SSDs. MQSim provides an accurate framework
to study inter-flow interference, thus enables the ability
to devise interference-aware MQ-SSD management al-
gorithms for sharing of the internal MQ-SSD resources.
As we show in Section 3.1, concurrently running two
I/O flows might lead to disproportionate slowdowns for
each flow, greatly degrading fairness and proportional
progress. This is particularly important in high-end SSD
devices, which provide higher throughput per I/O flow,
as we show in Appendix A.3.

We find that this inter-flow interference is mainly the
result of contention that takes place at three locations in
an MQ-SSD: 1) the write cache in the front end, 2) the
cached mapping table (CMT) in the front end, and 3) the
storage resources in the back end. In this section, we
use MQSim to explore the impact of these three points
of contention on performance and fairness, which cannot
be explored accurately using existing simulators.

6.1.1 Methodology
MQ-SSD Configuration. Table 3 lists the specification
of the MQ-SSD that we model in MQSim for our con-
tention studies.
Metrics. To measure performance, we use weighted
speedup (WS) [70] of the average response time (RT),
which represents the overall efficiency and system-level

Table 3: Configuration of the simulated SSD.

SSD Organization

Host interface: PCIe 3.0 (NVMe 1.2)
User capacity: 480 GB
Write cache: 256 MB, CMT: 4 MB
8 channels, 4 chips per channel
QueueFetchSize = 512

Flash Communication ONFI 3.1 (NV-DDR2)
Interface Width: 8 bit, Rate: 333 MT/s

Flash
Microarchitecture

8 KiB page, 448 B metadata per page,
256 pages per block, 2048 blocks per
plane, 2 planes per die

Flash Access
Parameters

Read latency: 75 µs, Program
latency: 750 µs, Erase latency: 3.8 ms

USENIX Association 16th USENIX Conference on File and Storage Technologies 57

throughput [21] provided by an MQ-SSD during the con-
current execution of multiple flows:

WS = ∑
i

RT alone
i

RT shared
i

(2)

where RT alone
i and RT shared

i are defined in Section 3.1.
To demonstrate the effect of inter-flow interference on

fairness, we report slowdown and fairness (F) metrics, as
defined in Section 3.1.

6.1.2 Contention at the Write Cache

One point of contention among concurrently-running
flows in an MQ-SSD is the write cache. For flows with
low to moderate write intensity (where the average depth
of the I/O queue less than 16), or with high spatial lo-
cality, the write cache decreases the response time of
write requests, by avoiding the need for the requests to
wait for the write to complete to the underlying mem-
ory. For flows with high write intensity or with highly-
random accesses, the write requests fill up the limited
capacity of the write cache quickly, causing significant
cache thrashing and limiting the decrease in write re-
quest response time. Such flows not only do not ben-
efit from the write cache themselves, but also prevent
other lower-write-intensity flows from benefiting from
the write cache, leading to a large performance loss for
the lower-write-intensity flows.

To understand how the contention at the write cache
affects system performance and fairness, we perform a
set of experiments where we run two flows, Flow-1
and Flow-2, both of which perform only random-access
write requests. In both flows, the average request size is
set to 8 kB. We set Flow-1 to have a moderate write in-
tensity, by limiting the queue depth to 8 requests. We
vary the queue depth of Flow-2 from 8 requests to
256 requests, to control the write intensity of the flow.
In order to isolate the effect of write cache interference
in our experiments, we (1) assign each flow to a ded-
icated subset of back end resources (i.e., Flow-1 uses
Channels 1–4, and Flow-2 uses Channels 5–8), to avoid
introducing any interference in the back end; and (2) use
a perfect CMT, where all address translation requests are
hits, to avoid interference due to limited CMT capacity.

Figure 6a shows the slowdown of each flow when the
two flows run concurrently, compared to when each flow
runs alone. Figure 6b shows the fairness and perfor-
mance of the system when the two flows run concur-
rently. We make four key observations from the figures.
First, Flow-1 is slowed down significantly when Flow-2
has a high write intensity (i.e., its queue depth is greater
than 16), indicating that at high write intensities, Flow-2
induces write cache trashing. Second, the slowdown of
Flow-2 is negligible, because of the low write intensity
of Flow-1. Third, fairness degrades greatly, as a result
of the write cache contention, when Flow-2 has a high
write intensity. Fourth, write cache contention causes an
MQ-SSD to be inefficient at concurrently running multi-
ple I/O flows, as the weighted speedup is reduced by over
50% when Flow-2 has a high write intensity compared
to when it has a low write intensity.

 0

 7

 14

 21

 28

 35

 42

8 16 32 64 128 256

S
lo

w
do

w
n

Queue Depth of Flow-2

Flow-1

 0

 7

 14

 21

 28

 35

 42

8 16 32 64 128 256

S
lo

w
do

w
n

Queue Depth of Flow-2

Flow-2

(a) Slowdown of Flow-1 (left) and Flow-2 (right)

0.0

0.2

0.4

0.6

0.8

1.0

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0

0.4

0.8

1.2

1.6

2.0

8 16 32 64 128 256

W
ei

gh
te

d
S

pe
ed

up

Queue Depth of Flow-2

(b) Fairness (left) and system performance (right)

Figure 6: Impact of write cache contention.

We conclude that write cache contention leads to
unfairness and overall performance degradation for
concurrently-running flows when one flow has a high
write intensity. In these cases, the high-write-intensity
flow (1) does not benefit from the write cache; and
(2) prevents other, lower-write-intensity flows from tak-
ing advantage of the write cache, even though the other
flows would otherwise benefit from the cache. This mo-
tivates the need for fair write cache management algo-
rithms for MQ-SSDs that take inter-flow interference and
flow write intensity into account.

6.1.3 Contention at the Cached Mapping Table
As we discuss in Section 3.3, address translation can no-
ticeably increase the end-to-end latency of an I/O re-
quest, especially for read requests. We find that for
I/O flows with random access patterns, the cached map-
ping table (CMT) miss rate is high due to poor reuse of
address translation mappings, which causes the I/O re-
quests generated by the flow to stall for long periods of
time during address translation. This is not true for I/O
flows with sequential accesses, for which the CMT miss
rate remains low due to spatial locality. However, when
two I/O flows run concurrently, where one flow has a
random access pattern and another flow has a sequential
access pattern, the poor locality of the flow with the ran-
dom access pattern may cause both flows to have high
CMT miss rates.

To understand how contention at the CMT affects sys-
tem performance and fairness, we perform a set of ex-
periments where we concurrently run two flows that is-
sue read requests with an average request size of 8 kB. In
these experiments, Flow-1 has a fully-sequential access
pattern, and Flow-2 has a random access pattern for a
fraction of the total execution time, and has a sequential
access pattern for the remaining time. We vary the ran-
domness (i.e., the fraction of the execution time with a
random access pattern) of Flow-2. To isolate the effects
of CMT contention, we assign Flow-1 to Channels 1–4
in the back end, and assign Flow-2 to Channels 5–8.

Figure 7a shows the slowdown and change in CMT hit
rate of each flow when Flow-1 and Flow-2 run concur-

58 16th USENIX Conference on File and Storage Technologies USENIX Association

rently, compared to when each flow runs alone. Figure 7b
shows the fairness and overall performance of the sys-
tem when the two flows run concurrently. We make two
observations from the figures. First, as the randomness
of Flow-2 increases, the CMT hit rate of Flow-1 de-
creases, while the CMT hit rate of Flow-2 remains con-
stant. This indicates that the randomness of Flow-2 in-
troduces contention at the CMT, which hurts the CMT hit
ratio of Flow-1. Second, as the CMT hit rate of Flow-1
decreases, the flow experiences a greater slowdown, with
a 2.1x slowdown when Flow-2’s access pattern is com-
pletely random. Third, as the randomness of Flow-2
increases, both fairness and overall system performance
decrease, as the interference introduced by Flow-2 hurts
the performance of Flow-1 without providing any no-
ticeable benefit to Flow-2.

0.0

0.5

1.0

1.5

2.0

2.5

0% 20% 40% 60% 80% 100%
0.0

0.2

0.5

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 C
M

T
 H

it
R

at
e

Randomness of Flow-2

Flow-1

0.0

0.5

1.0

1.5

2.0

2.5

0% 20% 40% 60% 80% 100%
0.0

0.2

0.5

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 C
M

T
 H

it
R

at
e

Randomness of Flow-2

Flow-2

(a) Slowdown and CMT hit rate (normalized to the hit rate when
Flow-2 randomness is 0%) for Flow-1 (left) and Flow-2 (right)

0.0

0.2

0.4

0.6

0.8

1.0

0% 20% 40% 60% 80% 100%

F
ai

rn
es

s

Randomness of Flow-2

0.0

0.4

0.8

1.2

1.6

2.0

0% 20% 40% 60% 80% 100%

W
ei

gh
te

d
S

pe
ed

up

Randomness of Flow-2

(b) Fairness (left) and system performance (right)

Figure 7: Impact of CMT contention.

We conclude that the CMT contention induced by an
I/O flow with a random access pattern disproportionately
slows down concurrently-running flows with sequential
access patterns, which would otherwise benefit from the
CMT, leading to high unfairness and system performance
degradation. To avoid such unfairness and performance
loss, an MQ-SSD should use CMT management algo-
rithms that are aware of inter-flow interference.

6.1.4 Contention at the Back End Resources
A third point of contention is at the back end resources
within an MQ-SSD (see Section 2.1). A high-intensity
flow can use up most of the back end resources if the
flow issues a large number of requests in a short period
of time. This stalls the requests issued by a low-intensity
concurrently-running flow, as the requests cannot be ser-
viced before the back end resources finish servicing re-
quests from the high-intensity flow.

To understand how contention at the back end re-
sources affects system performance and fairness, we per-
form a set of experiments where we concurrently run two
I/O flows that issue random reads with a request size of
8 kB. Flow-1 is a low-intensity I/O flow, as we limit
its submission queue size (see Section 2.2) to 2 requests.

We vary the submission queue size of Flow-2 from 2 re-
quests to 256 requests, to control the flow intensity. In or-
der to isolate the effect of back end resource contention,
we disable the write cache, and simulate a CMT where
address translation requests always hit.

Figure 8a shows the slowdown when Flow-1 and
Flow-2 run concurrently, and the change in the aver-
age chip-level queue depth (i.e., the number of requests
waiting to be serviced by the back end; see Section 2.3)
for each flow during concurrent execution, compared to
the depth when each flow runs alone. Figure 8b shows
the fairness and overall performance of the system when
the two flows run concurrently. We make four observa-
tions from the figures. First, the average chip-level queue
depth of Flow-1 increases significantly when the inten-
sity of Flow-2 increases. Second, Flow-1 is slows down
significantly when we increase the host-side queue depth
of Flow-2 beyond 16. For example, when Flow-2 is at
the highest intensity that we test (with a host-side queue
depth of 256 requests), Flow-1 slows down by 14.4x.
Third, the effect of inter-flow interference on Flow-2 is
negligible, as its slowdown is almost equal to 1 for host-
side queue depths larger than 4. Fourth, the asymmetric
slowdowns (i.e., the large slowdown for Flow-1 and the
lack of slowdown for Flow-2) cause both fairness and
the overall system performance to decrease.

 0

 4

 8

 12

 16

2 4 8 16 32 64 128256
 1

 10

 100

 1000

 10000

S
lo

w
do

w
n

Δ
C

hi
p-

Le
ve

l Q
ue

ue
 D

ep
th

Queue Depth of Flow-2

Flow-1

 0

 2

 4

 6

 8

2 4 8 16 32 64 128256
 1

 10

 100

 1000

 10000

S
lo

w
do

w
n

Δ
C

hi
p-

Le
ve

l Q
ue

ue
 D

ep
th

Queue Depth of Flow-2

Flow-2

(a) Slowdown and average chip-level queue depth of Flow-1 (left)
and Flow-2 (right)

0.0

0.2

0.4

0.6

0.8

1.0

2 4 8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0

0.4

0.8

1.2

1.6

2.0

2 4 8 16 32 64 128 256

W
ei

gh
te

d
S

pe
ed

up

Queue Depth of Flow-2

(b) Fairness (left) and system performance (right)

Figure 8: Impact of back end resource contention.

We conclude that a high-intensity flow can signifi-
cantly increase the depth of the chip-level queues and
thus lead to a large slow-down for concurrently-running
low-intensity flows. The FTL transaction scheduling unit
must be aware of the inter-flow interference at the MQ-
SSD back end to make the per-flow performance more
fair and thus keep the overall performance high.

6.2 Application-Level Studies
To study the effect of SSD device-level design choices on
application-level performance metrics, such as instruc-
tions per cycle (IPC), an SSD simulator must be inte-
grated and run together with a full-system simulator. We
integrate MQSim with gem5 [8] to provide a complete

USENIX Association 16th USENIX Conference on File and Storage Technologies 59

model of multi-queue I/O execution and a complete com-
puter system. As Table 2 shows, among existing SSD
simulators, only SimpleSSD [35] is integrated with a
full-system simulator, and SimpleSSD does not simu-
late multi-queue I/O execution. In this section, we show
the effectiveness of our integrated simulator, by studying
how changes to QueueFetchSize (see Section 4.2.1) af-
fect the IPC of concurrently-executing applications due
to storage-level interference.

We conduct a set of experiments, running instances of
file server (fs) [77], mail server (ms) [77], web server
(ws) [77], and IOzone large file access (io) [62] appli-
cations using the integrated execution mode of MQSim.
We first execute each application alone (i.e., without
interference from other applications), and then con-
currently execute the application with a second appli-
cation to study the effect of inter-application interfer-
ence. To isolate the effect of inter-flow interference,
where each flow belongs to one application, we assign
each application to a single processor core and a sin-
gle memory channel. We test two different values of
QueueFetchSize (16 entries and 1024 entries) to exam-
ine how QueueFetchSize affects inter-application in-
terference. For these experiments, we measure appli-
cation slowdown (Sapp), which is calculated as Sappi =

IPCalone
appi

/IPCshared
appi

, and use application slowdown to de-
termine fairness using Equation 1.

Figure 9 shows the slowdown of each application
and the system fairness for six pairs of concurrently-
executing applications. On the x-axis, we list the ap-
plications used in each pair, along with the value of
QueueFetchSize that we use. We make two obser-
vations from the figure. First, for application pairs
where one of the applications is ms or ws, the impact
of QueueFetchSize on fairness is negligible. Both ms
and ws benefit mainly from caching a large part of their
data set in main memory, and hence issue very few re-
quests to the SSD. This keeps storage-level interference
low, as ms and ws do not contend often for access to
the SSD with the other applications that they are paired
with. Second, fs and io have high storage access in-
tensities, and hence interfere significantly when they are
paired together. In this case, we observe that a large
QueueFetchSize value leads to 60% fairness reduction.

 0

 1

 2

 3

 4

 5

fs-ms-16

fs-ms-1024

fs-ws-16

fs-ws-1024

fs-io-16
fs-io-1024

ms-ws-16

ms-ws-1024

ms-io-16

ms-io-1024

ws-io-16

ws-io-2014

0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

F
ai

rn
es

s

Application Mixes
4

E
rr

or
 R

at
e

App1 App2 Fairness

Figure 9: Application-level impact of QueueFetchSize.

We conclude that full-system behavior can greatly im-
pact the fairness and performance of I/O flows on an MQ-
SSD, as it affects the storage-level intensity of each flow.

7 Related Work
To our knowledge, MQSim is the first simulator that
(1) accurately simulates both modern and conventional
SSDs, (2) faithfully models modern host–interface pro-
tocols such as NVMe, and (3) supports the accurate sim-
ulation of SSDs that use emerging ultra-fast memory
technologies. We compare MQSim to existing state-
of-the-art SSD simulation tools in Section 5, and show
that MQSim provides greater capabilities and accurate
results. In this section, we provide a brief summary of
other related works.

A number of prior works consider the performance
and implementation challenges of MQ-SSDs [5, 31, 89,
90]. Xu et al. [89] analyze the effect of MQ-SSDs on
the performance of modern hyper-scale and database ap-
plications. Awad et al. [5] evaluate the impact of differ-
ent NVMe host-interface implementations on the system
performance. Vučinić et al. [83] show that the current
NVMe protocol will be a performance bottleneck in fu-
ture PCM-based storage devices. The authors modify the
NVMe standard in order to improve its performance for
future PCM-based SSDs.

Other works [31, 72] focus on managing multiple
flows in modern SSDs. Song and Yang [72] partition
the SSD back end resources among concurrently-running
I/O flows to provide performance isolation and allevi-
ate inter-flow interference. Jun and Shin [31] propose
a device-level scheduling technique for MQ-SSDs with
built-in virtualization support.

None of these previous studies provide a simulation
framework for MQ-SSDs or study the sources of inter-
flow interference inside MQ-SSDs.

8 Conclusion
We introduce MQSim, a new simulator that accurately
captures the behavior of both modern multi-queue SSDs
and conventional SATA-based SSDs. MQSim faith-
fully models a number of critical features absent in
existing state-of-the-art simulators, including (1) mod-
ern multi-queue-based host–interface protocols (e.g.,
NVMe), (2) the steady-state behavior of SSDs, and
(3) the end-to-end latency of I/O requests. MQSim can
be run as a standalone tool, or integrated with a full-
system simulator. We validate MQSim against real off-
the-shelf SSDs, and demonstrate that it provides highly-
accurate results. By accurately modeling modern SSDs,
MQSim can uncover important issues that cannot be
modeled accurately using existing simulators, such as
the impact of inter-flow interference. We have released
MQSim as an open-source tool [1], and we hope that
MQSim enables researchers to explore new ideas and di-
rections.

Acknowledgments
We thank our shepherd Haryadi Gunawi and the anony-
mous referees for their feedback on this work. We thank
our industrial partners, especially Google, Huawei, Intel,
and VMware, for their generous support.

60 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] MQSim GitHub Repository. https://github.

com/CMU-SAFARI/MQSim.

[2] Ramulator GitHub Repository. https://github.
com/CMU-SAFARI/ramulator.

[3] AGRAWAL, N., PRABHAKARAN, V., WOBBER,
T., DAVIS, J. D., MANASSE, M. S., AND PAN-
IGRAHY, R. Design Tradeoffs for SSD Perfor-
mance. In USENIX ATC (2008).

[4] AUSAVARUNGNIRUN, R., CHANG, K. K.-W.,
SUBRAMANIAN, L., LOH, G. H., AND MUTLU,
O. Staged memory scheduling: Achieving high
performance and scalability in heterogeneous sys-
tems. In ISCA (2012).

[5] AWAD, A., KETTERING, B., AND SOLIHIN, Y.
Non-Volatile Memory Host Controller Interface
Performance Analysis in High-Performance I/O
Systems. In ISPASS (2015).

[6] BATES, K., AND MCNUTT, B. UMass Rrace
Repository. http://traces.cs.umass.edu/.

[7] BILLI, E. How NVMe and 3D XPoint Will Create
a New Datacenter Architecture. In FMS (2016).

[8] BINKERT, N., BECKMANN, B., BLACK, G.,
REINHARDT, S. K., SAIDI, A., BASU, A., HES-
TNESS, J., HOWER, D. R., KRISHNA, T., SAR-
DASHTI, S., SEN, R., SEWELL, K., SHOAIB, M.,
VAISH, N., HILL, M. D., AND WOOD, D. A. The
gem5 Simulator. SIGARCH Comput. Archit. News
(2011).

[9] BOURZAC, K. Has Intel Created a Universal Mem-
ory Technology? IEEE Spectrum (2017).

[10] BUX, W., AND ILIADIS, I. Performance of
Greedy Garbage Collection in Flash-Based Solid-
State Drives. Perform. Eval. (2010).

[11] CAI, Y., GHOSE, S., HARATSCH, E. F., LUO, Y.,
AND MUTLU, O. Error Characterization, Mitiga-
tion, and Recovery in Flash-Memory-Based Solid-
State Drives. Proc. IEEE (2017).

[12] CAI, Y., GHOSE, S., HARATSCH, E. F., LUO, Y.,
AND MUTLU, O. Errors in Flash-Memory-Based
Solid-State Drives: Analysis, Mitigation, and Re-
covery. arXiv:1711.11427 [cs:AR], 2017.

[13] CHANG, L.-P., KUO, T.-W., AND LO, S.-W.
Real-Time Garbage Collection for Flash-Memory
Storage Systems of Real-Time Embedded Systems.
TECS (2004).

[14] CHEN, F., HOU, B., AND LEE, R. Internal Paral-
lelism of Flash Memory-Based Solid-State Drives.
TOS (2016).

[15] CHEN, F., LEE, R., AND ZHANG, X. Essential
Roles of Exploiting Internal Parallelism of Flash
Memory Based Solid State Drives in High-Speed
Data Processing. In HPCA (2011).

[16] COULSON, R. 3D XPoint Technology Drives Sys-
tem Architecture. In SNIA Storage Industry Summit
(2016).

[17] DAS, R., MUTLU, O., MOSCIBRODA, T., AND
DAS, C. R. Application-Aware Prioritization
Mechanisms for On-Chip Networks. In MICRO
(2009).

[18] DESNOYERS, P. Analytic Modeling of SSD Write
Performance. In SYSTOR (2012).

[19] EBRAHIMI, E., LEE, C. J., MUTLU, O., AND
PATT, Y. N. Fairness via Source Throttling: A
Configurable and High-Performance Fairness Sub-
strate for Multi-Core Memory Systems. In ASPLOS
(2010).

[20] ELYASI, N., ARJOMAND, M., SIVASUBRAMA-
NIAM, A., KANDEMIR, M. T., DAS, C. R., AND
JUNG, M. Exploiting Intra-Request Slack to Im-
prove SSD Performance. In ASPLOS (2017).

[21] EYERMAN, S., AND EECKHOUT, L. System-Level
Performance Metrics for Multiprogram Workloads.
IEEE Micro (2008).

[22] GABOR, R., WEISS, S., AND MENDELSON, A.
Fairness and Throughput in Switch on Event Mul-
tithreading. In MICRO (2006).

[23] GAL, E., AND TOLEDO, S. Algorithms and Data
Structures for Flash Memories. CSUR (2005).

[24] GUPTA, A., KIM, Y., AND URGAONKAR, B.
DFTL: A Flash Translation Layer Employing
Demand-Based Selective Caching of Page-Level
Address Mappings. In ASPLOS (2009).

[25] HANDY, J. 3D XPoint: Speed at What Cost? In
FMS (2017).

[26] HE, J., KANNAN, S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. The Unwritten
Contract of Solid State Drives. In EuroSys (2017).

[27] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO,
H., AND ZHANG, S. Performance Impact and
Interplay of SSD Parallelism Through Advanced
Commands, Allocation Strategy and Data Granu-
larity. In ICS (2011).

[28] ILIADIS, I. Rectifying Pitfalls in the Performance
Evaluation of Flash Solid-State Drives. Perform.
Eval. (2014).

[29] INTEL CORPORATION. Intel SSD DC S3500 Series
Datasheet, 2015.

[30] INTEL CORPORATION. Intel 3D NAND SSD DC
P4500 Series Datasheet, 2017.

USENIX Association 16th USENIX Conference on File and Storage Technologies 61

https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
http://traces.cs.umass.edu/

[31] JUN, B., AND SHIN, D. Workload-Aware Budget
Compensation Scheduling for NVMe Solid State
Drives. In NVMSA (2015).

[32] JUNG, M., CHOI, W., GAO, S., WILSON III,
E. H., DONOFRIO, D., SHALF, J., AND KAN-
DEMIR, M. T. NANDFlashSim: High-Fidelity,
Microarchitecture-Aware NAND Flash Memory
Simulation. TOS (2016).

[33] JUNG, M., AND KANDEMIR, M. Revisit-
ing Widely Held SSD Expectations and Rethink-
ing System-Level Implications. In SIGMETRICS
(2013).

[34] JUNG, M., AND KANDEMIR, M. T. Sprinkler:
Maximizing Resource Utilization in Many-Chip
Solid State Disks. In HPCA (2014).

[35] JUNG, M., ZHANG, J., ABULILA, A., KWON,
M., SHAHIDI, N., SHALF, J., KIM, N. S., AND
KANDEMIR, M. SimpleSSD: Modeling Solid
State Drives for Holistic System Simulation. CAL
(2017).

[36] KIM, J., KIM, J., PARK, P., KIM, J., AND KIM,
J. SSD Performance Modeling Using Bottleneck
Analysis. CAL (2017).

[37] KIM, Y., PAPAMICHAEL, M., MUTLU, O., AND
HARCHOL-BALTER, M. Thread Cluster Memory
Scheduling: Exploiting Differences in Memory Ac-
cess Behavior. In MICRO (2010).

[38] KIM, Y., TAURAS, B., GUPTA, A., AND UR-
GAONKAR, B. FlashSim: A Simulator for NAND
Flash-Based Solid-State Drives. In SIMUL (2009).

[39] KIM, Y., YANG, W., AND MUTLU, O. Ramula-
tor: A Fast and Extensible DRAM Simulator. CAL
(2016).

[40] KÜLTÜRSAY, E., KANDEMIR, M., SIVASUBRA-
MANIAM, A., AND MUTLU, O. Evaluating STT-
RAM as an Energy-Efficient Main Memory Alter-
native. In ISPASS (2013).

[41] LAWLEY, J. Understanding Performance of PCI
Express Systems. XILINX White Paper, 2014.

[42] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER,
D. Architecting Phase Change Memory as a Scal-
able DRAM Alternative. In ISCA (2009).

[43] LEE, B. C., ZHOU, P., YANG, J., ZHANG, Y.,
ZHAO, B., IPEK, E., MUTLU, O., AND BURGER,
D. Phase-Change Technology and the Future of
Main Memory. IEEE Micro (2010).

[44] LEE, J., KIM, Y., SHIPMAN, G. M., ORAL,
S., AND KIM, J. Preemptible I/O Scheduling of
Garbage Collection for Solid State Drives. TC
(2013).

[45] LI, Y., LEE, P. P., AND LUI, J. Stochastic Mod-
eling of Large-Scale Solid-State Storage Systems:
Analysis, Design Tradeoffs and Optimization. In
SIGMETRICS (2013).

[46] LIU, J., MAMIDALA, A., VISHNU, A., AND
PANDA, D. K. Performance Evaluation of Infini-
Band with PCI Express. In CONNECT (2004).

[47] MARVELL. Marvell 88SS1093 Flash Memory
Controller, 2017.

[48] MICRON TECHNOLOGY, INC. Breakthrough
Nonvolatile Memory Technology. https:
//www.micron.com/products/advanced-
solutions/3d-xpoint-technology.

[49] MICRON TECHNOLOGY, INC. NAND Flash Mem-
ory - MT29E64G08CECBB Datasheet, 2009.

[50] MICRON TECHNOLOGY, INC. M500 2.5-Inch
SATA NAND Flash SSD Series Datasheet, 2013.

[51] MICRON TECHNOLOGY, INC. NAND Flash Mem-
ory - MLC+ MT29F256G08CKCAB Datasheet,
2014.

[52] MICRON TECHNOLOGY, INC. NAND Flash Mem-
ory - MT29E128G08CBCCB Datasheet, 2016.

[53] MICROSOFT CORPORATION. Microsoft Enterprise
Traces. http://iotta.snia.org/traces/130.

[54] MICROSOFT CORPORATION. Microsoft Produc-
tion Server Traces. http://iotta.snia.org/
traces/158.

[55] MICROSOFT CORPORATION. Microsoft Research
Cambridge Traces. http://iotta.snia.org/
traces/388.

[56] MOSCIBRODA, T., AND MUTLU, O. Memory Per-
formance Attacks: Denial of Memory Service in
Multi-Core Systems. In USENIX Security (2007).

[57] MUTLU, O. Memory Scaling: A Systems Archi-
tecture Perspective. In IMW (2013).

[58] MUTLU, O., AND MOSCIBRODA, T. Stall-Time
Fair Memory Access Scheduling for Chip Multi-
processors. In MICRO (2007).

[59] MUTLU, O., AND MOSCIBRODA, T. Parallelism-
Aware Batch Scheduling: Enhancing Both Perfor-
mance and Fairness of Shared DRAM Systems. In
ISCA (2008).

[60] MUTLU, O., AND SUBRAMANIAN, L. Research
Problems and Opportunities in Memory Systems.
SUPERFRI (2015).

[61] NARAYANAN, D., THERESKA, E., DONNELLY,
A., ELNIKETY, S., AND ROWSTRON, A. Migrat-
ing Server Storage to SSDs: Analysis of Tradeoffs.
In EuroSys (2009).

62 16th USENIX Conference on File and Storage Technologies USENIX Association

https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/158
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388

[62] NORCOTT, W. D., AND CAPPS, D. IOzone
Filesystem Benchmark, 2003.

[63] NVM EXPRESS WORKGROUP. NVM Express
Specification, Revision 1.2, 2014.

[64] OCZ. RD400/400A Series Datasheet, 2016.

[65] ONFI WORKGROUP. Open NAND Flash Interface
Specification, Revision 4.0, 2014.

[66] PARK, S., AND SHEN, K. FIOS: A Fair, Efficient
Flash I/O Scheduler. In FAST (2012).

[67] SATA-IO. Serial ATA Revision 3.3. http://www.
sata-io.org, 2016.

[68] SHEN, K., AND PARK, S. FlashFQ: A Fair
Queueing I/O Scheduler for Flash-Based SSDs. In
USENIX ATC (2013).

[69] SK HYNIX INC. F26 32Gb MLC NAND Flash
Memory TSOP Legacy, 2011.

[70] SNAVELY, A., AND TULLSEN, D. M. Symbiotic
Jobscheduling for a Simultaneous Multithreaded
Processor. In ASPLOS (2000).

[71] SNIA TECHNICAL POSITION. Solid State Storage
(SSS) Performance Test Specification (PTS) Enter-
prise, version 1.1, 2013.

[72] SONG, X., YANG, J., AND CHEN, H. Archi-
tecting Flash-Based Solid-State Drive for High-
Performance I/O Virtualization. CAL (2014).

[73] SUBRAMANIAN, L., LEE, D., SESHADRI, V.,
RASTOGI, H., AND MUTLU, O. The Blacklisting
Memory Scheduler: Achieving High Performance
and Fairness at Low Cost. In ICCD (2014).

[74] SUBRAMANIAN, L., LEE, D., SESHADRI, V.,
RASTOGI, H., AND MUTLU, O. BLISS: Balancing
Performance, Fairness and Complexity in Memory
Access Scheduling. TPDS (2016).

[75] SUBRAMANIAN, L., SESHADRI, V., GHOSH, A.,
KHAN, S., AND MUTLU, O. The Application
Slowdown Model: Quantifying and Controlling the
Impact of Inter-Application Interference at Shared
Caches and Main Memory. In MICRO (2015).

[76] SUBRAMANIAN, L., SESHADRI, V., KIM, Y.,
JAIYEN, B., AND MUTLU, O. MISE: Provid-
ing Performance Predictability and Improving Fair-
ness in Shared Main Memory Systems. In HPCA
(2013).

[77] TARASOV, V., ZADOK, E., AND SHEPLER, S.
Filebench: A Flexible Framework for File System
Benchmarking. USENIX; login (2016).

[78] TAVAKKOL, A., MEHRVARZY, P., ARJOMAND,
M., AND SARBAZI-AZAD, H. Performance Eval-
uation of Dynamic Page Allocation Strategies in
SSDs. TOMPECS (2016).

[79] TOSHIBA CORPORATION. PX04PMB Series
Datasheet, 2016.

[80] USUI, H., SUBRAMANIAN, L., CHANG, K. K.-
W., AND MUTLU, O. DASH: Deadline-Aware
High-Performance Memory Scheduler for Het-
erogeneous Systems with Hardware Accelerators.
TACO (2016).

[81] VAN HOUDT, B. A Mean Field Model for a Class
of Garbage Collection Algorithms in Flash-based
Solid State Drives. In SIGMETRICS (2013).

[82] VAN HOUDT, B. On the Necessity of Hot and Cold
Data Identification to Reduce the Write Amplifica-
tion in Flash-Based SSDs. Perform. Eval. (2014).

[83] VUČINIĆ, D., WANG, Q., GUYOT, C., MA-
TEESCU, R., BLAGOJEVIĆ, F., FRANCA-NETO,
L., LE MOAL, D., BUNKER, T., XU, J., SWAN-
SON, S., AND BANDIĆ, Z. DC Express: Shortest
Latency Protocol for Reading Phase Change Mem-
ory Over PCI Express. In FAST (2014).

[84] WALDSPURGER, C. A., AND WEIHL, W. E. Lot-
tery Scheduling: Flexible Proportional-Share Re-
source Management. In OSDI (1994).

[85] WESTERN DIGITAL CORPORATION. HGST Ultra-
star SN200 Series Datasheet, 2017.

[86] WESTERN DIGITAL CORPORATION. SanDisk
Skyhawk & Skyhawk Ultra NVMe PCIe SSD
Datasheet, 2017.

[87] WU, G., AND HE, X. Reducing SSD Read Latency
via NAND Flash Program and Erase Suspension. In
FAST (2012).

[88] XIANG, X., GHOSE, S., MUTLU, O., AND
TZENG, N.-F. A Model for Application Slowdown
Estimation in On-Chip Networks and Its Use for
Improving System Fairness and Performance. In
ICCD (2016).

[89] XU, Q., SIYAMWALA, H., GHOSH, M.,
AWASTHI, M., SURI, T., GUZ, Z., SHAYESTEH,
A., AND BALAKRISHNAN, V. Performance
Characterization of Hyper-Scale Applications on
NVMe SSDs. In SIGMETRICS (2015).

[90] XU, Q., SIYAMWALA, H., GHOSH, M., SURI,
T., AWASTHI, M., GUZ, Z., SHAYESTEH, A.,
AND BALAKRISHNAN, V. Performance Analy-
sis of NVMe SSDs and Their Implication on Real
World Databases. In SYSTOR (2015).

[91] YANG, M.-C., CHANG, Y.-M., TSAO, C.-W.,
HUANG, P.-C., CHANG, Y.-H., AND KUO, T.-
W. Garbage Collection and Wear Leveling for
Flash Memory: Past and Future. In SMARTCOMP
(2014).

[92] YOO, J., WON, Y., HWANG, J., KANG, S.,
CHOIL, J., YOON, S., AND CHA, J. VSSIM:
Virtual Machine Based SSD Simulator. In MSST
(2013).

USENIX Association 16th USENIX Conference on File and Storage Technologies 63

http://www.sata-io.org
http://www.sata-io.org

A MQSim Validation
A.1 Evaluation Methodology
To validate the accuracy of MQSim, we compare its per-
formance results to four state-of-the-art MQ-SSDs (SSD-
A, SSD-B, SSD-C, and SSD-D) manufactured between
2016 and 2017. Table 4 lists key properties of the four
MQ-SSDs. We precondition each device with full-load
write traffic to write to 70% of the available logical
space [71]. The device preconditioning process includes
two 4-hour phases. In the first phase, we perform se-
quential writes, while in the second phase, we perform
random writes. We perform real-system experiments on
a server that contains an Intel Xeon E3-1240 v6 3.70GHz
processor and 32 GB of DDR4 main memory. The sys-
tem uses Ubuntu 16.04.2 with version 2.6.27 of the Linux
kernel, and the OS is stored in a 500 GB Western Digital
HDD. We run the fio benchmark tool for performance
evaluations, and all storage devices are connected to the
PCIe bus as add-in cards.

Table 4: Key characteristics of real MQ-SSDs.

Code Production Year Capacity Flash Technology

SSD-A 2016 800 GB MLC
SSD-B 2016 256 GB MLC
SSD-C 2017 1 TB TLC
SSD-D 2016 512 GB TLC

We validate our simulator with four different con-
figurations that correspond to our four real MQ-SSDs.
To this end, we extract the main structural parameters
of each real SSD using a microbenchmarking program.
This program analyzes and estimates the SSD’s inter-
nal configuration (e.g., NAND flash page size, NAND
flash read/write latency, number of channels in the SSD,
address mapping strategy, write cache size) based on
the methods described in prior SSD modeling stud-
ies [14, 15, 36]. We have open-sourced our microbench-
mark [1]. For garbage collection (GC) management, we
enable all of the advanced GC mechanisms described in
Section 4.2.3, except write suspension, in MQSim. Ac-
cording to the specifications of the flash chips used in two
of the SSD devices, write suspension is not supported.

A.2 Performance Validation
We validate MQSim against real devices using both syn-
thetic and real workloads. Our synthetic workloads is-
sue random accesses, and consist of only read requests
or only write requests, where we set the queue depth to
1 request.

Figure 10 compares the read and write request re-
sponse time4 measured on our four real MQ-SSDs with
the latencies reported by MQSim for our synthetic work-
loads. The plots in Figure 10a and 10b show the read
and the write latencies, respectively. The x-axes reflect
different I/O request sizes, ranging from 4 kB to 1 MB.
The blue curves show the error percentage of the simula-
tion model. We observe that across all request sizes, the
response times reported by MQSim match very closely

4Response time is defined as the time from when a host request is
enqueued in the submission queue to when the SSD response is en-
queued in the completion queue.

0.0

0.2

0.4

0.6

0.8

4 8 16 32 64 128
256

512
1024

R
ea

d
R

T
 (

m
s)

I/O Request Size (kB)

SSD-A

0.0

0.1

0.2

0.3

0.4

0.5

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.1

0.2

0.3

0.4

0.5

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.2

0.4

0.6

0.8

4 8 16 32 64 128
256

512
1024

R
ea

d
R

T
 (

m
s)

I/O Request Size (kB)

SSD-C

0.0

0.3

0.6

0.9

1.2

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-D

0%
20%
40%
60%
80%
100%

E
rr

or
 R

at
e

Real MQSim Error

(a) Read

0

6

12

18

24

4 8 16 32 64 128
256

512
1024

W
rit

e
R

T
 (

m
s)

I/O Request Size (kB)

SSD-A

0.0

0.6

1.2

1.8

2.4

3.0

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.6

1.2

1.8

2.4

3.0

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-B

0.0

0.4

0.8

1.2

1.6

2.0

4 8 16 32 64 128
256

512
1024

W
rit

e
R

T
 (

m
s)

I/O Request Size (kB)

SSD-C

0.0

0.2

0.4

0.6

0.8

1.0

4 8 16 32 64 128
256

512
1024

0%

20%

40%

60%

80%

100%

E
rr

or
 R

at
e

I/O Request Size (kB)

SSD-D

(b) Write
Figure 10: Average response time (RT) for read (a) and
write (b) requests, reported by MQSim, compared to
RT measured on four real MQ-SSD devices, for syn-
thetic workloads. The blue curves show the error rates
of MQSim’s reported latency.

with the measured response times of the real devices, es-
pecially for SSD-B and SSD-D. Averaged across all four
MQ-SSDs and all I/O request sizes, the error rates for
read and write requests are 2.9% and 4.9%, respectively.

Figure 11 shows the accuracy of the request response
time reported by MQSim as a cumulative distribution
function (CDF), for three real workloads [53]: tpcc,
tpce, and exchange. We observe that MQSim’s re-
ported response times are very accurate when compared
to the response times measured on the real MQ-SSDs.
The average error rates for SSD-A, SSD-B, SSD-C, and
SSD-D are 8%, 6%, 18%, and 14%, respectively.

We conclude that MQSim accurately models the per-
formance of real MQ-SSDs.

A.3 Multi-Queue Simulation
To validate the accuracy of the multi-queue I/O execu-
tion model in MQSim, we conduct a set of simulation
experiments using two I/O flows, Flow-1 and Flow-2,
where each flow generates only sequential read requests.
We maintain a constant request intensity for Flow-1, by
setting its I/O queue depth to 8 requests. We vary the
intensity of Flow-2 across our experiments, by varying
the I/O queue depth between 8 entries and 256 entries.

64 16th USENIX Conference on File and Storage Technologies USENIX Association

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-A

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-B

exchange-real
exchange-MQSim

tpce-real
tpce-MQSim

tpcc-real
tpcc-MQSim

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-C

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

C
D

F

Response Time (μs)

SSD-D

exchange-real
exchange-MQSim

tpce-real
tpce-MQSim

tpcc-real
tpcc-MQSim

Figure 11: Comparison of response time CDF when run-
ning real workloads on MQSim and on real MQ-SSDs.

For each Flow-2 I/O queue depth, we test two differ-
ent values (16 and 1024) of QueueFetchSize (see Sec-
tion 4.2.1).

Figure 12 shows the slowdown and normalized
throughput (IOPS) of Flow-1 (left) and Flow-2 (center),
and the fairness (see Section 3.1) of the system (right).
We make two key observations from the figure.

 0

 3

 6

 9

 12

 15

8 16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

 0

 3

 6

 9

 12

 15

8 16 32 64 128 256
0.0

0.2

0.4

0.6

0.8

1.0

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

0.0

0.2

0.4

0.6

0.8

1.0

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0
0.2
0.5
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

(a) QueueFetchSize = 1024

0.0

0.4

0.8

1.2

1.6

2.0

8 16 32 64 128 256
0.0

0.3

0.6

0.9

1.2

1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-1

0.0

0.4

0.8

1.2

1.6

2.0

8 16 32 64 128 256
0.0

0.3

0.6

0.9

1.2

1.5

S
lo

w
do

w
n

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Queue Depth of Flow-2

Flow-2

0.0

0.2

0.4

0.6

0.8

1.0

8 16 32 64 128 256

F
ai

rn
es

s

Queue Depth of Flow-2

0.0
0.2
0.5
0.8
1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Slowdown Throughput Fairness

(b) QueueFetchSize = 16

Figure 12: MQSim successfully models the multi-queue
I/O processing model in (a) SSD-A, SSD-B, and SSD-C,
and (b) SSD-D (compare with Figure 2).

First, we find that MQSim successfully models the be-
havior of real MQ-SSDs that are optimized for higher
per-flow throughput (e.g., SSD-A, SSD-B, SSD-C) when
the value of QueueFetchSize is equal to 1024. Fig-
ure 12a shows similar trends for slowdown, through-
put, and fairness to the measurements we perform on
real MQ-SSDs, which we show in Figure 2. When
QueueFetchSize is set to 1024, a higher number of
I/O requests from each flow are fetched into the device-
level queue of the MQ-SSD. In both our MQSim results
and the measured results on real MQ-SSDs, we observe
that as the intensity of Flow-2 increases, its through-
put increases significantly with little slowdown, while
the throughput of Flow-1 decreases significantly, caus-
ing Flow-1 to slow down greatly. This occurs because
when Flow-2 has a high intensity, it unfairly uses most
of the back end resources in the MQ-SSD, causing re-

quests from Flow-1 to wait for longer latencies before
they can be serviced.

Second, MQSim accurately models the behavior of
real MQ-SSD products that implement mechanisms to
control inter-flow interference, such as SSD-D, when
QueueFetchSize is set to 16. We see that the trends
in Figure 12b are similar to those observed in our
measured results from SSD-D in Figure 2. When
QueueFetchSize is set to 16, only a limited number of
I/O requests for each concurrently-running flow are ser-
viced by the back end, preventing any one flow from un-
fairly using most of the resources within the MQ-SSD.
As a result, even when Flow-2 has a high intensity,
Flow-1 does not experience significant slowdown.

We conclude that by adjusting QueueFetchSize,
MQSim successfully models different multi-queue I/O
processing mechanisms in modern MQ-SSD devices.

A.4 Steady-State Behavior Modeling
As we discuss in Section 4.4, MQSim pre-conditions the
flash storage space and warms up the SSD data cache
based on the characteristics of the co-running workloads.
To validate the steady-state model in MQSim, we con-
duct a set of experiments using MQSim under high write
intensity, and compare the results to those from real MQ-
SSD devices. Figure 13 plots the read and write response
times for (1) actual I/O execution on SSD-B (which is
representative of the general behavior of the state-of-
the-art SSDs we examine); (2) MQSim-NoPrec, where
MQSim is run without pre-conditioning, and (3) MQSim-
Prec, where MQSim is run with pre-conditioning.

0

50

100

150

200

40 80 120 160 200

R
ea

d
R

T
 μ

s)

Simulated Time (m)

0

1

2

3

4

5

40 80 120 160 200

W
rit

e
R

T
 (

m
s)

Simulated Time (m)

0
1
2
3
4
5

40 80 120 160 200W
rit

e
R

T
 (

m
s)

Simulated Time (m)

MQSim-Prec
MQSim-NoPrec

Actual SSD-B

Figure 13: MQSim accurately models the steady-state
read and write response times (RT) of SSD-B, using fast
preconditioning.

We make two observations from the figure. First,
MQSim with pre-conditioning successfully follows the
response time results extracted from SSD-B. Second,
MQSim without pre-conditioning reports lower response
time results at the beginning of the experiment, since the
simulated SSD is not yet in steady state. Once the whole
storage space is written, the response time results be-
come similar to the real device, as garbage collection and
write cache evictions now take place in simulation at a
rate similar to the rate measured on SSD-B. We conclude
that MQSim’s pre-conditioning quickly and accurately
models the steady-state behavior of real MQ-SSDs.

USENIX Association 16th USENIX Conference on File and Storage Technologies 65

PEN: Design and Evaluation of Partial-Erase for 3D NAND-Based
High Density SSDs

Chun-Yi Liu, Jagadish B. Kotra, *Myoungsoo Jung, Mahmut T. Kandemir
{cql5513, jbk5155, kandemir}@cse.psu.edu, *mj@camelab.org

The Pennsylvania State University, *Yonsei University

Abstract
3D NAND flash memories promise unprecedented flash
storage capacities, which can be extremely important in
certain application domains where both storage capac-
ity and performance are first-class target metrics. How-
ever a block of 3D NAND flash contains many more
pages than its 2D counterpart. This increased number of
pages-per-block has numerous ramifications such as the
longer erase latency, higher garbage collection costs, and
increased write amplification factors, which can collec-
tively prevent the 3D NAND flash products from becom-
ing the mainstream in high-performance storage domain.
In this paper, we introduce PEN, an architecture-level
mechanism that enables partial-erase of flash blocks. Us-
ing our proposed partial-erase support, we also discuss
how one can build a custom garbage collector for two
types of flash translation layers (FTLs), namely, block-
level FTL and hybrid FTL. Our experimental evaluations
of PEN with a set of diverse real storage workloads in-
dicate that the proposed approach can shorten the write
latency by 44.3% and 47.9% for block-level FTL and hy-
brid FTL, respectively.

1 Introduction

NAND flash based solid state disks (SSDs) have become
one of the dominant storage components in different
computing domains, ranging from embedded systems to
general purpose workstations to high-performance dat-
acenters [6, 13, 22, 57]. High-performance computing
employs SSDs in various ways such as an SSD cache
[41, 55] or a bursty buffer [39], to mitigate the per-
formance bottlenecks imposed by the conventional hard
disk drives (HDDs).

While SSDs can significantly improve the overall sys-
tem performance, there is also an emerging trend that
pushes SSDs toward an entirely different direction [20,
31, 51]. Specifically, major flash vendors amplify stor-
age capacity by transitioning from 2D NAND flash to
3D NAND flash. The 3D NAND flash technology lay-
ers flash cells vertically, which can increase the size of

the individual flash dies. For example, Samsung stacks
100 layers of charge trap flash (CTF) cells, and as a re-
sult can achieve 1 Terabit density flash dies without any
modification to the existing flash interface [10].

Layering multiple CTF cells increases the number of
pages in a physical block, rather than the number of
blocks within a die, which makes the internal micro-
architecture of 3D NAND different compared to the 2D
planar flash. Consider the vertical architecture of a par-
ticular 3D NAND flash [20], VNAND. VNAND increases
the die density by stacking more layers, but in this archi-
tecture, CTF cells across the different layers share a same
set of pillars (channel), thereby increasing the number of
pages per block. Furthermore, as all the block-related
control circuits of VNAND reside on the block decoder
of the top layer due to staircase-like control gate [20],
this decoder area controls the signals to all CTF cells of
the underlying layers. Consequently, as one stacks more
layers, the amount of such block-related control circuits
for each block increases. However, the area from where
one can control all layers is limited, which in turn re-
duces the number of blocks but increases the number of
pages per block. Owing to this, a block of VNAND con-
tains at least 3 times more pages per block compared to
the 2D flash.

Unfortunately, the new structure of VNAND can ex-
acerbate the overheads incurred due to garbage collec-
tion (GC), which is one of the well-known performance
bottlenecks in modern SSDs. Specifically, the peripheral
circuits and the micro-architecture of VNAND’s [19, 26]
large-granularity erase makes the latency characteristics
of 3D NAND worse compared to 2D flash. In addition,
the large number of pages per block can potentially ac-
commodate more valid data that a flash firmware needs
to migrate for each GC. The longer erase time and rela-
tively more valid pages to migrate (i.e., a series of reads
and writes) can have a significant performance impact
on GC operations and may in turn render 3D flash diffi-
cult to directly replace 2D flash in many designs of high-
performance SSD.

In this work, we propose PEN, a novel strategy to en-
able Partial Erase for 3D NAND flash technology. PEN

USENIX Association 16th USENIX Conference on File and Storage Technologies 67

alleviates the GC overheads by introducing a finer erase
unit in 3D NAND, which can reduce number of valid
pages copied during a GC, thereby reducing the GC la-
tency. To the best of our knowledge, this is the first
work that investigates partial-erase for 3D NAND, start-
ing from the circuit level and evaluating its architectural
ramifications from both the performance and reliability
angles. Our contributions can be summarized as follows:
• We present a comprehensive architectural support,
“partial-erase operation” that addresses the potential per-
formance degradation imposed by 3D NAND flash. The
proposed low-level operation can selectively reset multi-
ple pages instead of erasing a bulk block by modifying
the 3D NAND peripheral circuits, page decoders, and
command logics, with minimum area overhead.
• While our partial-erase operation can be leveraged to
alleviate performance degradation, the number of pages
per reset should be determined at the design time. How-
ever, it is a non-trivial task to statically decide the op-
eration granularity of such partial-erase operation. This
inflexibility in turn can lead to a large mapping table size
or introduce more valid page migrations. We propose
a novel GC algorithm, called “M-Merge” that keeps the
original mapping table size when the partial-erase oper-
ation is employed. In addition, M-Merge can adaptively
decide the optimal partial-erase granularity by consider-
ing program-disturbance issues at a run-time.
• We demonstrate that the performance degradation in
3D NAND flash stems from the increased number of
valid pages copied during a GC operation. The evalu-
ation studies using a set of 12 real storage workloads re-
veal that our PEN mechanism (putting partial-erase op-
eration and M-Merge together) can significantly reduce
the valid page copies during a GC operation, thereby im-
proving the overall system performance.

2 Background

2.1 NAND Flash Organization
NAND flash memory consists of several blocks consti-
tuting a plane, as shown in Figure 1. Each block is made
up of a number of pages. Page is a unit of read and
write, and its size varies from 2KB to 32KB [1]. A tra-
ditional 2D NAND flash typically consists of 128 to 192
such pages per block. The number of pages per block
increases [10] in a 3D NAND flash, and it can be as high
as 576 [29].

Figure 1 shows a vertical-channel 3D NAND flash im-
plemented by Samsung [20]. NAND flash cells con-
nected in series form a pillar (channel) with top and bot-
tom select transistors represented by UpperST and Low-
erST, respectively. Cells in the same horizontal axis form
a page, represented by P-0, P-1, etc. The upper select

Plane 0

Plane

Abstract

View

Block Layer

View

SG select gate

CG control gate

ST select transistor

P-0

P-4

P-8

P-12

Bit 0 Bit 1 Bit n

Slice 0

Lower
ST

…

…

…

…

…

123

567

9

13

…

…

Page
Decoder

USG 0

USG 3

CG 0

CG 3

LSG
Pillar

1011

1415

Block Physical View

Upper

ST

P-0
P-1
P-2
P-3

P-14

Block N

P-15

…

P-0
P-1
P-2
P-3

P-14

Block 0

P-15

… Lower ST

layer

Cell layer 3
Cell layer 2
Cell layer 1
Cell layer 0

Upper ST

layer

Block 0

Figure 1: Vertical-channel NAND flash circuit.

gates (USG) and the control gates (CG) are used in ac-
cessing a page corresponding to an I/O request. USG is
used to select the corresponding slice and the CG is used
to select the corresponding page in a slice.

The basic operations in a NAND flash chip are read,
write, and erase [46]. The erase operation resets the
data to value ”1” in a page. It is performed at a block-
granularity; the data in all the pages in a block are reset
per erase operation. In a NAND flash device, the num-
ber of erase cycles is limited. Typically, an erase opera-
tion is implemented in two phases: (1) data-erase and (2)
erase-verify. During the data-erase phase, the data in all
the pages in a victim block are reset, and the erase-verify
phase checks if all the pages have been successfully reset
or not. The entire erase operation is iteratively repeated
until the data in all the pages are successfully reset.

The data-erase circuit implementation of an erase op-
eration is vendor-specific. There are two popular imple-
mentations: (a) bulk data-erase (implemented in Sam-
sung SSDs) [20] and (b) gate-induced drain leak (GIDL)
(implemented in Toshiba and Macronix SSDs) [27, 31,
51] data-erase. Bulk data-erase operation imposes a high
voltage (typically 20V) to the shared substrate (contain-
ing multiple blocks), while the CGs for the block being
erased are set to 0V. Hence, all the pages in a block are
erased per erase operation unlike the GIDL implementa-
tion. In GIDL, the data-erase operation is implemented
at a pillar granularity, and all the pillars in the same block
are erased simultaneously. More specifically, it is imple-
mented by imposing high voltage to USGs, LSG and bit-
lines, while the voltage of CGs is set to different values
based on the strength of GIDL. The erase-verify imple-
mentation is achieved by imposing CGs with 0V, while
SGs are imposed with bypass voltage. An unsuccessfully
erased page is identified by measuring the current pass-
ing through the channels when bitline voltage changes
from 0V to floating.

2.2 Flash Translation Layer (FTL)

The NAND flash vendors implement a Flash Translation
Layer (FTL) [3, 15, 18, 21, 38, 40] to keep track of the
physical location of a page in flash chips. FTL imple-

68 16th USENIX Conference on File and Storage Technologies USENIX Association

Chip
interface

Chip
interface

Free page
Valid page
Invalid page

D-block U-block
(block pair)

Free
block

Read page to controller

Step (2): Read valid page

D-block U-block

Step (3):Write valid page &
invalidate page

Write page to free block

Repeat steps (2)

& (3) until no

valid pages in

D/U-blocks
D-block U-block

Step (4): Erase D/U-block

New D-block

Update mapping
table(FTL)

WRWWWW

I/O Request Queue

StalledStalled

Chip 0
Chip 1

SSD ControllerVictim blocks

Free
blockFree block

Figure 2: NFTL GC (Merge) overview.

ments two major functionalities, namely, address map-
ping and garbage collection.

2.2.1 Address Mapping

FTL maintains a data structure called mapping table. It
maps a given logical page/block address to the physical
location. Each read/write I/O request has to be translated
by FTL to route the request to a corresponding physical
page. When a logical page is updated, the old physical
page is marked as “invalid,” since SSDs do not support
in-place update. The number of invalid pages in chip
increases as the write requests are processed. Address
mapping can be broadly classified into three categories
based on the granularity at which the mappings are man-
aged viz., (a) page-level, (b) block-level, and (c) hybrid
mapping.

Page-level Mapping: This address mapping imple-
mentation needs a huge mapping table to manage transla-
tions at a page granularity. Note that a 1TB SSD requires
at least 1GB mapping table. While SSD capacity doubles
as the number of stacked NAND layers increases, such a
huge mapping table becomes a major issue for SSD de-
sign (in terms of both price and power consumption).

Block-level Mapping: Block-level mappings only
store the mapping information per block, and therefore,
the size of mapping table is smaller than other mappings.

A well-known block-level implementation is NFTL
[3]. In NFTL, the mapping information of a block con-
sists of a Data block (D-block) and Update block (U-
block). A D- and U-block together are referred to as
a block-pair. D-block represents the actual data block
where a page is originally mapped to, while U-block rep-
resents the block to which the updated pages from D-
block are written to, leaving the corresponding paired D-
block page invalid. Typically, the number of U-blocks is
much smaller than the number of D-blocks; so, multiple
D-blocks compete for a U-block.

A new write of NFTL is performed on the mapped
page in the D-block, while an updated write to the same
address is logged in the paired U-block. As a result,
a read to an address may have to search (read) pages

from the U-block sequentially to retrieve the latest copy.
Hence, the read and write performance can be slower in
NFTL compared to that of the page-level mapping.

Hybrid Mapping: The hybrid mapping combines the
best of the two previous mappings by (a) adopting the
block-level mapping to reduce the mapping table size,
and (b) utilizing partial (or small) amount of the page-
level mapping table to accelerate the performance. Vari-
ous such proposals include Superblock [21], FAST [40],
DFTL [15], and LAST [38]. In this work, we only focus
on the Superblock FTL implementation.1

2.2.2 Garbage Collection (GC)

GC is triggered by the write requests or the controller
firmware to clear the invalid pages left in the flash chips,
so that SSDs have enough free pages for the future
writes. GC typically contains four steps: (1) selecting
victim blocks, (2) reading valid pages from the victim
blocks, (3) writing the valid pages into the reserved free
blocks, and (4) erasing the victim blocks. Typically, steps
(1) and (4) are executed only once, while steps (2) and (3)
are executed repeatedly until no valid page is left in the
victim blocks. Since GC changes the FTL address map-
ping, different FTLs implement their GC algorithms.

Figure 2 illustrates the GC in NFTL, which is mainly
achieved by Merge operation. Merge copies all valid
pages contained in victim block pair to a reserved free
block, after which the victim block pair is erased. There
are two scenarios when a GC will be triggered: (a) fully-
utilized U-block and (b) unpaired D-block. In scenario
(a), the paired U-block has no free page, and therefore,
GC needs to be triggered to clear the invalid pages in this
block pair. In scenario (b), the D-block corresponding to
a write request does not have a U-block paired with it; as
a result, GC is triggered on another block pair to reclaim
a free U-block. We assume that the victim block pair for
step (1) has already been selected. The second step in-
volves reading the valid page from the victim block pair.
In the third step, the page read in the second step is writ-

1Our proposal works equally well for other hybrid FTL implemen-
tations as well.

USENIX Association 16th USENIX Conference on File and Storage Technologies 69

0

30

60

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

prn_1 proj_0 proj_1 proj_2 usr_1 usr_2

La
te

n
cy

 (
in

 m
se

c)
Spare Area Read Write GC Spare Area Read GC Read GC Write GC Erase

(a) High write-intensive workloads

0

4

8

12

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

7
2

1
4

4
2

8
8

5
7

6
7

2
1

4
4

2
8

8
5

7
6

hm_0 prn_0 prxy_0 src1_1 src1_2 stg_1

La
te

n
cy

 (
in

 m
se

c) Spare Area Read Write GC Spare Area Read GC Read GC Write GC Erase

(b) Low write-intensive workloads

Figure 3: Write latency breakdown for different block sizes in the case of NFTL.

ten into the free block and the read page is invalidated in
the victim block. These steps, (2) and (3), are repeated
for all the valid pages in the victim blocks, as depicted
in the figure. Once all the valid pages are copied, in step
(4), all the pages in the block are erased using an erase
operation, also shown in the figure. Finally, the FTL ad-
dress mapping is updated to reflect the new D-block.

As depicted in Figure 2, the on-demand read/write
I/O requests cannot be served by the SSD chips during
the GC and are stalled in the per-channel DRAM queue
[4, 32–36, 43, 48, 52, 56] in the SSD controller. As a
result, the GC can negatively affect the application per-
formance [23–25]

2.3 Effect of Block Size

2.3.1 Effect of Block Size on Performance

With the increase in density for the 3D NAND flash, the
number of valid pages per block increases. As a result,
the number of pages to be copied from the victim block
to the free block during a GC also increases. Conse-
quently, the GC duration increases, in turn increasing
the access latency for the read and write I/O requests,
thereby degrading the overall performance significantly.
This issue is widely referred to as the “Big Block” prob-
lem [54].

We performed experiments to quantitatively demon-
strate the relationship between GC and the number of
pages per block in the case of NFTL (block-level FTL)2.
All the configurations tested have the same SSD capacity
to prevent the capacity from affecting the GC triggered
frequency. To keep the same capacity, we ensure that
a plane has the same number of pages, but the number
of pages per block are varied across different configura-
tions. Here are the four evaluated configurations (blocks
per plane, pages per block): (a) (15104, 72), (b) (7552,
144), (c) (3776, 288), and (d) (1888, 576). The rest of
parameters can be found in Table 1. All four configura-
tions are evaluated on the SSDSim [17] simulator using
12 write-dominant workloads shown in Table 2.

2We observed that Superblock FTL has a similar trend.

0

0.2

0.4

0.6

N
u

m
b

e
r

o
f

G
C

s
(i

n

m
ill

io
n

)

Blk_72 Blk_144 Blk_288 Blk_576

0.66

Figure 4: Effect of block sizes on the number of GC in-
vocations in the case of NFTL.

Figures 3a and 3b show the breakdown of average
write access latencies (in milliseconds) for the different
block sizes. As can be observed, as the number of pages
per block increases, the latency increase and becomes
maximum for a block with 576 pages. The access la-
tency incurred by a write request includes (1) the time
spent in performing the actual write to the pages, and (2)
the time spent in waiting in the I/O request queue if this
write triggers a GC. The GC time which effects the wait
time of a write I/O request can further be broken down
into (a) GC spare-area read, (b) GC Read, (c) GC Write,
and (d) GC Erase, as shown in Figures 3a and 3b. The
GC spare-area read time accounts for the time spent in
reading the page status to identify the valid pages. The
GC read/write time accounts for copying the identified
valid pages from the victim blocks to a free block, while
the GC erase time accounts for the time spent in perform-
ing the erase of the victim blocks.

Figures 3a and 3b plot the write access latency break-
down for the high and low write-intensive workloads,
respectively. In Figure 3a, as the number of pages per
block increases, the time spent in copying the valid pages
(which includes GC read/write) increases from 58% for a
block with 72 pages to 79% for a block with 576 pages.
This result indicates that reducing the number of valid
pages to be copied is crucial under the high-intensive
workloads. In figure 3b, the time spent in copying the
valid pages remains the same, but the time spent in read-
ing the spare-area increases due to the inherent design of
NFTL.

Figure 4 shows the number of GC invocations for dif-
ferent block sizes for all workloads. In general, the num-
ber of GC invocations are halved as the number of pages

70 16th USENIX Conference on File and Storage Technologies USENIX Association

0

6

12

18

prn_1 proj_0 proj_1 proj_2 prxy_0 usr_1 usr_2 Average

W
ri

te
 A

m
p

. Blk_72 Blk_144 Blk_288 Blk_576

Figure 5: Effect of block sizes on writes amplification in
the case of NFTL.

per block doubles; so, the time spent in erasing the blocks
decreases. However, in the high write-intensive work-
loads, such as prn 1 and proj 1, the number of GCs in-
creases as the number of pages per block doubles. This is
because the configuration with a fewer number of blocks
(larger block) has fewer competing blocks, thereby re-
sulting in higher number of GCs.

2.3.2 Impact of Block Size on Lifetime

Write amplification factor is the ratio of the amount of
data which the host writes and the amount of writes that
actually occurs on the flash media (including the GC
writes) [16].

Figure 5 shows the write amplification varying block
sizes for high write-intensive workloads. Write amplifi-
cation for the high write-intensive workloads increases,
on average, from 2.1 for a block with 72 pages to 5.1 for
a block with 576 pages. This is because, as the number
of pages per block increases, the corresponding number
of valid pages per block also increases. Since the erase
operation during a GC is at a block-level, all the valid
pages from the victim block need to be copied to a free
block, thereby increasing the write-amplification. Such
increased write-amplification may shorten the lifetime
of SSDs. We also observed that Superblock FTL [21]
has a similar trend. However, page-level FTLs do not
suffer from the increased write-amplification because of
smart page allocation and victim block selection algo-
rithms [2, 12, 16, 42, 44, 45].

3 Overview of Partial-Erase Operation

Due to the large number of pages in a block, 3D NAND-
based flash storage can be subjected to excessive valid
page copy overhead. To reduce the number of valid page
copies in 3D NAND, we propose a partial-erase oper-
ation for 3D NAND flash (PEN). Unlike the block-level
erase operation, our proposed partial-erase operation per-
forms erase at a ”partial block” (PB) granularity. Since
our proposal enables partial-erase, the amount of valid
pages that need to be copied during a GC is reduced sig-
nificantly, eventually improving the write latency and the
overall I/O throughput. Also, since the number of pages
copied during a GC reduces, the overall number of writes

induced by GCs is also reduced, and this in turn results
in lower write-amplification and increased lifetime.

Our proposal consists of both hardware and software
changes. On the hardware side, our hardware modifica-
tions for the partial-erase operation support both the par-
tial data-erase phase and the partial erase-verify phase.
The implementation of the partial data-erase phase in-
cludes inhibiting the erase of pages other than the pages
in a PB of a block. Similarly, the implementation of par-
tial erase-verify phase includes only verifying the pages
in PB to decide if the partial-erase operation needs to
continue erasing the non-erased pages in PB or not.

The partial-erase operation may incur additional pro-
gram disturbances to the neighboring pages, causing the
neighboring cells’ data to be modified. To solve the
disturbance, we provide a software-based modification,
since the hardware-based solutions [11, 14] typically re-
duce the 3D NAND array density, which may trigger
further GCs. Another reason is that the hardware-based
solutions can only mitigate the disturbance, so the data
in the boundary pages may still be corrupted with more
partial-erase operations. Therefore, a software solution
is more preferable.

576 valid pages

Free page

Valid page

Invalid page

Block-Erase

Partial-Erase

72
72

432

144

36

36

360
576

(a)

72
72

432

144

36

36

360

72 valid pages

(b)

Figure 6: (a) depicts the baseline without partial-erase
support necessitating 576 valid pages to be copied from
the victim blocks to the new block. (b) depicts our
partial-erase support which only necessitates 72 valid
pages to be copied.

On the software side, we propose a modified merge
(M-Merge) algorithm in GC that utilizes our partial-erase
operation to reduce the number of valid pages copied
from the victim blocks. One major contribution of our
M-Merge algorithm is that, the valid pages in victim
blocks are “consolidated” into fewer blocks, unlike in the
baseline GC algorithm where all valid pages are copied
to free blocks. Therefore, in our proposed algorithm, we
copy very few pages during GC. Another contribution
is that the proposed M-merge algorithm is aware of the
possible disturbance by the partial-erase, so the data in
non-erased pages will not be corrupted by disturbances.
Figure 6 shows the difference between the baseline GC
and M-Merge based GC. In this example, our M-Merge
only copies 72 valid pages during a GC; in comparison,
the baseline GC copies a total of 576 valid pages.

USENIX Association 16th USENIX Conference on File and Storage Technologies 71

P-0

P-4

P-8

P-12

Bit 0 Bit 1 Bit n

Slice 0
Block 0

…

…
123

567

9

13

…

…1011

1415

0V (CG1)

Floating

Floating

Floating

Floating

Partial

Erase

Floating

…
…

…

(a) Partial data-erase phase.

P-0

P-4

P-8

P-12

Bit 0 Bit 1 Bit n

Slice 0
Block 0

…

…
123

567

9

13

…

…1011

1415

0V (CG1)

Vth

Vth

Vcc

Vcc (USG)

Vth

…
…

…

(b) Partial erase-verify phase.

P - 0
1
2
3

P - 4
5
6
7

P - 8
9

10
11

P - 12
13
14
15

1

2

3

5

8

9

10

11

12

13

14

15
Block 426

(426, 5)

Block Index

PB Index

4

5

6

7

*2

*2 +1…

(c) Partial block index.

Figure 7: Partial-Erase operation design.

4 Controller Hardware for Partial-Erase

4.1 Peripheral Circuit Modifications
The peripheral circuit modifications for our proposed
partial data-erase and partial erase-verify phases are cov-
ered in this subsection. In the baseline erase imple-
mentations of VNAND (bulk-erase) circuits, the erase-
inhibition technique is used to restrict the erase operation
to the victim block. That is, only the CGs of the victim
block are set to 0V, and the rest of the blocks are float-
ing.3 Therefore, only the cells in the victim block are
under high negative voltage difference, which resets all
the cells in the victim block. In contrast, in the data-erase
phase of the partial-erase operation, the erase-inhibition
is achieved at a partial-block (PB) granularity, as shown
in Figure 7a. In other words, only CG1 of PBs are set
to 0V, instead of the entire block as in the baseline bulk-
erase implementation. Figure 7a shows the implementa-
tion of the partial data-erase for a PB with 4 pages in the
3D NAND flash. In this example, only pages P4-P7 are
erased, while the other pages retain their earlier contents
as their corresponding CGs are set to floating.

The partial erase-verify phase verifies if all the pages
in the PB are erased successfully during the data-erase
phase or not. A modified read operation can be used as
partial erase-verify. Instead of selecting the page by only
one USG and one CG for read operation, multiple USGs
and CGs are used to select all pages in a PB to realize
the partial erase-verify phase. Then, the current on the
bitlines can be measured to figure out the PB cells’ eras-
ing status. Figure 7b shows the implementation details
of proposed partial erase-verify phase. The partial erase-
verify phase is performed on the second 4 pages (P4-P7).
The CG1 is set to 0V, so that the content in cells of sec-
ond 4 pages will reflect to the current on bitlines. The
GIDL-based erase can be modified similarly.

The hardware modification for our partial-erase oper-
ation mainly adds an extra circuit for the control logic
in the page decoder (PD), as illustrated in Figure 8.

3The CG is disconnected; so, the voltage of the cells becomes float-
ing.

3D NAND

Flash Cell

Array

(plane 0)

3D NAND

Flash Cell

Array

(plane 1)

B
lo

ck
 D

eco
d

er

Page buffers and column decoder
Peripheral circuits

Charge Pump Charge Pump
Command logic and

Analog Circuits

Top view of 3D NAND Flash Chip

PD PD

Page Decoder (PD)

Control
Logic

High voltage

switch

High voltage

switch

Figure 8: Partial-Erase circuit overview.

The required area for the control logic is at most the
same as the original control logic area. The reason
is that the proposed circuit has fewer cases to handle
than the original one. The area overhead of the pro-
posed enhancements can be calculated as follows: The
peripheral circuits in 3D NAND flash chip are around
6 ∼ 9%[19, 26, 29, 53], and the PD occupies about 4%
of the peripheral circuits[47]. In the PD, only 17% of the
area is devoted to the control logic[47]. Therefore, our
hardware overhead is at most 0.07% of the whole area,
which is negligible in a 3D NAND flash chip.

4.2 Boundary Program Disturbance
The additional program disturbance to the neighboring
pages [5, 58] comes from later write (program) operation
after the partial-erase. In Figure 7a, pages P0-P3 and P8-
P11 represent the neighboring pages that are disturbed
by the program operations after the partial-erase opera-
tion. Such 3D NAND program disturbance is known to
be small compared to the 2D counterpart, owing to the
3D CTF cell itself [19]; so, the boundary pages can tol-
erate more extra program disturbance in 3D NAND com-
pared to 2D. However, the data in those pages can still be
corrupted if the same partial-block is repeatedly erased.

4.3 Indexing the Partial Blocks
We augment the original block-level erase operation
command format shown in Figure 9 with partial-block

72 16th USENIX Conference on File and Storage Technologies USENIX Association

Start Address Address Address EndCommand

Ignored Block Index

Block Index

Block-Erase (baseline)

Partial-Erase PB Index

1 byte 24 bits 1 byte

Figure 9: Partial-Erase command format.

index bits. These additional bits, which represent the PB
index along with the already-existing block index bits,
enable our proposed partial-erase operation.

To minimize the control circuitry and utilize the exist-
ing command convention and format used by the NAND
flash, we restrict each PB to contain ρ number of pages,
which can be expressed as:

ρ =
number of pages per block

2l (PB size)

,where l represents the number of times that a block is
split into two smaller equal-sized partial-blocks. l can
take values ranging from 0 to L, where L is the maxi-
mum number of times a block can be split. If l is 0, a
block is not split causing the entire-block to be erased.
If l equals to 1, an entire block is split into two partial-
blocks so that a partial-erase can be performed on either
partial-blocks (PBs). With restricted PB sizes and loca-
tions, the number of supported PBs for the chip can only
be 2L+1− 1. For example, if L is 6 in a chip contain-
ing 576 blocks, the number of pages in a PB can take
the following values: 576, 288, 144, 72, 36, 18 and 9
pages. Hence, the possible PBs per block can be 127
(1+2+4+8+16+32+64 = 26+1−1 = 127).

Figure 7c shows our PB indexing scheme. Instead of
indexing a PB in a block with both PB size and location,
we use a single PB-index to identify both the PB size and
location. Thus, a tuple (block-index, PB-index) is used
to identify the unique PB amongst multiple blocks in the
3D NAND flash. For example, PB (426,2) contains two
smaller PBs, PB (426,4) and PB (426,5). In addition,
erasing one bigger PB is less expensive than erasing two
corresponding smaller PBs, since the NAND chip can
only execute one command at a time due to its internal
control circuitry. As a result, the PB size used during GC
highly affects the GC latency.

5 FTL for Partial-Erase

5.1 Partial Block vs. Smaller Block
The simplest approach to utilize partial-erase operation
in current FTLs is to replace the block-erase directly with
the partial-erase; so, the block size in new system shrinks
to one of the possible PB size, which is fixed and cannot
be dynamically changed. Although this option is feasi-
ble, it has two main drawbacks: (1) larger mapping ta-
ble size and (2) fixed partial-erase granularity. Enlarging

the mapping table size in modern block-level and hybrid
FTLs are costly. For example, in the extreme case, where
L is 6, 26 times of baseline mapping table size is required.
On the other hand, employing a fixed partial-erase gran-
ularity can result in sub-optimal performance as:
• A finer fixed partial-erase granularity might necessi-
tate more number of partial-erase operations to reclaim a
large number of invalid pages in the victim block. These
partial-erase overheads can be reduced by fewer coarser
granularity partial-erase operations.
• A coarser fixed partial-erase granularity might result in
more number of valid page copies.

Motivated by this, we introduce our M-merge algo-
rithm which can keep original mapping table size and
dynamically choose the optimal partial-erase granularity.

5.2 M-Merge for Block-level Mapping

We propose a new GC algorithm, M-Merge, for NFTL.
Figure 10 shows the difference between the baseline
Merge algorithm and our proposed M-Merge algorithm.
Our M-Merge algorithm is based on a sub-operation
called restore. Restore is an operation which is per-
formed on one of the PBs in D-block and its correspond-
ing valid pages in U-block. It is composed of three
stages: (1) valid-page copy from D-block to U-block ,
(2) partial-erase of PB in D-block, and (3) valid-page
copy from U-block to D-block. In the first stage, all the
valid pages in the PB must be copied to the U-block or
other blocks, so that a partial-erase can be performed for
the PB which has only invalid and free pages in the sec-
ond stage. After the PB is partial-erased, the third stage
copies back the valid pages that belong to this PB from
U-block. The cost of the restore operation is one partial-
erase and several valid page copies corresponding to this
PB. The cost of the restore operations in Figure 10 can
be calculated as follows:

restore(PB 5) = None(skipped)

restore(PB 9) = 1 PE+72 page copies

restore(PB 14) = 2 page copies+1 PE+72 page copies

5.2.1 M-Merge Examples

In the example shown in Figure 10, assuming that there
are a total of 576 (434 in D-block + 142 in U-block) valid
pages, when a GC is triggered, all these valid pages from
D-block and U-block need to be copied to a free block.
Hence, the cost of a GC merge operation in the baseline
is the cost of copying these 576 pages to a free block
along with the cost of erasing both the D- and U-blocks.
However, our M-Merge algorithm uses two restore sub-
operations to achieve the same goal.

USENIX Association 16th USENIX Conference on File and Storage Technologies 73

Merge Free page

Valid page

Invalid page

D,U=>Victim blocks
M-Merge

576

72

288

72

36

43

27

36

576

72

288

72

(1) Skipped (5, 6, 8, 15)

432

(3) Restore (PB 14)

14

(2) Restore (PB 9)

9

New

D-block

576

14

D U D D D

2 pages

U

6

5

8

15

36

36

U

72

D

43

U

72

D

45

27

U

2 pages

Figure 10: Merge and M-Merge operations.

M-Merge only executes the restore operations on D-
blocks, while U-blocks are still block-erased in the end.
We use D-block PB indices (Figure 7c) of 8, 9, 5, 6,
14, and 15 to explain M-merge. Note that the non-
overlapped PBs form a complete block; hence, restor-
ing all the non-overlapped PBs can guarantee that the U-
block is erasable. We arrive at these PB indices by apply-
ing our Algorithm 1, which will be discussed shortly. As
can be observed from Figure 10, PBs 8, 5, 6 and 15 have
no invalid pages; so, M-Merge skips those PBs. PBs 9
and 14 contain invalid pages, so two restore operations
need to be performed. PB 9 has only invalid pages, and
hence, the first stage of the restore operation is skipped,
and only the following two stages are executed. Thus, the
corresponding 72 (36 + 36) valid pages in the U-block
are copied back to PB 9. On the other hand, PB 14 has
two valid pages, and as a result, those two pages have to
be copied to the U-block in the first stage, and then the
last two stages can be performed aiming PB 14. Overall,
the total cost of M-Merge is the time taken for copying
72 + 2 + 72 = 146 valid pages, partial-erasing 2 PBs, and
erasing 1 U-block.

Typically, a NAND flash read/write is 10 times faster
than an erase operation [1]. The speedup brought by
our proposed M-Merge operation over the conventional
Merge operation is:4

speedup=
(Merge time)

(M-Merge time)
=

(576+20)
(146+20+10)

= 3.38×.

M-Merge with Program Disturbance: We assume
that the previous example executes 4 times; as a result,
PB 9 is restored 4 times by M-merge, which is shown
in Figure 11. As discussed in Section 4.2, the pages ad-
jacent to PB 9 are disturbed when PB 9 is restored. To
prevent the data corruptions caused by the disturbances,
those disturbed pages will be restored by the next subse-
quent M-Merge operation that disturbs those pages. Note
that the smallest PB has only 9 pages. At time t1, the
PB 9 is restored. Thus, the upper PB (9 pages) and the
lower PB (9 pages) are disturbed, but the data in those

4The computation time can be omitted, since the execution time of
NAND flash erase operation is on a millisecond scale.

two layers are still consistent (not corrupted). At time
t2, although only PB 9 is required to be restored, the dis-
turbed pages (upper and lower PBs) are restored as well,
since the data in these PBs may be corrupted due to this
partial-erase operation. Hence, 9+ 72+ 9 pages are re-
stored. At time t3, only PB 9 is restored, since both upper
and lower PBs are corrected by the previous restore op-
eration at time t2. At time t4, two upper PBs, two lower
PBs and PB 9 are restored to prevent the data corruption.

72

D

To be disturbed

Valid page

To be erased (PB 9)

To be erased in case

of data corruption

9

t1 t2 t3 t4 time

Figure 11: Data corruption prevention.

In summary, M-merge restores the possibly corrupted
boundary pages to prevent the data corruption. Although
this proposal increases the number of copied pages dur-
ing M-merge, it still outperforms the baseline merge al-
gorithm, which can be observed in Figure 15a.

M-merge wear-leveling: In the example shown in
both Figure 10 and Figure 11, the PBs in the same block
may be under different number of erase operations due
to partial-erase operation. To mitigate wear-unleveling,
the approach in [30] is adopted. To be more specific, a
block can only be M-merged W times before a baseline
Merge, where W is a (preset) wear-leveling parameter.

5.2.2 M-Merge Algorithm

cost[pb] =Min(restore(pb,disturb),

cost[pb∗2]+ cost[pb∗2+1])
(1)

Our M-Merge algorithm can be accomplished through
various sequences of restores. However, the sequence
that yields the “minimum” cost and preventing data cor-
ruption is preferred. To find such sequence, the recursive
relationship in Equation (1) is introduced, which esti-
mates the cost, represented by cost(pb), of using restore
for PB index (pb), comparing it with the total cost in-
curred for the PB indices (pb∗2) and (pb∗2+1). Then,

74 16th USENIX Conference on File and Storage Technologies USENIX Association

the one which offers the minimum cost is chosen. Note
that the restore operation is aware of disturbance, so all
of the valid pages in the PB may be copied out and back
in case of a data corruption, even though the PB has no
invalid pages.

When a GC is triggered, the total cost for M-Merge op-
eration is recursively estimated using Equation (1) start-
ing with the whole block, which is PB 1. The estimated
total cost for M-Merge operation is compared with that
of baseline Merge operation. Based on the relative costs,
the less expensive option is chosen. Note that, our GC
algorithm can switch between Merge and M-Merge op-
erations dynamically based on the relative costs, thus it
is highly adaptive.

Algorithm 1: M-MERGE PLAN ALGORITHM
Input: Dblk: D-block, dis: disturbed pbs in D-block

1 for pb← max pb to 1 do // All PBs
2 cost[pb]←RESTORE(Dblk, pb, dis);
3 trav[pb]← leaf PB;

4 for pb← (max pb/2) to 1 do // Except the smallest PBs
5 if cost[pb∗2]+ cost[pb∗2+1]< cost[pb] then // Equation (1)
6 cost[pb]← cost[pb∗2]+ cost[pb∗2+1];
7 trav[pb]← internal PB;

8 RstrSeq← DFS-TRAVERSAL-LEAF-PB(cost, trav, 1);
9 toCopy← SUM-OF-COPY(RstrSeq);

10 return (cost[1], RstrSeq, toCopy)

Algorithm 1 gives the pseudo-code that determines the
minimum-cost restore sequence to perform M-Merge.
After estimating the cost for M-Merge, the number of
copied pages, which represents the number of pages to
be copied in the first stage of all the restore operations, is
calculated.

Algorithm 2: NFTL MERGE MODIFICATION
Input: Dblk, Ublk

1 dis← φ ; corrupt← True;
2 cost← MERGE-COST(Dblk);
3 do // M-Merge cost
4 (mcost, RstrSeq, toCopy)← M-MERGE-PLAN(Dblk, dis);
5 corrupt← DISTURB-UPDATE(Dblk, RstrSeq, dis);
6 while corrupt 6= True;
7 f reeu← FREE-PAGE(Ublk);
8 if f reeu < toCopy then
9 (space, pbu)← LARGEST-INVALID-PB(Ublk);

10 mcost += PARTIAL-ERASE-TIME(pbu);

11 if mcost < cost && toCopy < f reeu + space &&
Dblk.mmerge count <W then // M-Merge

12 if f reeu < toCopy then
13 PARTIAL-ERASE(pbu);

14 for pb in RstrSeq do
15 DO-RESTORE(pb);

16 else // Baseline Merge
17 MERGE(Dblk);

Algorithm 2 presents the modifications proposed for
the NFTL Merge operation. It initially calculates the
costs for both the Merge and M-Merge operations, and

then chooses the one with the lower cost. To prevent po-
tential data corruption due to M-merge, Algorithm 2 is
repeatedly called with the updated PBs’ disturbance in-
formation. If NFTL decides to execute M-Merge based
on the toCopy pages returned from Algorithm 1, a partial
block in U-block may be erased to ensure that the restore
sequence can be executed successfully.

M-Merge can generate the optimal restore sequence
with minimum cost using Algorithm 1; however, exe-
cuting the restore sequence is not guaranteed to be op-
timal due to insufficient free pages in U-block. In Al-
gorithm 2, to provide more free pages for restore oper-
ations, we partial-erase the largest PB with all invalid
pages before any restore operations. However, this PB
in U-block may not be the optimal one, since a bigger
PB may be generated during the execution of the restore
sequence, not before it. In addition, the free pages in D-
block and the newly-allocated block can also be used as
temporary free pages. However, looking for these possi-
bilities would take too much compute time. Hence, we
choose the method in Algorithm 2.

5.3 M-Merge for Hybrid Mapping
Before describing our modifications to Superblock FTL,
we briefly go over Superblock FTL [21]. In a superblock
implementation, several adjacent logical blocks (say M),
which is the basic unit of address mapping, are grouped
to form a superblock, and each superblock contains sev-
eral (physical) blocks (say N). The GC of Superblock
FTL also employs the Merge operation at a block granu-
larity. The GC for a superblock can be divided into intra-
and inter-superblock GC.

Intra-superblock GC is triggered when a superblock
has no free pages. The goal of the intra-superblock GC
is to clear some free blocks for the subsequent write re-
quests. Therefore, only the blocks with the minimum
valid pages are merged by GC, and consequently, the
read/write requests will not be stalled for too long.

Inter-superblock GC is triggered when there is no
available free block in the NAND chip. The goal of the
inter-superblock GC is to compact the victim superblock
to the fewest number of physical blocks, which has only
M physical blocks, so that the other superblocks can al-
locate available free blocks.

Superblock FTL can apply modifications similar to
NFTL to reduce valid page copies by applying our M-
Merge algorithm multiple times to physical blocks in a
superblock. However, since the concept of D-block in the
Superblock FTL is the cold data block (not the blocks to
be restored), our modification must choose the D- and U-
blocks using by M-Merge amongst the physical blocks
in a superblock. Another important difference between
NFTL and Superblock FTL M-Merge implementations

USENIX Association 16th USENIX Conference on File and Storage Technologies 75

Algorithm 3: SUPERBLOCK MERGE MODIFICA-
TION

Input: blkset: superblock physical block index set
1 cost← SUPERBLOCK-MERGE-COST(blkset);
2 U-blkset← BLK-SET-WITH-MIN-VALID-PAGES(blkset,M−N);
3 D-blkset← blkset−U-blkset;
4 mcost← 0;
5 for b in D-blkset do // M-Merge cost
6 dis← φ ; corrupt← True;
7 do
8 (mcostb,RstrSeqb, toCopyb)← M-MERGE-PLAN(b, dis);
9 corrupt← DISTURB-UPDATE(b, RstrSeq, dis);

10 while corrupt 6= True;
11 mcost += mcostb;

12 if cost < mcost && blkset.mmerge count ≤W then // Baseline Merge
13 SUPERBLOCK-MERGE(blkset);

14 else // M-Merge
15 for b in D-blkset do
16 if FREE-PAGE(U-blkset) < toCopyb then
17 ALLOC-FREE-BLOCK(U-blkset);

18 for pb in RstrSeqb do
19 DO-RESTORE(pb);

is that the restore operation in Section 5.2 assumes the
pages in D-block are in address order. However, they are
out-of-order across the physical blocks in a superblock;
as a result, the cost to perform restores needs to be ad-
justed accordingly.

Algorithm 3 gives the pseudo-code to determine
whether it is beneficial to execute M-Merge and, if it is,
how to perform M-Merge. The first step of Algorithm 3
is to decide U-blkset – the blocks to be erased. We pick
M−N blocks in the victim superblock with the minimum
number of valid pages as U-blkset, so that the number of
valid pages to be copied is minimal. The second step in-
volves applying Algorithm 1 to all the blocks in D-blkset
and estimating the total cost of M-Merge. The final step
involves deciding whether it is beneficial to perform M-
Merge or conventional Merge.

6 Evaluation

6.1 Experimental Setup
We used the “Flash core cell” model from HSIM [49]
package in Synopsys HSPICE [50] to measure the
partial-erase latency (in milliseconds) for a 3D NAND
flash. Since the partial-erase latencies are governed by
the cell with the slowest erase-rate and not by the num-
ber of cells per partial-block, the partial-erase latencies
are only slightly better compared to the block-erase la-
tency. Please refer to Table 1 for the details on the laten-
cies. We used SSDSim [17] to evaluate our proposed M-
merge algorithm for NFTL and Superblock FTL. Various
parameters used in our SSDSim experiments are listed in
Table 1. The read/write and block-level erase access la-
tencies used in our SSDSim simulations are based on our

SSD parameters
(Page-read, Page-program, Block-erase) (70µs, 900µs, 10ms)

(PB size (pages), partial-erase time (ms)) (L=6)
(288, 9.95), (144, 9.79),
(72, 9.62), (36, 9.48),
(18, 9.37), (9, 9.27)

(Channels, Chips, Dies, Planes, Blocks, Pages) (8, 2, 2, 2, 1888, 576)
(Page Size, Spare area size) (16KB, 1280B)
Total SSD capacity 1TB
(Over provision, Initial data) (10%, 95%)
Number of tolerance disturbance 1
Wear leveling parameters (W) 16

NFTL parameters
(Victim selection, GC free block threshold) (Max invalid, 8%)

Superblock FTL parameters
Logical:physical block ratio (M:N) (4:5), (4:8)
Intra-/Inter-superblock GC threshold (1 PBMT, 8%)

Table 1: Characteristics of the evaluated SSD.

trace read write read write read write
reqs (in reqs (in data data coverage coverage
millions) millions) (in GBs) (in GBs) (in GBs) (in GBs)

hm 0 1.417 2.576 9.96 20.47 1.84 1.63
prn 0 0.602 4.983 13.12 45.96 3.72 12.38
prn 1 8.464 2.77 181.35 30.78 73.78 11.52
proj 0 0.527 3.697 8.97 144.26 1.74 1.65
proj 1 21.143 2.497 750.36 25.57 693.5 9.03
proj 2 25.642 3.625 1015.9 168.68 409.37 115.13
prxy 0 0.384 12.135 3.04 53.8 0.29 0.7
src1 1 43.576 2.17 1485.6 30.34 116.69 4.16
src1 2 0.484 1.424 8.82 44.14 1.55 0.65
stg 1 1.4 0.796 79.52 5.98 79.42 0.39
usr 1 41.426 3.858 2079.2 56.12 651.16 24.56
usr 2 8.575 1.995 415.28 26.46 377.8 10.02

Table 2: Important characteristics of our workloads.

empirical evaluations of the real 3D NAND chips. The
12 evaluated I/O workloads, whose characteristics are
shown in Table 2, are from the revised SNIA traces [37].

We use the following five metrics for our evaluations:
(a) average write latency, (b) throughput, (c) write
amplification, (d) AEP, and (e) VEP. AEP and VEP are
the average and variance number of erase operations per
page, respectively. Those two metrics track the number
of erase operations at a finer granularity, page, unlike the
coarse block granularity in the baseline. This is because,
due to the partial-erase, the different pages in the same
block can experience a different number of erases.

6.2 Experimental Results

6.2.1 Block-Level FTL

Performance: Figure 12b shows the improvement in
read/write throughput (IOPS) for our proposed PEN sys-
tem (using partial-erase) over the baseline system (using
block-erase only) for NFTL. Note that NFTL maintains
the mapping at a unit of a block instead of a page; so,
the GC trigger frequency is relevant not only to the ra-
tio of the written data and the SSD capacity, but also to
the page utilization of blocks; hence, a small amount of
written data may trigger a large number of block merges.

76 16th USENIX Conference on File and Storage Technologies USENIX Association

0

0.5

1

1.5
N

o
rm

al
iz

e
d

 W
ri

te

La
te

n
cy

Baseline PEN

(a) Normalized write latency for NFTL.

0

5

10

15

Th
ro

u
gh

p
u

t
(I

O
P

S)

Baseline PEN

(b) Throughput for NFTL.

1

10

100

1000

10000

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline GFTL

(c) Comparison with GFTL.

Figure 12: Performance improvements in the case of NFTL.

0

5

10

15

20

W
ri

te
 A

m
p

. Baseline PEN

(a) Write amplification for NFTL.

0

5

10

15

A
EP

Baseline PEN

(b) AEP for NFTL.

0

5

10

15

V
EP

Baseline PEN

(c) VEP for NFTL.

Figure 13: Write amplification, AEP, and VEP improvements in the case of NFTL.

For example, although workload prn 1 only comprises
of 30.78GB of written data, over 140,000 block merges
are performed. Since M-merge can significantly reduce
block merge overhead, the performance of the workloads
with frequent block merge operations can be highly im-
proved. On average, IOPS is improved by 1.43x over the
baseline system in NFTL.

Figure 12a plots the write access latencies for our PEN
system, normalized to the baseline system. The magni-
tude of improvement in the IOPS and write latencies is
a function of the workload characteristics. For exam-
ple, workloads like proj 1, usr 1, and prn 1, which have
relatively high amounts of coverage (unique data), expe-
rience very high improvements. This is because, as the
coverage in these workloads is very high, a majority of
the U-blocks are already paired with a D-block resulting
in an outage of free U-blocks. When a write is incurred
to a page in an unpaired D-block, a block merge is trig-
gered to reclaim a free U-block that can be paired with
this D-block. Hence, for these workloads, the number of
triggered block merges is very high, with each merge op-
eration lasting several hundreds of milliseconds, owing
to the increased number of valid page copies in the base-
line. Since our M-Merge algorithm reduces the number
of valid pages to be copied, our PEN system yields sig-
nificant improvements in I/O throughput.

Write amplification: Figure 13a shows how our
partial-erase enabled PEN system compared to the base-
line system in terms of write-amplification. The write-
amplification is reduced, on average, by 2.67x, compared
to the baseline.

AEP and VEP: Figures 13b and 13c show the AEP
and VEP, respectively. AEP improvements stem from
the fewer erased pages during M-Merge, thanks to the

partial-erase. On the contrary, VEP improvements result
from the wear-leveling technique [30], the detailed sen-
sitivity results of which can be found in Figure 14c.

GFTL comparison: Figure 12c plots the write laten-
cies for the baseline and GFTL [9], normalized to our
proposed PEN system. Note that GFTL is one kind of
partial GC algorithm, which needs to reserve extreme
long time for the block merge overhead to guarantee the
constant request response time in the “Big Block”. The
figure shows that the GC algorithms designed for 2D
NAND cannot directly be applied to the 3D NAND.

Sensitivity Results: Figure 14a plots the write laten-
cies for our PEN system for different possible PB sizes
(governed by L). As the possible number of PB sizes in-
creases, PEN performs better, since a smaller PB reduces
the copied valid pages in a PB during a block merge, ul-
timately reducing the overall block merge overheads.

Figures 14b and 14c plot the performance and relia-
bility impact of the wear-leveling parameter, W , which
is defined as the number of M-merge operations that can
be performed on a block since the last baseline Merge
for the block. A higher W value can provide better
performance; but, it can also cause the severe skew-
ness on erase count per page, which can be observed
for prn 1, proj 0, and prxy 0 workload. A lower W
value addresses the unevenness issue; but, it reduces the
magnitude of performance improvement. As can be ob-
served, W value 16 results in optimal performance and
reliability. Figure 15a shows the write latency with and
without considering the boundary program disturbance
by the partial-erase operation. Our program-disturbance
aware M-merge slightly increases the average write la-
tency even under the most severe scenario where the
NAND cells can only tolerate one partial-erase from the

USENIX Association 16th USENIX Conference on File and Storage Technologies 77

0

0.5

1

1.5
N

o
rm

al
iz

e
d

 W
ri

te

La
te

n
cy

Baseline L=1 2 3 4 5 6

(a) Normalized write latency with different
number of PB sizes for NFTL.

0

0.5

1

1.5

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline Unlimited 16 4

(b) Normalized write latency with different
wear leveling parameters for NFTL.

0

6

12

18

V
EP

Baseline Unlimited 16 4

(c) VEP with different wear leveling parame-
ters for NFTL.

Figure 14: Sensitivity results in the case of NFTL.

0

0.5

1

1.5

N
o

rm
al

iz
e

d
 W

ri
te

La

te
n

cy

Baseline PEN without disturbance PEN

(a) Normalized write latency with/without dis-
turbance for NFTL.

0

20

40

60

80

W
ri

te
 la

te
n

cy
(i

n
 s

e
c)

Request Index

Baseline
PEN

(b) proj 1 write request time graph for NFTL.

0

5

10

15

W
ri

te
 A

m
p

. Baseline PEN(0%) PBE(5.5%)
PBE(11%) PBE(16.5%)

(c) Write amplification comparison with [11].

Figure 15: Other aspects in the case of NFTL.

neighbor cells.
Variation of write latency over time: Figure 15b

plots the write access latencies incurred by various I/O
requests as they are processed in one of our workloads
(proj 1). This graph clearly demonstrates that almost all
the I/O write requests5 experience reduced write access
latency as they do not incur long stall times in the I/O
Queue in our PEN system, unlike the baseline. As a re-
sult, we observe improvements in throughput.

Comparison with partial block erase (PBE) in [11]:
Figure 15c compares PBE and PEN system. PBE en-
ables the partial-erase by employing additional erase cir-
cuits between partial-blocks. Such implementation can
mitigate the program-disturbance problem, but reduces
the total available capacity. The detailed hardware and
FTL modifications are not provided; as a result, we mod-
eled the PBE system as a reduced capacity PEN system
without program disturbance. The effect of loss in ca-
pacity by PBE can be observed in the reduced capacity
change in the step from 0% to 16.5%. As a result, it
incurs more GCs, and thus, PBE increases write amplifi-
cation by 88% compared to PEN.

6.2.2 Hybrid FTL

We now quantify the benefits of PEN over the base-
line intra-/inter-superblock GC for Superblock FTL. We
present the results for two different configurations, where
the first one uses 4 logical blocks and 5 (physical) blocks,
while the second one uses 4 logical blocks and 8 (phys-
ical) blocks. Figures 16a and 16b plot the normalized

5We saw similar results in other workloads as well; but, we could
not present them due to space constraints.

(with respect to the baseline) write and read latencies for
the two configurations mentioned before. Workloads like
proj 1 and usr 1 experience improved read/write laten-
cies and enhanced throughput, due to the same reason
explained in Section 6.2.1. In contrast, other workloads,
especially hm 0 and stg 1, incur fewer inter-superblock
GC; however, they incur more frequent intra-superblock
GCs. Since the intra-superblock GC algorithm chooses
the block in the superblock with the minimum number
of valid pages as the victim block, not many valid pages
need to be copied in the baseline. Hence, the avenues
to improve the access latencies in PEN are minimized.
Therefore, the cases in which PEN can outperform the
intra-superblock GC are when the number of (physical)
blocks is close to the number of logical blocks. Note
that only prn 1 workload shows performance degrada-
tion in the baseline with more physical blocks, since
the GC operations in the latter case are dominated by
inter-superblock GC. Our PEN also reduces the write-
amplification, AEP and VEP (Figures 17a, 17b, and 17c).

7 Related Work

Partial-Erase proposals: Partial-Erase operation has
been proposed [28] for 2D NAND flash, however, it
did not pave way in to the actual products as it did not
improve performance or reliability for 2D NAND flash.
This is because the “Big block” problem is not as severe
in 2D NAND compared to 3D NAND flash.

Partial-Erase operations for 3D NAND have recently
been proposed in [11, 14]. However, due to the imple-
mentation diversity of 3D NAND, there are multiple ap-

78 16th USENIX Conference on File and Storage Technologies USENIX Association

0

0.5

1

1.5
N

o
rm

al
iz

e
d

 W
ri

te

La
te

n
cy

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

2.01

(a) Normalized write latency.

2.5

0

0.5

1

1.5

N
o

rm
al

iz
e

d
 R

e
ad

La

te
n

cy

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(b) Normalized read latency.

0

30

60

90

Th
ro

u
gh

p
u

t
(I

O
P

S) 4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(c) Throughput.

Figure 16: Performance improvements in the case of Superblock FTL. (BSL=Baseline)

0

1.5

3

4.5

6

7.5

W
ri

te
 A

m
p

. 4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(a) Write amplification.

0

1

2

3

4

A
EP

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(b) AEP.

0

4

8

12

16

V
EP

4_5_BSL 4_5_PEN 4_8_BSL 4_8_PEN

(c) VEP.

Figure 17: Write amplification, AEP, and VEP improvements in the case of Superblock FTL. (BSL=Baseline)

proaches to enable such an operation. Partial block erase
(PBE) [11] is discussed and compared against PEN in
Section 6.2.1. Another implementation, subblock man-
agement [14] only allows three subblocks (two kinds of
PB sizes) in a block. Such an implementation cannot pro-
vide any significant performance improvement, which
can be observed in Figure 14a.

Besides the hardware-based partial-erase proposals,
there also exist software-based proposals. Kim [30] pro-
poses the strategy to address the wear-leveling problem
caused by the partial-erase operation. Subblock erase [8]
proposes a page-level FTL modification for the partial-
erase operation in [11] to alleviate the “Big Block”
problem. However, this proposal assumes that multi-
ple partial-erase operations can be executed simultane-
ously, which necessitates non-trivial modifications to the
underlying peripheral circuit components of the current
NAND chips. In comparison, our PEN necessitates mod-
est changes to the current peripheral circuitry. More im-
portantly, the approach in [8] is only applicable to page-
level FTL, which, as discussed before in Section 2.2.1,
will become impractical in 3D NAND. In comparison,
our approach focuses on the basic building block of GC,
that is, the merge operation.

Partial GC proposals: We now compare our proposal
to the “partial GC” research [7, 9, 23, 25] , conducted in
the context of 2D NAND flash. Chang et al. [7] and
Choudhari et al. [9] proposed periodic partial GC oper-
ations for real-time systems so that they provide mini-
mal performance guarantees. GFTL [9] is discussed and
compared in Section 6.2.1 and Figure 12c, respectively.
AGCDGC and HIOS [23, 25] divide and distribute GC
into more free-time slots, considering the address map-

ping and I/O request queue information, so that an SSD
can have a more stable performance. Since these partial
GC algorithms require additional knowledge to estimate
free-time slots, they are FTL-specific and are not generic
unlike our proposal. In addition, these partial GC algo-
rithms still use coarse “block-level” erase operations, re-
sulting in unnecessary valid pages copies during a GC
operation, unlike our PEN.

8 Conclusion

In this paper, we propose and evaluate a novel partial-
erase based PEN architecture in emerging 3D NAND
flashes, which minimizes the number of valid pages
copied during a GC operation. To show the effectiveness
of our proposed partial-erase operation, we introduce our
M-Merge algorithm that employs our partial-erase opera-
tion for NFTL and Superblock FTL. Our extensive exper-
imental evaluations show that the average write latency
under the proposed PEN system is reduced by 44.3% –
47.9%, compared to the baseline.

9 Acknowledgement

This research is supported by NSF grants 1439021,
1439057, 1409095, 1626251, 1629915, 1629129 and
1526750, and a grant from Intel. Dr. Jung is sup-
ported in part by NRF 2016R1C1B2015312, DOE DE-
AC02-05CH 11231, IITP-2017-2017-0-01015, NRF-
2015M3C4A7065645, and MemRay grant (2015-11-
1731). Kandemir and Jung are the co-corresponding au-
thors. The authors thank Prof. Youjip Won for shepherd-
ing this paper.

USENIX Association 16th USENIX Conference on File and Storage Technologies 79

References

[1] Micron mt29f8g08baa datasheet. https://www.micron.com/
products/nand-flash/, Feb. 2007.

[2] AGARWAL, R., AND MARROW, M. A closed-form expression
for write amplification in NAND flash. In GLOBECOM Work-
shops (GC Wkshps), 2010 IEEE (2010), pp. 1846–1850.

[3] BAN, A. Flash file system. https://www.google.com/

patents/US5404485, Apr. 4 1995. US Patent 5,404,485.

[4] BOOTH, J. D., KOTRA, J. B., ZHAO, H., KANDEMIR, M., AND
RAGHAVAN, P. Phase detection with hidden markov models for
dvfs on many-core processors. In 2015 IEEE 35th International
Conference on Distributed Computing Systems (ICDCS) (2015).

[5] CAI, Y., MUTLU, O., HARATSCH, E. F., AND MAI, K. Pro-
gram interference in MLC NAND flash memory: Characteriza-
tion, modeling, and mitigation. In 2013 IEEE 31st International
Conference on Computer Design (ICCD) (2013), IEEE.

[6] CAULFIELD, A. M., AND SWANSON, S. Quicksan: A storage
area network for fast, distributed, solid state disks. In Proceed-
ings of the 40th Annual International Symposium on Computer
Architecture (2013).

[7] CHANG, L.-P., KUO, T.-W., AND LO, S.-W. Real-time garbage
collection for flash-memory storage systems of real-time embed-
ded systems. ACM Trans. Embed. Comput. Syst. (Nov. 2004).

[8] CHEN, T.-Y., CHANG, Y.-H., HO, C.-C., AND CHEN, S.-H.
Enabling sub-blocks erase management to boost the performance
of 3d NAND flash memory. In Proceedings of the 53rd Annual
Design Automation Conference (2016), DAC ’16.

[9] CHOUDHURI, S., AND GIVARGIS, T. Deterministic service
guarantees for nand flash using partial block cleaning. In Pro-
ceedings of the 6th IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis (2008),
CODES+ISSS ’08.

[10] CO., S. E. Samsung V-NAND. http://www.samsung.

com/semiconductor/products/flash-storage/v-nand/,
2016.

[11] D’ABREU, M. A. Partial block erase for a three dimensional (3d)
memory. https://www.google.tl/patents/US9286989,
May 19 2015. US Patent 9,286,989.

[12] DESNOYERS, P. Analytic Models of SSD Write Performance.
ACM Transactions on Storage, 2 (Mar. 2014), 1–25.

[13] DIRIK, C., AND JACOB, B. The performance of pc solid-
state disks (ssds) as a function of bandwidth, concurrency, de-
vice architecture, and system organization. In Proceedings of the
36th Annual International Symposium on Computer Architecture
(2009), ISCA ’09.

[14] EUN CHU OH, J. K. Nonvolatile memory device and sub-
block managing method thereof. https://www.google.

com/patents/US20140063938, Mar. 6 2014. US Patent
2014/063938.

[15] GUPTA, A., KIM, Y., AND URGAONKAR, B. Dftl: A flash
translation layer employing demand-based selective caching of
page-level address mappings. In Proceedings of the 14th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (2009).

[16] HU, X.-Y., ELEFTHERIOU, E., HAAS, R., ILIADIS, I., AND
PLETKA, R. Write amplification analysis in flash-based solid
state drives. In Proceedings of SYSTOR 2009: The Israeli Exper-
imental Systems Conference (2009), p. 10.

[17] HU, Y., JIANG, H., FENG, D., TIAN, L., LUO, H., AND
ZHANG, S. Performance impact and interplay of SSD paral-
lelism through advanced commands, allocation strategy and data
granularity. In Proceedings of the international conference on
Supercomputing (2011).

[18] HUANG, J., BADAM, A., QURESHI, M. K., AND SCHWAN,
K. Unified address translation for memory-mapped ssds with
flashmap. In Proceedings of the 42Nd Annual International Sym-
posium on Computer Architecture (2015).

[19] IM, J.-W., JEONG, W.-P., KIM, D.-H., NAM, S.-W., SHIM,
D.-K., CHOI, M.-H., YOON, H.-J., KIM, D.-H., KIM, Y.-S.,
PARK, H.-W., AND OTHERS. 7.2 A 128gb 3b/cell V-NAND
flash memory with 1gb/s I/O rate. In 2015 IEEE International
Solid-State Circuits Conference-(ISSCC) Digest of Technical Pa-
pers (2015), IEEE.

[20] JANG, J., KIM, H. S., CHO, W., CHO, H., KIM, J., SHIM,
S. I., YOUNGGOAN, JEONG, J. H., SON, B. K., KIM, D. W.,
KIHYUN, SHIM, J. J., LIM, J. S., KIM, K. H., YI, S. Y., LIM,
J. Y., CHUNG, D., MOON, H. C., HWANG, S., LEE, J. W.,
SON, Y. H., CHUNG, U. I., AND LEE, W. S. Vertical cell array
using tcat(terabit cell array transistor) technology for ultra high
density nand flash memory. In 2009 Symposium on VLSI Tech-
nology (June 2009).

[21] JUNG, D., KANG, J.-U., JO, H., KIM, J.-S., AND LEE, J. Su-
perblock FTL: A superblock-based flash translation layer with a
hybrid address translation scheme. ACM Transactions on Embed-
ded Computing Systems (Mar. 2010).

[22] JUNG, M. Exploring parallel data access methods in emerging
non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems 28, 3 (March 2017), 746–759.

[23] JUNG, M., CHOI, W., SRIKANTAIAH, S., YOO, J., AND KAN-
DEMIR, M. T. Hios: A host interface i/o scheduler for solid state
disks. In Proceeding of the 41st Annual International Symposium
on Computer Architecuture (2014).

[24] JUNG, M., AND KANDEMIR, M. Revisiting widely held ssd
expectations and rethinking system-level implications. In Pro-
ceedings of the ACM SIGMETRICS/International Conference on
Measurement and Modeling of Computer Systems (2013), SIG-
METRICS ’13.

[25] JUNG, M., PRABHAKAR, R., AND KANDEMIR, M. T. Tak-
ing garbage collection overheads off the critical path in ssds. In
Proceedings of the 13th International Middleware Conference
(2012).

[26] KANG, D., JEONG, W., KIM, C., KIM, D. H., CHO, Y. S.,
KANG, K. T., RYU, J., KANG, K. M., LEE, S., KIM, W., LEE,
H., YU, J., CHOI, N., JANG, D. S., IHM, J. D., KIM, D., MIN,
Y. S., KIM, M. S., PARK, A. S., SON, J. I., KIM, I. M., KWAK,
P., JUNG, B. K., LEE, D. S., KIM, H., YANG, H. J., BYEON,
D. S., PARK, K. T., KYUNG, K. H., AND CHOI, J. H. 7.1
256gb 3b/cell V-NAND flash memory with 48 stacked WL lay-
ers. In 2016 IEEE International Solid-State Circuits Conference
(ISSCC) (Jan. 2016).

[27] KATSUMATA, R., KITO, M., FUKUZUMI, Y., KIDO, M.,
TANAKA, H., KOMORI, Y., ISHIDUKI, M., MATSUNAMI, J.,

80 16th USENIX Conference on File and Storage Technologies USENIX Association

FUJIWARA, T., NAGATA, Y., ZHANG, L., IWATA, Y., KIRI-
SAWA, R., AOCHI, H., AND NITAYAMA, A. Pipe-shaped bics
flash memory with 16 stacked layers and multi-level-cell opera-
tion for ultra high density storage devices. In 2009 Symposium
on VLSI Technology (June 2009).

[28] KI KIM, J. Partial block erase architecture for flash memory.
https://www.google.com/patents/US7804718, Sept. 28
2010. US Patent 7,804,718.

[29] KIM, C., CHO, J. H., JEONG, W., PARK, I. H., PARK, H. W.,
KIM, D. H., KANG, D., LEE, S., LEE, J. S., KIM, W., PARK,
J., AHN, Y. L., LEE, J., LEE, J. H., KIM, S., YOON, H. J., YU,
J., CHOI, N., KWON, Y., KIM, N., JANG, H., PARK, J., SONG,
S., PARK, Y., BANG, J., HONG, S., JEONG, B., KIM, H. J.,
LEE, C., MIN, Y. S., LEE, I., KIM, I. M., KIM, S. H., YOON,
D., KIM, K. S., CHOI, Y., KIM, M., KIM, H., KWAK, P., IHM,
J. D., BYEON, D. S., LEE, J. Y., PARK, K. T., AND KYUNG,
K. H. 11.4 A 512gb 3b/cell 64-stacked WL 3d V-NAND flash
memory. In 2017 IEEE International Solid-State Circuits Con-
ference (ISSCC) (Feb. 2017).

[30] KIM, S.-H. Erasing method of non-volatile memory
device. https://www.google.com/patents/US9025389,
May 5 2015. US Patent 9,025,389.

[31] KIM, W., CHOI, S., SUNG, J., LEE, T., PARK, C., KO, H.,
JUNG, J., YOO, I., AND PARK, Y. Multi-layered vertical gate
nand flash overcoming stacking limit for terabit density storage.
In 2009 Symposium on VLSI Technology (June 2009).

[32] KISLAL, O., , KANDEMIR, M. T., AND KOTRA, J. Cache-
aware approximate computing for decision tree learning. In 2016
IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW) (2016).

[33] KOTRA, J. B., ARJOMAND, M., GUTTMAN, D., KANDEMIR,
M. T., AND DAS, C. R. Re-NUCA: A practical nuca architecture
for reram based last-level caches. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2016).

[34] KOTRA, J. B., GUTTMAN, D., CHIDAMBARAM, N., AND
KANDEMIR, M. T. Quantifying the potential benefits of on-chip
near datacomputing in manycore processors. In 25th IEEE In-
ternational Symposium on the Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS)
(2017).

[35] KOTRA, J. B., KIM, S., MADDURI, K., AND KANDEMIR,
M. T. Congestion-aware memory management on numa plat-
forms: A vmware esxi case study. In IEEE International Sympo-
sium on Workload Characterization (IIWSC) (2017).

[36] KOTRA, J. B., SHAHIDI, N., CHISHTI, Z. A., AND KAN-
DEMIR, M. T. Hardware-software co-design to mitigate dram
refresh overheads: A case for refresh-aware process scheduling.
In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS) (2017).

[37] KWON, M., ZHANG, J., PARK, G., CHOI, W., DONOFRIO, D.,
SHALF, J., KANDEMIR, M., AND JUNG, M. Tracetracker: Hard-
ware/software co-evaluation for large-scale i/o workload recon-
struction.

[38] LEE, S., SHIN, D., KIM, Y.-J., AND KIM, J. Last: Locality-
aware sector translation for nand flash memory-based storage sys-
tems. SIGOPS Oper. Syst. Rev. (Oct. 2008).

[39] LEE, S.-W., MOON, B., PARK, C., KIM, J.-M., AND KIM,
S.-W. A case for flash memory ssd in enterprise database appli-
cations. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data (2008).

[40] LEE, S.-W., PARK, D.-J., CHUNG, T.-S., LEE, D.-H., PARK,
S., AND SONG, H.-J. A log buffer-based flash translation layer
using fully-associative sector translation. ACM Trans. Embed.
Comput. Syst. (July 2007).

[41] LI, C., SHILANE, P., DOUGLIS, F., SHIM, H., SMALDONE, S.,
AND WALLACE, G. Nitro: A capacity-optimized ssd cache for
primary storage. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14) (June 2014), USENIX Association.

[42] LI, Y., LEE, P. P., LUI, J. C., AND XU, Y. Impact of Data
Locality on Garbage Collection in SSDs: A General Analytical
Study. pp. 305–315.

[43] LIU, J., KOTRA, J., DING, W., AND KANDEMIR, M. Network
footprint reduction through data access and computation place-
ment in noc-based manycores. In Proceedings of the 52nd Annual
Design Automation Conference (DAC) (2015).

[44] LUOJIE, X., AND KURKOSKI, B. M. An improved analytic
expression for write amplification in NAND flash. In Com-
puting, Networking and Communications (ICNC), 2012 Interna-
tional Conference on (2012), pp. 497–501.

[45] PARK, C., LEE, S., WON, Y., AND AHN, S. Practical impli-
cation of analytical models for ssd write amplification. In Pro-
ceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering (2017), ICPE ’17, pp. 257–262.

[46] PRINCE, B. Vertical 3D Memory Technologies. John Wiley &
Sons, Inc., 2014.

[47] RINO MICHELONI, LUCA CRIPPA, A. M. Inside NAND Flash
Memory. Springer Netherlands, 2010.

[48] SWAMINATHAN, K., KOTRA, J., LIU, H., SAMPSON, J., KAN-
DEMIR, M., AND NARAYANAN, V. Thermal-aware application
scheduling on device-heterogeneous embedded architectures. In
2015 28th International Conference on VLSI Design (2015).

[49] SYNOPSYS. Hsim simulation reference manual. http://www.

synopsys.com/Tools/Verification/AMSVerification/

CircuitSimulation/HSIM/Pages/default.aspx, 2016.
Synopsys HSIM.

[50] SYNOPSYS. Hspice. https://www.synopsys.com/tools/

Verification/AMSVerification/CircuitSimulation/

HSPICE/Pages/default.aspx, 2016. Synopsys HSpice.

[51] TANAKA, H., KIDO, M., YAHASHI, K., OOMURA, M., KAT-
SUMATA, R., KITO, M., FUKUZUMI, Y., SATO, M., NAGATA,
Y., MATSUOKA, Y., IWATA, Y., AOCHI, H., AND NITAYAMA,
A. Bit cost scalable technology with punch and plug process for
ultra high density flash memory. In 2007 IEEE Symposium on
VLSI Technology (June 2007).

[52] TANG, X., KANDEMIR, M., YEDLAPALLI, P., AND KOTRA, J.
Improving bank-level parallelism for irregular applications. In
2016 49th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO) (2016).

[53] YAMASHITA, R., MAGIA, S., HIGUCHI, T., YONEYA, K.,
YAMAMURA, T., MIZUKOSHI, H., ZAITSU, S., YAMASHITA,
M., TOYAMA, S., KAMAE, N., LEE, J., CHEN, S., TAO, J.,
MAK, W., ZHANG, X., YU, Y., UTSUNOMIYA, Y., KATO,
Y., SAKAI, M., MATSUMOTO, M., CHIBVONGODZE, H.,

USENIX Association 16th USENIX Conference on File and Storage Technologies 81

OOKUMA, N., YABE, H., TAIGOR, S., SAMINENI, R., KO-
DAMA, T., KAMATA, Y., NAMAI, Y., HUYNH, J., WANG,
S. E., HE, Y., PHAM, T., SARAF, V., PETKAR, A., WATANABE,
M., HAYASHI, K., SWARNKAR, P., MIWA, H., PRADHAN, A.,
DEY, S., DWIBEDY, D., XAVIER, T., BALAGA, M., AGARWAL,
S., KULKARNI, S., PAPASAHEB, Z., DEORA, S., HONG, P.,
WEI, M., BALAKRISHNAN, G., ARIKI, T., VERMA, K., SIAU,
C., DONG, Y., LU, C. H., MIWA, T., AND MOOGAT, F. 11.1 A
512gb 3b/cell flash memory on 64-word-line-layer BiCS technol-
ogy. In 2017 IEEE International Solid-State Circuits Conference
(ISSCC) (Feb. 2017).

[54] YANG, M. C., CHANG, Y. M., TSAO, C. W., HUANG, P. C.,
CHANG, Y. H., AND KUO, T. W. Garbage collection and wear
leveling for flash memory: Past and future. In Smart Computing
(SMARTCOMP), 2014 International Conference on (Nov 2014).

[55] YANG, Q., AND REN, J. I-cash: Intelligently coupled array of
ssd and hdd. In 2011 IEEE 17th International Symposium on
High Performance Computer Architecture (Feb 2011).

[56] YEDLAPALLI, P., KOTRA, J., KULTURSAY, E., KANDEMIR,
M., DAS, C. R., AND SIVASUBRAMANIAM, A. Meeting mid-
way: Improving cmp performance with memory-side prefetch-
ing. In Proceedings of the 22nd International Conference on Par-
allel Architectures and Compilation Techniques (PACT) (2013).

[57] YOO, J., WON, Y., KANG, S., CHOI, J., YOON, S., AND CHA,
J. Analytical model of ssd parallelism. In 2014 4th International
Conference On Simulation And Modeling Methodologies, Tech-
nologies And Applications (SIMULTECH) (Aug 2014), pp. 551–
559.

[58] ZHANG, J., PARK, G., SHIHAB, M. M., DONOFRIO, D.,
SHALF, J., AND JUNG, M. Opennvm: An open-sourced fpga-
based nvm controller for low level memory characterization. In
2015 33rd IEEE International Conference on Computer Design
(ICCD) (Oct 2015), pp. 666–673.

82 16th USENIX Conference on File and Storage Technologies USENIX Association

The CASE of FEMU:
Cheap, Accurate, Scalable and Extensible Flash Emulator

Huaicheng Li, Mingzhe Hao, Michael Hao Tong,
Swaminatahan Sundararaman†, Matias Bjørling‡, Haryadi S. Gunawi

University of Chicago †Parallel Machines ‡CNEX Labs

ABSTRACT: FEMU is a software (QEMU-based)

flash emulator for fostering future full-stack soft-

ware/hardware SSD research. FEMU is cheap (open-
sourced), relatively accurate (0.5-38% variance as a

drop-in replacement of OpenChannel SSD), scalable

(can support 32 parallel channels/chips), and extensible

(support internal-only and split-level SSD research).

1 Introduction

Cheap and extensible research platforms are a key ingre-
dient in fostering wide-spread SSD research. SSD simu-
lators such as DiskSim’s SSD model [9], FlashSim [13]
and SSDSim [16], despite their popularity, only support
internal-SSD research but not kernel-level extensions.
On the other hand, hardware research platforms such as
FPGA boards [28, 34, 46], OpenSSD [7], or OpenChan-
nel SSD [11], support full-stack software/hardware re-
search but their high costs (thousands of dollars per de-
vice) impair large-scale SSD research.

This leaves software-based emulator such as QEMU-
based VSSIM [45], FlashEm [47], and LightNVM’s
QEMU [6], as the cheap alternative platform. Unfortu-
nately, the state of existing emulators is bleak; they are
either outdated, non-scalable, or not open-sourced.

We argue that it is a critical time for storage re-
search community to have a new software-based em-
ulator (more in §2). To this end, we present FEMU,
a QEMU-based flash emulator, with the following four
“CASE” benefits.

First, FEMU is cheap ($0) as it will be an open-
sourced software. FEMU has been successfully used in
several projects, some of which appeared in top-tier OS
and storage conferences [14, 43]. We hope FEMU will
be useful to broader communities.

Second, FEMU is (relatively) accurate. For exam-
ple, FEMU can be used as a drop-in replacement for
OpenChannel SSD; thus, future research that extends
LightNVM [11] can be performed on top of FEMU
with relatively accurate results (e.g., 0.5-38% variance in
our tests). With FEMU, prototyping SSD-related kernel
changes can be done without a real device.

Third, FEMU is scalable. As we optimized the QEMU
stack with various techniques, such as exitless interrupt

0

20

40

60

1-S
-L

1-H
-L

1-C
-K

1-H
-K

1-C
-A

R-S
-L

R-C
-A

1-S
-K

D-C
-A

1-E
-L

1-C
-L

1-E
-K

R-H
-L

R-H
-K

R-C
-K

D-H
-L

D-H
-K

D-C
-K

D-S
-L

1-S
-A

R-S
-K

R-C
-L

D-S
-A

D-C
-L

1-H
-A

1-E
-A

Top-8 in
1 or R

categories
First D

195

of

 p
ap

er
s

Figure 1: Categorization of SSD research. The figure

is explained in Section §2.1. The first bar reaches 195 papers.

and skipping QEMU AIO components, FEMU can scale
to 32 IO threads and still achieve a low latency (as low as
52µs under a 2.3GHz CPU). As a result, FEMU can ac-
curately emulate 32 parallel channels/chips, without un-
intended queueing delays.

Finally, FEMU is extensible. Being a QEMU-based
emulator, FEMU can support internal-SSD research
(only FEMU layer modification), kernel-only research
such as software-defined flash (only Guest OS modi-
fication on top of unmodified FEMU), and split-level
research (both Guest OS and FEMU modifications).
FEMU also provides many new features not existent
in other emulators, such as OpenChannel and multi-
device/RAID support, extensible interfaces via NVMe
commands, and page-level latency variability.

2 Extended Motivation

2.1 THE STATE OF SSD RESEARCH PLATFORMS:
We reviewed 391 papers in more than 30 major systems
and storage conferences and journals published in the last
10 years, and categorized them as follows:

1. What was the scale of the research? [1]: single
SSD; [R]: RAID of SSDs (flash array); or [D]:

distributed/multi-node SSDs.

2. What was the platform being used? [C]: commod-
ity SSDs; [E]: software SSD emulators (VSSIM
[45] or FlashEm [47]); [H]: hardware platforms
(FPGA boards, OpenSSD [7], or OpenChannel SSD
[6]); or [S]: trace-based simulators (DiskSim+SSD
[9] or FlashSim [13] and SSDSim [16]).

USENIX Association 16th USENIX Conference on File and Storage Technologies 83

3. What layer was modified? [A]: application layer;
[K]: OS kernel; [L]: low-level SSD controller logic.

Note that some papers can fall into two sub-categories
(e.g., modify both the kernel and the SSD logic). Fig-
ure 1 shows the sorted order of the combined categories.
For example, the most popular category is 1-S-L, where
195 papers target only single SSD (1), use simulator (S),
and modify the low-level SSD controller logic (L). How-
ever, simulators do not support running applications and
operating systems.

2.2 THE LACK OF LARGE-SCALE SSD RESEARCH:
Our first motivation is the lack of papers in the distributed
SSDs category (D-...), for example, for investigating the
impact of SSD-related changes to distributed computing
and graph frameworks. One plausible reason is the cost
of managing hardware (procurement, installation, main-
tenance, etc.). The top-8 categories in Figure 1, a total
of 324 papers (83%), target single SSD (1-...) and flash
array (R-...). The highest D category is D-C-A (as high-
lighted in the figure), where only 9 papers use commod-
ity SSDs (C) and modify the application layer (A). The
next D category is D-H-L, where hardware platforms (H)
are used for modifying the SSD controller logic (L). Un-
fortunately, most of the 6 papers in this category are from
large companies with large research budget (e.g., FPGA
usage in Baidu [28] and Tencent [46]). Other hardware
platforms such as OpenSSD [7] and OpenChannel SSD
[6] also cost thousands of dollars each, impairing multi-
node non-simulation research, especially in academia.

2.3 THE RISE OF SOFTWARE-DEFINED FLASH: To-
day, research on host-managed (aka. “software-defined”
or “user-programmable”) flash is growing [25, 28, 34, 35,
41, 46]. However, such research is mostly done on top
of expensive and hard-to-program FPGA platforms. Re-
cently, a more affordable and simpler platform is avail-
able, OpenChannel SSD [6], managed by Linux-based
LightNVM [11]. Before its inception (2015), there were
only 24 papers that performed kernel-only changes, since
then, 11 papers have been published, showing the suc-
cess of OpenChannel SSD.

However, there remains several issues. First, not all
academic communities have budget to purchase such
devices. Even if they do, while prototyping the ker-
nel/application, it is preferable not to write too much to
and wear out the device. Thus, replacing OpenChannel
SSD (during kernel prototyping) with a software-based
emulator is desirable.

2.4 THE RISE OF SPLIT-LEVEL ARCHITECTURE:

While most existing research modify a single layer (ap-
plication/kernel/SSD), some recent works show the ben-
efits of “split-level” architecture [8, 19, 24, 38, 42],

wherein some functionalities move up to the OS kernel
(K) and some other move down to the SSD firmware
(L) [18, 31, 36]. So far, we found only 40 papers in
split-level K+L category (i.e., modify both the kernel
and SSD logic layers), mostly done by companies with
access to SSD controllers [19] or academic researchers
with Linux+OpenSSD [21, 32] or with block-level em-
ulators (e.g., Linux+FlashEm) [29, 47]. OpenSSD with
its single-threaded, single-CPU, whole-blocking GC ar-
chitecture also has many known major limitations [43].
FlashEm also has limitations as we elaborate more be-
low. Note that the kernel-level LightNVM is not a suit-
able platform for split-level research (i.e., support K, but
not L). This is because its SSD layer (i.e., OpenChannel
SSD) is not modifiable; the white-box part of OpenChan-
nel SSD is the exposure of its internal channels and chips
to be managed by software (Linux LightNVM), but the
OpenChannel firmware logic itself is a black-box part.

2.5 THE STATE OF EXISTING EMULATORS: We are
only aware of three popular software-based emulators:
FlashEm, LightNVM’s QEMU and VSSIM.

FlashEm [47] is an emulator built in the Linux block
level layer, hence less portable; it is rigidly tied to its
Linux version; to make changes, one must modify Linux
kernel. FlashEm is not open-sourced and its development
stopped two years ago (confirmed by the creators).

LightNVM’s QEMU platform [6] is still in its early
stage. Currently, it cannot emulate multiple channels (as
in OpenChannel SSD) and is only used for basic test-
ing of 1 target (1 chip behind 1 channel). Worse, Light-
NVM’s QEMU performance is not scalable to emulate
NAND latencies as it depends on vanilla QEMU NVMe
interface (as shown in the NVMe line in Figure 2a).

VSSIM [45] is a QEMU/KVM-based platform that
emulates NAND flash latencies on a RAM disk, and has
been used in several papers. The major drawback of VS-
SIM is that it is built within QEMU’s IDE interface im-
plementation, which is not scalable. The upper-left red
line (IDE line) in Figure 2a shows the user-perceived IO
read latency through VSSIM without any NAND-delay
emulation added. More concurrent IO threads (x-axis)
easily multiply the average IO latency (y-axis). For ex-
ample from 1 to 4 IO threads, the average latency spikes
up from 152 to 583µs. The root cause is that IDE is not
supported with virtualization optimizations.

With this drawback, emulating internal SSD paral-
lelism is a challenge. VSSIM worked around the prob-
lem by only emulating NAND delays in another back-
ground thread in QEMU, disconnected from the main IO
path. Thus, for multi-threaded applications, to collect ac-
curate results, users solely depend on VSSIM’s monitor-
ing tool [45, Figure 3], which monitors the IO latencies
emulated in the background thread. In other words, users

84 16th USENIX Conference on File and Storage Technologies USENIX Association

cannot simply time the multi-threaded applications (due
to IDE poor scalability) at the user level.

Despite these limitations, we (and the community) are
greatly indebted to VSSIM authors as VSSIM provides a
base design for future QEMU-based SSD emulators. As
five years have passed, it is time to build a new emulator
to keep up with the technology trends.

3 FEMU

We now present FEMU design and implementation.
FEMU is implemented in QEMU v2.9 in 3929 LOC
and acts as a virtual block device to the Guest OS.
A typical software/hardware stack for SSD research is
{Application+Host OS+SSD device}. With FEMU, the
stack is {Application+Guest OS+FEMU}. The LOC
above excludes base OC extension structures from Light-
NVM’s QEMU and FTL framework from VSSIM.

Due to space constraints, we omit the details of how
FEMU works inside QEMU (e.g., FEMU’s FTL and GC
management, IO queues), as they are similarly described
in VSSIM paper [45, Section 3]. We put them in FEMU
release document [1]. In the rest of the paper, we focus
on the main challenges of designing FEMU: achieving
scalability (§3.1) and accuracy (§3.2) and increasing us-
ability and extensibility (§3.3).

Note that all latencies reported here are user-perceived
(application-level) latencies on memory-backed virtual
storage and 24 dual-thread (2x) CPU cores running at
2.3GHz. According to our experiments, the average la-
tency is inversely proportional to CPU frequency, for ex-
ample, QEMU NVMe latency under 1 IO thread is 35µs
on a 2.3GHZ CPU and 23µs on a 4.0GHz CPU.

3.1 Scalability

Scalability is an important property of a flash emula-
tor, especially with high internal parallelism of modern
SSDs. Unfortunately, stock QEMU exhibits a scalabil-
ity limitation. For example, as shown in Figure 2a, with
QEMU NVMe (although it is more scalable than IDE),
more IO threads still increases the average IO latency
(e.g., with 8 IO threads, the average IO latency already
reaches 106µs). This is highly undesirable because typi-
cal read latency of modern SSDs can be below 100µs.

More scalable alternatives to NVMe are virtio and dat-
aplane (dp) interfaces [3, 30] (virtio/dp vs. NVMe lines
in Figure 2a). However, these interfaces are not as exten-
sible as NVMe (which is more popular). Nevertheless,
virtio and dp are also not scalable enough to emulate low
flash latencies. For example, at 32 IO threads, their IO
latencies already reach 185µs and 126µs, respectively.

Problems: Collectively, all of the scalability bottle-
necks above are due to two reasons: (1) QEMU uses a
traditional trap-and-emulate method to emulate IOs. The

0
50

100

200

300

400

1 2 4 8 16 32 64

IO
 L

at
en

cy
 (u

s)

of threads

[a] Average Latency

IDE
NVMe

virtio
dp

FEMU

1 2 4 8 16 32 64
of threads

[b] Emulating 50us

+50us (Adv)
+50us (Raw)

Figure 2: QEMU Scalability. The figure shows the scala-

bility of QEMU’s IDE, NVMe, virtio, and dataplane (dp) inter-

face implementations, as well as FEMU. The x-axis represents

the number of concurrent IO threads running at the user level.

Each thread performs random 4KB read IOs. The y-axis shows

the user-perceived average IO latency. For Figure (a), the IDE

and NVMe lines representing VSSIM and LightNVM’s QEMU

respectively are discussed in §2.5; virtio, dp, and FEMU lines

in §3.1. For Figure (b), the “+50µs (Raw)” line is discussed in

§3.2.1; the “+50µs (Adv)” line in “Result 3” part of §3.2.3.

Guest OS’ NVMe driver “rings the doorbell [5]” to the
device (QEMU in our case) that some IOs are in the
device queue. This “doorbell” is an MMIO operation
that will cause an expensive VM-exit (“world switch”
[39]) from the Guest OS to QEMU. A similar operation
must also be done upon IO completion. (2) QEMU uses
asynchronous IOs (AIO) to perform the actual read/write
(byte transfer) to the backing image file. This AIO com-
ponent is needed to avoid QEMU being blocked by slow
IOs (e.g., on a disk image). However, the AIO overhead
becomes significant when the storage backend is a RAM-
backed image.

Our solutions: To address these problems, we lever-
age the fact that FEMU purpose is for research prototyp-
ing, thus we perform the following modifications:

(1) We transform QEMU from an interrupt- to a
polling-based design and disable the doorbell writes in
the Guest OS (just 1 LOC commented out in the Linux
NVMe driver). We create a dedicated thread in QEMU to
continuously poll the status of the device queue (a shared
memory mapped between the Guest OS and QEMU).
This way, the Guest OS still “passes” control to QEMU
but without the expensive VM exits. We emphasize that
FEMU can still work without the changes in the Guest
OS as we report later. This optimization can be treated
as an optional feature, but the 1 LOC modification is ex-
tremely simple to make in many different kernels.

(2) We do not use virtual image file (in order to skip
the AIO subcomponent). Rather, we create our own
RAM-backed storage in QEMU’s heap space (with con-
figurable size malloc()). We then modify QEMU’s
DMA emulation logic to transfer data from/to our heap-

USENIX Association 16th USENIX Conference on File and Storage Technologies 85

backed storage, transparent to the Guest OS (i.e., the
Guest OS is not aware of this change).

Results: The bold FEMU line in Figure 2a shows the
scalability achieved. In between 1-32 IO threads, FEMU
can keep IO latency stable in less than 52µs, and even
below 90µs at 64 IO threads. If the single-line Guest-
OS optimization is not applied (the removal of VM-exit),
the average latency is 189µs and 264µs for 32 and 64
threads, respectively (not shown in the graph). Thus, we
recommend applying the single-line change in the Guest
OS to remove expensive VM exits.

The remaining scalability bottleneck now only comes
from QEMU’s single-thread “event loop” [4, 15], which
performs the main IO routine such as dequeueing the
device queue, triggering DMA emulations, and sending
end-IO completions to the Guest OS. Recent works ad-
dressed these limitations (with major changes) [10, 23],
but have not been streamlined into QEMU’s main dis-
tribution. We will explore the possibility of integrating
other solutions in future development of FEMU.

3.2 Accuracy

We now discuss the accuracy challenges. We first de-
scribe our delay mechanism (§3.2.1), followed by our
basic and advanced delay models (§3.2.2-3.2.3).

3.2.1 Delay Emulation

When an IO arrives, FEMU will issue the DMA
read/write command, then label the IO with an emulated
completion time (Tendio) and add the IO to our “end-
io queue,” sorted based on IO completion time. FEMU
dedicates an “end-io thread” that continuously takes an
IO from the head of the queue and sends an end-io inter-
rupt to the Guest OS, once the IO’s emulated completion
time has passed current time (Tendio>Tnow).

The “+50us (Raw)” line in Figure 2b shows a simple
(and stable) result where we add a delay of 50µs to every

IO (Tendio=Tentry+50µs). Note that the end-to-end IO
time is more than 50µs because of the Guest OS over-
head (roughly 20µs). Important to say that FEMU also
does not introduce severe latency tail. In the experiment
above, 99% of all the IOs are stable at 70µs. Only 0.01%
(99.99th percentile) of the IOs exhibit latency tail of
more than 105µs, which already exists in stock QEMU.
For example, in VSSIM, the 99th-percentile latency is
already over 150µs.

3.2.2 Basic Delay Model

The challenge now is to compute the end-io time (Tendio)
for every IO accurately. We begin with a basic de-
lay model by marking every plane and channel with
their next free time (Tfree). For example, if a page
write arrives to currently-free channel #1 and plane
#2, then we will advance the channel’s next free time

P1

NAND RAMD-Reg NAND RAMD-Reg

(a) Single-register model:
P2P1P1 P2

(b) Double-register model:

NAND

RAM

D-Reg P1
C-Reg

NAND
P2 P2

RAM More parallelism
(Read P2
finishes faster)D-Reg

C-Reg

time

Figure 3: Single- vs. double-register model. (a) In

a single-register model, a plane only has one data register (D-

Reg). Read of page P2 cannot start until P1 finishes using the

register (i.e., the transfer to the controller’s RAM completes).

(b) In a double-register model, after P1 is read to the data reg-

ister, it is copied quickly to the cache register (D-Reg to C-Reg).

As the data register is free, read of P2 can begin (in parallel

with P1’s transfer to the RAM), hence finishes faster.

(TfreeOfChannel1=Tnow+Ttransfer, where Ttransfer

is a configurable page transfer time over a channel)
and the plane’s next free time (TfreeOfPlane2+=Twrite,
where Twrite is a configurable write/programming time
of a NAND page). Thus, the end-io time of this write
operation will be Tendio=TfreeOfPlane2.

Now, let us say a page read to the same plane
arrives while the write is ongoing. Here, we will
advance TfreeOfPlane2 by Tread, where Tread is
a configurable read time of a NAND page, and
TfreeOfChannel1 by Ttransfer. This read’s end-io time
will be Tendio=TfreeOfChannel1 (as this is a read oper-
ation, not a write IO).

In summary, this basic queueing model represents a
single-register and uniform page latency model. That is,
every plane only has a single page register, hence can-
not serve multiple IOs in parallel (i.e., a plane’s Tfree

represents IO serialization in that plane) and the NAND
page read, write, and transfer times (Tread, Twrite and
Ttransfer) are all single values. We also note that GC
logic can be easily added to this basic model; a GC is es-
sentially a series of reads/writes (and erases, Terase) that
will also advance plane’s and channel’s Tfree.

3.2.3 Advanced “OC” Delay Model

While the model above is sufficient for basic comparative
research (e.g., comparing different FTL/GC schemes,
some researchers might want to emulate the detailed in-
tricacies of modern hardware. Below, we show how we
extend our model and achieve a more accurate delay em-
ulation of OpenChannel SSD (“OC” for short).

The OC’s NAND hardware has the following intrica-
cies. First, OC uses double-register planes; every plane
is built with two registers (data+cache registers), hence
a NAND page read/write in a plane can overlap with a
data transfer via the channel to the plane (i.e., more paral-
lelism). Figure 3 contrasts the single- vs. double-register
models where the completion time of the second IO to
page P2 is faster in the double-register model.

86 16th USENIX Conference on File and Storage Technologies USENIX Association

1 2 4 8 168
4

2
1

0
0.4
0.8
1.2
1.6

[a] OC

X Y

La
te

nc
y

(m
s)

1 2 4 8 168
4

2
1

[b] FEMU

X Y

Figure 4: OpenChannel SSD (OC) vs. FEMU. X: # of

channels, Y: # of planes per channel. The figures are described

in the “Result 1” segment of Section 3.2.3.

Second, OC uses a non-uniform page latency model;
that is, pages that are mapped to upper bits of MLC cells
(“upper” pages) incur higher latencies than those mapped
to lower bits (“Lower” pages); for example 48/64µs for
lower/upper-page read and 900/2400µs for lower/upper-
page write. Making it more complex, the 512 pages in
each NAND block are not mapped in a uniformly inter-
leaving manner as in “LuLuLuLu...”, but rather in a spe-
cific way, “LLLLLLuLLuLLuu...”, where pages #0-6 and
#8-9 are mapped to Lower pages, pages #7 and #10 to
upper pages, and the rest (“...”) have a repeating pat-
tern of “LLuu”.

Results: By incorporating this detailed model, FEMU
can act as an accurate drop-in replacement of OC, which
we demonstrate with the following results.

Result 1: Figure 4 compares the IO latencies on OC
vs. FEMU. The workload is 16 IO threads performing
random reads uniformly spread throughout the storage
space. We map the storage space to different configu-
rations. For example, x=1 and y=1 implies that OC
and FEMU are configured with only 1 channel and 1
plane/channel, thus as a result, the average latency is
high (z>1550µs) as all the 16 concurrent reads are con-
tending for the same plane and channel. The result for
x=16 and y=1 implies that we use 16 channels with 1
plane/channel (a total of 16 planes). Here, the concur-
rent reads are absorbed in parallel by all the planes and
channels, hence a faster average read latency (z<130µs).
Overall, Figures 4a and 4b exhibit a highly similar pat-
tern, showing the success of our queuing delay emula-
tion. The latency difference (error) is only between 0.8-
11.6%; Error=(Latfemu−Latoc)/Latoc.

Result 2: Figure 5a shows the results from running
several macrobenchmarks with six filebench personali-
ties, with 16 IO threads of concurrent reads/writes on 16
planes across 4 channels. The figure only shows the la-
tency difference (Error) which contrasts the accuracy
of our basic and advanced delay models. With the basic
model, the resulting latencies are highly inaccurate (12-
57%), but with the advanced model, the error drops to

 0
 20
 40
 60
 80

File
Server

Network
FS

OLTP Varmail Video
Server

Web
Proxy

Er
ro

r (
%

)

[a] Filebench

D-Reg S-Reg

16T16P

16T1P
1T16P

1T1P

[b] Varmail

D-Reg

Figure 5: Filebench on OpenChannel SSD (OC)
vs. FEMU. The figures are described in the “Result 2”

segment of Section 3.2.3. The y-axis shows the latency dif-

ference (error) of the benchmark results on OC vs. FEMU

(Error=(Latfemu−Latoc)/Latoc). D-Reg and S-Reg repre-

sent the advanced and basic model respectively. The two bars

with bold edge in Figures (a) and (b) are the same experiment

and configuration (varmail with 16 threads on 16 planes).

only 0.5-38%, which are 1.5-40× more accurate across
the six benchmarks.

We believe that these errors are reasonable as we deal
with delay emulation of tens of µs granularity. We leave
further optimization for future work; we might have
missed other OC intricacies that should be incorporated
into our advanced model (as explained at the end of §2.4,
OC only exposes channels and chips, but other details
are not exposed by the vendor). Nevertheless, we inves-
tigate further the residual errors, as shown in Figure 5b.
Here, we use the varmail personality but we vary the
#IO threads [T] and #planes [P]. For example, in the 16
threads on 16 planes configuration (x=“16T16P” in Fig-
ure 5b, which is the same configuration used in experi-
ments in Figure 5a), the error is 38%. However, the error
decreases in less complex configurations (e.g., 0.7% er-
ror with single thread on single plane). Thus, higher er-
rors come from more complex configurations (e.g., more
IO threads and more planes), which we explain next.

Result 3: We find that using an advanced model re-
quires more CPU computation, and this compute over-
head will backlog with higher thread count. To show
this, Figure 2b compares the simple +50µs delay emu-
lation in our raw implementation (§3.2.1) vs. advanced
model. Here, both cases simply add +50µs, but the ad-
vanced model must traverse many if-else statements (to
check register, plane, and channel next free time), hence
the compute overhead. Further scalability optimizations,
as discussed at the end of §3.1 can help.

3.3 Usability and Extensibility

Being a software-based emulation platform, FEMU can
be extended in many different ways. We now describe
existing features/usabilities of FEMU, briefly showcase
successful extensions used in our recent work [14, 43] as
well as possible future work that FEMU features enable.

USENIX Association 16th USENIX Conference on File and Storage Technologies 87

 0
 1
 2
 3
 4

PlaneChannel
ControllerAv

g.
 L

at
en

cy
 (m

s)

GC Blocking Levels

[a] Varmail

 0
 2
 4
 6
 8

 10

PlaneChannel
Controller

Jo
b

D
ur

at
io

n
(x

10
0

s)

GC Blocking Levels

[b] WordCount

Figure 6: Use examples. Figure 6a is described in the

“FTL and GC schemes” segment of Section 3.3. Figure 6b is

discussed in the “Distributed SSDs” segment of Section 3.3.

• FTL and GC schemes: In default mode, our FTL em-
ploys a dynamic mapping and a channel-blocking GC as
used in other simulators [9, 16]. One of our projects uses
FEMU to compare different GC schemes: controller,
channel, and plane blocking [43]. In controller-blocking
GC, a GC operation “locks down” the controller, pre-
venting any foreground IOs to be served (as in OpenSSD
[7]). In channel-blocking GC, only channels involved in
GC page movement are blocked (as in SSDSim [16]). In
plane-blocking GC, the most efficient one, page move-
ment only flows within a plane without using any chan-
nel (i.e., “copyback” [2]). Sample results are shown in
Figure 6a. Beyond our work, recent works also show the
benefits of SSD partitioning for performance isolation
[11, 17, 22, 27, 37], which are done on either a simu-
lator or a hardware platform. More partitioning schemes
can also be explored with FEMU.

• White-box vs. black-box mode: FEMU can be used
as (1) a white-box device such as OpenChannel SSD
where the device exposes physical page addresses and
the FTL is managed by the OS such as in Linux Light-
NVM or (2) a black-box device such as commodity SSDs
where the FTL resides inside FEMU and only logical ad-
dresses are exposed to the OS.

• Multi-device support for flash-array research:
FEMU is configurable to appear as multiple devices to
the Guest OS. For example, if FEMU exposes 4 SSDs,
inside FEMU there will be 4 separate NVMe instances
and FTL structures (with no overlapping channels) man-
aged in a single QEMU instance. Previous emulators
(VSSIM and LightNVM’s QEMU) do not support this.

• Extensible OS-SSD NVMe commands: As FEMU
supports NVMe, new OS-to-SSD commands can be
added (e.g., for host-aware SSD management or split-
level architecture [31]). For example, currently in Light-
NVM, a GC operation reads valid pages from OC to
the host DRAM and then writes them back to OC.
This wastes host-SSD PCIe bandwidth; LightNVM fore-
ground throughput drops by 50% under a GC. Our con-
versation with LightNVM developers suggests that one

can add a new “pageMove fromAddr toAddr” NVMe com-
mand from the OS to FEMU/OC such that the data move-
ment does not cross the PCIe interface. As mentioned
earlier, split-level architecture is trending [12, 20, 29, 40,
44] and our NVMe-powered FEMU can be extended to
support more commands such as transactions, deduplica-
tion, and multi-stream.

• Page-level latency variability: As discussed before
(§3.2), FEMU supports page-level latency variability.
Among SSD engineers, it is known that “not all chips are
equal.” High quality chips are mixed with lesser quality
chips as long as the overall quality passes the standard.
Bad chips can induce more error rates that require longer,
repeated reads with different voltages. FEMU can also
be extended to emulate such delays.

• Distributed SSDs: Multiple instances of FEMU can
be easily deployed across multiple machines (as simple
as running Linux hypervisor KVMs), which promotes
more large-scale SSD research. For example, we are
also able to evaluate the performance of Hadoop’s word-
count workload on a cluster of machines running FEMU,
but with different GC schemes as shown in Figure 6b.
Since HDFS uses large IOs, which will eventually be
striped across many channels/planes, there is a smaller
performance gap between channel and plane blocking.
We hope FEMU can spur more work that modifies the
SSD layer to speed up distributed computing frameworks
(e.g., distributed graph processing frameworks).

• Page-level fault injection: Beyond performance-
related research, flash reliability research [26, 33] can
leverage FEMU as well (e.g., by injecting page-level
corruptions and faults and observing how the high-level
software stack reacts).

• Limitations: FEMU is DRAM-backed, hence can-
not emulate large-capacity SSDs. Furthermore, for crash
consistency research, FEMU users must manually emu-
late “soft” crashes as hard reboots will wipe out the data
in the DRAM. Also, as mentioned before (§3.2), there is
room for improving accuracy.

4 Conclusion & Acknowledgments

As modern SSD internals are becoming more complex,
their implications to the entire storage stack should be in-
vestigated. In this context, we believe FEMU is a fitting
research platform. We hope that our cheap and extensible
FEMU can speed up future SSD research.

We thank Sam H. Noh, our shepherd, and the anony-
mous reviewers for their tremendous feedback. This ma-
terial was supported by funding from NSF (grant Nos.
CNS-1526304 and CNS-1405959).

88 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] https://github.com/ucare-uchicago/femu.

[2] Using COPYBACK Operations to Maintain Data
Integrity in NAND Flash Devices. https://www.
micron.com/~/media/documents/products/

technical-note/nand-flash/tn2941_idm_
copyback.pdf, 2008.

[3] Towards Multi-threaded Device Emulation in QEMU.
KVM Forum, 2014.

[4] Improving the QEMU Event Loop. KVM Forum, 2015.

[5] NVMe Specification 1.3. http://www.nvmexpress.
org, 2017.

[6] Open-Channel Solid State Drives. http://lightnvm.
io, 2017.

[7] The OpenSSD Project. http://openssd.io, 2017.

[8] Violin Memory. All Flash Array Architecture, 2017.

[9] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.
Design Tradeoffs for SSD Performance. In Proceedings

of the USENIX Annual Technical Conference (ATC),
2008.

[10] Muli Ben-Yehuda, Michael Factor, Eran Rom, Avishay
Traeger, Eran Borovik, and Ben-Ami Yassour. Adding
Advanced Storage Controller Functionality via
Low-Overhead Virtualization. In Proceedings of the 10th

USENIX Symposium on File and Storage Technologies

(FAST), 2012.

[11] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Symposium on File

and Storage Technologies (FAST), 2017.

[12] Tzi-cker Chiueh, Weafon Tsao, Hou-Chiang Sun,
Ting-Fang Chien, An-Nan Chang, and Cheng-Ding
Chen. Software Orchestrated Flash Array. In The 7th

Annual International Systems and Storage Conference

(SYSTOR), 2014.

[13] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar.
DFTL: A Flash Translation Layer Employing
Demand-based Selective Caching of Page-level Address
Mappings. In Proceedings of the 14th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2009.

[14] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast
Rejecting SLO-Aware OS Interface. In Proceedings of

the 26th ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[15] Nadav Har’El, Nadav, Gordon, Abel, Landau, Alex,
Ben-Yehuda, Muli, Traeger, Avishay, Ladelsky, and
Razya. Efficient and Scalable Paravirtual I/O System. In
Proceedings of the 2013 USENIX Annual Technical

Conference (ATC), 2013.

[16] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and
Shuping Zhang. Performance Impact and Interplay of
SSD Parallelism through Advanced Commands,
Allocation Strategy and Data Granularity. In
Proceedings of the 25th International Conference on

Supercomputing (ICS), 2011.

[17] Jian Huang, Anirudh Badam, Laura Caulfield, Suman
Nath, Sudipta Sengupta, Bikash Sharma, and
Moinuddin K. Qureshi. FlashBlox: Achieving Both
Performance Isolation and Uniform Lifetime for
Virtualized SSDs. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),
2017.

[18] Xavier Jimenez and David Novo. Wear Unleveling:
Improving NAND Flash Lifetime by Balancing Page
Endurance. In Proceedings of the 12th USENIX

Symposium on File and Storage Technologies (FAST),
2014.

[19] William K. Josephson, Lars A. Bongo, David Flynn,
Fusion-io, and Kai Li. DFS: A File System for
Virtualized Flash Storage. In Proceedings of the 8th

USENIX Symposium on File and Storage Technologies

(FAST), 2010.

[20] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and
Sangyeun Cho. The Multi-streamed Solid-State Drive.
In the 6th Workshop on Hot Topics in Storage and File

Systems (HotStorage), 2014.

[21] Woon-Hak Kang, Sang-Won Lee, Bongki Moon,
Gi-Hwan Oh, and Changwoo Min. X-FTL:
Transactional FTL for SQLite Databases. In Proceedings

of the 2013 ACM SIGMOD International Conference on

Management of Data (SIGMOD), 2013.

[22] Jaeho Kim, Donghee Lee, and Sam H. Noh. Towards
SLO Complying SSDs Through OPS Isolation. In
Proceedings of the 13th USENIX Symposium on File and

Storage Technologies (FAST), 2015.

[23] Tae Yong Kim, Dong Hyun Kang, Dongwoo Lee, and
Young Ik Eom. Improving Performance by Bridging the
Semantic Gap between Multi-queue SSD and I/O
Virtualization Framework. In Proceedings of the 31st

IEEE Symposium on Massive Storage Systems and

Technologies (MSST), 2015.

[24] Ana Klimovic, Heiner Litz, and Christos Kozyrakis.
ReFlex: Remote Flash ≈ Local Flash. In Proceedings of

the 22nd International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), 2017.

[25] Sungjin Lee, Ming Liu, Sang Woo Jun, Shuotao Xu,
Jihong Kim, and Arvind. Application-Managed Flash.
In Proceedings of the 14th USENIX Symposium on File

and Storage Technologies (FAST), 2016.

[26] Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur
Mutlu. A Large-Scale Study of Flash Memory Failures
in the Field. In Proceedings of the 2015 ACM

International Conference on Measurement and Modeling

of Computer Systems (SIGMETRICS), 2015.

USENIX Association 16th USENIX Conference on File and Storage Technologies 89

[27] Mihir Nanavati, Jake Wires, and Andrew Warfield.
Decibel: Isolation and Sharing in Disaggregated
Rack-Scale Storage. In Proceedings of the 13th

Symposium on Networked Systems Design and

Implementation (NSDI), 2017.

[28] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou,
Yong Wang, and Yuanzheng Wang. SDF:
Software-Defined Flash for Web-Scale Internet Storage
System. In Proceedings of the 18th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), 2014.

[29] Vijayan Prabhakaran, Thomas L. Rodeheffer, and
Lidong Zhou. Transactional Flash. In Proceedings of the

8th Symposium on Operating Systems Design and

Implementation (OSDI), 2008.

[30] Rusty Russell. virtio: Towards a De-Facto Standard for
Virtual I/O Devices. In ACM SIGOPS Operating

Systems Review (OSR), 2008.

[31] Mohit Saxena, Michael M. Swift, and Yiying Zhang.
FlashTier: a Lightweight, Consistent and Durable
Storage Cache. In Proceedings of the 2012 EuroSys

Conference (EuroSys), 2012.

[32] Mohit Saxena, Yiying Zhang, Michael M. Swift, Andrea
C. Arpaci Dusseau, and Remzi H. Arpaci Dusseau.
Getting Real: Lessons in Transitioning Research
Simulations into Hardware Systems. In Proceedings of

the 11th USENIX Symposium on File and Storage

Technologies (FAST), 2013.

[33] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant.
Flash Reliability in Production: The Expected and the
Unexpected. In Proceedings of the 14th USENIX

Symposium on File and Storage Technologies (FAST),
2016.

[34] Sudharsan Seshadri, Mark Gahagan, Sundaram
Bhaskaran, Trevor Bunker, Arup De, Yanqin Jin, Yang
Liu, and Steven Swanson. Willow: A
User-Programmable SSD. In Proceedings of the 11th

Symposium on Operating Systems Design and

Implementation (OSDI), 2014.

[35] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao.
DIDACache: A Deep Integration of Device and
Application for Flash Based Key-Value Caching. In
Proceedings of the 15th USENIX Symposium on File and

Storage Technologies (FAST), 2017.

[36] Liang Shi, Kaijie Wu, Mengying Zhao, Chun Jason Xue,
Duo Liu, and Edwin H.-M. Sha. Retention Trimming for
Lifetime Improvement of Flash Memory Storage
Systems. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (TCAD), 35(1),
January 2016.

[37] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins,
Carlos Maltzahn, and Scott Brandt. Flash on Rails:
Consistent Flash Performance through Redundancy. In
Proceedings of the 2014 USENIX Annual Technical

Conference (ATC), 2014.

[38] Sriram Subramanian, Swaminathan Sundararaman,
Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Snapshots in a Flash with
ioSnap. In Proceedings of the 2014 EuroSys Conference

(EuroSys), 2014.

[39] Jeremy Sugerman, Ganesh Venkitachalam, and
Beng-Hong Lim. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In
Proceedings of the USENIX Annual Technical

Conference (USENIX), 2001.

[40] Animesh Trivedi, Nikolas loannou, Bernard Metzler,
Patrick Stuedi, Jonas Pfefferle, Ioannis Koltsidas,
Kornilios Kourtis, and Thomas R. Gross. FlashNet:
Flash/Network Stack Co-design. In The 10th Annual

International Systems and Storage Conference

(SYSTOR), 2017.

[41] Peng Wang, Guangyu Sun, Song Jiang, Jian Ouyang,
Shiding Lin, Chen Zhang, and Jason Cong. An Efficient
Design and Implementation of LSM-Tree based
Key-Value Store on Open-Channel SSD. In Proceedings

of the 2014 EuroSys Conference (EuroSys), 2014.

[42] Zev Weiss, Sriram Subramanian, Swaminathan
Sundararaman, Nisha Talagala, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
ANViL: Advanced Virtualization for Modern
Non-Volatile Memory Devices. In Proceedings of the

13th USENIX Symposium on File and Storage

Technologies (FAST), 2015.

[43] Shiqin Yan, Huaicheng Li, Mingzhe Hao, Michael Hao
Tong, Swaminathan Sundararaman, Andrew A. Chien,
and Haryadi S. Gunawi. Tiny-Tail Flash: Near-Perfect
Elimination of Garbage Collection Tail Latencies in
NAND SSDs. In Proceedings of the 15th USENIX

Symposium on File and Storage Technologies (FAST),
2017.

[44] Jingpei Yang, Rajinikanth Pandurangan, Changho Choi,
and Vijay Balakrishnan. AutoStream: Automatic Stream
Management for Multi-streamed SSDs. In The 10th

Annual International Systems and Storage Conference

(SYSTOR), 2017.

[45] Jinsoo Yoo, Youjip Won, Joongwoo Hwang, Sooyong
Kang, Jongmoo Choi, Sungroh Yoon, and Jaehyuk Cha.
VSSIM: Virtual machine based SSD simulator. In
Proceedings of the 29th IEEE Symposium on Massive

Storage Systems and Technologies (MSST), 2013.

[46] Jianquan Zhang, Dan Feng, Jianlin Gao, Wei Tong,
Jingning Liu, Yu Hua, Yang Gao, Caihua Fang, Wen Xia,
Feiling Fu, and Yaqing Li. Application-Aware and
Software-Defined SSD Scheme for Tencent Large-Scale
Storage System. In Proceedings of 22nd IEEE

International Conference on Parallel and Distributed

Systems (ICPADS), 2016.

[47] Yiying Zhang, Leo Prasath Arulraj, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
De-indirection for Flash-based SSDs with Nameless
Writes. In Proceedings of the 10th USENIX Symposium

on File and Storage Technologies (FAST), 2012.

90 16th USENIX Conference on File and Storage Technologies USENIX Association

Spiffy: Enabling File-System Aware Storage Applications

Kuei Sun, Daniel Fryer, Joseph Chu, Matthew Lakier, Angela Demke Brown and Ashvin Goel
University of Toronto

Abstract
Many file-system applications such as defragmentation
tools, file system checkers or data recovery tools, oper-
ate at the storage layer. Today, developers of these stor-
age applications require detailed knowledge of the file-
system format, which takes a significant amount of time
to learn, often by trial and error, due to insufficient doc-
umentation or specification of the format. Furthermore,
these applications perform ad-hoc processing of the file-
system metadata, leading to bugs and vulnerabilities.

We propose Spiffy, an annotation language for speci-
fying the on-disk format of a file system. File-system de-
velopers annotate the data structures of a file system, and
we use these annotations to generate a library that allows
identifying, parsing and traversing file-system metadata,
providing support for both offline and online storage ap-
plications. This approach simplifies the development of
storage applications that work across different file sys-
tems because it reduces the amount of file-system spe-
cific code that needs to be written.

We have written annotations for the Linux Ext4, Btrfs
and F2FS file systems, and developed several applica-
tions for these file systems, including a type-specific
metadata corruptor, a file system converter, and an on-
line storage layer cache that preferentially caches files
for certain users. Our experiments show that applica-
tions that use the library to access file system metadata
can achieve good performance and are robust against file
system corruption errors.

1 Introduction

There are many file-system aware storage applications
that bypass the virtual file system interface and operate
directly on the file system image. These applications re-
quire a detailed understanding of the format of a file sys-
tem, including the ability to identify, parse and traverse
file system structures. These applications can operate in
an offline or online context, as shown in Table 1. Ex-
amples of offline tools include a file system checker that
traverses the file system image to check the consistency
of its metadata [17], and a data recovery tool that helps
recover deleted files [4].

Online storage applications need to understand the
file-system semantics of blocks as they are accessed at
runtime (e.g., whether the block contains data or meta-
data, whether it belongs to a specific type of file, etc.).

Storage Applications Category Purpose
Differentiated services [18] online

performance
Defragmentation tool either
File system checker [13] either

reliability
Data recovery tool [4] offline
IO shepherding [12] online
Runtime verification [8] online
File system conversion tool offline

administrative
Partition editor [11] offline
Type-specific corruption [2] offline

debugging
Metadata dump tool offline

Table 1: Example file-system aware storage applications.
Offline applications have exclusive access to the file sys-
tem; online applications operate on an in-use file system.

These applications improve the performance or reliabil-
ity of a storage system by performing file-system specific
processing at the storage layer. For example, differenti-
ated storage services [18] improve performance by pref-
erentially caching blocks that contain file-system meta-
data or the data of small files. I/O shepherding [12]
improves reliability by using file structure information
to implement checksumming and replication. Similarly,
Recon [8] improves reliability by verifying the consis-
tency of file-system metadata at the storage layer.

Today, developers of these storage applications per-
form ad-hoc processing of file system metadata because
most file systems do not provide the requisite library
code. Even when such library code exists, its interface
may not be usable by all storage applications. For ex-
ample, the libext2fs library only supports offline in-
terpretation of a Linux Ext3/4 file system partition; it
does not support online use. Furthermore, the libraries of
different file systems, even when they exist, do not pro-
vide similar interfaces. As a result, these storage applica-
tions have to be developed from scratch, or significantly
rewritten for each file system, impeding the adoption of
new file systems or new file-system functionality.

To make matters worse, many file systems do not
provide detailed and up-to-date documentation of their
metadata format. The ad-hoc processing performed by
these storage applications is thus error-prone and can
lead to system instability, security vulnerability, and data
corruption [3]. For example, fsck can sometimes further
corrupt a file system [33]. Some storage applications re-
duce the amount of file-system specific code in their im-

USENIX Association 16th USENIX Conference on File and Storage Technologies 91

plementation by modifying their target file system and
operating system [18, 12]. This approach only works for
specific file systems, and can introduce its own bugs. It
also requires custom system software, which may be im-
practical in virtual machine and cloud environments.

Our aim is to reduce the burden of developing file-
system aware storage applications. To do so, we enable
file system developers to specify the format of their file
system using a domain-specific language so that the file
system metadata can be parsed, traversed and updated
correctly. We introduce Spiffy,1 a language for annotat-
ing file system data structures defined in the C language.
Spiffy allows file system developers to unambiguously
specify the physical layout of the file system. The anno-
tations handle low level details such as the encoding of
specific fields, and the pointer relationships between file
system structures. We compile the annotated sources to
generate a Spiffy library that provides interfaces for type-
safe parsing, traversal and update of file system meta-
data. The library allows a developer to write actions for
different file system metadata structures, invoking file-
system specific or generic code as needed, for their of-
fline or online application. We support online applica-
tions that need to read metadata, such as differentiated
storage services [18], but not ones that need to modify
metadata such as online defragmentation.

The generic interfaces provided by the library simplify
the development of applications that work across differ-
ent file systems. Consider an application that shows file-
system fragmentation by plotting a histogram of the size
of free extents in the file system. This application needs
to traverse the file system to find and parse structures
that represent free space, and then collect the extent in-
formation. With Spiffy, the application code for finding
and parsing structures is similar for different file systems.
File-system specific actions are only needed for collect-
ing the extent information from the free space structures
(e.g., bitmaps for Ext4 and free space extents for Btrfs).

The complexity of modern file systems [16] raises
several challenges for our specification-based approach.
Many aspects of file system structures and their relation-
ships are not captured by their declarations in header
files. First, an on-disk pointer in a file-system structure
may be implicitly specified, e.g., as an integer, as shown
below. The naming convention suggests that this field is
a pointer, but that fact cannot be deduced from the struc-
ture definition because it is embedded in file system code.

struct foo {
__le32 bar_block_ptr;

};

Second, the interpretation of file system structures can
depend on other structures. For example, the size of an

1Specifying and Interpreting the Format of Filesystems

inode structure in a Linux Ext3/4 file system is stored
in a field within the super block that must be accessed to
correctly interpret an inode block. Similarly, many struc-
tures are variable sized, with the size information being
stored in other structures. Third, the semantics of meta-
data fields may be context-sensitive. For example, point-
ers inside an inode structure can refer to either directory
blocks or data blocks, depending on the type of the in-
ode. Fourth, the placement of structures on disk may be
implicit in the code that operates on them (e.g., an in-
stance of structure B optionally follows structure A) and
some structures may not be declared at all (e.g., treat-
ing a buffer as an array of integers). Finally, metadata
interpretation must be performed efficiently, but it is im-
practical to load all file-system metadata into memory for
large file systems. These challenges are not addressed by
existing specification tools, as discussed in Section 7.

In Spiffy, the key to specifying the relationships be-
tween file system structures is a pointer annotation that
specifies that a field holds an address to a data structure
on physical storage. Pointers have an address space type
that indicates how the address should be mapped to the
physical location. In the struct foo example above,
this annotation would help clarify that bar_block_ptr
holds an address to a structure of type bar, and its ad-
dress space type is a (little-endian) block pointer. We ex-
pose cross-structure dependencies by using a name res-
olution mechanism that allows annotations to name the
necessary structures unambiguously. We handle context-
sensitive fields and structures by providing support for
conditional types and conditionally inherited structures.
We also provide support for specifying implicit fields
that are computed at runtime. Last, annotations can spec-
ify the granularity at which the structures should be ac-
cessed from storage, allowing efficient data access and
reducing the memory footprint of the applications.

Together, these Spiffy features have allowed us to
properly annotate three widely deployed file systems, 1)
Ext4, an update-in-place file system, 2) Btrfs, a copy-on-
write file system, and 3) F2FS, a log-structured file sys-
tem [15]. We have implemented five applications that are
designed to work across file systems: a file system dump
tool, a file system corruption tool, a free space display
tool, a file system converter, and a storage layer service
that preferentially caches data for specific users.

2 Bugs in File-System Applications

We motivate this work by presenting various bugs caused
by incorrect parsing of file-system metadata in storage
applications (outlined in Table 2). Some of these bugs
cause crashes, while others may result in file system cor-
ruption. For each bug, we discuss the root cause.

1. An extra memory allocation caused uninitialized bytes

92 16th USENIX Conference on File and Storage Technologies USENIX Association

Tool FS Bug Title Closed
1 libparted Fat32 #22266: jump instruction and boot code corrupted with random bytes after fat is resized 2016-05
2 ntfsprogs NTFS Bug 723343 - Negative Number of Free Clusters in NTFS Not Properly Interpreted 2014-02
3 e2fsck Ext4 #781110 e2fsprogs: e2fsck does not detect corruption 2016-05
4 e2fsck Ext4 #760275 e2fsprogs: e2fsck corrupts Hurd filesystems 2015-05
5 btrfsck Btrfs Bug 104141 - Malformed input causing crash / floating point exception in btrfsck 2015-10

Table 2: Bugs due to incorrect parsing of file system formats.

to be written to the boot jump field of Fat32 file sys-
tems during resizing. Since Windows depends on the
correctness of this field, the bug rendered the file sys-
tem unrecognizable by the operating system.

2. NTFS has a complex specification for the size of the
MFT record. If the value is positive, it is interpreted
as the number of clusters per record. Otherwise, the
size of the record is 2|value| bytes (e.g., −10 would
mean that the record size is 1024 bytes). The devel-
opers of ntfsprogs were unaware of this detail, and so
the GParted partition editing tool would fail when at-
tempting to resize an NTFS partition.

3. The e2fsck file system checker failed to detect cor-
rupted directory entries if the size field of the entries
was set to zero, which resulted in no repair being per-
formed. Ironically, other programs, such as debugfs,
ls, and the file system itself, could correctly detect the
corruption.

4. Ext2/3/4 inodes contain union fields for storing oper-
ating system (OS) specific metadata. A sanity check
was omitted in e2fsck prior to accessing this field, and
repairs were always performed assuming that the cre-
ator OS is Linux. Consequently, the file system be-
comes corrupt for Hurd and possibly other OSs.

5. A fuzzer [34] was able to craft corrupted super blocks
that would crash the Btrfsck tool. In response, Btrfs
developers added 15 extra checks (for a total of 17
checks) to the super block parsing code.

The common theme among all these bugs is that: 1)
they are simple errors that occur because they require a
detailed understanding of the file system format; 2) they
can cause serious data loss or corruption; and 3) most
of these bugs were fixed in less than 5 lines of code. Our
domain-specific language allows generating libraries that
can sanitize file system metadata by checking various
structural constraints before it is accessed in memory. In
the presence of corrupted metadata, our libraries gener-
ate error codes, rather than crashing the tools or propa-
gating the corruption further. Section 3.1 discusses how
our approach can help prevent or detect these bugs.

3 Approach

Our annotation language enables type-safe interpretation
of file system structures, in both offline and online con-

texts. Type safety ensures that parsing and serialization
of file system structures will detect data corruption that
leads to type violations, thus reducing the chance of cor-
ruption propagation, and avoiding crash failures.

Ideally, data structure types and their relationships
could be extracted from file system source code. Al-
though the C header files of a file system contain the
structural definitions for various metadata types, they are
incomplete descriptions of the file system format because
information is often hidden within the file system code.
Our annotations augment the C language, helping spec-
ify parts of a file system’s format that cannot be easily
expressed in C.

After a file system developer annotates his or her file
system’s data structures, we use a compiler to parse the
annotated structures and to generate a library that pro-
vides file-system specific interpretation routines. The li-
brary supports traversal and selective retrieval of meta-
data structures through type introspection. These facili-
ties allow writing generic or file-system specific actions
on specific file system metadata structures. For exam-
ple, the application may wish to operate on the directory
entries of a file system. Instead of attempting to parse
the entire file system and find all directory entries, which
requires significant file-system specific code, a developer
using Spiffy would use generic type introspection code to
find and operate on all directory entries. However, since
the directory entry format may not be the same across file
systems, the application may require file-system specific
actions on the directory entry structures.

Our annotation-based approach has several advan-
tages. First, it provides a concise and clear documen-
tation of the file system’s format. Second, our gen-
erated libraries enable rapid prototyping of file-system
aware storage applications. The libraries provide a uni-
form API, easing the development of applications that
work across file systems so that the programmer can fo-
cus on the logic and not the format of the file systems.
Third, our approach requires minimal changes to the file
system source code (the annotations are only in the C
header files and are backwards compatible with existing
binary code), reducing the chance of introducing file sys-
tem bugs. In contrast, differentiated storage services [18]
needed to modify the file system and the kernel’s storage
stack to enable I/O classification. With our approach,
this application can be implemented by using introspec-

USENIX Association 16th USENIX Conference on File and Storage Technologies 93

struct ext4_dir_entry {
__le32 inode; /* Inode number */
__le16 rec_len; /* Directory entry length */
__u16 name_len; /* Name length */
char name[EXT4_NAME_LEN]; /* File name */

};

Figure 1: Ext4 directory entry structure definition.
Checkpoint Region

Checkpoint Pack #1 Checkpoint Pack #2

Checkpoint
Header

Orphan
Blocks

Data Summary
Blocks

Checkpoint Pack

Node Summary
Blocks

Checkpoint
Footer

cphdr

Figure 2: Each F2FS checkpoint pack contains a header
followed by a variable number of orphan blocks.

tion at the block layer for an unmodified file system, or
at the hypervisor for an existing virtual machine. Finally,
file system formats are known to be stable over time, so
there is minimal cost for maintaining annotations.

3.1 Designing Annotations
The design of our annotation language for specifying the
format of file system structures was motivated by several
key concepts.
File System Pointers File system pointers connect the
metadata structures in a file system, but they are not well
specified in C data structure definitions, as explained in
Section 1. The difference between a file system pointer
and an in-memory pointer is that the content of an in-
memory pointer is always interpreted as the in-memory
address of the pointed-to data, but interpreting the ad-
dress contained by a file system pointer may involve mul-
tiple layers of translation. The most common type of
file system pointer is a block pointer, where the address
maps to a physical block location that contains a con-
tiguous data structure. However, file system structures
may also be laid out discontiguously. For example, the
journal of an Ext4 file system is a logically contiguous
structure that can be stored on disk non-contiguously, as
a file. Similarly, Btrfs maps logical addresses to physical
addresses for supporting RAID configurations.

Our design incorporates this requirement by associat-
ing an address space with each file system pointer. Each
address space specifies a mapping of its addresses to
physical locations. In the case of the Ext4 journal, we
use the inode number, which uniquely identifies files in
Unix file systems, as an address in the file address space.
Cross-Structure Dependencies File system structures
often depend on other structures. For example, the length

of a directory entry’s name in Ext4 is stored in a field
called name_len, as shown in Figure 1. However, this
data structure definition does not provide the linkage be-
tween the two fields.2 Structures may depend on fields
in other structures as well. For example, several fields
of the super block are frequently accessed to determine
the block size, the features that are enabled in the file
system, etc. To support these dependencies, we need
to name these structures. For example, the expression
sb.s_inode_size helps determine the size of an inode
object, where sb is the name assigned to the super block.

The naming mechanism must ensure that a name refers
to the correct structure. For example, the F2FS file sys-
tem contains two checkpoint packs for ensuring file sys-
tem consistency, as shown in Figure 2. The number of or-
phan blocks in a F2FS checkpoint pack is determined by
a field inside the checkpoint header. Our naming mecha-
nism must ensure that when this field is accessed, it refers
to the header structure in the correct checkpoint pack.

Spiffy uses a path-based name resolution mechanism,
based on the observation that every file system structure
is accessed along a path of pointers starting from the su-
per block. In the simplest case, the automatic self vari-
able is used to reference the fields of the same structure.
Otherwise, a name lookup is performed in the reverse or-
der of the path that was used to access the data structure.
For example, in Figure 2, when we need to reference the
checkpoint header (cphdr in the figure) while parsing
the orphan block, the name resolution mechanism can
unambiguously determine that it is referring to its parent
checkpoint header. This strategy also makes it easy to
use reference counting to ensure that a referenced struc-
ture is valid in memory when it needs to be accessed.

Context-Sensitive Types File system metadata are fre-
quently context-sensitive. A pointer may reference dif-
ferent types of metadata, or a structure may have optional
fields, based on a field value. For example, the type of a
journal block in Ext4 depends on a common field called
h_blocktype. If the field’s value is 3, then it is the jour-
nal super block that contains many additional fields that
can be parsed. However, if its value is 2, then it is a
commit block that contains no other fields. We need to
be able to handle such context-sensitive structures and
pointers. We use a when expression, evaluated at run-
time, to support such context-sensitive types. These con-
ditional expressions also allow us to specify when differ-
ent fields of a union are valid, which enables Spiffy to
enforce a strict access discipline at runtime, and would
prevent Bug #4 from Section 2.

Computed Fields Sometimes file systems compute a
value from one or more fields and use it to locate struc-
tures. For example, the block group descriptor table in

2Confusingly, name has a fixed size in the definition.

94 16th USENIX Conference on File and Storage Technologies USENIX Association

Base Class Member Function Description
Spiffy File System Library

Entity int process_fields(Visitor & v) allows v to visit all fields of this object
int process_pointers(Visitor & v) allows v to visit all pointer fields of this object
int process_by_type(int t, Visitor & v) allows v to visit all structures of type t

Pointer Entity * fetch() retrieves the pointed-to container from disk

Container int save(bool alloc=true)
serializes and then persists the container, may
assign a new address to the container

FileSystem FileSystem(IO & io) instantiates a new file system object
Entity * fetch_super() retrieves the super block from disk
Entity * create_container(int type, Path & p) creates a new container of metadata type
Entity * parse_by_type(int type, Path & p,
Address & addr, const char * buf, size_t len)

parses the buffer as metadata type, using
p to resolve cross structure dependencies

File System Developer
IO int read(Address & addr, char * & buf) reads from an address space specified by addr

int write(Address & addr, const char * buf) writes to an address space specified by addr
int alloc(Address & addr, int type) allocates an on-disk address for metadata type

Application Programmer
Visitor int visit(Entity * e) visits an entity and possibly processes it

Table 3: Spiffy C++ Library API.

Ext4 is implicitly the block(s) that immediately follows
the super block. However, the exact address of the de-
scriptor blocks depends on the block size, which is spec-
ified in the super block. We annotate this information
as an implicit field of the super block that is computed
at runtime. This approach allows the field to be derefer-
enced like a normal pointer, allowing traversal of the file
system without requiring any changes to the underlying
format. A computed field annotation can also be used
to specify the size calculation for an NTFS MFT record,
avoiding Bug #2 from Section 2.

Metadata Granularity Existing file systems assume
that the underlying storage media is a block device and
access data in block units. Data structures can exist
within such blocks or they can span contiguous physical
blocks. Some data structures that span blocks are read
in their entirety. For example, the Btrfs B-tree nodes are
(by default) 16KB, or 4 blocks, and these blocks are read
from disk together. In other cases, the data structure is
read in portions. For example, an Ext4 inode table con-
tains a group of inode blocks. The file system does not
load the entire table in memory because it can be very
large. Instead, it only loads the portions that are needed.

We define an access unit for file system structures so
that the compiler can generate efficient code for travers-
ing the file system. We call the unit of disk access a
container. The container size is typically the file system
block size but it may span multiple blocks, as in the Btrfs
example. A structure that is placed inside a container is
called an object. Finally, structures that span contain-
ers are called extents. We load extents on demand, when
their containers are accessed.

Constraint Checking The values of metadata fields
within or across different objects often have constraints.

For example, an Ext4 extent header always begins with
the magic number 0xF30A to help detect corrupt blocks.
Similarly, the name_len field of an Ext4 directory entry
should be less than the rec_len field. Such constraints
can be specified for each structure so that they can be
checked to ensure correctness when parsing the structure.
The use of constraint annotations could have helped pre-
vent Bug #1, and detect Bugs #3 and #5 from Section 2.

The set of valid addresses for a metadata container
may also have a placement constraint. For example,
F2FS NAT blocks can only be placed inside the NAT
area, which is specified in the F2FS super block. By
annotating the placement constraint of a metadata con-
tainer, Spiffy can verify that the address assigned to
newly allocated metadata is within the correct bounds
before the metadata is persisted to disk.

3.2 The Spiffy API
Table 3 shows a subset of the API for building Spiffy
applications. The API consists of three sets of functions.
The first set are automatically generated by Spiffy based
on the annotated file system data structures. The second
set need to be implemented by file system developers and
are reusable across different applications. The last set are
written by the application programmer for implementing
application and file-system specific logic.

The Spiffy library uses the visitor pattern [9], allow-
ing a programmer to customize the operations performed
on each file system metadata type by implementing the
visit function of the abstract base class Visitor.

The Entity base class provides a common inter-
face for all metadata structures and their fields. The
process_pointers function invokes the visit func-
tion of an application-defined Visitor class on each

USENIX Association 16th USENIX Conference on File and Storage Technologies 95

struct Address {
int aspc; /* address space type */
long id; /* id of the address */
unsigned offset; /* offset from id */
unsigned size; /* size of object */

};

Figure 3: Address structure to locate container on disk.

pointer within the entity. The process_by_type func-
tion allows visiting a specific type of structure that is
reachable from the entity. Unlike the other process
functions, process_by_type will automatically follow
pointers. For example, invoking process_by_type on
the super block with the inode structure as an argument
results in visiting all inodes in the file system.

Every container (and extent) has an address associated
with it that allows accessing the container from disk. Fig-
ure 3 shows the format of an address, consisting of an ad-
dress space, an identifier and an offset within the address
space, and the size of the container. The offset field is
used when a container belongs to an extent.

The Pointer class stores the address of a container
(or an extent), and its fetch function reads the pointed-
to container from disk. Figure 4 shows the generated
code for the fetch function for a pointer to a container
named IBlock (inode block). The file-system devel-
oper implements an IO class with a read function for
each address space defined for the file system. When the
IBlock is constructed, it invokes the constructors of its
fields, thus creating all the objects (e.g., inodes) within
the container. The constructors for inodes, in turn, invoke
the constructors of block pointers in the inodes, which
initialize a part of the address (address space, size and
offset) of the block pointers based on the annotations.
Then the container is parsed, which initializes the con-
tainer fields in a nested manner, including setting the id
component of the address of all the block pointers in the
inodes contained in the IBlock.

The Path object is associated with every entity and
contains the list of structures that are needed to resolve
cross-structure dependencies during parsing or serializ-
ing the container. It is set up based on the sequence of
constructor calls, with each constructor adding the cur-
rent object to the path passed to it.

The save function serializes a container by invoking
nested serialization on its fields. Then, it invokes the
alloc function for newly created metadata, or when ex-
isting metadata has to be reallocated (e.g., copy-on-write
allocator). The allocator finds a new address for the con-
tainer and updates any metadata that tracks allocation
(e.g., the Ext4 block bitmap). If the address passes place-
ment constraint checks, the buffer is written to disk.

The create_container function constructs empty
containers of a given type. The application developer

Entity * IBlockPtr::fetch() {
IBlock * ib;
Address & addr = this->address;
char * buf = new char[addr.size];
this->fs.io.read(addr, buf);
ib = new IBlock(this->fs, addr, this->path);
ib->parse(buf, addr.size);
return ib;

}

Figure 4: Example of a generated fetch function.
IBlockPtr is a subclass of Pointer.

can then fill the container with data and invoke save to
allocate and write the newly created container to disk.

3.3 Building Applications
Figure 5 shows a sample application built using the
Spiffy API. This application prints the type of each meta-
data block in an Ext4 file system in depth-first order. The
Ext4IO class implements the block and the file address
space, as described in Section 5. The program starts by
invoking fetch_super, which fetches the super block
from a known location on disk and parses it. Then it
uses two mutually recursive visitors, EntVisitor and
PtrVisitor, to traverse the file system.

The EntVisitor::visit function takes an
entity as input, prints its name, and then in-
vokes process_pointers, which calls the
PtrVisitor::visit function for every pointer in
the entity. The PtrVisitor::visit function invokes
fetch, which fetches the pointed-to entity from disk,
and invokes EntVisitor::visit on it.

3.4 Limitations
The correctness of Spiffy applications depends on cor-
rectly written annotations. Therefore, if and when file
system format changes do occur, the specifications will
need to be updated. Spiffy applications will also need
to update all file-system specific code that is affected by
the format changes. These changes will likely only affect
code that directly operates on the updated metadata struc-
tures, since the Spiffy library will provide safe traversal
and parsing of any intermediate structures.

Currently, we have implemented an online application
at the storage layer (metadata caching, see Section 5)
that reads file system metadata, but does not modify it.
We are exploring modifying file system metadata using
Spiffy at the storage layer (which requires hooks into
the file system code, e.g., for transactions and alloca-
tion [12]), and at the file system level (which enables
more powerful applications).

Unlike typical file-system applications that operate at
the VFS layer and are file-system independent, Spiffy ap-
plications operate directly on file-system specific struc-

96 16th USENIX Conference on File and Storage Technologies USENIX Association

EntVisitor ev;
PtrVisitor pv;
int PtrVisitor::visit(Entity & e) {

Entity * tmp = ((Pointer &)e).fetch();
if (tmp != nullptr) {

ev.visit(*tmp);
tmp->destroy();

}
return 0;

}
int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;
return e.process_pointers(pv);

}
void main(void) {

Ext4IO io("/dev/sdb1");
Ext4 fs(io);
Entity * sup;
if ((sup = fs.fetch_super()) != nullptr) {

ev.visit(*sup);
sup->destroy();

}
}

Figure 5: Code for traversing and printing the types of
all the metadata blocks in an Ext4 file system.

tures and are thus file-system dependent. Since file sys-
tems share common abstractions (e.g. files, directories,
inodes), it may be possible to carefully abstract the func-
tionality that is shared between implementations, reduc-
ing file-system dependence even further.

4 File System Applications

We have written five file-system aware storage applica-
tions using the Spiffy framework: a dump tool, a free
space reporting tool, a type-specific metadata corruptor,
a file system conversion tool, and a prioritized block
layer cache. The first four applications operate offline,
while the last one is an online application.

File System Dump Tool The file system dump tool
parses all the metadata in a file system image and exports
the result in an XML format, using file system traver-
sal code similar to the example in Figure 5. In addi-
tion to process_pointers, the entity class provides a
process_fields method that allows iterating over all
fields (not just pointer fields) of the class. The dump tool
can be configured to prevent structures such as unallo-
cated inode structures from being exported.

Type-Specific Corruption Tool This tool is a variant
of the dump tool that injects file-system corruption in a
type-specific manner [2], allowing us to test the robust-
ness of file systems and their tools. When we decide to
corrupt a field, we cannot simply modify its in-memory
value, since serialization is type-safe. For example, the

serializer will refuse to serialize a corrupted value that
violates its type constraints. Instead, corruption is per-
formed after a block is serialized but before it is written.

Free Space Tool This tool shows file-system fragmen-
tation by plotting a histogram of the size of free ex-
tents. The tool retrieves the metadata structures that
store free space information and processes them (e.g.,
block bitmaps for Ext4, extent items for Btrfs, and seg-
ment information table (SIT) for F2FS). This logic is im-
plemented using process_by_type (see Table 3) and
a custom visit function that processes all the retrieved
metadata structures. Code to traverse the file system and
parse intermediate structures is provided by our library.

File System Conversion Tool Converting an existing
file system into a file system of another type is a time-
consuming process, involving copying files to another
disk, reformatting the disk, and then copying the files
back to the new file system. In-place file system conver-
sion that updates file system metadata without moving
most file data can speed up the conversion dramatically.
While some such conversion tools exist,3 they are hard
to implement correctly and not generally available.

We have designed an in-place file system conversion
tool using the Spiffy framework. Such a conversion tool
requires detailed knowledge of the source and the des-
tination file systems, and is thus a challenging applica-
tion for our approach. In-place conversion involves sev-
eral steps. First, the file and directory related metadata,
such as inodes, extent mappings, and directory entries
of the source file system, are parsed into a standard for-
mat. Second, the free space in the source file system is
tracked. Third, if any source file data occupies blocks
that are statically allocated in the destination file system,
then those blocks are reallocated to the free space, and
the conversion aborted if sufficient free space is not avail-
able. Finally, the metadata for the destination file system
is created and written to disk. In our current tool, a power
failure during the last step would corrupt the source file
system. We plan to add failure atomicity in the future.

Our tool currently converts extent-based Ext4 file sys-
tems to log-structured F2FS file systems. The source
file system is read using a custom set of visitors that ef-
ficiently traverse the file system and create in-memory
copies of relevant metadata. For example, unused block
groups can be skipped while processing block group de-
scriptors. Next, we generate the free space list by reusing
components from the free space tool, and then removing
F2FS’s static metadata area from the list. Then, Ext4 ex-
tents in the F2FS metadata area are relocated to the free
space with their mappings updated. Finally, F2FS meta-
data is created from the in-memory copies and written to

3The convert utility converts FAT32 to NTFS [27], and updating to
iOS 10.3 upgrades the file system from HFS+ to APFS [28]

USENIX Association 16th USENIX Conference on File and Storage Technologies 97

disk, which involves allocation and pointer management,
requiring significant file-system-specific logic.

Fortunately, various pieces of the code can be reused
for different combinations of source and destination file
system when adapting new file systems. As an example,
only the code to copy Btrfs metadata from an existing
file system and to list its free space is required to support
the conversion from Btrfs to F2FS, since the in-memory
data structures are generic across file systems that sup-
port VFS. If the file system does not support VFS, suit-
able default values can be used, which would be helpful
for upgrading from a legacy file system such as FAT32.

Prioritized Block Layer Cache We have imple-
mented a file-system aware block layer cache based on
Bcache [20]. Our cache preferentially caches the files of
certain priority users, identified by the uid of the file.
This caching policy can dramatically improve workload
performance by improving the cache hit rate for priori-
tized workloads, as shown in previous work [26]. Bcache
uses an LRU replacement policy; in our implementation,
blocks belonging to priority users are given a second
chance and are only evicted if they return to the head
of the LRU list without being referenced.

We use a runtime interpretation module, described in
more detail in Section 5, to identify metadata blocks at
the block layer without any modifications to the file sys-
tem. We track the data extents that belong to file inodes
containing the uid of a priority user, so that we can pref-
erentially cache these extents. For Ext4, we use custom
visit functions to parse inodes and determine the prior-
ity extent nodes. Similarly, we parse the priority extent
nodes to determine the priority extent leaves, which con-
tain the priority data extents.

For Btrfs, the inodes and their file extent items may
not be placed close together (e.g., within the same B-
tree leaf block), and so parsing an inode object will not
provide information about its extents. Fortunately, the
key of a file extent item is its associated inode number,
making it easy to track the file extents of priority users.

5 Implementation

We implemented a compiler that parses Spiffy annota-
tions. The compiler generates the file system’s internal
representation in a symbol table, containing the defini-
tions of all the file system metadata, their annotations,
their fields (including type and symbolic name), and each
of their field’s annotations. Next, it detects errors such as
duplicate declarations or missing required arguments. Fi-
nally, the symbol table and compiler options are exported
for use by the compiler’s backend.

Spiffy’s backend generates C++ code for a file-system
specific metadata library using Jinja2 [22]. The library
can be compiled as either a user space library or as part of

a Linux kernel module. We linked our module, including
our generated library, into the Linux kernel by porting
some C++ standard containers to the kernel environment
and integrating the GNU g++ compiler into the kernel
build process, which required minor changes.

Every annotated structure is wrapped in a class that al-
lows introspection. Each field in the wrapped class can
refer to its name, type and size, and has a reference to the
containing structure. The generated library performs var-
ious types of error-checking operations. For example, the
parsing of offset fields ensures that objects do not cross
container boundaries, and that all variable-sized struc-
tures fit within their containers. These checks are essen-
tial if an application aims to handle file system corrup-
tion. When parsing does fail, an error code is propagated
to the caller of the parse or serialize function.

Address Spaces Annotation developers must imple-
ment the IO interface shown in Table 3. The Ext4 file
address space implementation for the Ext4IO class (see
Figure 5) requires fetching the file contents associated
with an inode number. For Btrfs, we currently support
the RAID address space for a single device, which only
allows metadata mirroring (RAID-1). For F2FS, we sup-
port the NID address space, which maps a NID (node id)
to a node block. The implementation involves a lookup
to see if a valid mapping entry is in the journal. If not,
the mapping is obtained from the node address table.

Runtime Interpretation Offline Spiffy applications
use variants of the file-system traversal algorithm in Fig-
ure 5. Spiffy also supports online file-system aware stor-
age applications via a kernel module that performs file
system interpretation at the block layer of the Linux ker-
nel using the generated libraries. These storage applica-
tions are typically difficult to write and error prone, since
manual parsing code is needed for each block type. How-
ever, our implementation only requires a small amount of
bootstrap code to support any annotated file system. The
rest of the code is file-system independent.

In offline applications, the fetch function reads data
from disk and parses the structure. The type of the struc-
ture is known from the pointer that is passed to the fetch
function. In contrast, for online interpretation, the file
system performs the read, and the application just needs
to parse it. The parse_by_type function in Table 3
allows parsing of arbitrary buffers and constructing the
corresponding containers, without the need for an IO ob-
ject to read data from disk. However, it needs to know
the type of the block before parsing is possible. Our run-
time interpretation depends on the fact that a pointer to a
metadata block must be read before the pointed-to block
is read. When a pointer is found during the parsing of a
block, the module tracks the type of the pointed-to block
so that its type is known when it is read.

98 16th USENIX Conference on File and Storage Technologies USENIX Association

Our module exports several functions, including
interpret_read and interpret_write, that need to
be placed in the I/O path to perform runtime interpreta-
tion. These functions operate on locked block buffers.
The module maintains a mapping between block num-
bers and their types. After intercepting a completed
read request, it checks whether a mapping exists, and
if so, it is a metadata block and it gets parsed. Next,
process_pointers is invoked with a visitor that adds
(or updates) all the pointers that are found in the block
into the mapping table. If a parsed block will be refer-
enced later (e.g., super block), we make a copy so that it
is available during subsequent parsing of structures that
depend on the value of its fields (e.g., parsing the Ext4 in-
ode block requires knowing the size of an inode, which is
in the super block). The local copy is atomically replaced
when a new version of the block is written to disk.

When the I/O operation is a write, the module needs to
determine the type of the written block. A statically allo-
cated block can be immediately parsed because its type
will not change. For example, most metadata blocks in
Ext4 are statically allocated. However, in Btrfs, the super
block is the only statically allocated metadata block. For
dynamically allocated blocks, the block must first be la-
beled as unknown and its contents cached, since its type
may either be unknown or have changed. Interpretation
for this block is deferred until it is referenced by a block
that is subsequently accessed (either read or written), and
whose type is known. At that point, the module will in-
terpret all unknown blocks that are referenced.

Since most dynamically-typed blocks are data blocks,
they should be discarded immediately to reduce mem-
ory overhead. For the Btrfs file system, this is relatively
easy because metadata blocks are self-identifying. For
Ext4, these blocks need to be temporarily buffered until
they can be interpreted. However, we use a heuristic for
Ext4 to quickly identify dynamically-typed blocks that
are definitely not metadata, to reduce the memory over-
head of deferred interpretation. The block is first parsed
as if it were a dynamically allocated block (e.g., a direc-
tory block or extent metadata block), and if the parsing
results in an error, then the block is assumed to be data
and discarded. This heuristic could be used in other file
systems as well because most file systems have a small
number of dynamically allocated metadata block types,
or their blocks are self-identifying.

The module currently relies on the file system to is-
sue trim operations to detect deallocation of blocks so
that stale entries can be removed from the mapping table.
Since file systems do not guarantee correct implementa-
tion of trim, the module additionally flushes out entries
for dynamically allocated blocks that have not been ac-
cessed recently. This works for a caching application,
but may lead to mis-classification for other runtime ap-

File System Line Count Annotated Structures

Ext4 491 113 15+10+4
Btrfs 556 151 27+4+1
F2FS 462 127 14+16+5

Table 4: File system structure annotation effort.

plications. Accurate classification can be implemented
by keeping the previous versions of blocks and compar-
ing the versions at transaction commit time. However, it
comes with a higher memory overhead [8].

6 Evaluation

In this section, we discuss the effort required to annotate
the structures of existing file systems, the effort required
to write Spiffy applications, and the robustness of Spiffy
libraries. We then evaluate the performance of our file-
system conversion tool and the file-system aware block-
layer caching mechanism.

6.1 Annotation Effort
Table 4 shows the effort required to correctly annotate
the Ext4, Btrfs and F2FS file systems. The second col-
umn shows the number of lines of code of existing on-
disk data structures in these file systems. The lines of
code count was obtained using cloc [6] to eliminate
comments and empty lines. The third column shows the
number of annotation lines. This number is less than one-
third of the total line count for all the file systems.

The last column is listed as A+B+C, with A showing
no modification to the data structure (other than adding
annotations), B showing the number of data structures
that were added, and C showing the number of data struc-
tures that needed to be modified. Structure declarations
needed to be added or modified for three reasons:

1. We break down structures that benefit from being
declared as conditionally inherited types. For ex-
ample, btrfs_file_extent_item is split into two
parts: the header and an optional footer, depending on
whether it contains inline data or extent information.

2. Simple structures such as Ext4 extent metadata
blocks, are not declared in the original source code.
However, for annotation purposes, they need to be ex-
plicitly declared. All of the added structures in Ext4
belong to this category.

3. Some data structures with a complex or backward-
compatible format require modifications to enable
proper annotation. For example, Ext4 inode retains its
Ext3 definition in the official header file even though
the i_block field now contains extent tree informa-
tion rather than block pointers. We redefined the Ext4
inode structure and replaced i_block with the extent
header followed by four extent entries.

USENIX Association 16th USENIX Conference on File and Storage Technologies 99

6.2 Developer Effort

Dump Tool: The file system dump tool includes a file-
system independent XML writer module, written in 565
lines of code. The main function for each file system is
written in 40 to 50 lines of code. The dump tool is helpful
for debugging issues with real file systems. In addition,
an expert can verify that the annotations are correct when
the output of the dump tool matches the expected con-
tents of the file system. Therefore, this tool has become
an integral part of our development process.
Type-Specific Corruptor: This tool is written in 455
lines of code, with less than 30 lines of code required for
the main function of each file system. The structure that
the user wants to corrupt is specified via the command
line and the tool uses process_by_type to find it, with-
out the need for file-system specific code.
Free Space Tool: The file system free space tool has
271 lines of file-system independent code. File-system
specific parts require 76 lines for Ext4, 77 lines for Btrfs,
and 194 lines for F2FS. F2FS requires more code due to
the complex format of its block allocation information.
Conversion Tool: The Spiffy file system conversion tool
framework is written in 504 lines of code. The code for
reading Ext4 takes 218 lines, the code to convert to the
F2FS file system requires 1760 lines, and the file-system
developer code for F2FS, which is reused in other ap-
plications such as the dump tool, consists of 383 lines.
We also wrote a manual converter tool that uses the
libext2fs [30] library to copy Ext4 metadata from the
source file system, and manually writes raw data to cre-
ate an F2FS file system. The manual converter has 223
lines of Ext4 code, and 2260 lines for the F2FS code.
While the two converters have similar number of lines
of code, the Spiffy converter has several other benefits.
For the source file system, the manual converter takes
advantage of the libext2fs library. Writing the code
to convert from a different source file system would re-
quire significant effort, and would require much more
code for a file system such as ZFS that lacks a similar
user-level library. On the destination side, the Spiffy con-
verter requires many file-system specific lines of code
to manually initialize each newly created object. How-
ever, Spiffy checks constraints on objects and uses the
create_container and save functions to create and
serialize objects in a type-safe manner, while the manual
converter writes raw data, which is error-prone, leading
to the types of bugs discussed in Section 2.
Prioritized Cache: The original Bcache code consisted
of 10518 lines of code. To implement prioritized caching
we added 289 lines to this code, which invoke our
generic runtime metadata interpretation framework, con-
sisting of 2158 lines of code. This framework provides
hooks to specify file-system specific policies. Our Ext4-

specific policy requires 111 lines of code, and the Btrfs-
specific policy requires 134 lines of code. Currently,
we have not implemented prioritized caching for F2FS,
which would require tracking NAT entries, similar to
how we track inode numbers for Btrfs to find file extents.

6.3 Corruption Experiments
We use our type-specific corruption tool to evaluate the
robustness of Spiffy generated libraries. The experiment
fills a 128MB file system image with 12,000 files and
some directories, then clobbers a chosen field in a spe-
cific metadata structure (e.g., one of the inode structures)
to create a corrupted file system image. We corrupt each
field in each type of metadata structure three times, twice
to a random value and once to zero.

The Spiffy dump tool was able to generate correctly
formatted XML files in the face of arbitrary single-field
corruptions for all of these images. When corruption is
detected during the parsing of a container or a pointer
fetch (i.e., pointer address is out-of-bound or fails a
placement constraint), an error is printed and the pro-
gram stops the traversal.

Table 5 describes the crashes we found when we
ran existing tools on the same corrupted images. For
dumpe2fs (dump tool for Ext4) v1.42.13, we found a
single crash when the s_creator_os field of the su-
per block is corrupted. For dump.f2fs v1.6.1-1, we ob-
served 5 instances of segmentation faults. Three of the
crashes were due to corruption in the super block, and
one crash each was detected for the summary block and
inode structures. We were unable to trigger any crash-
related bugs in btrfs-debug-tree v4.4.

These results are not unexpected since F2FS is a rela-
tively young file system. Btrfs uses metadata checksum-
ming to detect corruption, and thus requires corruption
to be injected before checksum generation to fully test
the robustness of its dump tool. Lastly, dumpe2fs does
not traverse the full file system metadata, and so does not
encounter most of the metadata corruption. Our Spiffy
dump tool is both more complete and more robust than
dumpe2fs, without requiring significant testing effort.

We also tried an extensive set of random corruption ex-
periments, and none of the existing tools crashed, show-
ing that our type-specific corruptor is a useful tool for
testing the robustness of these applications.

6.4 File System Conversion Performance
We compare the time it takes to perform copy-based con-
version, versus using the Spiffy-based and the manually
written in-place file-system conversion tools. The results
are shown in Table 6. The experiments are run on an
Intel 510 Series SATA SSD. We create the file set using
Filebench 1.5-a3 [32] in an Ext4 partition on the SSD,

100 16th USENIX Conference on File and Storage Technologies USENIX Association

Tool Name Structure Field Description

dumpe2fs super block s_creator_os index out of bound error during OS name lookup
dump.f2fs super block log_blocks_per_seg index out of bound error while building nat bitmap

super block segment_count_main null pointer dereference after calloc fails
super block cp_blkaddr double free error during error handling (no valid checkpoint)

summary block n_nats index out of bound error during nid lookup
inode i_namelen index out of bound error when adding null character to end of name

Table 5: List of segmentation faults found during type-specific corruption experiments.

files Copy Converter Manual Conv. Spiffy Conv.

20000 188.2±3.7s 6.6±0.5s 7.0±0.2s
1000 192.7±2.3s 3.3±0.1s 3.8±0.0s
100 195.1±0.2s 3.3±0.1s 3.7±0.1s

Table 6: Time required for each technique to convert
from Ext4 to F2FS for different number of files.

and then convert the partition to F2FS. The 20K file set
uses the msnfs file size distribution with the largest file
size up to 1GB. The rest of the file sets have progres-
sively fewer small files. All file sets have a total size of
16GB. For the copy converter, we run tar -aR at the
root of the SSD partition and save the tar file on a sepa-
rate local disk. We then reformat the SSD partition and
extract the file set back into the partition.

The copy converter requires transferring two full
copies of the file set, and so it takes 30x to 50x longer
than using the conversion tools, which only need to move
data blocks out of F2FS’s static metadata area and then
create the corresponding F2FS metadata. Both conver-
sion tools take more time with larger file sets since they
need to handle the conversion of more file system meta-
data. The library-assisted conversion tool performs rea-
sonably compared to its manually-written counterpart,
with at most a 16.7% overhead for the added type-safety
protection that the library offers.

6.5 Prioritized Cache Performance
We measure the performance of our prioritized block
layer cache (see Section 4), and compare it against LRU
caching with one or two instances of the same workload.

Our experimental setup includes a client machine con-
nected to a storage server over a 10Gb Ethernet using
the iSCSI protocol. The storage server runs Linux 3.11.2
and has 4 Intel Processor E7-4830 CPUs for a total of 32
cores, 256GB of memory and a software RAID-6 vol-
ume consisting of 13 Hitachi HDS721010 SATA2 7200
RPM disks. The client machine runs Linux 4.4.0 with
Intel Processor E5-2650, and an Intel 510 Series SATA
SSD that is used for client-side caching. To mimic the
memory-to-cache ratio of real-world storage servers, we
limit the memory on the client to 4GB and use 8GB of
the SSD for write-back caching. The RAID partition is
formatted with either the Ext4 or Btrfs file system and
is used as the primary storage device. To avoid any

0 1000 2000 3000

Fileserver A + Fileserver B, A is preferred

Fileserver A + Fileserver B, no preference

Fileserver A, alone

Fileserver A + Fileserver B, A is preferred

Fileserver A + Fileserver B, no preference

Fileserver A, alone

ops/sFileserver A Fileserver B

Btrfs

Ext4

Figure 6: Throughput of prioritized caching over LRU
caching with one or two file servers for Ext4 and Btrfs.

scheduling related effects, the NOOP I/O scheduler is
used in all cases for both the caching and primary device.

We use a pair of identical Filebench fileserver work-
loads to simulate a shared hosting scenario with two
users where one requires higher storage performance
than the other. We generate a total file set size of 8GB
with an average file size of 128KB, for each workload.
The fileserver personality performs a series of create,
write, append, read and delete of random files throughout
the experiment. Filebench reports performance metrics
every 60 seconds over a period of 90 minutes. Perfor-
mance initially fluctuates as the cache fills, therefore we
present the average throughput over the last 60 minutes
of the experiment, after performance stabilizes.

Figure 6 shows the average throughput for each of the
experiments in operations per second. The error bars
show 95% confidence intervals. First, we establish the
baseline performance of a single fileserver instance run-
ning alone, which has a cache hit ratio of 64% and 54%
for Ext4 and Btrfs, respectively. Next, we run two in-
stances of fileserver to observe the effect of cache con-
tention. We see a drastic reduction in cache hit ratio to
23% and 24% for Ext4 and Btrfs, respectively. Both
fileservers have similar performance, which is between
2.3x and 2.7x less than when running alone. When we
apply preferential caching to the files used by fileserver
A, however, its throughput improves by 60% over non-
prioritized LRU caching when running concurrently with
fileserver B, with the overall cache hit ratio improving
to 46% and 53% for Ext4 and Btrfs, respectively. Pri-
oritized caching also improves the aggregate through-
put of the system by 14% to 22%. Giving priority to
one of the two jobs implicitly reduces cache contention.

USENIX Association 16th USENIX Conference on File and Storage Technologies 101

These results show that storage applications using our
generated library can provide reasonable performance
improvements without changing the file system code.

7 Related Work

A large body of work has focused on storage-layer ap-
plications that perform file-system specific processing
for improving performance or reliability. Semantically-
smart disks [24] used probing to gather detailed knowl-
edge of file system behavior, allowing functionality or
performance to be enhanced transparently at the block
layer. The probing was designed for Ext4-like file sys-
tems and would likely require changes for copy-on-write
and log-structured file systems. Spiffy annotations avoid
the need for probing, helping provide accurate block type
information based on runtime interpretation.

I/O shepherding [12] improves reliability by using
file structure information to implement checksumming
and replication. Block type information is provided to
the storage layer I/O shepherd by modifying the file
system and the buffer-cache code. Our approach en-
ables I/O shepherding without requiring these changes.
Also, unlike I/O shepherding, Spiffy allows interpreting
block contents, enabling more powerful policies, such as
caching the files of specific users.

A type-safe disk extends the disk interface by expos-
ing primitives for block allocation and pointer relation-
ships [23], which helps enforce invariants such as pre-
venting access to unallocated blocks, but this interface
requires extensive file system modifications. We believe
that our runtime interpretation approach allows enforcing
such type-safety invariants on existing file systems.

Serialization of structured data has been explored
through interface languages such as ASN.1 [25] and Pro-
tocol Buffers [31], which allow programmers to define
their data structures so that marshaling routines can be
generated for them. However, the binary serialization
format for the structures is specified by the protocol and
not under the control of the programmer. As a result,
these languages cannot be used to interpret the existing
binary format of a file system.

Data description languages such as Hammer [21] and
PADS [7] allow fine-grained byte-level data formats to
be specified. However, they have limited support for non-
sequential processing, and thus their parsers cannot inter-
pret file system I/O, where a graph traversal is required
rather than a sequential scan. Furthermore, with online
interpretation, this traversal is performed on a small part
of the graph, and not on the entire data.

Nail [3] shares many goals with our work. Its grammar
provides the ability to specify arbitrarily computed fields.
It also supports non-linear parsing, but its scope is lim-
ited to a single packet or file, and so it does not support

references to external objects. Our annotation language
overcomes this limitation by explicitly annotating point-
ers, which defines how file system metadata reference
each other. We also provide support for address spaces,
so that address values can be mapped to user-specified
physical locations on disk.

Several projects have explored C extensions for ex-
pressing additional semantic information [19, 35, 29].
CCured [19] enables type and memory safety, and the
Deputy Type System [35] prevents out-of-bound array
errors. Both projects annotate source code, perform
static analysis, and add runtime checks, but they are de-
signed for in-memory structures.

Formal specification approaches for file systems [1, 5]
require building a new file system from scratch, while
our work focuses on building tools for existing file sys-
tems. Chen et al. [5] use logical address spaces as ab-
stractions for writing higher-level file system specifica-
tions. This idea inspired our use of an address space type
for specifying pointers. Another method for specifying
pointers is by defining paths that enable traversing the
metadata tree to locate a metadata object, such as finding
the inode structure from an inode number [14, 10]. These
approaches focus on the correctness of file-system oper-
ations at the virtual file system layer, whereas our goal is
to specify the physical structures of file systems.

8 Conclusion

Spiffy is an annotation language for specifying the on-
disk file system data structures. File system developers
annotate their data structures using Spiffy, which enables
generating a library that allows parsing and traversing file
system data structures correctly.

We have shown the generality of our approach by an-
notating three vastly different file systems. The anno-
tated file system code serves as detailed documentation
for the metadata structures and the relationships between
them. File-system aware storage applications can use the
Spiffy libraries to improve their resilience against pars-
ing bugs, and to reduce the overall programming effort
needed for supporting file-system specific logic in these
applications. Our evaluation suggests that applications
using the generated libraries perform reasonably well.
We believe our approach will enable interesting applica-
tions that require an understanding of storage structures.

Acknowledgements

We thank the anonymous reviewers and our shepherd,
André Brinkmann, for their valuable feedback. We spe-
cially thank Michael Stumm, Ding Yuan, Mike Qin, and
Peter Goodman for their insightful suggestions. This
work was supported by NSERC Discovery.

102 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] AMANI, S., RYZHYK, L., AND MURRAY, T. Towards a fully

verified file system, 2012. EuroSys Doctoral Workshop 2012.

[2] BAIRAVASUNDARAM, L. N., RUNGTA, M., AGRAWA, N.,
ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H., AND
SWIFT, M. M. Analyzing the effects of disk-pointer corrup-
tion. In 2008 IEEE International Conference on Dependable Sys-
tems and Networks With FTCS and DCC (DSN) (2008), IEEE,
pp. 502–511.

[3] BANGERT, J., AND ZELDOVICH, N. Nail: A practical tool for
parsing and generating data formats. In 11th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI
14) (2014), pp. 615–628.

[4] BUCKEYE, B., AND LISTON, K. Recovering deleted files in
linux. http://collaboration.cmc.ec.gc.ca/science/
rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.
htm, 2006.

[5] CHEN, H., ZIEGLER, D., CHAJED, T., CHLIPALA, A.,
KAASHOEK, M. F., AND ZELDOVICH, N. Using crash hoare
logic for certifying the fscq file system. In Proceedings of the
25th Symposium on Operating Systems Principles (2015), ACM,
pp. 18–37.

[6] DANIAL, A. Cloc–count lines of code. Open source (2009).
http://cloc.sourceforge.net/.

[7] FISHER, K., AND WALKER, D. The pads project: an overview.
In Proceedings of the 14th International Conference on Database
Theory (2011), ACM, pp. 11–17.

[8] FRYER, D., SUN, K., MAHMOOD, R., CHENG, T., BENJAMIN,
S., GOEL, A., AND BROWN, A. D. Recon: Verifying file system
consistency at runtime. ACM Transactions on Storage 8, 4 (Dec.
2012), 15:1–15:29.

[9] GAMMA, E. Design patterns: elements of reusable object-
oriented software. Pearson Education India, 1995.

[10] GARDNER, P., NTZIK, G., AND WRIGHT, A. Local reasoning
for the posix file system. In European Symposium on Program-
ming Languages and Systems (2014), Springer, pp. 169–188.

[11] GEDAK, C. Manage Partitions with GParted How-to. Packt Pub-
lishing Ltd, 2012.

[12] GUNAWI, H. S., PRABHAKARAN, V., KRISHNAN, S., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. Improv-
ing file system reliability with I/O shepherding. In Proc. of
the Symposium on Operating Systems Principles (SOSP) (2007),
pp. 293–306.

[13] GUNAWI, H. S., RAJIMWALE, A., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. SQCK: A declarative file sys-
tem checker. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (Dec. 2008).

[14] HESSELINK, W. H., AND LALI, M. I. Formalizing a hierarchical
file system. Electronic Notes in Theoretical Computer Science
259 (2009), 67–85.

[15] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2fs: A new file
system for flash storage. In 13th USENIX Conference on File and
Storage Technologies (FAST 15) (2015), pp. 273–286.

[16] LU, L., ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,
AND LU, S. A study of Linux file system evolution. In Proc.
of the USENIX Conference on File and Storage Technologies
(FAST) (Feb. 2013).

[17] MA, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. ffsck: The fast file system checker.
In Proc. of the USENIX Conference on File and Storage Tech-
nologies (FAST) (Feb. 2013).

[18] MESNIER, M., CHEN, F., LUO, T., AND AKERS, J. B. Differen-
tiated storage services. In Proc. of the Symposium on Operating
Systems Principles (SOSP) (2011), pp. 57–70.

[19] NECULA, G. C., MCPEAK, S., AND WEIMER, W. Ccured:
type-safe retrofitting of legacy code. In Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages (New York, NY, USA, 2002), POPL ’02, ACM,
pp. 128–139.

[20] OVERSTREET, K. Linux bcache, Aug. 2016. https://bcache.
evilpiepirate.org/.

[21] PATTERSON, M., AND HIRSCH, D. Hammer parser generator,
march 2014. https://github.com/UpstandingHackers/
hammer.

[22] RONACHER, A. Jinja2 documentation, 2011.

[23] SIVATHANU, G., SUNDARARAMAN, S., AND ZADOK, E. Type-
safe disks. In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI) (2006), pp. 15–28.

[24] SIVATHANU, M., PRABHAKARAN, V., POPOVICI, F. I.,
DENEHY, T. E., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Semantically-smart disk systems. In USENIX
Conference on File and Storage Technologies (FAST) (2003),
pp. 73–88.

[25] STEEDMAN, D. Abstract syntax notation one (ASN. 1): the tuto-
rial and reference. Technology appraisals, 1993.

[26] STEFANOVICI, I., THERESKA, E., O’SHEA, G., SCHROEDER,
B., BALLANI, H., KARAGIANNIS, T., ROWSTRON, A., AND
TALPEY, T. Software-defined caching: Managing caches in
multi-tenant data centers. In Proceedings of the Sixth ACM Sym-
posium on Cloud Computing (2015), ACM, pp. 174–181.

[27] TECHNET, M. How to convert fat disks to ntfs.
https://technet.microsoft.com/en-us/library/
bb456984.aspx.

[28] TOM WARREN. Apple is upgrading millions of
iOS devices to a new modern file system today.
https://www.theverge.com/2017/3/27/15076244/
apple-file-system-apfs-ios-10-3-features. Ac-
cessed: 2017-03-27.

[29] TORVALDS, L., TRIPLETT, J., AND LI, C. Sparse–a semantic
parser for c. see http://sparse.wiki.kernel.org (2007).

[30] TS’O, T. E2fsprogs: Ext2/3/4 filesystem utilities. http://
e2fsprogs.sourceforge.net/, 2017.

[31] VARDA, K. Protocol buffers: Google’s data interchange for-
mat. Google Open Source Blog, Available at least as early as
Jul (2008).

[32] WILSON, A. The new and improved filebench. In Proceed-
ings of 6th USENIX Conference on File and Storage Technologies
(2008). https://github.com/filebench/filebench/.

[33] YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. ACM
Transactions on Computer Systems (TOCS) 24, 4 (2006), 393–
423.

[34] ZALEWSKI, M. American fuzzy lop. http://lcamtuf.
coredump.cx/afl/, 2016.

[35] ZHOU, F., CONDIT, J., ANDERSON, Z., BAGRAK, I., EN-
NALS, R., HARREN, M., NECULA, G., AND BREWER, E.
Safedrive: Safe and recoverable extensions using language-based
techniques. In Proceedings of the 7th symposium on Operating
systems design and implementation (2006), USENIX Associa-
tion, pp. 45–60.

USENIX Association 16th USENIX Conference on File and Storage Technologies 103

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.htm
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.htm
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/SA/v11/i04/a9.htm
http://cloc.sourceforge.net/
https://bcache.evilpiepirate.org/
https://bcache.evilpiepirate.org/
https://github.com/UpstandingHackers/hammer
https://github.com/UpstandingHackers/hammer
https://technet.microsoft.com/en-us/library/bb456984.aspx
https://technet.microsoft.com/en-us/library/bb456984.aspx
https://www.theverge.com/2017/3/27/15076244/apple-file-system-apfs-ios-10-3-features
https://www.theverge.com/2017/3/27/15076244/apple-file-system-apfs-ios-10-3-features
http://e2fsprogs.sourceforge.net/
http://e2fsprogs.sourceforge.net/
https://github.com/filebench/filebench/
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

Towards Robust File System Checkers

Om Rameshwar Gatla†, Muhammad Hameed†, Mai Zheng†,
Viacheslav Dubeyko‡, Adam Manzanares‡, Filip Blagojevic‡, Cyril Guyot‡, Robert Mateescu‡

†New Mexico State University ‡Western Digital Research

Abstract
File systems may become corrupted for many reasons

despite various protection techniques. Therefore, most
file systems come with a checker to recover the file sys-
tem to a consistent state. However, existing checkers
are commonly assumed to be able to complete the repair
without interruption, which may not be true in practice.

In this work, we demonstrate via fault injection ex-
periments that checkers of widely used file systems may
leave the file system in an uncorrectable state if the re-
pair procedure is interrupted unexpectedly. To address
the problem, we first fix the ordering issue in the undo
logging of e2fsck, and then build a general logging li-
brary (i.e., rfsck-lib) for strengthening checkers. To
demonstrate the practicality, we integrate rfsck-lib

with existing checkers and create two new checkers: (1)
rfsck-ext, a robust checker for Ext-family file systems,
and (2) rfsck-xfs, a robust checker for XFS file sys-
tem, both of which require only tens of lines of modi-
fication to the original versions. Both rfsck-ext and
rfsck-xfs are resilient to faults in our experiments.
Also, both checkers incur reasonable performance over-
head (i.e., up to 12%) comparing to the original unre-
liable versions. Moreover, rfsck-ext outperforms the
patched e2fsck by up to nine times while achieving the
same level of robustness.

1 Introduction
Achieving data integrity is critical for computer systems
ranging from a single desktop to large-scale distributed
storage clusters [21]. In order to make sense of the ever
increasing amount of data stored, it is common to use
local (e.g., Ext4 [4], XFS [70], F2FS [49]) and multi-
node file systems (e.g., HDFS [66], Ceph [74], Lus-
tre [9]) to organize the data on top of storage devices.
Although file systems are designed to maintain the data
integrity [36, 38, 45, 60, 72, 75], situations arise when
the file system metadata needs to be checked for in-
tegrity. Such situations may be caused by power out-

ages, server crashes, latent sector errors, software bugs,
etc [19, 20, 31, 51, 54].

File system checkers, such as e2fsck for Ext-family
file systems [3], serve as the last line of defense to re-
cover a corrupted file system back to a healthy state [54].
They contain intimate knowledge of file system metadata
structures, and are commonly assumed to be able to com-
plete the repair without interruption.

Unfortunately, the same issues that lead to file system
inconsistencies (e.g., power outages or crashes), can also
occur during file system repair. One real-world example
happened at the High Performance Computing Center in
Texas [17]. In this accident, multiple Lustre file systems
suffered severe data loss after power outages: the first
outage triggered the Lustre checker (lfsck [6]) after the
cluster was restarted, while another outage interrupted
lfsck and led to the downtime and data loss. Because
Lustre is built on top of a variant of Ext4 (ldiskfs [9]),
and lfsck relies on e2fsck to fix local inconsistencies
on each node, the checking and repairing is complicated
(e.g., requiring several days [17]). As of today, it is still
unclear which step of lfsck/e2fsck caused the uncor-
rectable corruptions. With the trend of increasing the
storage capacity and scaling to more and more nodes,
checking and repairing file systems will likely become
more time-consuming and thus more vulnerable to faults.
Such accidents and observation motivate us to remove
the assumption that file system checkers can always fin-
ish normally without interruption.

Previous research has demonstrated that file system
checkers themselves are error-prone [27, 42]. File sys-
tem specific approaches have also been developed that
use higher level languages to elegantly describe file sys-
tem repair tasks [42]. In addition, efforts have also been
made to speed up the repair procedure, which leads to
a smaller window of potential data loss due to an inter-
ruption [54]. Although these efforts improve file system
checkers, they do not address the fundamental issue of
improving the resilience of checkers in the face of unex-

USENIX Association 16th USENIX Conference on File and Storage Technologies 105

pected interruptions.
In this work, we first demonstrate that the check-

ers of widely used file systems (i.e., e2fsck [3] and
xfs repair [14]) may leave the file system in an uncor-
rectable state if the repair procedure is unexpectedly in-
terrupted. We collect corrupted file system images from
file system developers and additionally generate test im-
ages to trigger the repair procedure. Moreover, we de-
velop rfsck-test, an automatic fault injection tool, to
systematically inject faults during the repair, and thus
manifest the vulnerabilities.

To address the problem exposed in our study, we an-
alyze the undo logging feature of e2fsck in depth, and
identify an ordering issue which jeopardizes its effective-
ness. We fix the issue and create a patched version called
e2fsck-patch which is truly resilient to faults.

However, we find that e2fsck-patch is inherently
suboptimal as it requires extensive sync operations. To
address the limitation, and to improve the checkers of
other file systems, we design and implement rfsck-lib,
a general logging library with a simple interface. Based
on the similarities among checkers, rfsck-lib decou-
ples the logging from the repairing, and provides an in-
terface to log the repairing writes in fine granularity.

To demonstrate the practicality, we integrate
rfsck-lib with existing checkers and create two
new checkers: (1) rfsck-ext, a robust checker for Ext-
family file systems, which adds 50 lines of code (LoC)
to e2fsck; and (2) rfsck-xfs, a robust checker for
XFS file system, which adds 15 LoC to xfs repair.1

Both rfsck-ext and rfsck-xfs are resilient to faults
in our experiments. Also, both checkers incur reasonable
performance overhead (i.e., up to 12%) compared to
the original unreliable versions. Moreover, rfsck-ext
outperforms e2fsck-patch by up to nine times while
achieving the same level of fault resilience.

The rest of the paper is organized as follows. First, we
introduce the background of file system checkers (§2).
Next, we describe rfsck-test and study e2fsck and
xfs repair (§3). We analyze the ordering issue of
the undo logging of e2fsck in §4. Then, we introduce
rfsck-lib and integrate it with existing checkers (§5).
We evaluate rfsck-ext and rfsck-xfs in §6, and dis-
cuss several issues in §7. Finally, we discuss related work
(§8) and conclude (§9).

2 Background
Most file systems employ checkers to check and repair
inconsistencies. The checkers are usually file system
specific, and they examine different consistency rules de-
pending on the metadata structures. We use two rep-
resentative checkers as concrete examples to illustrate

1The prototypes of rfsck-test, e2fsck-patch, rfsck-lib,
rfsck-ext, and rfsck-xfs are publicly available [10].

the complexity as well as the potential vulnerabilities of
checkers in this section.

2.1 Workflow of e2fsck
e2fsck is the checker of the widely used Ext-family file
systems. It first replays the journal (in case of Ext3 and
Ext4) and then restarts itself. Next, e2fsck runs the fol-
lowing five passes in order:
Pass-1: Scan the file system and check inodes. e2fsck
scans the entire volume and stores information of all in-
odes into a set of bitmaps. In addition, it performs four
sub-passes to generate a list of duplicate blocks and their
owners, check the integrity of extent trees, etc.
Pass-2: Check directory structure. Based on the
bitmap information, e2fsck iterates through all direc-
tory inodes and checks a set of rules for each directory.
Pass-3: Check directory connectivity. e2fsck first
checks if a root directory is available; if not, a new root
directory is created and is marked “done”. Then it tra-
verses the directory tree, checks the reachability of each
directory inode, breaks directory loops, etc.
Pass-4: Check reference counts. e2fsck iterates over
all inodes to validate the inode link counts. Also, it
checks the connectivity of the extended attribute blocks
and reconnects them if necessary.
Pass-5: Recalculate checksums and flush updates. Fi-
nally, e2fsck checks the repaired in-memory data struc-
tures against on-disk data structures and flushes neces-
sary updates to the disk.

2.2 Workflow of xfs repair

xfs repair is the checker of the popular XFS file sys-
tem.2 Similar to e2fsck, xfs repair fixes incon-
sistencies in seven passes (or phases), including: Pass-
1, superblock verification; Pass-2, replay logs, validate
maps and the root inode; Pass-3, check inodes in each
allocation group; Pass-4, check duplicate block alloca-
tions; Pass-5, rebuild the allocation group structure and
superblock; Pass-6, check inode connectivity; Pass-7,
verify and correct link counts.

Unlike e2fsck which is single-threaded,
xfs repair employs multi-threading in passes 2,
3, 6 and 7 to improve the performance. Nevertheless,
we can see that both checkers are complicated and may
be vulnerable to faults. For example, later passes may
depend on previous passes, and there is no atomicity
guarantee for related updates. We describe our method
for systematically exposing the vulnerabilities in §3.

2There is another utility called xfs check [14], which checks the
consistency without repairing; we do not evaluate it in this work as it is
impossible for the read-only utility to introduce additional corruption.

106 16th USENIX Conference on File and Storage Technologies USENIX Association

2.3 The Logging Support of Checkers
Some file system developers have envisioned the poten-
tial need of reverting the changes done to the file system.
For example, the “undo io manager” has been added to
the utilities of Ext-family file systems since 2007 [3, 15].
It can save the content of the location being overwritten
to an undo log before committing the overwrite.

However, due to the degraded performance as well as
the log format issues [2, 16], the undo feature has not
been integrated into e2fsck until recently. Starting from
v1.42.12, e2fsck includes a “-z” option to allow the
user to specify the path of the log file and enable log-
ging [3]. When enabled, e2fsck maintains an undo log
during the checking and repairing, and writes an undo
block to the log before updating any block of the im-
age. If e2fsck fails unexpectedly, the undo log can be
replayed via e2undo [3] to revert the undesired changes.

Given the undo logging, one might expect that an in-
terrupted e2fsck will not cause any issue. As we will
see in the next section, however, this is not true.

3 Are the Existing Checkers Resilient to
Faults?

In this section, we first describe our method for analyz-
ing the fault resilience of file system checkers (§3.1 -
§3.3), and then present our findings on e2fsck (§3.4)
and xfs repair (§3.5) .

3.1 Generating Corrupted Test Images
File system checkers are designed to repair corrupted file
systems, so the first step of testing checkers is to generate
a set of corrupted file system images to trigger the target
checker. We call this set of images as test images.

To generate test images, we use two methods. First,
some file system developers may provide test images to
perform regression testing of their checkers, which usu-
ally cover the most representative corruption scenarios as
envisioned by the developers [3]. We collect such default
test images to trigger the target checker if they are avail-
able. Additionally, we create test images by ourselves
using the debug tools provided by the file system devel-
opers (e.g., debugfs [3] and xfs db [14]). These tools
allow “trashing” specific metadata structures with ran-
dom bits, which may cover corruption scenarios beyond
the default test images.

In both cases, the test images are generated as regu-
lar files instead of real physical disks, which makes the
testing more efficient.

3.2 Interrupting Checkers
Generating corrupted test images solves only one part of
the problem. Another challenge in evaluating the fault
resilience is how to interrupt checkers in a systematic and

controllable way. To this end, we emulate the effect of
faults using software.

To make the emulation precise and reasonable, we fol-
low the “clean power fault” model [80], which assumes
that there is a minimal atomic unit of write operations
(e.g., 512B or 4KB). Under this model, the size of data
written to the on-disk file system is always an integer
multiple of the minimal atomic block. A fault can occur
at any point during the repair procedure of the checker;
once a fault happens, all atomic blocks committed before
the fault are durable without corruption, and all blocks
after the fault have no effect on the media.

Apparently, this is an idealized model under power
outages or system crashes. More severe damage (e.g.,
reordering or corruption of committed blocks) may hap-
pen in practice [61, 73, 77, 81, 82]. However, such clear
model can serve as a conservative lower bound of the
failure impact. In other words, file system checkers must
be able to handle this fault model gracefully before ad-
dressing more aggressive fault models.

Based on the fault model, we build a fault injection
tool called rfsck-test using a customized driver [8],
which has two modes of operation as follows:

Basic mode: This is used for testing a checker without
logging support. In this mode, the target checker writes
to the test image and generates I/O commands through
the customized driver. rfsck-test records the I/O com-
mands generated during the execution of the checker in
a command history file, and replays a prefix of the com-
mand history (i.e., partial commands) to a copy of the
initial test image, which effectively generates the effect
of an interrupted checker on the test image. For each
command history, we exhaustively replay all possible
prefixes, and thus generate a set of interrupted images
which correspond to injecting faults at different points
during the execution of the checker.

Advanced mode: This is used for testing a checker with
logging support. In this mode, the target checker writes
to the test image as well as its log file. rfsck-test

records the commands sent to both the image and the log
in the command history. During the replay, rfsck-test
selects a prefix of the command history, and replays the
partial commands either to a copy of the initial test image
or to a copy of the initial log, depending on the original
destination of the commands. In this way, rfsck-test
generates the effect of an interrupted checker on both the
test image and the log. Moreover, rfsck-test replays
the log to the test image, which is necessary for the log-
ging to take effect.

3.3 Summary of Testing Framework
Putting it all together, we summarize our framework for
testing the fault resilience of checkers with and without

USENIX Association 16th USENIX Conference on File and Storage Technologies 107

partial cmd

I/O cmd

test
img

(1)
copy

(3) reference img

(7) interrupted img

(5)
copy

(9) repaired img

(10) compare
(4)

record
(6)

replay

rfsck-test (basic mode)

(8) fsck
log

I/O cmd
rfsck-test (advanced mode)

fsck w/ logging

test
img

(a) (b)

(2) fsck

record & replay of log

Figure 1: (a) Testing the fault resilience of a file system checker (fsck) without logging support. There are ten
steps: (1) make a copy of the test image which contains a corrupted file system; (2) run fsck on the test image copy;
(3) store the image generated in step 2 as the reference image; (4) record the I/O commands generated during the
fsck; (5) make another copy of the test image; (6) replay partial commands to emulate the effect of an interrupted fsck;
(7) store the image generated in step 6 as the interrupted image; (8) run fsck on the interrupted image; (9) store the
image generated in step 8 as the repaired image; (10) compare the repaired image with the reference image to identify
mismatches. (b) Testing fsck with logging support. The workflow is similar except that rfsck-test interrupts the I/O
commands sent to both the test image and the log, and the log is replayed between steps 7 and 8.

logging support as follows:

Testing checkers without logging support: As shown
in Figure 1a, there are ten steps: (1) we make a copy
of the test image which contains a corrupted file system;
(2) the target checker (i.e., fsck) is executed to check
and repair the original corruption on the copy of the test
image; (3) after fsck finishes normally in the previ-
ous step, the resulting image is stored as the reference
image;3 (4) during the checking and repairing of fsck,
the fault injection tool rfsck-test operates in the ba-
sic mode, which records the I/O commands generated
by fsck in a command history file; (5) we make an-
other copy of the original test image; (6) rfsck-test
replays partial commands recorded in step 4 to the new
copy of the test image, which emulates the effect of an
interrupted fsck; (7) the image generated in step 6 is
stored as the interrupted image; (8) fsck is executed
again on the interrupted image to fix any repairable is-
sues; (9) the image generated in step 8 is stored as the
repaired image; (10) finally, we compare the file system
on the repaired image with that on the reference image to
identify any mismatches.

The comparison in step 10 is first performed via the
diff command. If a mismatch is reported, we further
verify it manually. Note that in step 8 we have run fsck

without interruption, so a mismatch implies that there is
some corruption which cannot be recovered by fsck.

Testing checkers with logging support: The workflow
of testing a checker with logging support is similar. As
shown in Figure 1b, rfsck-test operates in the ad-
vanced mode, which records the I/O commands sent to
both the test image and the log and emulates the effect of

3It is possible that a checker may not be able to fully repair a cor-
rupted file system even without interruption [27, 42]. So we simply use
the result of an uninterrupted repair as a criterion in this work.

interruption on both places. Also, between steps 7 and 8,
the (interrupted) log is replayed to the test image to make
the logging take effect. The other steps are the same.

3.4 Case Study I: e2fsck

In this section, we apply the testing framework to study
e2fsck. As discussed in §2.3, e2fsck has recently
added the undo logging support. For clarity, we name the
original version without undo logging as e2fsck, and the
version with undo logging as e2fsck-undo.

To trigger the checker, we collect 175 Ext4 test im-
ages from e2fsprogs v1.43.1 [3] as inputs. The sizes
of these images range from 8MB to 128MB, and the file
system block size is 1KB. To emulate faults on storage
systems with different atomic units, we inject faults at
two granularities: 512B and 4KB. In other words, we in-
terrupt e2fsck/ e2fsck-undo after every 512B or 4KB
of an I/O transfer command. Since the file system block
is 1KB, we do not break file system blocks when inject-
ing faults at the 4KB granularity.

First, we study e2fsck using the method in Figure 1a.
As described in §3.3, for each fault injected (i.e., each
interruption) we run e2fsck again and generate one re-
paired image. Because the repair procedure usually re-
quires updating multiple file system blocks, it can of-
ten be interrupted at multiple points depending on the
fault injection granularity. Therefore, we usually gener-
ate multiple repaired images from one test image.

For example, to fix the test image “f dup” (block
claimed by two inodes), e2fsck needs to update 16KB
in total. At the fault injection granularity of 512B, we
generate 32 interrupted images (and consequently 32 re-
paired images). The last fault is injected after all 16KB
blocks, which leads to a repaired image equivalent to the

108 16th USENIX Conference on File and Storage Technologies USENIX Association

Fault injection # of Ext4 # of repaired # of images reporting corruption
granularity test images images generated test images repaired images

512 B 175 25,062 34 240
4 KB 175 3,192 17 37

Table 1: Counts of images in testing e2fsck at two fault injection granularities. This table shows the number of re-
paired images (3rd column) generated from the 175 Ext4 test images when injecting faults at 512B/4KB granularities;
the last two columns show the number of test images and repaired images reporting corruption respectively.

Corruption test images repaired images
Type 512 B 4 KB 512 B 4 KB

cannot mount 20 1 41 3
data corruption 9 5 107 10
misplacement 9 11 82 23

others 1 1 10 1

Table 2: Classification of corruption. This table shows
the number of test images and repaired images reporting
different corruptions at two fault injection granularities.

reference image without interruption. Similarly, at the
4KB granularity, we generate 4 repaired images.

For every test image, we generate a number of re-
paired images and compare each of them with the cor-
responding reference image. If the comparison reports
a mismatch, it implies that the repaired image contains
uncorrectable corruption. We count the number of re-
paired images reporting such corruption. Moreover, if at
least one repaired image contains uncorrectable corrup-
tion, we mark the test image as reporting corruption, too.

Table 1 summarizes the counts of images in testing
e2fsck at the two fault injection granularities. The to-
tal number of repaired images generated from the 175
Ext4 test images is shown in the third column. We can
see that at the 512B granularity there are more repaired
images (25,062) because the repairing procedure is in-
terrupted more frequently, while at the 4KB granularity
only 3,192 repaired images are generated. Also, more
test images report corruption at the 512B granularity (34
> 17). This is because the repair commands are broken
into smaller pieces, and thus it is more challenging to
maintain consistency when interrupted.

Table 2 further classifies the corruption into four types
and shows the number of test images and repaired im-
ages reporting each type. Among the four types, data
corruption (i.e., a file’s content is corrupted) and mis-
placement (i.e., a file is either in the“lost+found” folder
or completely missing) are the common ones. The most
severe corruption is cannot mount (i.e., the whole file
system volume becomes not mountable). Such corrup-
tion has been observed at both fault injection granulari-
ties. In other words, interrupting e2fsck may lead to an
unmountable image, even when a fault cannot break the

Fault injection # of images reporting corruption
granularity e2fsck e2fsck-undo

512 B 34 34
4 KB 17 15

Table 3: Comparison of e2fsck and e2fsck-undo. This
table compares the number of test images reporting cor-
ruption under e2fsck and e2fsck-undo.

superblock because the 4KB fault granularity is larger
than the 1KB superblock.

Next, to see if the undo logging can avoid the cor-
ruption, we use the method in Figure 1b to study
e2fsck-undo. We focus on the test images which re-
port corruption when testing e2fsck (i.e., the 34 and 17
test images in Table 1).

Table 3 compares the number of test images reporting
corruption under e2fsck and e2fsck-undo. Surpris-
ingly, we observe a similar amount of corruption. For
example, all 34 images which report corruption when
testing e2fsck at the 512B granularity still report cor-
ruption under e2fsck-undo. We defer the analysis of
the root cause to §4.

3.5 Case Study II: xfs repair

We have also applied the testing framework to study
xfs repair. Since xfs repair does not support log-
ging, only the method in Figure 1a is used.

To generate test images, we create 20 clean XFS im-
ages first. Each image is 100MB, and the file system
block size is 1KB (same as the Ext4 test images). We
use the blocktrash command of xfs db [14] to flip 2
random bits on the metadata area of each image. In this
way, we generate 20 corrupted XFS test images in total.

Table 4 summarizes the total number of repaired im-
ages generated from the XFS test images at two fault in-
jection granularities. We use 3 test images to inject faults
at the 512B granularity, and 17 images for the 4KB gran-
ularity. Similar to the Ext4 case, the smaller granularity
(i.e., 512B) leads to more repaired images (i.e., 3 test im-
ages lead to 1,127 repaired images). The table also shows
the number of test images and repaired images reporting
corruption. We can see that there are uncorrectable cor-
ruptions under both granularities, same as the Ext4 case.

USENIX Association 16th USENIX Conference on File and Storage Technologies 109

Fault injection # of XFS # of repaired # of images reporting corruption
injection test images images generated test images repaired images

512 B 3 1,127 2 443
4 KB 17 1,409 12 737

Table 4: Counts of images in testing xfs repair at two fault injection granularities. This table shows the number
of repaired images (3rd column) generated from the XFS test images when injecting faults at 512B/4KB granularities;
the last two columns show the number of test images and repaired images reporting corruption respectively.

/*open undo log*/
undo_open(...){

open(...); /*no O_SYNC*/
}
...
/*fix 1st inconsistency*/
undo_write_blk64(...){

/*write to undo log asynchronously*/
undo_write_tdb(...){

...
pwrite(...); /*no fsync()*/

}
/*write to fs image asynchronously*/
io_channel_write_blk64(...){...}

}
/*fix 2nd, 3rd, ... inconsistencies*/
...

/*sync buffered writes to fs image*/
ext2fs_flush(...){...}
/*close undo log*/
undo_close(...){...}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

Figure 2: Workflow of the undo logging in e2fsck-
undo. The writes to the log (line 9 -12) and the writes
to the file system image (line 14) are asynchronous, and
there is no ordering guarantee between the writes.

4 Why Does the Existing Undo Logging
Not Work?

The study in §3 shows that even the checkers of some
most popular file systems are not resilient to faults. This
is consistent with other studies on the catastrophic fail-
ures of real-world systems [41, 44], which find that the
recovery procedures themselves are often imperfect, and
sometimes “the cure is worse than the disease” [44].

One way to handle the faults and provide crash consis-
tency is write-ahead logging (WAL) [58], which has been
widely used in databases [12] and journaling file sys-
tems [72] for transactional recovery. While it is perhaps
not surprising that file system checkers without crash
consistency support (e.g., e2fsck and xfs repair) may
introduce additional corruptions upon interruption, it is
counterintuitive that e2fsck-undo, which has the undo
logging support, still cannot prevent cascading damage.

To understand the root cause, we analyze the source
code of e2fsck-undo as well as the runtime traces (e.g.,
system calls and I/O commands), and have found that
there is no ordering guarantee between the writes to the

undo log and the writes to the image being fixed, which
essentially invalidates the WAL mechanism.

To better illustrate the issue, Figure 2 shows a simpli-
fied workflow of the undo logging in e2fsck-undo. At
the beginning of checking (line 2-4), the undo log file
is opened without the O SYNC flag. To fix an inconsis-
tency, e2fsck-undo first gets the original content of the
block being repaired (not shown) and then writes it as an
undo block to the log asynchronously (line 9-12). Af-
ter the write to the log, it updates the file system image
asynchronously (line 14). The same pattern (i.e., locate
the block that needs to be repaired, copy the old content
to the log, and update the file system image) is repeated
for fixing every inconsistency. At the end, e2fsck-undo
flushes all buffered writes of the image to the persistent
storage (line 20) and closes the undo log (line 22).

While the extensive asynchronous writes (line 6-17) is
good for performance, it is problematic from the WAL’s
perspective. All asynchronous writes are buffered in
memory. Since the dirty pages may be flushed by ker-
nel threads due to memory pressure or timer expiry
(e.g., dirty writeback centisecs), or by the inter-
nal flushing routine of the host file system, there is no
strict ordering guarantee among the buffered writes. In
other words, for every single fix, the writes to the log
and the writes to the file system image may reach the
persistent storage in an arbitrary order. Consequently,
when e2fsck-undo is interrupted, the file system image
may have been modified without the appropriate undo
blocks recorded. Because the WAL mechanism works
only if a log block reaches the persistent storage before
the updated data block it describes, the lack of ordering
guarantee between the writes to the log and the writes to
the image invalidates the WAL mechanism. As a result,
the existing undo logging does not work as expected.

5 Robust File System Checkers
In this section, we describe our method to address the
problem exposed in §3 and §4.

First, we fix the ordering issue of e2fsck-undo by en-
forcing necessary sync operations. For clarity, we name
the version with our patch as e2fsck-patch.

Next, we observe that although e2fsck-patch may
provide the desired robustness, it inherently requires ex-
tensive synchronized I/O, which may hurt the perfor-

110 16th USENIX Conference on File and Storage Technologies USENIX Association

(a) e2fsck-undo (b) e2fsck-patch (c) rfsck-lib

time fs
img log

a block written
to the fs img

a sync
operation

a safe
transaction

a sync operation b/w
safe transactionslog

repair blk1

log

repair blk2

repair blk3

undo blk1

undo blk2

undo blk3

repair blk1

repair blk2

repair blk3

undo blk1

undo blk2

undo blk3
repair blk1

repair blk2

repair blk3

redo blk1

redo blk2

redo blk3
a block written
to the log

Figure 3: Comparison of different logging schemes. This figure compares different logging schemes using a
sequence of blocks written to the file system image (i.e., “fs img”) and the log: (a) e2fsck-undo is the logging scheme
of e2fsck, which does not have the necessary ordering guarantee between the writes to the log and the writes to the file
system image; (b) e2fsck-patch guarantees the correct ordering between each undo block (e.g., “undo blk1”) and the
corresponding repair block (e.g., “repair blk1”) by enforcing a sync operation (i.e., the red line) after each write of
an undo block; (c) rfsck-lib uses redo logging to eliminate the frequent sync required in e2fsck-patch, and only syncs
after a safe transaction which includes a set of blocks constituting a consistent update.

mance severely. To address the limitation, and to pro-
vide a generic solution to the checkers of other file
systems, we design and implement rfsck-lib, a gen-
eral logging library with a simple interface. Different
from e2fsck-patch which interleaves the writes to the
log (i.e., log writes) and the writes to the image being
repaired (i.e., repair writes), rfsck-lib makes use of
the similarities among checkers to decouple the logging
from the repairing of the file system, and provides fine-
grained control of logging.

To demonstrate the practicality, we use rfsck-lib to
strengthen existing checkers and create two new check-
ers: (1) rfsck-ext, a robust checker for Ext-series file
systems, and (2) rfsck-xfs, a robust checker for XFS
file system, both of which require only a few lines of
modification to the original versions.

5.1 Goals
While there are many desired objectives, rfsck-lib is
designed to meet the three key goals as follows:

Robustness: Unlike existing checkers which may in-
troduce uncorrectable corruptions when interrupted, we
expect checkers integrated with rfsck-lib to be re-
silient to faults. We believe such robustness should be
of prime concern for file system practitioners besides the
heavily studied performance issue [54].

Performance: Guaranteeing the robustness may come
at the cost of performance, because it almost inevitably
requires additional operations. However, the perfor-
mance overhead should be reduced to minimum, which
is particularly important for production environments.

Compatibility: We expect rfsck-lib to be compati-
ble to existing file systems and checkers. For example,
no change to the existing on-disk layouts or repair rules
is needed. While such compatibility may sacrifice some
flexibility and optimization opportunities, it directly en-
ables improving the robustness of many widely used sys-
tems in practice.

5.2 e2fsck-patch: Fixing the Ordering Is-
sue in e2fsck-undo

As discussed in §4, e2fsck-undo does not guarantee the
necessary ordering between log writes and repair writes.
Figure 3a illustrates the scenario using a sequence of
writes. In this example, three blocks are written to the
file system image (i.e., “fs img”) to repair inconsisten-
cies (i.e., “repair blk1” to “repair blk3”). Meanwhile,
three blocks are written to the undo log (i.e., “undo blk1”
to “undo blk3”) to save the original content of the blocks
being overwritten, for the purpose of undoing changes in
case the repair fails. Because all blocks are written asyn-
chronously, the repair blocks may reach the persistent
storage before the corresponding undo blocks, which es-
sentially invalidate the undo logging scheme. Although
there is a sync operation at the end to the file system im-
age (i.e., the red solid line), it cannot prevent the previous
buffered blocks from reaching the persistent storage out
of the desired order.

A naive way to solve the issue is to use a synchronous
write for each block. However, this is overkill. As long
as an undo block (e.g., “undo blk1”) becomes persistent ,
it is unnecessary for the corresponding repair block (e.g.,

USENIX Association 16th USENIX Conference on File and Storage Technologies 111

“repair blk1”) to be written synchronously. Therefore,
we only enforce synchronized I/O for the undo log file.

Specifically, we add the O SYNC flag when opening the
undo log file, which is equivalent to adding an fsync

call after each write to the log [7]. As shown in Fig-
ure 3b, the simple patch guarantees that a repair block
is always written after the corresponding undo block be-
comes persistent. On the other hand, all repair blocks are
still written asynchronously. In this way, e2fsck-patch
fixes e2fsck-undo with minimum modification.

5.3 rfsck-lib: A General Library for
Strengthening File System Checkers

While the logging scheme of e2fsck-patch may im-
prove the fault resilience, it has two limitations. First, the
log writes and the repair writes are interleaved. Conse-
quently, it requires extensive synchronized I/O to main-
tain the correct ordering (e.g., three sync operations are
required in Figure 3b), which may incur severe perfor-
mance overhead. Second, as part of e2fsck, the logging
feature is closely tied to Ext-family file systems, and thus
it cannot benefit other file system checkers directly. We
address the limitations by building a general logging li-
brary called rfsck-lib.

5.3.1 Similarities Among File System Checkers
Different file systems usually vary a lot in terms of on-
disk layouts and consistency rules. However, there are
similarities among different checkers, which makes de-
signing a general and efficient solution possible.

First of all, as a user-level utility, file system checkers
always repair corrupted images through a limited number
of system calls, which are irrelevant to file systems’ inter-
nal structures and consistency rules. Moreover, based on
our survey on popular file system checkers (e.g., e2fsck,
xfs repair, fsck.f2fs), we find that they always use
write system calls (e.g., pwrite and its variants) instead
of other memory-based system calls (e.g., mmap, msync).
Therefore, only a few writes may cause potential cascad-
ing corruptions under faults. In other words, by focusing
on the writes, we may improve different checkers.

Second, there is natural locality in checkers. Simi-
lar to the cylinder groups of FFS [56], many modern
file systems have a layout consisting of relatively in-
dependent areas with an identical structure (e.g., block
groups of Ext4 [4], allocation groups of XFS [70], and
cubes of IceFS [52]). Among others, such common de-
sign enables co-locating related files to mitigate file sys-
tem aging [33, 68] while isolating unrelated files. From
the checker’s perspective, most consistency rules within
each area may be checked locally without referencing
other areas. Also, each type of metadata usually has its
unique structure and consistency rules (e.g., the rec len

of each directory entry in an Ext4 inode should be within

a range). These local consistency rules may be checked
independently without cross-checking other metadata.

Due to the locality, checkers usually consist of rela-
tively self-contained components. For example, e2fsck
includes five passes for checking different sets of consis-
tency rules (§2.1). Similarly, xfs repair includes seven
passes, and it forks multiple threads to check multiple al-
location groups separately (§2.2). Such locality exists
even without changing the file system layout or reorder-
ing the checking of consistency rules [54]. Therefore, it
is possible to split an existing checker into several pieces
and isolate their impact under faults.

Based on the observations above, we describe
rfsck-lib’s design in the following subsections.

5.3.2 Basic Redo Logging
A corrupted file system image is repaired by a checker
through a set of repair writes. If the checker finishes
without interruption, the set of writes turn the image back
to a consistent state. On the other hand, if the checker
is interrupted, only a subset of writes changes the im-
age, and the resulting state may become uncorrectable.
Therefore, the key of preventing uncorrectable states is
to maintain the atomicity of the checker’s writes. To this
end, rfsck-lib redirects the checker’s writes to a log
first, and then repairs the image based on the log. Essen-
tially, it implements a redo logging scheme [58].

As shown in Figure 3c, all repair writes are issued to
the redo log first (i.e., “redo blk1” to “redo blk3”). After
the write of the last redo block (i.e., “redo blk3”), a sync
operation (i.e., the red solid line) is issued to make the
redo blocks persistent. After the sync operation returns,
the image is repaired (i.e., “repair blk1” to “repair blk3”)
based on the redo log. Compared with e2fsck-patch

in Figure 3b, the log writes and the repair writes are sep-
arated, and the required number of sync operations is re-
duced from three to one. Such improvement in terms of
sync overhead can be more significant if more blocks on
the image need to be repaired.

5.3.3 Fine-grained Logging with Safe Transactions
While the basic redo logging scheme reduces the order-
ing constraint to minimum, there is one limitation: if a
fault happens before the final sync operation finishes, all
checking and repairing effort may be lost. In some com-
plicated cases where the checker may take hours to fin-
ish [54], the waste is undesirable. On the other hand, a
checker may be split into relatively independent pieces
due to the locality (§5.3.1). Therefore, rfsck-lib ex-
tends the basic redo logging with safe transactions.

A safe transaction is a set of repair writes which will
not lead to uncorrectable inconsistencies if they are writ-
ten to the file system image atomically. In the simplest
case, the whole checker (i.e., the complete set of all re-

112 16th USENIX Conference on File and Storage Technologies USENIX Association

header super-block in
de
x0

in
de
x1

in
de
x2

in
de
x3

in
de
x4

... redo
blk1

redo
blk2

redo
blk3

a fixed-sized index block variable-sized redo blocks

txn begin
txn end

header super-block in
de
x0

in
de
x1

in
de
x2

in
de
x3

in
de
x4

... redo
blk1

redo
blk2

redo
blk3

another fixed-sized index block

variable-sized redo blocks
Figure 4: The log format of rfsck-lib. The log includes a header, a superblock, fixed-sized index blocks, and
variable-sized redo blocks. Each index block includes a fixed number of indexes. Each index can either describe the
beginning/end of a transaction (i.e.,“txn begin”/“txn end”), or describe one variable-sized redo block. “index0” to
“index4” describe one safe transaction with three redo blocks (i.e.,“redo blk1” to “redo blk3”) in this example.

pair writes) is one safe transaction. At a finer granularity,
each pass of the checker (or the check of each allocation
group) may be considered as one safe transaction. While
a later pass may depend on the result of a previous pass,
the previous pass is executed without any dependency on
the later passes. Therefore, by guaranteeing the atomic-
ity of each pass as well as the ordering among pass-based
safe transactions, the repair writes may be committed in
several batches without introducing uncorrectable incon-
sistencies. In the extreme case, the checking and repair-
ing of each individual consistency rule may be consid-
ered as one safe transaction.

Figure 3c illustrates the safe transactions. In the sim-
plest case, all three redo blocks (i.e., “redo blk1” to “redo
blk3”) constitute one safe transaction, and only one sync
operation (i.e., the red solid line) is needed, same as the
basic redo logging (§5.3.2). At a finer granularity, the
first two redo blocks (i.e., “redo blk1” and “redo blk2”)
may constitute one safe transaction (e.g., updating an in-
ode and the corresponding bitmap), and the third block
itself (i.e., “redo blk3”) may be another safe transaction
(e.g., updating another inode). Another sync operation
(i.e., the red dash line) is issued between the two trans-
actions to guarantee the correct ordering. If a crash hap-
pens between the two sync operations, the first safe trans-
action (i.e., “redo blk1” and “redo blk2”) is still valid.
In this case, instead of re-calculating the rules and re-
generating the blocks, the checker can directly replay the
valid transaction from the log after restart.

In summary, a checker may be logged as one or more
safe transactions. Compared to the basic redo logging,
such fine-grained control avoids losing all recovery ef-
fort before the fault. On the other hand, maintaining the
atomicity as well as the ordering requires additional sync
operations. So there is a tradeoff between the transaction
granularity and the transaction overhead. Since differ-
ent systems may have different preferences, rfsck-lib
simply provides an interface to define safe transactions,
without restricting the number of transactions.

5.3.4 Log Format

To support the redo logging with safe transactions,
rfsck-lib uses a special log format extended from
e2fsck-undo. As shown in Figure 4, the log includes
a header, a superblock, fixed-sized index blocks, and
variable-sized redo blocks.

The header starts with a magic number to distinguish
the log from other files. Besides, it includes the offsets of
the superblock and the first index block, the total number
of index blocks, a flag showing whether the log has been
replayed, and a checksum of the header itself.

The superblock is copied from the file system image
to be repaired, which is used to match the log with the
image to avoid replaying an irrelevant log to the image.

The index block includes a fixed number of indexes.
Each index can describe the beginning of a transaction
(i.e., “txn begin”), the end of a transaction (i.e., “txn
end”), or one variable-sized redo block. Therefore, a
group of indexes can describe one safe transaction to-
gether. For example, in Figure 4 five indexes (i.e., “in-
dex0” to “index4”) describe one safe transaction with
three redo blocks (i.e.,“redo blk1” to “redo blk3”).

As shown in Table 5, an index has 16 bytes consisting
of three fields. To describe one redo block, the first field
(i.e., uint32 t cksum) stores a checksum of the redo
block, the second field (i.e., uint32 t size) stores its
size, and the third field (i.e., uint64 t fs lba) stores
its logical block address (LBA) in the file system image.

To describe “txn begin” or “txn end”, the first field
of the index is repurposed to store a transaction ID in-
stead of a checksum, which marks the boundary of in-
dexes belonging to the same transaction. The second
field (size) is set to zero. Since a valid redo block must
have a non-zero size, rfsck-lib can differentiate “txn
begin” or “txn end” indexes from those describing redo
blocks even if a transaction ID happens to collide with
a checksum. In addition, the “txn begin” index uses the
third field to denote whether the transaction has been re-
played or not, and the “txn end” index uses the third field
to store a checksum of all indexes in the transaction.

USENIX Association 16th USENIX Conference on File and Storage Technologies 113

Field Description
uint32 t cksum checksum of the redo block
uint32 t size size of the redo block
uint64 t fs lba LBA in the file system image

Table 5: The structure of an index.

Function Description
rfsck get sb get the superblock
rfsck open create a redo log
rfsck txn begin begin a safe transaction
rfsck write write a redo block
rfsck txn end end of a safe transaction
rfsck replay replay the redo log
rfsck close close the redo log

Table 6: The interface of rfsck-lib. rfsck get sb is a
wrapper function for invoking file-system-specific pro-
cedure to get the superblock, while the others are file-
system agnostic.

For each write of the checker, rfsck-lib creates an
index in the index block and then append the content of
the write to the area after the index block as a redo block.
Since the writes may have different sizes, the redo blocks
may vary in size as well. However, since all other meta-
data blocks (i.e., header, superblock, index blocks) have
known fixed sizes, the offset of a redo block in the log
can be identified by accumulating the sizes of all previ-
ous blocks. In other words, there is no need to maintain
the offsets of redo blocks in the log.

When an index block becomes full, another index
block is allocated after the previous redo blocks (which
are described by the previous index block). In this way,
rfsck-lib can support various numbers of writes and
transactions.

5.3.5 Interface

To enable easy integration with existing checkers,
rfsck-lib provides a simple interface. As shown in
Table 6, there are seven function calls in total. The
first function (rfsck get sb) is a wrapper for invoking
a file-system-specific procedure to get the superblock,
which is written to the second part of the log (Figure 4).
Since all checkers need to read the superblock anyway,
rfsck get sb can wrap around the existing procedure.
rfsck open is used to create a log file at a given path

at the beginning of the checker procedure. Internally,
rfsck-lib initializes the metadata blocks of the log.
rfsck txn begin is used to denote the beginning

of a safe transaction, which creates a “txn begin” in-
dex in the log. Similarly, rfsck txn end denotes the
end of a transaction, which generates a “txn end” in-
dex and sync all updates to the log. All writes be-

tween rfsck txn begin and rfsck txn end are re-
placed with rfsck write, which creates a redo block
and the corresponding index in the log.
rfsck replay is used to replay logged transactions

to the file system image. Besides, similar to the e2undo
utility [3], the replay functionality is also implemented
as an independent utility called rfsck-redo, which can
replay an existing (potentially incomplete) log to a file
system image (e.g., after the checker is interrupted).
rfsck-redo first verifies if the log belongs to the image
(based on the superblock). If yes, rfsck-redo further
verifies the integrity of the log based on metadata and
then replays valid transactions. Note that the additional
verifications are only needed when the log is replayed
by rfsck-redo. The rfsck replay function can skip
these verifications as it is invoked directly after the log-
ging by the (uninterrupted) checker.

Finally, rfsck close is used at the end of the checker
to release all resources used by rfsck-lib and exist.

5.3.6 Limitations
The current prototype of rfsck-lib is not thread-
safe. Therefore, if a checker is multi-threaded (e.g.,
xfs repair), using rfsck-lib may require additional
attention to avoid race conditions on logging. However,
as we will demonstrate in §5.4 and §6, rfsck-lib can
still be applied to strengthen xfs repair.

In addition, rfsck-lib only provides an interface,
which requires manual modification of the source code.
Since the modification is simple, we expect the manual
effort to be acceptable. Also, it is possible to use com-
piler infrastructures [11, 13] to automate the code instru-
mentation, which we leave as future work.

5.4 Integration with Existing Checkers
Strengthening an existing checker using rfsck-lib

is straightforward given the simple interface (§5.3.5).
To demonstrate the practicality, we first integrate
rfsck-lib with e2fsck, and create a robust checker
for Ext-family file systems (i.e., rfsck-ext).

There are potential writes to the file system image in
each pass of e2fsck (including the first scanning pass),
so we create a safe transaction for each pass. More-
over, within Pass-1 and Pass-2 (§2.1), there are a few
places where e2fsck explicitly flushes the writes to
the image and restarts scanning from the beginning (via
goto statement). In other words, the restarted scanning
(and subsequent passes) requires the previous writes to
be visible on the image. In this case, we insert ad-
ditional rfsck txn end and rfsck replay before the
goto statement to guarantee that previous writes are vis-
ible on the image for re-scanning. We add a “-R” option
to allow the user to specify the log path via command
line. In total, we add 50 LoC to e2fsck.

114 16th USENIX Conference on File and Storage Technologies USENIX Association

0

50

100

150

200

250

300

100	GB 200	GB 500	GB
File	System	Size

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
)

e2fsck e2fsck-undo e2fsck-patch rfsck-ext

1 1.09X

9.69X

1.12X
1 1.03X

5.92X

1.05X
1 1.01X 1.02X

9.18X

Figure 5: Performance comparison of e2fsck, e2fsck-
undo, e2fsck-patch, and rfsck-ext. This figure com-
pares the execution time of e2fsck, e2fsck-undo, e2fsck-
patch, and rfsck-ext. The y-axis shows the execution time
in seconds. The x-axis shows file system sizes. The num-
ber above each bar indicates the normalized time (rel-
ative to e2fsck). Note: e2fsck and e2fsck-undo are not
resilient to faults.

Similarly, we also integrate rfsck-lib with
xfs repair, and create a robust checker for XFS file
system (i.e., rfsck-xfs). As mentioned in (§2.2),
one feature of xfs repair is multi-threading: it forks
multiple threads to repair multiple allocation groups
in parallel. The threads update in-memory structures
concurrently, and the main thread writes all updates
to the image at the end. Although it is possible to
encapsulate each repair thread into one safe transaction,
doing so requires additional concurrency control. To
minimize the modification, we simply treat the whole
repair procedure as one transaction. Since all writes are
issued by the main thread, there is no race condition for
rfsck-lib. We also add a “-R” command line option.
In total, we add 15 LoC to xfs repair.

6 Evaluation
In this section, we evaluate rfsck-ext and rfsck-xfs

in terms of robustness (§6.1) and performance (§6.2).
Our experiments were conducted on a machine with

a Intel Xeon 3.00GHz CPU, 8GB main memory, and
two WD5000AAKS hard disks. The operating system
is Ubuntu 16.04 LTS with kernel v4.4. To evaluate the
robustness, we used the test images reporting corrup-
tion under e2fsck-undo (§3.4) and xfs repair (§3.5).
To evaluate the performance, we created another set of
images with practical sizes, and measured the execu-
tion time of e2fsck, e2fsck-undo, e2fsck-patch,
rfsck-ext, xfs repair, and rfsck-xfs. For each
checker, we report the average time of three runs.

In general, we demonstrate that both rfsck-ext

and rfsck-xfs can survive fault injection experi-
ments. Also, both checkers incur reasonable perfor-
mance overhead (i.e., up to 12%) compared to the orig-
inal unreliable versions. Moreover, rfsck-ext outper-

0
100
200
300
400
500
600

100	GB 200	GB 500	GB
File	System	Size

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
) xfs_repair rfsck-xfs

1 1.008X 1 1.002X

1 1.00004X

Figure 6: Performance comparison of xfs repair and
rfsck-xfs. This figure compares the execution time of
xfs repair and rfsck-xfs. The y-axis shows the execution
time in seconds. The x-axis shows file system sizes. The
number above each bar indicates the normalized time
(relative to xfs repair). Note: xfs repair is not resilient
to faults.

forms e2fsck-patch by up to 9 times while achieving
the same level of robustness.

6.1 Robustness
As discussed in §3, when injecting faults at the 4KB
granularity, 17 Ext4 test images report corruptions under
e2fsck (Table 1), and 12 XFS test images report cor-
ruptions under xfs repair (Table 4). We use these test
images to trigger rfsck-ext and rfsck-xfs, respec-
tively. Since both checkers have the logging support, we
use the method in Figure 1b to evaluate them.

For rfsck-ext, all 17 test images report no corrup-
tions. Similarly, for rfsck-xfs, all 12 test images report
no corruptions. This result verifies that rfsck-lib can
help improve the fault resilience of existing checkers.

6.2 Performance
The test images used in §3 are created as regular files, and
they are small in size (i.e., 8MB to 128MB). Therefore,
they are unsuitable for evaluating the execution time of
checkers. So we create another set of Ext4 and XFS test
images with practical sizes (i.e., 100G, 200GB, 500GB)
on real hard disks. We first fill up the entire file system by
running fs mark [5] for five times. Each time fs mark

fills up 20% of the capacity by creating directories and
files with a certain size. The file size is a random value
between 4KB to 1MB, which is relatively small in or-
der to maximize the number of inodes used. After filling
up the entire file system, we inject 2 random bit corrup-
tions to the metadata using either debugfs [1] (for Ext4)
or blocktrash [14] (for XFS). We measure the execu-
tion time of checkers on corrupted images, and verify
that the repair results of rfsck-ext and rfsck-xfs are
the same as that of the original checkers.

Figure 5 compares the execution time of e2fsck,
e2fsck-undo, e2fsck-patch, and rfsck-ext on dif-
ferent images. For each size of image, the bars represent
the execution time in seconds (y-axis). Also, the number

USENIX Association 16th USENIX Conference on File and Storage Technologies 115

above each bar shows the normalized execution time (rel-
ative to e2fsck). We can see that rfsck-ext incurs up
to 12% overhead, while e2fsck-patch may incur more
than 8 times overhead due to extensive sync operations.

Also, we can see that as the size of file system in-
creases, the overhead of rfsck-ext decreases. This
is because the execution time of rfsck-ext is largely
dominated by the scanning in Pass-1 (§2.1) which is pro-
portional to the file system size, similar to e2fsck [54].

Similarly, Figure 6 compares the execution time
of xfs repair and rfsck-xfs. We can see that
rfsck-xfs incurs up to 0.8% overhead, and the over-
head also decreases as the file system size increases.

Note that our aging method is relatively simple com-
pared to other aging techniques [33, 68]. Also, the 2-
random-bit corruption may not necessarily lead to exten-
sive repair operations of checkers. Therefore, the execu-
tion time measured here may not reflect the complexity
of checking and repairing real-world file systems (which
may take hours [35, 34, 54, 69]). We leave generating
more representative file systems as future work.

7 Discussion
Co-designing file systems and checkers. Recent work
has demonstrated the benefits of co-designing file sys-
tems and checkers. For example, by co-designing
rext3 and ffsck, ffsck may be 10 times faster than
e2fsck [54]. In contrast, rfsck-lib is designed to
be file system agnostic, which makes it directly appli-
cable to existing systems. We believe checkers may be
improved further in terms of both reliability and perfor-
mance by co-designing, and we leave it as future work.

Other reliability techniques. There are other tech-
niques which may mitigate the impact of an inconsistent
file system image or the loss of an entire image (e.g.,
replication [39]). However, maintaining the consistency
of local file systems and improving the checkers is still
important for many reasons. For example, a consistent
local file system is the building block of large-scale file
systems, and the local checker may be the foundation
of higher-level recovery procedures (e.g., lfsck [6]).
Therefore, our work is orthogonal to these other efforts.

Robustness. We evaluate the robustness of checkers
based on fault injection experiments in this work. The
test images we use are limited, and may not cover all cor-
ruption scenarios or trigger all code paths of the check-
ers. There are other techniques (e.g., symbolic execution
and formal verification) which might provide more cov-
erage, and we leave it as future work.

8 Related Work
Reliability of file system checkers. Gunawi et al. [42]
find that the Ext2 checker may create inconsistent or
even insecure repairs; they then propose a more elegant

checker (i.e., SQCK) based on a declarative query lan-
guage. Carreira et al. [27] propose a tool (i.e., SWIFT) to
test checkers using a mix of symbolic and concrete exe-
cution; they tested five popular checkers and found bugs
in all of them. Ma et al. [54] change the structure of Ext3
and co-design the checker, which enables faster checking
and thus narrows the window of vulnerability. Generally,
these studies consider the behavior of checkers during
normal executions (i.e., no interruption). Complimentar-
ily, we study checkers under faults.
Reliability of file systems. Great efforts have been put
towards improving the reliability of file systems [23, 29,
32, 36, 43, 51, 55, 57, 62, 67, 77, 79]. For example, Prab-
hakaran et al. [62] analyze the failure policies of four file
systems and propose the IRON file system which im-
plements a family of novel recovery techniques. Fryer
et al. [36] transform global consistency rules to local
consistency invariants and enable fast runtime checking.
CrashMonkey [55] provides a framework to automati-
cally test the crash consistency of file systems. Overall,
these research help understand and improve the reliabil-
ity of file systems, which may reduce the need for check-
ers. However, despite these efforts, checkers remain a
necessary component for most file systems.
Reliability of storage devices. In terms of storage de-
vices, research efforts are also abundant [19, 20, 30, 47,
63, 64]. For example, Bairavasundaram et al. [19, 20] an-
alyze the data corruption and latent sector errors in pro-
duction systems containing a total of 1.53 million HDDs.
Besides HDDs, more recent work has been focused on
flash memory and solid state drives (SSDs) [18, 22, 24,
25, 26, 28, 37, 40, 46, 48, 50, 53, 59, 65, 71, 73, 76, 78,
81, 82]. These studies provide valuable insights for un-
derstanding file system corruptions caused by hardware.

9 Conclusion
We have studied the behavior of file system checkers un-
der faults. We find that running the checker after an in-
terrupted repair may not return the file system to a valid
state. To address the issue, we have built a general log-
ging library which can help strengthen existing check-
ers with little modification. We hope our work will raise
the awareness of reliability vulnerabilities in storage sys-
tems, and facilitate building truly fault-resilient systems.

10 Acknowledgements
We thank the anonymous reviewers and Keith Smith (our
shepherd) for their insightful feedback. We also thank
Linux practitioners including Theodore Ts’o and Ric
Wheeler for the invaluable discussion. This work was
supported in part by NSF under grants CNS-1566554 and
CCF-1717630. Any opinions, findings, and conclusions
expressed in this material are those of the authors and do
not necessarily reflect the views of NSF.

116 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] debugfs. http://man7.org/linux/man-pages/man8/
debugfs.8.html.

[2] Discussion with Theodore Ts’o at Linux FAST
Summit’17. https://www.usenix.org/conference/
linuxfastsummit17.

[3] E2fsprogs: Ext2/3/4 Filesystem Utilities. http:
//e2fsprogs.sourceforge.net/.

[4] Ext4 File System. https://ext4.wiki.kernel.org/
index.php/Main Page.

[5] fs mark: Benchmark file creation. https://github.
com/josefbacik/fs mark.

[6] LFSCK: an online file system checker for Lus-
tre. https://github.com/Xyratex/lustre-stable/blob/
master/Documentation/lfsck.txt.

[7] Linux Programmer’s Manual: O SYNC flag
for open. http://man7.org/linux/man-pages/man2/
open.2.html.

[8] Linux SCSI target framework (tgt). http://stgt.
sourceforge.net/.

[9] Lustre File System. http://opensfs.org/lustre/.

[10] Prototypes of rfsck-test, e2fsck-patch, refsck-lib,
refsck-ext, rfsck-xfs. https://www.cs.nmsu.edu/
∼mzheng/lab/lab.html.

[11] ROSE Compiler Infrastructure. http://rosecompiler.
org/.

[12] SQLite documents. http://www.sqlite.org/docs.
html.

[13] The LLVM Compiler Infrastructure. https://llvm.
org/.

[14] XFS File System Utilities. https:
//access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/
Storage Administration Guide/xfsothers.html.

[15] [PATCH 1/3] e2fsprogs: Add undo I/O man-
ager. http://lists.openwall.net/linux-ext4/2007/07/
25/2, 2007.

[16] [PATCH 16/31] e2undo: ditch tdb file, write every-
thing to a flat file. http://lists.openwall.net/linux-
ext4/2015/01/08/1, 2015.

[17] High Performance Computing Center (HPCC)
Power Outage Event. Email Annoucement by
HPCC, Monday, January 11, 2016 at 8:50:17
AM CST. https://www.cs.nmsu.edu/∼mzheng/
docs/failures/2016-hpcc-outage.pdf, 2016.

[18] Nitin Agarwal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.
Design tradeoffs for SSD performance, 2008.

[19] Lakshmi N. Bairavasundaram, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, Garth R.
Goodson, and Bianca Schroeder. An analysis of
data corruption in the storage stack. ACM Transac-
tions on Storage, 4(3):8:1–8:28, November 2008.

[20] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An analysis
of latent sector errors in disk drives. In Proceed-
ings of the 2007 ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS’07), pages 289–300, 2007.

[21] Luiz Andre Barroso and Urs Hoelzle. The Datacen-
ter As a Computer: An Introduction to the Design
of Warehouse-Scale Machines. Morgan and Clay-
pool Publishers, 1st edition, 2009.

[22] Hanmant P Belgal, Nick Righos, Ivan Kalastirsky,
Jeff J Peterson, Robert Shiner, and Neal Mielke. A
new reliability model for post-cycling charge reten-
tion of flash memories. In Proceedings of the 40th
Annual Reliability Physics Symposium, pages 7–20.
IEEE, 2002.

[23] James Bornholt, Antoine Kaufmann, Jialin
Li, Arvind Krishnamurthy, Emina Torlak, and
Xi Wang. Specifying and checking file system
crash-consistency models. Proceedings of the 21st
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS’16), 51(4):83–98, 2016.

[24] Adam Brand, Ken Wu, Sam Pan, and David Chin.
Novel read disturb failure mechanism induced by
FLASH cycling. In Proceedings of the 31st An-
nual Reliability Physics Symposium, pages 127–
132. IEEE, 1993.

[25] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken
Mai. Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis. In
Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE’12), pages 521–526,
2012.

USENIX Association 16th USENIX Conference on File and Storage Technologies 117

http://man7.org/linux/man-pages/man8/debugfs.8.html
http://man7.org/linux/man-pages/man8/debugfs.8.html
 https://www.usenix.org/conference/linuxfastsummit17
 https://www.usenix.org/conference/linuxfastsummit17
 http://e2fsprogs.sourceforge.net/
 http://e2fsprogs.sourceforge.net/
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
 https://github.com/josefbacik/fs_mark
 https://github.com/josefbacik/fs_mark
 https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
 https://github.com/Xyratex/lustre-stable/blob/master/Documentation/lfsck.txt
 http://man7.org/linux/man-pages/man2/open.2.html
 http://man7.org/linux/man-pages/man2/open.2.html
http://stgt.sourceforge.net/
http://stgt.sourceforge.net/
 http://opensfs.org/lustre/
 https://www.cs.nmsu.edu/~mzheng/lab/lab.html
 https://www.cs.nmsu.edu/~mzheng/lab/lab.html
 http://rosecompiler.org/
 http://rosecompiler.org/
http://www.sqlite.org/docs.html
http://www.sqlite.org/docs.html
 https://llvm.org/
 https://llvm.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/xfsothers.html
 http://lists.openwall.net/linux-ext4/2007/07/25/2
 http://lists.openwall.net/linux-ext4/2007/07/25/2
 http://lists.openwall.net/linux-ext4/2015/01/08/1
 http://lists.openwall.net/linux-ext4/2015/01/08/1
 https://www.cs.nmsu.edu/~mzheng/docs/failures/2016-hpcc-outage.pdf
 https://www.cs.nmsu.edu/~mzheng/docs/failures/2016-hpcc-outage.pdf

[26] Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F
Haratsch, Osman Unsal, Adrian Cristal, and Ken
Mai. Neighbor-cell assisted error correction for
MLC NAND flash memories. In ACM SIGMET-
RICS Performance Evaluation Review, volume 42,
pages 491–504. ACM, 2014.

[27] João Carlos Menezes Carreira, Rodrigo Rodrigues,
George Candea, and Rupak Majumdar. Scalable
testing of file system checkers. In Proceedings of
the 7th ACM European Conference on Computer
Systems (EuroSys’12), pages 239–252, 2012.

[28] Feng Chen, David A. Koufaty, and Xiaodong
Zhang. Understanding intrinsic characteristics and
system implications of flash memory based solid
state drives. In Proceedings of the ACM Joint Inter-
national Conference on Measurement and Model-
ing of Computer Systems (SIGMETRICS’09), 2009.

[29] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam
Chlipala, M Frans Kaashoek, and Nickolai Zel-
dovich. Using crash hoare logic for certifying the
fscq file system. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP’15),
pages 18–37. ACM, 2015.

[30] Peter M. Chen, Edward K. Lee, Garth A. Gib-
son, Randy H. Katz, and David A. Patterson.
RAID: high-performance, reliable secondary stor-
age. ACM Computing Surveys, 26(2):145–185,
June 1994.

[31] Vijay Chidambaram, Thanumalayan Sankara-
narayana Pillai, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Optimistic Crash Con-
sistency. In Proceedings of the 24th ACM Sympo-
sium on Operating Systems Principles (SOSP’13),
Farmington, PA, November 2013.

[32] Vijay Chidambaram, Tushar Sharma, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Consistency Without Ordering. In Proceedings of
the 10th Conference on File and Storage Technolo-
gies (FAST’12), February 2012.

[33] Alex Conway, Ainesh Bakshi, Yizheng Jiao,
William Jannen, Yang Zhan, Jun Yuan, Michael A.
Bender, Rob Johnson, Bradley C. Kuszmaul, Don-
ald E. Porter, and Martin Farach-Colton. File sys-
tems fated for senescence? nonsense, says science!
In Proceedings of the 15th USENIX Conference on
File and Storage Technologies (FAST’17), pages
45–58, 2017.

[34] GParted Forum. e2fsck is taking forever.
http://gparted-forum.surf4.info/viewtopic.php?id=
13613, 2009.

[35] JaguarPC Forum. How long does it take FSCK
to run?! http://forums.jaguarpc.com/hosting-
talk-chit-chat/14217-how-long-does-take-fsck-
run.html, 2006.

[36] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao
Cheng, Shaun Benjamin, Ashvin Goel, and An-
gela Demke Brown. Recon: Verifying File Sys-
tem Consistency at Runtime. In Proceedings of the
10th Conference on File and Storage Technologies
(FAST’12), February 2012.

[37] Ryan Gabrys, Eitan Yaakobi, Laura M. Grupp,
Steven Swanson, and Lara Dolecek. Tackling intra-
cell variability in TLC flash through tensor product
codes. In Proceedings of IEEE International Sym-
posium of Information Theory, pages 1000–1004,
2012.

[38] Gregory R Ganger, Marshall Kirk McKusick,
Craig AN Soules, and Yale N Patt. Soft updates:
a solution to the metadata update problem in file
systems. ACM Transactions on Computer Systems
(TOCS’00), 18(2):127–153, 2000.

[39] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung. The Google File System. In Proceedings
of the 9th ACM Symposium on Operating Systems
Principles (SOSP’03), pages 29–43, 2003.

[40] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn,
Steven Swanson, Eitan Yaakobi, Paul H. Siegel,
and Jack K. Wolf. Characterizing flash mem-
ory: anomalies, observations, and applications. In
Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MI-
CRO’09), pages 24–33, 2009.

[41] Haryadi S Gunawi, Mingzhe Hao, Riza O Suminto,
Agung Laksono, Anang D Satria, Jeffry Adity-
atama, and Kurnia J Eliazar. Why does the cloud
stop computing? lessons from hundreds of service
outages. In Proceedings of ACM Symposium on
Cloud Computing (SoCC’16), pages 1–16, 2016.

[42] Haryadi S. Gunawi, Abhishek Rajimwale, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Sqck: A declarative file system checker.
In Proceedings of the 8th USENIX Conference
on Operating Systems Design and Implementation
(OSDI’08), pages 131–146, 2008.

[43] Haryadi S Gunawi, Cindy Rubio-González, An-
drea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,
and Ben Liblit. Eio: Error handling is occasionally
correct. In Proceedings of the 6th USENIX Confer-
ence on File and Storage Technologies (FAST’08),
volume 8, pages 1–16, 2008.

118 16th USENIX Conference on File and Storage Technologies USENIX Association

 http://gparted-forum.surf4.info/viewtopic.php?id=13613
 http://gparted-forum.surf4.info/viewtopic.php?id=13613
 http://forums.jaguarpc.com/hosting-talk-chit-chat/14217-how-long-does-take-fsck-run.html
 http://forums.jaguarpc.com/hosting-talk-chit-chat/14217-how-long-does-take-fsck-run.html
 http://forums.jaguarpc.com/hosting-talk-chit-chat/14217-how-long-does-take-fsck-run.html

[44] Zhenyu Guo, Sean McDirmid, Mao Yang,
Li Zhuang, Pu Zhang, Yingwei Luo, Tom Bergan,
Madan Musuvathi, Zheng Zhang, and Lidong
Zhou. Failure Recovery: When the Cure Is Worse
Than the Disease. In Proceedings of the 14th
Workshop on Hot Topics in Operating Systems
(HotOS’13), 2013.

[45] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron
Ogus, Brad Calder, Parikshit Gopalan, Jin Li, and
Sergey Yekhanin. Erasure coding in windows azure
storage. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference (USENIX
ATC’12), pages 15–26, 2012.

[46] Xavier Jimenez, David Novo, and Paolo Ienne.
Wear unleveling: improving nand flash lifetime
by balancing page endurance. In Proceedings of
the 12th USENIX Conference on File and Storage
Technologies (FAST’14), pages 47–59, 2014.

[47] Andrew Krioukov, Lakshmi N Bairavasundaram,
Garth R Goodson, Kiran Srinivasan, Randy Thelen,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. Parity lost and parity regained. In Pro-
ceedings of the 13th USENIX Conference on File
and Storage Technologies (FAST’08), volume 8,
pages 1–15, 2008.

[48] H Kurata, K Otsuga, A Kotabe, S Kajiyama, T Os-
abe, Y Sasago, S Narumi, K Tokami, S Kamohara,
and O Tsuchiya. The impact of random telegraph
signals on the scaling of multilevel flash memories.
In Proceedings of the 2006 Symposium on VLSI
Circuits, pages 112–113. IEEE, 2006.

[49] Changman Lee, Dongho Sim, Joo-Young Hwang,
and Sangyeun Cho. F2fs: A new file system
for flash storage. In Proceedings of the 13th
USENIX Conference on File and Storage Technolo-
gies (FAST’15), pages 273–286, 2015.

[50] Jiangpeng Li, Kai Zhao, Xuebin Zhang, Jun Ma,
Ming Zhao, and Tong Zhang. How much can
data compressibility help to improve nand flash
memory lifetime? In Proceedings of the 13th
USENIX Conference on File and Storage Technolo-
gies (FAST’15), pages 227–240, 2015.

[51] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A study of linux
file system evolution. In Proceedings of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), pages 31–44, 2013.

[52] Lanyue Lu, Yupu Zhang, Thanh Do, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Physical disentangle-
ment in a container-based file system. In Proceed-
ings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14),
pages 81–96, 2014.

[53] Youyou Lu, Jiwu Shu, Weimin Zheng, et al. Ex-
tending the lifetime of flash-based storage through
reducing write amplification from file systems.
In Proceedings of the 11th USENIX Conference
on File and Storage Technologies (FAST’13), vol-
ume 13, 2013.

[54] Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. ffsck: The fast
file system checker. In Proceedings of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), pages 1–15, 2013.

[55] Ashlie Martinez and Vijay Chidambaram. Crash-
Monkey: A Framework to Automatically Test File-
System Crash Consistency. In Proceedings of the
9th USENIX Workshop on Hot Topics in Storage
and File Systems (HotStorage’17), 2017.

[56] Marshall K. McKusick, William N. Joy, Samuel J.
Leffler, and Robert S. Fabry. A fast file system
for unix. Proceedings of the ACM Transactions on
Computer Systems (TOCS’84), 2(3):181–197, Au-
gust 1984.

[57] Changwoo Min, Sanidhya Kashyap, Byoungyoung
Lee, Chengyu Song, and Taesoo Kim. Cross-
checking semantic correctness: The case of finding
file system bugs. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles (SOSP’15),
pages 361–377. ACM, 2015.

[58] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pi-
rahesh, and Peter Schwarz. ARIES: A Transac-
tion Recovery Method Supporting Fine-granularity
Locking and Partial Rollbacks Using Write-ahead
Logging. ACM Transactions on Database Systems
(TODS’92), 1992.

[59] T. Ong, A. Frazio, N. Mielke, S. Pan, N. Righos,
G. Atwood, and S. Lai. Erratic Erase In ETOX/sup
TM/ Flash Memory Array. In Proceedings of the
Symposium on VLSI Technology (VLSI’93), 1993.

[60] Lluis Pamies-Juarez, Filip Blagojević, Robert Ma-
teescu, Cyril Gyuot, Eyal En Gad, and Zvonimir
Bandić. Opening the chrysalis: On the real re-
pair performance of MSR codes. In Proceedings of
the 14th USENIX Conference on File and Storage
Technologies (FAST’16), pages 81–94, 2016.

USENIX Association 16th USENIX Conference on File and Storage Technologies 119

[61] Thanumalayan Sankaranarayana Pillai, Vijay
Chidambaram, Ramnatthan Alagappan, Samer
Al-Kiswany, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. All file systems are
not created equal: On the complexity of crafting
crash-consistent applications. In Proceedings
of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14),
October 2014.

[62] Vijayan Prabhakaran, Lakshmi N. Bairavasun-
daram, Nitin Agrawal, Haryadi S. Gunawi, An-
drea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. IRON File Systems. In Proceedings of the
20th ACM Symposium on Operating Systems Prin-
ciples (SOSP’05), pages 206–220, October 2005.

[63] Abhishek Rajimwale, Vijay Chidambaram, Deepak
Ramamurthi, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. Coerced cache evic-
tion and discreet mode journaling: Dealing with
misbehaving disks. In Proceedings of the 2011
IEEE/IFIP 41st International Conference on De-
pendable Systems & Networks (DSN’11), pages
518–529. IEEE, 2011.

[64] Bianca Schroeder and Garth A. Gibson. Disk fail-
ures in the real world: What does an MTTF of
1,000,000 hours mean to you? In Proceedings of
the 5th USENIX Conference on File and Storage
Technologies (FAST’07), 2007.

[65] Bianca Schroeder, Raghav Lagisetty, and Arif Mer-
chant. Flash reliability in production: The expected
and the unexpected. In Proceedings of the 14th
USENIX Conference on File and Storage Technolo-
gies (FAST’16), pages 67–80, February 2016.

[66] Konstantin Shvachko, Hairong Kuang, Sanjay Ra-
dia, and Robert Chansler. The hadoop distributed
file system. In Proceedings of the IEEE 26th Sym-
posium on Mass Storage Systems and Technologies
(MSST’10), pages 1–10. IEEE, 2010.

[67] Helgi Sigurbjarnarson, James Bornholt, Emina Tor-
lak, and Xi Wang. Push-button verification of file
systems via crash refinement. In Proceedings of
12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI’16), 2016.

[68] Keith A. Smith and Margo I. Seltzer. File system
aging—increasing the relevance of file sys-
tem benchmarks. In Proceedings of the 1997 ACM
SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems (SIG-
METRICS’97), pages 203–213, 1997.

[69] V. Svanberg. Fsck takes too long on multiply-
claimed blocks. http://old.nabble.com/Fsck-
takes-too-long-on-multiply-claimed-blocks-
td21972943.html, 2009.

[70] Adam Sweeney, Doug Doucette, Wei Hu, Curtis
Anderson, Mike Nishimoto, and Geoff Peck. Scal-
ability in the XFS File System. In Proceedings
of the 1996 USENIX Annual Technical Conference
(USENIX ATC’96), volume 15, 1996.

[71] Huang-Wei Tseng, Laura M. Grupp, and Steven
Swanson. Understanding the impact of power loss
on flash memory. In Proceedings of the 48th Design
Automation Conference (DAC’11), 2011.

[72] Stephen C. Tweedie. Journaling the linux ext2fs
filesystem. In Proceedings of the 4th Annual Linux
Expo, 1998.

[73] Simeng Wang, Jinrui Cao, Danny V Murillo, Yil-
iang Shi, and Mai Zheng. Emulating Realistic Flash
Device Errors with High Fidelity. In Proceedings of
the IEEE International Conference on Networking,
Architecture and Storage (NAS’16). IEEE, 2016.

[74] Sage A. Weil, Scott A. Brandt, Ethan L. Miller,
Darrell D. E. Long, and Carlos Maltzahn. Ceph:
A Scalable, High-performance Distributed File
System. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation
(OSDI’06), pages 307–320, 2006.

[75] Mingyuan Xia, Mohit Saxena, Mario Blaum, and
David A. Pease. A tale of two erasure codes in
HDFS. In Proceedings of the 13th USENIX Confer-
ence on File and Storage Technologies (FAST’15),
pages 213–226, 2015.

[76] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster.
Write once, get 50% free: Saving ssd erase costs
using wom codes. In Proceedings of the 13th
USENIX Conference on File and Storage Technolo-
gies (FAST’15), pages 257–271, 2015.

[77] Junfeng Yang, Can Sar, and Dawson Engler. EX-
PLODE: a lightweight, general system for finding
serious storage system errors. In Proceedings of
the Seventh Symposium on Operating Systems De-
sign and Implementation (OSDI’06), pages 131–
146, November 2006.

[78] Yiying Zhang, Leo Prasath Arulraj, Andrea C
Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
De-indirection for flash-based ssds with nameless
writes. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (FAST’12),
2012.

120 16th USENIX Conference on File and Storage Technologies USENIX Association

 http://old.nabble.com/Fsck-takes-too-long-on-multiply-claimed-blocks-td21972943.html
 http://old.nabble.com/Fsck-takes-too-long-on-multiply-claimed-blocks-td21972943.html
 http://old.nabble.com/Fsck-takes-too-long-on-multiply-claimed-blocks-td21972943.html

[79] Yupu Zhang, Abhishek Rajimwale, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
End-to-end Data Integrity for File Systems: A
ZFS Case Study. In Proceedings of the 8th
USENIX Conference on File and Storage Technolo-
gies (FAST’10), pages 29–42, 2010.

[80] Mai Zheng, Joseph Tucek, Dachuan Huang, Feng
Qin, Mark Lillibridge, Elizabeth S. Yang, Bill W
Zhao, and Shashank Singh. Torturing Databases for
Fun and Profit. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and Im-
plementation (OSDI’14), pages 449–464, 2014.

[81] Mai Zheng, Joseph Tucek, Feng Qin, and Mark Lil-
libridge. Understanding the robustness of SSDs
under power fault. In Proceedings of the 11th
USENIX Conference on File and Storage Technolo-
gies (FAST’13), 2013.

[82] Mai Zheng, Joseph Tucek, Feng Qin, Mark Lillib-
ridge, Bill W Zhao, and Elizabeth S. Yang. Re-
liability Analysis of SSDs under Power Fault. In
Proceedings of the ACM Transactions on Computer
Systems (TOCS’16), 2016.

USENIX Association 16th USENIX Conference on File and Storage Technologies 121

The Full Path to Full-Path Indexing
Yang Zhan, Alex Conway†, Yizheng Jiao, Eric Knorr†, Michael A. Bender‡,

Martin Farach-Colton†, William Jannen¶, Rob Johnson∗, Donald E. Porter, Jun Yuan‡

The University of North Carolina at Chapel Hill, †Rutgers University,
‡Stony Brook University, ¶Williams College, ∗VMware Research

Abstract
Full-path indexing can improve I/O efficiency for

workloads that operate on data organized using tradi-
tional, hierarchical directories, because data is placed on
persistent storage in scan order. Prior results indicate,
however, that renames in a local file system with full-
path indexing are prohibitively expensive.

This paper shows how to use full-path indexing in a
file system to realize fast directory scans, writes, and re-
names. The paper introduces a range-rename mechanism
for efficient key-space changes in a write-optimized dic-
tionary. This mechanism is encapsulated in the key-value
API and simplifies the overall file system design.

We implemented this mechanism in BetrFS, an in-
kernel, local file system for Linux. This new version,
BetrFS 0.4, performs recursive greps 1.5x faster and ran-
dom writes 1.2x faster than BetrFS 0.3, but renames
are competitive with indirection-based file systems for
a range of sizes. BetrFS 0.4 outperforms BetrFS 0.3, as
well as traditional file systems, such as ext4, XFS, and
ZFS, across a variety of workloads.

1 Introduction
Today’s general-purpose file systems do not fully utilize
the bandwidth of the underlying hardware. For exam-
ple, ext4 can write large files at near disk bandwidth but
typically creates small files at less than 3% of disk band-
width. Similarly, ext4 can read large files at near disk
bandwidth, but scanning directories with many small
files has performance that ages over time. For instance, a
git version-control workload can degrade ext4 scan per-
formance by up to 15× [14, 55].

At the heart of this issue is how data is organized, or
indexed, on disk. The most common design pattern for
modern file systems is to use a form of indirection, such
as inodes, between the name of a file in a directory and its
physical placement on disk. Indirection simplifies imple-
mentation of some metadata operations, such as renames
or file creates, but the contents of the file system can end
up scattered over the disk in the worst case. Cylinder
groups and other best-effort heuristics [32] are designed
to mitigate this scattering.

Full-path indexing is an alternative to indirection,
known to have good performance on nearly all opera-
tions. File systems that use full-path indexing store data
and metadata in depth-first-search order, that is, lexi-

cographic order by the full-path names of files and di-
rectories. With this design, scans of any directory sub-
tree (e.g., ls -R or grep -r) should run at near disk
bandwidth. The challenge is maintaining full-path order
as the file system changes. Prior work [15, 22, 23] has
shown that the combination of write-optimization [5–7,
9–11, 36, 43, 44] with full-path indexing can realize effi-
cient implementations of many file system updates, such
as creating or removing files, but a few operations still
have prohibitively high overheads.

The Achilles’ heel of full-path indexing is the perfor-
mance of renaming large files and directories. For in-
stance, renaming a large directory changes the path to
every file in the subtree rooted at that directory, which
changes the depth-first search order. Competitive rename
performance in a full-path indexed file system requires
making these changes in an I/O-efficient manner.

The primary contribution of this paper is showing that
one can, in fact, use full-path indexing in a file system
without introducing unreasonable rename costs. A file
system can use full-path indexing to improve directory
locality—and still have efficient renames.
Previous full-path indexing. The first version of Be-
trFS [22, 23] (v0.1), explored full-path indexing. Be-
trFS uses a write-optimized dictionary to ensure fast up-
dates of large and small data and metadata, as well as
fast scans of files and directory-tree data and metadata.
Specifically, BetrFS uses two Bε -trees [7, 10] as persis-
tent key-value stores, where the keys are full path names
to files and the values are file contents and metadata, re-
spectively. Bε -trees organize data on disk such that log-
ically contiguous key ranges can be accessed via large,
sequential I/Os. Bε -trees aggregate small updates into
large, sequential I/Os, ensuring efficient writes.

This design established the promise of full-path index-
ing, when combined with Bε -trees. Recursive greps run
3.8x faster than in the best standard file system. File cre-
ation runs 2.6x faster. Small, random writes to a file run
68.2x faster.

However, renaming a directory has predictably miser-
able performance [22, 23]. For example, renaming the
Linux source tree, which must delete and reinsert all the
data to preserve locality, takes 21.2s in BetrFS 0.1, as
compared to 0.1s in btrfs.
Relative-path indexing. BetrFS 0.2 backed away from
full-path indexing and introduced zoning [54, 55]. Zon-
ing is a schema-level change that implements relative-

USENIX Association 16th USENIX Conference on File and Storage Technologies 123

path indexing. In relative-path indexing, each file or di-
rectory is indexed relative to a local neighborhood in the
directory tree. See Section 2.2 for details.

Zoning strikes a “sweet spot” on the spectrum between
indirection and full-path indexing. Large file and di-
rectory renames are comparable to indirection-based file
systems, and a sequential scan is at least 2x faster than
inode-based file systems but 1.5x slower than BetrFS 0.1.

There are, however, a number of significant, diffuse
costs to relative-path indexing, which tax the perfor-
mance of seemingly unrelated operations. For instance,
two-thirds of the way through the TokuBench bench-
mark, BetrFS 0.2 shows a sudden, precipitous drop in
cumulative throughput for small file creations, which can
be attributed to the cost of maintaining zones.

Perhaps the most intangible cost of zoning is that it
introduces complexity into the system and thus hides op-
timization opportunities. In a full-path file system, one
can implement nearly all file system operations as simple
point or range operations. Adding indirection breaks this
simple mapping. Indirection generally causes file sys-
tem operations to map onto more key/value operations
and often introduces reads before writes. Because reads
are slower than writes in a write-optimized file system,
making writes depend upon reads forgoes some of the
potential performance benefits of write-optimization.

Consider rm -r, for example. With full-path in-
dexing, one can implement this operation with a single
range-delete message, which incurs almost no latency
and requires a single synchronous write to become per-
sistent [54, 55]. Using a single range-delete message
also unlocks optimizations internal to the key/value store,
such as freeing a dead leaf without first reading it from
disk. Adding indirection on some directories (as in Be-
trFS 0.2) requires a recursive delete to scatter reads and
writes throughout the keyspace and disk (Table 3).
Our contributions. This paper presents a Bε -tree vari-
ant, called a lifted Bε -tree, that can efficiently rename a
range of lexicographically ordered keys, unlocking the
benefits of full-path indexing. We demonstrate the ben-
efits of a lifted Bε -tree in combination with full-path in-
dexing in a new version of BetrFS, version 0.4, which
achieves:
• fast updates of data and metadata,
• fast scans of the data and metadata in directory sub-

trees and fast scans of files,
• fast renames, and
• fast subtree operations, such as recursive deletes.

We introduce a new key/value primitive called range
rename. Range renames are the keyspace analogue of
directory renames. Given two strings, p1 and p2, range
rename replaces prefix p1 with prefix p2 in all keys that
have p1 as a prefix. Range rename is an atomic modifi-
cation to a contiguous range of keys, and the values are

unchanged. Our main technical innovation is an efficient
implementation of range rename in a Bε -tree. Specifi-
cally, we reduce the cost from the size of the subtree to
the height of the subtree.

Using range rename, BetrFS 0.4 returns to a sim-
ple schema for mapping file system operations onto
key/value operations; this in turn consolidates all place-
ment decisions and locality optimizations in one place.
The result is simpler code with less ancillary metadata
to maintain, leading to better performance on a range of
seemingly unrelated operations.

The technical insight behind efficient Bε -tree range re-
name is a method for performing large renames by direct
manipulation of the Bε -tree. Zoning shows us that small
key ranges can be deleted and reinserted cheaply. For
large key ranges, range rename is implemented by slic-
ing the tree at the source and destination. Once the source
subtree is isolated, a pointer swing moves the renamed
section of keyspace to its destination. The asymptotic
cost of such tree surgery is proportional to the height,
rather than the size, of the tree.

Once the Bε -tree has its new structure, another chal-
lenge is efficiently changing the pivots and keys to their
new values. In a standard Bε -tree, each node stores the
full path keys; thus, a straightforward implementation of
range rename must rewrite the entire subtree.

We present a method that reduces the work of updat-
ing keys by removing the redundancy in prefixes shared
by many keys. This approach is called key lifting (§5).
A lifted Bε -tree encodes its pivots and keys such that
the values of these strings are defined by the path taken
to reach the node containing the string. Using this ap-
proach, the number of paths that need to be modified in
a range rename also changes from being proportional to
the size of the subtree to the depth of the subtree.

Our evaluation shows improvement across a range of
workloads. For instance, BetrFS 0.4 performs recur-
sive greps 1.5x faster and random writes 1.2x faster than
BetrFS 0.3, but renames are competitive with standard,
indirection-based file systems. As an example of sim-
plicity unlocked by full path indexing, BetrFS 0.4 im-
plements recursive deletion with a single range delete,
significantly out-performing other file systems.

2 Background
This section presents background on BetrFS, relevant to
the proposed changes to support efficient keyspace muta-
tions. Additional aspects of the design are covered else-
where [7, 22, 23, 54, 55].

2.1 Bε -Tree Overview
The Bε -tree is a write-optimized B-tree variant that
implements the standard key/value store interface: in-

124 16th USENIX Conference on File and Storage Technologies USENIX Association

sert, delete, point query, and predecessor and succes-
sor queries (i.e., range queries). By write-optimized, we
mean the insertions and deletions in Bε -trees are orders
of magnitude faster than in a B-tree, while point queries
are just as fast as in a B-tree. Furthermore, range queries
and sequential insertions and deletions in Bε -trees can
run at near disk bandwidth.

Because insertions are much faster than queries, the
common read-modify-write pattern can become bottle-
necked on the read. Therefore, Bε -trees provide an up-
sert that logically encodes, but lazily applies a read-
modify-write of a key-value pair. Thus, upserts are as
fast as inserts.

Like B-trees, Bε -trees store key/value pairs in nodes,
where they are sorted by key order. Also like B-trees,
interior nodes store pointers to children, and pivot keys
delimit the range of keys in each child.

The main distinction between Bε -trees and B-trees is
that interior Bε -tree nodes are augmented to include mes-
sage buffers. A Bε -tree models all changes (inserts,
deletes, upserts) as messages. Insertions, deletions, and
upserts are implemented by inserting messages into the
buffers, starting with the root node. A key technique
behind write-optimization is that messages can accumu-
late in a buffer, and are flushed down the tree in larger
batches, which amortize the costs of rewriting a node.
Most notably, this batching can improve the costs of
small, random writes by orders of magnitude.

Since messages lazily propagate down the tree, queries
may require traversing the entire root-to-leaf search path,
checking for relevant messages in each buffer along the
way. The newest target value is returned (after applying
pending upsert messages, which encode key/value pair
modifications).

In practice, Bε -trees are often configured with large
nodes (typically ≥4MiB) and fanouts (typically ≤16) to
improve performance. Large nodes mean updates are ap-
plied in large batches, but large nodes also mean that
many contiguous key/value pairs are read per I/O. Thus,
range queries can run a near disk bandwidth, with at most
one random I/O per large node.

The Bε -tree implementation in BetrFS supports both
point and range messages; range messages were intro-
duced in v0.2 [54]. A point message is addressed to a
single key, whereas a range message is applied to a con-
tiguous range of keys. Thus far, range messages have
only been used for deleting a range of contiguous keys
with a single message. In our experience, range deletes
give useful information about the keyspace that is hard
to infer from a series of point deletions, such as dropping
obviated insert and upsert messages.

The Bε -tree used in BetrFS supports transactions and
crash consistency as follows. The Bε -tree internally uses
a logical timestamp for each message and MVCC to im-

plement transactions. Pending messages can be thought
of as a history of recent modifications, and, at any point
in the history, one can construct a consistent view of the
data. Crash consistency is ensured using logical logging,
i.e., by logging the inserts, deletes, etc, performed on the
tree. Internal operations, such as node splits, flushes, etc,
are not logged. Nodes are written to disk using copy-
on-write. At a periodic checkpoint (every 5 seconds),
all dirty nodes are written to disk and the log can be
trimmed. Any unreachable nodes are then garbage col-
lected and reused. Crash recovery starts from the last
checkpoint, replays the logical redo log, and garbage col-
lects any unreachable nodes; as long as an operation is in
the logical log, it will be recoverable.

2.2 BetrFS Overview
BetrFS translates VFS-level operations into Bε -tree op-
erations. Across versions, BetrFS has explored schema
designs that map VFS-level operations onto Bε -tree op-
erations as efficiently as possible.

All versions of BetrFS use two Bε -trees: one for file
data and one for file system metadata. The Bε -tree imple-
mentation supports transactions, which we use internally
for operations that require more than one message. Be-
trFS does not expose transactions to applications, which
introduce some more complex issues around system call
semantics [25, 35, 39, 46].

In BetrFS 0.1, the metadata Bε -tree maps a full path
onto the typical contents of a stat structure, including
owner, modification time, and permission bits. The data
Bε -tree maps keys of the form (p, i), where p is the full
path to a file and i is a block number within that file, to
4KB file blocks. Paths are sorted in a variant of depth-
first traversal order.

This full-path schema means that entire sub-trees of
the directory hierarchy are stored in logically contiguous
ranges of the key space. For instance, this design en-
abled BetrFS 0.1 to perform very fast recursive directory
traversals (e.g. find or recursive grep).

Unfortunately, with this schema, file and directory re-
names do not map easily onto key/value store operations.
In BetrFS 0.1, file and directory renames were imple-
mented by copying the file or directory from its old loca-
tion to the new location. As a result, renames were orders
of magnitude slower than conventional file systems.

BetrFS 0.2 improved rename performance by replac-
ing the full-path indexing schema of BetrFS 0.1 with
a relative-path indexing schema [54, 55]. The goal of
relative path indexing is to get the rename performance
of inode-based file systems and the recursive-directory-
traversal performance of a full-path indexing file system.

BetrFS 0.2 accomplishes this by partitioning the di-
rectory hierarchy into a collection of connected regions
called zones. Each zone has a single root file or directory

USENIX Association 16th USENIX Conference on File and Storage Technologies 125

and, if the root of a zone is a directory, it may contain
sub-directories of that directory. Each zone is given a
zone ID (analogous to an inode number).

Relative-path indexing made renames on BetrFS 0.2
almost as fast as inode-based file systems and recursive-
directory traversals almost as fast as BetrFS 0.1.

However, our experience has been that relative-path
indexing introduces a number of overheads and pre-
cludes other opportunities for mapping file-system-level
operations onto Bε -tree operations. For instance, must
be split and merged to keep all zones within a target
size range. These overheads became a first-order per-
formance issue, for example, the Tokubench benchmark
results for BetrFS 0.2.

Furthermore, relative-path indexing also has bad
worst-case performance. It is possible to construct ar-
rangements of nested directories that will each reside in
their own zone. Reading a file in the deepest directory
will require reading one zone per directory (each with
its own I/O). Such a pathological worst case is not possi-
ble with full-path indexing in a Bε -tree, and an important
design goal for BetrFS is keeping a reasonable bound on
the worst cases.

Finally, zones break the clean mapping of directory
subtrees onto contiguous ranges of the key space, pre-
venting us from using range-messages to implement bulk
operations on entire subtrees of the directory hierarchy.
For example, with full-path indexing, we can use range-
delete messages not only to delete files, but entire sub-
trees of the directory hierarchy. We could also use range
messages to perform a variety of other operations on sub-
trees of the directory hierarchy, such as recursive chmod,
chown, and timestamp updates.

The goal of this paper is to show that, by making re-
name a first-class key/value store operation, we can use
full-path indexing to produce a simpler, more efficient,
and more flexible system end-to-end.

3 Overview
The goal of this section is to explain the performance
considerations behind our data structure design, and to
provide a high-level overview of that design.

Our high-level strategy is to simply copy small files
and directories in order to preserve locality—i.e., copy-
ing a few-byte file is no more expensive than updating
a pointer. Once a file or directory becomes sufficiently
large, copying the data becomes expensive and of dimin-
ishing value (i.e., the cost of indirection is amortized over
more data). Thus, most of what follows is focused on ef-
ficient rename of large files and directories, large mean-
ing at least as large as a Bε -tree node.

Since we index file and directory data and metadata
by full path, a file or directory rename translates into

a prefix replacement on a contiguous range of keys.
For example, if we rename directory /tmp/draft to
/home/paper/final, then we want to find all keys
in the Bε -tree that begin with /tmp/draft and replace
that prefix with /home/paper/final. This involves
both updating the key itself, and updating its location in
the Bε -tree so that future searches can find it.

Since the affected keys form a contiguous range in
the Bε -tree, we can move the keys to their new (logi-
cal) home without moving them physically. Rather, we
can make a small number of pointer updates and other
changes to the tree. We call this step tree surgery. We
then need to update all the keys to contain their new pre-
fix, a process we call batched key update.

In summary, the algorithm has two high-level steps:
Tree Surgery. We identify a subtree of the Bε -tree that
includes all keys in the range to be renamed (Figure 1).
Any fringe nodes (i.e., on the left and right extremes
of the subtree), which contain both related and unre-
lated keys, are split into two nodes: one containing only
affected keys and another containing only un-affected
keys. The number of fringe nodes will be at most log-
arithmic in the size of the sub-tree. At the end of the
process, we will have a subtree that contains only keys in
the range being moved. We then change the pivot keys
and pointers to move the subtree to its new parent.
Batched Key Updates. Once a subtree has been logi-
cally renamed, full-path keys in the subtree will still re-
flect the original key range. We propose a Bε -tree modi-
fication to make these key updates efficient. Specifically,
we modify the Bε -tree to factor out common prefixes
from keys in a node, similar to prefix-encoded compres-
sion. We call this transformation key lifting. This trans-
formation does not lose any information—the common
prefix of keys in a node can be inferred from the pivot
keys along the path from the root to the node by con-
catenating the longest common prefix of enclosing piv-
ots along the path. As a result of key lifting, once we
perform tree surgery to isolate the range of keys affected
by a rename, the prefix to be replaced in each key will
already be removed from every key in the sub-tree. Fur-
thermore, since the omitted prefixes are inferred from the
sub-tree’s parent pivots, moving the sub-tree to its new
parent implicitly replaces the old prefix with the new one.
Thus a large subtree can be left untouched on disk dur-
ing a range rename. In the worst case, only a logarithmic
number of nodes on the fringe of the subtree will have
keys that need to be updated.
Buffered Messages and Concurrency. Our range
move operation must also handle any pending messages
targeting the affected keys. These messages may be
buffered in any node along a search path from the root
to one of the affected keys. Our solution leverages the
fact that messages have a logical timestamp and are ap-

126 16th USENIX Conference on File and Storage Technologies USENIX Association

plied in logical order. Thus, it is sufficient to ensure that
pending messages for a to-be-renamed subtree must be
flushed into the subtree before we begin the tree surgery
for a range rename.

Note that most of the work in tree surgery involves
node splits and merges, which are part of normal Bε -tree
operation. Thus the tree remains a “valid” Bε -tree during
this phase of the range move. Only the pointer swaps
need to be serialized with other operations. Thus this
approach does not present a concurrency bottleneck.

The following two sections explain tree surgery and
lifting in more detail.

4 Tree Surgery
This section describes our approach to renaming a di-
rectory or large file via changes within the Bε -tree, such
that most of the data is not physically moved on disk.
Files that are smaller than 4MiB reside in at most two
leaves. We therefore move them by copying and perform
tree surgery only on larger files and, for simplicity of the
prototype, directories of any size.

For the sake of discussion, we assume that a rename is
moving a source file over an existing destination file; the
process would work similarly (but avoid some work) in
the case where the destination file does not exist. Our im-
plementation respects POSIX restrictions for directories
(i.e., you cannot rename over a non-empty destination di-
rectory), but our technique could easily support different
directory rename semantics. In the case of renaming over
a file, where a rename implicitly deletes the destination
file, we use transactions in the Bε -tree to insert both a
range delete of the destination and a range rename of the
source; these messages are applied atomically.

This section also operates primarily at the Bε -tree
level, not the directory namespace. Unless otherwise
noted, pointers are pointers within the Bε -tree.

In renaming a file, the goal is to capture a range of con-
tiguous keys and logically move these key/value pairs to
a different point in the tree. For anything large enough to
warrant using this rename approach, some Bε -tree nodes
will exclusively store messages or key/value pairs for the
source or destination, and some may include unrelated
messages or key/value pairs before and after in sort or-
der, corresponding to the left and right in the tree.

An important abstraction for tree surgery is the Lowest
Common Ancestor, or (LCA), of two keys: the Bε -tree
node lowest in the tree on the search path for both keys
(and hence including all keys in between). During a re-
name, the source and destination will each have an LCA,
and they may have the same LCA.

The first step in tree surgery is to find the source LCA
and destination LCA. In the process of identifying the
LCAs, we also flush any pending messages for the source

... ...

...

... ...

(a)

... ...

...

... ...

(b)

... ...

...

... ...

(c)

... ...

...

... ...

(d)

Figure 1: Slicing /gray between /black and /white.

or destination key range, so that they are buffered at or
below the corresponding LCAs.
Slicing. The second step is to slice out the source and
destination from any shared nodes. The goal of slicing
is to separate unrelated key-value pairs that are not being
moved but are packed into the same Bε -tree node as key-
value pairs that are being moved. Slicing uses the same
code used for standard Bε -tree node splits, but slicing
divides the node at the slicing key rather than picking a
key in the middle of the node. As a result, slicing may re-
sult in nodes that temporarily violate constraints on target
node size and fanout. However, these are performance,
not correctness, constraints, so we can let queries con-
tinue concurrently, and we restore these invariants before
completing the rename.

Figure 1 depicts slicing the sub-tree containing all gray
keys from a tree with black, gray, and white keys. The
top node is the parent of the LCA. Because messages
have been flushed to the LCA, the parent of the LCA
contains no messages related to gray. Slicing proceeds
up the tree from the leaves, and only operates on the left
and right fringe of the gray sub-tree. Essentially, each
fringe node is split into two smaller Bε -tree nodes (see
steps b and c). All splits, as well as later transplanting
and healing, happen when the nodes are pinned in mem-
ory. During surgery, they are dirtied and written at the
next checkpoint. Eventually, the left and right edge of
an exclusively-gray subtree (step d) is pinned, whereas
interior, all-grey nodes may remain on disk.

Our implementation requires that the source and desti-
nation LCA be at the same height for the next step. Thus,
if the LCAs are not at the same level of the tree, we slice
up to an ancestor of the higher LCA. The goal of this
choice is to maintain the invariant that all Bε -tree leaves
be at the same depth.
Transplant. Once the source and destination are both
sliced, we then swap the pointers to each sub-tree in the
respective parents of LCAs. We then insert a range-
delete message at the source (which now points to a sub-

USENIX Association 16th USENIX Conference on File and Storage Technologies 127

tree containing all the data in the file that used to reside
at the destination of the rename). The Bε -tree’s builtin
garbage collection will reclaim these nodes.
Healing. Our Bε -tree implementation maintains the in-
variant that all internal nodes have between 4 and 16
children, which bounds the height of the tree. After the
transplant completes, however, there may be a number of
in-memory Bε -tree nodes at the fringe around the source
and destination that have fewer than 4 children.

We handle this situation by triggering a rebalancing
within the tree. Specifically, if a node has only one child,
the slicing process will merge it after completing the
work of the rename.
Crash Consistency. In general, BetrFS ensures crash
consistency by keeping a redo log of pending messages
and applying messages to nodes copy-on-write. At pe-
riodic intervals, BetrFS ensures that there is a consistent
checkpoint of the tree on disk. Crash recovery simply
replays the redo log since the last checkpoint. Range re-
name works within this framework.

A range rename is logically applied and persisted as
soon as the message is inserted into the root buffer and
the redo log. If the system crashes after a range rename
is logged, the recovery will see a prefix of the message
history that includes the range rename, and it will be log-
ically applied to any queries for the affected range.

Tree surgery occurs when a range rename message is
flushed to a node that is likely an LCA. Until surgery
completes, all fringe nodes, the LCAs, and the parents of
LCAs are pinned in memory and dirtied. Upon comple-
tion, these nodes will be unpinned and written to disk,
copy-on-write, no later than the next Bε -tree checkpoint.

If the system crashes after tree surgery begins but be-
fore surgery completes, the recovery code will see a con-
sistent checkpoint of the tree as it was before the tree
surgery. The same is true if the system crashes after tree
surgery but before the next checkpoint (as these post-
surgery nodes will not be reachable from the checkpoint
root). Because a Bε -tree checkpoint flushes all dirty
nodes, if the system crashes after a Bε -tree checkpoint,
all nodes affected by tree surgery will be on disk.

At the file system level, BetrFS has similar crash con-
sistency semantics to metadata-only journaling in ext4.
The Bε -tree implementation itself implements full data
journaling [54, 55], but BetrFS allows file writes to be
buffered in the VFS, weakening this guarantee end-to-
end. Specifically, file writes may be buffered in the VFS
caches, and are only logged in the recovery journal once
the VFS writes back a dirty page (e.g., upon an fsync
or after a configurable period). Changes to the directory
tree structure, such as a rename or mkdir are persisted
to the log immediately. Thus, in the common pattern of
writing to a temporary file and then renaming it, it is pos-
sible for the rename to appear in the log before the writes.

In this situation and in the absence of a crash, the writes
will eventually be logged with the correct, renamed key,
as the in-memory inode will be up-to-date with the cor-
rect Bε -tree key. If the system crashes, these writes can
be lost; as with a metadata-journaled file system, the de-
veloper must issue an fsync before the rename to en-
sure the data is on disk.

Latency. A rename returns to the user once a log entry
is in the journal and the root of the Bε -trees are locked.
At this point, the rename has been applied in the VFS to
in-memory metadata, and as soon as the log is fsynced,
the rename is durable.

We then hand off the rest of the rename work to two
background threads to do the cutting and healing. The
prototype in this paper only allows a backlog of one
pending, large rename, since we believe that concur-
rent renames are relatively infrequent. The challenge in
adding a rename work queue is ensuring consistency be-
tween the work queue and the state of the tree.

Atomicity and Transactions. The Bε -tree in BetrFS
implements multi-version concurrency control by aug-
menting messages with a logical timestamp. Messages
updating a given key range are always applied in logical
order. Multiple messages can share a timestamp, giving
them transactional semantics.

To ensure atomicity for a range rename, we create an
MVCC “hazard”: read transactions “before” the rename
must complete before the surgery can proceed. Tree
nodes in BetrFS are locked with reader-writer locks. We
write-lock tree nodes hand-over-hand, and left-to-right to
identify the LCAs. Once the LCAs are locked, this seri-
alizes any new read or write transactions until the rename
completes. The lock at the LCA creates a “barrier”—
operations can complete “above” or “below” this lock
in the tree, although the slicing will wait for concur-
rent transactions to complete before write-locking that
node. Once the transplant completes, the write-locks on
the parents above LCAs are released.

For simplicity, we also ensure that all messages in
the affected key range(s) that logically occur before the
range rename are flushed below the LCA before the
range rename is applied. All messages that logically oc-
cur after the rename follow the new pointer path to the
destination or source. This strategy ensures that, when
each message is flushed and applied, it sees a point-in-
time consistent view of the subtree.

Complexity. At most 4 slices are performed, each from
the root to a leaf, dirtying nodes from the LCA along the
slicing path. These nodes will need to be read, if not
in cache, and written back to disk as part of the check-
pointing process. Therefore the number of I/Os is at most
proportional to the height of the Bε -tree, which is loga-
rithmic in the size of the tree.

128 16th USENIX Conference on File and Storage Technologies USENIX Association

5 Batched Key Updates
After tree-surgery completes, there will be a subtree
where the keys are not coherent with the new location in
the tree. As part of a rename, the prefixes of all keys in
this subtree need to be updated. For example, suppose we
execute ‘mv /foo /bar‘. After surgery, any mes-
sages and key/value pairs for file /foo/bas will still
have a key that starts with /foo. These keys need to
be changed to begin with /bar. The particularly con-
cerning case is when /foo is a very large subtree and
has interior nodes that would otherwise be untouched by
the tree surgery step; our goal is to leave these nodes un-
touched as part of rename, and thus reduce the cost of key
changes from the size of the rename tree to the height of
the rename tree.

We note that keys in our tree are highly redundant. Our
solution reduces the work of changing keys by reducing
the redundancy of how keys are encoded in the tree. Con-
sider the prefix encoding for a sequence of strings. In this
compression method, if two strings share a substantial
longest common prefix (lcp), then that lcp is only stored
once. We apply this idea to Bε -trees. The lcp of all keys
in a subtree is removed from the keys and stored in the
subtree’s parent node. We call this approach key lifting
or simply lifting for short.

At a high level, our lifted Bε -tree stores a node’s com-
mon, lifted key prefix in the node’s parent, alongside the
parent’s pointer to the child node. Child nodes only store
differing key suffixes. This approach encodes the com-
plete key in the path taken to reach a given node.

Lifting requires a schema-level invariant that keys
with a common prefix are adjacent in the sort order. As
a simple example, if one uses memcmp to compare keys
(as BetrFS does), then lifting will be correct. This invari-
ant ensures that, if there is a common prefix between any
two pivot keys, all keys in that child will have the same
prefix, which can be safely lifted. More formally:

Invariant 1 Let T ′ be a subtree in a Bε -tree with full-
path indexing. Let p and q be the pivots that enclose T ′.
That is, if T ′ is not the first or last child of its parent, then
p and q are the enclosing pivots in the parent of T ′. If T ′

is the first child of its parent, then q is the first pivot and
p is the left enclosing pivot of the parent of T ′.

Let s be the longest common prefix of p and q. Then
all keys in T ′ begin with s.

Given this invariant, we can strip s from the beginning
of every message or key/value pair in T ′, only storing
the non-lifted suffix. Lifting is illustrated in Figure 2,
where the common prefix in the first child is “/b/”, which
is removed from all keys in the node and its children
(indicated with strikethrough text). The common prefix
(indicated with purple) is stored in the parent. As one
moves toward leaves, the common prefix typically be-

pi
vo

ts
m

es
sa

ge

bu
ffe

r

... ...

pi
vo

ts
m

es
sa

ge

bu
ffe

r

/b/ /b/8

... ...

/a/x
/b/0

/b/9
/c/w

/b/2 /b/4/r
/b/7/r/b/4/j

/b/4/m /b/4/t

ke
y-

va
lu

e

en
tri

es
/b/4/m /b/4/p/z

/b/4/s/b/4/m/x

}in
te

rn
a
l
n
o
d

e
s

} le
a
f

Figure 2: Example nodes in a lifted Bε -tree. Since the
middle node is bounded by two pivots with common pre-
fix “/b/” (indicated by purple text), all keys in the middle
node and its descendants must have this prefix in com-
mon. Thus this prefix can be omitted from all keys in the
middle node (and all its descendants), as indicated by the
strike-through text. Similarly, the bottom node (a leaf)
is bounded by pivots with common prefix “/b/4/”, so this
prefix is omitted from all its keys.

comes longer (“/b/4/” in Figure 2), and each level of the
tree can lift the additional common prefix.

Reads can reconstruct the full key by concatenating
prefixes during a root-to-leaf traversal. In principle, one
need not store the lifted prefix (s) in the tree, as it can be
computed from the pivot keys. In our implementation,
we do memoize the lifted prefix for efficiency.

As messages are flushed to a child, they are modified
to remove the common prefix. Similarly, node splits and
merges ensure that any common prefix between the pivot
keys is lifted out. It is possible for all of the keys in T ′

to share a common prefix that is longer than s, but we
only lift s because maintaining this amount of lifting hits
a sweet spot: it is enough to guarantee fast key updates
during renames, but it requires only local information at
a parent and child during splits, merges, and insertions.

Lifting is completely transparent to the file system.
From the file system’s perspective, it is still indexing data
with a key/value store that is keyed by full-path; the only
difference from the file system’s perspective is that the
key/value store completes some operations faster.
Lifting and Renames. In the case of renames, lifting
dramatically reduces the work to update keys. During a
rename from a to b, we slice out a sub-tree containing
exactly those keys that have a as a prefix. By the lifting
invariant, the prefix a will be lifted out of the sub-tree,
and the parent of the sub-tree will bound it between two
pivots whose common prefix is a (or at least includes
a—the pivots may have an even longer common pre-

USENIX Association 16th USENIX Conference on File and Storage Technologies 129

fix). After we perform the pointer swing, the sub-tree
will be bounded in its new parent by pivots that have b
as a common prefix. Thus, by the lifting invariant, all
future queries will interpret all the keys in the sub-tree
has having b as a prefix. Thus, with lifting, the pointer
swing implicitly performs the batch key-prefix replace-
ment, completing the rename.
Complexity. During tree surgery, there is lifting work
along all nodes that are sliced or merged. However,
the number of such nodes is at most proportional to the
height of the tree. Thus, the number of nodes that must
be lifted after a rename is no more than the nodes that
must be sliced during tree surgery, and proportional to
the height of the tree.

6 Implementation Details
Simplifying key comparison. One small difference in
the BetrFS 0.4 and BetrFS 0.3 key schemas is that BetrFS
0.4 adjusted the key format so that memcmp is sufficient
for key comparison. We found that this change simpli-
fied the code, especially around lifting, and helped CPU
utilization, as it is hard to compare bytes faster than a
well-tuned memcmp.
Zone maintenance. A major source of overheads in
BetrFS 0.3 is tracking metadata associated with zones.
Each update involves updating significant in-memory
bookkeeping; splitting and merging zones can also be a
significant source of overhead (c.f., Figure 3). BetrFS 0.4
was able to delete zone maintenance code, consolidating
this into the Bε -tree’s internal block management code.
Hard Links. BetrFS 0.4 does not support hard links.
In future work, for large files, sharing sub-trees could
also be used to implement hard links. For small files,
zones could be reintroduced solely for hard links.

7 Evaluation
Our evaluation seeks to answer the following questions:
• (§7.1) Does full-path indexing in BetrFS 0.4 improve

overall file system performance, aside from renames?
• (§7.2) Are rename costs acceptable in BetrFS 0.4?
• (§7.3) What other opportunities does full-path index-

ing in BetrFS 0.4 unlock?
• (§7.4) How does BetrFS 0.4 performance on applica-

tion benchmarks compare to other file systems?
We compare BetrFS 0.4 with several file systems, in-

cluding BetrFS 0.3 [14], Btrfs [42], ext4 [31], nilfs2 [34],
XFS [47], and ZFS [8]. Each file system’s block size
is 4096 bytes. We use the versions of XFS, Btrfs, ext4
that are part of the 3.11.10 kernel, and ZFS 0.6.5.11,
downloaded from www.zfsonlinux.org. We use
default recommended file system settings unless other-
wise noted. For ext4 (and BetrFS), we disabled lazy in-
ode table and journal initialization, as these features ac-

celerate file system creation but slow down some oper-
ations on a freshly-created file system; we believe this
configuration yields more representative measurements
of the file system in steady-state. Each experiment was
run a minimum of 4 times. Error bars indicate mini-
mum and maximum times over all runs. Similarly, error
± terms bound minimum and maximum times over all
runs. Unless noted, all benchmarks are cold-cache tests
and finish with a file-system sync. For BetrFS 0.3, we
use the default zone size of 512 KiB.

In general, we expect BetrFS 0.3 to be the closest com-
petitor to BetrFS 0.4, and focus on this comparison but
include other file systems for context. Relative-path in-
dexing is supposed to get most of the benefits of full-
path indexing, with affordable renames; comparing Be-
trFS 0.4 with BetrFS 0.3 shows the cost of relative-path
indexing and the benefit of full-path indexing.

All experimental results were collected on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, and a 500 GB, 7200 RPM SATA disk, with a
4096-byte block size. The system runs Ubuntu 14.04.5,
64-bit, with Linux kernel version 3.11.10. We boot from
a USB stick with the root file system, isolating the file
system under test to only the workload.

7.1 Non-Rename Microbenchmarks
Tokubench. The tokubench benchmark creates three
million 200-byte files in a balanced directory tree, where
no directory is allowed to have more than 128 children.

As Figure 3 shows, zone maintenance in BetrFS 0.3
causes a significant performance drop around 2 million
files. This drop occurs all at once because, at that point
in the benchmark, all the top-level directories are just un-
der the zone size limit. As a result, the benchmark goes
through a period where each new file causes its top-level
directory to split into its own zone. If we continue the
benchmark long enough, we would see this happen again
when the second-level directories reach the zone-size
limit. In experiments with very long runs of Tokubench,
BetrFS 0.3 never recovers this performance.

With our new rename implementations, zone mainte-
nance overheads are eliminated. As a result, BetrFS 0.4
has no sudden drop in performance. Only nilfs2 comes
close to matching BetrFS 0.4 on this benchmark, in part
because nilfs2 is a log-structured file system. BetrFS
0.4 has over 80× higher cumulative throughput than ext4
throughout the benchmark.
Recursive directory traversals. In these benchmarks,
we run find and recursive grep on a copy of the Linux
kernel 3.11.10 source tree. The times taken for these op-
erations are given in Table 1. BetrFS 0.4 outperforms Be-
trFS 0.3 by about 5% on find and almost 30% on grep. In
the case of grep, for instance, we found that roughly the
same total number of bytes were read from disk in both

130 16th USENIX Conference on File and Storage Technologies USENIX Association

www.zfsonlinux.org

0 1M 2M 3M
0

10,000

20,000

30,000

40,000

50,000

Files created

T
hr

ou
gh

pu
t(

fil
es

/s
ec

)
BetrFS 0.4 nilfs2
BetrFS 0.3 xfs
btrfs zfs
ext4

Figure 3: Cumulative file creation throughput during the
Tokubench benchmark (higher is better). BetrFS 0.4 out-
performs other file systems by orders of magnitude and
avoids the performance drop that BetrFS 0.3 experience
due to its zone-maintenance overhead.

File system find (sec) grep (sec)
BetrFS 0.4 0.233± 0.0 3.834± 0.2
BetrFS 0.3 0.247± 0.0 5.859± 0.1
btrfs 1.311± 0.1 8.068± 1.6
ext4 2.333± 0.1 42.526± 5.2
xfs 6.542± 0.4 58.040± 12.2
zfs 9.797± 0.9 346.904±101.5
nilfs2 6.841± 0.1 8.399± 0.2

Table 1: Time to perform recursive directory traversals
of the Linux 3.11.10 source tree (lower is better). BetrFS
0.4 is significantly faster than every other file system,
demonstrating the locality benefits of full-path indexing.

versions of BetrFS, but that BetrFS 0.3 issued roughly
25% more I/O transactions. For this workload, we also
saw higher disk utilization in BetrFS 0.4 (40 MB/s vs.
25 MB/s), with fewer worker threads needed to drive the
I/O. Lifting also reduces the system time by 5% on grep,
but the primary savings are on I/Os. In other words, this
demonstrates the locality improvements of full-path in-
dexing over relative-path indexing. BetrFS 0.4 is any-
where from 2 to almost 100 times faster than conven-
tional file systems on these benchmarks.

Sequential IO. Figure 4 shows the throughput of se-
quential reads and writes of a 10GiB file (more than
twice the size of the machine’s RAM). All file systems
measured, except ZFS, are above 100 MB/s, and the
disk’s raw read and write bandwidth is 132 MB/s.

Sequential reads in BetrFS 0.4 are essentially identical
to those in BetrFS 0.3 and roughly competitive with other
file systems. Both versions of BetrFS do not realize the
full performance of the disk on sequential I/O, leaving up
to 20% of the throughput compared to ext4 or Btrfs. This

read write

0

20

40

60

80

100

120

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

B
an

dw
id

th
(M

B
/s

ec
)

Figure 4: Sequential IO bandwidth (higher is better).
BetrFS 0.4 performs sequential IO at over 100 MB/s but
up to 19% slower than the fastest competitor. Lifting
introduces some overheads on sequential writes.

is inherited from previous versions of BetrFS and does
not appear to be significantly affected by range rename.
Profiling indicates that there is not a single culprit for this
loss but several cases where writeback of dirty blocks
could be better tuned to keep the disk fully utilized. This
issue has improved over time since version 0.1, but in
small increments.

Writes in BetrFS 0.4 are about 5% slower than in Be-
trFS 0.3. Profiling indicates this is because node split-
ting incurs additional computational costs to re-lift a split
child. We believe this can be addressed in future work by
either better overlapping computation with I/O or inte-
grating key compression with the on-disk layout, so that
lifting a leaf involves less memory copying.
Random writes. Table 2 shows the execution time of
a microbenchmark that issues 256K 4-byte overwrites
at random offsets within a 10GiB file, followed by an
fsync. This is 1 MiB of total data written, sized to
run for at least several seconds on the fastest file system.
BetrFS 0.4 performs small random writes approximately
400 to 650 times faster than conventional file systems
and about 19% faster than BetrFS 0.3.
Summary. These benchmarks show that lifting and
full-path indexing can improve performance over
relative-path indexing for both reads and writes, from 5%
up to 2×. The only case harmed is sequential writes. In
short, lifting is generally more efficient than zone main-
tenance in BetrFS.

7.2 Rename Microbenchmarks
Rename performance as a function of file size. We
evaluate rename performance by renaming files of dif-
ferent sizes and measuring the throughput. For each file

USENIX Association 16th USENIX Conference on File and Storage Technologies 131

File system random write (sec)
BetrFS 0.4 4.9 ± 0.3
BetrFS 0.3 5.9 ± 0.1
btrfs 2147.5 ± 7.4
ext4 2776.0 ± 40.2
xfs 2835.7 ± 7.9
zfs 3288.9 ±394.7
nilfs2 2013.1 ± 19.1

Table 2: Time to perform 256K 4-byte random writes (1
MiB total writes, lower is better). BetrFS 0.4 is up to 600
times faster than other file systems on random writes.

size, we rename a file of this size 100 times within a di-
rectory and fsync the parent directory to ensure that the
file is persisted on disk. We measure the average across
100 runs and report this as throughput, in Figure 5a.

In both BetrFS 0.3 and BetrFS 0.4, there are two
modes of operation. For smaller objects, both versions
of BetrFS simply copy the data. At 512 KiB and 4 MiB,
BetrFS 0.3 and BetrFS 0.4, respectively, switch modes—
this is commensurate with the file matching the zone size
limit and node size, respectively. For files above these
sizes, both file systems see comparable throughput of
simply doing a pointer swing.

More generally, the rename throughput of all of these
file systems is somewhat noisy, but ranges from 30–120
renames per second, with nilfs2 being the fastest. Both
variants of BetrFS are within this range, except when a
rename approaches the node size in BetrFS 0.4.

Figure 5b shows rename performance in a setup care-
fully designed to incur the worst-case tree surgery costs
in BetrFS 0.4. In this experiment, we create two directo-
ries, each with 1000 files of the given size. The bench-
mark renames the interleaved files from the source di-
rectory to the destination directory, so that they are also
interleaved with the files of the given size in the destina-
tion directory. Thus, when the interleaved files are 4MB
or larger, every rename requires two slices at both the
source and destination directories. We fsync after each
rename.

Performance is roughly comparable to the previous ex-
periment for small files. For large files, this experiment
shows the worst-case costs of performing four slices.
Further, all slices will operate on different leaves.

Although this benchmark demonstrates that rename
performance has potential for improvement in some care-
fully constructed worst-case scenarios, the cost of re-
names in BetrFS 0.4 is nonetheless bounded to an av-
erage cost of 454ms. We also note that this line flat-
tens, as the slicing overheads grow logarithmically in the
size of the renamed file. In contrast, renames in BetrFS
0.1 were unboundedly expensive, easily getting into min-
utes; bounding this worst case is significant progress for

BetrFS 0.4 btrfs nilfs2 zfs
BetrFS 0.3 ext4 xfs

4K
iB

8K
iB

16K
iB

32K
iB

64K
iB

128K
iB

256K
iB

512K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16M
iB

32M
iB

64M
iB

0

20

40

60

80

100

120

File Size (Bytes, Log Scale)

T
hr

ou
gh

pu
t(

R
en

am
es

Pe
rS

ec
on

d)

(a) Rename throughput as a function of file size. This ex-
periment was performed in the base directory of an otherwise
empty file system.

4K
iB

8K
iB

16K
iB

32K
iB

64K
iB

128K
iB

256K
iB

512K
iB

1M
iB

2M
iB

4M
iB

8M
iB

16M
iB

0

20

40

60

80

100

120

File Size (Bytes, Log Scale)

T
hr

ou
gh

pu
t(

R
en

am
es

Pe
rS

ec
on

d) BetrFS 0.4 btrfs nilfs2 zfs
BetrFS 0.3 ext4 xfs

(b) Rename throughput as a function of file size. This experi-
ment interleaves the renamed files with other files of the same
size in both the source and destination directories.

Figure 5: Rename throughput

the design of full-path-indexed file systems.

7.3 Full-path performance opportunities
As a simple example of other opportunities for full-path
indexing, consider deleting an entire directory (e.g., rm
-rf). POSIX semantics require checking permission to
delete all contents, bringing all associated metadata into
memory. Other directory deletion semantics have been
proposed. For example, HiStar allows an untrusted ad-
ministrator to delete a user’s directory but not read the
contents [56].

We implemented a system call that uses range-delete
messages to delete an entire directory sub-tree. This

132 16th USENIX Conference on File and Storage Technologies USENIX Association

File system recursive delete (sec)
BetrFS 0.4 (range delete) 0.053± 0.001
BetrFS 0.4 3.351± 0.5
BetrFS 0.3 2.711± 0.3
btrfs 2.762± 0.1
ext4 3.693± 2.2
xfs 7.971± 0.8
zfs 11.492± 0.1
nilfs2 9.472± 0.3

Table 3: Time to delete the Linux 3.11.10 source tree
(lower is better). Full-path indexing in BetrFS 0.4 can
remove a subtree in a single range delete, orders-of-
magnitude faster than the recursive strategy of rm -rf.

system call therefore accomplishes the same goal as rm
-rf, but it does not need to traverse the directory hier-
archy or issue individual unlink/rmdir calls for each file
and directory in the tree. The performance of this system
call is compared to the performance of rm -rf on mul-
tiple file systems in Table 3. We delete the Linux 3.11.10
source tree using either our recursive-delete system call
or by invoking rm -rf.

A recursive delete operation is orders of magnitude
faster than a brute-force recursive delete on all file sys-
tems in this benchmark. This is admittedly an unfair
benchmark, in that it foregoes POSIX semantics, but is
meant to illustrate the potential of range updates in a
full-path indexed system. With relative-path indexing,
a range of keys cannot be deleted without first resolving
the indirection underneath. With full-path indexing, one
could directly apply a range delete to the directory, and
garbage collect nodes that are rendered unreachable.

There is a regression in regular rm -rf performance
for BetrFS 0.4, making it slower than Btrfs and BetrFS
0.3. A portion of this is attributable to additional over-
head on un-lifting merged nodes (similar to the over-
heads added to sequential write for splitting); another
portion seems to be exercising inefficiencies in flushing
a large number of range messages, which is a relatively
new feature in the BetrFS code base. We believe this
can be mitigated with additional engineering. This ex-
periment also illustrates how POSIX semantics, that re-
quire reads before writes, can sacrifice performance in a
write-optimized storage system.

More generally, full-path indexing has the potential
to improve many recursive directory operations, such as
changing permissions or updating reference counts.

7.4 Macrobenchmark performance
Figure 6a shows the throughput of 4 threads on the Dove-
cot 2.2.13 mailserver. We initialize the mailserver with
10 folders, each contains 2500 messages, and use 4
threads, each performs 1000 operations with 50% reads
and 50% updates (marks, moves, or deletes).

Figure 6b measures rsync performance. We copy
the Linux 3.11.10 source tree from a source directory to
a destination directory within the same partition and file
system. With the --in-place option, rsync writes
data directly to the destination file rather than creating a
temporary file and updating via atomic rename.

Figure 6c reports the time to clone the Linux kernel
source code repository [28] from a clone on the local sys-
tem. The git diff workload reports the time to diff
between the v4.14 and v4.07 Linux source tags.

Finally, Figure 6d reports the time to tar and un-tar
the Linux 3.11.10 source code.

BetrFS 0.4 is either the fastest or a close second for
5 of the 7 application workloads. No other file system
matches that breadth of performance.

BetrFS 0.4 represents a strict improvement over Be-
trFS 0.3 for these workloads. In particular, we attribute
the improvement in the rsync --in-place, git
and un-tar workloads to eliminating zone maintenance
overheads. These results show that, although zoning rep-
resents a balance between full-path indexing and inode-
style indirection, full path indexing can improve applica-
tion workloads by 3-13% over zoning in BetrFS without
incurring unreasonable rename costs.

8 Related Work
WODs. Write-Optimized Dictionaries, or WODs, in-
cluding LSM-trees [36] and Bε -trees [10], are widely
used in key-value stores. For example, BigTable [12],
Cassandra [26], LevelDB [20] and RocksDB [41] use
LSM-trees; TokuDB [49] and Tucana [37] use Bε -trees.

A number of projects have enhanced WODs, includ-
ing in-memory component performance [4,19,44], write
amplification [30, 53] and fragmentation [33]. Like the
lifted Bε -tree, the LSM-trie [53] also has a trie structure;
the LSM-trie was applied to reducing write amplification
during LSM compaction rather than fast key updates.

Several file systems are built on WODs through
FUSE [17]. TableFS [40] puts metadata and small files in
LevelDB and keeps larger files on ext4. KVFS [45] uses
stitching to enhance sequential write performance on VT-
trees, variants of LSM-trees. TokuFS [15], a precursor
to BetrFS, uses full-path indexing on Bε -trees, showing
good performance for small writes and directory scans.
Trading writes for reads. IBM VSAM storage sys-
tem, in the Key Sequenced Data Set (KSDS) configu-
ration, can be thought of as an early key-value store us-
ing a B+ tree. One can think of using KSDS as a full-
path indexed file system, optimized for queries. Unlike
a POSIX file system, KSDS does not allow keys to be
renamed, only deleted and reinserted [29].

In the database literature, a number of techniques have
been developed that optimize for read-intensive work-

USENIX Association 16th USENIX Conference on File and Storage Technologies 133

0

50

100

150

B
et

rF
S

0.
4

B
et

rF
S

0.
3

bt
rf

s

ex
t4

ni
lf

s2 xf
s

zf
s

T
hr

ou
gh

pu
t(

op
/s

)

(a) IMAP server throughput.
Higher is better.

--in-place rename

0

20

40

60

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

B
an

dw
id

th
(M

B
/s

ec
)

(b) Rsync throughput.
Higher is better.

clone diff

0

50

100

150

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

Ti
m

e
(s

ec
)

(c) Git latency.
Lower is better.

tar untar

0

20

40

60

80

B
et

rF
S

0.
4

B
et

rF
S

0.
4

B
et

rF
S

0.
3

B
et

rF
S

0.
3

bt
rf

s

bt
rf

s

ex
t4

ex
t4

ni
lf

s2

ni
lf

s2xf
s

xf
s

zf
s

zf
s

Ti
m

e
(s

ec
)

(d) Tar latency.
Lower is better.

Figure 6: Application benchmarks. BetrFS 0.4 is the fastest file system, or essentially tied for fastest, in 4 out of
the 7 benchmarks. No other file system offered comparable across-the-board performance. Furthermore, BetrFS
0.4’s improvements over BetrFS in the in-place rsync, git clone, and untar benchmarks demonstrate that eliminating
zone-maintenance overheads can benefit real application performance.

loads, but make schema changes or data writes more ex-
pensive [1–3, 13, 21, 24]. For instance, denormalization
stores redundant copies of data in other tables, which
can be used to reduce the costs of joins during query,
but make updates more expensive. Similarly, material-
ized views of a database can store incremental results of
queries, but keeping these views consistent with updates
is more expensive.

Tree surgery. Most trees used in storage systems only
modify or rebalance nodes as the result of insertions and
deletions. Violent changes, such as tree surgery, are un-
common. Order Indexes [16] introduces relocation up-
dates, which moves nodes in the tree, to support dynamic
indexing. Ceph [52] performs dynamic subtree parti-
tioning [51] on the directory tree to adaptively distribute
metadata data to different metadata servers.

Hashing full paths. A number of systems store meta-
data in a hash table, keyed by full path, to lookup meta-
data in one I/O. The Direct Lookup File System (DLFS)
maps file metadata to on-disk buckets by hashing full
paths [27]. Hashing full paths creates two challenges:
files in the same directory may be scattered across disk,
harming locality, and DLFS directory renames require
deep recursive copies of both data and metadata.

A number of distributed file systems have stored file
metadata in a hash table, keyed by full path [18, 38, 48].
In a distributed system, using a hash table for metadata
has the advantage of easy load balancing across nodes,
as well as fast lookups. We note that the concerns of in-
dexing metadata in a distributed file system are quite dif-
ferent from keeping logically contiguous data physically
contiguous on disk. Some systems, such as the Google
File System, also do not support common POSIX opera-
tions, such as listing a directory.

Tsai et al. [50] demonstrate that indexing the in-
memory kernel directory cache by full paths can improve
path lookup operations, such as open.

9 Conclusion

This paper presents a new on-disk indexing structure,
the lifted Bε -tree, which can leverage full-path indexing
without incurring large rename overheads. Our proto-
type, BetrFS 0.4, is a nearly strict improvement over Be-
trFS 0.3. The main cases where BetrFS 0.4 does worse
than BetrFS 0.3 are where node splitting and merging is
on the critical path, and the extra computational costs of
lifting harm overall performance. We believe these costs
can be reduced in future work.

BetrFS 0.4 demonstrates the power of consolidating
optimization effort into a single framework. A critical
downside of zoning is that multiple, independent heuris-
tics make independent placement decisions, leading to
sub-optimal results and significant overheads. By using
the keyspace to communicate information about appli-
cation behavior, a single codebase can make decisions
such as when to move data to recover locality, and when
the cost of indirection can be amortized. In future work,
we will continue exploring additional optimizations and
functionality unlocked by full-path indexing.

Source code for BetrFS is available at betrfs.org.

Acknowledgments

We thank the anonymous reviewers and our shepherd
Ethan Miller for their insightful comments on ear-
lier drafts of the work. Part of this work was done
while Yuan was at Farmingdale State College of SUNY.
This research was supported in part by NSF grants
CNS-1409238, CNS-1408782, CNS-1408695, CNS-
1405641, IIS 1251137, IIS-1247750, CCF 1617618,
CCF 1439084, CCF-1314547, and by NIH grant NIH
grant CA198952-01. The work was also supported by
VMware, by EMC, and by NetApp Faculty Fellowships.

134 16th USENIX Conference on File and Storage Technologies USENIX Association

betrfs.org

References

[1] AHMAD, Y., KENNEDY, O., KOCH, C., AND
NIKOLIC, M. Dbtoaster: Higher-order delta
processing for dynamic, frequently fresh views.
PVLDB 5, 10 (2012), 968–979.

[2] AHMAD, Y., AND KOCH, C. Dbtoaster: A SQL
compiler for high-performance delta processing in
main-memory databases. PVLDB 2, 2 (2009),
1566–1569.

[3] ARASU, A., BABCOCK, B., BABU, S., DATAR,
M., ITO, K., NISHIZAWA, I., ROSENSTEIN, J.,
AND WIDOM, J. STREAM: the stanford stream
data manager. In Proceedings of the 2003 ACM
SIGMOD International Conference on
Management of Data, San Diego, California, USA,
June 9-12, 2003 (2003), A. Y. Halevy, Z. G. Ives,
and A. Doan, Eds., ACM, p. 665.

[4] BALMAU, O., GUERRAOUI, R., TRIGONAKIS,
V., AND ZABLOTCHI, I. Flodb: Unlocking
memory in persistent key-value stores. In
Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 2017, Belgrade,
Serbia, April 23-26, 2017 (2017), G. Alonso,
R. Bianchini, and M. Vukolic, Eds., ACM,
pp. 80–94.

[5] BENDER, M. A., COLE, R., DEMAINE, E. D.,
AND FARACH-COLTON, M. Scanning and
traversing: Maintaining data for traversals in a
memory hierarchy. In Algorithms - ESA 2002,
10th Annual European Symposium, Rome, Italy,
September 17-21, 2002, Proceedings (2002), R. H.
Möhring and R. Raman, Eds., vol. 2461 of Lecture
Notes in Computer Science, Springer, pp. 139–151.

[6] BENDER, M. A., FARACH-COLTON, M.,
FINEMAN, J. T., FOGEL, Y. R., KUSZMAUL,
B. C., AND NELSON, J. Cache-oblivious
streaming b-trees. In SPAA 2007: Proceedings of
the 19th Annual ACM Symposium on Parallelism
in Algorithms and Architectures, San Diego,
California, USA, June 9-11, 2007 (2007), P. B.
Gibbons and C. Scheideler, Eds., ACM, pp. 81–92.

[7] BENDER, M. A., FARACH-COLTON, M.,
JANNEN, W., JOHNSON, R., KUSZMAUL, B. C.,
PORTER, D. E., YUAN, J., AND ZHAN, Y. An
introduction to Be-trees and write-optimization.
:login; Magazine 40, 5 (Oct 2015), 22–28.

[8] BONWICK, J. ZFS: the last word in file systems.
https://blogs.oracle.com/video/
entry/zfs_the_last_word_in, Sept.
2004.

[9] BRODAL, G. S., DEMAINE, E. D., FINEMAN,
J. T., IACONO, J., LANGERMAN, S., AND

MUNRO, J. I. Cache-oblivious dynamic
dictionaries with update/query tradeoffs. In
Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19,
2010 (2010), M. Charikar, Ed., SIAM,
pp. 1448–1456.

[10] BRODAL, G. S., AND FAGERBERG, R. Lower
bounds for external memory dictionaries. In
Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January
12-14, 2003, Baltimore, Maryland, USA. (2003),
ACM/SIAM, pp. 546–554.

[11] BUCHSBAUM, A. L., GOLDWASSER, M. H.,
VENKATASUBRAMANIAN, S., AND
WESTBROOK, J. On external memory graph
traversal. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms,
January 9-11, 2000, San Francisco, CA, USA.
(2000), D. B. Shmoys, Ed., ACM/SIAM,
pp. 859–860.

[12] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH,
W. C., WALLACH, D. A., BURROWS, M.,
CHANDRA, T., FIKES, A., AND GRUBER, R. E.
Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst. 26, 2
(2008), 4:1–4:26.

[13] CIPAR, J., GANGER, G. R., KEETON, K., III, C.
B. M., SOULES, C. A. N., AND VEITCH, A. C.
Lazybase: trading freshness for performance in a
scalable database. In European Conference on
Computer Systems, Proceedings of the Seventh
EuroSys Conference 2012, EuroSys ’12, Bern,
Switzerland, April 10-13, 2012 (2012), P. Felber,
F. Bellosa, and H. Bos, Eds., ACM, pp. 169–182.

[14] CONWAY, A., BAKSHI, A., JIAO, Y., JANNEN,
W., ZHAN, Y., YUAN, J., BENDER, M. A.,
JOHNSON, R., KUSZMAUL, B. C., PORTER,
D. E., AND FARACH-COLTON, M. File systems
fated for senescence? nonsense, says science! In
15th USENIX Conference on File and Storage
Technologies, FAST 2017, Santa Clara, CA, USA,
February 27 - March 2, 2017 (2017), G. Kuenning
and C. A. Waldspurger, Eds., USENIX
Association, pp. 45–58.

[15] ESMET, J., BENDER, M. A., FARACH-COLTON,
M., AND KUSZMAUL, B. C. The tokufs
streaming file system. In 4th USENIX Workshop
on Hot Topics in Storage and File Systems,
HotStorage’12, Boston, MA, USA, June 13-14,
2012 (2012), R. Rangaswami, Ed., USENIX
Association.

USENIX Association 16th USENIX Conference on File and Storage Technologies 135

https://blogs.oracle.com/video/entry/zfs_the_last_word_in
https://blogs.oracle.com/video/entry/zfs_the_last_word_in

[16] FINIS, J., BRUNEL, R., KEMPER, A.,
NEUMANN, T., MAY, N., AND FÄRBER, F.
Indexing highly dynamic hierarchical data.
PVLDB 8, 10 (2015), 986–997.

[17] File system in userspace.
http://fuse.sourceforge.net/, Last
Accessed May 16, 2015, 2015.

[18] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.
The google file system. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
2003, SOSP 2003, Bolton Landing, NY, USA,
October 19-22, 2003 (2003), M. L. Scott and L. L.
Peterson, Eds., ACM, pp. 29–43.

[19] GOLAN-GUETA, G., BORTNIKOV, E., HILLEL,
E., AND KEIDAR, I. Scaling concurrent
log-structured data stores. In Proceedings of the
Tenth European Conference on Computer Systems,
EuroSys 2015, Bordeaux, France, April 21-24,
2015 (2015), L. Réveillère, T. Harris, and
M. Herlihy, Eds., ACM, pp. 32:1–32:14.

[20] GOOGLE, INC. LevelDB: A fast and lightweight
key/value database library by Google.
http://github.com/leveldb/, Last
Accessed May 16, 2015, 2015.

[21] HONG, M., DEMERS, A. J., GEHRKE, J., KOCH,
C., RIEDEWALD, M., AND WHITE, W. M.
Massively multi-query join processing in
publish/subscribe systems. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Beijing, China, June 12-14,
2007 (2007), C. Y. Chan, B. C. Ooi, and A. Zhou,
Eds., ACM, pp. 761–772.

[22] JANNEN, W., YUAN, J., ZHAN, Y.,
AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,
A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M.,
JOHNSON, R., KUSZMAUL, B. C., AND PORTER,
D. E. Betrfs: A right-optimized write-optimized
file system. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies,
FAST 2015, Santa Clara, CA, USA, February
16-19, 2015 (2015), J. Schindler and E. Zadok,
Eds., USENIX Association, pp. 301–315.

[23] JANNEN, W., YUAN, J., ZHAN, Y.,
AKSHINTALA, A., ESMET, J., JIAO, Y., MITTAL,
A., PANDEY, P., REDDY, P., WALSH, L.,
BENDER, M. A., FARACH-COLTON, M.,
JOHNSON, R., KUSZMAUL, B. C., AND PORTER,
D. E. Betrfs: Write-optimization in a kernel file
system. TOS 11, 4 (2015), 18:1–18:29.

[24] JOHNSON, C., KEETON, K., III, C. B. M.,
SOULES, C. A. N., VEITCH, A. C., BACON, S.,

BATUNER, O., CONDOTTA, M., COUTINHO, H.,
DOYLE, P. J., EICHELBERGER, R., KIEHL, H.,
MAGALHAES, G. R., MCEVOY, J., NAGARAJAN,
P., OSBORNE, P., SOUZA, J., SPARKES, A.,
SPITZER, M., TANDEL, S., THOMAS, L., AND
ZANGARO, S. From research to practice:
experiences engineering a production metadata
database for a scale out file system. In
Proceedings of the 12th USENIX conference on
File and Storage Technologies, FAST 2014, Santa
Clara, CA, USA, February 17-20, 2014 (2014),
B. Schroeder and E. Thereska, Eds., USENIX,
pp. 191–198.

[25] KIM, S., LEE, M. Z., DUNN, A. M., HOFMANN,
O. S., WANG, X., WITCHEL, E., AND PORTER,
D. E. Improving server applications with system
transactions. In Proceedings of the 7th ACM
European Conference on Computer Systems (New
York, NY, USA, 2012), EuroSys ’12, ACM,
pp. 15–28.

[26] LAKSHMAN, A., AND MALIK, P. Cassandra: a
decentralized structured storage system. Operating
Systems Review 44, 2 (2010), 35–40.

[27] LENSING, P. H., CORTES, T., AND
BRINKMANN, A. Direct lookup and hash-based
metadata placement for local file systems. In 6th
Annual International Systems and Storage
Conference, SYSTOR ’13, Haifa, Israel - June 30 -
July 02, 2013 (2013), R. I. Kat, M. Baker, and
S. Toledo, Eds., ACM, pp. 5:1–5:11.

[28] Linux kernel source tree.
https://github.com/torvalds/linux.

[29] LOVELACE, M., DOVIDAUSKAS, J., SALLA, A.,
AND SOKAI, V. VSAM Demystified.
http://www.redbooks.ibm.com/
redbooks/SG246105/wwhelp/wwhimpl/
js/html/wwhelp.htm, 2004.

[30] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,
AND ARPACI-DUSSEAU, R. H. Wisckey:
Separating keys from values in ssd-conscious
storage. In 14th USENIX Conference on File and
Storage Technologies, FAST 2016, Santa Clara,
CA, USA, February 22-25, 2016. (2016),
pp. 133–148.

[31] MATHUR, A., CAO, M., BHATTACHARYA, S.,
DILGER, A., TOMAS, A., AND VIVIER, L. The
new ext4 filesystem: current status and future
plans. In Ottowa Linux Symposium (OLS)
(Ottowa, ON, Canada, 2007), vol. 2, pp. 21–34.

[32] MCKUSICK, M. K., JOY, W. N., LEFFLER, S. J.,
AND FABRY, R. S. A fast file system for UNIX.
ACM Trans. Comput. Syst. 2, 3 (1984), 181–197.

136 16th USENIX Conference on File and Storage Technologies USENIX Association

http://fuse.sourceforge.net/
http://github.com/leveldb/
https://github.com/torvalds/linux
http://www.redbooks.ibm.com/redbooks/SG246105/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246105/wwhelp/wwhimpl/js/html/wwhelp.htm
http://www.redbooks.ibm.com/redbooks/SG246105/wwhelp/wwhimpl/js/html/wwhelp.htm

[33] MEI, F., CAO, Q., JIANG, H., AND TIAN, L.
Lsm-tree managed storage for large-scale
key-value store. In Proceedings of the Seventh
ACM Symposium on Cloud Computing, Santa
Clara, CA, USA, September 24-27, 2017 (2017),
pp. 142–156.

[34] NILFS: Continuous Snapshotting Filesystem.
https://nilfs.sourceforge.io/en/.

[35] OLSON, J. Enhance your apps with file system
transactions. MSDN Magazine (July 2007).
http://msdn2.microsoft.com/en-
us/magazine/cc163388.aspx.

[36] O’NEIL, P. E., CHENG, E., GAWLICK, D., AND
O’NEIL, E. J. The log-structured merge-tree
(lsm-tree). Acta Inf. 33, 4 (1996), 351–385.

[37] PAPAGIANNIS, A., SALOUSTROS, G.,
GONZÁLEZ-FÉREZ, P., AND BILAS, A. Tucana:
Design and implementation of a fast and efficient
scale-up key-value store. In 2016 USENIX Annual
Technical Conference, USENIX ATC 2016, Denver,
CO, USA, June 22-24, 2016. (2016), A. Gulati and
H. Weatherspoon, Eds., USENIX Association,
pp. 537–550.

[38] PEERY, C., CUENCA-ACUNA, F. M., MARTIN,
R. P., AND NGUYEN, T. D. Wayfinder:
Navigating and sharing information in a
decentralized world. In Databases, Information
Systems, and Peer-to-Peer Computing - Second
International Workshop, DBISP2P 2004, Toronto,
Canada, August 29-30, 2004, Revised Selected
Papers (2004), W. S. Ng, B. C. Ooi, A. M. Ouksel,
and C. Sartori, Eds., vol. 3367 of Lecture Notes in
Computer Science, Springer, pp. 200–214.

[39] PORTER, D. E., HOFMANN, O. S., ROSSBACH,
C. J., BENN, A., AND WITCHEL, E. Operating
systems transactions. In Proceedings of the 22nd
ACM Symposium on Operating Systems Principles
2009, SOSP 2009, Big Sky, Montana, USA,
October 11-14, 2009 (2009), J. N. Matthews and
T. E. Anderson, Eds., ACM, pp. 161–176.

[40] REN, K., AND GIBSON, G. A. TABLEFS:
enhancing metadata efficiency in the local file
system. In 2013 USENIX Annual Technical
Conference, San Jose, CA, USA, June 26-28, 2013
(2013), A. Birrell and E. G. Sirer, Eds., USENIX
Association, pp. 145–156.

[41] RocksDB. rocksdb.org, 2014. Viewed April
19, 2014.

[42] RODEH, O., BACIK, J., AND MASON, C.
BTRFS: the linux b-tree filesystem. TOS 9, 3
(2013), 9:1–9:32.

[43] SEARS, R., CALLAGHAN, M., AND BREWER,
E. A. Rose: compressed, log-structured
replication. PVLDB 1, 1 (2008), 526–537.

[44] SEARS, R., AND RAMAKRISHNAN, R. blsm: a
general purpose log structured merge tree. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD
2012, Scottsdale, AZ, USA, May 20-24, 2012
(2012), K. S. Candan, Y. Chen, R. T. Snodgrass,
L. Gravano, and A. Fuxman, Eds., ACM,
pp. 217–228.

[45] SHETTY, P., SPILLANE, R. P., MALPANI, R.,
ANDREWS, B., SEYSTER, J., AND ZADOK, E.
Building workload-independent storage with
vt-trees. In Proceedings of the 11th USENIX
conference on File and Storage Technologies,
FAST 2013, San Jose, CA, USA, February 12-15,
2013 (2013), K. A. Smith and Y. Zhou, Eds.,
USENIX, pp. 17–30.

[46] SPILLANE, R. P., GAIKWAD, S., CHINNI, M.,
ZADOK, E., AND WRIGHT, C. P. Enabling
transactional file access via lightweight kernel
extensions. In 7th USENIX Conference on File and
Storage Technologies, February 24-27, 2009, San
Francisco, CA, USA. Proceedings (2009), M. I.
Seltzer and R. Wheeler, Eds., USENIX, pp. 29–42.

[47] SWEENEY, A., DOUCETTE, D., HU, W.,
ANDERSON, C., NISHIMOTO, M., AND PECK, G.
Scalability in the XFS file system. In Proceedings
of the USENIX Annual Technical Conference, San
Diego, California, USA, January 22-26, 1996
(1996), USENIX Association, pp. 1–14.

[48] THOMSON, A., AND ABADI, D. J. Calvinfs:
Consistent WAN replication and scalable metadata
management for distributed file systems. In
Proceedings of the 13th USENIX Conference on
File and Storage Technologies, FAST 2015, Santa
Clara, CA, USA, February 16-19, 2015 (2015),
pp. 1–14.

[49] TOKUTEK, INC. TokuDB v6.5 for MySQL and
MariaDB. http://www.tokutek.com/
products/tokudb-for-mysql/, 2013. See
https://web.archive.org/web/
20121011120047/http://www.tokutek.
com/products/tokudb-for-mysql/.

[50] TSAI, C., ZHAN, Y., REDDY, J., JIAO, Y.,
ZHANG, T., AND PORTER, D. E. How to get
more value from your file system directory cache.
In Proceedings of the 25th Symposium on
Operating Systems Principles, SOSP 2015,
Monterey, CA, USA, October 4-7, 2015 (2015),
E. L. Miller and S. Hand, Eds., ACM,
pp. 441–456.

USENIX Association 16th USENIX Conference on File and Storage Technologies 137

https://nilfs.sourceforge.io/en/
rocksdb.org
http://www.tokutek.com/products/tokudb-for-mysql/
http://www.tokutek.com/products/tokudb-for-mysql/
https://web.archive.org/web/20121011120047/http://www.tokutek.com/products/tokudb-for-mysql/
https://web.archive.org/web/20121011120047/http://www.tokutek.com/products/tokudb-for-mysql/
https://web.archive.org/web/20121011120047/http://www.tokutek.com/products/tokudb-for-mysql/

[51] WEIL, S., POLLACK, K., BRANDT, S. A., AND
MILLER, E. L. Dynamic metadata management
for petabyte-scale file systems. In Proceedings of
the ACM/IEEE Conference on Supercomputing
(SC) (Nov. 2004).

[52] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MALTZAHN, C. Ceph: A
scalable, high-performance distributed file system.
In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation
(OSDI) (2006), pp. 307–320.

[53] WU, X., XU, Y., SHAO, Z., AND JIANG, S.
LSM-trie: An LSM-tree-based ultra-large
key-value store for small data items. In
Proceedings of the USENIX Annual Technical
Conference (Santa Clara, CA, USA, July 8–10
2015), pp. 71–82.

[54] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P.,
AKSHINTALA, A., CHANDNANI, K., DEO, P.,
KASHEFF, Z., WALSH, L., BENDER, M. A.,
FARACH-COLTON, M., JOHNSON, R.,
KUSZMAUL, B. C., AND PORTER, D. E.

Optimizing every operation in a write-optimized
file system. In 14th USENIX Conference on File
and Storage Technologies, FAST 2016, Santa
Clara, CA, USA, February 22-25, 2016. (2016),
A. D. Brown and F. I. Popovici, Eds., USENIX
Association, pp. 1–14.

[55] YUAN, J., ZHAN, Y., JANNEN, W., PANDEY, P.,
AKSHINTALA, A., CHANDNANI, K., DEO, P.,
KASHEFF, Z., WALSH, L., BENDER, M. A.,
FARACH-COLTON, M., JOHNSON, R.,
KUSZMAUL, B. C., AND PORTER, D. E. Writes
wrought right, and other adventures in file system
optimization. TOS 13, 1 (2017), 3:1–3:26.

[56] ZELDOVICH, N., BOYD-WICKIZER, S.,
KOHLER, E., AND MAZIÈRES, D. Making
information flow explicit in histar. In 7th
Symposium on Operating Systems Design and
Implementation (OSDI ’06), November 6-8,
Seattle, WA, USA (2006), B. N. Bershad and J. C.
Mogul, Eds., USENIX Association, pp. 263–278.

138 16th USENIX Conference on File and Storage Technologies USENIX Association

Clay Codes: Moulding MDS Codes to Yield an MSR Code

Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini,
Elita Lobo, Birenjith Sasidharan, P. Vijay Kumar

Indian Institute of Science, Bangalore

Alexander Barg, Min Ye
University of Maryland

Srinivasan Narayanamurthy, Syed Hussain, Siddhartha Nandi
NetApp ATG, Bangalore

Abstract
With increase in scale, the number of node failures

in a data center increases sharply. To ensure avail-
ability of data, failure-tolerance schemes such as Reed-
Solomon (RS) or more generally, Maximum Distance
Separable (MDS) erasure codes are used. However,
while MDS codes offer minimum storage overhead for
a given amount of failure tolerance, they do not meet
other practical needs of today’s data centers. Although
modern codes such as Minimum Storage Regenerating
(MSR) codes are designed to meet these practical needs,
they are available only in highly-constrained theoretical
constructions, that are not sufficiently mature enough for
practical implementation. We present Clay codes that ex-
tract the best from both worlds. Clay (short for Coupled-
Layer) codes are MSR codes that offer a simplified con-
struction for decoding/repair by using pairwise coupling
across multiple stacked layers of any single MDS code.

In addition, Clay codes provide the first practical im-
plementation of an MSR code that offers (a) low storage
overhead, (b) simultaneous optimality in terms of three
key parameters: repair bandwidth, sub-packetization
level and disk I/O, (c) uniform repair performance of
data and parity nodes and (d) support for both single and
multiple-node repairs, while permitting faster and more
efficient repair.

While all MSR codes are vector codes, none of the dis-
tributed storage systems support vector codes. We have
modified Ceph to support any vector code, and our con-
tribution is now a part of Ceph’s master codebase. We
have implemented Clay codes, and integrated it as a plu-
gin to Ceph. Six example Clay codes were evaluated on
a cluster of Amazon EC2 instances and code parameters
were carefully chosen to match known erasure-code de-
ployments in practice. A particular example code, with
storage overhead 1.25x, is shown to reduce repair net-
work traffic by a factor of 2.9 in comparison with RS
codes and similar reductions are obtained for both repair
time and disk read.

1 Introduction

The number of failures in storage subsystems increase
as data centers scale [11] [17] [29]. In order to ensure
data availability and durability, failure-tolerant solutions
such as replication and erasure codes are used. It is im-
portant for these solutions to be highly efficient so that
they incur low cost in terms of their utilization of stor-
age, computing and network resources. This additional
cost is considered an overhead, as the redundancy intro-
duced for failure tolerance does not aid the performance
of the application utilizing the data.

In order to be failure tolerant, data centers have in-
creasingly started to adopt erasure codes in place of repli-
cation. A class of erasure codes known as maximum dis-
tance separable (MDS) codes offer the same level of fail-
ure tolerance as replication codes with minimal storage
overhead. For example, Facebook [19] reported reduced
storage overhead of 1.4x by using Reed-Solomon (RS)
codes, a popular class of MDS codes, as opposed to the
storage overhead of 3x incurred in triple replication [13].
The disadvantage of the traditional MDS codes is their
high repair cost. In case of replication, when a node or
storage subsystem fails, an exact copy of the lost data
can be copied from surviving nodes. However, in case of
erasure codes, dependent data that is more voluminous in
comparison with the lost data, is copied from surviving
nodes and the lost data is then computed by a repair node,
which results in a higher repair cost when compared to
replication. This leads to increased repair bandwidth and
repair time.

A class of erasure codes, termed as minimum storage
regenerating (MSR) codes, offer all the advantages of
MDS codes but require lesser repair bandwidth. Until
recently, MSR codes lacked several key desirable prop-
erties that are important for practical systems. For exam-
ple, they were computationally more complex [14], or
demonstrated non-uniform repair characteristics for dif-
ferent types of node failures [18], or were able to recover

USENIX Association 16th USENIX Conference on File and Storage Technologies 139

from only a limited (one or two) number of failures [20],
or they lacked constructions of common erasure code
configurations [24], [20]. The first theoretical construc-
tion that offered all the desirable properties of an MSR
code was presented by Ye and Barg [35].

This paper presents Clay codes that extend the theo-
retical construction presented in [35], with practical con-
siderations. Clay codes are constructed by placing any
MDS code in multiple layers and performing pair-wise
coupling across layers. Such a construction offers effi-
cient repair with optimal repair bandwidth, causing Clay
codes to fall in the MSR arena.

We implement Clay codes and make it available as
open-source under LGPL. We also integrate Clay codes
as a plugin with Ceph, a distributed object storage sys-
tem. Ceph supports scalar erasure codes such as RS
codes. However, it does not support vector codes. We
modified Ceph to support any vector code, and our con-
tribution is now included in Ceph’s master codebase [4].

In erasure coding terminology, scalar codes require
block-granular repair data, while vector codes can work
at the sub-block granularity for repair. In Ceph, the
equivalent of an erasure-coded block is one chunk of
object. By this, we mean that Ceph supports chunk-
granular repair data, while our contribution extended it
to sub-chunk granularity. To the best of our knowledge,
after our contribution, Ceph has become the first dis-
tributed storage system to support vector codes. Also, if
Clay codes become part of Ceph’s codebase, this will be
the first-ever implementation of an MSR code that pro-
vides all desirable practical properties, and which is in-
tegrated to a distributed storage system.

Our contributions include (a) the construction of Clay
codes as explained in Section 3, (b) the modification
made to Ceph in order to support any vector code, ex-
plained in Section 4, and (c) the integration of Clay codes
as a plugin to Ceph, explained in Section 4. We con-
ducted experiments to compare the performance of Clay
codes with RS codes available in Ceph and the results
are presented in Section 5. One of the example Clay
codes that we evaluated, which has a storage overhead
of 1.25x, was able to bring down the repair network traf-
fic by a factor of 2.9 when compared with the RS code of
same parameters. Similar reductions were also obtained
for disk read and repair time.

2 Background and Preliminaries

Erasure Code Erasure codes are an alternative to
replication for ensuring failure tolerance in data storage.
In an [n,k] erasure-coded system, data pertaining to an
object is first divided into k data chunks and then en-
coded to obtain m = n− k parity chunks. When we do
not wish to distinguish between a data or parity chunk,

we will simply refer to the chunk as a coded chunk. The
collection of n coded chunks obtained after encoding are
stored in n distinct nodes. Here, by node, we mean an in-
dependent failure domain such as a disk or a storage node
of a distributed storage system (DSS). The storage effi-
ciency of an erasure code is measured by storage over-
head defined as the ratio of the number of coded chunks
n to the number of data chunks k. Every erasure code has
an underlying finite field over which computations are
performed. For the sake of simplicity, we assume here
that the field is of size 28 and hence each element of the
finite field can be represented by a byte1. It is convenient
to differentiate at this point, between scalar and vector
codes.
Scalar Codes Let each data chunk be comprised of L
bytes. In the case of a scalar code, one byte from each
of the k data chunks is picked and the k bytes are lin-
early combined in m different ways, to obtain m parity
bytes. The resultant set of n = k+m bytes so obtained is
called a codeword. This operation is repeated in parallel
for all the L bytes in a data chunk to obtain L codewords.
This operation will also result in the creation of m parity
chunks, each composed of L bytes (see Fig. 1). As men-
tioned above, every coded chunk is stored on a different
node.

Data chunks Parity chunks

Codeword

Byte

Figure 1: A pictorial representation of a scalar code. The L = 6 horizontal layers
are the codewords and the n = 6 vertical columns, the chunks, with the first k = 4
chunks corresponding to data chunks and the last (n− k) = 2 chunks, the parity
chunks. Each unit (tiny rectangle) in the figure corresponds to a single byte.

Vector Codes The difference in the case of vector
codes is that here, one works with ordered collections
of α ≥ 1 bytes at a time. For convenience, we will refer
to such an ordered collection of α bytes as a superbyte.
In the encoding process, a superbyte from each of the k
data chunks is picked and the k superbytes are then lin-
early combined in m different ways, to obtain m parity
superbytes. The resultant set of n = k+m superbytes is
called a (vector) codeword. This operation is repeated in
parallel for all the N = L

α
superbytes in a data chunk to

obtain N codewords. Figure 2 shows a simple example
where each superbyte consists of just two bytes.

The number α of bytes within a superbyte is termed
the sub-packetization level of the code. Scalar codes

1The codes described in this paper can however, be constructed
over a finite field whose size is significantly smaller, and approximately
equal to the parameter n. Apart from simplicity, we use the word byte
here since the finite field of size 28 is a popular choice in practice.

140 16th USENIX Conference on File and Storage Technologies USENIX Association

Data chunks Parity chunks

Codeword

Superbyte

1

2

1

2

1

2

Figure 2: A pictorial representation of a vector code where each superbyte con-
sists of 2 bytes. The picture shows N = 3 codewords. A single chunk, either data
or parity, stores 3 superbytes, each corresponding to a different codeword.

such as RS codes can be regarded as having sub-
packetization level α = 1. Seen differently, one could
view a vector code as replacing α scalar codewords with
a single vector codeword. The advantage of vector codes
is that repair of a coded chunk in a failed node can poten-
tially be accomplished by accessing only a subset of the
α bytes within the superbyte, present in each of the re-
maining coded chunks, corresponding to the same code-
word. This reduces network traffic arising from node re-
pair.

Sub-chunking through Interleaving In Fig. 2, we
have shown the α bytes associated to a superbyte as
being stored contiguously. When the sub-packetization
level α is large, given that operations involving multi-
ple codewords are carried out in parallel, it is advanta-
geous, from an ease-of-memory-access viewpoint, to in-
terleave the bytes so that the corresponding bytes across
different codewords are stored contiguously as shown in
Fig. 3. This is particularly true, when the number N of
superbytes within a chunk is large, for example, when
L = 8KB and α = 2, contiguous access to N = 4K bytes
is possible. With interleaving, each data chunk is par-
titioned into α subsets, which we shall refer to as sub-
chunks. Thus each sub-chunk within a node, holds one
byte from each of the N codewords stored in the node.

1

2

1

2

1

2

⇒
Interleave

1

1

1

2

2

2

subchunk

Figure 3: This figure shows the interleaving of the corresponding bytes within a
superbyte across codewords, for the particularly simple case of two bytes within
a superbyte. This results in a partitioning of the data chunk into sub-chunks and
can lead to improved-memory-access performance.

MDS Codes The sub-class of (n,k) erasure codes, ei-
ther scalar or vector, having the property that they can
recover from the failure of any (n− k) nodes are called
MDS codes. For a fixed k, these codes have the small-
est storage overhead n

k among any of the erasure codes
that can recover from a failure of a fixed number of n−k
nodes. Examples include RS, Row-Diagonal Parity [9]
and EVENODD [7] codes, see [5] for additional ex-
amples. Facebook data centers [28] have employed an
(14,10) RS code in their data warehouse cluster.

Node Repair The need for node repair in a distributed
storage system can arise either because a particular hard-
ware component has failed, is undergoing maintenance,
is being rebooted or else, is simply busy serving other si-
multaneous requests for data. A substantial amount of
network traffic is generated on account of node-repair
operations. An example cited in [28], is one of a
Facebook data-warehouse, that stores multiple petabytes
of data, where the median amount of data transferred
through top-of-rack switches for the purposes of node
repair, is in excess of 0.2 petabytes per day. The traf-
fic arising from node-repair requests, eats into the band-
width available to serve user requests for data. The time
taken for node repair also directly affects system avail-
ability. Thus there is strong interest in coding schemes
that minimize the amount of data transfer across the net-
work, and the time taken to repair a failed node. Under
the conventional approach to repairing an RS code for in-
stance, one would have to download k times the amount
of data as is stored in a failed node to restore the failed
node, which quite clearly, is inefficient.

MSR Codes MSR codes [10] are a sub-class of vector
MDS codes that have the smallest possible repair band-
width. To restore a failed node containing α bytes in an
(n,k) MSR code, the code first contacts an arbitrarily-
chosen subset of d helper nodes, where d is a design pa-
rameter that can take on values ranging from k to (n−1).
It then downloads β = α

d−k+1 bytes from each helper
node, and restores the failed node using the helper data.
The total amount dβ of bytes downloaded is typically
much smaller than the total amount kα bytes of data
stored in the k nodes. Here α is the sub-packetization
level of an MSR code. The total number dβ of bytes
downloaded for node repair, is called the repair band-
width. Let us define the normalized repair bandwidth
to be the quantity dβ

kα
= d

k(d−k+1) . The normalization by
kα can be motivated by viewing a single MSR codeword
having sub-packetization level α as a replacement for α

scalar RS codewords. The download bandwidth under
the conventional repair of α scalar RS codes equals kα

bytes, corresponding to a normalized repair bandwidth
of 1. For the particular case d = (n−1), the normalized
value equals n−1

k(n−k) . It follows that the larger the number
(n− k) of parity chunks, the greater the reduction in re-
pair traffic. We will also use the parameter M = kα to de-
note the total number of databytes contained in an MSR
codeword. Thus an MSR code has associated parameter
set given by {(n,k),d,(α,β),M} with β = α

d−k+1 and
M = kα .

Additional Desired Attributes: Over and above the low
repair-bandwidth and low storage-overhead attributes of
MSR codes, there are some additional properties that one
would like a code to have. These include (a) uniform-

USENIX Association 16th USENIX Conference on File and Storage Technologies 141

Code Storage
O/h

Failure
Tolerance

All-
Node

Optimal
Repair

Disk
Read
Opti-
mal

Repair-
bandwidth
Optimal

α
Order
of GF

Implemented
Distributed

System

RS Low n− k No No No 1 Low HDFS, Ceph,
Swift, etc.

PM-RBT [24] High n− k Yes Yes Yes Linear Low Own system
Butterfly [20] Low 2 Yes No Yes Exponential Low HDFS, Ceph
HashTag [18] Low n− k No No Yes Polynomial High HDFS

Clay Code Low n− k Yes Yes Yes Polynomial Low Ceph
Table 1: Detailed comparison of Clay codes with RS and other practical MSR codes. Here, the scaling of α is with respect to n for a fixed storage overhead (n/k).

repair capability, i.e., the ability to repair data and parity
nodes with the same low repair bandwidth, (b) minimal
disk read, meaning that the amount of data read from disk
for node repair in a helper node is the same as the amount
of data transferred over the network from the helper node
and (c) low value of sub-packetization parameter α , and
(d) a small size of underlying finite field over which the
code is constructed. In MSR codes that possess the disk
read optimal property, both network traffic and number
of disk reads during node repair are simultaneously min-
imized and are the same.

2.1 Related Work
The problem of efficient node repair has been studied for
some time and several solutions have been proposed. Lo-
cally repairable codes such as the Windows Azure Code
[15] and Xorbas [28] trade the MDS property to allow
efficient node-repair by accessing a smaller number of
helper nodes. The piggy-backed RS codes introduced in
[26] achieve reductions in network traffic while retaining
the MDS property but they do not achieve the savings
that are possible with an MSR code.

Though there are multiple implementations of MSR
codes, these are lacking in one or the other of the de-
sired attributes (see Table 1). In [8], the authors present
2- parity FMSR codes, that allow efficient repair, but re-
construct a function of the data that is not necessarily
same as the failed node data. This demands an additional
decoding operation to be performed to retrieve original
data. In [24], the authors implement a modified product-
matrix MSR construction [27]. Although the code dis-
plays optimal disk I/O performance, the storage overhead
is on the higher side and of the form (2− 1

k). In [20],
the authors implement an MSR code known as the But-
terfly code and experimentally validate the theoretically-
proven benefits of reduced data download for node re-
pair. However, the Butterfly code is limited to (n− k) =
m = 2 and has large value of sub-packetization 2k−1. The
restriction to small values of parameter m limits the ef-
ficiency of repair, as the normalized repair bandwidth
can be no smaller than 1

2 . In [18], the authors propose a
class of MDS array codes named as HashTag codes with

α ≤ (n− k)k/n−k that permit flexibility in choice of α at
the expense of repair bandwidth. However, the code sup-
ports efficient repair only for systematic nodes, requires
computations at helper nodes, and involves operations in
a large finite-field. The authors have presented an evalu-
ation of HashTag codes in Hadoop.

In a parallel line of work, many theoretical construc-
tions of MSR codes are proposed in literature. The
product-matrix MSR codes proposed in [27] operate with
very low sub-packetization and small finite-field size,
however require a large storage overhead. In a sec-
ond notable construction known as zig-zag codes [30],
the authors present the first theoretical construction of
low-storage-overhead MSR codes for every n,k, when
d = (n− 1). The construction of zig-zag code is non-
explicit in the sense that the finite-field coefficients de-
termining the parities have to be found by computer
search. Thus, despite the many theoretical constructions
and a smaller number of practical implementations, the
search for an MSR code having all of the desirable prop-
erties described above and its practical evaluation con-
tinued to remain elusive. The recent theoretical results
of Ye and Barg [35] have resulted in an altered situa-
tion. In this work, the authors provide a construction
that permits storage overhead as close to 1 as desired,
sub-packetization level close to the minimum possible,
finite field size no larger than n, optimal disk I/O, and
all-node optimal repair.Clay codes offer a practical per-
spective and an implementation of the Ye-Barg theoreti-
cal construction, along with several additional attributes.
In other words, Clay codes possess all of the desirable
properties mentioned above, and also offer several addi-
tional advantages compared to the Ye-Barg code.

2.2 Refinements over Ye-Barg Code
The presentation of the Clay code here is from a coupled-
layer perspective that leads directly to implementation,
whereas the description in [35] is primarily in terms of
parity-check matrices. For example, using the coupled-
layer viewpoint, both data decoding (by which we mean
recovery from a maximum of (n− k) erasures) as well
as node-repair algorithms can be described in terms of

142 16th USENIX Conference on File and Storage Technologies USENIX Association

two simple operations: (a) decoding of the scalar MDS
code, and (b) an elementary linear transformation be-
tween pairs of bytes (see Section 3). While this coupled-
layer view-point was implicit in the Ye-Barg paper [35],
we make it explicit here.

In addition, Clay codes can be constructed using any
scalar MDS code as building blocks, while Ye-Barg code
is based only on Vandermonde-RS codes. Therefore,
scalar MDS codes that have been time-tested, and best
suited for a given application or workload need not be
modified in order to make the switch to MSR codes. By
using Clay codes, these applications can use the same
MDS code in a coupled-layer architecture and get the
added benefits of MSR codes. The third important dis-
tinction is that, in [35], only the single node-failure case
is discussed. In the case of Clay codes, we have come up
with a generic algorithm to repair multiple failures, that
has allowed us to repair many instances of multiple node
repair with reduced repair bandwidth. Our refinements
over Ye-Barg code primarily aiming at its practical real-
ization precede certain theoretical developments that are
to come later. In a recent work [6], it is proved that the
sub-packetization of Clay codes is the minimum possible
for any disk-read-optimal MSR code. In [31], authors
propose a permuatation-based transformation that con-
verts a non-binary (n,k) MDS code to another MDS code
permitting efficient repair of a set of (n−k) nodes, at the
cost of increasing the sub-packetization (n−k) times. An
MSR code obtained by repeated application of the trans-
formation results in the same sub-packetization as that of
the Ye-Barg code.

3 Construction of the Clay Code

Single Codeword Description In Section 2, we noted
that each node stores a data chunk and that a data chunk
is comprised of L bytes from N codewords. In the present
section we will restrict our attention to the case of a sin-
gle codeword, i.e., to the case when N = 1, L = α .
Parameters of Clay Codes Evaluated Table 2 lists the
parameters of the Clay codes evaluated here. As can
be seen, the normalized repair bandwidth can be made
much smaller by increasing the value of (d− k+1). For
example, the normalized repair bandwidth for a (20,16)
code equals 0.297, meaning that the repair bandwidth of
a Clay code, is less than 30% of the corresponding value
for α = 1024 layers of a (20,16) RS code.
Explaining Through Example We will describe the
Clay code via an example code having parameters:
{(n = 4,k = 2), d = 3,(α = 4,β = 2), M = 8}. The
codeword is stored across n = 4 nodes of which k = 2
are data nodes and n−k = 2 are parity nodes. Each node
stores a superbyte made up of α = 4 bytes. The code
has storage overhead nα

kα
= n

k = 2 which is the ratio of

(n,k) d (α,β) (dβ)/(kα)

(6,4) 5 (8,4) 0.625
(12,9) 11 (81,27) 0.407
(14,10) 13 (256,64) 0.325
(14,10) 12 (243,81) 0.4
(14,10) 11 (128,64) 0.55
(20,16) 19 (1024,256) 0.297

Table 2: Parameters of the Clay codes evaluated here.

the total number nα = 16 of bytes stored to the num-
ber M = kα = 8 of data bytes. During repair of a failed
node, β = 2 bytes of data are downloaded from each of
the d = 3 helper nodes, resulting in a normalized repair
bandwidth of dβ

kα
= d

k(d−k+1) = 0.75.

Starting Point: A (4,2) Scalar RS Code We be-
gin our description of the Clay code with a simple,
distributed data storage setup composed of 4 nodes,
where the nodes are indexed by (x,y) coordinates:
{(x,y) | (x,y) ∈ J}, J = {(0,0),(1,0),(0,1),(1,1)}}.

(0,0) (0,1)

(1,0) (1,1)

Figure 4: The (4,2)
MDS code M .

Let us assume that a (4,2) RS code
M is used to encode and store data
on these 4 nodes. We assume that
nodes (0,0),(1,0) store data, nodes
(0,1),(1,1) store parity. Two nodes
are said to be in same y-section, if
they have the same y-coordinate.

The Uncoupled Code Next, consider storing on the
same 4 nodes, 4 codewords drawn from the same RS
code M . Thus each node now stores 4 bytes, each
associated to a different codeword. We will use the
parameter z ∈ {0,1,2,3} to index the 4 codewords.

z=0

x
y

z=1

z=2

z=3

Figure 5: The uncou-
pled code U .

Together these 4 codewords form
the uncoupled code U , whose bytes
are denoted by {U(x,y,z) | (x,y) ∈
J,z ∈ {0,1,2,3}}. These 16 bytes
can be viewed as being stored in a
data cube composed of 4 horizontal
layers (or planes), with 4 bytes to
a layer (Fig. 5). The data cube can
also be viewed as being composed
of 4 (vertical) columns, each col-
umn composed of 4 cylinders. Each
column stores a superbyte while each of the 4 cylinders
within a column stores a single byte.

It can be verified that the uncoupled code inherits the
property that data stored in the 4 nodes can be recov-
ered by connecting to any 2 nodes. As one might expect,
this code offers no savings in repair bandwidth over that
of the constituent RS codes, since we have simply repli-
cated the same RS code 4 times. We show below how
the uncoupled code can be used to create a new coupled-
layer (Clay) code that is an MSR code having the desired
optimal, repair bandwidth.

USENIX Association 16th USENIX Conference on File and Storage Technologies 143

z= (0,0)

z= (1,1)

z= (1,0)

z= (0,1)

Figure 6: The uncou-
pled code U .

Using a Pair of Coordinates to
Represent a Layer The coupling
of the layers is easier explained
in terms of a binary representation
(z0,z1) of the layer-index z, defined
by z = 2z0 + z1 i.e., 0⇒ (0,0), 1⇒
(0,1), 2 ⇒ (1,0) and 3 ⇒ (1,1).
We color in red, vertices within a
layer for which x = zy as a means of identifying the layer.
For example in Fig. 6, in layer (z0,z1) = (1,1), the ver-
tices (1,0), (1,1) are colored red.

Pairing of Vertices and Bytes We will abbreviate and
write p = (x,y,z) in place of (x,y,z) and introduce a pair-
ing (p, p∗) of vertices within the data cube. The vertices
that are colored red are unpaired. The remaining vertices
are paired such that a vertex p and its companion p∗ both
belong to the same y-section. In the data cube of our
example code, there are a total of 4 ∗ 4 = 16 vertices of
which 8 are unpaired. The remaining 8 vertices form 4
pairs. Each pair is shown in the data cube appearing on
the left in Fig. 7 using a pair of yellow rectangles linked
by a dotted line. Mathematically, p∗ is obtained from
p = (x,y,z) simply by interchanging the values of x and
zy. Examples are presented in Table 3. As mentioned

Vertex p = (x,y,z0,z1) Companion p∗ (interchange x,zy)
(0, 0, 1, 0) (1, 0, 0, 0)
(1, 1, 1, 0) (0, 1, 1, 1)
(0, 1, 1, 0) (0, 1, 1, 0) a red vertex, (p = p∗)

Table 3: Example vertex pairings.

earlier, each vertex p of the data cube is associated to a
byte U(p) =U(x,y,z) of data in the uncoupled code U .
We will use U∗(p) to denote the companion U(p∗), of
the byte U(p).

Transforming from Uncoupled to Coupled-Layer
Code We now show how one can transform in a sim-
ply way, a codeword belonging to the uncoupled code
U to a codeword belonging to the Coupled-layer (Clay)
code C . As with the uncoupled code, there are a total
of 16 bytes making up each codeword in the Clay code.
These 16 bytes are stored in a second, identical data cube
that is again, composed of 4 horizontal layers, 4 vertical
columns with 4 vertices in a layer and 4 vertices per col-
umn. Each node corresponds to a column of the data
cube and stores a superbyte, made up of 4 bytes. The
Clay code C associates a byte C(p) with each vertex
p of the data cube just as does the uncoupled code U .
The bytes U(p) and C(p) are related in a simple man-
ner. If p corresponds to an unpaired (and hence colored
in red) vertex, we simply set C(p) = U(p). If (p, p∗)
are a pair of companion vertices, p 6= p∗, U(p),U∗(p)
and C(p),C∗(p) are related by the the following pairwise

forward transform (PFT):[
C(p)
C∗(p)

]
=

[
1 γ

γ 1

]−1 [U(p)
U∗(p)

]
. (1)

C
C*U*

U

PFT

PRT

Figure 7: Bytes C(x,y,z) of the Clay code can be obtained from bytes U(x,y,z)
of the uncoupled code through a pairwise forward transform and in the reverse
direction, by the corresponding pairwise reverse transform. Vertex pairs within a
data cube are identified by a pair of yellow rectangles linked by a dotted line.

In the reverse direction, we have U(p) =C(p) respec-
tively if p is unpaired. Else, U(p),C(p) are related by
the pairwise reverse transform (PRT):[

U(p)
U∗(p)

]
=

[
1 γ

γ 1

][
C(p)
C∗(p)

]
. (2)

We assume γ to be chosen such that γ 6= 0, γ2 6= 1, and
under this condition, it can be verified that any two bytes
in the set {U(p),U∗(p),C(p),C∗(p)} can be recovered
from the remaining two bytes.

Use pairwise forward

transformation to obtain the data

to be stored in the parity nodes

of coupled code

Use the MDS code in layer-by-layer

fashion to determine data stored in

the parity nodes of uncoupled code

Use pairwise reverse

transformation to obtain data

stored in the 2 data nodes of

uncoupled code

Load data into the 2 data nodes of

coupled code

MDS
Encode

PRT

PFT

Figure 8: Encoding flowchart for the Clay code. A top view of the nodes is shown
on the right. The nodes in pink and blue correspond respectively, to the coupled
and uncoupled codes.

Encoding the Clay code The flow chart in Fig.8 pro-
vides a self-explanatory description of the encoding pro-
cess.

Reduced Repair Bandwidth of the Clay Code The
savings in repair bandwidth of the Clay code arises
from the fact that parity-check constraints are ju-
diciously spread across layers of the C data cube.

144 16th USENIX Conference on File and Storage Technologies USENIX Association

z= (1,1)

z= (1,0)

Figure 9: Identifying the
failed node and helper
data transferred.

In Fig. 9, which shows a portion
of the bytes in C , the dotted
column corresponds to the failed
node having coordinates (x,y) =
(1,0). To repair the node, only the
two layers z= (1,0) and z= (1,1)
corresponding to the presence of
red dots within the dotted column
are called upon for node repair.
Thus each helper node contributes
only 2 bytes, as opposed to 4 in an
RS code, towards node repair and
this explains the savings in repair bandwidth. To under-
stand how repair is accomplished, we turn to Fig. 11. As
shown in the figure, the PRT allows us to determine from
the the bytes in layers z = (1,0) and z = (1,1) belong-
ing to y-section y = 1 in data cube C, the corresponding
bytes in data cube U . RS decoding allows us to then re-
cover the bytes U(p) belonging to y-section y = 0 in the
same two planes. At this point, we have access to the
bytes C(p),U(p) for p corresponding to vertices lying
in planes z = (1,0) and z = (1,1) and lying in y-section
y = 0. This set includes 2 of the bytes C(p) in the col-
umn corresponding to the failed node. The remaining
two bytes C(p) in the failed column can be determined
using properties of the PFT.

Intersection Score To explain decoding, we introduce
the notion of an Intersection Score (IS). The IS of a layer
is given by the number of hole-dot pairs, i.e., the vertices
that correspond to erased bytes and which are at the same
time colored red. For example in Fig. 10, when nodes
(0,0), (0,1) are erased, layers (0,0),(0,1),(1,1) have
respective IS=2,1,0.

(0,0) (0,1)

(1,0) (1,1)

(a) IS=2

(0,0) (0,1)

(1,0) (1,1)

(b) IS=1

(0,0) (0,1)

(1,0) (1,1)

(c) IS=0

Figure 10: Illustration of the intersection score (IS) for erasures at (0,1),(0,2).

Decoding The “Decode” algorithm of the Clay code is
able to correct the erasure of any n− k = 2 nodes. De-
coding is carried out sequentially, layer-by-layer, in order
of increasing IS. This is explained in Fig.12 for the case
when nodes (0,0), (0,1) are erased and for layers hav-
ing IS= 0, IS= 1. In a layer with IS= 0, U bytes can
be computed for all non-erased vertices from the known
symbols. The erased U bytes are then calculated using
RS code decoding. For a layer with IS= 1, to compute U
bytes for all non-erased vertices, we make use of U bytes

recovered in layers with IS= 0. Thus the processing of a
layer with IS = 0 has to take place prior to processing a
layer with IS = 1 and so on. Once all the U bytes are re-
covered, the C bytes can be computed using the PFT. As a
result of the simple, pairwise nature of the PFT and PRT,
encoding and decoding times are not unduly affected by
the coupled-layer structure.

PRT

MDS Dec

 C

 U,C C*

C* is
computed

from C and U

y=0 y=1 y=0 y=1

Figure 11: The dotted cylinder identifies the erased node. The bytes shown on
the top left represent helper data (6 bytes in all) transferred for repair. The PRT
is performed on helper data in C to obtain the bytes (4 bytes) U(p) belonging to
the same layers and lying y-section y = 1. RS code decoding within each of the
two layers is used to obtain the 4 missing U(p) bytes. The bytes corresponding
to the erased node in C can then be computed using properties of the PFT.

MDS Dec
Compute U

C*

C C

C*

U U

U U

U U

IS = 0

MDS Dec

C*

C,U* C

C*

U U

U U

U U

IS = 1

Compute U

Figure 12: Illustrating how the Clay code recovers from 2 erasures. We begin
with a layer having IS = 0 (top) before moving to a layer with IS = 1 (bottom).
Symbols alongside each vertex, indicate which of the 4 bytes {C,C∗,U,U∗} are
known. (Left) Pink circles indicate non-erased vertices in C. (Middle) Blue ver-
tices indicate vertices in U whose contents can be determined from the available
C,U bytes. (Right) Invoking the parity-check equations in U allows all bytes in U
to be recovered. Once all the U bytes are recovered, one recovers the remaining
unknown bytes C using the PFT.

Clay code parameters Clay codes can be constructed
for any parameter set of the form:

(n = qt, k, d) (α = qt ,β = qt−1), with q = (d− k+1),

for any integer t ≥ 1 over any finite field of size Q > n.
The encoding, decoding and repair algorithms can all be
generalized for the parameters above. However, in the
case d < n− 1, during single node repair, while pick-
ing the d helper nodes, one must include among the d
helper nodes, all the nodes belonging to the failed node’s
y-section.

USENIX Association 16th USENIX Conference on File and Storage Technologies 145

Clay codes for any (n,k,d) The parameters indicated
above have the restriction that q = (d− k+ 1) divide n.
But the construction can be extended in a simple way to
the case when q is not a factor of n. For example, for pa-
rameters (n = 14,k = 10,d = 13), q = d−k+1 = 4. We
construct the Clay code taking n′ = 16, the nearest mul-
tiple of q larger than n, and k′ = k+(n′−n) = 12. While
encoding, we set data bytes in s= (n′−n) = 2 systematic
nodes as zero, and thus the resultant code has parameters
(n = 14,k = 10,d = 13). The technique used is called
shortening in the coding theory literature. We use s tem-
porary buffers each of size equal to chunk size during
the encoding, decoding and repair operations. Our im-
plementation of Clay code includes this generalization.

4 Ceph and Vector MDS Codes

4.1 Introduction to Ceph
Ceph [32] is a popular, open-source distributed storage
system [33], that permits the storage of data as objects.
Object Storage Daemon (OSD) is the daemon process of
Ceph, associated with a storage unit such as a solid-state
or hard-disk drive, on which user data is stored.

Ceph supports multiple erasure-codes, and a code
can be chosen by setting attributes of the erasure-code-
profile. Objects will then be stored in logical partitions
referred to as pools associated with an erasure-code-
profile. Each pool can have a single or multiple place-
ment groups (PG) associated with it. A PG is a collec-
tion of n OSDs, where n is the block length of the erasure
code associated to the pool.

The allocation of OSDs to a PG is dynamic, and is
carried out by the CRUSH algorithm [34]. When an ob-
ject is streamed to Ceph, the CRUSH algorithm allocates
a PG to it. It also performs load balancing dynamically
whenever new objects are added, or when active OSDs
fail. Each PG contains a single, distinct OSD designated
as the primary OSD (p-OSD). When it is required to store
an object in a Ceph cluster, the object is passed on to the
p-OSD of the allocated PG. The p-OSD is also responsi-
ble for initiating the encoding and recovery operations.

In Ceph, the passage from data object to data chunks
by the p-OSD is carried out in two steps as opposed to the
single-step description in Section 2. For a large object,
the amount of buffer memory required to perform encod-
ing and decoding operations will be high. Hence, as an
intermediate step, an object is first divided into smaller
units called stripes, whose size is denoted by S (in bytes).
If an object’s size is not divisible by S, zeros are padded.
The object is then encoded by the p-OSD one stripe at a
time. The stripe-size is to be specified within the clus-
ter’s configuration file. Both zero padding and system
performance are important factors to be considered while
fixing a stripe-size.

4.2 Sub-Chunking through Interleaving
To encode, the p-OSD first zero pads each stripe as nec-
essary in order to ensure that the strip size S is divisible
by kα . The reason for the divisibility by a factor of k is
because as described earlier, the first step in encoding is
to break up each stripe into k data chunks of equal size.
The reason for the additional divisibility requirement by
a further factor α arises because we are dealing with a
vector code and as explained in Section 2, operations in
a vector code involve superbytes, where each superbyte
contains α bytes. In what follows, we will assume that S
is divisible by kα .

The encoding of a stripe is thus equivalent to encod-
ing N = S

kα
codewords at a time. The next step as ex-

plained in Section 2, is interleaving at the end of which
one obtains α sub-chunks per OSD, each of size N bytes.
We note that the parameter L introduced in Section 2, is
the number of bytes per data chunk and is thus given by
L = S

k . This notion of sub-chunk is not native to Ceph,
but rather is a modification to the Ceph architecture pro-
posed here, to enable the support of vector codes.

The advantage of a vector code is that it potentially en-
ables the repair of an erased coded chunk by passing on
a subset of the α sub-chunks. For example, in the Clay
code implemented in Ceph is an MSR code, it suffices
for each node to pass on β sub-chunks. However, when
these β sub-chunks are not sequentially located within
the storage unit, it can result in fragmented reads. We
analyze such disk read performance degradation in Sec-
tion 5.

4.3 Implementation in Ceph
Our implementation makes use of the Jerasure [22] and
GF-Complete [21] libraries which provide implementa-
tions of various MDS codes and Galois-field arithmetic.
We chose in our implementation to employ the finite field
of size 28 to exploit the computational efficiency for this
field size provided by the GF-complete library in Ceph.

In our implementation, we employ an additional
buffer, termed as U-buffer, that stores the sub-chunks
associated with the uncoupled symbols U introduced in
Section 3. This buffer is of size nL = S n

k bytes. The U-
buffer is allocated once for a PG, and is used repetitively
during encode, decode and repair operations of any ob-
ject belonging to that PG.
Pairwise Transforms We introduced functions that
compute any two sub-chunks in the set {U,U∗,C,C∗}
given the remaining two sub-chunks. We im-
plemented these functions using the function jera-
sure matrix dotprod(), which is built on top of function
galois w08 region multiply().
Encoding Encoding of an object is carried out by p-
OSD by pretending that m parity chunks have been

146 16th USENIX Conference on File and Storage Technologies USENIX Association

erased, and then recovering the m chunks using the k
data chunks by initiating the decoding algorithm for the
code. Pairwise forward and reverse transforms are the
only additional computations required for Clay encoding
in comparison with MDS encoding.
Enabling Selection Between Repair & Decoding
When one or more OSDs go down, multiple PGs are af-
fected. Within an affected PG, recovery operations are
triggered for all associated objects. We introduced a
boolean function is repair() in order to choose between
a bandwidth, disk I/O efficient repair algorithm and the
default decode algorithm. For the case of single OSD
failure, is repair() always returns true. There are multi-
ple failure cases as well for which is repair() returns true
i.e., efficient repair is possible. We discuss these cases in
detail in Appendix A.
Helper-Chunk Identification In the current
Ceph architecture, when a failure happens, mini-
mum to decode() is called in order to determine the
k helper chunk indices. We introduced a function
minimum to repair() to determine the d helper chunk
indices when repair can be performed efficiently i.e.,
when is repair() returns true. OSDs corresponding to
these indices are contacted to get information needed
for repair/decode. When there is a single failure,
minimum to repair() returns d chunk indices such that
all the chunks that fall in the y-cross-section of the failed
chunk are included. We describe the case of multiple
erasure cases in detail in Appendix A
Fractional Read For the case of efficient repair, we
only read a fraction of chunk, this functionality is imple-
mented by feeding repair parameters to an existing struc-
ture ECSubRead that is used in inter-OSD communica-
tion. We have also introduced a new read function with
Filestore of Ceph that supports sub-chunk reads.
Decode and Repair Either the decode or repair func-
tion is called depending on whether if is repair() returns
true or false respectively. The decoding algorithm is de-
scribed in Section 3. Our repair algorithm supports in ad-
dition to single-node failure (Section.3), some multiple-
erasure failure patterns as well (Section 6).

4.4 Contributions to Ceph

Enabling vector codes in Ceph: We introduced the
notion of sub-chunking in order to enable new vector era-
sure code plugins. This contribution is currently avail-
able in Ceph’s master codebase [4].
Clay codes in Ceph: We implemented Clay codes as a
technique (cl msr) within the jerasure plugin. The cur-
rent implementation gives flexibility for a client to pick
any n,k,d parameters for the code. It also gives an op-
tion to choose the MDS code used within to be either

a Vandermonde-based-RS or Cauchy-original code. The
Clay code [2] is yet to be part of Ceph’s master codebase.

5 Experiments and Results

The experiments conducted to evaluate the performance
of Clay codes in Ceph while recovering from a single
node failure are discussed in the present section. Experi-
mental results relating multiple node-failure case can be
found in Section 6.1.

5.1 Overview and Setup
Codes Evaluated While Clay codes can be con-
structed for any parameter set (n,k,d), we have carried
out experimental evaluation for selected parameter sets
close to those of codes employed in practice, see Ta-
ble 4. Code C1 has (n,k) parameters comparable to that
of the RDP code [9], Code C2 with the locally repairable
code used in Windows Azure [16], and Code C3 with the
(20,17)-RS code used in Backblaze [1]. There are three
other codes C4, C5 and C6 that match with the (14,10)-
RS code used in Facebook data-analytic clusters [25].
Results relating to Codes C4-C6 can be found in Sec-
tion 6.1, which focuses on repair in the multiple-erasure
case.

(n,k,d) α Storage overhead β

α

C1 (6,4,5) 8 1.5 0.5
C2 (12,9,11) 81 1.33 0.33
C3 (20,16,19) 1024 1.25 0.25
C4 (14,10,11) 128 1.4 0.5
C5 (14,10,12) 243 1.4 0.33
C6 (14,10,13) 256 1.4 0.25

Table 4: Codes C1-C3 are evaluated in Ceph for single-node repair. The evalua-
tion of Codes C4-C6 is carried out for both single and multiple-node failures.

The experimental results for Clay codes are compared
against those for RS codes possessing the same (n,k) pa-
rameters. By an RS code, we mean an MDS-code imple-
mentation based on the cauchy orig technique of Ceph’s
jerasure plugin. The same MDS code is also employed
as the MDS code appearing in the Clay-code construc-
tion evaluated here.

Experimental Setup All evaluations are carried out on
Amazon EC2 instances of the m4.xlarge (16GB RAM, 4
CPU cores) configuration. Each instance is attached to
an SSD-type volume of size 500GB. We integrated the
Clay code in Ceph Jewel 10.2.2 to perform evaluations.
The Ceph storage cluster deployed consists of 26 nodes.
One server is dedicated for the MON daemon, while the
remaining 25 nodes each run one OSD. Apart from the
installed operating system, the entire 500GB disk is ded-
icated to the OSD. Thus the total storage capacity of the
cluster is approximately 12.2TB.

USENIX Association 16th USENIX Conference on File and Storage Technologies 147

Object Distribution
Model Object # Objects Total, T Stripe

size (MB) (GB) size, S
Fixed (W1) 64 8192 512 64MB

64 6758
Variable 32 820 448 1MB

(W2) 1 614

Table 5: Workload models used in experiments.

Overview Experiments are carried out on both fixed
and variable object-size workloads, respectively referred
to as W1 and W2. Workload W1 has all objects of fixed
size 64MB, while in the W2 workload we choose objects
of sizes 64MB, 32MB and 1MB distributed in respec-
tive proportions of 82.5%, 10% and 7.5%. Our choices
of object sizes cover a good range of medium (1MB),
medium/large(32MB) and large (64MB) objects[3], and
the distribution is chosen in accordance with that in the
Facebook data analytic cluster reported in [23]. The
workloads used for evaluation are summarized in Ta-
ble 5. The stripe-size S is set as 64MB and 1MB for
workloads W1 and W2 respectively, so as to avoid zero-
padding.

The failure domain is chosen to be a node. Since we
have one OSD per node, this is equivalent to having a
single OSD as the failure domain. We inject node fail-
ures into the system by removing OSDs from the cluster.
Measurements are taken using nmon and NMONVisual-
izer tools. We run experiments with a single PG, and
validate the results against the theoretical prediction. We
also run the same experiments with 512 PGs, which we
will refer to as the multiple-PG case. Measurements are
made of (a) repair network traffic, (b) repair disk read, (c)
repair time, (d) encoding time and (e) I/O performance
for degraded, normal operations.

5.2 Evaluations

Network Traffic: Single Node Failure Network traf-
fic refers to the data transferred across the network dur-
ing single-node repair. Repair is carried out by the p-
OSD, which also acts as a helper node. The network
traffic during repair includes both the transfer of helper
data to the primary OSD and the transfer of recovered
chunk from primary OSD to the replacement OSD. The
theoretical estimate for the amount of network traffic is
T
k ((d−1) β

α
+1) bytes for a Clay code, versus T bytes for

an RS code. Our evaluations confirm the expected sav-
ings, and we observed reductions of 25%, 52% and 66%,
(a factor of 2.9×) in network traffic for codes C1, C2
and C3 respectively in comparison with the correspond-
ing RS codes under fixed and variable workloads (see
Fig. 13(a), 13(d).) As can be seen, the code C3 with the
largest value of q = (d− k+ 1) offer the largest savings
in network traffic.

In Ceph, the assignment of OSDs and objects to PGs
are done in a dynamic fashion. Hence, the number of
objects affected by failure of an OSD can vary across
different runs of multiple-PG experiment. We present an
network bandwidth performance with 512 PGs under the
W1 workload averaged across 3 runs in Fig. 14. It was ob-
served that in certain situations, an OSD that is already
part of the PG can get reassigned as a replacement for
the failed OSD. In such cases, the number of failures are
treated as two resulting in inferior network-traffic perfor-
mance in multiple-PG setting.

Disk Read: Single Node Failure The amount of data
read from the disks of the helper nodes during the repair
of a failed node is referred to as disk read and is an im-
portant parameter to minimize.

Depending on the index of the failed node, the sub-
chunks to be fetched from helper nodes in a Clay code
can be contiguous or non-contiguous. Non-contiguous
reads in HDD volumes lead to a slow-down in perfor-
mance [20]. Even for SSD volumes that permit reads at
a granularity of 4kB, the amount of disk read needed de-
pends on the sub-chunk-size. Let us look at, for instance,
disk read from a helper node in the case of single node
failure for code C3 in workload W2. The stripe-size S =
1MB, and the chunk size is given by L = S/k = 64kB.
During repair of a node, L/(d− k+1) = 16kB of data is
to be read from each helper node. In the best-case sce-
nario (for example, a systematic node failure), the 16kB
data is contiguous, whereas for the worst-case scenario
(as in the case of parity node failure) the reads are frag-
mented. In the latter case, β = 256 fragments with each
of size L/α = 64 bytes are read. As a consequence, when
4kB of data is read from the disk, only 1kB ends up be-
ing useful for the repair operation. Therefore, the disk
read is 4 times the amount of data needed for repair. This
is evident in disk read measurements from a helper node
in the worst-case as shown in Fig. 13(f). A similar anal-
ysis shows that for workload W2, the code C2 leads to
additional disk read while C1 does not. This is observed
experimentally as well.

On the other hand, for workload W1 with stripe-size
S = 64MB, all the three codes C1, C2, and C3 do not
cause any additional disk read as shown in Fig. 13(b).
For instance, with code C3, fragments of size S/kα =
4kB are to be read in the worst-case scenario. As the
size is aligned to the granularity of SSD reads, disk read
for the worst-case is equal to 256 ∗ 4kB=1MB. This is
exactly the amount read during best-case as well. (see
Fig. 13(f)). In summary, all the three codes result in disk
I/O savings for the W1 workload whereas for workload
W2 only C1 results in an advantage.

The expected disk read from all helper nodes during
repair is T dβ

kα
bytes for a Clay code in contrast to T bytes

148 16th USENIX Conference on File and Storage Technologies USENIX Association

(a) Network Traffic (Workload W1) (b) Disk-read (Workload W1) (c) Average Repair time (Workload W1)

(d) Network Traffic (Workload W2) (e) Disk-read (Workload W2) (f) Fragmented Read: (20,16,19) Clay code

Figure 13: Experimental evaluation of C1, C2 and C3 in comparison with RS codes in a single-PG setting is presented in plots (a)-(e). The plot (f) gives a relative
comparison of disk read in a helper node for stripe-sizes 1MB and 64MB for code C3.

for an RS code. In experiments with fixed object-size
(see Fig. 13(b)), we obtain savings of 37.5%, 59.3% and
70.2% (a factor of 3.4×) for codes C1, C2 and C3 re-
spectively, when compared against the corresponding RS
code. Fig. 14 shows the disk read in the multiple-PG set-
ting.

Figure 14: Network traffic and disk read during repair of single node in a setting
with 512 PGs, for W1 workload.

I/O Performance We measured the normal and de-
graded (i.e., with a repair executing in the background)
I/O performance of Clay codes C1-C3, and RS codes
with same parameters. This was done using the standard
Ceph benchmarking tests for read and write operations.
The results are shown in Fig. 15. Under the normal oper-
ation, the write, sequential-read and random-read perfor-
mances are same for both Clay and RS codes. However
in the degraded situation, the I/O performance of Clay
codes is observed to be better in comparison with RS
codes. In particular, the degraded write, read throughput
of (20,16,19) Clay code is observed to be more than the
(20,16) RS code by 106% and 27% respectively. This
can possibly be attributed to the reduced amount of re-
pair data that is read, transmitted and computed on to
build the lost data in the erased node.

Figure 15: Normal and degraded I/O performance of codes C1, C2, C3 in com-
parison with RS. The observed values for sequential and random reads are almost
the same, and hence plotted as a single value.

Repair Time and Encoding Time We measure the
time taken for repair by capturing the starting and stop-
ping times of network activity within the cluster. We
observed a significant reduction in repair time for Clay
codes in comparison with an RS code. For the code C3
in a single-PG setting, we observe a reduction by a fac-
tor of 3× in comparison with an RS code. This is mainly
due to reduction in network traffic and disk I/O required
during repair. Every affected object requires recovery of
(1/k)-th fraction of the object size, and the average re-
pair time per object is plotted in Fig. 13(c).

We define the time required by the RADOS utility to
place an object into Ceph object-store as the encoding
time. The encoding time includes times taken for com-
putation, disk-I/O operations, and data transfer across
the network. We define the time taken for computing
the code chunks based on the encoding algorithm as the
encode computation time. During encoding, the net-
work traffic and I/O operations are the same for both
the classes of codes. Although the encode computation
time of Clay code is higher than that of the RS code (See
Fig. 16.) the encoding time of a Clay code remains close
to that of the corresponding RS code. The increase in the

USENIX Association 16th USENIX Conference on File and Storage Technologies 149

computation time for the Clay code is due to the multipli-
cations involved in PFT and PRT operations. In storage
systems, while data-write is primarily a one-time oper-
ation, failure is a norm and thus recovery from failures
is a routine activity [12],[24]. The significant savings in
network traffic and disk reads during node repair are a
sufficient incentive for putting up with overheads in the
encode computation time. The decoding time will be al-
most same as encoding time, since we perform encoding
using the decoding function as described in Section 4.3.

Figure 16: Comparison of average encoding times for C1, C2 and C3 in compar-
ison with RS codes, for the W1 workload.

6 Handling Failure of Multiple Nodes

The Clay code is capable of recovering from multiple
node-failures with savings in repair bandwidth. In the
case of multiple erasures, the bandwidth needed for re-
pair varies with the erasure pattern. In Fig. 17, we show
the average network traffic of Clay codes with parame-
ters (n = 14,k = 10,d) for d = 11,12,13 while repairing
f = 1,2,3, and 4 node failures. The average network
traffic for repairing f nodes is computed under the as-
sumption that all the f -node-failure patterns are equally
likely. Detailed analysis of savings in network traffic for
multiple erasures is relegated to Appendix A.

Figure 17: Average theoretical network traffic during repair of 64MB object.

6.1 Evaluation of Multiple Erasures
Network Traffic and Disk Read While the primary
benefit of the Clay code is optimal network traffic and
disk read during repair of a single node failure, it also
yields savings over RS counterpart code in the case of a
large number of multiple-node failure patterns. We eval-
uate the performance of codes C4-C6 (see Table 4) under
W1 workload injecting multiple node-failures in a setting
of 512PGs. The plots for network traffic and disk read
are shown in Fig. 18, 19.

Figure 18: Network traffic evaluation of C4-C6 against RS codes (W1 workload,
multiple-PG).

Figure 19: Disk-read evaluation of C4-C6 against RS codes (W1 workload,
multiple-PG).

7 Conclusions

Clay codes extend the theoretical construction presented
by Ye & Barg with practical considerations from a
coupled-layer perspective that leads directly to imple-
mentation. Within the class of MDS codes, Clay codes
have minimum possible repair bandwidth and disk I/O.
Within the class of MSR codes, Clay codes possess the
least possible level of sub-packetization. A natural ques-
tion to ask is if these impressive theoretical credentials of
the Clay code result in matching practical performance.
We answer this in the affirmative here by studying the
real-world performance of the Clay code in a Ceph set-
ting, with respect to network traffic for repair, disk I/O
during repair, repair time and degraded I/O performance.
Along the way, we also modified Ceph to support any
vector code, and our contribution is now a part of Ceph’s
master code-base. A particular Clay code, with storage
overhead 1.25x, is shown to reduce repair network traf-
fic, disk read and repair times by factors of 2.9, 3.4 and
3 respectively. Much of this is made possible because
Clay codes can be constructed via a simple two-step pro-
cess where one first stacks in layers, α codewords drawn
from an MDS code; in the next step, elements from dif-
ferent layers are paired and transformed to yield the Clay
code. The same construction with minor modifications is
shown to offer support for handling multiple erasures as
well. It is our belief that Clay codes are well-poised to
make the leap from theory to practice.

8 Acknowledgments

We thank our shepherd Cheng Huang and the anony-
mous reviewers for their valuable comments. P. V. Ku-
mar would like to acknowledge support from NSF Grant
No.1421848 as well as the UGC-ISF research program.
The research of Alexander Barg and Min Ye was sup-
ported by NSF grants CCF1422955 and CCF1618603.

150 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] Backblaze data service provider. https://www.

backblaze.com/blog/reed-solomon/. Accessed:
2017-Sep-28.

[2] Coupled-layer source code. https://github.com/ceph/
ceph/pull/14300/.

[3] Red hat ceph storage: Scalable object storage on qct servers - a
performance and sizing guide. Reference Architecture.

[4] Sub-chunks: Enabling vector codes in ceph. https://
github.com/ceph/ceph/pull/15193/.

[5] Tutorial: Erasure coding for storage applications.
http://web.eecs.utk.edu/˜plank/plank/
papers/FAST-2013-Tutorial.html. Accessed:
2017-Sep-28.

[6] BALAJI, S. B., AND KUMAR, P. V. A tight lower bound on the
sub-packetization level of optimal-access MSR and MDS codes.
CoRR abs/1710.05876 (2017).

[7] BLAUM, M., BRADY, J., BRUCK, J., AND MENON, J. EVEN-
ODD: an efficient scheme for tolerating double disk failures in
RAID architectures. IEEE Trans. Computers 44, 2 (1995), 192–
202.

[8] CHEN, H. C., HU, Y., LEE, P. P., AND TANG, Y. Nccloud: A
network-coding-based storage system in a cloud-of-clouds. IEEE
Transactions on Computers 63, 1 (2013), 31–44.

[9] CORBETT, P., ENGLISH, B., GOEL, A., GRCANAC, T.,
KLEIMAN, S., LEONG, J., AND SANKAR, S. Row-diagonal par-
ity for double disk failure correction. In Proceedings of the 3rd
USENIX Conference on File and Storage Technologies (2004),
pp. 1–14.

[10] DIMAKIS, A., GODFREY, P., WU, Y., WAINWRIGHT, M., AND
RAMCHANDRAN, K. Network coding for distributed storage
systems. IEEE Transactions on Information Theory 56, 9 (Sep.
2010), 4539–4551.

[11] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,
TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUIN-
LAN, S. Availability in globally distributed storage systems.
In Presented as part of the 9th USENIX Symposium on Operat-
ing Systems Design and Implementation (Vancouver, BC, 2010),
USENIX.

[12] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S. The google file
system. In Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles 2003, SOSP 2003, Bolton Landing, NY,
USA, October 19-22, 2003 (2003), pp. 29–43.

[13] GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google
file system. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (New York, NY, USA, 2003),
SOSP ’03, ACM, pp. 29–43.

[14] HU, Y., CHEN, H., LEE, P., AND TANG, Y. NCCloud: apply-
ing network coding for the storage repair in a cloud-of-clouds. In
Proceedings of the 10thth USENIX Conference on File and Stor-
age Technologies(FAST) (2012).

[15] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B.,
GOPALAN, P., LI, J., AND YEKHANIN, S. Erasure coding in
windows azure storage. In Presented as part of the 2012 USENIX
Annual Technical Conference (USENIX ATC 12) (Boston, MA,
2012), USENIX, pp. 15–26.

[16] HUANG, C., SIMITCI, H., XU, Y., OGUS, A., CALDER, B.,
GOPALAN, P., LI, J., AND YEKHANIN, S. Erasure cod-
ing in Windows Azure storage. In Proceedings of the 2012
USENIX conference on Annual Technical Conference (Berkeley,
CA, USA, 2012), USENIX ATC.

[17] JIANG, W., HU, C., ZHOU, Y., AND KANEVSKY, A. Are disks
the dominant contributor for storage failures?: A comprehensive
study of storage subsystem failure characteristics. Trans. Storage
4, 3 (Nov. 2008), 7:1–7:25.

[18] KRALEVSKA, K., GLIGOROSKI, D., JENSEN, R. E., AND
VERBY, H. Hashtag erasure codes: From theory to practice. IEEE
Transactions on Big Data PP, 99 (2017), 1–1.

[19] MURALIDHAR, S., LLOYD, W., ROY, S., HILL, C., LIN, E.,
LIU, W., PAN, S., SHANKAR, S., SIVAKUMAR, V., TANG, L.,
AND KUMAR, S. f4: Facebook’s warm BLOB storage system. In
11th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 14) (Broomfield, CO, 2014), USENIX As-
sociation, pp. 383–398.

[20] PAMIES-JUAREZ, L., BLAGOJEVIC, F., MATEESCU, R.,
GUYOT, C., GAD, E. E., AND BANDIC, Z. Opening the
chrysalis: On the real repair performance of MSR codes. In
Proceedings of the 4th USENIX Conference on File and Storage
Technologies (2016), pp. 81–94.

[21] PLANK, J., GREENAN, K., MILLER, E., AND HOUSTON, W.
Gf-complete: A comprehensive open source library for galois
field arithmetic. University of Tennessee, Tech. Rep. UT-CS-13-
703 (2013).

[22] PLANK, J. S., AND GREENAN, K. M. Jerasure: A library
in c facilitating erasure coding for storage applications–version
2.0. Tech. rep., Technical Report UT-EECS-14-721, University
of Tennessee, 2014.

[23] RASHMI, K. V., CHOWDHURY, M., KOSAIAN, J., STOICA,
I., AND RAMCHANDRAN, K. Ec-cache: Load-balanced, low-
latency cluster caching with online erasure coding. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016. (2016), pp. 401–417.

[24] RASHMI, K. V., NAKKIRAN, P., WANG, J., SHAH, N. B., AND
RAMCHANDRAN, K. Having your cake and eating it too: Jointly
optimal erasure codes for i/o, storage, and network-bandwidth. In
Proceedings of the 13th USENIX Conference on File and Storage
Technologies, FAST, (2015), pp. 81–94.

[25] RASHMI, K. V., SHAH, N. B., GU, D., KUANG, H.,
BORTHAKUR, D., AND RAMCHANDRAN, K. A solution to the
network challenges of data recovery in erasure-coded distributed
storage systems: A study on the facebook warehouse cluster. In
5th USENIX Workshop on Hot Topics in Storage and File Sys-
tems, HotStorage’13, 2013 (2013), USENIX Association.

[26] RASHMI, K. V., SHAH, N. B., GU, D., KUANG, H.,
BORTHAKUR, D., AND RAMCHANDRAN, K. A ”hitchhiker’s”
guide to fast and efficient data reconstruction in erasure-coded
data centers. In ACM SIGCOMM 2014 Conference, (2014),
pp. 331–342.

[27] RASHMI, K. V., SHAH, N. B., AND KUMAR, P. V. Optimal
Exact-Regenerating Codes for Distributed Storage at the MSR
and MBR Points via a Product-Matrix Construction. IEEE Trans-
actions on Information Theory 57, 8 (Aug 2011), 5227–5239.

[28] SATHIAMOORTHY, M., ASTERIS, M., PAPAILIOPOULOS,
D. S., DIMAKIS, A. G., VADALI, R., CHEN, S., AND
BORTHAKUR, D. Xoring elephants: Novel erasure codes for
big data. PVLDB 6, 5 (2013), 325–336.

[29] SCHROEDER, B., AND GIBSON, G. A. Disk failures in the real
world: What does an mttf of 1,000,000 hours mean to you? In
Proceedings of the 5th USENIX Conference on File and Storage
Technologies (Berkeley, CA, USA, 2007), FAST ’07, USENIX
Association.

[30] TAMO, I., WANG, Z., AND BRUCK, J. Zigzag codes: MDS array
codes with optimal rebuilding. IEEE Transactions on Information
Theory 59, 3 (2013), 1597–1616.

USENIX Association 16th USENIX Conference on File and Storage Technologies 151

https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/
https://github.com/ceph/ceph/pull/14300/
https://github.com/ceph/ceph/pull/14300/
https://github.com/ceph/ceph/pull/15193/
https://github.com/ceph/ceph/pull/15193/
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html
http://web.eecs.utk.edu/~plank/plank/papers/FAST-2013-Tutorial.html

[31] TIAN, C., LI, J., AND TANG, X. A generic transformation for
optimal repair bandwidth and rebuilding access in MDS codes. In
2017 IEEE International Symposium on Information Theory, ISIT
2017, Aachen, Germany, June 25-30, 2017 (2017), pp. 1623–
1627.

[32] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG, D. D. E.,
AND MALTZAHN, C. Ceph: A scalable, high-performance dis-
tributed file system. In 7th Symposium on Operating Systems
Design and Implementation (OSDI ’06), November 6-8, Seattle,
WA, USA (2006), pp. 307–320.

[33] WEIL, S. A., BRANDT, S. A., MILLER, E. L., AND
MALTZAHN, C. Grid resource management - CRUSH: con-
trolled, scalable, decentralized placement of replicated data. In
Proceedings of the ACM/IEEE SC2006 Conference on High Per-
formance Networking and Computing, November 11-17, 2006,
Tampa, FL, USA (2006), p. 122.

[34] WEIL, S. A., LEUNG, A. W., BRANDT, S. A., AND
MALTZAHN, C. RADOS: a scalable, reliable storage service for
petabyte-scale storage clusters. In Proceedings of the 2nd Inter-
national Petascale Data Storage Workshop (PDSW ’07), Novem-
ber 11, 2007, Reno, Nevada, USA (2007), pp. 35–44.

[35] YE, M., AND BARG, A. Explicit constructions of optimal-access
MDS codes with nearly optimal sub-packetization. IEEE Trans.
Information Theory 63, 10 (2017), 6307–6317.

152 16th USENIX Conference on File and Storage Technologies USENIX Association

Appendices
A Handling Failure of Multiple Nodes

The failure patterns that can be recovered with
bandwidth-savings are referred to as repairable failure
patterns. Non repairable failure patterns are recovered
by using the decode algorithm.

Repairable Failure Patterns (i) d < n−1: Clay codes
designed with d < n−1 can recover from e failures with
savings in repair bandwidth when e ≤ n− d, with a mi-
nor exception described in Remark 1. The helper nodes
are to be chosen in such a way that if a y-section con-
tains a failed node, then all the surviving nodes in that
y-section must act as helper nodes. If no such choice of
helper nodes is available then it is not a repairable failure
pattern. For example, consider the code with parame-
ters (n = 14,k = 10,d = 11). The nodes can be put in a
(2×7) grid, as q= d−k+1= 2 and t = n

q = 7. In Fig.20,
we assume that nodes (0,0) and (0,1) have failed, and
therefore nodes (1,0) and (1,1) along with any 9 other
nodes can be picked as helper nodes.

(0,0) (0,1) (0,6)

(1,6)

(0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

Figure 20: The (2× 7) grid of 14 nodes in (14,10,11) Clay code. The nodes
(0,0) and (0,1) have failed.

(ii) d = n− 1: When the code is designed for d =
(n− 1), up to (q− 1) failures that occur within a single
y-section can be recovered with savings in repair band-
width. As the number of surviving nodes is smaller than
d in such a case, all the surviving nodes are picked as
helper nodes. See Fig. 21 for an example of a repairable
failure-pattern in the case of a (14,10,13) Clay code.

(0,0) (0,3)

(1,0)

(2,0)

(3,0)

(1,3)

(2,3)

(3,3)

(0,2)

(1,2)

(2,2)

(3,2)

(1,1)

(2,1)

(3,1)

(0,1)

Figure 21: The (4×4) grid containing 14 nodes in (14,10,13) Clay code. Note
that the cells (2,2) and (3,2) in the grid do not represent nodes. The nodes (0,0)
and (2,0) coming from 0-section have failed.

Repair Layers For the case of a single failure, we
have already observed that all the layers with IS > 0 are
picked. This remains the same for the case of multiple
failures as well.

Repair Bandwidth Savings We describe here how to
compute network traffic during the repair of a multiple-
failure pattern. Let ei be the number of erased nodes
within (y = i)-section and e = (e0, · · · ,et−1). The total

number of failures is given by f =
t−1
∑

i=0
ei. The number

of helper nodes de = d if the code is designed for d <
(n− 1), and de = n− f if it is designed for d = (n− 1).
Total number of sub-chunks βe needed from each helper
node is same as the number of layers with IS > 0. This
can be obtained by subtracting the count of layers with
IS= 0 from α . The number of helper sub-chunks per

node is βe = α −
t−1
∏
i=0

(q− ei), and network traffic for re-

pair is deβe. It can be observed that for a single node
failure, f = 1 and βe = qt−1.

Remark 1 Whenever deβe > kα , decode algorithm is a
better option and the is repair() function takes care of
these cases by returning false. For example, when there
are q failures within the same y-section, every layer will
have IS > 0 giving βe = α and hence repair is not effi-
cient for this case.

Repair Algorithm We present a repair algorithm in 1,
that is generic for single and multiple erasures. This is
invoked whenever savings in bandwidth are possible, i.e,
when is repair() returns true. In the algorithm, we refer
to those non-erased nodes that are not helper nodes as
aloof nodes.

Algorithm 1 repair

1: Input: E (erasures), I (aloof nodes).
2: repair layers = get repair layers(E).
3: set s = 1.
4: set maxIS = max of IS(E ∪I ,z) over all z from

repair layers
5: while (1≤ s≤maxIS)
6: for (z ∈ repair layers and IS(E ∪I ,z) = s)
7: if (IS(E ,z)> 1) G = φ

8: else {
9: a = the erased node with hole-dot in layer z

10: G is set of all nodes in a’s y-section.}
11: E ′ = E ∪G∪I
12: Compute U sub-chunks in layer z corre-

sponding to all the nodes other than E ′

13: Invoke scalar MDS decode to recover U sub-
chunks for all nodes in E ′

14: end for
15: s = s+1
16: end while
17: Compute C chunks corresponding to all the erased

nodes, from U sub-chunks in repair layers and the
helper C sub-chunks in repair layers.

USENIX Association 16th USENIX Conference on File and Storage Technologies 153

Towards Web-based Delta Synchronization for Cloud Storage Services

He Xiao
Tsinghua University

Zhenhua Li ∗

Tsinghua University
Ennan Zhai

Yale University
Tianyin Xu

UIUC
Yang Li

Tsinghua University
Yunhao Liu

Tsinghua University
Quanlu Zhang

Microsoft Research
Yao Liu

SUNY Binghamton

Abstract
Delta synchronization (sync) is crucial for network-level
efficiency of cloud storage services. Practical delta sync
techniques are, however, only available for PC clients
and mobile apps, but not web browsers—the most per-
vasive and OS-independent access method. To under-
stand the obstacles of web-based delta sync, we imple-
ment a delta sync solution, WebRsync, using state-of-
the-art web techniques based on rsync, the de facto delta
sync protocol for PC clients. Our measurements show
that WebRsync severely suffers from the inefficiency of
JavaScript execution inside web browsers, thus leading
to frequent stagnation and even hanging. Given that the
computation burden on the web browser mainly stems
from data chunk search and comparison, we reverse the
traditional delta sync approach by lifting all chunk search
and comparison operations from the client side to the
server side. Inevitably, this brings considerable computa-
tion overhead to the servers. Hence, we further leverage
locality-aware chunk matching and lightweight check-
sum algorithms to reduce the overhead. The resulting so-
lution, WebR2sync+, outpaces WebRsync by an order of
magnitude, and is able to simultaneously support 6800–
8500 web clients’ delta sync using a standard VM server
instance based on a Dropbox-like system architecture.

1 Introduction
Recent years have witnessed considerable popularity of
cloud storage services, such as Dropbox, SugarSync,
Google Drive, iCloud Drive, and Microsoft OneDrive.
They have not only provided a convenient and perva-
sive data store for billions of Internet users, but also be-
come a critical component of other online applications.
Their popularity brings a large volume of network traf-
fic overhead to both the client and cloud sides [28, 37].
Thus, a lot of efforts have been made to improve their
network-level efficiency, such as batched sync, deferred
sync, delta sync, compression and deduplication [24, 25,
27, 37, 38, 46]. Among these efforts, delta sync is of par-
ticular importance for its fine granularity (i.e., the client
only sends the changed content of a file to the cloud, in-
stead of the entire file), thus achieving significant traffic

∗Corresponding author. Email: lizhenhua1983@gmail.com

savings in the presence of users’ file edits [29, 39, 40].
Unfortunately, today delta sync is only available for

PC clients and mobile apps, but not for the web—the
most pervasive and OS-independent access method [37].
After a file f is edited into a new version f ′ by users,
Dropbox’s PC client will apply delta sync to automati-
cally upload only the altered bits to the cloud; in contrast,
Dropbox’s web interface requires users to manually up-
load the entire content of f ′ to the cloud.1 This gap sig-
nificantly affects web-based user experiences in terms of
both sync speed and traffic cost.

Web is a fairly popular access method for cloud stor-
age services: all the major cloud storage services sup-
port web-based access, while only providing PC clients
and mobile apps for a limited set of OS distributions and
devices. One reason is that many users do not want to in-
stall PC clients or mobile apps on their devices to avoid
the extra storage and CPU/memory overhead; in com-
parison, almost every device has web browsers. Spe-
cially, for the emerging cloud-oriented systems and de-
vices (e.g., Chrome OS and Chromebook) web browsers
are perhaps the only option to access cloud storage.

To understand the fundamental obstacles of web-
based delta sync, we implement a delta sync solution,
WebRsync, using state-of-the-art web techniques includ-
ing JavaScript, WebSocket, and HTML5 File APIs [14,
18]. WebRsync implements the algorithm of rsync [15],
the de facto delta sync protocol for PC clients, and works
with all modern web browsers that support HTML5. To
optimize the execution of JavaScript, we use asm.js [4] to
first implement the client side of WebRsync in efficient
C code and then compile it to JavaScript. To unravel the
performance of WebRsync from the users’ perspective,
we further develop StagMeter, an automated tool for ac-
curately quantifying the stagnation of web browsers, i.e.,
the browser’s not responding to user actions (e.g., mouse
clicks) in time, when applying WebRsync.

Our experiments show that WebRsync is severely af-

1In this paper, we focus on pervasive file editing made by any
applications that synchronize files to the cloud storage through web
browsers, rather than specific web-based file editors such as Google
Docs, Microsoft Word Online, Overleaf, and GitHub online editor.
Technically, our measurements show that the latter usually leverages
specific data structures (rather than delta sync) to avoid full-content
transfer and save the network traffic incurred by file editing.

USENIX Association 16th USENIX Conference on File and Storage Technologies 155

fected by the low execution efficiency of JavaScript in-
side web browsers. Even under simple (or says one-
shot) file editing workloads, WebRsync is slower than PC
client-based delta sync by 16–35 times, and most time
is spent at the client side for performing computation-
intensive chunk search and comparison operations.2

This causes web browsers to frequently stagnate and
even hang (i.e., the browser never reacts to user actions).
Also, we find that the drawback of WebRsync cannot be
fundamentally addressed through native extension, par-
allelism, or client-side optimization (§4).

Driven by above observations, our first effort to-
wards practical web-based delta sync is to “reverse” the
WebRsync process by handing all chunk search and com-
parison operations over to the server side. This effort also
enables us to re-implement these computation-intensive
operations in efficient C code. The resulting solution
is named WebR2sync (Web-based Reverse rsync). It
significantly cuts the computation burden on the web
client, but brings considerable computation overhead to
the server side. To this end, we make two-fold additional
efforts to optimize the server-side computation overhead.
First, we exploit the locality of users’ file edits which
can help bypass most (up to ∼90%) chunk search op-
erations in real usage scenarios. Second, by leverag-
ing lightweight checksum algorithms, SipHash [20] and
Spooky [17] instead of MD5, we can reduce the com-
plexity of chunk comparison by ∼5 times. The final so-
lution is referred to as WebR2sync+, and we make the
source code of all our developed solutions publicly avail-
able at https://WebDeltaSync.github.io.

We evaluate the performance of WebR2sync+ using
a deployed benchmark system based on a Dropbox-like
system architecture. We show that WebR2sync+ out-
paces WebRsync by an order of magnitude, approaching
the performance of PC client-based rsync. Moreover,
WebR2sync+ is able to simultaneously support 6800–
8500 web clients’ delta sync using a standard VM server
instance under regular workloads 3. Even under intensive
workloads, a standard VM instance with WebR2sync+
deployed can simultaneously support 740 web clients.

2 Delta Sync Support in State-of-the-Art
Cloud Storage Services

In this section, we present our qualitative study of delta
sync support in state-of-the-art cloud storage services.
The target services are selected for either their popularity
(Dropbox, Google Drive, Microsoft OneDrive, iCloud
Drive, and Box.com), or representativeness in terms of

2In contrast, when a user downloads a file from the cloud with a
web browser, the client-side computation burden of delta sync is fairly
low and thus would not cause the web browser to stagnate or hang.

3Detailed description of simple, regular, and intensive workloads
we use in this work is presented in §6.2.

Service PC Client Mobile App Web Browser
Dropbox Yes No No
Google Drive No No No
OneDrive No No No
iCloud Drive Yes No No
Box.com No No No
SugarSync Yes No No
Seafile [16] Yes No No
QuickSync [25] Yes Yes No
DeltaCFS [51] Yes Yes No

Table 1: Delta sync support in 9 cloud storage services.

techniques used (SugarSync, Seafile, QuickSync, and
DeltaCFS). For each service, we examined its delta sync
support with different access methods, using its latest-
version (as of April 2017) Windows PC client, Android
app, and Chrome web browser. The only exception oc-
curred to iCloud Drive for which we used its latest-
version MacOS client, iOS app, and Safari web browser.

To examine a specific service with a specific access
method, we first uploaded a 1-MB 4 highly-compressed
new file (f) to the cloud (so the resulting network traffic
would be slightly larger than 1 MB). Next, on the user
side, we appended a single byte to f to generate an up-
dated file f ′. Afterwards, we synchronized f ′ from the
user to the cloud with the specific access method, and
meanwhile recorded the network traffic consumption. In
this way, we can reveal if delta sync is applied by measur-
ing the traffic consumption—if the traffic consumption
was larger than 1 MB, the service did not adopt delta
sync; otherwise (i.e., the traffic consumption was just
tens of KBs), the service had implemented delta sync.

Based on the examination results listed in Table 1, we
have the following observations. First, delta sync has
been widely adopted in the majority of PC clients of
cloud storage services. On the other hand, it has never
been used by the mobile apps of any popular cloud stor-
age services, though two academic services [25,51] have
implemented delta sync in their mobile apps and proved
the efficacy. In fact, as the battery capacity and en-
ergy efficiency of mobile apps grow constantly, we ex-
pect delta sync to be widely adopted by mobile apps in
the near future [36]. Finally, none of the studied cloud
storage services supports web-based delta sync, despite
web browsers constituting the most pervasive and OS-
independent method for accessing Internet services.

3 WebRsync: The First Endeavor
WebRsync is the first workable implementation of web-
based delta sync for cloud storage services. It is imple-
mented in JavaScript based on HTML5 File APIs [18]
and WebSocket. It follows the algorithm of rsync and
thus keeps the same behavior as PC client-based ap-

4We also experiment with files much larger than 1 MB in size, i.e.,
10 MB and 100 MB, and got the same results.

156 16th USENIX Conference on File and Storage Technologies USENIX Association

https://WebDeltaSync.github.io

Client Server

Segmentation
Fingerprinting

Searching
Comparing

Construct

New File f

Generate Literal Bytes

Figure 1: Design flow chart of WebRsync.

proaches. Although it is not a practically acceptable so-
lution, it points out the challenges and opportunities of
supporting delta sync under current web frameworks.

3.1 Design and Implementation
We design WebRsync by adapting the working proce-
dure of rsync to the web browser scenario. As demon-
strated in Figure 1, in WebRsync when a user edits a
file from f to f ′, the client instantly sends a request to
the server for the file synchronization. On receiving the
request, the server first executes fixed-size chunk seg-
mentation and fingerprinting operations on f (which is
available on the cloud side), and then returns a checksum
list of f to the client. Except for the last chunk, each
data chunk is typically 8 KB in size. Thus when f is 1
MB in size, its checksum list contains 128 weak 32-bit
checksums as well as 128 strong 128-bit MD5 check-
sums [15]. After that, based on the checksum list of f ,
the client first performs chunk search and comparison
operations on f ′, and then generates both the matching
tokens and literal bytes. Note that search and comparison
operations are both conducted in a byte-by-byte manner
on rolling checksums; in comparison, segmentation and
fingerprinting operations are both conducted in a chunk-
by-chunk manner so they incur much lower computation
overhead. The matching tokens indicate the overlap be-
tween f and f ′, while the literal bytes represent the novel
parts in f ′ relative to f . Both of them are sent to the
server for constructing f ′. Finally, the server returns an
acknowledgment to the client to conclude the process.

We implement the client side of WebRsync based on
the HTML5 File APIs [18] and the WebSocket protocol,
using 1500 lines of JavaScript code. Following the com-
mon practice to optimize the performance of JavaScript
execution, we adopt the asm.js language [4] to first write
the client side of WebRsync in C code and then compile it
to JavaScript. The server side of WebRsync is developed
based on the node.js framework, with 500 lines of node.js
code and 600 lines of C code; its architecture follows
the server architecture of Dropbox (as an example of the
state-of-the-art industrial cloud storage services). Sim-
ilar to Dropbox, the web service of WebRsync runs on

a VM server rent from Aliyun ECS [2], and the file con-
tent is hosted on object storage rent from Aliyun OSS [3].
More details on the server, client and network configura-
tions are described in §6.1 and Figure 14.

3.2 Performance Benchmarking
We first compare the performance of WebRsync and
rsync. We perform random append, insert, and cut 5

operations of different edit sizes (ranging from 1 B, 10
B, 100 B, 1 KB, 10 KB, to 100 KB) upon real-world files
collected from real-world cloud storage services. The
dataset is collected in our previous work and is publicly
released [37], where the average file size is nearly 1 MB.
One file is edited for only once, and it is then synchro-
nized from the client side to the server side. For an insert
or cut operation, when its edit size reaches or exceeds 1
KB, it is first dispersed into a certain number of (typically
1–20) continuous sub-edits 6 to simulate the practical sit-
uation of a user edit, and then synchronized to the server.
For each of the three different types of edit operations,
we first measure its average sync time corresponding to
each edit size, and then decompose the average sync time
into three stages: server, network, and client. Moreover,
we measure its average CPU utilization on the client side
corresponding to each edit size.

As shown in Figure 2, for each type of file edit oper-
ations the sync time of WebRsync is significantly longer
than that of rsync (by 16–35 times). In other words,
WebRsync is much slower than rsync on handling the
same file edit. Among the three types of file edits, we
notice that syncing a cut operation with WebRsync is al-
ways faster than syncing an append/insert operation (for
the same edit size), especially when the edit size is rela-
tively large (10 KB or 100 KB). This is because a cut op-
eration reduces the length of a file while an append/insert
operation increases the length of a file.

Furthermore, we decompose the sync time of rsync
and WebRsync into three stages: at the client side, across
the network, and at the server side, as depicted in Fig-
ures 3a and 3b. For each type of file edits, around 40% of
rsync’s sync time is spent at the client side and around
35% is spent at the network side; in comparison, the
vast majority (60%–92%) of WebRsync’s sync time is
spent at the client side, while less than 5% is spent at the
network side. This indicates that the sync bottleneck of
WebRsync is due to the inefficiency of the web browser’s
executing JavaScript code. Additionally, Figure 3c illus-
trates that the CPU utilization of each type of file edits in
WebRsync is as nearly twice as that of rsync, because
JavaScript programs consume more CPU resources.

5Here “cut” means to remove some bytes from a file.
6A continuous sub-edit means that the sub-edit operation happens

to continuous bytes in the file. More details are explained in § 5.2,
especially in Figure 12 and Figure 13.

USENIX Association 16th USENIX Conference on File and Storage Technologies 157

1 10 100 1K 10K 100K
Append Size (Byte)

0

2

4

6

8
S

yn
c

Ti
m

e
(S

ec
on

d) WebRsync
rsync

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d) WebRsync

rsync

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
rsync

(c) Cut.

Figure 2: Average sync time using WebRsync for various sizes of file edits (including append, insert, and cut) under a
simple workload. The error bars show the minimum and maximum values at each point.

1 10 100 1K 10K 100K
Append Size (Byte)

0

0.02

0.04

0.06

0.08

0.1

S
yn

c
Ti

m
e

(S
ec

on
d) Server

Network
Client

(a) Breakdown of the sync time of rsync.

1 10 100 1K 10K 100K
Append Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d) Server

Network
Client

(b) Breakdown of the sync time of WebRsync.

1 10 100 1K 10K 100K
Append Size (Byte)

0

20

40

60

80

100

C
P

U
 U

til
iz

at
io

n
(%

) WebRsync
rsync

(c) Average client-side CPU utilization.

Figure 3: Breakdown of the sync time of (a) rsync and (b) WebRsync for append operations, as well as the corre-
sponding average client-side CPU utilizations. The situations for insert and cut operations are similar.

3.3 Measuring Stagnation with StagMeter
As discussed in §3.2, WebRsync not only leads to more
sync time, but also costs more computation resources at
the client side. The heavy CPU consumption causes web
browsers to frequently stagnate and even hang. To quan-
titatively understand the stagnation of web browser per-
ceived by users, we develop the StagMeter tool to mea-
sure the stagnation time by automatically integrating a
piece of JavaScript code into the web browser 7. Stag-
Meter periodically 8 prints the current timestamp on the
concerned web page (e.g., the web page that executes
delta sync). If the current timestamp (say t) is success-
fully printed at the moment, there is no stagnation; oth-
erwise, there is a stagnation and then the printing of the
current timestamp will be postponed to t ′ > t. Therefore,
the corresponding stagnation time is calculated as t ′− t.

Using StagMeter, we measure and visualize the stag-
nations of WebRsync (on handling the three types of file
edits) in Figure 4. Note that StagMeter only attempts
to print 10 timestamps for the first second. Therefore,
spaces between consecutive timestamps represent stag-
nation, and larger spaces imply longer stagnations. As
indicated in all the three subfigures, stagnations are di-
rectly associated with high CPU utilizations.

7We can also directly use the native profiling tool of the Chrome
browser to visualize the stagnation, whose results we found more com-
plicated to interpret than those of StagMeter.

8By default we set the period as 100 ms, so as to simulate the mini-
mum intervals of common web users’ operations.

4 Native Extension, Parallelism, and
Client-side Optimization of WebRsync

This section investigates three approaches to partially ad-
dressing the drawback of WebRsync. For each approach,
we first describe its working principle, and then evaluate
its performance using different types of file edits.

WebRsync-native. Given that the sync speed of
WebRsync is much lower than that of the PC client-based
delta sync solution (rsync), our first approach to opti-
mizing WebRsync is to leverage the native client [13] for
web browsers. Native client is a sandbox for efficiently
and securely executing compiled C/C++ code in a web
browser, and has been supported by all mainstream web
browsers. In our implementation, we use the Chrome
native client to accelerate the execution of WebRsync on
the Chrome browser. We first use HTML5 and JavaScript
to compose the webpage interface, through which a user
can select a local file to synchronize (to the cloud). Then,
the path of the selected local file is sent to our devel-
oped native client (written in C++). Afterwards, the na-
tive client reads the file content and synchronizes it to the
cloud in a similar way as rsync. When the sync process
finishes, the native client returns an acknowledgement
message to the webpage interface, which then shows the
user the success of the delta sync operation.

Figure 5 depicts the performance of WebRsync-native,
in comparison to the performance of original WebRsync.
Obviously, WebRsync-native significantly reduces the

158 16th USENIX Conference on File and Storage Technologies USENIX Association

0

20

40

60

80

 100

C
P

U
 P

ro
fil

in
g

(%
)

1
100
10K
100K

0 1 2 3 4 5 6 7
Sync Process Time (Second)

1
100
10K

100K

A
pp

en
d

S
iz

e
(B

)

Printed Timestamps by StagMeter

(a) Append.

0

20

40

60

80

 100

C
P

U
 P

ro
fil

in
g

(%
)

1
100
10K
100K

0 1 2 3 4 5 6 7
Sync Process Time (Second)

1
100
10K

100K

In
se

rt
S

iz
e

(B
)

Printed Timestamps by StagMeter

(b) Insert.

0

20

40

60

80

 100

C
P

U
 P

ro
fil

in
g

(%
)

1
100
10K
100K

0 1 2 3 4 5 6 7
Sync Process Time (Second)

1
100
10K

100K

C
ut

 S
iz

e
(B

)

Printed Timestamps by StagMeter

(c) Cut.

Figure 4: Stagnation captured by StagMeter for different edit operations and the associated CPU utilizations. The
stagnation time is illustrated by the discontinuation of the timestamp on the sync process time.

1 10 100 1K 10K 100K
Append Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync-native

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

2

4

6

8
S

yn
c

Ti
m

e
(S

ec
on

d)

WebRsync
WebRsync-native

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync-native

(c) Cut.

Figure 5: Average sync time using WebRsync-native for various sizes of file edits under a simple workload.

sync time of WebRsync, in fact close to the sync time
of rsync. Accordingly, the CPU utilization is de-
creased and the stagnation of the Chrome browser is fully
avoided. Nevertheless, using native client requires the
user to download and install extra plug-in components
for the web browser, which essentially impairs the us-
ability and pervasiveness of WebRsync-native.

WebRsync-parallel. Our second approach is to use
HTML5 web workers [10] for parallelism or threading.
Generally speaking, when executing JavaScript code in
a webpage, the webpage becomes unresponsive until
the execution is finished—this is why WebRsync would
lead to frequent stagnation and even hanging of the web
browser. To address this problem, a web worker is a
JavaScript program that runs in the background, inde-
pendently of other JavaScript programs in the same web-
page. When we apply it to WebRsync, the original single
JavaScript program is divided to multiple JavaScript pro-
grams that work in parallel. Although this approach can
hardly reduce the total sync time (as indicated in Fig-
ure 6) or the CPU utilizations (as shown in Figure 7, the
upper part), it can fully avoid stagnation for the Chrome
browser (as shown in Figure 7, the lower part).

WebRsync+. Later in §5.2 we describe in detail how we
exploit users’ file-edit locality and lightweight hash algo-
rithms to reduce server-side computation overhead. As a
matter of fact, the two-fold optimizations can also be ap-

plied to the client side. Thereby, we implement the two
optimization mechanisms at the client side of WebRsync
by translating them from C++ to JavaScript, and the re-
sulting solution is referred to as WebRsync+. As illus-
trated in Figure 8, WebRsync+ stays between WebRsync
and WebR2sync+ in terms of sync time, which is ba-
sically within our expectation. Further, we decompose
the sync time of WebRsync+ into three stages: at the
client side, across the network, and at the server side,
as depicted in Figure 9. Comparing Figure 9 with Fig-
ure 3b (breakdown of the sync time of WebRsync into
three stages), we find that the client-side time cost of
WebRsync+ is remarkably reduced thanks to the two op-
timization mechanisms. However, WebRsync+ cannot
fully avoid stagnation for web browsers; instead, it can
only alleviate the stagnation compared to WebRsync.

Summary. With the above three-fold efforts, we con-
clude that the drawback of WebRsync cannot be funda-
mentally addressed via solely client-side optimizations.
That is to say, we need more comprehensive solutions
where the server side is also involved.

5 WebR2sync+: Web-based Delta Sync
Made Practical

This section presents WebR2sync+, the practical so-
lution for web-based delta sync. The practicality of
WebR2sync+ is attributed to multi-fold endeavors at both

USENIX Association 16th USENIX Conference on File and Storage Technologies 159

1 10 100 1K 10K 100K
Append Size (Byte)

0

2

4

6

8
S

yn
c

Ti
m

e
(S

ec
on

d)

WebRsync
WebRsync-parallel

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync-parallel

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync-parallel

(c) Cut.

Figure 6: Average sync time using WebRsync-parallel for various sizes of file edits under a simple workload.

0

20

40

60

80

 100

C
P

U
 P

ro
fil

in
g

(%
)

1
100
10K
100K

0 1 2 3 4 5 6 7
Sync Process Time (Second)

1
100
10K

100K

A
pp

en
d

S
iz

e
(B

)

Printed Timestamps by StagMeter

(a) Append.

0

20

40

60

80

 100

C
P

U
 P

ro
fil

in
g

(%
)

1
100
10K
100K

0 1 2 3 4 5 6 7
Sync Process Time (Second)

1
100
10K

100K

In
se

rt
S

iz
e

(B
)

Printed Timestamps by StagMeter

(b) Insert.

0

20

40

60

80

 100

C
P

U
 P

ro
fil

in
g

(%
)

1
100
10K
100K

0 1 2 3 4 5 6 7
Sync Process Time (Second)

1
100
10K

100K

C
ut

 S
iz

e
(B

)

Printed Timestamps by StagMeter

(c) Cut.

Figure 7: Although WebRsync-parallel is unable to reduce the CPU utilizations (relative to WebRsync), it can fully
avoid stagnation for the Chrome web browser by utilizing HTML5 web workers.

1 10 100 1K 10K 100K
Append Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync+
WebR2sync+

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync+
WebR2sync+

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

0

2

4

6

8

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebRsync+
WebR2sync+

(c) Cut.

Figure 8: Average sync time using WebRsync+ for various sizes of file edits under a simple workload.

1 10 100 1K 10K 100K
Append Size (Byte)

0

0.5

1

1.5

2

S
yn

c
Ti

m
e

(S
ec

on
d) Server

Network
Client

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

0.5

1

1.5

2

S
yn

c
Ti

m
e

(S
ec

on
d) Server
Network
Client

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

0

0.5

1

1.5

2

S
yn

c
Ti

m
e

(S
ec

on
d)

Server
Network
Client

(c) Cut.

Figure 9: Breakdown of the sync time of WebRsync+ (shown in Figure 8) for different types of edit operations.

client and server sides. We first present the basic so-
lution, WebR2sync, which improves WebRsync (§5.1),
and then describe the server-side optimizations for miti-
gating the computation overhead (§5.2). The final solu-
tion that combines both WebR2sync with the server-side
optimizations is referred to as WebR2sync+ in §5.3.

5.1 WebR2sync
As depicted in Figure 10, to address the overload is-
sue, WebR2sync reverses the process of WebRsync (c.f.,
Figure 1) by moving the computation intensive search
and comparison operations to the server side; mean-
while, it shifts the lightweight segmentation and finger-

160 16th USENIX Conference on File and Storage Technologies USENIX Association

Client Server
Segmentation
Fingerprinting

Searching
Comparing

Construct

New File f

Generate Literal Bytes

Figure 10: Design flow chart of WebR2sync.

printing operations to the client side. Compared with
the workflow of conventional web-based delta sync, in
WebRsync, the checksum list of f ′ is generated by the
client and the matching tokens are generated by the
server, while the literal bytes are still generated by the
client. Note that this allows us to implement the search
and comparison operations in C rather than in JavaScript
at the server side. Therefore, WebR2sync can not only
avoid stagnation for the web client, but also effectively
shorten the duration of the whole delta sync process.

5.2 Server-side Optimizations
While WebR2sync significantly cuts the computation
burden on the web client, it brings considerable com-
putation overhead to the server side. To this end, we
make two-fold additional efforts to optimize the server-
side computation overhead.

Exploiting the locality of file edits in chunk search.
When the server receives a checksum list from the client,
WebR2sync uses a 3-level chunk searching scheme to
figure out matched chunks between f and f ′, as shown
in Figure 11 (which follows the 3-level chunk searching
scheme of rsync [15]). Specifically, in the checksum list
of f ′ there is a 32-bit weak rolling checksum (calculated
by the Adler32 algorithm [26]) and a 128-bit strong MD5
checksum for each data chunk in f ′. When this check-
sum list is sent to the server, the server leverages an ad-
ditional (rolling checksum) hash table whose every entry
is a 16-bit hash code of the 32-bit rolling checksum [15].
The checksum list is then sorted according to the 16-bit
hash code of the 32-bit rolling checksums. Note that a
16-bit hash code can point to multiple rolling and MD5
checksums. Thereby, to find each matched chunk be-
tween f and f ′, the 3-level chunk searching scheme al-
ways goes from the 16-bit hash code to the 32-bit rolling
checksum and further to the 128-bit MD5 checksum.

The 3-level chunk searching scheme can effectively
minimize the computation overhead for general file-edit
patterns, particularly random edits to a file. However,
it has been observed that real-world file edits typically

H
as

h
Ta

bl
e

...

Adler32 MD5

Adler32 MD5

Adler32 MD5

Adler32 MD5
Chunk #2

Adler32 MD5

File f

Chunk #4

Chunk #1

Chunk #3

Chunk #5

Chunk #1 Chunk #2 Chunk #3 Chunk #4 ... Chunk #n

Figure 11: The three-level chunk searching scheme used
by rsync and WebR2sync.

A File

A Continuous Sub-Edit

An Edit

(a) An edit consists of several continuous sub-edits.

A File

(b) The worst case of a file edit in terms of locality.

Figure 12: An example of continuous sub-edits due to
the locality of file edits: (a) the relationship between a
file edit and its constituent continuous sub-edits; (b) the
worst-case scenario in terms of locality.

follow a local pattern rather than a general (random) pat-
tern, which has been exploited to accelerate file compres-
sion and deduplication [41,47–49]. To exemplify this ob-
servation in a quantitative manner, we analyze two real-
world fine-grained file editing traces with respect to Mi-
crosoft Word and Tencent WeChat collected by Zhang et
al. [51]. The traces are fine-grained since they leveraged
a loopback user-space file system (Dokan [7] for Win-
dows) to record not only the detailed information (e.g.,
edit type, edit offset, and edit length) of users’ file oper-
ations but also the content of the updated data. In each
trace, a user made several continuous sub-edits to a file
and then did a save operation, and this behavior repeated
for many times. Here a continuous sub-edit means that
the sub-edit operation happens to continuous bytes in the
file, as demonstrated in Figure 12. Our analysis results,
in Figure 13, show that in nearly a half (46%) of cases
a user saved 1–5 continuous sub-edits, thus indicating
fine locality. Besides, in over one third (35%) of cases
a user saved 6–10 continuous sub-edits, which still im-
plies sound locality. On the other hand, in only a minor-
ity (5%) of cases a user saved more than 16 continuous
sub-edits, which means undesirable locality.

The locality of real-world file edits offers us an oppor-
tunity to bypass a considerable portion of (unnecessary)
chunk search operations. In essence, given that edits to a
file are typically local, when we find that the i-th chunk

USENIX Association 16th USENIX Conference on File and Storage Technologies 161

1 2-5 6-10 11-15 16+
Number of Continuous Sub-Edits

0

10

20

30

40

P
er

ce
nt

ag
e

(%
)

Figure 13: A real-world example of file-edit locality. The
number of continuous sub-edits is highly clustered.

of f ′ matches the j-th chunk of f , the (i+ 1)-th chunk
of f ′ is highly likely to match the (j + 1)-th chunk of
f . Therefore, we “simplify” the 3-level chunk searching
scheme by directly comparing the MD5 checksums of
the (i+ 1)-th chunk of f ′ and the (j+ 1)-th chunk of f .
If the two chunks are identical, we simply move forward
to the next chunk; otherwise, we return to the regular 3-
level chunk searching scheme.

Replacing MD5 with SipHash in chunk comparison.
By exploiting the locality of users’ file edits as above, we
manage to bypass most chunk search operations. After
that, we notice that the majority of server-side compu-
tation overhead is attributed to the calculations of MD5
checksums. Thus, we wonder whether the usage of MD5
is necessary in chunk comparison. MD5 was initially de-
signed as a cryptographic hash function for generating
secure and low-collision hash codes [43], which makes
it computationally expensive. In our scenario, it is not
necessary to use such an expensive hash function, be-
cause our purpose is just to obtain a low collision prob-
ability. In fact, we can employ the HTTPS protocol for
data exchange between the web client and server to en-
sure the security. Driven by this insight, we decide to re-
place MD5 with a lightweight pseudorandom hash func-
tion [22] in order to reduce the computational overhead.

Quite a few pseudorandom hash functions can satisfy
our goal, such as Spooky [17], FNV [9], CityHash [5],
SipHash [20], and Murmur3 [12]. Among them, some
are very lightweight but vulnerable to collisions. For ex-
ample, the computation overhead of MD5 is around 5
to 6 cycles per byte [8] while the computation overhead
of CityHash is merely 0.23 cycle per byte [19], but the
collision probability of CityHash is quite high. On the
other hand, some pseudorandom hash functions have ex-
tremely low collision probability but are a bit slow. As
listed in Table 2, SipHash seems to be a sweet spot — its
computation overhead is about 1.13 cycles per byte and
its collision probability is acceptably low. By replacing
MD5 with SipHash in our web-based delta sync solu-
tion, we manage to reduce the computation complexity
of chunk comparison by nearly 5 times.

Hash Function Collision Probability Cycles Per Byte
MD5 Low (< 10−6) 5.58
Murmur3 High (≈ 1.05×10−4) 0.33
CityHash High (≈ 1.03×10−4) 0.23
FNV High (≈ 1.09×10−4) 1.75
Spooky High (≈ 9.92×10−5) 0.14
SipHash Low (< 10−6) 1.13

Table 2: A comparison of candidate pseudorandom hash
functions in terms of collision probability (on 64-bit hash
values) and computation overhead (cycles per byte).

Although the collision probability of SipHash is ac-
ceptably low, it is slightly higher than that of MD5. Thus,
as a fail-safe mechanism, we make a lightweight full-
content hash checking (using the Spooky algorithm) in
the end of a file synchronization, so as to deal with pos-
sible collisions in SipHash chunk fingerprinting. We se-
lect the Spooky algorithm because it works the fastest
among all the candidate pseudorandom hash algorithms
(as listed in Table 2). If the full-content hash checking
fails for the synchronization of a file (with an extremely
low probability), we will roll back and re-sync the file
with the original MD5 chunk fingerprinting.

5.3 WebR2sync+: The Final Product
The integration of WebR2sync and the server-side op-
timization produces WebR2sync+. The client side of
WebR2sync+ is implemented based on the HTML5 File
APIs, the WebSocket protocol, an open-source imple-
mentation of SipHash-2-4 [1], and an open-source im-
plementation of SpookyHash [11]. In total, it is writ-
ten in 1700 lines of JavaScript code. The server side of
WebR2sync+ is developed based on the node.js frame-
work and a series of C processing modules. The former
(written in 500 lines of node.js code) handles the user
requests, and the latter (written in 1000 lines of C code)
embodies the reverse delta sync process together with the
server-side optimizations.

6 Evaluation
This section evaluates the performance of WebR2sync+,
in comparison to WebRsync, WebR2sync and (PC client-
based) rsync under a variety of workloads.

6.1 Experiment Setup
To evaluate different sync approaches, we set up a
Dropbox-like system architecture by running the web
service on a standard VM server instance (with a quad-
core Intel Xeon CPU @2.5GHz and 16-GB memory)
rent from Aliyun ECS, and all file content is hosted
on object storage rent from Aliyun OSS. The ECS VM
server and OSS storage are located at the same data cen-
ter so there is no bottleneck between them. The client
side of WebR2sync+ was executed in the Google Chrome

162 16th USENIX Conference on File and Storage Technologies USENIX Association

ECS VM @ UniCom
OSS Storage @ UniCom

Web Client @ CERNET

Figure 14: Experiment setup in China.

browser (Windows version 56.0) running on a laptop
with a quad-core Intel Core-i5 CPU @2.8GHz, 16-GB
memory, and an SSD disk. The server side and client
side lie in different cities (i.e., Shanghai and Beijing) and
different ISPs (i.e., China Unicom and CERNET), as de-
picted in Figure 14. The network RTT is ∼30 ms and
the network bandwidth is ∼100 Mbps. Therefore, the
network bottleneck is kept minimal in our experiments
so that the major system bottleneck lies at the server
and/or client sides. If the network condition becomes
much worse, the major system bottleneck might shift to
the network connection.

6.2 Workloads
To evaluate the performance of WebR2sync+ under vari-
ous practical usage scenarios, as compared to WebRsync,
WebR2sync, and rsync, we generate simple (i.e., one-
shot), regular (i.e., periodical), and intensive workloads.
To generate simple workloads, we make random append,
insert, and cut operations of different edit sizes against
real-world files collected from real-world cloud storage
services. The collected dataset is described in §3.2. One
file is edited for only once (the so-called “one-shot”), and
it is then synchronized from the client side to the server
side. For an insert or cut operation, when its edit size ≥
1 KB, it is first dispersed into 1–20 continuous sub-edits
and then synchronized to the server.

Regular and intensive workloads are mainly employed
to evaluate the service throughput of each solution. To
generate regular workloads, we still make a certain type
of edit to a typical file but the edit operation is executed
every 10 seconds. To generate a practical intensive work-
load, we use a benchmark of over 8755 pairs of source
files taken from two successive releases (versions 4.5 and
4.6) of the Linux kernel source trees. The average size
of the source files is 23 KB and the file-edit locality is
generally stronger than that in Figure 13 (as shown in
Figure 15). Specifically, we first upload all the files of
the old version to the server side in an FTP-like man-
ner. Then, we synchronize all the files of the new version
one by one to the server side using the target approaches
(including rsync, WebRsync, WebR2sync, WebR2sync

1 2-5 6-10 11-15 16+
Number of Continuous Sub-Edits

0

1000

2000

3000

4000

N
um

be
r o

f F
ile

s

Figure 15: File-edit locality in the source files of two
successive Linux kernel releases (versions 4.5 and 4.6).

with SipHash, and WebR2sync+). There is no time inter-
val between two sequential file synchronizations.

6.3 Results
This part presents our experiment results in four aspects:
1) sync efficiency which measures how quick a file oper-
ation is synchronized to the cloud; 2) computation over-
head which explains the difference in sync efficiency of
the studied solutions; 3) sync traffic which quantifies how
much network traffic is saved by each solution; and 4)
service throughput which shows the scalability of each
solution using standard VM server instances.

Sync efficiency. We measure the efficiency of
WebR2sync+ in terms of the time for completing the
sync. Figure 16 shows the time for syncing against dif-
ferent types of file operations. We can see that the sync
time of WebR2sync+ is substantially shorter than that of
WebR2sync (by 2 to 3 times) and WebRsync (by 15 to
20 times) for every different type of operations. Note
that Figure 16 is plotted with a log scale. In other words,
WebR2sync+ outpaces WebRsync by around an order
of magnitude, approaching the speed of PC client-based
rsync. Furthermore, we observe that the sync time of
WebR2sync with SipHash always lies between those of
WebR2sync and WebR2sync+. This confirms that nei-
ther of our server-side optimizations (SipHash and local-
ity exploiting, refer to §5.2) is indispensable.

Similar as Figure 3b, we further break down the sync
time of WebR2sync+ into three stages as shown in Fig-
ure 17. Comparing Figure 17 and Figure 3b, we notice
that the majority of sync time is attributed to the client
side for WebRsync, while it is attributed to the server
side for WebR2sync+. This indicates that the computa-
tion overhead of the web browsers in WebRsync is sub-
stantially reduced in WebR2sync+, which also saves web
browsers from stagnation and hanging.

Computation overhead. Moreover, we record the
client-side and server-side CPU utilizations in Fig-
ure 18 and Figure 19, respectively. On the client side,
WebRsync consumes the most CPU resources while

USENIX Association 16th USENIX Conference on File and Storage Technologies 163

1 10 100 1K 10K 100K
Append Size (Byte)

10-2

100

S
yn

c
Ti

m
e

(S
ec

on
d)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(a) Append.

1 10 100 1K 10K 100k
Insert Size (Byte)

10-2

100

S
yn

c
Ti

m
e

(S
ec

on
d) WebRsync

WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

10-2

100

S
yn

c
Ti

m
e

(S
ec

on
d) WebRsync

WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(c) Cut.

Figure 16: Average sync time of different delta sync approaches for various sizes of file edits under a simple workload.

1 10 100 1K 10K 100K
Append Size (Byte)

0

0.05

0.1

0.15

0.2

S
yn

c
Ti

m
e

(S
ec

on
d) Server

Network
Client

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

0.05

0.1

0.15

0.2

S
yn

c
Ti

m
e

(S
ec

on
d) Server

Network
Client

(b) Insert.

1 10 100 1K 10K 100K
Cut Size (Byte)

0

0.05

0.1

0.15

0.2

S
yn

c
Ti

m
e

(S
ec

on
d)

Server
Network
Client

(c) Cut.

Figure 17: Breakdown of the sync time of WebR2sync+ (shown in Figure 16) for different types of edit operations.

1 10 100 1K 10K 100K
Append Size (Byte)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(b) Insert.

1 10 10K 100K100 1K
Cut Size (Byte)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(c) Cut.

Figure 18: Average client-side CPU utilization of different delta sync approaches under a simple workload.

1 10 100 1K 10K 100K
Append Size (Byte)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(b) Insert.

1 10 10K 100K100 1K
Cut Size (Byte)

0

20

40

60

80

100

C
PU

 U
til

iz
at

io
n

(%
)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(c) Cut.

Figure 19: Average server-side CPU utilization of different delta sync approaches under a simple workload.

WebR2sync+ consumes the least. PC client-based rsync
consumes nearly a half CPU resources as compared
to WebRsync, and the CPU utilization of WebR2sync
lies between rsync and WebR2sync+. Owing to the
moderate (< 30%) CPU utilizations, both the clients of
WebR2sync and WebR2sync+ do not exhibit stagnation.

On the server side, WebR2sync consumes the most
CPU resources because the most computation-intensive
chunk search and comparison operations are shifted from

the client to the server. On the contrary, WebR2sync+
consumes the least CPU resources, which validates the
efficacy of our two-fold server-side optimizations.

Sync traffic. Figure 20 illustrates the sync traffic con-
sumed by the different approaches. We can see that for
any type of edits, the sync traffic (between 1 KB and
120 KB) is significantly less than the average file size
(∼1 MB), confirming the power of delta sync in improv-
ing network-level efficiency of cloud storage services.

164 16th USENIX Conference on File and Storage Technologies USENIX Association

1 10 100 1K 10K 100K
Append Size (Byte)

0

20

40

60

80

100

120
Sy

nc
 T

ra
ffi

c
(K

B)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(a) Append.

1 10 100 1K 10K 100K
Insert Size (Byte)

0

20

40

60

80

100

120

Sy
nc

 T
ra

ffi
c

(K
B)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(b) Insert.

1 10 10K 100K100 1K
Cut Size (Byte)

0

20

40

60

80

100

120

Sy
nc

 T
ra

ffi
c

(K
B)

WebRsync
WebR2sync
WebR2sync with SipHash
WebR2sync+
rsync

(c) Cut.

Figure 20: Sync traffic of different sync approaches for various sizes of file edits under a simple workload.

0 2000 4000 6000 8000
Number of Concurrent Users

WebRsync

WebR2sync

WebR2sync with SipHash

WebR2sync+

rsync

NoWebRsync

(a) Append.

0 2000 4000 6000 8000
Number of Concurrent Users

WebRsync

WebR2sync

WebR2sync with SipHash

WebR2sync+

rsync

NoWebRsync

(b) Insert.

0 2000 4000 6000 8000
Number of Concurrent Users

WebRsync

WebR2sync

WebR2sync with SipHash

WebR2sync+

rsync

NoWebRsync

(c) Cut.

Figure 21: Number of concurrent clients supported by a single VM server instance (as a measure of service throughput)
under regular workloads (periodically syncing various sizes of file edits).

0 200 400 600 800 1000
Number of Concurrent Users

WebRsync

WebR2sync

WebR2sync with SipHash

WebR2sync+

rsync

NoWebRsync

Figure 22: Number of concurrent users supported by
a single VM server instance under intensive workloads
(syncing two versions of Linux source trees).

For the same edit size the sync traffic of an append op-
eration is usually less than that of an insert operation,
because the former would bring more matching tokens
while fewer literal bytes (refer to Figure 1). Besides,
when the edit size is relatively large (10 KB or 100 KB),
a cut operation consumes much less sync traffic than an
append/insert operation, because a cut operation brings
only matching tokens but not literal bytes.

Service throughput. Finally, we measure the service
throughput of WebR2sync+ in terms of the number of
concurrent clients it can support. In general, as the num-
ber of concurrent clients increases, the main burden im-
posed on the server comes from the high CPU utilizations
in all cores. When the CPU utilizations on all cores ap-
proach 100%, we record the number of concurrent clients

at that time as the service throughput. As shown in Fig-
ure 21, WebR2sync+ can simultaneously support 6800–
8500 web clients’ delta sync using a standard VM server
instance under regular workloads. This throughput is as
3–4 times as that of WebR2sync/rsync and as∼15 times
as that of NoWebRsync. NoWebRsync means that no
web-based delta sync is used for synchronizing file edits,
i.e., directly uploading the entire content of the edited
file to the cloud. Also, we measure the service through-
put of each solution under intensive workloads (which
are mixed by the three types of edits, refer to §6.2). The
results in Figure 22 indicate that even under the inten-
sive workloads, WebR2sync+ can simultaneously sup-
port 740 web clients’ delta sync using a single VM server
instance.

7 Related Work
Delta sync, also known as delta encoding or delta com-
pression, is a way of storing or transmitting data in the
form of differences (deltas) between different versions
of a file, rather than the complete content of the file [6].
It is particularly useful for network applications where
file modifications or incremental data updates frequently
happen, e.g., storing multiple versions of a file, distribut-
ing consecutive user edits to a file, and transmitting video
sequences [33]. In the past 4 decades, a variety of delta
sync algorithms or solutions have been put forward, such
as UNIX diff [32], Vcdiff [34], WebExpress [31], Op-
timistic Deltas [21], rsync [15], and content defined
chunking (CDC) [35].

USENIX Association 16th USENIX Conference on File and Storage Technologies 165

Due to its efficiency and flexibility, rsync has become
the de facto delta sync protocol widely used in practice.
It was originally proposed by Tridgell and Mackerras in
1996, as an algorithm for efficient remote update of data
over a high-latency, low-bandwidth network link [45].
Then in 1999, Tridgell thoroughly discussed its design,
implementation, and performance in [44]. Being a stan-
dard Linux utility included in all popular Linux distribu-
tions, rsync has also been ported to Windows, FreeBSD,
NetBSD, OpenBSD, and MacOS [15].

According to a real-world usage dataset [37], the
majority (84%) of files are modified by the users for
at least once, thus confirming the importance of delta
sync on network-level efficiency of cloud storage ser-
vices. Among all mainstream cloud storage services,
Dropbox was the first to adopt delta sync (more specif-
ically, rsync) in around 2009 in its PC client-based file
sync process [39]. Then, SugarSync, iCloud Drive, and
Seafile followed the design choice of Dropbox by utiliz-
ing delta sync (rsync or CDC) to reduce their PC clients’
and cloud servers’ sync traffic. After that, two academic
cloud storage systems, namely QuickSync [25] and
DeltaCFS [51], further implemented delta sync (rsync
and CDC, respectively) for mobile apps.

Drago et al. studied the system architecture of Drop-
box and conducted large-scale measurements based on
ISP-level traces of Dropbox network traffic [28]. They
observed that the Dropbox traffic was as much as one
third of the YouTube traffic, which strengthens the ne-
cessity of Dropbox’s adopting delta sync. Li et al. in-
vestigated in detail the delta sync process of Dropbox
through various types of controlled benchmark experi-
ments, and found it suffers from both traffic and com-
putation overuse problems in the presence of frequent,
short data updates [39]. To this end, they designed an
efficient batched synchronization algorithm called UDS
(update-batched delayed sync) to reduce the traffic us-
age, and further extended UDS with a backwards com-
patible Linux kernel modification to reduce the CPU us-
age (recall that delta sync is computation intensive).

Despite the wide adoption of delta sync (particularly
rsync) in cloud storage services, practical delta sync
techniques are currently only available for PC clients
and mobile apps rather than web browsers. To this end,
we introduced the general idea of web-based delta sync
with basic motivation, preliminary design, and early-
stage performance evaluation using limited workloads
and metrics [50]. In this paper, our work is conducted
based on [50] while goes beyond it in terms of tech-
niques, evaluations, and presentations.

8 Conclusion and Future Work
This paper presents a series of efforts towards a practical
solution of web-based delta sync for cloud storage ser-

vices. We first leverage the state-of-the-art techniques
(including rsync, JavaScript, HTML5 File APIs, and
WebSocket) to develop an intuitive web-based delta sync
solution named WebRsync. Despite not being practically
acceptable in terms of performance, WebRsync effec-
tively helps us understand the obstacles to support web-
based delta sync. Particularly, we observe that the ineffi-
ciency of JavaScript execution significantly stagnates the
sync process of WebRsync. Thereby, we propose and im-
plement WebR2sync+, a practical web-based delta sync
solution by moving expensive chunk search and compar-
ison operations from the client side to the server side. It
combines with optimizations at the server side that ex-
ploit the locality of users’ file edits and uses lightweight
pseudorandom hash functions to replace the traditional
expensive cryptographic hash function. WebR2sync+
outpaces WebRsync by an order of magnitude, and is
able to simultaneously support around 6800–8500 web
clients’ delta sync using a standard VM server instance
under a Dropbox-like system architecture.

We are investigating the following aspects as the fu-
ture work. First, we are looking for a seamless way
to integrate the server-side design of WebR2sync+ with
the back-end of commercial cloud storage vendors (like
Dropbox and iCloud Drive). Specifically, WebR2sync+
needs to cooperate with data deduplication, compres-
sion, bundling, etc. [23, 27]. Moreover, we would like
to explore the benefits of using more fine-grained and
complex delta sync protocols, such as CDC and its vari-
ants [30, 42, 49]. In addition, we envision to expand the
usage of WebR2sync+ for a broader range of web service
scenarios, not limited to web browsers and cloud storage
services. For example, when a user wants to use a web-
based app to upload a file f ′ to a common web server
(such as Apache, Nginx, or IIS) which has already stored
an old version of the file (f), web-based delta sync has
the great potential to reduce network traffic and operation
time. In this case, the major challenge lies in the require-
ment of modifying the web server implementation; min-
imizing the modification efforts is under investigation.

Acknowledgments
We thank the anonymous reviewers for their positive and
constructive comments. Besides, we appreciate the valu-
able guidance and detailed suggestions from our shep-
herd, Vasily Tarasov, during the revision of the paper.
In addition, we thank Yonghe Wang for helping with
some measurements during the preparation of the pa-
per. This work is supported by the High-Tech R&D
Program of China (“863–China Cloud” Major Program)
under grant 2015AA01A201, the NSFC under grants
61471217, 61432002, 61632020 and 61472337. Ennan
Zhai is partly supported by the NSF under grants CCF-
1302327 and CCF-1715387.

166 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] A Javascript Implementation of SipHash-2-4. https://

github.com/jedisct1/siphash-js.

[2] Aliyun ECS (Elastic Compute Service). https://www.

aliyun.com/product/ECS.

[3] Aliyun OSS (Object Storage Service). https://www.aliyun.
com/product/oss.

[4] asm.js, a strict subset of JavaScript that can be used as a low-level,
efficient target language for compilers. http://asmjs.org.

[5] CityHash. https://opensource.googleblog.com/2011/

04/introducing-cityhash.html.

[6] Delta encoding, the Wikipedia page. https://en.wikipedia.
org/wiki/Delta_encoding.

[7] Dokan: An user mode file system for Windows. https://

dokan-dev.github.io.

[8] eBACS: ECRYPT Benchmarking of Cryptographic Systems.
https://bench.cr.yp.to/results-hash.html.

[9] FNV Hash. http://www.isthe.com/chongo/tech/comp/

fnv/.

[10] HTML5 Web Workers. https://www.w3schools.com/html/
html5_webworkers.asp.

[11] Javascript version of SpookyHash. https://github.com/

jamesruan/spookyhash-js.

[12] Murmur3 Hash Function. https://github.com/aappleby/

smhasher.

[13] Native Client for Google Chrome. https://developer.

chrome.com/native-client.

[14] Reading Files in JavaScript using the HTML5 File APIs. https:
//www.html5rocks.com/en/tutorials/file/dndfiles/.

[15] rsync Web Site. http://www.samba.org/rsync.

[16] Seafile: Enterprise file sync and share platform with high reliabil-
ity and performance. https://www.seafile.com/en/home.

[17] Spookyhash: A 128-Bit Noncryptographic Hash. http://

burtleburtle.net/bob/hash/spooky.html.

[18] Using files from web applications. https://developer.

mozilla.org/en-US/docs/Using_files_from_web_

applications.

[19] ALAKUIJALA, J., COX, B., AND WASSENBERG, J. Fast Keyed
Hash/Pseudo-random Function Using SIMD Multiply and Per-
mute. arXiv preprint arXiv:1612.06257 (2016).

[20] AUMASSON, J.-P., AND BERNSTEIN, D. SipHash: a Fast Short-
input PRF. In Proc. of the International Conference on Cryptol-
ogy in India (2012), Springer, pp. 489–508.

[21] BANGA, G., DOUGLIS, F., RABINOVICH, M., ET AL. Opti-
mistic Deltas for WWW Latency Reduction. In Proc. of ATC
(1997), USENIX, pp. 289–303.

[22] BELLARE, M., CANETTI, R., AND KRAWCZYK, H. Keying
Hash Functions for Message Authentication. In Proc. of Crypto
(1996), Springer, pp. 1–15.

[23] BOCCHI, E., DRAGO, I., AND MELLIA, M. Personal Cloud
Storage Benchmarks and Comparison. IEEE Transactions on
Cloud Computing (TCC) 5, 4 (2015), 751–764.

[24] BOCCHI, E., DRAGO, I., AND MELLIA, M. Personal Cloud
Storage: Usage, Performance and Impact of Terminals. In Proc.
of CloudNet (2015), IEEE, pp. 106–111.

[25] CUI, Y., LAI, Z., WANG, X., DAI, N., AND MIAO, C.
QuickSync: Improving Synchronization Efficiency for Mobile
Cloud Storage Services. In Proc. of MobiCom (2015), ACM,
pp. 592–603.

[26] DEUTSCH, P., AND GAILLY, J.-L. Zlib Compressed Data For-
mat Specification Version 3.3. Tech. rep., RFC Network Working
Group, 1996.

[27] DRAGO, I., BOCCHI, E., MELLIA, M., SLATMAN, H., AND
PRAS, A. Benchmarking Personal Cloud Storage. In Proc. of
IMC (2013), ACM, pp. 205–212.

[28] DRAGO, I., MELLIA, M., MUNAFÒ, M., SPEROTTO, A.,
SADRE, R., AND PRAS, A. Inside Dropbox: Understanding Per-
sonal Cloud Storage Services. In Proc. of IMC (2012), ACM,
pp. 481–494.

[29] E, J., CUI, Y., WANG, P., LI, Z., AND ZHANG, C. CoCloud:
Enabling Efficient Cross-Cloud File Collaboration based on Inef-
ficient Web APIs. IEEE Transactions on Parallel and Distributed
Systems (TPDS) 29, 1 (2018), 56–69.

[30] EL-SHIMI, A., KALACH, R., KUMAR, A., OTTEAN, A., LI, J.,
AND SENGUPTA, S. Primary Data Deduplication – Large Scale
Study and System Design. In Proc. of ATC (2012), USENIX,
pp. 285–296.

[31] HOUSEL, B., AND LINDQUIST, D. WebExpress: A System for
Optimizing Web Browsing in a Wireless Environment. In Proc.
of MobiCom (1996), ACM, pp. 108–116.

[32] HUNT, J., AND MACILROY, M. An Algorithm for Differential
File Comparison. Bell Laboratories New Jersey, 1976.

[33] HUNT, J., VO, K., AND TICHY, W. An Empirical Study of Delta
Algorithms. Software Configuration Management (1996), 49–66.

[34] KORN, D., AND VO, K.-P. Engineering a Differencing and
Compression Data Format. In Proc. of ATC (2002), USENIX,
pp. 219–228.

[35] KRUUS, E., UNGUREANU, C., AND DUBNICKI, C. Bimodal
Content Defined Chunking for Backup Streams. In Proc. of FAST
(2010), USENIX, pp. 239–252.

[36] LI, Z., DAI, Y., CHEN, G., AND LIU, Y. Content Distribution
for Mobile Internet: A Cloud-based Approach. Springer, 2016.

[37] LI, Z., JIN, C., XU, T., WILSON, C., LIU, Y., CHENG, L.,
LIU, Y., DAI, Y., AND ZHANG, Z.-L. Towards Network-level
Efficiency for Cloud Storage Services. In Proc. of IMC (2014),
ACM, pp. 115–128.

[38] LI, Z., WANG, X., HUANG, N., KAAFAR, M., LI, Z., ZHOU,
J., XIE, G., AND STEENKISTE, P. An Empirical Analysis of
a Large-scale Mobile Cloud Storage Service. In Proc. of IMC
(2016), ACM, pp. 287–301.

[39] LI, Z., WILSON, C., JIANG, Z., LIU, Y., ZHAO, B., JIN,
C., ZHANG, Z.-L., AND DAI, Y. Efficient Batched Synchro-
nization in Dropbox-like Cloud Storage Services. In Proc. of
ACM/IFIP/USENIX Middleware (2013), Springer, pp. 307–327.

[40] LI, Z., ZHANG, Z.-L., AND DAI, Y. Coarse-grained Cloud
Synchronization Mechanism Design May Lead to Severe Traffic
Overuse. Tsinghua Science and Technology 18, 3 (2013), 286–
297.

[41] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,
V., TREZIS, G., AND CAMBLE, P. Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality. In Proc. of
FAST (2009), USENIX, pp. 111–123.

[42] MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. A
Low-bandwidth Network File System. ACM SIGOPS Operating
Systems Review 35 (2001), 174–187.

[43] RIVEST, R., ET AL. RFC 1321: The MD5 Message-digest Algo-
rithm. Internet activities board 143 (1992).

[44] TRIDGELL, A. Efficient Algorithms for Sorting and Synchroniza-
tion. 1999.

USENIX Association 16th USENIX Conference on File and Storage Technologies 167

https://github.com/jedisct1/siphash-js
https://github.com/jedisct1/siphash-js
https://www.aliyun.com/product/ECS
https://www.aliyun.com/product/ECS
https://www.aliyun.com/product/oss
https://www.aliyun.com/product/oss
http://asmjs.org
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://opensource.googleblog.com/2011/04/introducing-cityhash.html
https://en.wikipedia.org/wiki/Delta_encoding
https://en.wikipedia.org/wiki/Delta_encoding
https://dokan-dev.github.io
https://dokan-dev.github.io
https://bench.cr.yp.to/results-hash.html
http://www.isthe.com/chongo/tech/comp/fnv/
http://www.isthe.com/chongo/tech/comp/fnv/
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://github.com/jamesruan/spookyhash-js
https://github.com/jamesruan/spookyhash-js
https://github.com/aappleby/smhasher
https://github.com/aappleby/smhasher
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client
https://www.html5rocks.com/en/tutorials/file/dndfiles/
https://www.html5rocks.com/en/tutorials/file/dndfiles/
http://www.samba.org/rsync
https://www.seafile.com/en/home
http://burtleburtle.net/bob/hash/spooky.html
http://burtleburtle.net/bob/hash/spooky.html
https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
https://developer.mozilla.org/en-US/docs/Using_files_from_web_applications

[45] TRIDGELL, A., MACKERRAS, P., ET AL. The rsync Algorithm.
The Australian National University (1996).

[46] XIA, W., JIANG, H., FENG, D., DOUGLIS, F., SHILANE, P.,
HUA, Y., FU, M., ZHANG, Y., AND ZHOU, Y. A Comprehen-
sive Study of the Past, Present, and Future of Data Deduplication.
Proceedings of the IEEE 104, 9 (2016), 1681–1710.

[47] XIA, W., JIANG, H., FENG, D., AND HUA, Y. SiLo:
A Similarity-Locality based Near-Exact Deduplication Scheme
with Low RAM Overhead and High Throughput. In Proc. of ATC
(2011), USENIX, pp. 26–30.

[48] XIA, W., JIANG, H., FENG, D., AND HUA, Y. Similarity and
Locality Based Indexing for High Performance Data Deduplica-
tion. IEEE Transactions on Computers (TC) 64, 4 (2015), 1162–
1176.

[49] XIA, W., ZHOU, Y., JIANG, H., FENG, D., HUA, Y., HU,
Y., LIU, Q., AND ZHANG, Y. FastCDC: a Fast and Efficient
Content-defined Chunking Approach for Data Deduplication. In
Proc. of ATC (2016), USENIX, pp. 101–114.

[50] XIAO, H., LI, Z., ZHAI, E., AND XU, T. Practical Web-based
Delta Synchronization for Cloud Storage Services. In Proc. of
HotStorage (2017), USENIX.

[51] ZHANG, Q., LI, Z., YANG, Z., LI, S., GUO, Y., AND DAI, Y.
DeltaCFS: Boosting Delta Sync for Cloud Storage Services by
Learning from NFS. In Proc. of ICDCS (2017), IEEE, pp. 264–
275.

168 16th USENIX Conference on File and Storage Technologies USENIX Association

Stash in a Flash

Aviad Zuck1, Yue Li2, Jehoshua Bruck2, Donald E. Porter3, and Dan Tsafrir1,4

1Technion–Israel Institute of Technology 2California Institute of Technology
3University of North Carolina at Chapel Hill 4VMware Research Group

{aviadzuc,dan}@cs.technion.ac.il, {yli,bruck}@caltech.edu, porter@cs.unc.edu

Abstract
Encryption is a useful tool to protect data confidential-
ity. Yet it is still challenging to hide the very presence of
encrypted, secret data from a powerful adversary. This
paper presents a new technique to hide data in flash
by manipulating the voltage level of pseudo-randomly-
selected flash cells to encode two bits (rather than one)
in the cell. In this model, we have one “public” bit in-
terpreted using an SLC-style encoding, and extract a pri-
vate bit using an MLC-style encoding. The locations of
cells that encode hidden data is based on a secret key
known only to the hiding user.

Intuitively, this technique requires that the voltage
level in a cell encoding data must be (1) not statistically
distinguishable from a cell only storing public data, and
(2) the user must be able to reliably read the hidden data
from this cell. Our key insight is that there is a wide
enough variation in the range of voltage levels in a typ-
ical flash device to obscure the presence of fine-grained
changes to a small fraction of the cells, and that the vari-
ation is wide enough to support reliably re-reading hid-
den data. We demonstrate that our hidden data and un-
derlying voltage manipulations go undetected by support
vector machine based supervised learning which per-
forms similarly to a random guess. The error rates of
our scheme are low enough that the data is recoverable
months after being stored. Compared to prior work, our
technique provides 24x and 50x higher encoding and de-
coding throughput and doubles the capacity, while being
37x more power efficient.

1 Introduction
The ability to successfully hide data is becoming in-
creasingly important for modern computer users, who
often store private and sensitive data on their personal
devices. These devices are often stolen or misplaced,
jeopardizing confidentiality of sensitive data [1–5]. Al-
though encryption can hide data contents, encryption
alone cannot hide the presence of encrypted data. Over
time, flaws in encryption techniques can be discovered.
Moreover, law enforcement agencies, intelligence agen-
cies, and other potent adversaries are increasingly ca-
pable of forcing users to submit the decryption keys or
passphrases for their devices [6–9]. Thus, for highly-
sensitive data, there is value in hiding the very presence

of the data.
Commercial forces also drive the need to hide small

amounts of data within larger data sets. Economic es-
pionage [10] is forcing companies to find ways to pro-
tect and safely circulate sensitive data. Hidden data can
also be used to identify copyright infringement, using
techniques such as digital watermarking [11]. Hardware
validation and fingerprinting is also gaining traction as
manufacturers seek cheap and efficient ways to validate
products and authenticate their components so they can-
not be copied and faked [12,13]. Thus, both privacy and
commercial concerns drive the need for additional data
hiding tools, both for users and corporations.

This paper presents a new approach for hiding sensi-
tive data within a larger data set on a NAND flash device.
This larger data set can be public, or encrypted with a
standard encrypted storage system, like Bitlocker [14] or
FileVault [15]; we refer to this larger set as public data
for brevity. Within this public data set, our technique en-
codes hidden data using small manipulations of voltage
levels in a subset of the flash cells storing public data.

This paper focuses on NAND flash memory, for both
practical and technical reasons. On the practical side,
flash is ubiquitous in embedded systems, mobile phones,
USB thumb drives, and in solid-state disks (SSDs) on
personal laptops—precisely the type of devices that are
most likely to be lost, stolen, or confiscated. SSDs are
also significant in data centers and servers, which could
also be the subject of search or seizure.

From a technical perspective, flash is well-suited for
data hiding because it offers high-density, fast random
access, and non-volatile storage, but with an abundance
of internal randomness [16] that is typically masked by
on-device firmware. Internally, flash stores data by elec-
trically charging arrays of floating gate transistors/mem-
ory cells to a predefined voltage. To read the data
back, the stored voltage levels are coarsely discretized
into a one or a zero. This discretization process is
noisy—the voltage levels across cells in the device vary
widely. Even within one device, the charge levels in
flash cells have a high variance, attributable to the in-
herent noisiness of the programming process, variations
created in the manufacturing process, and voltage inter-
ference inherent to flash cell transistor technology (see
§4). Because the flash programming process is impre-

USENIX Association 16th USENIX Conference on File and Storage Technologies 169

V

SLC programming
%

 o
f c

el
ls

SLC '1' SLC '0'

(a)

V

%
 o

f c
el

ls

MLC programming

MLC '11' MLC '10' MLC '01' MLC '00'

(b)

Figure 1: Typical voltage level distributions of cells in
SLC (a), and MLC (b) flash memories. Leftmost curves
are for programmed cells in the erased state, which are
negatively charged. MLC distributions are typically nar-
rower.

cise, flash manufacturers face a trade-off between pro-
gramming time and storage density, as well as reduced
lifetime [17, 18]. The opportunity we see is that there is
enough natural variation to hide data in a typical flash ar-
ray without leaving telltale statistical anomalies— even
with an attacker powerful enough to measure the voltage
level or other physical characteristics of each cell and
run data analysis tools on the voltage level distributions.

The trade-off between write time and precision in
flash encoding is well-known, and we leverage this in
our design. By taking multiple fine-grain charging and
sensing steps, one can more precisely and gradually in-
crease the voltage to a desired level [19]. Single-level
cell (SLC) flash can store only one bit selected from one
of two voltage levels, whereas multi-level cell (MLC)
flash uses four voltage levels and can store two bits,
three-level cell (TLC) flash uses eight voltage levels,
etc. [20]. Fig. 1 illustrates typical cell voltage distri-
butions for SLC, and MLC. Devices commonly transi-
tion cells between SLC and MLC/TLC mode dynami-
cally [21–30]. In other words, the number of bits stored
in any given cell can be changed dynamically within a
wider range than is commonly used—the only differ-
ences are that writing more bits is slower and one needs
to know how to interpret the voltage levels of the cell
when it is re-read.

In this work we store hidden data by transparently in-
creasing the densities of select flash cells, but without
creating a detectable deviation in the overall cell volt-
age distribution. In our model, a user can access hidden
data according to normal methods; the user can hide data
with a secret key, that selects certain cells to program
with finer-grained variation in the voltage level. Thus,
an important part of this work is measuring the expected
variance in a faster and coarser charging process (e.g.,
SLC), and then ensuring that the result of a finer-grained
charging process is within this distribution.

Our data hiding scheme, called VolTage-HIde

(VT-HI), selects a small number of cells to store an ex-
tra bit, from a a larger field of cells not storing hidden
data. VT-HI uses a slower charging process to more pre-
cisely charge selected cells to a voltage range that repre-
sents the logical state of a public and a hidden bit (e.g.,
converting from SLC to MLC). The cells not selected
for hiding data are programmed using standard, widely-
available programming operations to store normal data.
Public data in VT-HI is assumed to be encrypted with
one key, and a second key is used to locate and decrypt
hidden data.

The closest related work to ours (Program-Time-
HIde, or PT-HI), hides data in flash memory by encod-
ing hidden bits using the different programming times
of groups of cells. VT-HI, on the other hand, directly
stores data in flash cells, by mimicking the incremental
storage technique internally employed by flash vendors.
Our straightforward approach has several advantages:
• Encoding is 24x faster in VT-HI and 37x more

energy-efficient.
• Decoding of hidden data requires a single, non-

destructive, read operation. This makes the decod-
ing process 50x faster. Hidden data can also be read
multiple times, while maintaining the integrity of
public data.
• Copying hidden data without knowledge of the rel-

evant secret key is impossible, while erasing hidden
data (e.g., when in fear of device confiscation) is al-
most instantaneous.
• The generic nature of VT-HI makes it applicable to

multiple chip models from different vendors.
VT-HI is feasible in existing flash-based devices with-

out any hardware modifications, although firmware sup-
port would be helpful. For current devices, we approxi-
mate the required firmware support on real devices using
a sequence of partial programming (PP) [16] operations,
where a normal program operation is aborted midway.
Using this method, the level of additional charge stored
in a cell is roughly correlated with the relative time that
the program operation is executed before being aborted.
We note that PP steps require only standard flash inter-
face commands [31] (i.e., PROGRAM and RESET).

Hidden data is read using a vendor-specific com-
mand that shifts the reference threshold voltage for read-
ing. This command is used in modern flash chips by
all vendors to measure voltage distributions and to im-
prove retention [32–35]. Storing and reading public data
in VT-HI requires only standard flash operations (e.g.,
PROGRAM and READ) in order to read data in coarse-
grain voltage ranges. Notably, over time flash technol-
ogy increasingly supports reading in ever finer granular-
ities (e.g., up to four bits per cell [36, 37]).

We evaluate the effectiveness of VT-HI by measuring
several issues:

170 16th USENIX Conference on File and Storage Technologies USENIX Association

1. Does VT-HI detectably perturb the voltage lev-
els on the device? Using the methodology in
prior data hiding work [38], we find that, under
the most favorable circumstances, a Support-Vector
Machine (SVM) can only achieve 50–53% accu-
racy, or roughly equivalent to random.

2. Does VT-HI encode data faster than the current
state of the art technique? VT-HI is 24x faster and
37x more energy-efficient than PT-HI, the closest
related work.

3. Does VT-HI induce faster wear on the device?
Yes, writing hidden data amplifies writes to hid-
den cells by a factor of ten; this is an order-of-
magnitude reduction compared to the state of the
art (PT-HI requires 625). This also only applies to
the small fraction of cells storing hidden data.

4. What is the capacity of VT-HI? Our implementa-
tion uses about 0.02% of the bits to hide data on un-
modified devices; with firmware support, this could
be increased to 0.2%, or double the capacity of the
current state-of-the-art.

In total, these results indicate that the naturally-
occurring variability in a flash device creates enough
noise to form a useful substrate for data hiding tech-
niques. As part of a larger steganographic system or wa-
termarking system, VT-HI has the particular advantage of
creating a variable number of bits; a long-standing chal-
lenge for data hiding systems is that the number of bits
on a device or in a file is a zero-sum game. Moreover,
although the building blocks for VT-HI are not exported
to users by most flash vendors, this paper makes the case
that VT-HI would be feasible in current flash controllers
or firmware.

2 Related Work

Exploiting the Noisiness of Flash to Hide Data. The
closest related work to ours is PT-HI [38], which creates a
covert channel from the programming time of flash cells.
PT-HI applies several hundreds-to-thousands of normal
programming cycles to groups of cells, which in turn
lengthens the programming time of some cells. Hidden
data is encoded based on which cells are slower or faster
to program. In other words, the technique creates sub-
tle yet hard-to-detect variations in programming times
of each group. A particular advantage of this design, not
present in our proposed design, is that these variations
persist even if co-located public data persists.

A particular disadvantage of PT-HI is performance:
both writing hidden data and reading it requires between
dozens, up to hundreds, of programming steps. De-
coding in PT-HI is not only time consuming but also a
destructive process that destroys any public data stored
on the device, and reduces the device’s overall lifetime.
In addition, the error rate of the hidden payload signif-

icantly increases after only a few hundred public data
Program/Erase Cycles (PEC), severely limiting the num-
ber of times a user can store hidden as well as public data
on the device. When combined, these limitations poten-
tially disqualify PT-HI as a building block for a long-
lived, steganographic SSD.

Low-level variation in flash has also been used to cre-
ate a unique fingerprint of flash-based devices [16, 39].
Such fingerprints can be used to authenticate a device’s
origin. Others suggested to use flash for approximate
storage [40].

Hiding Information through Steganography. Our
work continues the theme of past research in the field
of steganography. Embedding hidden data unto dig-
ital objects such as image, audio, and video files is
typically achieved by applying small unnoticeable dis-
tortions [41–43], abusing existing transmission proto-
cols [44, 45], or in a visible transmission channel [46–
49]. A common theme is using inherent noisiness to dis-
guise data hidden within the noise. These solutions of-
ten face challenges with mutable data, as data like pho-
tographs are typically not expected to change.

Steganographic file systems [50–55] hide data in lo-
cations known only to the user, using a hash function
on a file name and password. Plausible deniability solu-
tions masquerade hidden data as random content visibly
stored alongside regular content [56, 57].

A key limitation of many steganographic file systems
is that the total number of bits is fixed. Any bits that
are not available to the file system are potential tell-
tale signs of hidden data, and require alternative expla-
nations, like free space, that can fail to hold up if an
attacker takes multiple snapshots of the device. Flash
firmware can thwart such traditional solutions by leaving
multiple copies of data on the device. Several works pro-
posed to solve these and other problems on flash-based
devices by openly inserting random-content, undecrypt-
able blocks to the system as part of the system’s normal
operation [58–60]. However, such solutions still give
away the steganographic nature of the system, which
may void any claim for the user’s innocence for some
potent attackers (e.g., intelligence officer in an authori-
tative regime).

Thus, an advantage of our proposed solution (VT-HI)
and PT-HI as building block for a steganographic solu-
tion is that they can create hidden bits of storage that
do not necessarily reveal the presence of hidden data on
the device. In our proposed work (VT-HI) in particular,
changes to cells that store both hidden and public data
can be excused as routine firmware maintenance (§9.2).

3 NAND Flash Background
NAND flash memories store data using floating gate
(FG) cells [61]. Flash packages are divided into blocks,

USENIX Association 16th USENIX Conference on File and Storage Technologies 171

0

0.1

0.2

0.3

0.4

0.5

0.6
0.7

10 20 30 40 50 60 70

%
 o

f c
el

ls
 in

 b
lo

ck

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(a)

0.0

0.5

1.0

1.5

2.0

120 130 140 150 160 170 180 190 200 210

%
 o

f c
el

ls
 in

 b
lo

ck

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

%
 o

f c
el

ls
 in

 p
ag

e

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
3.5

120 130 140 150 160 170 180 190 200 210

%
 o

f c
el

ls
 in

 p
ag

e

Normalized voltage level

Sample 1 Sample 2 Sample 3 Sample 4

(d)

Figure 2: Voltage level distributions of charged cells in
four sample 1x-nm MLC chips of the same model. Dis-
tributions exhibit significant noisiness at the block level
for both non-programmed (a) and programmed (b) cells.
(c) and (d) show the distributions at the page level, which
exhibit even greater noisiness.

typically 256–2048 KB in size. Blocks are further di-
vided into pages, typically 4–16 KB in size. Pages are
stored on physical wordlines, which are serially con-
nected FG cells. When data is written, the cells are
electrically charged using small incremental charging
steps to a predefined voltage, which traps electrons in
the floating gate. The logical value of a cell is read
by comparing its voltage to predefined reference thresh-
old voltages placed between relevant voltage intervals.
When the flash memory is in MLC/TLC mode, the same
cell stores several logical bits by comparing to multiple,
smaller voltage intervals. In such cases, several logical
pages are stored in a single physical wordline.

An important constraint of flash memories is the lack
of support for in-place updates. Once a cell is charged,
its level of voltage can only be increased [62, 63]. Volt-
age is only lowered with an erase operation, which is
applied at the granularity of a block (256–2048 KB).
Blocks in modern MLC chips can typically endure up to
3K Program/Erase Cycles (PEC). Thus, most SSD ven-
dors include a flash translation layer (FTL), which dy-
namically remaps logical addresses onto different phys-
ical pages [61]; this indirection facilitates rewriting data
onto new blocks, garbage collecting old versions of data,
and migrating “cold” data onto new blocks for erasure
and wear leveling.

4 Flash Variability
The basis for this work is that variability in voltage level
distributions of flash cells can be used to hide data. This

section gives the reader a sense of the typical range and
sources of variation, using measurements from a sample
flash chip. The next section explains how we leverage
this variability for data hiding.

The inherent variability of flash manifests in three
ways relevant to our goals, described and characterized
in prior work [16, 35, 64–66]. First, there is significant
noise in the programming process. Second, the variabil-
ity in the chip manufacturing process creates noticeable,
naturally-occurring differences in the cell voltage distri-
butions from different NAND flash samples, even from
the same vendor, batch and chip model. Finally, there
are significant variations in the Bit Error Rate (BER) of
different hardware units. VT-HI leverages this inherent
noisiness of the charge levels in flash cells, by apply-
ing tiny manipulations within the margin of naturally-
occurring variations.

We measure the range of these variations in a repre-
sentative 1x-nm NAND flash memory model from a ma-
jor vendor (not listed because of an NDA, see §6.2 for
details) , using the following procedure. First, we pro-
grammed pseudorandom data to select blocks from four
flash chip samples from the same model, and measured
the cell voltage distributions for each sample [35,67,68].
On each run, a new random data pattern was used. We
repeated this process for 0 to 3000 PEC.

Figure 2 shows some1 of the voltage distributions of
the non-programmed/erased cell state and the full distri-
bution of a programmed state (used to represent data bits
“1” and “0”, respectively) measured from four blocks
(Figures 2a and 2b) and four pages (Figures 2c and 2d),
each from a different sample that carries the same num-
ber of PEC. We note that 99.99% of cells are concen-
trated between levels [0, 70] and [120, 210], for non-
programmed and programmed cells respectively. No-
tably, these are essentially SLC distributions. For more
fine-grain distributions, such as MLC, TLC, and QLC,
the voltage ranges are narrower [17, 32].

Figures 2a and 2c demonstrate a known phenomenon
where non-programmed cells become partially charged
due to interference from programming nearby cells [69].

In Figure 2, the long tails and general width of these
curves indicate a wide range of valid voltage levels, and
the nonsmoothness of the voltage distributions indicates
that a uniformly random bit pattern does not generate
uniform distributions of voltage levels. At the page-level
the variability is even greater, due to disturbances from
neighboring pages, and from having a smaller sample
relative to blocks. Furthermore, there are noticeable
variations in the distributions of different samples. Note

1The current NAND flash interface only allows measurement of
positive voltage (V) in discrete normalized units (0-255 in this model),
indicating that the programming process is noisy. Therefore, the distri-
butions of erased cells that have negative voltage were not measured.

172 16th USENIX Conference on File and Storage Technologies USENIX Association

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

10 20 30 40 50 60 70

% o
f ce

lls i
n b

lock

Normalized voltage level

PEC 0 PEC 1000 PEC 2000 PEC 3000

(a)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

120 130 140 150 160 170 180 190 200 210

% o
f ce

lls i
n b

lock

Normalized voltage level

PEC 0 PEC 1000 PEC 2000 PEC 3000

(b)

Figure 3: Voltage level distributions tend to shift to the right over the lifetime of cells. The figures show distributions
for (a) non-programmed and (b) programmed cells with increasing PEC.

that our measurements were taken from blocks in differ-
ent physical areas of the same chip.

Figure 3 illustrates variation in voltage levels due to
aging. The figure shows the block-level voltage distri-
butions in a flash sample after different numbers of pro-
gram/erase cycles (PEC). As cells with higher PEC are
more easily overprogrammed, their voltage distributions
tend to have higher means compared to those of cells
with lower PEC.

Finally, we measured variation in BER across hard-
ware units in the same package, normalized to the same
PEC count. Commensurate with the other results, and
prior studies [65, 66], variations in BER of programmed
data in flash exist regardless of PEC (as well as an ex-
pected increase in BER as PEC increases).

The measurements in this section establish the range
of expected voltage levels in a flash device that is pro-
grammed with encrypted data, which should roughly ap-
pear as a uniformly-random bit pattern. VT-HI stores hid-
den data with a special, additional flash programming
pass. If the overall voltage distribution stays indistin-
guishable from measurements on the same chip, there
will be no telltale anomalies on the device that would
indicate additional data is hidden in those cells. This
section indicates that there is a wide berth for reliably
hiding data within flash voltage levels.

5 Hiding Data
In this section, we describe how users utilize VT-HI to
hide data, the relevant threat model and specific VT-HI
techniques for a user to hide data on a flash chip; the
data flow of VT-HI is illustrated in Figure 4. .

5.1 Usage Overview
Given a flash device, we model the problem as two users,
normal user (NU) and hiding user (HU). These can also

Secret
Data

Public
Data

Secret
Data

Public
Data

hiding
encoder

ECC
(encode)

Hiding User
(HU)

Normal User
(NU)

ECC
(encode)

Flash

hiding
decoder

ECC
(decode)

Hiding User
(HU)

Normal User
(NU)

ECC
(decode)

Adversary

Figure 4: Flow of hiding data on flash in a mobile de-
vice.
be thought of as two “modes” or “roles” for the same
human user, such as writing to a day planner in normal
mode (as NU), but editing sensitive data in hidden mode
(as HU). The NU wants to store her public data in flash
memory. The HU wants to hide her data inside the data
of the NU on the same device, and provides a private, se-
cret, key to VT-HI, which determines the locations in the
normal data device where the HU’s data will be hidden
as extra hidden bits in the chosen cells.

The NU need not be aware of any private keys to cor-
rectly read her data. With the secret key, HU’s data can
also be located and read, without altering the state of
public data. Special care must be taken to avoid destroy-
ing HU data when the public NU data containing it is
migrated or invalidated. The HU must either re-embed
the hidden data in a new location (e.g., a page containing
newly written NU data), before the old NU page con-
taining it is permanently erased, or apply redundancy a
scheme (e.g., parity encoding) to provide some protec-
tion for hidden data.

5.2 Threat Model
We assume an adversary who does not know the secret
key used to select cells containing hidden data, but has
access to the flash device and the capabilities to write
and read flash as well as to probe the voltage levels of ev-
ery cell. We assume that the adversary only gains access

USENIX Association 16th USENIX Conference on File and Storage Technologies 173

Algorithm 1: Encoding algorithm for VT-HI.
The main loop is repeated m times.

1 VT-HI (Page,Key,P,H,Vth);
Input: Flash page number, secret key, two sets of

bits to store, and a threshold voltage. P is
public data and H is hidden data.

2 Use PRNG(Key,Page) to select |H|
non-programmed public bit offsets to store
hidden bits;

3 Program P to Page;
4 Encrypt H using Key and apply ECC;
5 repeat
6 Read cell voltage levels in Page;
7 Partial program all hidden “0” bits with

Voltage <Vth;
8 until all hidden “0” bits have Voltage≥Vth;

to the device after the hidden payload was stored (see
Figure 4). We further assume that the device is spyware-
free and that the adversary cannot compare snapshots of
the device state over time (we discuss multiple snapshot
adversaries in §9). Probing cell voltage levels is widely
supported by modern NAND flash memories [35,67,68],
and was used as a tool for NAND characterization in this
work. An adversary who suspects that the user is hiding
data with our technique, can try to detect the existence
of such data, as indicated by unexpected charge distribu-
tions in a subset of cells. We assume that the VT-HI ca-
pability is either added and removed at will by the user
or is omnipresent (see §9), and therefore does not raise
suspicion in itself.

However, even with perfect knowledge of charge
distributions and the exact configuration parameters of
VT-HI (e.g., hidden bits per page), there will be no tell-
tale aberrations in the voltage levels indicating the pres-
ence of hidden data. In other words, judging by state
of the art indicators [38] (see §7) we show it is equally
plausible that a given device does or does not hold hid-
den data.

Finally, we assume that flash block wear in the device
is not entirely equal, as is the case in many flash wear
leveling policies [70–72].

5.3 Hiding Techniques
We now describe the data hiding algorithm in detail.

Normal data and hidden data are stored by two sepa-
rate programming passes. The normal data is first pro-
grammed into a flash page, using standard flash opera-
tions. The hidden data will be programmed to the same
pages in a second programming pass. First, a subset of
the cells in a given page are selected to store hidden data,
then a second encoding pass is done to store the hidden
bits. Algorithm 1, as well as the following text, describe

our encoding process.

Hidden cell selection. To select cells to store hid-
den data, we use a pseudo-random number generator
(PRNG), such as SHA-256, that produces a set of ran-
dom numbers based on a key—in our case, a key known
only to the HU. We note that the HU does not explicitly
persist the location of cells containing hidden data, but
rather uses a deterministic PRNG function to calculate
the map during boot time. In order to ensure an equal
distribution of bit values, VT-HI encrypts hidden data,
not unlike standard SSD controller data scrambling [32].

We only select non-programmed (i.e., “1”) bits from
the public data in a page to store hidden data. We remind
the reader that flash cells typically use low voltage levels
to store a “1”, and raise the voltage to store a “0”. We
found that it is easier to reliably make small adjustments
to the voltage levels of non-programmed cells than pro-
grammed cells; we believe that a flash vendor could use
either type of cell in a production prototype.

In selecting a cell, the PRNG gives a page-dependent
offset, such as the 3rd non-programmed bit in a spe-
cific flash page (e.g., by combining the secret key with
the page number). This bit is then selected to be pro-
grammed with hidden data.

In order to store Error Correcting Codes (ECC) to tol-
erate bit errors, we select more cells for hidden data than
the bits we wish to write.

We note that this technique spreads wear from extra
programming evenly across cells over time, as which
physical cell is programmed or not will vary over time,
as will the output of the PRNG. We further assume pub-
lic data is encrypted and bit values will be uniformly
distributed. In practice, one could adopt more general
wear-leveling techniques for hidden data if needed.

Storing Hidden Data. Figure 5 illustrates voltage-
level encoding for hidden data in VT-HI. It starts
by showing the voltage level distributions for a non-
programmed (“1”) cell: any voltage level less than about
127 is considered a public “1”. Anything higher is a “0”.
We hide data by selecting a cut-off for hidden values of
about 34, which is where most public voltages naturally
occur.

To program a hidden “0”, one must use a series of up
to m partial programming (PP) steps, until the voltage
is comfortably above the hidden data threshold. This
PP process programs hidden data cells in an intermedi-
ate voltage level by iteratively reading and minutely in-
crementing the voltage level until the target threshold is
reached. As with MLC or TLC flash, writes with this
iterative technique are slower, but more precise.

A hidden “1” is not programmed. In the small chance
that a cell should store a “1” but happens to be above the
threshold, we treat this as a bit error and rely on ECC to

174 16th USENIX Conference on File and Storage Technologies USENIX Association

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60 70

%
 o

f
ce

lls
 i
n
 b

lo
ck

Normalized voltage level

normal '1'

(((((((m

hidden '1' hidden '0'

Figure 5: VT-HI hides data in the voltage level distribu-
tion of non-programmed cells, which store a normal ’1’.

recover the data.
An important property of this design is that public

data can be read with no awareness of hidden data or
private key. This is because cells that store hidden data
stay within the expected voltage levels for the public bit.
To read hidden bits, the HU uses her key to calculate the
indices of cells holding hidden bits, and reads them us-
ing the reference threshold voltage, which is placed in
the middle of the two voltage intervals of the hidden bit
states.

6 Implementation
In this section we describe the implementation of VT-HI
on real hardware. We describe the hardware platform
used in our experiments, and determine the configura-
tion parameters for our hiding technique. Finally, we ex-
plain how the capacity of VT-HI can be extended through
vendor support.

6.1 Experimental Hardware
Any implementation of our technique involves chip-
specific configurations. To test them we used the same
1x-nm planar MLC flash used in Section §4. Each flash
package has 8GB total storage capacity and contains
2048 blocks. A block consists of 128 lower pages and
128 upper pages with page size of 18048 bytes. The
samples have a specified lifetime of 3000 PEC. Read,
write (program), and erase latencies are 90 us, 1200 us,
and 5 ms, respectively; the energy required for each op-
eration is 50 uJ, 68 uJ, and 190 uJ, respectively.

The flash packages were operated using a commer-
cial NAND flash tester [73]. Voltage level characteri-
zation of cells as well as the hiding algorithm were im-
plemented as host software on a PC, which communi-
cates with the tester via a USB interface. Throughout
this section our calculations do not take into account data
transfer and hardware overheads, which would be con-
siderably lower on a production deployment. The spe-
cific voltage threshold (level 34) used for implement-
ing our technique was determined empirically to toler-
ate the overshooting/underprogramming errors caused

by the imprecise PP operation. We also verified that the
total number of cells in the range is larger than the total
number of hidden bits.

6.2 Vendor Support
Flash vendors are notoriously secretive about the inter-
nals of their devices. In order to collect the data pre-
sented in this paper, some co-authors of this paper signed
a non-disclosure agreement (NDA) with a flash vendor.
The NDA prohibits disclosing which vendor or the spe-
cific chips. In exchange we were given enough informa-
tion to use a non-public command on the chip to measure
voltage levels of cells, as well as issue partial program-
ming (PP) commands to specific cells. To the best of
our knowledge, the operations we use are generally im-
plemented on any flash device, but the particular com-
mand encoding details vary from chip to chip, and are
not made public. The NDA does not prohibit release of
this data.

In principle, our prototype represents the most that a
user could accomplish via reverse engineering a flash de-
vice, or using a flash device that openly published all
available commands. Our results indicate the feasibility
of the idea, with no changes to the flash controller. In
the rest of this subsection, we explain how a few simple
changes to a flash controller or the FTL firmware would
improve the results we report.

First and foremost, PP is less precise than a program
command issued by the controller. This is also the rea-
son we select only non-programmed cells to store hid-
den data; PP is too coarse to reliably make fine-grained
changes to programmed cells. We believe that an in-
controller implementation of voltage hiding could likely
program hidden data in fewer programming steps, sav-
ing energy and wear on the device, and opening up data
hiding in both programmed and non-programmed cells.

Another feature not available to us was the abil-
ity to dynamically adjust voltage thresholds and tar-
gets [21–26]. The ability to control voltage targets
and the width of voltage intervals might improve our
hiding technique since narrower voltage intervals have
been shown to easily fit into wider programming inter-
vals [74] (e.g., TLC in MLC). This feature is generally
available to the controller internally.

A limitation resulting from the lack of a more precise
programming mechanism and the inability to adjust tar-
get voltage levels is that we found it difficult to reliably
hide data in MLC or TLC modes using partial program-
ming. We expect that a flash controller can extend our
ideas to MLC or TLC, but the PP command on our test
device was too coarse for this experiment to correctly
store hidden data, and tended to disrupt public bits. Re-
call that a goal of our design is that one can read public
data without any awareness of private, hidden data. Our

USENIX Association 16th USENIX Conference on File and Storage Technologies 175

measurements indicate that, with more precise program-
ming steps and/or the ability to adjust voltage thresholds
slightly, our approach should extend to MLC or TLC.
We note that existing flash page architectures regularly
use a second fine-grained programming pass that does
not significantly add interference to flash cells, and is
this less detrimental to the bit rate as PP steps [32, 69]

6.3 Determining Capacity
In this subsection, we explore the potential capacity of
our suggested hiding scheme, i.e., how many hidden bits
we can store using VT-HI. This is a function of sev-
eral concerns: over-provisioning bits to correct for errors
(i.e., ECC), ensuring that the overall distribution of volt-
age values is not significantly perturbed (ensuring hid-
den data remains hidden), and minimizing the risk of
inducing errors on neighboring cells or pages.

In order to keep the space overhead for ECC low,
when determining configuration parameters for VT-HI
we attempt to minimize the standard metric of bit-error
rate (BER). We measure BER by encoding a hidden
message in multiple blocks, physically located in differ-
ent areas of the same chip. The message contains ran-
dom content, both to emulate an encrypted hidden mes-
sage, and to ensure that the charge levels in cells storing
hidden bits have no anomalous effect on the overall dis-
tribution. After decoding, the message is compared with
the original to determine the resulting error rate.

To find the optimal method and parameter values that
minimize the hidden data BER (i.e., improve the effec-
tive data capacity) without compromising security, we
systematically investigated each possible combination of
three key parameters: number of partial programming
steps, number of hidden bits per page, and page inter-
val. The number of steps can be taken as a rough upper
bound on write performance—fewer steps means faster
hidden data writes, but more steps may be required to
ensure a target voltage is reached. In setting hidden bits
per page, intuitively, adding more hidden bits will push
the overall distribution of voltage levels higher. Page
interval is the physical distance between two cells stor-
ing hidden data; when a cell in one page is partially
programmed, it may cause interference on neighboring
pages. Intuitively, partially programming too many ad-
jacent cells can cause bit flips on nearby public cells;
thus, we measure this risk as a function of average phys-
ical distance of hidden bits. Our experiments were per-
formed on a fresh chip, to avoid any interference that
might stem from previous write patterns and wear. For
each combination of parameters we encoded hidden data
in five different blocks, and measured the average hidden
data BER after each PP step.

Figure 6 shows that after roughly ten PP steps the
BER converges to less than 1%. This trend holds regard-

0.00

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

BE
R

PP steps

4+128 4+32 4+512 0+128 0+32 0+512
1+128 1+32 1+512 2+128 2+32 2+512

Figure 6: Hidden BER rates for VT-HI for the first fif-
teen steps in multiple combinations of page intervals and
number of hidden bits.

0.004
0.005
0.006
0.007
0.008
0.009
0.01

0 1 2 4

BE
R

Page interval

32 hidden cells 128 hidden cells 512 hidden cells

Figure 7: Hidden BER rates for VT-HI with ten PP steps.
The illustrated irregularity demonstrates the effects of
BER variance and program interference.

less of the number of hidden bits or the page interval.
Figure 7 shows the sensitivity of BER for hidden data

as a function of the number of hidden cells, using 10
PP steps to program the hidden data. Overall, the vari-
ation in bit error rate is small and generally insensitive
to the number of hidden cells. There is some irregular-
ity that is within the bounds of naturally occurring vari-
ance [32, 65, 66]. We do notice a small trend toward
lower bit rates; because we only select unprogrammed
cells for hiding data, any interference can flip cells that
are slightly under-programmed (just short of the target
threshold) to being just above the target threshold.

In this experiment, we selected 512 as an upper bound
for the number of hidden bits. We measured a range of
voltages for chips programmed with random data, and
found that one could reliably get a minimum of 700 cells
in the non-programmed state that are normally charged
above our data hiding threshold. In other words, hid-
ing more bits per page than 512 will likely leave telltale
changes to the distribution of voltages.

Figure 7 indicates that, for any number of hidden bits
in a page that satisfy our other constraints, the BER is
small. The implication is that a small number of error-
correcting hidden bits (e.g., 5%) will suffice.

176 16th USENIX Conference on File and Storage Technologies USENIX Association

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

10 20 30 40 50 60 70

% o
f ce

lls i
n b

lock

Normalized voltage level

normal 32 bits 64 bits 128 bits 256 bits

Figure 8: Average voltage level distributions for blocks
after applying VT-HI. Hiding more bits creates a more
noticeable shift to the right for non-programmed cells.

Figure 8 shows that hiding data using VT-HI creates
only a tiny shift to the right for non-programmed cells.
which can be attributed to normal voltage level distribu-
tion variability and errors, as well as small read disturbs
and retention effects [32, 75]. Although we might be
able to store 512 bits per page, we conservatively chose
to hide 256 bits per page. In Section 7 we further explore
the security of VT-HI using this configuration.

Finally, we measured the impact of page intervals on
the BER for public data. Using no physical space be-
tween pages storing hidden data increased the public
BER by 20%. At one physical page interval, the interfer-
ence is reduced to a more acceptable 10% [64–66, 76].
Thus, subsequent experiments use a page interval of one.

7 Detectability
The primary criterion for evaluating VT-HI’s success is
whether an attacker with a full and detailed voltage-level
analysis of the entire chip can infer whether some pages
store hidden data from changes in voltage level distribu-
tions. In this section, we show that flash pages in VT-HI,
with and without hidden data, cannot be distinguished.

Figure 9 illustrates the difficulty of detecting the exis-
tence of data hidden in VT-HI. The figure shows volt-
age level distributions from three blocks from differ-
ent chips, first when they are normally programmed and
then after applying VT-HI to hide data. The human eye
has difficulty distinguishing which distributions come
from blocks with hidden data.

SVM Analysis. Rather than rely on the human eye, we
follow prior work [38] and instead use supervised ma-
chine learning to determine whether there are any de-
tectable anomalies in the data. We use a support-vector
machine (SVM) to predict whether pages and blocks
contain hidden data. If VT-HI left aberrations in voltage
levels that correlate with the presence of hidden data, an
SVM would be able to identify these pages with better

than 50% accuracy (i.e., better than flipping a coin). Our
hypothesis is that the changes induced by data hiding are
within normal noise.

To demonstrate this, we obtained data from three dif-
ferent hardware units of varying ages. We first measured
the voltage level distributions and BER of three flash
chips. For normal data characteristics of flash blocks and
pages, we used normal programming for program/erase
counts (PEC) ranging from 0 to 3000. We then hid
data using VT-HI with the configuration parameters de-
termined is §6 (threshold level 34, one page interval, 256
bits per page, ten PP steps) on all chips for blocks that
were cycled to 0, 1000, and 2000 PEC.

We created a training set for the SVM using datasets
from two chips, and then we attempt to classify data
from a third chip. For the training, we collected the volt-
age levels for all cells in the block with both normal and
hidden data. We found that the flash chip data repre-
sentativeness converged after analyzing 31 blocks. The
classifier used optimal parameters obtained using grid
search, and performed three-fold cross-validation for all
three chips. As Wang et al. note [38], this is an unre-
alistically generous setup for the attacker. In reality, the
attacker has to obtain knowledge of all possible PEC lev-
els of the chip for both normal and hidden cases, and
for multiple sample chips of the same vendor and model
which would probably reduce the prediction accuracy.

In analyzing the voltage data we collected, the wear or
number of program/erase cycles (PEC) had a first-order
effect on the voltage levels.

This sensitivity to PEC is illustrated in Figure 10,
which presents SVM accuracy for samples at PEC of
0, 1000, and 2000. The x-axis is the PEC of normal
data. For each line, there is a range of a few hundred
P/E cycles where the accuracy of the SVM is at 50% (or
random). For example, consider the PEC 2000 line. At
x-axis of PEC 2000 (comparing to the same wear with-
out hidden data), the SVM does not do better than ran-
dom (50%); for a few hundred cycles on either side of
this point, the accuracy is still effectively 50%. At ex-
tremely about 1000 PEC, and as PEC increases the clas-
sifier’s accuracy increases. Thus, we expect that, as long
as the wear on the device is uniform within several hun-
dred PEC, an SVM would not be able to reliably classify
which blocks have hidden data and which do not. A sim-
ilar experiment at the page-level shows similar results

We also note that this experiment deliberately places
VT-HI at a disadvantage, by training the SVM on the ex-
act chip that was storing the hidden data. We repeated
our tests on a data set that includes all of the chips (from
the same vendor) and all PEC levels, and this decreased
the SVM accuracy to 50% in all cases.

Finally, one might be concerned that an attacker could
draw inferences from changes in characteristics of pub-

USENIX Association 16th USENIX Conference on File and Storage Technologies 177

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

10 20 30 40 50 60 70

% o
f ce

lls i
n b

lock

Normalized voltage level
(a)

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

120 130 140 150 160 170 180 190 200 210

% o
f ce

lls i
n b

lock

Normalized voltage level
(b)

Figure 9: Voltage level distribution in blocks from different chips with normal distributions (light) and after applying
VT-HI (dark). Results show (a) non-programmed and (b) programmed cells.

40
50
60
70
80
90

100

0 1000 2000 3000

Cl
as

si
fic

at
io

n
ac

cu
ra

cy
 (%

)

Normal PEC

PEC 0 PEC 1000 PEC 2000

Figure 10: SVM prediction accuracy for block-level
voltage distribution data for hidden blocks in three dif-
ferent PEC levels. Normal PEC (X axis) represents pub-
lic data blocks in different PEC levels. 50% accuracy
(dotted line) is equivalent to a random guess.

lic data, such as BER, mean voltage, and its standard de-
viation. Therefore, we performed another SVM analysis
to classify blocks with and without hidden data accord-
ing to these characteristics. Our results indicate that
these analyses are also unsuccessful in classifying hid-
den data.

8 Performance and Applicability
In this section we evaluate and analyze the performance
of VT-HI in terms of reliability, throughput, capacity, and
energy. For each of these factors, we compare the perfor-
mance of VT-HI to the most similar prior research paper,
PT-HI, as summarized in Table 1. We also demonstrate
that with proper configuration and vendor support we
can increase the hidden data storage capacity of VT-HI
by an order of magnitude. Finally, we verify the appli-
cability of VT-HI on a chip from a second major vendor.

Reliability. As flash devices move toward smaller fea-
ture sizes, data errors will increase [77], increasing the
importance of error-correcting codes and other counter-
measures. Charges stored in flash memory cells gradu-
ally leak away over time, causing cell voltage to shift to-

0
1
2
3
4
5
6
7

VT-HI normal VT-HI normal VT-HI normal
1 day 1 month 4 month

Nor
ma

lize
d B

ER

PEC 0 PEC 1000 PEC 2000

Figure 11: Normalized retention rate (versus “zero” time
since programming) for data stored using VT-HI and nor-
mal data.

wards lower values. Bit errors accumulate in data as cell
voltages shift across the predetermined reference thresh-
old voltage. Here we characterize the reliability of bits
hidden with VT-HI.

First, we measured the error rate for VT-HI in blocks
with varying PEC levels, and find that BER is low and
not affected by wear. We cycled blocks in three different
chips to four distinct PEC levels. Next, we hid data using
VT-HI, and measured the hidden data BER. Our results
show that the BER is not affected by the age of the cells
storing hidden data. For example, for PEC 0 the BER
was 0.013. For other PEC the BER was roughly 0.011.

We also emulated data retention over longer periods
by baking the flash chips in an oven, which accelerates
the rate of charge leakage from the floating gates. Three
data retention periods were used in our evaluation: 1 day,
1 month, and 4 months. The latter two periods were em-
ulated by baking the flash [78]. Before retention, pseu-
dorandom normal data and hidden data were first input

178 16th USENIX Conference on File and Storage Technologies USENIX Association

and stored in flash. BERs and voltage distributions were
then measured after retention using the previously saved
input data. We normalized the BER after the relevant
retention period to the BER measured immediately after
the data was stored (“zero” time). We compared the rate
of changes in the BER to the equivalent rate for public
data on our test chip.

The results shown in Figure 11 indicate that retention
time has no significant effect on the BER of hidden data
for fresh cells (PEC 0). However, the hidden data error
rate does increase on older cells, at a higher rate than for
public data

For example, for 2000 PEC, the BER after zero time
is 0.0099, and rises to 0.063 (6.3x) after four months,
while for normal data the BER rises from 0.00003 to
0.000075 (2.3x). The reason for this reduced retention
is that cells with higher PEC accumulate trapped charge
and become more sensitive to leakage [77]. Moreover,
hidden data BER degrades faster than public data BER.
The reason is that the programming technique available
to VT-HI (PP steps) is not accurate enough to ensure
a large buffer zone around the threshold voltage level.
Such zones are typically employed to minimize BER in
degraded cells in existing flash package programming
schemes (see X axis in Figures 2a and 2b), which are
also used for storing public data in VT-HI.

These results indicate that additional redundancy
would be prudent when hiding data in older cells. Re-
writing (refreshing) hidden data every several months,
even only after the device reaches 1K PEC, can also
significantly improve retention [79]. Finally, to provide
additional protection against data loss (e.g., due to bad
blocks) data can be further encoded using RAID-like
schemes, similarly to normal data [80].

Throughput. Here, we calculate the expected read and
write throughput from VT-HI and our closest competitor,
PT-HI, using reasonable parameters from current flash
chips. We find that VT-HI can deliver an order of mag-
nitude better throughput for hidden data than the best
possible configuration for PT-HI.

Under VT-HI’s optimal configuration (256 hidden bits
per page and 4 logical page intervals), we can estimate
the time it would take to encode hidden data in a block:
(600+ 90) · 10 · 64/1,000,000 = 0.44s with a PP time
of 600 us and read time of 90 us for 10 PP and read
steps, and 64 pages per block. Assuming 15,593 hid-
den data bits per block, this translates to a throughput
of 35Kb/s. This figure takes into account a 0.5% hidden
BER, which, after applying standard ECC codes, trans-
lates to 243.6 bits of data per page (i.e.,≈13 parity bits).

We repeated this calculation for PT-HI, assuming its
optimal setup with a negligible hidden data error rate.
We use the optimal configuration in [38] of 625 per-page
PP steps and a 4-page interval for hiding data, which

Method
Relia
bility

Perf. Power
Public data
integrity

Repeated
Reads

Capacity

PT-HI [38] ± - - + - ±
VT-HI + ± ± - + ±
Table 1: Our contribution compared to Wang et al. [38].
translates to 72Kb of hidden bits per block. The page
program latency used is 1.2 ms and block erase latency
is 5 ms. In this setup, the time it would take to write hid-
den data is (1.2 ·64+5) ·625/1,000 = 51.1s per block.
Therefore, even for this ideal setup, the optimal through-
put for PT-HI is only 1.4Kb/s. We note that PT-HI’s per-
formance dramatically deteriorates in setups where the
device has undergone even a few hundred PEC due to its
increasing BER. We also note that PT-HI wears out the
device much faster than VT-HI since it requires 60x more
programming steps in order to encode data.

Decoding hidden data that was encoded using VT-HI
in a page requires only a single read operation (follow-
ing a voltage reference shift command). This translates
to 90 · 64 · 1/1,000,000 = 0.006s for decoding the data
hidden in a block, and a throughput of 2.7 Mb/s. For
PT-HI, 30 PP and read operations are required to de-
code data from a page. This translates to (600+ 90) ·
64 ·30/1000000 = 1.32s for decoding the hidden data in
a block, and a throughput of 54 kb/s.

Improved Capacity. As we explain in §6.2, our proto-
type can only reliably encode data in non-programmed
cells, which we found to keep us to under 700 bits per
page to avoid telltale disruptions in the distribution of
voltages. We conjecture that, with controller-internal
programming tools, we could apply the same basic idea
to a larger number of cells, which should potentially in-
crease hidden data capacity.

In this section, we evaluate the impact on the risk of
detection when more non-programmed cells are used.
We repeat the SVM analysis in §7. We emulate finer-
grained programming by using a single PP step (m = 1)
instead of ten, and increase the hidden bits per page by
a factor of ten. We then adjust the hidden data voltage
threshold to level 15 to keep the voltage levels of cells
with hidden data within the expected distribution. We
kept the page interval the same (1 physical page).

Figure 12 shows the SVM accuracy results for our
simulated higher-capacity configuration, on block-level
data. Similarly to the results for hiding 256 bits, the re-
sults are highly sensitive to PEC. If we only consider
ranges where the hidden and non-hidden blocks have
PEC within a few hundred cycles of each other, the accu-
racy is generally low (50–60%), but slightly higher than
the other experiment. Some of the increased accuracy
is attributable to the lack of precision in PP, especially
when only a single step is used.

Hidden data BER for data in the enhanced VT-HI con-
figuration was only 2%. After applying standard ECC

USENIX Association 16th USENIX Conference on File and Storage Technologies 179

40
50
60
70
80
90

100
C

la
ss

if
ic

a
ti

o
n

a
cc

u
ra

cy
 (

%
)

Normal PEC

PEC 0 PEC 1000 PEC 2000

0 1000 2000 3000

Figure 12: SVM prediction accuracy for an enhanced
VT-HI configuration that hides 9x more data. Normal
PEC (X axis) represents public data blocks in different
PEC levels. 50% accuracy (dotted line) is equivalent to
a random guess.

codes this translates to 2197 of data bits per page (14%
are used for ECC). After accounting for ECC to mask
the increased BER, this represents a 9x increase in us-
able hidden data capacity (and twice as much as PT-HI).

Energy. For our chip, we estimated the energy required
for various data encoding operations using VT-HI and
PT-HI (again, in an ideal setup). These include read, pro-
gram and erase operations, as well as partial program-
ming. We then used these estimated values to calculate
the amount of energy required for writing a bit of hid-
den data. The results show that for VT-HI the energy
required for hiding data is 1.1 mJ per page, as opposed
to 43 mJ for PT-HI. This data indicates that, if an ad-
versary read two snapshots of the device energy usage
statistics, effectively there would not be a telltale differ-
ence for VT-HI and a system without hidden data. For
instance, the energy overhead of our PP-based is less
impactful than, say, extra reads from the device. With
an in-controller VT-HI implementation we expect energy
overheads could be reduced further.

Applicability. Finally, to verify that our method also
applies to other flash chip models, we tested it on a 1x-
nm 16GB MLC chip model from a different major ven-
dor (also under a similar NDA). The flash package con-
tains 2096 blocks, with page size of 18256 bytes. We
tested our method on a fresh chip (PEC 0) and hid a
256 bit payload in relevant pages (taking into account
architecture-specific page intervals). The resulting BER
was 1%, similar to the one in the first model.

9 Discussion
This section discusses various applications for which
VT-HI could be a useful building block.

9.1 Authentication and Provenance
One property of our approach is that erasing a block of
public data on the flash device (thereby de-charging the
cells) also erases any hidden payload in the cells. This
property does not imply that a user cannot modify nor-
mal data; such modifications simply require the user to

repeat the hiding process with the same hidden data on
newly written normal data.

Many applications require some form of proof to the
trustworthiness and provenance of their data. A number
of systems find ways to embed a signature or metadata
in the data file itself. VT-HI could be incorporated into
these systems to embed metadata in the physical pages
storing this data; only a trusted application can rewrite
a file and embed hidden metadata in the device. For ex-
ample, flash chip steganography enables counterfeit de-
tection by watermarking original parts [38]. Archival
storage systems authenticate the identity of data ob-
jects [81]. Embedded watermarks in storage media iden-
tify ownership of digital objects to prevent copyright in-
fringements [11]. Secure file systems persist the keys
required for accessing data to their storage media [59].

9.2 Steganography
VT-HI can also be used as a building block for imple-
menting a steganographic system [51, 57–60]. Imple-
menting a complete steganographic system is beyond the
scope of this paper, but, in the interest of brevity, we dis-
cuss the main challenges of such a solution.

Basic Design. A VT-HI-capable system would include
a publicly visible, encrypted volume, within which a
user can store a hidden, encrypted data volume. To ac-
cess the hidden volume, a user would input the secret
key at mount time. Data can then be read and written
from this volume using standard block-level operations.

The security of the hidden volume stems from the se-
curity of VT-HI. An attacker that inspects the device
once, including all low-level characteristics, will not be
able to differentiate flash pages that contain hidden data
from those that do not, without the secret key.

Hiding VT-HI. The presence of a VT-HI-capable SSD
may still raise the suspicion of an adversary that data is
hidden. This problem is common to many existing sys-
tems [60], and can be mitigated in several ways. First,
we can further assume that firmware update capability
is available to the user via secure channels, so the VT-HI
capability can be loaded whenever the user accesses hid-
den data and then immediately removed. Alternatively,
the VT-HI capability can be included by default as an
extension of open-source SSD firmware [82], allowing
users to configure the firmware at will to operate with
and without hiding capabilities.

Metadata Persistence and Security. VT-HI relies on
configuration metadata, such as m, Vth, and the number
of bits per page, which must be persisted and recovered
on bootstrap. Because the metadata is small, the meta-
data could be included in the hidden key. Alternatively,
the metadata can be encrypted and stored persistently in

180 16th USENIX Conference on File and Storage Technologies USENIX Association

predetermined locations on flash, or, similarly to the hid-
ing firmware itself, saved and reloaded from an external
source. From a security standpoint, the metadata config-
uration values for a specific chip model may be known
to a diligent adversary. However, even with full knowl-
edge of the configuration metadata, without the secret
key the adversary is still unaware of the location of cells
containing hidden bits and cannot recover them.

Other metadata persistence issues, such as recovering
the hidden volume LBA for every set of pages, may re-
quire sacrificing some hidden capacity or more sophisti-
cated mapping data structures and algorithms, which we
leave as future work.

Multiple-Snapshot Adversary. A stricter threat
model involves an adversary capable of comparing
multiple snapshots of the device taken over time. In this
case, storing hidden data while leaving the public data
unchanged leaves telltale signs of voltage manipulations
that prevent users from plausibly denying the existence
of hidden data. To mitigate, the hiding firmware can
piggyback either public data writes (similar to [58]).
Alternatively, the hiding firmware can utilize wear-
leveling and other SSD-internal activities [61, 79], to
create the requisite cover traffic. A trade-off here is that
firmware-internal bookkeeping which operates without
the private key for too long will eventually damage
hidden data by causing internal data movements that
copy data without also copying the hidden payload.
We note however that hidden data overwrites when
operating the system without the hidden key is an
inherent limitation of almost all existing steganographic
systems [60].

Capacity. The current implementation of VT-HI can
only hide a few hundred bits per flash page. We believe
that many privacy-concerned users will find the strong
deniability offered by VT-HI as a reasonable tradeoff for
reduced capacity. Also, in §6.2 we explain how vendor
support may significantly alleviate this limitation (e.g.,
hide data as TLC in MLC cells).

10 Conclusions
In this work we present a new method for hiding data in
flash using the inherent variability in voltage level distri-
butions of flash cells. This variation occurs naturally on
flash chips, even from the same vendor and model. We
manipulate the voltage levels in cells to hide data within
normal voltage intervals. Our manipulations hide an ad-
ditional hidden bit in cells that already store a public bit
by mimicking common methods to increase flash densi-
ties. Without the hiding key, an attacker cannot detect
cells with hidden data even using favorable supervised
learning. In comparison with the state of the art, our
method achieves respectively 24x and 50x improvement

for encoding and decoding throughput of hidden data,
and is 37x more power efficient. Our technique is appli-
cable to multiple chip models, allows users to store data
even on flash cells that endured significant wear, and im-
poses significantly less wear while doubling total hidden
capacity compared with prior work.

Acknowledgments
We thank our shepherd and the anonymous reviewers for
their insightful comments on earlier drafts of the work.
This research was supported by Grant 2014621 from
the United States-Israel Binational Science Foundation
(BSF), by Grant CNS-1526707 from the United States
National Science Foundation (NSF), and VMware. This
work was done in part while Porter was at Stony Brook
University.

References
[1] Kingston. Nearly half of organizations have

lost sensitive or confidential information
on USB drives in just the past two years.
http://www.kingston.com/en/company/
press/article/2661, 2011.

[2] Independent. BBC’s panorama team loses confi-
dential information relating to a secret british army
unit. http://www.independent.co.uk/news/
uk/home-news/exclusive-bbcs-panorama-
team-loses-confidential-information-
relating-to-a-secret-british-army-
unit-9580340.html, 2014.

[3] WCSH6. USB drive containing personal
information of 950 jetport workers, miss-
ing. http://www.wcsh6.com/news/local/
portland/usb-drive-containing-personal-
information-of-950-jetport-workers-
missing/251514955, 2016.

[4] Computer World. NASA breach update:
Stolen laptop had data on 10,000 users.
http://www.computerworld.com/article/
2493084/security0/nasa-breach-update--
stolen-laptop-had-data-on-10-000-
users.html, 2012.

[5] BBC News. Blackmail fear over lost raf data.
http://news.bbc.co.uk/2/hi/uk/8066586.
stm, 2009.

[6] The Register. Youth jailed for not handing over en-
cryption password. http://www.theregister.
co.uk/2010/10/06/jail_password_ripa/,
2010.

[7] Wikipedia. Key disclosure law. http://en.
wikipedia.org/wiki/Key_disclosure_law.

[8] Denver Post. Password case reframes fifth amend-
ment rights in context of digital world. http:

USENIX Association 16th USENIX Conference on File and Storage Technologies 181

//www.denverpost.com/news/ci_19669803,
2012.

[9] PCWorld. Prepare to take your laptop to another
country. http://www.pcworld.com/article/
2886367/prepare-to-take-your-laptop-to-
another-country.html, 2015.

[10] FBI. Economic espionage. https:
//www.fbi.gov/about-us/investigate/
counterintelligence/economic-espionage.

[11] Ingemar J Cox, Matthew L Miller, Jeffrey Adam
Bloom, and Chris Honsinger. Digital watermark-
ing, volume 1558607145. Springer, 2002.

[12] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi,
and B. Sunar. Trojan detection using IC finger-
printing. In IEEE Symposium on Security and Pri-
vacy, 2007.

[13] Malek Ben Salem. Security challenges and re-
quirements for industrial control systems in the
semiconductor manufacturing sector. NIST Work-
shop on Cyber-Security for Cyber-physical De-
vices, 2012.

[14] Microsoft Corporation. Windows BitLocker
drive encryption frequently asked auestions.
http://technet.microsoft.com/en-
us/library/cc766200%28WS.10%29.aspx,
2009.

[15] OS X mavericks: Encrypt the information on your
disk with filevault. http://support.apple.
com/kb/PH13729.

[16] Yinglei Wang, Wing kei Yu, Shuo Wu, G. Malysa,
G.E. Suh, and E.C. Kan. Flash memory for ubiq-
uitous hardware security functions: True random
number generation and device fingerprints. In
IEEE Symposium on Security and Privacy (SP),
2012.

[17] Laura M. Grupp, John D. Davis, and Steven Swan-
son. The bleak future of nand flash memory. In
Proceedings of the 10th USENIX Conference on
File and Storage Technologies, FAST, pages 2–2.
USENIX Association, 2012.

[18] Laura M. Grupp, John D. Davis, and Steven Swan-
son. The harey tortoise: Managing heterogeneous
write performance in SSDs. In Proceedings of the
USENIX Conference on Annual Technical Confer-
ence, USENIX ATC, 2013.

[19] Kang-Deog Suh, Byung-Hoon Suh, Young-Ho
Lim, Jin-Ki Kim, Young-Joon Choi, Yong-Nam
Koh, Sung-Soo Lee, Suk-Chon Kwon, Byung-
Soon Choi, Jin-Sun Yum, Jung-Hyuk Choi, Jang-
Rae Kim, and Hyung-Kyu Lim. A 3.3 v 32 Mb
NAND flash memory with incremental step pulse

programming scheme. IEEE Journal of Solid-State
Circuits, 30(11):1149–1156, Nov 1995.

[20] The Register. Good gravy, Toshiba QLC
flash chips are getting closer. http://www.
theregister.co.uk/2016/07/18/tosh_qlc\
_flash_chips_getting_closer, 2016.

[21] Taeho Kgil, D. Roberts, and T. Mudge. Improv-
ing NAND flash based disk caches. In 35th In-
ternational Symposium on Computer Architecture
(ISCA, 2008.

[22] H. Nagashima, T. Tanaka, K. Kawai, and
K. Quader. Nonvolatile semiconductor memory
device which uses some memory blocks in multi-
level memory as binary memory blocks, August 3
2006. US Patent App. 11/391,299.

[23] F. Yu, A.C. Ma, S. Chen, and Y.T. Chang. En-
durance and retention flash controller with pro-
grammable binary-levels-per-cell bits identifying
pages or blocks as having triple, multi, or single-
level flash-memory cells, January 2 2014. US
Patent App. 13/788,989.

[24] S.C. Wong and K. Johnsen. Data coding for multi-
bit-per-cell memories having variable numbers of
bits per memory cell, October 15 2002. US Patent
6,466,476.

[25] N.J. Wakrat and T.M. Toelkes. Dynamically allo-
cating number of bits per cell for memory loca-
tions of a non-volatile memory, March 19 2013.
US Patent 8,402,243.

[26] Seungjae Lee, Young-Taek Lee, Wook-Kee Han,
Dong-Hwan Kim, Moo-Sung Kim, Seung-Hyun
Moon, Hyun Chul Cho, Jung-Woo Lee, Dae-Seok
Byeon, Young-Ho Lim, Hyung-Suk Kim, Sung-
Hoi Hur, and Kang-Deog Suh. A 3.3 v 4 Gb
four-level NAND flash memory with 90 nm CMOS
technology. In IEEE International Solid-State Cir-
cuits Conference, ISSCC, 2004.

[27] Micron eMMC Linux enablement - SLC
mode. https://prod.micron.com/~/media/
documents/products/technical-note/emmc/
tn5205_emmc_linux_enablement.pdf, 2012.

[28] Anandtech. Transcend announces SuperMLC:
Pseudo-SLC SSDs for industrial market.
http://www.anandtech.com/show/9882/
transcend-announces-supermlc-pseudoslc-
ssds-for-industrial-market, 2015.

[29] Electronic Design. Pseudo-SLC flash provides
design flexibility. http://electronicdesign.
com/site-files/electronicdesign.com/
files/uploads/2013/09/FAQs-Toshiba-
September.pdf, 2013.

182 16th USENIX Conference on File and Storage Technologies USENIX Association

[30] Tom’s hardware. JMicron JMF670H SSD con-
troller preview. http://www.tomshardware.
com/reviews/jmicron-jmf670h-ssd-
controller,4161.html, 2015.

[31] Open NAND flash interface. http://www.onfi.
org. 2016.

[32] Yu Cai, Saugata Ghose, Erich F Haratsch, Yixin
Luo, and Onur Mutlu. Error characterization, mit-
igation, and recovery in flash memory based solid-
state drives. arXiv preprint arXiv:1706.08642,
2017.

[33] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and
O. Mutlu. Data retention in mlc nand flash mem-
ory: Characterization, optimization, and recovery.
In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture, HPCA,
2015.

[34] Lorenzo Zuolo, Cristian Zambelli, Rino
Micheloni, Marco Indaco, Stefano Di Carlo,
Paolo Prinetto, Davide Bertozzi, and Piero
Olivo. SSDexplorer: A virtual platform for
performance/reliability-oriented fine-grained de-
sign space exploration of solid state drives. IEEE
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 34(10):1627–1638,
2015.

[35] Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken
Mai. Threshold voltage distribution in MLC
NAND flash memory: Characterization, analysis,
and modeling. In Proceedings of the Conference
on Design, Automation and Test in Europe, 2013.

[36] Toshiba’s 768gb 3D QLC NAND flash mem-
ory: Matching TLC at 1000 P/E cycles?
Anandtech, https://www.anandtech.com/
show/11590/toshiba-768-gb-3d-qlc-nand-
flash-memory-1000-p-e-cycles.

[37] Western digital unveils 96-layer nand, 4-
bit qlc breakthrough. Extremetech, https:
//www.extremetech.com/extreme/251774-
western-digital-announces-new-96-layer-
nand-4-bit-qlc-breakthrough.

[38] Yinglei Wang, Wing kei Yu, S.Q. Xu, E. Kan, and
G.E. Suh. Hiding information in flash memory.
In IEEE Symposium on Security and Privacy (SP),
pages 271–285, 2013.

[39] Pravin Prabhu, Ameen Akel, Laura M. Grupp,
Wing-Kei S. Yu, G. Edward Suh, Edwin Kan, and
Steven Swanson. Extracting device fingerprints
from flash memory by exploiting physical vari-
ations. In Proceedings of the 4th International
Conference on Trust and Trustworthy Computing,
pages 188–201, 2011.

[40] Amir Rahmati, Matthew Hicks, and Atul Prakash.
Approximate flash storage: A feasibility study.
Presented at the Workshop on Approximate Com-
puting Across the Stack, 2016.

[41] Abbas Cheddad, Joan Condell, Kevin Curran, and
Paul Mc Kevitt. Digital image steganography: Sur-
vey and analysis of current methods. Signal Pro-
cessing, 90(3):727 – 752, 2010.

[42] Fabien A.P. Petitcolas, R.J. Anderson, and M.G.
Kuhn. Information hiding-a survey. Proceedings
of the IEEE, 87(7):1062–1078, Jul 1999.

[43] A. Swaminathan, Min Wu, and K.J.R. Liu. Digi-
tal image forensics via intrinsic fingerprints. IEEE
Transactions on Information Forensics and Secu-
rity, 3(1):101–117, March 2008.

[44] Wojciech Mazurczyk. VoIP steganography and
its detection - a survey. ACM Computing Surveys
(CSUR), 46(2):20, 2013.

[45] Wojciech Fraczek, Wojciech Mazurczyk, and
Krzysztof Szczypiorski. Hiding information in a
stream control transmission protocol. Computer
Communications, 35(2):159 – 169, 2012.

[46] Bernard B. Wu and Evgenii E. Narimanov. Anal-
ysis of stealth communications over a public fiber-
optical network. Opt. Express, 15(2):289–301, Jan
2007.

[47] P.R. Prucnal, M.P. Fok, K. Kravtsov, and Zhenxing
Wang. Optical steganography for data hiding in
optical networks. In 16th International Conference
on Digital Signal Processing, ICDSP, 2009.

[48] M.P. Fok, Zhexing Wang, Yanhua Deng, and P.R.
Prucnal. Optical layer security in fiber-optic net-
works. IEEE Transactions on Information Foren-
sics and Security, 6(3):725–736, Sept 2011.

[49] Qian Wang, Kui Ren, Guancheng Li, Chenbo Xia,
Xiaobing Chen, Zhibo Wang, and Qin Zou. Walls
have ears! opportunistically communicating secret
messages over the wiretap channel: From theory to
practice. In Proceedings of the 22Nd Conference
on Computer and Communications Security, CCS,
2015.

[50] X. Zhou, HweeHwa Pang, and K.-L. Tan. Hid-
ing data accesses in steganographic file system. In
Proceedings of the 20th International Conference
on Data Engineering, 2004.

[51] Ross Anderson, Roger Needham, and Adi Shamir.
The steganographic file system. In Information
Hiding, volume 1525 of Lecture Notes in Com-
puter Science, pages 73–82. Springer Berlin Hei-
delberg, 1998.

USENIX Association 16th USENIX Conference on File and Storage Technologies 183

[52] Jin Han, Meng Pan, Debin Gao, and HweeHwa
Pang. A multi-user steganographic file system on
untrusted shared storage. In Proceedings of the
26th Annual Computer Security Applications Con-
ference, ACSAC, 2010.

[53] Kefa Rabah. Steganography-the art of hiding data.
Information Technology Journal, 3:245–269, 2004.

[54] Andrew D. McDonald and Markus G. Kuhn.
StegFS: A steganographic file system for linux. In
Information Hiding, volume 1768 of Lecture Notes
in Computer Science, pages 463–477. Springer
Berlin Heidelberg, 2000.

[55] HweeHwa Pang, K.-L. Tan, and X. Zhou. Stegfs:
a steganographic file system. In Proceedings of the
19th International Conference on Data Engineer-
ing, ICDE, 2003.

[56] Open Crypto audit project. http:
//opencryptoaudit.org/.

[57] Adam Skillen and Mohammad Mannan. On im-
plementing deniable storage encryption for mobile
devices. In Network & Distributed System Security
Symposium, NDSS, 2013.

[58] Erik-Oliver Blass, Travis Mayberry, Guevara
Noubir, and Kaan Onarlioglu. Toward robust hid-
den volumes using write-only oblivious ram. In
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS
’14, pages 203–214, New York, NY, USA, 2014.
ACM.

[59] Timothy M Peters, Mark A Gondree, and
Zachary NJ Peterson. Defy: A deniable, encrypted
file system for log-structured storage. In The Net-
work and Distributed System Security Symposium,
NDSS, 2015.

[60] Aviad Zuck, Udi Shriki, Donald E. Porter, and Dan
Tsafrir. Preserving Hidden Data with an Ever-
Changing Disk. In ACM Workshop on Hot Topics
in Operating Systems, HotOS, 2017.

[61] Eran Gal and Sivan Toledo. Algorithms and data
structures for flash memories. ACM Comput. Surv.,
37(2):138–163, June 2005.

[62] Anxiao Jiang, V. Bohossian, and J. Bruck. Rewrit-
ing codes for joint information storage in flash
memories. IEEE Transactions on Information The-
ory, 56(10):5300–5313, Oct 2010.

[63] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P.H. Siegel, and J.K. Wolf. Char-
acterizing flash memory: Anomalies, observations,
and applications. In 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MI-
CRO, 2009.

[64] Y. Di, L. Shi, K. Wu, and C. J. Xue. Exploiting
process variation for retention induced refresh min-
imization on flash memory. In Design, Automa-
tion Test in Europe Conference Exhibition (DATE),
2016.

[65] Y. Pan, G. Dong, and T. Zhang. Error rate-
based wear-leveling for NAND flash memory at
highly scaled technology nodes. IEEE Transac-
tions on Very Large Scale Integration (VLSI) Sys-
tems, 21(7):1350–1354, 2013.

[66] Yeong-Jae Woo and Jin-Soo Kim. Diversifying
wear index for MLC NAND flash memory to ex-
tend the lifetime of SSDs. In Proceedings of the
Eleventh ACM International Conference on Em-
bedded Software, EMSOFT, 2013.

[67] Nikolaos Papandreou, Thomas Parnell, Haralam-
pos Pozidis, Thomas Mittelholzer, Evangelos
Eleftheriou, Charles Camp, Thomas Griffin, Gary
Tressler, and Andrew Walls. Using adaptive read
voltage thresholds to enhance the reliability of
MLC NAND flash memory systems. In Proceed-
ings of the 24th Edition of the Great Lakes Sympo-
sium on VLSI, GLSVLSI, 2014.

[68] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai.
Program interference in MLC NAND flash mem-
ory: Characterization, modeling, and mitigation. In
2013 IEEE 31st International Conference on Com-
puter Design, ICCD, 2013.

[69] Ki-Tae Park, Myounggon Kang, Doogon Kim,
Soon-Wook Hwang, Byung Yong Choi, Yeong-
Taek Lee, Changhyun Kim, and Kinam Kim. A
zeroing cell-to-cell interference page architecture
with temporary LSB storing and parallel msb pro-
gram scheme for MLC NAND flash memories.
IEEE Journal of Solid-State Circuits, 43(4):919–
928, April 2008.

[70] N. Agrawal, V. Prabhakaran, T. Wobber, J.D.
Davis, M. Manasse, and R. Panigrahy. Design
tradeoffs for SSD performance. In USENIX 2008
Annual Technical Conference on Annual Technical
Conference, USENIX ATC, 2008.

[71] M. Murugan and D.H.C. Du. Rejuvenator: A static
wear leveling algorithm for NAND flash memory
with minimized overhead. In IEEE 27th Sympo-
sium on Mass Storage Systems and Technologies,
MSST, 2011.

[72] Y. J. Woo and J. S. Kim. Diversifying wear in-
dex for MLC NAND flash memory to extend the
lifetime of SSDs. In Proceedings of the Inter-
national Conference on Embedded Software, EM-
SOFT, 2013.

184 16th USENIX Conference on File and Storage Technologies USENIX Association

[73] NAND flash memory tester (SigNASII).
http://www.siglead.com/eng/innovation\
_signas2.html. 2016.

[74] Jong-Ho Park, Sung-Hoi Hur, Joon-Hee Leex, Jin-
Taek Park, Jong-Sun Sel, Jong-Won Kim, Sang-
Bin Song, Jung-Young Lee, Ji-Hwon Lee, Suk-
Joon Son, Yong-Seok Kim, Min-Cheol Park, Soo-
Jin Chai, Jung-Dal Choi, U-In Chung, Joo-Tae
Moon, Kyeong-Tae Kim, Kinam Kim, and Byung-
Il Ryu. 8 gb MLC (multi-level cell) NAND flash
memory using 63 nm process technology. In Tech-
nical Digest of IEEE International Electron De-
vices Meeting, IEDM, pages 873–876, 2004.

[75] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu. Read dis-
turb errors in mlc nand flash memory: Character-
ization, mitigation, and recovery. In 45th Annual
IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN, 2015.

[76] Wei Wang, Tao Xie, and Deng Zhou. Understand-
ing the impact of threshold voltage on mlc flash
memory performance and reliability. In Proceed-
ings of the 28th ACM International Conference on
Supercomputing, ICS, 2014.

[77] Yue Li, Eyal En Gad, Anxiao Jiang, and Jehoshua
Bruck. Data archiving in 1x-nm NAND flash mem-
ories: Enabling long-term storage using rank mod-
ulation and scrubbing. In 2016 IEEE 54th Interna-
tional Reliability Physics Symposium, 2016.

[78] Mingzhen Xu, Changhua Tan, and MingFu Li.
Extended Arrhenius law of time-to-breakdown of
ultrathin gate oxides. Applied Physics Letters,
82(15):2482–2484, Apr 2003.

[79] Yu Cai, G. Yalcin, O. Mutlu, E.F. Haratsch,
A. Cristal, O.S. Unsal, and Ken Mai. Flash correct-
and-refresh: Retention-aware error management
for increased flash memory lifetime. In IEEE
30th International Conference on Computer De-
sign, ICCD, 2012.

[80] Shiqin Yan, Huaicheng Li, Mingzhe Hao,
Michael Hao Tong, Swaminathan Sundararaman,
Andrew A. Chien, and Haryadi S. Gunawi. Tiny-
tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND SSDs. In
15th USENIX Conference on File and Storage
Technologies, FAST, 2017.

[81] Michael Factor, Ealan Henis, Dalit Naor, Simona
Rabinovici-Cohen, Petra Reshef, Shahar Ronen,
Giovanni Michetti, and Maria Guercio. Authen-
ticity and provenance in long term digital preser-
vation: Modeling and implementation in preserva-
tion aware storage. In First Workshop on Theory
and Practice of Provenance, TAPP, 2009.

[82] Matias Bjørling, Javier Gonzalez, and Philippe
Bonnet. Lightnvm: The linux open-channel SSD
subsystem. In 15th USENIX Conference on File
and Storage Technologies, FAST, 2017.

USENIX Association 16th USENIX Conference on File and Storage Technologies 185

Endurable Transient Inconsistency in Byte-Addressable Persistent B+-Tree

Deukyeon Hwang
UNIST

Wook-Hee Kim
UNIST

Youjip Won
Hanyang University

Beomseok Nam
UNIST

Abstract
With the emergence of byte-addressable persistent

memory (PM), a cache line, instead of a page, is expected
to be the unit of data transfer between volatile and non-
volatile devices, but the failure-atomicity of write oper-
ations is guaranteed in the granularity of 8 bytes rather
than cache lines. This granularity mismatch problem has
generated interest in redesigning block-based data struc-
tures such as B+-trees. However, various methods of
modifying B+-trees for PM degrade the efficiency of B+-
trees, and attempts have been made to use in-memory
data structures for PM.

In this study, we develop Failure-Atomic ShifT
(FAST) and Failure-Atomic In-place Rebalance (FAIR)
algorithms to resolve the granularity mismatch problem.
Every 8-byte store instruction used in the FAST and
FAIR algorithms transforms a B+-tree into another con-
sistent state or a transient inconsistent state that read op-
erations can tolerate. By making read operations tolerate
transient inconsistency, we can avoid expensive copy-on-
write, logging, and even the necessity of read latches so
that read transactions can be non-blocking. Our experi-
mental results show that legacy B+-trees with FAST and
FAIR schemes outperform the state-of-the-art persistent
indexing structures by a large margin.

1 Introduction
Recent advances in byte-addressable persistent mem-
ories (PM), such as phase change memory[48], spin-
transfer torque MRAM[17], and 3D Xpoint[2] have
opened up new opportunities for the applications to war-
rant durability or persistency without relying on legacy
heavy-duty interfaces offered by the filesystem and/or by
the block device [21, 24].

In legacy block devices, B+-tree has been one of the
most popular data structures. The primary advantage of
a B+-tree is its efficient data access performance due to
its high degree of node fan-out, a balanced tree height,

and dynamic resizing. Besides, the large CPU cache in
modern processors[11] enables B+-tree to exhibit a good
cache line locality. As a result, B+-tree shows good per-
formance as an in-memory data structure as well. Thus,
the cache-conscious variants of B+-tree including CSS-
tree [36], CSB-tree [37], and FAST [19] are shown to
perform better than legacy binary counterparts such as
T-tree [26].

Byte-addressable PM raises new challenges in using
B+-tree because legacy B+-tree operations are imple-
mented upon the assumption that block I/O is failure
atomic. In modern computer architectures, the unit of
atomicity guarantee and the unit of transfer do not coin-
cide. The unit of atomicity in memory operations corre-
sponds to a word, e.g. 64 bits whereas the unit of transfer
between the CPU and memory corresponds to a cache
line, e.g. 64 Bytes. This granularity mismatch is of no
concern in current memory since it is volatile. When
the memory is non-volatile, unexpected system failures
may cause the result of incomplete cache flush opera-
tions to be externally visible after the system recovers.
To make the granularity mismatch problem even worse,
modern processors often make the most use of memory
bandwidth by changing the order of memory operations.
Besides, recently proposed memory persistency models
such as epoch persistency [9] even allow cache lines to
be written back out of order. To prevent the reordering of
memory write operations and to ensure that the written
data are flushed to PM without compromising the consis-
tency of the tree structure, B+-trees for persistent mem-
ory use explicit memory fence operations and cache flush
operations to control the order of memory writes [5, 42].

The recently proposed B+-tree variants such as NV-
tree [49], FP-tree [34], and wB+-tree [5] have pointed
out and addressed two problems of byte-addressable per-
sistent B+-trees. The first problem is that a large number
of fencing and cache flush operations are needed to main-
tain the sorted order of keys. And, the other problem is
that the logging demanded by tree rebalancing operations

USENIX Association 16th USENIX Conference on File and Storage Technologies 187

is expensive in the PM environment.
To resolve the first problem, previous studies have pro-

posed a way to update tree nodes in an append-only
manner and introduced additional metadata to the B+-
tree structures. With these augmentations, the size of up-
dated memory region in a B+-tree node remains minimal.
However, the additional metadata for indirect access to
the keys, and the unordered entries affect the cache lo-
cality and increase the number of accessed cache lines,
which can degrade search performance.

To resolve the second problem of persistent B+-trees
- logging demanded by tree rebalancing operations,
NVTree [49] and FP-tree [34] employed selective per-
sistence that keeps leaf nodes in the PM but internal
nodes in volatile DRAM. Although the selective persis-
tence makes logging unnecessary, it requires the recon-
struction of tree structures on system failures and makes
the instant recovery impossible.

In this study, we revisit B+-trees and propose a novel
approach to tolerating transient inconsistency, i.e., par-
tially updated inconsistent tree status. This approach
guarantees the failure atomicity of B+-tree operations
without significant fencing or cache flush overhead. If
transactions are made to tolerate the transient inconsis-
tency, we do not need to maintain a consistent backup
copy and expensive logging can be avoided. The key con-
tributions of this work are as follows.

• We develop Failure Atomic Shift (FAST) and Failure-
Atomic In-place Rebalance (FAIR) algorithms that
transform a B+-tree through endurable transient in-
consistent states. The endurable transient inconsistent
state is the state in which read transactions can detect
incomplete previous transactions and ignore inconsis-
tency without hurting the correctness of query results.
Given that all pointers in B+-tree nodes are unique,
the existence of duplicate pointers enables the system
to identify the state of the transaction at the time of
crash and to recover the B+-tree to the consistent state
without logging.

• We make read transactions non-blocking. If every
store instruction transforms a B+-tree index to an-
other state that guarantees correct search results, read
transactions do not have to wait until concurrent write
transactions finish changing the B+-tree nodes.

In the sense that the proposed scheme warrants con-
sistency via properly ordering the individual operations
and the inconsistency is handled by read operations, they
share much of the same idea as the soft-update tech-
nique [12, 31] and NoFS [7].

The rest of the paper is organized as follows: In Sec-
tion 2, we present the challenges in designing a B+-tree
index for PM. In Section 3 and Section 4, we propose
the FAST and FAIR algorithms. In Section 5, we discuss

how to enable non-blocking read transactions. Section 6
evaluates the performance of the proposed persistent B+-
tree and Section 7 discusses other research efforts. In
Section 8 we conclude this paper.

2 B+-tree for Persistent Memory
2.1 Challenge: clflush and mfence
A popular solution to guarantee transaction consistency
and data integrity is the copy-on-write technique, which
updates the block in an out-of-place manner. The copy-
on-write update for block-based data structures can be
overly expensive because it duplicates entire blocks in-
cluding the unmodified portion of the block.

The main challenges in employing the in-place update
scheme in B+-trees is that we store multiple key-pointer
entries in one node and that the entries must be stored in
a sorted order. Inserting a new key-pointer entry in the
middle of an array will shift on average half the entries.
In the recent literature [42, 5, 49], this shift operation has
been pointed out as the main reason why B+-trees call
many cache line flush and memory fence instructions. If
we do not guard the memory write operations with mem-
ory fence operations, the memory write operations can
be reordered in modern processors. And, if we do not
flush the cache lines properly, B+-tree nodes can be up-
dated partially in PM because some cache lines will stay
in CPU caches. To avoid such a large number of cache
line flushes and memory fence operations, append-only
update strategy can be employed [49, 34, 5]. However,
the append-only update strategy improves the write per-
formance at the cost of a higher read overhead because
it requires additional metadata or all unsorted keys in a
tree node to be read [6].

2.2 Reordering Memory Accesses
The reordering of memory write operations helps bet-
ter utilize the memory bandwidth [38]. In the last few
decades, the performance of modern processors has im-
proved at a much faster rate than that of memory [10]. In
order to resolve the performance gap between CPU speed
and memory access time, memory is divided into multi-
ple cache banks so that the cache lines in the banks can
be accessed in parallel. As a result, memory operations
can be executed out of order.

To design a failure-atomic data structure for PM, we
need to consider both volatile memory order and persist
order. Let us examine volatile memory order first. Mem-
ory reordering behaviors vary across architectures and
memory ordering models. Some architectures such as
ARM allow store instructions to be reordered with each
other[8], while other architectures such as x86 prevent
stores-after-stores from being reordered [40, 18], that is,
total store ordering is guaranteed. However, most archi-

188 16th USENIX Conference on File and Storage Technologies USENIX Association

tectures arbitrarily reorder stores-after-loads, loads-after-
stores, and loads-after-loads unless dependencies exist in
them. The Alpha is known to be the only processor that
reorders dependent loads [30]. Given that the Alpha pro-
cessor has deprecated since 2003, we consider that all
modern processors do not reorder dependent loads.

Memory persistency [35] is a framework that provides
an interface for enforcing persist ordering constraints on
PM writes. Persist order in the strict persistency model
matches the memory order specified in the memory con-
sistency model. However, the memory persistency model
may allow the persist order to deviate from the volatile
order under the relaxed persistency model [9, 35]. To
simplify our discussion, we first present algorithms as-
suming the strict persistency model. Later, in Section 7,
we will discuss the relaxed persistency model.

3 Failure-Atomic ShifT (FAST)
3.1 Shift and Memory Ordering
In most architectures, the order of memory access oper-
ations is not changed arbitrarily if stores and loads have
dependencies. Based on this observation, we propose the
Failure-Atomic ShifT (FAST) scheme for B+-tree nodes.
FAST frees the shift operation from explicitly calling a
memory fence and a cache line flush instruction with-
out compromising the ordering requirement. The idea of
FAST is simple and straightforward. Let us first examine
the case where total store ordering (TSO) is guaranteed.

The process of shifting array elements is a sequence
of load and store instructions that are all dependent and
must be called in a cascading manner. To insert an el-
ement in a sorted array, we visit the array elements in
reverse order, that is, from the rightmost element to the
left ones. Until we find an element e[i] that is smaller
than the element we insert, we shift the elements to the
right: e[j + 1]← e[j], j = N, . . . , i+ 1. The dependency
between the consecutive move operations, e[i+1]← e[i]
and e[i]← e[i− 1], prohibits the CPU from performing
Out-Of-Order writes[38] and guarantees that the records
are moved while satisfying the prefix constraint [45],
i.e., if e[i]← e[i− 1] is successful, all preceding moves,
e[j]← e[j−1], j = i+1, . . . ,N have been successful.

If the array size spans across multiple cache lines, it
is uncertain which cache line will be flushed first if we
do not explicitly call clflush. Therefore, our proposed
FAST algorithm calls a cache line flush instruction when
we shift an array element from one cache line to its adja-
cent cache line. Since FAST calls cache line flushes only
when it crosses the boundary of cache lines, it calls cache
line flush instructions only as many times as the number
of dirty cache lines in a B+-tree node.

Even if we do not call a cache line flush instruction,
a dirty cache line can be evicted from CPU caches and

Figure 1: FAST Inserting (25, Ptr) into B-tree node

be flushed to PM. In FAST, such a premature cache line
flush does not affect the consistency of a sorted array.
The only condition that FAST requires is that the dirty
cache lines must be flushed in order.

Suppose that an array element is shifted from one
cache line to another. Since there exists a dependency
between the load and the store instructions, they will not
be reordered and we do not need to explicitly call a mem-
ory fence instruction. However, since cache line flush in-
structions can be reordered with store instructions, we
call a memory fence instruction per cache line flush.

3.2 Endurable Inconsistency during Shift
The shift operation is not failure-atomic by itself because
shifting an element can make it appear twice in a row.
In case of a system failure, such transient duplicate el-
ements can persist as shown in Figure 1, which seems
at first glance unacceptably inconsistent. To resolve this
issue, we use one property of B+-tree nodes; B+-tree
nodes do not allow duplicate pointers. Therefore, a key
in between duplicate pointers found during tree traversals
can be ignored by transactions and considered as a toler-
able transient inconsistent state. After finding a key of in-
terest in a sorted array, we check if its left and right child
pointers have the same addresses. If so, transactions ig-
nore the key and continue to read the next key. This mod-
ification in traversal algorithm requires only one more
compare instruction per each tree node visit, which in-
curs negligible overhead to transactions.

3.3 Insertion with FAST for TSO
In B+-tree nodes, the same number of keys and pointers
(or keys and values) need to be shifted in tandem. We
store keys and pointers as an array of structure in B+-
tree nodes so that the corresponding keys and pointers
are always flushed together.

The insertion algorithm is shown in Algorithm 1. Con-
sider the example shown in Figure 1. We insert a key-
value pair (25,Ptr) into the B+-tree node shown in (1)
of Figure 1. To make a space for 25, the two rightmost

USENIX Association 16th USENIX Conference on File and Storage Technologies 189

Algorithm 1
FAST insert(node,key, ptr)

1: node.lock.acquire()
2: if (sibling← node.sibling ptr) 6= NULL then
3: if sibling.records[0].key < key then
4: – previous write thread has split this node
5: node.lock.release()
6: FAST insert(sibling,key, ptr);
7: return
8: end if
9: end if

10: if node.cnt < node capacity then
11: if node.search dir flag is odd then
12: – if this node was updated by a delete thread, we
13: – increase this flag to make it even so that
14: – lock-free search scans from left to right
15: node.search dir flag++;
16: end if
17: for i← node.cnt−1; i≥ 0; i−− do
18: if node.records[i].key > key then
19: node.records[i+1].ptr← node.records[i].ptr;
20: m f ence IF NOT T SO();
21: node.records[i+1].key← node.records[i].key;
22: m f ence IF NOT T SO();
23: if &(node.records[i+1]) is at cacheline boundary

then
24: cl f lush with m f ence(&node.records[i+1]);
25: end if
26: else
27: node.records[i+1].ptr← node.records[i].ptr;
28: m f ence IF NOT T SO();
29: node.records[i+1].key← key;
30: m f ence IF NOT T SO();
31: node.records[i+1].ptr← ptr;
32: cl f lush with m f ence(&node.records[i+1]);
33: end if
34: end for
35: node.lock.release()
36: else
37: node.lock.release()
38: FAIRsplit(node,key, ptr);
39: end if

keys, 30 and 40, their pointers P4 and P5, and the sen-
tinel pointer Null must be shifted to the right.

First, we shift the sentinel pointer Null to the right as
shown in (2). Next, we shift the right child pointer P5 of
the last key 40 to the right, and then we shift key 40 to the
right, as shown in (3) and (4). In step (3) and (4), we have
a garbage key and a duplicate key 40 as the last key re-
spectively. Such inconsistency can be tolerated by mak-
ing other transactions ignore the key between the same
pointers (P5 and P5∗ in the example).

In step (5), we shift P4 by overwriting P5. This atomic
write operation invalidates the old key 40 ([P4,40,P4∗])
and validates the shifted key 40 ([P4∗,40,P5∗]). Even if

a system crashes at this point, the key 40 between the re-
dundant pointers ([P4,40,P4∗]) will be ignored. Next,
the key 30 can be shifted to the right by overwriting
the key 40 in step (6). Next, in step (7), we shift P3
to the right to invalidate the old key 30 ([P3,30,P3∗])
and make space for the key 25, that we insert. In step
(8), we store 25 in the third slot. However, the key 25
is not valid because it is in between the same point-
ers ([P3,25,P3∗]). Finally, in step (9), we overwrite P3∗
with the new pointer Ptr, which will validate the new key
25. In FAST, writing a new pointer behaves as a commit
mark of an insertion.

Unlike pointers, the size of keys can vary. If a key size
is greater than 8 bytes, it cannot be written atomically.
However, our proposed FAST insertion makes changes
to a key only if it is located between the same pointers.
Therefore, even if a key size is larger than 8 bytes and
even if it cannot be updated atomically, read operations
ignore such partially written keys and guarantee correct
search results.

In this sense, every single 8-byte write operation in
the FAST insertion algorithm is failure-atomic and crash
consistent because partially written tree nodes are always
usable. Hence, even if a system crashes during the up-
date, FAST guarantees recoverability as long as we flush
dirty cache lines in an order.

3.4 FAST for Non-TSO Architectures
ARM processors can reorder store instructions if they do
not have a dependency. I.e., if a store instruction updates
a key and another store instruction updates a pointer, they
can be reordered.

First, consider the case where keys are no larger than
8 bytes. Then, keys and pointers can be shifted indepen-
dently because no key or pointer in either array can be in
a partially updated status. Suppose that the ith and i+1th
keys are the same and the jth and j+1th pointers are the
same (i 6= j). We can simply ignore one of the redundant
elements in both arrays, easily sort out which pointer is
for which key’s child node, and reconstruct the correct
logical view of the B+-tree node.

Second, consider the case where the keys are larger
than 8 bytes. One easy option is to call a memory fence
instruction for each shift operation. Although this op-
tion calls a large number of memory fence instructions, it
calls cache line flush instructions only as many times as
the number of dirty cache lines as in TSO architectures.
Although memory fence overhead is not negligible, it is
much smaller than cache line flush overhead. Alterna-
tively, we can make B+-tree store the large keys in a sep-
arate memory heap and store pointers to the keys in B+-
tree nodes. This option allows us to avoid a large number
of memory fence instructions. However, through experi-
ments, we found the indirect access and the poor cache

190 16th USENIX Conference on File and Storage Technologies USENIX Association

Figure 2: FAIR Node Split

locality significantly degrade the search performance.

3.5 Deletion with FAST
Deletion can be performed in a similar manner but
in reverse order of insertion. Consider the deletion of
(25,Ptr) from the tree node illustrated in (9) of Figure 1.
First, we overwrite Ptr with P3 to invalidate the key 25.
Note that this atomic write operation behaves as the com-
mit mark of the deletion. If a system crashes and a sub-
sequent query finds the B+-tree node as shown in (8), the
key 25 ([P3,25,P3∗]) will be considered as an invalid
key because it is in between duplicate pointers.

In the subsequent steps shown in (7)∼(3), the pointer
array will have adjacent duplicate pointers that invali-
date one of the keys while we shift them to the left. Fi-
nally, in step (2), we shift the sentinel pointer Null to the
left, which completes the deletion process. Similar to the
insertion, we flush dirty cache lines only when we are
about to make the next cache line dirty.

4 Failure-Atomic In-place Rebalancing
4.1 FAIR: Node Split
In both legacy disk-based B-trees and recently proposed
B+-tree variants for PM [49, 34, 5], logging or journaling
has been used when splitting or merging multiple tree
nodes. If a tree node splits, (1) we create a sibling node,
(2) move half of the entries from the overfull node to
the new sibling node, and (3) insert a pointer to the new
sibling node and its smallest key to the parent node. Since
these three steps must be performed atomically, logging
can be used. However, logging duplicates dirty pages. It
not only increases the write traffic but also blocks the
concurrent access to tree nodes.

We avoid the expensive logging by leveraging the
FAST in-place update scheme and the Failure-Atomic In-
place Rebalance (FAIR) node split algorithm described
in Algorithm 2. In our B+-tree design, we store a sibling
pointer not just for leaf nodes but also for internal nodes
as in the B-link tree [25].

Figure 2 illustrates each step of the FAIR node split
algorithm with an example. We examine every individual
store operations in splitting a tree node and carefully lay

Algorithm 2
FAIR split(node,key, ptr)

1: node.lock.acquire()
2: if (sibling← node.sibling ptr) 6= NULL then
3: if sibling.records[0].key < key then
4: node.lock.release()
5: FAST insert(sibling,key, ptr);
6: return
7: end if
8: end if
9: sibling← nv malloc(sizeo f (node));

10: median← node capacity/2
11: for i← median; i < node capacity; i++ do
12: FAST insert without lock(sibling,

node.records[i].key,node.records[i].ptr);
13: end for
14: sibling.sibling ptr← node.sibling ptr;
15: cl f lush with m f ence(sibling);
16: node.sibling ptr← sibling;
17: cl f lush with m f ence(&node.sibling ptr);
18: node.records[median].ptr← NULL;
19: cl f lush with m f ence(&node.records[median]);
20: – split is done. now insert (key,ptr)
21: if key < node.records[median].key then
22: FAST insert without lock(node,key, ptr)
23: else
24: FAST insert without lock(sibling,key, ptr)
25: end if
26: node.lock.release()
27: – update the parent node by traversing from the root.
28: FAST internal node insert(root,node.level+

1,sibling.records[0].key,node.sibling ptr);

them out so that we do not have to maintain an additional
copy of data for crash recovery and consistency is not
compromised in the event of system failure.

First, suppose there is only one node in the tree as
shown in (1). If we insert a new key 50, the leaf node
A will split. In (2), we create a sibling node B using
a PM heap manager [33], copy half of the entries, call
cache line flushes for the new node, and make the sibling
pointer of node A point to the sibling node B. The sibling
pointer must be written before we delete the migrated en-

USENIX Association 16th USENIX Conference on File and Storage Technologies 191

tries in the overfull node A. It looks as if the consistency
of the tree nodes is violated because we have duplicate
entries in nodes A and B; however, the right sibling node
B will not be used until we delete duplicate entries from
A because the smallest key in the right sibling node (40)
is smaller than the largest key in the overfull node (60).

Suppose a system crashes in state (2). If a query that
searches for key 35 is submitted, it will access node A
following the search path from the root node because the
sibling node B has not been added to the parent node
yet. Since 35 is smaller than 40 (the one in node A), the
search will stop without accessing node B. If the search
key is 65, the query will follow the sibling pointer, ac-
cess the sibling node B, and compare to see if the first
key of the sibling node B is greater than the largest key
in the node A. If it is, the query will keep checking the
next key until it finds a matching key or a larger key
than the search key. However, in this example, the search
will stop after it finds that the first key 40 in the sibling
node B is smaller than the largest key 60 in the node A.
The basic assumption that makes this redundancy and in-
consistency tolerable is that the right sibling nodes al-
ways have larger keys than the left sibling nodes. There-
fore, the keys and pointers in the new right sibling node
([P4∗,40∗,P6∗,60∗,Null]) will not be accessed until we
delete them in the overfull node A. We delete migrated
keys and pointers from the overfull node by atomically
setting the pointer of the median to NULL. This will
change the tree status to (3). If we search the key 40 after
deleting the migrated entries, the query will find that the
largest key in node A is smaller than the search key, and
follow the sibling pointer to find the key 40 in node B.

Figure 2 (5)∼(7) illustrate how we can endure tran-
sient inconsistency when we update the parent node. In
step (5), node A and its sibling node B can be considered
as a single virtual node. In the parent node R, we add a
key-pointer pair for node B, i.e., (40,C4) in the example.
Since the parent node has keys greater than the key 40
that we add, we shift them using FAST as shown in (5)
and (6). After we create a space in the parent node by
duplicating the pointer C2, we finally store (40,C4) as
shown in (7).

4.2 FAIR: Node Merge
In B+-tree, underutilized nodes are merged with sibling
nodes. If a deletion causes a node to be underutilized,
we delete the underutilized node from its parent node so
that the underutilized node and its left sibling node be-
come virtually a single node. Once we detach the under-
utilized node from the parent node, we check whether
the underutilized node and its left sibling node can be
merged. If the left sibling node does not have enough en-
tries, we merge them using FAST. If the left sibling node
has enough entries, we shift some entries from the left

sibling node to the underutilized node using FAST, and
insert the new smallest key of the right sibling node to its
parent node. This node merge algorithm is similar to the
split algorithm, but it is performed in the reverse order of
the split algorithm. Thus, a working example of the node
merge algorithm can be illustrated by reversing the order
of the steps shown in Figure 2.

5 Lock-Free Search
With the growing prevalence of many-core systems,

concurrent data structures are becoming increasingly im-
portant. In the recently proposed memory driven comput-
ing environment that consists of a large number of pro-
cessors accessing a persistent memory pool [1], concur-
rent accesses to shared data structures including B+-tree
indexes must be managed efficiently in a thread-safe way.

As described earlier, the sequences of 8 byte store op-
erations in FAST and FAIR algorithms guarantee that
no read thread will ever access inconsistent tree nodes
even if a write thread fails while making changes to the
B+-tree nodes. In other words, even if a read transac-
tion accesses a B+-tree partially updated by a suspended
write thread, it is guaranteed that the read transaction will
return the correct results. On the contrary, read transac-
tions can be suspended and a write transaction can make
changes to the B+-tree that the read transactions were ac-
cessing. When the read transactions wake up, they need
to detect and tolerate the updates made by the write trans-
action. In our implementation, tree structure modifica-
tions, such as page splits or merges, can be handled by
the concurrency protocol of the B-link tree [25]. How-
ever, the B-link tree has to acquire an exclusive lock to
update a single tree node atomically. However, leverag-
ing the FAST algorithm, we can design a non-blocking
lock-free search algorithm to allow concurrent accesses
to the same tree node as described below.

To enable a lock-free search, all queries must access a
tree node in the same direction. That is, while a write
thread is shifting keys and pointers to the right, read
threads must access the node from left to right. If a write
thread is deleting an entry using left shifts, read threads
must access the node from right to left. Suppose the fol-
lowing example. A query accesses the tree node shown
in Figure 1(1) to search for key 22. After the query reads
the first two keys - 10 and 20, it is then suspended be-
fore accessing the next key 30. While the query thread is
suspended, a write thread inserts 25 and shifts keys and
pointers to the right. When the suspended query thread
wakes up later, the tree node may be different from what
it was before. If the tree node is in one of the states
(1)∼(6), or (9), the read thread will follow the child
pointer P3 without a problem. If the tree node is in state
(7) or (8), the read thread will find the left and right child
pointers are the same. Then, it will ignore the current key

192 16th USENIX Conference on File and Storage Technologies USENIX Association

Algorithm 3
LockFreeSearch(node,key)

1: repeat
2: ret← NULL;
3: prev switch← node.switch;
4: if prev switch is even then
5: – we scan this node from left to right
6: for i← 0;records[i].ptr 6= NULL; i++ do
7: if (k ← records[i].key) = key&&records[i].ptr 6=

(t← records[i+1].ptr) then
8: if (k = records[i].key) then
9: ret← t;

10: break;
11: end if
12: end if
13: end for
14: else
15: – this node was accessed by a delete query
16: – we have to scan this node from right to left
17: for i← node.cnt−1; i >= 0; i−− do
18: – omitted due to symmetry and lack of space
19: end for
20: end if
21: until prev switch = node.switch
22: if ret = NULL && (t← node.sibling ptr) then
23: if t.records[0].key≤ key then
24: return t;
25: end if
26: end if
27: return ret;

and move on to the next key so that it follows the correct
child pointer. From this example, we can see that shifting
keys and pointers in the same direction does not hurt the
correctness of concurrent non-blocking read queries.

If a read thread scans an array from left to right while a
write thread is deleting its element by shifting to the left,
there is a possibility that the read thread will miss the
shifted entries. But if we shift keys and pointers in the
same direction, the suspended read thread cannot miss
any array element even if it may encounter the same en-
try multiple times. However, this does not hurt the cor-
rectness of the search results.

To guide which direction read threads scan a tree node,
we use a counter flag which increases when insertions
and deletions take turn. That is, the flag is an even num-
ber if a tree node has been updated by insertions and an
odd number if the node has been updated by deletions.
Search queries determine in which direction it scans the
node according to the flag, and it double checks whether
the counter flag remains unchanged after the scan. If the
flag has changed, the search query must scan the node
once again. A pseudo code of this lock-free search algo-
rithm is shown in Algorithm 3.

Because of the restriction on the search direction,

our lock-free search algorithm cannot employ a binary
search. Although the binary search is known to perform
faster than the linear search, its performance can be lower
than that of the linear search when the array size is small,
as we will show in Section 6.2.

5.1 Lock-Free Search Consistency Model
A drawback of a lock-free search algorithm is that

a deterministic ordering of transactions cannot be en-
forced. Suppose a write transaction inserts two keys - 10
and 20 into a tree node and another transaction performs
a range query and accesses the tree node concurrently.
The range query may find 10 in the tree node but may
not find 20 if it has not been stored yet. This problem
can occur because the lock-free search does not serial-
ize the two transactions. Although the lock-free search
algorithm helps improve the concurrency level, it is vul-
nerable to the well-known phantom reads and dirty reads
problems [41].

In the database community, various levels of isolation
such as serializable mode, non-repeatable read mode,
read committed mode, and read uncommitted mode [41]
have been studied and used. Considering our lock-free
search algorithm is vulnerable to dirty reads, it operates
in read uncommitted mode. Although read uncommitted
mode can be used for certain types of queries in OLAP
systems, the scope of its usability is very limited.

To support higher isolation levels, we must resort to
other concurrency control methods such as key range
locks, snapshot isolation, or multi-version schemes [41].
However, these concurrency control methods may im-
pose a significant overhead. To achieve both a high con-
currency level and a high isolation level, we designed an
alternative method to compromise. That is, we use read
locks only for leaf nodes considering the commit oper-
ations only occur in leaf nodes. For internal tree nodes,
read transactions do not use locks since they are irrele-
vant to phantom reads and dirty reads. Since transactions
are likely to conflict more in internal tree nodes rather
than in leaf nodes, read locks in leaf nodes barely affect
the concurrency level as we will show in Section 6.7.

5.2 Lazy Recovery for Lock-Free Search
Since the reconstruction of a consistent logical view of
a B+-tree is always possible with an inconsistent but
correctable B+-tree, we perform a recovery in a lazy
manner. We do not let read transactions fix tolerable in-
consistency because read transactions are more latency
sensitive than write transactions. In our design, instead,
we make only write threads fix tolerable inconsistencies.
Such a lazy recovery approach is acceptable because
FAST allows at most one pair of duplicate pointers in
each node. Thus, it does not waste a significant amount
of memory space, and its performance impact on search

USENIX Association 16th USENIX Conference on File and Storage Technologies 193

is negligible. Besides, the lazy recovery is necessary for a
lock-free search. In lock-free searches, read threads and
a write thread can access the same node. If read threads
must fix the duplicate entries that a write thread caused,
read threads will compete for an exclusive write lock.
Otherwise, read threads have to check whether the node
is inconsistent due to a crash or due to an inflight insert
or delete, which will introduce significant complexities
and latency to reads.

To fix inconsistent tree nodes, we delete the garbage
key in between duplicate pointers by shifting the array
to the left. For a dangling sibling node, we check if the
sibling node can be merged with its left node. If not, we
insert the pointer to the sibling node into the parent node.

In the FAIR scheme, the role of adding a sibling node
to the parent node is not confined to the query that cre-
ated the sibling node. Even if a process that split a node
crashes for some reason, a subsequent process that ac-
cesses the sibling node via the sibling pointer triggers
a parent node update. If multiple write queries visit a
tree node via the sibling pointer, only one of them will
succeed in updating the parent node and the rest of the
queries will find that the parent has already been updated.

6 Experiments
We evaluate the performance of FAST and FAIR1

against the state-of-the-art indexing structures for PM
- wB+-tree with slot+bitmap nodes [5], FP-tree [34],
WORT [23], and Skiplist [16].

wB+-tree [5] is a B+-tree variant that stores all tree
nodes in PM. wB+-tree inserts data in an append-only
manner. To keep the ordering of appended keys, wB+-
tree employs a small metadata, called slot-array, which
manages the index of unsorted keys in a sorted order. In
order to atomically update the slot-array, wB+-tree uses
a separate bitmap to mark the validness of array elements
and slot-array. Because of these metadata, wB+-tree calls
at least four cache line flushes when we insert data into a
tree node. Besides this, wB+-tree also requires expensive
logging and a large number of cache line flushes when
nodes split or merge.

FP-Tree [34] is a variant of a B+-tree that stores leaf
nodes in PM but internal nodes in DRAM. It proposes to
reduce the CPU cache miss ratio via finger printing and
employs hardware transactional memory to control con-
current access to internal tree nodes in DRAM. FP-Tree
claims that internal nodes can be reconstructed without
significant overhead. However, the reconstruction of in-
ternal nodes is not very different from the reconstruction
of the whole index. We believe one of the most important
benefits of using PM is the instantaneous recoverability.
With FP-Tree, such an instantaneous recovery is impos-

1Codes are available at https://github.com/DICL/FAST FAIR

sible. Thus, strictly speaking, FP-Tree is not a persistent
index.

WORT [23] is an alternative index for PM based upon
a radix tree. Unlike B+-tree variants, the radix tree does
not require key sorting nor rebalancing tree structures.
Since the radix tree structure is deterministic, insertion or
deletion of a key requires only a few 8 byte write opera-
tions. However, radix trees are sensitive to the key distri-
bution and often suffers from poor cache utilization due
to their deterministic tree structures. Also, radix trees are
not as versatile as B+-trees as their range query perfor-
mance is very poor.

SkipList [16] is a probabilistic indexing structure that
avoids expensive rebalancing operations. An update of
the skip list needs pointer updates in multi-level linked
lists. But only the lowest level-linked list needs to be
updated in a failure-atomic way. In a Log-Structured
NVMM System [16], SkipList was used as a volatile ad-
dress mapping tree, but SkipList shares the same goal
with our B+-tree. That is, both indexing structures do not
need logging, enable lock-free search, and benefit from a
high degree of parallelism.

6.1 Experimental Environment
We run experiments on a workstation that has two In-
tel Xeon Haswell-Ex E7-4809 v3 processors (2.0 GHz,
16 vCPUs with hyper-threading enabled, and 20 MB L3
cache) that guarantee total store ordering and 64 GB of
DDR3 DRAM. We compiled all implementations using
g++ 4.8.2 with -O3 option.

We use a DRAM-based PM latency emulator -
Quartz[43] as was done in [44, 3, 20]. Quartz models
application-perceived PM latency by inserting stall cy-
cles in each predefined time interval called epoch. In our
experiments, the minimum and maximum epochs are set
to 5 nsec and 10 nsec respectively. We assume that PM
bandwidth is the same as that of DRAM since Quartz
does not allow us to emulate both latency and bandwidth
at the same time.

6.2 Linear Search vs. Binary Search
In the first set of experiments shown in Figure 3, we in-
dex 1 million random key-value pairs of 8 bytes each
and evaluate the performance of the linear search and the
binary search with varying size of B+-tree nodes. We as-
sume the latency of PM is the same as that of DRAM.

As we increase the size of the tree nodes, the tree
height decreases in log scale but the number of data to be
shifted by the FAST algorithm in each node linearly in-
creases. As a result, Figure 3(a) shows the insertion per-
formance degrades with larger tree node sizes.

Regarding search performance, Figure 3(b) shows the
binary search performance improves as we increase the
tree node size because of the smaller tree height and the

194 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 1

 2

 3

 4

 5

256B 512B 1KB 2KB 4KB

E
la

p
se

d
 T

im
e

(u
se

c)

Node Size (Bytes)

Linear Search
Binary Search

(a) Insertion Time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

256B512B 1KB 2KB 4KB

E
la

p
se

d
 T

im
e

(u
se

c)

Node Size (Bytes)

Linear Search
Binary Search

(b) Search Time

Figure 3: Linear vs. Binary Search

 0

 5

 10

 15

 20

 25

0.1 0.5 1 3 5

S
p
ee

d
u
p

Selection Ratio(%)

FAST+FAIR
FP-tree

wB+-tree

WORT
Skiplist

Figure 4: Range Query Speed-Up from using SkipList
with Varying Selection Ratio (AVG. of 5 Runs)

fewer number of key comparisons. However, the binary
search often stalls due to poor cache locality and the
failed branch prediction. As a result, it performs slower
than the linear search when the tree node size is smaller
than 4 KB. Although the linear search accesses more
cache lines and incurs more LLC cache misses, memory-
level parallelism (MLP) helps read multiple cache lines
at the same time. As a result, the number of effective LLC
cache misses of the linear search is smaller than that of
the binary search.

Overall, our B+-tree implementation shows good in-
sertion and search performance when the tree node size
is 512 bytes and 1 KB. Hence, we set the B+-tree node
size to 512 bytes for the rest of the experiments unless
stated otherwise. Note that the 512-byte tree node size
occupies only eight cache lines, thus FAST requires eight
cache line flushes in the worst case and four cache line
flushes on average. Since the binary search makes lock-
free search impossible and the linear search performs
faster than binary search when the node size is small, we
use the linear search for the rest of the experiments.

6.3 Range Query
A major reason to use B+trees instead of hash tables is to
allow range queries. Hash indexes are known to perform
well for exact match queries, but they cannot be used if
a query involves the ordering of data such as ORDER BY
sorting and MIN/MAX aggregation. Thus many commer-
cial database systems use a hash index as a supplemen-
tary index of the B+-tree index.

In the experiments shown in Figure 4, we show the rel-

 0

 5

 10

 15

 20

T
im

e
(u

se
c)

Read/Write Latency (nsec)

F: FAST+FAIR L: FAST+Logging
P: FP-tree W: wB+-tree
O: WORT S: Skiplist

clflush Search Node Update

F L P W
O

S
F L P

W

O

S

F L P

W

O

S

F
L

P

W

O

S

900/900600/600300/300120/120(DRAM)

Figure 5: Breakdown of Time Spent for B-tree Inser-
tion (AVG. of 5 Runs)

ative performance improvement over SkipList for range
query performance with various selection ratios. The se-
lection ratio is the proportion of selected data to the num-
ber of data in an index. We set the read latency of PM
to 300 nsec and inserted 10 million 8-byte random in-
teger keys into 1 KB tree nodes. A B+-tree with FAST
and FAIR processes range queries up to 20 times faster
than SkipList and consistently outperforms other persis-
tent indexing structures (6∼27% faster than FP-tree and
25∼33% faster than wB+-tree) due to its simple structure
and sorted keys.

6.4 PM Latency Effect
In the experiment shown in Figure 5 and 6, we index
10 million 8 byte key-value pairs in uniform distribution
and measure the average time spent per query while in-
creasing the read and write latency of PM from 300 nsec.
For FP-tree, we set the size of the leaf nodes and inter-
nal nodes to 1 KB and 4 KB respectively as was done in
[34]. The node size of wB+-tree is fixed at 1 KB because
each node can hold no more than 64 entries. Both config-
urations are the fastest performance settings for FP-tree
and wB+-tree [34].

Figure 5 shows that FAST+FAIR, FP-tree, and WORT
show comparable insertion performances and they out-
perform wB+-tree and SkipList by a large margin. In de-
tail, the insertion time is composed of three parts, Cache
line flush, Search, and Node Update times. wB+-tree
calls a 1.7 times larger number of cache line flushes than
FAST+FAIR. We also measured the performance of a
FAST-only B+-tree with legacy tree rebalancing opera-
tions that have a logging overhead. Because of the log-
ging overhead, FAST+Logging performs 7∼18% slower
than FAST+FAIR.

The poor performance of SkipList is because of its
poor cache locality. Without clustering similar keys in
contiguous memory space and exploiting the cache lo-
cality, byte-addressable in-memory data structures such
as SkipList, radix trees, and binary trees fail to lever-

USENIX Association 16th USENIX Conference on File and Storage Technologies 195

 0
 1
 2
 3
 4
 5
 6
 7
 8

T
im

e
(u

se
c)

PM read latency (nsec)

12.382us 19.014us

FAST+FAIR
FP-tree

wB+-tree
WORT
Skiplist

900600300120(DRAM)

(a) Search : Varying Read Latency

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

T
im

e
(u

se
c)

PM write latency (nsec)

FAST+FAIR
FAST+Logging

FP-tree

wB+-tree
WORT
Skiplist

900600300120(DRAM)

(b) Insert : Varying Write Latency on TSO Ar-
chitecture

 0

 2

 4

 6

 8

 10

 12

T
im

e
(u

se
c)

PM write latency (nsec)

FAST+FAIR
FP-tree

wB+-tree

WORT
Skiplist

160013001000700(DRAM)

(c) Insert : Varying Write Latency on Non-TSO
Architecture

Figure 6: Performance Comparison of Single-Threaded Index (AVG. of 5 Runs)

age memory level parallelism. Hence, block-based data
structures such as B+-trees that benefit from clustered
keys need to be considered not only for block device
storage systems but also for byte-addressable PM. FP-
tree benefits from faster access to internal nodes than
FAST+FAIR and WORT, but it calls a slightly larger
number of cache line flushes than FAST+FAIR (4.8 v.s
4.2) because of fingerprints and leaf-level logging.

Figure 6(a) shows how the read latency of PM af-
fects the exact match query performance. FP-tree shows
a slightly faster search performance than FAST+FAIR
when the read latency is higher than 600 nsec because
it has faster access to volatile internal nodes. When the
read latency is 900 nsec, WORT spends twice as much
time as FAST+FIAR to search the index. Interestingly,
the average number of LLC cache misses of WORT that
we measured with perf is 4.9 while that of FAST+FAIR is
8.3 in the experiments. Although B+-tree variants have a
larger number of LLC cache misses than WORT, mostly
they access adjacent cache lines and benefit from serial
memory accesses, i.e., hardware prefetcher and memory
level parallelism. To reflect the characteristics of modern
hardware prefetcher and memory-level parallelism and
to avoid overestimation of the overhead of serial memory
accesses, Quartz counts the number of memory stall cy-
cles for each LOAD request and divides it by the memory
latency to count the number of serial memory accesses
and estimate the appropriate read latency for them [43].
Therefore, the search performances of B+-tree variants
are less affected by the increased read latency of PM
compared to WORT and SkipList.

In the experiments shown in Figure 6(b), we mea-
sure the average insertion time for the same batch in-
sertion workload while increasing only the write latency
of PM. As we increase the write latency, WORT, which
calls fewer cache line flushes than FAST+FAIR, outper-
forms all other indexes because the number of cache line
flushes becomes a dominant performance factor and the
poor cache locality of WORT gives less impact on the
performance. FAST+FAIR consistently outperforms FP-
tree, wB+-tree, and Skip List as it calls a lower number
of clflush instructions.

6.5 Performance on Non-TSO
Although stores-after-stores are not reordered in X86 ar-
chitectures, ARM processors do not preserve total store
ordering. To evaluate that the performance of FAST on
non-TSO architectures, we add dmb instruction as a
memory barrier to enforce the order of store instructions
and measure the insertion performance of FAST and
FAIR on a smartphone, Nexus 5, which has a 2.26 GHz
Snapdragon 800 processor and 2 GB DDR memory. To
emulate PM, we assume that a particular address range
of DRAM is PM and the read latency of PM is no differ-
ent from that of DRAM. We emulate the write latency of
PM by injecting nop instructions. Since the word size
of Snapdragon 800 processor is 4 bytes, the granular-
ity of failure-atomic writes is 4 bytes, and the node size
of wB+-tree and FP-tree is limited to 256 bytes accord-
ingly. Figure 6(c) shows that, when the PM latency is
the same as that of DRAM, our proposed FAST+FAIR
shows worse performance than FP-tree although FP-tree
calls more cache line flush instructions. This is because
FAST+FAIR calls more memory barrier instructions than
FP-tree on ARM processors (16.2 vs. 6.6). However, as
the write latency of PM increases, FAST+FAIR outper-
forms other indexes because the relative overhead of dmb
becomes less significant compared to that of the cache
line flushes (dccmvac). In our experiments, the perfor-
mance of FAST+FAIR is up to 1.61 times faster than
wB+-tree.

6.6 TPC-C Benchmark
In real-world applications, workloads are often mixed
with writes and reads. In the experiments shown in Fig-
ure 7, we evaluate the performance using TPC-C bench-
mark. TPC-C benchmark is an OLTP benchmark that
consists of 5 different types of queries (New-Order, Pay-
ment, Order-Status, Delivery, and Stock-Level). We var-
ied the percentage of these queries to generate four dif-
ferent workloads so that the proportion of search queries
increases from W1 to W4. The read and write latency of
PM are both set to 300 nsec. FAST+FAIR consistently
outperforms other indexes because of its good insertion
performance and superior range query performance due

196 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 10

 20

 30

 40

 50

 60

T
h
ro

u
g
h
p
u
t

(K
o
p
s/

se
c)

TPCC Workloads

FAST+FAIR
FP-tree

wB+-tree

WORT
Skiplist

W4W3W2W1

Figure 7: TPC-C benchmark (AVG. of 5 Runs) : W1

[NewOrder 34%, Payment 43%, Status 5%, Delivery 4%, StockLevel

14%], W2 [27%, 43%, 15%, 4%, 11%], W3 [20%, 43%, 25%, 4%,

8%], W4 [13%, 43%, 35%, 4%, 5%]

to the sorted data in its leaf nodes. While WORT shows
the fastest insertion performance, it suffers from a poor
range query performance in this benchmark.

6.7 Concurrency and Recoverability
In the experiments shown in Figure 8, we evaluate the
performance of multi-threaded versions of FAST+FAIR,
FP-tree, SkipList, and B-link tree. Although wB+-tree
and WORT are not designed to handle concurrent
queries, they can employ well-known concurrency con-
trol protocols such as the crabbing protocol [41]. How-
ever, we do not implement and evaluate multi-threaded
versions of wB+-tree and WORT. Instead, we present
the performance of B-link tree for reference because
it is known that B-link tree outperforms the crabbing
protocol [41]. Note that B-link tree is not designed to
provide the failure-atomicity for byte-granularity writes
in PM and B-link tree does not allow the lock-free
search. We implemented the concurrent version of FP-
tree using Intel’s Transactional Synchronization Exten-
sion (TSX) as was done in [34]. For this experiments,
the write latency of PM is set to 300 nsec and the read
latency of PM is set to be equal to that of DRAM.
FAST+FAIR and SkipList eliminate the necessity of read
locks but they require write locks to serialize write opera-
tions on tree nodes. Our implementations of FAST+FAIR
and B-link tree use std::mutex class in C++11 and
Skiplist uses a spin lock with gcc built-in CAS function,
sync bool compare and swap. But they can also

employ the hardware transactional memory for higher
concurrency. We compiled these implementations with-
out the -O3 optimization option because the compiler op-
timization can reorder instructions and it affects the cor-
rectness of lock-free algorithm.

Although these experiments are intended to evaluate
the concurrency, they also show the instant recoverabil-
ity of FAST and FAIR algorithms. In a physical power-
off test, we need to generate a large number of partially
updated transient inconsistent tree nodes and see whether

read threads can tolerate such inconsistent tree nodes. In
the lock-free concurrency experiments, a large number
of read transactions access various partially updated tree
nodes. If the read transactions can ignore such transient
inconsistent tree nodes, instant recovery is possible.

In the experiments shown in Figure 8, we run three
workloads - 50M Search, 50M Insertion, and Mixed. We
insert 50 million 8 byte random keys into the index and
run each workload: For 50M Insertion workload, we in-
sert additional 50 million keys into the index. For 50M
Search we search 50 million keys. And for Mixed work-
load, each thread alternates between four insert queries,
sixteen search queries, and one delete query. We use nu-
mactl to bind threads explicitly to a single socket to min-
imize the socket communication overhead and we dis-
tribute the workload across a number of threads.

Figure 8(a) shows that FAST+FAIR gains about a
11.7x faster speedup when the number of threads in-
creases from one to sixteen. However, the speed-up
saturates over 16 threads because our testbed machine
has 16 vCPUs in a single socket. For FP-tree and B-
link tree, the search speed-up becomes saturated when
we use 8 and 4 threads respectively. When we run 8
threads, FP-tree takes advantage of the TSX and shows
a throughput about 2.2x higher than B-link tree. Since
SkipList also benefits from lock-free search, it scales to
16 threads but from a much lower throughput. Although
FAST+FAIR+LeafLocks requires read threads to acquire
read locks in leaf nodes, FAST+FAIR+LeafLocks shows
a comparable concurrency level with FAST+FAIR. Note
that the lock-free FAST+FAIR operates at read uncom-
mitted mode while FAST+FAIR+LeafLocks operates at
serializable mode.

In terms of write performance, FP-tree does not bene-
fit much from the TSX as it shows a similar performance
to B-link tree. It is because FP-tree performs expensive
logging when a leaf node splits although it benefits from
the faster TSX-enabled lock. In Figure 8(b), FAST+FAIR
achieves about 12.5x higher insertion throughput when
16 threads run concurrently. In contrast, FP-tree and B-
link tree achieve only a 7.7x and 4.4x higher through-
put. Figure 8(c) shows that the scalability of FP-tree
and B-link tree is limited because of read locks while
FAST+FAIR takes advantage of the lock-free search.
For the mixed workload, FAST+FAIR achieves up to a
11.44x higher throughput than a single thread.

7 Related Work
Lock-free index: In parallel computing community,
various non-blocking implementations of popular data
structures such as queues, lists, and search trees have
been studied [4, 14, 15, 32]. Among various lock-free
data structures, Braginsky et al.’s lock-free dynamic B+-
tree [4] and Levandoski’s Bw-tree [28] are the most rel-

USENIX Association 16th USENIX Conference on File and Storage Technologies 197

100

200

400

800

1600

3200

6400

12800

25600

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c
)

of Threads

FAST+FAIR
FAST+FAIR+LeafLock

FP-tree
B-link

Skiplist

(a) 50M Search

100

200

400

800

1600

3200

6400

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c
)

of Threads

FAST+FAIR
FP-tree
B-link

Skiplist

(b) 50M Insert

100

200

400

800

1600

3200

6400

12800

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
se

c
)

of Threads

FAST+FAIR
FAST+FAIR+LeafLock

FP-tree
B-link

Skiplist

(c) 200M Search/50M Insert/12.5M Delete

Figure 8: Performance with Varying Number of Threads (AVG. of 5 Runs)

evant to our work. Unlike their lock-free B+-tree imple-
mentations, our current design still requires write latches
for write threads because persistent B+-trees need to
address durability as an additional challenge. We leave
lock-free writes for persistent index as a future work.

Memory persistency: In order to resolve the ordering
issues of memory writes in PM-based systems, numer-
ous works [9, 35, 29] have lately proposed novel mem-
ory persistency models, such as strict persistency [35]
and epoch persistency [9]. Strict persistency does not
distinguish memory consistency from memory persis-
tency, but epoch persistency [9] requires persist barri-
ers so that persist order may deviate from the volatile
memory order. These persistency models complement
our work. FAST and FAIR guarantee the consistency of
B+-tree under strict persistency model. If memory con-
sistency is decoupled from memory persistency and the
persist order deviates from the volatile memory order as
in relaxed persistency, FAST and FAIR must call a per-
sist barrier for every cache line flush instruction because
they must enforce the order of cache line flushes to PM.
However, within the same cache line, we do not need to
call a persist barrier for each shift operation because ar-
ray elements in the same cache line are guaranteed to be
flushed to PM even under the relaxed persistency model.
The only condition that FAST and FAIR require is that
the dirty cache lines must be flushed in order. There-
fore, FAST and FAIR place minimal persistence over-
head under both strict and relaxed persistency models.
That is, FAST calls persist barriers only as many times
as the number of dirty cache lines in a B+-tree node un-
der the relaxed persistency. On the other hand, other per-
sistent indexes such as wB+-tree and FP-tree that em-
ploy append-only strategy need to call a persist barrier
for each store instruction since their store instructions are
not dependent. Due to the unavailability of PM that im-
plements various persistency models, we leave a perfor-
mance evaluation of our FAST and FAIR schemes under
relaxed persistency model to our future work

Hardware transactional memory: The advent of
commercially available hardware transactional memory
such as the Intel’s Restricted Transactional Memory

(RTM) and Hardware Lock Elision (HLE) can be used
to support coarse-grained atomic cache line writes [13,
27, 39, 46, 47]. Hardware transactional memories guar-
antee a dirty cache line remains in the write combin-
ing store buffer so that isolation can be preserved. How-
ever, memory persistency models including even strict
persistency do not guarantee multiple cache lines will be
flushed atomically even with the help of hardware trans-
actional memory [39]. Hence, if a system crashes while
flushing multiple cache lines, its consistency can not be
guaranteed. Hence, hardware transactional memory in its
current form cannot replace our FAST and FAIR algo-
rithms as long as the tree node size is larger than a single
cache line [22] and a tree needs rebalancing operations.

8 Conclusion
In this work, we have designed, implemented, and evalu-
ated Failure-Atomic ShifT (FAST) and Failure-Atomic
In-place Rebalance (FAIR) algorithms for legacy B+-
trees to get the most benefit out of byte-addressable per-
sistent memory. FAST and FAIR solves the granular-
ity mismatch problem of PM without using logging and
without modifying the data structure of B+-trees.

FAST and FAIR algorithms transform a consistent B+-
tree into another consistent state or a transient incon-
sistent state that read operations can endure. By mak-
ing read operations tolerate transient inconsistency, we
can avoid expensive copy-on-write and logging. Besides,
we can isolate read transactions, which enables non-
blocking lock-free search.

Acknowledgement
We would like to give our special thanks to our shep-
herd Dr. Jorge Guerra and the anonymous reviewers.
Their comments and suggestions helped us correct and
improve this work. This research was supported by Sam-
sung Research Funding Centre of Samsung Electronics
under Project Number SRFCSRFC-IT1501-04. The first
and the second authors contributed equally and the cor-
responding author is Beomseok Nam.

198 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] HP Enterprise Lab, Memory Driven Computing.
https://www.labs.hpe.com/next-next/mdc.

[2] Intel and Micron produce breakthrough memory technol-
ogy. https://newsroom.intel.com/news-releases/intel-and-
micron-produce-breakthrough-memory-technology.

[3] ARULRAJ, J., PAVLO, A., AND DULLOOR, S. R. Let’s
talk about storage & recovery methods for non-volatile
memory database systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Manage-
ment of Data (2015), ACM, pp. 707–722.

[4] BRAGINSKY, A., AND PETRANK, E. A lock-free B+tree.
In 24th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA) (2012).

[5] CHEN, S., AND JIN, Q. Persistent B+-Trees in non-
volatile main memory. Proceedings of the VLDB Endow-
ment (PVLDB) 8, 7 (2015), 786–797.

[6] CHI, P., LEE, W.-C., AND XIE, Y. Making B+-tree effi-
cient in PCM-based main memory. In Proceedings of the
2014 international symposium on Low power electronics
and design (2014), ACM, pp. 69–74.

[7] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Consistency with-
out ordering. In Proceedings of the 11th USENIX confer-
ence on File and Storage Technologies (FAST) (2012).

[8] CHONG, N., AND ISHTIAQ, S. Reasoning about the
ARM weakly consistent memory model. In Proceed-
ings of the 2008 ACM SIGPLAN workshop on Memory
systems performance and correctness (MSPC’08) (2008),
ACM, pp. 16–19.

[9] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK,
E., LEE, B. C., BURGER, D., AND COETZEE, D. Bet-
ter I/O through byte-addressable, persistent memory. In
Proceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP) (2009).

[10] CUPPU, V., JACOB, B., DAVIS, B., AND MUDGE, T. A
performance comparison of contemporary DRAM archi-
tectures. In the 26th International Symposium on Com-
puter Architecture (1999).

[11] DANOWITZ, A., KELLEY, K., MAO, J., STEVENSON,
J. P., AND HOROWITZ, M. Cpu db: recording micropro-
cessor history. Communications of the ACM 55, 4 (2012),
55–63.

[12] DONG, M., AND CHEN, H. Soft updates made sim-
ple and fast on non-volatile memory. In 2017 USENIX
Annual Technical Conference (Santa Clara, CA, 2017),
USENIX Association, pp. 719–731.

[13] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A.,
LANTZ, P., REDDY, D., SANKARAN, R., AND JACK-
SON, J. System software for persistent memory. In Pro-
ceedings of the 9th ACM European Conference on Com-
puter Systems (EuroSys) (2014), pp. 15:1–15:15.

[14] ELLEN, F., FATAOUROU, P., RUPPERT, E., AND VAN

BREUGEL, F. Non-blocking binary search trees. In the

29th ACM Symposium on Principles of Distributed Com-
puting (PODC) (2010).

[15] FOMITCHEV, M., AND RUPPERT, E. Lock-free linked
lists and skiplists. In the 23rd ACM Symposium on Prin-
ciples of Distributed Computing (PODC) (2004).

[16] HU, Q., REN, J., BADAM, A., AND MOSCIBRODA, T.
Log-structured non-volatile main memory. In Proceed-
ings of the USENIX Annual Technical Conference (2017).

[17] HUAI, Y. Spin-transfer torque MRAM (STT-MRAM):
Challenges and prospects. AAPPS bulletin 18, 6 (2008),
33–40.

[18] INTEL. Intel R© 64 Architecture Memory Ordering
White Paper, August 2007. SKU 318147-001.

[19] KIM, C., CHHUGANI, J., SATISH, N., SEDLAR, E.,
NGUYEN, A. D., KALDEWEY, T., LEE, V. W.,
BRANDT, S. A., AND DUBEY, P. FAST: Fast architec-
ture sensitive tree search on modern CPUs and GPUs. In
Proceedings of 2010 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD) (2010).

[20] KIM, W.-H., KIM, J., BAEK, W., NAM, B., AND WON,
Y. NVWAL: Exploiting NVRAM in write-ahead logging.
In 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS) (2016).

[21] KIM, W.-H., NAM, B., PARK, D., AND WON, Y. Re-
solving journling of journal anomaly in Android I/O:
Multi-version B-tree with lazy split. In Proceedings of
the 11th USENIX conference on File and Storage Tech-
nologies (FAST) (2014).

[22] KIM, W.-H., SEO, J., KIM, J., , AND NAM, B. clfB-tree:
Cacheline friendly persistent B-tree for NVRAM. ACM
Transactions on Storage (TOS), Special Issue on NVM
and Storage (2018).

[23] LEE, S. K., LIM, K. H., SONG, H., NAM, B., AND

NOH, S. H. WORT: Write optimal radix tree for per-
sistent memory storage systems. In Proceedings of the
15th USENIX conference on File and Storage Technolo-
gies (FAST) (2017).

[24] LEE, W., LEE, K., SON, H., KIM, W.-H., NAM, B.,
AND WON, Y. WALDIO: Eliminating the filesystem jour-
naling in resolving the journaling of journal anomaly. In
Proceedings of the 2015 USENIX Anual Technical Con-
ference (2015).

[25] LEHMAN, P. L., AND YAO, S. B. Efficient locking for
concurrent operations on B-trees. ACM Transactions on
Database Systems 6, 4 (1981), 650–670.

[26] LEHMAN, T. J., AND CAREY, M. J. A study of index
structures for main memory database management sys-
tems. In Proceedings of the 12th International Confer-
ence on Very Large Data Bases (VLDB) (1986).

[27] LEIS, V., KEMPER, A., AND NEUMANN, T. Ex-
ploiting hardware transactional memory in main-memory
databases. In Proceedings of the 30th International Con-
ference on Data Engineering (ICDE) (2014).

USENIX Association 16th USENIX Conference on File and Storage Technologies 199

[28] LEVANDOSKI, J. J., LOMET, D. B., AND SENGUPTA,
S. The Bw-Tree: a B-tree for new hardware platforms.
In Proceedings of the 29th International Conference on
Data Engineering (ICDE) (2013).

[29] LU, Y., SHU, J., AND SUN, L. Blurred persistence in
transactional persistent memory. In Proceedings of the
31st International Conference on Massive Storage Sys-
tems and Technology (MSST) (2015).

[30] MCKENNEY, P. E. Memory ordering in modern micro-
processors. Linux Journal 136, Aug. (2005).

[31] MCKUSICK, M. K., GANGER, G. R., ET AL. Soft
updates: A technique for eliminating most synchronous
writes in the fast filesystem. In USENIX Annual Techni-
cal Conference, FREENIX Track (1999), pp. 1–17.

[32] MICHAEL, M. M. High performance dynamic lock-free
hash tables and list-based sets. In the 14th ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA) (2002).

[33] MORARU, I., ANDERSEN, D. G., KAMINSKY, M., TO-
LIA, N., BINKERT, N., AND RANGANATHAN, P. Con-
sistent, durable, and safe memory management for byte-
addressable non volatile main memory. In Proceedings
of the ACM Conference on Timely Results in Operating
Systems (TRIOS) (2013).

[34] OUKID, I., LASPERAS, J., NICA, A., WILLHALM, T.,
AND LEHNER, W. FPTree: A hybrid SCM-DRAM per-
sistent and concurrent B-tree for storage class memory. In
Proceedings of 2016 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD) (2016).

[35] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Mem-
ory persistency. In Proceedings of the 41st International
Symposium on Computer Architecture (ISCA) (2014),
pp. 265–276.

[36] RAO, J., AND ROSS, K. A. Cache conscious indexing for
decision-support in main memory. In Proceedings of the
25th International Conference on Very Large Data Bases
(VLDB) (1999).

[37] RAO, J., AND ROSS, K. A. Making B+-trees cache con-
scious in main memory. In Proceedings of 2000 ACM
SIGMOD International Conference on Management of
Data (SIGMOD) (2000).

[38] RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON,
P., AND OWENS, J. D. Memory access scheduling.
In ACM SIGARCH Computer Architecture News (2000),
vol. 28, ACM, pp. 128–138.

[39] SEO, J., KIM, W.-H., BAEK, W., NAM, B., AND NOH,
S. H. Failure-atomic slotted paging for persistent mem-
ory. In Proceedings of the 22nd International Conference
on Architectural Support for Programming Languages
and Operating Systems (ASPLOS) (2017).

[40] SEWELL, P., SARKAR, S., OWENS, S., NARDELLI,
F. Z., AND MYREEN, M. O. x86-tso: a rigorous and us-
able programmer’s model for x86 multiprocessors. Com-
munications of the ACM 53, 7 (2010), 89–97.

[41] SILBERSCHATZ, A., KORTH, H., AND SUDARSHAN, S.
Database Systems Concepts. McGraw-Hill, 2005.

[42] VENKATARAMAN, S., TOLIA, N., RANGANATHAN, P.,
AND CAMPBELL, R. H. Consistent and durable data
structures for non-volatile byte-addressable memory. In
9th USENIX conference on File and Storage Technologies
(FAST) (2011).

[43] VOLOS, H., MAGALHAES, G., CHERKASOVA, L., AND

LI, J. Quartz: A lightweight performance emulator for
persistent memory software. In 15th Annual Middleware
Conference (Middleware ’15) (2015).

[44] VOLOS, H., TACK, A. J., AND SWIFT, M. M.
Mnemosyne: Lightweight persistent memory. In 16th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS)
(2011).

[45] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P.,
KIRUBANANDAM, J., ALVISI, L., AND DAHLIN, M.
Robustness in the salus scalable block store. In Proc. of
USENIX NSDI 2013 (Apr 2013).

[46] WANG, Z., QIAN, H., LI, J., AND CHEN, H. Using
restricted transactional memory to build a scalable in-
memory database. In ACM SIGOPS/Eurosys European
Conference on Computer Systems (EuroSys) (2014).

[47] WEI, X., SHI, J., CHEN, Y., CHEN, R., AND CHEN, H.
Fast in-memory transaction processing using RDMA and
HTM. In Proceedings of the 25th Symposium on Operat-
ing Systems Principles (SOSP) (2015).

[48] WONG, H.-S. P., RAOUX, S., KIM, S., LIANG, J.,
REIFENBERG, J. P., RAJENDRAN, B., ASHEGHI, M.,
AND GOODSON, K. E. Phase change memory. Proceed-
ings of the IEEE 98, 12 (2010), 2201–2227.

[49] YANG, J., WEI, Q., CHEN, C., WANG, C., AND YONG,
K. L. NV-Tree: reducing consistency const for NVM-
based single level systems. In Proceedings of the 13th
USENIX conference on File and Storage Technologies
(FAST) (2015).

200 16th USENIX Conference on File and Storage Technologies USENIX Association

RFLUSH: Rethink the Flush

Jeseong Yeon∗, Minseong Jeong∗, Sungjin Lee†, Eunji Lee∗‡

∗Chungbuk National University, †DGIST, ‡University of Wisconsin–Madison

{jsyeon, msjeong}@oslab.cbnu.ac.kr, sungjin.lee@dgist.ac.kr, eunji@cbnu.ac.kr

Abstract

A FLUSH command has been used for decades to enforce

persistence and ordering of updates in a storage device.

The command forces all the data in the volatile buffer of

the storage device to non-volatile media to achieve per-

sistency. This lump-sum approach to flushing has two

performance consequences. First, it slows down non-

volatile materialization of the writes that actually need

to be made durable. Second, it deprives the writes that

do not need to be made durable of an opportunity for ab-

sorbing future writes and coalescing.

We attempt to characterize the problems of this se-

mantic gap of flushing in storage devices and propose

RFLUSH that allows a fine-grained control over non-

volatile materialization. The RFLUSH command delivers

a range of logical block addresses (LBAs) that need to be

flushed and thus enables the storage device to force only

a subset of data in its buffer.

We implemented this fine-grained flush command in a

storage device using an open-source flash development

platform and modified the F2FS file system to make use

of the command in processing fsync requests as a case

study. Performance evaluation using the prototype shows

that the inclusion of RFLUSH improves the throughput by

up to 6.5x; reduces the write traffic by up to 43%; and

eliminates the long tail in the response time.

1 Introduction

Historically, storage devices have made use of a volatile

buffer for various purposes. For hard disk drives

(HDDs), the volatile buffer has been used for absorb-

ing writes and minimizing seeks, while solid state drives

(SSDs) have used the buffer for improving their random

write performance and masking the limited endurance of

the underlying non-volatile media [6, 13, 15, 19, 38, 39,

44].

The adoption of a volatile buffer, however, can bring

with it data loss and improper ordering of updates in a

power outage. The FLUSH command has been introduced

to resolve this issue; forcing all the pending writes to

non-volatile media, ensuring persistence and proper seri-

alization of updates.

Unfortunately, this lump-sum approach to enforcing

persistency has undesired performance consequences [6,

13, 38, 39, 44]. To faithfully implement the flush seman-

tics, the storage device must empty all the dirty pages in

its volatile buffer, whereas a flush request is commonly

issued with less stringent requirements. As an example,

consider a concurrent execution of two applications: an

on-line banking application that requires to persist each

transaction immediately, and a big-data analytics appli-

cation that writes a large amount of intermediate results,

which is a common scenario in modern complicated and

multi-tenant storage platforms. In this scenario, a flush

request for a committed transaction by the banking ap-

plication will end up with forcing a large amount of dirty

data (most of it from the analytics application, and thus

irrelevant) in the storage device, which slows down what

is actually needed (forcing the dirty data from the bank-

ing application).

This paper attempts to cure the performance problem

of the conventional flush mechanism outlined above by

refactoring the storage device interface. The refactoring

is to include a command called RFLUSH (Range Flush)

which allows a fine-grained control over non-volatile ma-

terialization of dirty data in the buffer. The RFLUSH com-

mand transfers a range of logical block addresses (LBAs)

that specifies data to be persisted with it, helping the stor-

age device to optimize its non-volatile materialization.

This command not only speeds up the non-volatile mate-

rialization of the target LBAs but also enhances buffering

and coalescing of other dirty data in the buffer.

Our work is in line with a collection of recent stud-

ies. In the past, computer systems have been built upon a

standard block device interface consisting of a small set

of commands over its logical address space: read, write,

and flush. This abstract view of a storage device allows

a host system to readily access non-volatile media in an

efficient manner. However, as emerging storage media

such as flash memory and other non-volatile memories

(NVMs) are more commonly used, the possibility of ex-

tending the conventional block device interface to lever-

age the full potential of the new storage media is being

actively explored [1, 4, 7, 9, 23, 24, 27, 31, 32, 36, 46].

A TRIM command has been proposed to prevent use-

less data from being copied around and lowering the

endurance of flash memory [36]. As another example,

recent storage device interfaces support atomic writes,

which can be efficiently supported in flash-based storage

USENIX Association 16th USENIX Conference on File and Storage Technologies 201

devices [7, 31]. Also, storage interface extensions such

as those for delegating block allocation [1, 9, 27, 32, 46],

multi-streamed SSDs [18, 29], host manageable storage

devices [4, 23], and user programmable SSDs [35] have

been studied to provide an extended functionality and/or

achieve better performance in high-end storage systems.

The benefits of RFLUSH seem straightforward, but re-

alizing it efficiently in a storage device and augmenting

file systems and/or database systems to make an effective

use of it are not without challenges. We implemented

RFLUSH in a storage device using an open-source flash

development platform [23] and modified a file system

(F2FS) [22] to make use of the extended interface1. The

modified F2FS uses the RFLUSH command in the han-

dling of fsync (and its variants). In this way, user ap-

plications do not need to be modified since the interface

(i.e., fsync) and its semantics are faithfully preserved.

The rest of this paper is organized as follows. We

give our motivation for RFLUSH and briefly review the

related technology trends (§2). We then present the

RFLUSH command and describe its prototype implemen-

tation (§3). We present results from performance evalua-

tion using the prototype (§4), and finally conclude (§5).

2 Motivation and Related Work

Flush Optimization using Non-volatile Memory:

Many prior works have pointed out that the in-storage

buffer flush is a critical contributor to performance vari-

ation and unexpected slowdown in storage devices [15,

19]. One approach to lessening the detrimental perfor-

mance effects of flush is to use super capacitors for pro-

viding enough energy to force all the dirty data in the

volatile buffer at the time of a power outage. SSD man-

ufacturers incorporate super capacitors in their high-end

SSD devices to make them tolerant on power outages,

offering high performance and reliability at the same

time [21]. As a similar approach, Xiangfeng presents

a modern SSD architecture that uses non-volatile mem-

ory for a write buffer while maintaining a read cache as

volatile [44]. However, both approaches intrinsically in-

crease the manufacturing cost, resulting in lower compet-

itiveness of the intended products. The two approaches

are, however, complementary to RFLUSH in the sense that

they allow the RFLUSH command to return immediately

while giving priority for replacement to those dirty data

that were the target of the command to make room in the

buffer for future writes.

Flush Optimization in a Host: The problem of flush-

ing mechanism also exists in a page cache between a

host and a device, because the page cache adopts a flush-

ing mechanism to ensure persistence and ordering of up-

1https://github.com/jsyeon92/RFLUSH

dates in its volatile buffer. As opposed to a storage intre-

face, POSIX file system interfaces provide fine-grained

control over the flushing mechanism through fsync and

fdatasync system calls, in addition to sync. However,

the flushing activity is still costly in a larger size page

cache, and thus there have been numerous studies to mit-

igate this problem. Likewise as on the storage side, spe-

cialized hardware such as battery-backed main memory

has been considered to avoid flushing cost [5, 43]. As

a software-based approach, Nightingale et al. present an

externally synchronized file system called xsyncfs [30],

which allows an application to avoid blocking during the

long-latency synchronization. The xsyncfs allows a re-

questing application to immediately return from the syn-

chronization request, but makes the updates visible when

they become consistently durable, leading to improve-

ment in responsiveness. Chidambaram et al. present a

new crash-consistency protocol that decouples ordering

and durability, thereby providing data consistency with

high performance [6]. Instead of forcing a low-level disk

promptly to flush its buffer, they allow a storage device to

optimize a flushing mechanism within a time limit, while

still satisfying the ordering constraints. While such opti-

mization obtained through a trade-off between durability

and performance is worthwhile to consider in storage in-

terface extension, this paper, as an initial and fundamen-

tal approach, focuses on storage interfaces for enhancing

performance without any compromising of durability.

SSD Trends: The demand to improve the flush inter-

face is particularly high at this moment because the cost

of a flush is amplified when it is combined with next-

generation SSD technologies. As host interfaces such as

the NVMe [10, 16] become fast, the performance bot-

tleneck is being shifted from the host interface to the

flash device. The flash memory latencies for reading,

programming, and erasing are also steadily increasing al-

though device density is improving. Therefore, the latest

SSDs attempt to use an increasingly larger buffer (e.g.,

512 MB to 2 GB) to compensate for flash memory’s low

performance and endurance [25, 33, 34, 37]. With this

trend, it is obvious that cache flushing results in more

serious performance degradations in the presence of a

larger buffer.

Besides, there are SSDs that exploit a portion of the

host memory as a dedicated in-storage buffer, which may

seriously suffer from cache flushing. Such SSDs help to

improve the performance while cutting off the cost by

not using DRAM in the storage device [8, 33], but a tan-

dem with a classical flush interface might incur GBs of

data being flushed from the host to the storage device on

a regular basis. Considering the high cost of data transfer

between the host and the device, the existing flush mech-

anism would degrade the storage performance severely.

202 16th USENIX Conference on File and Storage Technologies USENIX Association

Also, the page size of flash memory is getting bigger,

which will affect the overall performance as an eager

flushing forfeits the possibility of consolidation and re-

alignment of pending writes, yielding a large number of

underutilized pages [20].

High Demand on Isolation The need for improving

the flush interface is also evident with respect to per-

formance isolation. With the latest innovations of data

centers, computation is rapidly being moved from stand-

alone desktops to cloud systems. With this trend, perfor-

mance isolation and accurate accounting across applica-

tions are more important than ever. Techniques for iso-

lating storage performance on the host side have been

researched extensively. IceFS isolates related data with

a container-based grouping and eliminates shared physi-

cal resources or access dependencies among containers

in a file system [13]. Differentiated Storage Services

(DSS) [26] and IOFlow [41] propose to tag data across

layers to determine which process issues a request at any

given layer. Yang et al. present a split-level I/O schedul-

ing framework that provides a set of hooks for acquir-

ing knowledge needed for accurate accounting and fair

scheduling [45].

However, not much research has been performed on

the storage side to prevent interference among applica-

tions. Prior works on in-storage buffers mostly focus on

the replacement policy [15, 19], and there is not much

previous research on curing the inefficiency of the flush

mechanism despite its huge impact on the performance

and endurance of the storage device. We believe our

analysis and proposal in this paper are highly timely and

contribute to driving the storage interface to be in har-

mony with fast-advancing storage technologies.

3 Range Flush

The concept of RFLUSH is simple but there are many de-

sign issues to be addressed since it involves from the ap-

plication down to the storage device. In §3.1, we discuss

places where RFLUSH can be useful. Then, in §3.2, we

explain how to identify data related to RFLUSH. Data as-

sociated with RFLUSH is not limited to user data but in-

cludes metadata. In §3.3, we discuss how to handle meta-

data for RFLUSH. We describe how to integrate RFLUSH

into storage protocols in §3.4.

3.1 Where to Use RFLUSH

Since RFLUSH is more general than its counterpart FLUSH

and allows finer-grained control over what to flush, there

can be many use cases where it can be effective. In this

paper, we focus on its use for optimizing the fsync and

fdatasync system calls. (Hereafter we use fsync to

denote both fsync and fdatasync.)

There are some obvious benefits in implementing

fsync using RFLUSH. First, no application modifications

are needed since the fsync semantics can be faithfully

preserved. Second, information about the user data and

metadata that are affected by the fsync is readily avail-

able. Third, there can be noticeable performance gains

from isolating regions to flush by fsync.

Although we leave for future research the use of

RFLUSH by the file system itself other than in the process-

ing of the fsync, we can easily identify other potential

use cases for RFLUSH. For example, many file systems

use journaling for recovery purposes and they typically

use write-ahead logging (WAL) [28] that requires log-

ging be performed before the logged updates are written

to their home locations. The RFLUSH command can be

used to give priority to the non-volatile materialization

of data in the log. The same write-ahead logging is used

by almost all the database systems today and they can be

equally benefited by the use of RFLUSH.

3.2 How to Identify the Associated Data

The next challenge in using RFLUSH lies in how to iden-

tify the associated data for a given fsync request. The

file system needs to identify the set of pages that are as-

sociated with a file and thus has to be forced to persist.

Among such pages, some are in the page cache in a dirty

state. The file system can flush such pages to the storage

device followed by an RFLUSH command targeting them.

A problematic case is when some of the pages that need

to be forced to persist have already been sent to storage,

meaning that they can be either in a clean state or evicted

from a page cache. Unfortunately, it is overly intricate to

keep track of such data blocks, but if they are missing,

the semantics of the fsync system call can be violated.

We address this challenge by specifying whole data

blocks of a file. This approximation is made efficient

by fundamental file-system design principles; most file

systems allocate data blocks for a file as consecutively

as possible so as to benefit from spatial locality [14].

This idea has been adopted to reduce the seek time for

HDDs, but it holds true for SSDs as well since a high

degree of spatial locality means better performance for

SSDs because it allows for more efficient address trans-

lation and interleaving over multiple channels/chips in

the SSD. With this policy, the data blocks of a file are

likely to be encoded by only a few extents, which means

only a small number of RFLUSH commands are needed.

However, this might not always be the case because

there could be more fragmentations over time, in par-

ticular for larger files. To address this, our final design

choice is to transfer the inode number of the target file,

instead of a set of LBAs. This approach can faithfully

preserve the fsync semantics, without excessive over-

USENIX Association 16th USENIX Conference on File and Storage Technologies 203

head needed to specify the range of data blocks to persist

with RFLUSH. The implementation details of the inode-

based RFLUSH protocol will be described in Section 3.4.

3.3 How to Handle Metadata

One thing that must not be overlooked is to flush file sys-

tem metadata that has a dependency on the target file of

the fsync; otherwise, there is a danger of data corrup-

tion or loss on a system crash. We explain using the

F2FS file system as an example. The on-disk layout of

F2FS has two areas; metadata area and main area. The

metadata area keeps information for file system mainte-

nance such as block allocation bitmaps and orphan inode

lists [22]. In contrast, the main area is used to store nor-

mal data blocks and file metadata including inode and in-

direct blocks. Upon a write request, a set of blocks needs

to be updated in an atomic manner to provide crash con-

sistency [3]. Specifically, since F2FS is a log-structured

file system, it allocates and updates a new data block out-

of-place, requiring the updating of related metadata (i.e.,

inode) and indirect blocks to properly point to the new

block. In turn, the block allocation bitmap and several

tables that maintain information for space management

should also be updated. This behavior leads to many

small random writes to blocks containing the file sys-

tem metadata; encoding of those writes as a set of ranges

would be complicated. To get away with this complica-

tion, we decide to encode a full range of the metadata

area, which is a superset of metadata to be updated, and

send it along with the RFLUSH command.

This approximation seems to have a problem when

fsync requests from multiple files are interfered with

each other because their metadata shares a single LBA.

Consider a case in which there are two different files

A and B, whose inode structures are located in a single

block. When the fsync requests occur for the files con-

currently, forcing the entire metadata area by one fsync

request might corrupt data integrity, violating ordering

constraints between data and metadata of another file

(e.g., file B’s metadata is persisted before file B’s data

block).

However, this is not the case because current file sys-

tems are carefully designed so as not to let this happen.

For example, F2FS logs individual inode structure on

an update, instead of an entire block, thereby prevent-

ing undesired interference that can be caused by inter-

leaved fsyncs. Ext4 resolves this issue by forcing all

dependant data prior to persisting the modified metadata

block. Thus, in the above example, both data A and B are

flushed to non-volatile storage before the metadata block

when an fsync request occurs either for file A or B.

3.4 How to Integrate into a Storage Proto-

col

To make use of the RFLUSH primitive, the host inter-

face should be extended. While this extension is dif-

ficult to be incorporated into mature storage interfaces

such as SATA [12] or SAS [17], it is a viable option for

emerging storage interfaces like NVMe [10, 16] to add

proprietary extensions. Another possibility for incorpo-

rating extensions into the standard storage API is to use

the open-channel SSD architecture [4, 23]. In this archi-

tecture, the host system implements many of the func-

tionalities needed to manage flash memory (e.g., garbage

collection). Also, by utilizing veiled information behind

the storage device interface, this architecture enables the

management of flash memory to meet the demands of the

host system. We use the latter approach since the host-

manageable architecture allows easy integration of the

extensions for RFLUSH.

Our prototyping system implements the inode-based

RFLUSH protocol through storage interface extension

and F2FS file system modification. We add the range

flush protocol to BlueDBM, which is an open-channel

flash development platform from MIT [23], facilitating

the construction of a host-manageable storage device.

Specifically, we extend the host storage interface to sup-

port the RFLUSH primitive in which the inode number is

encoded. Then, we augment the in-storage buffer handler

in the FTL to locate the associated data blocks and flush

them selectively upon an RFLUSH request. The buffer

handler maintains the pending updates in a hash table

using an inode number as a key. Note that this mech-

anism requires a write command that also includes an

inode number such that the device controller determines

which file the data block belongs to. However, the open-

channel SSD half of which the FTL runs on the host side

can easily determine this by referencing the kernel data

structure with the transferred write request, which is used

in our implementation.

On the host side, F2FS, the modified file system, com-

municates with BlueDBM through a block device inter-

face and makes use of the RFLUSH primitive in imple-

menting the fsync system call. When an fsync request

arrives from the application, F2FS writes all dirty pages

of the requested file and the associated metadata from

a page cache to a storage device. Then, F2FS issues a

pair of RFLUSH commands that include the inode num-

bers associated with the target file and the metadata area.

The RFLUSH command is forwarded to the storage device

controller through the underlying block I/O layer and de-

vice driver where a host side component of BlueDBM

runs. BlueDBM completes the RFLUSH request by forc-

ing writes associated with the given inode number.

204 16th USENIX Conference on File and Storage Technologies USENIX Association

Figure 1: RFLUSH protocol implementation.

Configuration Settings

Page / Block size 4KB / 64 Pages

Read / Write Latency 100us / 1300us

Block Erase Latency 1.5ms

Data Transfer Latency 100us (for 4KB)

Overprovisioning Ratio 3%

SSD capacity 37 GB

In-storage Buffer 256 MB / 1 GB

Table 1: SSD platform setup.

4 Performance Evaluation

We evaluate the proposed RFLUSH using a prototype im-

plementation. The next section explains our evaluation

methodology. In §4.2, we report results on the effective-

ness of RFLUSH from experiments using both micro- and

macro-benchmarks.

4.1 Methodology

We modified both the file system (F2FS) [22] and

the storage device (BlueDBM) [23] to implement the

RFLUSH protocol in Linux 4.7.2. Figure 1 shows

the architecture of our experimental platform. When

the user issues an fsync request through the system

call interface, the sync handler module inside the

file system generates RFLUSH commands to BlueDBM.

The range flush handler module within the FTL of

BlueDBM handles the request by forcing the associated

data from its volatile buffer to the non-volatile media.

Our experiments were performed on Intel Core i7 run-

ning at 3.3GHz with 64GB of DDR4 memory. The

detailed configurations of BlueDBM are given in Ta-

ble 1. To understand the performance consequence of the

RFLUSH primitive, we first evaluate the prototype using a

micro-benchmark based on FIO [11], which generates a

synthetic workload that models a best-case scenario for

RFLUSH. Then, we use a set of macro-benchmarks to ex-

amine the effectiveness of RFLUSH in a real environment.

In our experiments, the storage device is accessed in a

4 20 40 80 200 400
0

20

40

syncing

Fsync Period(KB)

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

4 20 40 80 200 400
0

20

40

60

80
non-syncing

Fsync Period(KB)

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

1 5
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

9
5

9
9

9
9
.5

9
9
.9

9
9
.9

5
9
9
.9

9

0

20

40

60

80

100
syncing

Percentile(th)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) FLUSH

RFLUSH

NOFLUSH

1 5
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

9
5

9
9

9
9
.5

9
9
.9

9
9
.9

5
9
9
.9

9

0

20

40

60

80

100

120
non-syncing

Percentile(th)

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
) FLUSH

RFLUSH

NOFLUSH

Figure 2: IOPS and response time distributions of the

micro-benchmark. Figures in the top row show IOPS

for syncing and non-syncing threads with a 1GB storage

buffer. The X-axis is the amount of data written between

the invocations of fsync. The use of RFLUSH improves

IOPS by up to 1.74x and 1.36x for the syncing and non-

syncing threads, respectively, compared to using FLUSH.

The two graphs in the bottom row give a percentile re-

sponse time for both the syncing and non-syncing threads

when fsync period is 400KB. The 99.99th percentile re-

sponse time is reduced from 79.36us to 19.38us when

RFLUSH is used instead of FLUSH in a syncting thread.

Benchmark Write # Avg. Size fsync Interval / #

Fileserver 1536K 1MB None

TPC-C 2.2K 16KB 21373us / 13448

Linkbench 101K 16KB 10016us / 14097

Table 2: Macro-benchmark characteristics.

direct mode (unless otherwise specified) to observe the

behavior of RFLUSH more clearly in a controlled environ-

ment. The performance is measured five times for each

scenario and their median is reported.

4.2 Experimental Results

Micro-Benchmark: To assess the potential perfor-

mance gain made possible by RFLUSH, we used a micro-

benchmark based on FIO [11] that approximates a typ-

ical scenario where there is a mixture of asynchronous

and synchronous writes. The micro-benchmark consists

of both syncing and non-syncing threads. Both types of

thread perform the same task except for their syncing be-

havior. Both write 2GB data randomly to a file with a

4KB granularity in a direct mode. The difference is a

syncing thread issues an fsync request after writing a

USENIX Association 16th USENIX Conference on File and Storage Technologies 205

4 20 40 80 200 400
0

20

40

Fsync Period (KB)

W
ri
te

 T
ra

ff
ic

 (
G

B
)

FLUSH

RFLUSH

NOFLUSH

Figure 3: Write traffic from the micro-benchmark.

The write traffic is measured at the interface between the

in-storage buffer and the flash memory when the buffer

size is 1GB. RFLUSH reduces write traffic by 24% to 43%

for the fsync periods we considered.

given amount of data.

In the experiment, there were one syncing thread

and 12 non-syncing threads, and we measured their

performances for three possible configurations: FLUSH,

RFLUSH, and NOFLUSH. The FLUSH configuration forces

to flash memory all data in the volatile buffer of the stor-

age device, while the RFLUSH configuration forces only

the data in a given LBA range. In the NOFLUSH config-

uration, the storage device ignores all the sync requests.

In all configurations, if the number of dirty pages in the

buffer is above a threshold (90% here), a certain number

of pages are written-back to flash memory by a back-

ground activity in the storage device. Figure 2 shows

the performance of both the syncing and non-syncing

threads in terms of IOPS and response time. In the fig-

ures of the top row, the X-axis is the amount of data writ-

ten before the syncing thread issues an fsync request.

The results show that there is a large performance

improvement for the syncing thread when RFLUSH is

used instead of FLUSH. This performance improvement

is mainly due to the fact that the flushing activities of the

syncing thread are not interfered by the flushing of non-

urgent writes from non-syncing threads when RFLUSH is

used. For the same reason, RFLUSH also eliminates a

long tail in the response time distribution for the syncing

thread, which is critical to providing a consistent perfor-

mance from a storage device.

The results also show that even the performance of

non-syncing threads is improved. When RFLUSH is

used, a prioritized flushing of data written by the sync-

ing thread gives more time for the dirty data from non-

syncing threads to reside in the buffer. The increased

time in the buffer allows them to absorb more writes to

the same LBA and also to be coalesced more with other

writes, resulting in a better performance. As a result,

RFLUSH reduces the write traffic significantly compared

to FLUSH as Figure 3 illustrates. Its result even comes

close to that of NOFLUSH. In this scenario, each three of

the 12 non-syncing threads access the same file, while a

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-256MB

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-1024MB

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-256MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-1024MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

tpcc-256MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

tpcc-1024MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

Figure 4: Performance of mixed real workloads in a

direct mode. These figures show IOPS for each pair of

benchmarks when a storage buffer size is 256MB and

1024MB. TPC-C and Linkbench achieves 5.3x to 6.5x

and 4.1x to 4.5x higher IOPS with RFLUSH when running

together with Fileserver. Fileserver also delivers 20%

higher IOPS with RFLUSH when executing with TPC-C

and Linkbench. When TPC-C and Linkbench are mixed,

their performances are improved by 1.4x to 1.6x and

1.17x to 1.3x, respectively.

syncing thread accesses its own file. Thus, the writes of

the non-syncing thread have a locality. F2FS basically

updates the data in an out-of-place manner, but it allows

overwrite once the data is copied for updates after the

last checkpoint, unless the explicit fsync request occurs.

Therefore, F2FS benefits from the enhanced buffering ef-

fect of the RFLUSH primitive in the writes of non-syncing

threads.

A somewhat non-intuitive result is that when the

fsync requests are issued too frequently, in some ex-

treme cases RFLUSH even performs worse than FLUSH

even though the former results in much less write traf-

fic to the storage device. Careful analysis over the results

reveals that if fsyncs are too frequent, the performance

is dominated by fsyncs rather than the actual write traf-

fic associated with them.

206 16th USENIX Conference on File and Storage Technologies USENIX Association

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-256MB

IO
P

S
(K

)
FLUSH

RFLUSH

NOFLUSH

w/ tpcc w/ linkbench
0

10

20

30

40

fileserver-1024MB

IO
P

S
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-256MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ tpcc
0

2

4

6

linkbench-1024MB

R
e

q
(K

)/
s

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

8

tpcc-256MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

w/ fileserver w/ linkbench
0

2

4

6

8

tpcc-1024MB

T
p

m
(K

)

FLUSH

RFLUSH

NOFLUSH

Figure 5: Performance of mixed real workloads in a

buffered mode. These figures report the performance

with the page cache turned on. Although the absolute

values are different, the results show the same general

trends as in a direct mode (cf. Figure 4).

Macro-Benchmarks: To assess the performance im-

pact of RFLUSH in the real world, we selected three

macro-benchmarks (Fileserver, Linkbench, and TPC-C)

and measured their performances when a pair of them

run concurrently. Fileserver generates a large number

of asynchronous writes acting like a multi-streaming

server [40]. Linkbench is a graph processing applica-

tion based on the Facebook Social Graph, containing a

few kilobytes of writes with frequent sync requests [2].

TPC-C is an on-line transaction processing benchmark

which issues small-sized random writes with frequent

synchronization [42]. Table 2 summarizes various statis-

tics about the three macro-benchmarks.

Figure 4 shows the results in terms of IOPS for each

pair of the three macro-benchmarks. The results show

that the performance improvement by RFLUSH is most

noticeable when asynchronous and synchronous work-

loads are mixed, as in the micro-benchmark we con-

sidered in the previous section. For example, TPC-C

and Linkbench show 4.5x and 6.5x higher IOPS with

RFLUSH, when they run together with Fileserver, which is

consistent with the micro-benchmark results in the pre-

vious section.

The results also show that there are performance im-

provements even in the case where both benchmarks

contain synchronous workloads. For example, when

TPC-C and Linkbench are running together, RFLUSH im-

proves performance by up to 1.4x and 1.29x in TPC-C

and Linkbench, respectively. This result is due to time-

multiplexed non-volatile materializations for fsyncs

from the two benchmarks. One counter-intuitive ob-

servation is that an RFLUSH outperforms a NOFLUSH in

a mixture of Fileserver and TPC-C/Linkbench with a

1024MB buffer. This improvement comes from that an

RFLUSH replenishes free space more quickly by proac-

tively writing back the buffered data on a synchroniza-

tion request, which helps the efficent handling of the

bulky writes generated from Fileserver.

We also performed the same experiments in a buffered

mode (i.e., with the page cache turned on). Figure 5 re-

ports the performance in the same format as in Figure 4.

Although the absolute values are different, the results

show the same general trends as in a direct mode shown

in Figure 4. The performance gap between RFLUSH and

FLUSH is reduced because of periodic flushing from the

page cache but the difference is only marginal.

5 Conclusion

In this paper, we raised an issue about the negative per-

formance impact of a lump-sum approach to persist-

ing buffered data within a storage device and presented

RFLUSH that allows a fine-grained persistence control.

We implemented an RFLUSH prototype by modifying a

file system (F2FS) in Linux 4.7.2 as well as a storage de-

vice based upon an open-source flash development plat-

form. Performance evaluation using the prototype shows

that RFLUSH increases overall I/O performance by up to

6.5x, and eliminates a long tail latency of synchronous

writes.

6 Acknowledgments

We thank Ming Zhao (our shepherd) and the anony-

mous reviewers for their insightful comments. This

work was supported by Basic Science Research Pro-

gram through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Education (No.

2017R1D1A1B03031494) and by the Ministry of Sci-

ence, ICT & Future Planning (No. 2014R1A1A3053505

and No. NRF-2017R1E1A1A01077410).

USENIX Association 16th USENIX Conference on File and Storage Technologies 207

References

[1] ANAND, A., SEN, S., KRIOUKOV, A., POPOVICI, F., AKELLA,

A., ARPACI-DUSSEAU, A., ARPACI-DUSSEAU, R., AND

BANERJEE, S. Avoiding file system micromanagement with

range writes. In Proceedings of the 8th USENIX conference

on Operating systems design and implementation (2008), OSDI,

USENIX Association, pp. 161–176.

[2] ARMSTRONG, T. G., PONNEKANTI, V., BORTHAKUR, D., AND

CALLAGHAN, M. Linkbench: a database benchmark based on

the facebook social graph. In Proceedings of the 2013 ACM SIG-

MOD International Conference on Management of Data (2013),

ICMD, ACM, pp. 1185–1196.

[3] ARPACI-DUSSEAU, R. H., AND ARPACI-DUSSEAU, A. C.

Three Easy Pieces. Arpaci-Dusseau Books, 2015.

[4] BJØRLING, M., GONZÁLEZ, J., AND BONNET, P. Light-

nvm: The linux open-channel ssd subsystem. In Proceedings of

the 15th USENIX Conference on File and Storage Technologies

(2017), FAST, pp. 359–374.

[5] CHEN, P. M., NG, W. T., CHANDRA, S., AYCOCK, C., RA-

JAMANI, G., AND LOWELL, D. The rio file cache: Surviving

operating system crashes. Acm Sigplan Notices 31, 9 (1996), 74–

83.

[6] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU, A. C.,

AND ARPACI-DUSSEAU, R. H. Optimistic crash consistency. In

Proceedings of the 24th ACM Symposium on Operating Systems

Principles (2013), SOSP, ACM, pp. 228–243.

[7] COBURN, J., BUNKER, T., SCHWARZ, M., GUPTA, R., AND

SWANSON, S. From aries to mars: Transaction support for next-

generation, solid-state drives. In Proceedings of the 24th ACM

symposium on operating systems principles (2013), SOSP, ACM,

pp. 197–212.

[8] DORGELO. Host memory buffer based ssd systems. Flash Mem-

ory Summi, 2015.

[9] DUBITZKY, Z., GOLD, I., HENIS, E., SATRAN, J., AND SHEIN-

WALD, D. Dsf: Data sharing facility. Technical report (2002).

[10] ESHGHI, K., AND MICHELONI, R. Ssd architecture and pci ex-

press interface. In Inside Solid State Drives (SSDs). Springer,

2013, pp. 19–45.

[11] FIO. Fio benchmark. https://github.com/axboe/fio.git, 2017.

[12] GRIMSRUD, K., AND SMITH, H. Serial ATA Storage Archi-

tecture and Applications: Designing High-Performance, Cost-

Effective I/O Solutions. Intel press, 2003.

[13] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The harey

tortoise: Managing heterogeneous write performance in ssds. In

USENIX Annual Technical Conference (2013), ATC, pp. 79–90.

[14] HE, J., NGUYEN, D., ARPACI-DUSSEAU, A. C., AND ARPACI-

DUSSEAU, R. H. Reducing File System Tail Latencies with

Chopper. In Proceedings of the 13th USENIX Conference on

File and Storage Technologies (Santa Clara, CA, February 2015),

FAST.

[15] HUANG, S.-M., AND CHANG, L.-P. Exploiting page corre-

lations for write buffering in page-mapping multichannel ssds.

ACM Transactions on Embedded Computing Systems 15, 1

(2016), 12.

[16] HUFFMAN, A. Nvm express: Going mainstream and whats

next. Intel Developers Forum, 2014.

[17] JACKSON, M. SAS Storage Architecture. MindShare Press, 2005.

[18] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-

streamed solid-state drive. In Proceedings of the 6th USENIX

Workshop on Hot Topics in Storage and File Systems (Philadel-

phia, PA, 2014), HotStorage.

[19] KIM, H., AND AHN, S. Bplru: A buffer management scheme

for improving random writes in flash storage. In Proceedings of

the 6th USENIX Conference on File and Storage Technologies

(2008), FAST, pp. 1–14.

[20] KIM, M., LEE, J., LEE, S., PARK, J., AND KIM, J. Improving

performance and lifetime of large-page nand storages using erase-

free subpage programming. In Proceedings of the 54th Annual

Design Automation Conference 2017 (2017), DAC, ACM, p. 24.

[21] LAPEDUS, M. Sorting out next-gen memory.

http://semiengineering.com/sorting-out-next-gen-memory/,

2016.

[22] LEE, C., SIM, D., HWANG, J. Y., AND CHO, S. F2fs: A new file

system for flash storage. In Proceedings of the 13th USENIX Con-

ference on File and Storage Technologies (2015), FAST, pp. 273–

286.

[23] LEE, S., LIU, M., JUN, S. W., XU, S., KIM, J., AND ARVIND,

A. Application-managed flash. In Proceedings of the 14th

USENIX Conference on File and Storage Technologies (2017),

FAST, pp. 339–353.

[24] MARKS, K. An nvm express tutorial. Flash Memory Summit,

2013.

[25] MARVELL. Conservative use of dram.

http://www.anandtech.com/show/9942/marvell-implements-

host-memory-buffer-for-dramless-88nv1140-ssd-controller,

2016.

[26] MESNIER, M., CHEN, F., LUO, T., AND AKERS, J. B. Differ-

entiated storage services. In Proceedings of the 23rd ACM Sym-

posium on Operating Systems Principles (2011), SOSP, ACM,

pp. 57–70.

[27] MIN, C., KANG, W.-H., KIM, T., LEE, S.-W., AND EOM, Y. I.

Lightweight application-level crash consistency on transactional

flash storage. In USENIX Annual Technical Conference (2015),

ATC, pp. 221–234.

[28] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H.,

AND SCHWARZ, P. ARIES: A transaction recovery method sup-

porting fine-granularity locking and partial rollbacks using write-

ahead logging. ACM Transactions on Database Systems 17, 1

(Mar. 1992), 94–162.

[29] NAM, E. H., KIM, B. S. J., EOM, H., AND MIN, S. L. Ozone

(o3): An out-of-order flash memory controller architecture. IEEE

Transactions on Computers 60, 5 (2011), 653–666.

[30] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M.,

AND FLINN, J. Rethink the sync. ACM Transactions on Com-

puter Systems (TOCS) 26, 3 (2008), 6.

[31] OUYANG, X., NELLANS, D., WIPFEL, R., FLYNN, D., AND

PANDA, D. K. Beyond block i/o: Rethinking traditional stor-

age primitives. In The 17th IEEE International Symposium on

High Performance Computer Architecture (2011), HPCA, IEEE,

pp. 301–311.

[32] PRABHAKARAN, V., RODEHEFFER, T. L., AND ZHOU, L.

Transactional flash. In Proceedings of the 8th USENIX confer-

ence on Operating systems design and implementation (2008),

OSDI, pp. 147–160.

[33] SAMSUNG. Samsung ssd 850 pro. http://www.samsung.com,

2016.

[34] SANDISK. Sandisk extreme pro ssd.

http://www.anandtech.com/show/8170/sandisk-extreme-pro-

240gb-480gb-960gb-review, 2016.

[35] SESHADRI, S., GAHAGAN, M., BHASKARAN, M. S.,

BUNKER, T., DE, A., JIN, Y., LIU, Y., AND SWANSON, S.

Willow: A user-programmable ssd. In Proceedings of the 11th

USENIX conference on Operating systems design and implemen-

tation (2014), OSDI, pp. 67–80.

208 16th USENIX Conference on File and Storage Technologies USENIX Association

[36] SHU, F., AND OBR, N. Data set management commands pro-

posal for ata8-acs2, revision 1 ed. Microsoft Corporation, One

Microsoft Way, Redmond, WA (2012), 98052–6399.

[37] SKHYNIX. Sk hynix se3010 enterprise ssd review.

http://www.tomsitpro.com/articles/sk-hynix-se3010-enterprise-

ssd-review,2-977-2.html, 2016.

[38] SOLWORTH, J. A., AND ORJI, C. U. Write-only disk caches.

ACM SIGMOD Record 19, 2 (1990), 123–132.

[39] STEIGERWALD, M. Imposing order. Linux Magazine, May

(2007).

[40] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A

flexible framework for file system benchmarking. USENIX; login

41 (2016).

[41] THERESKA, E., BALLANI, H., O’SHEA, G., KARAGIANNIS,

T., ROWSTRON, A., TALPEY, T., BLACK, R., AND ZHU, T.

Ioflow: a software-defined storage architecture. In Proceedings

of the 24th ACM Symposium on Operating Systems Principles

(2013), SOSP, ACM, pp. 182–196.

[42] TPCC. Tpcc-mysql benchmark. https://github.com/Percona-

Lab/tpcc-mysql, 2017.

[43] WANG, A.-I., REIHER, P. L., POPEK, G. J., AND KUENNING,

G. H. Conquest: Better performance through a disk/persistent-

ram hybrid file system. In USENIX Annual Technical Conference

(2002), ATC, pp. 15–28.

[44] XIANGFENG, L. IO Pattern based Optimization in SSD. Flash

Memory Summit, 2016.

[45] YANG, S., HARTER, T., AGRAWAL, N., KOWSALYA, S. S.,

KRISHNAMURTHY, A., AL-KISWANY, S., KAUSHIK, R. T.,

ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.

Split-level i/o scheduling. In Proceedings of the 25th ACM Sym-

posium on Operating Systems Principles (2015), SOSP, ACM,

pp. 474–489.

[46] ZHANG, Y., ARULRAJ, L. P., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. De-indirection for flash-based ssds

with nameless writes. In Proceedings of the 10th USENIX Con-

ference on File and Storage Technologies (2012), FAST, pp. 1–

16.

USENIX Association 16th USENIX Conference on File and Storage Technologies 209

Barrier-Enabled IO Stack for Flash Storage

Youjip Won1 Jaemin Jung2∗ Gyeongyeol Choi1

Joontaek Oh1 Seongbae Son1 Jooyoung Hwang3 Sangyeun Cho3

1Hanyang University 2Texas A&M University 3Samsung Electronics

Abstract
This work is dedicated to eliminating the overhead re-
quired for guaranteeing the storage order in the mod-
ern IO stack. The existing block device adopts a pro-
hibitively expensive approach in ensuring the storage or-
der among write requests: interleaving the write requests
with Transfer-and-Flush. Exploiting the cache barrier
command for Flash storage, we overhaul the IO sched-
uler, the dispatch module, and the filesystem so that these
layers are orchestrated to preserve the ordering condi-
tion imposed by the application with which the associ-
ated data blocks are made durable. The key ingredients
of Barrier-Enabled IO stack are Epoch-based IO schedul-
ing, Order-Preserving Dispatch, and Dual-Mode Jour-
naling. Barrier-enabled IO stack can control the storage
order without Transfer-and-Flush overhead. We imple-
ment the barrier-enabled IO stack in server as well as
in mobile platforms. SQLite performance increases by
270% and 75%, in server and in smartphone, respec-
tively. In a server storage, BarrierFS brings as much as
by 43× and by 73× performance gain in MySQL and
SQLite, respectively, against EXT4 via relaxing the dura-
bility of a transaction.

1 Motivation
The modern Linux IO stack is a collection of the ar-
bitration layers; the IO scheduler, the command queue
manager, and the writeback cache manager shuffle the
incoming requests at their own disposal before pass-
ing them to the next layers. Despite the compound un-
certainties from the multiple layers of arbitration, it
is essential for the software writers to enforce a cer-
tain order in which the data blocks are reflected to the
storage surface, storage order, in many cases such as
in guaranteeing the durability and the atomicity of a
database transaction [47, 26, 35], in filesystem journal-
ing [67, 41, 65, 4], in soft-update [42, 63], or in copy-on-
write or log-structure filesystems [61, 35, 60, 31]. En-
forcing a storage order is achieved by an extremely ex-
pensive approach: dispatching the following request only

∗This work was done while the author was a graduate student at
Hanyang University.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250O
rd

e
re

d
 I
O

 /
 O

rd
e
rl
e
s
s
 I
O

 (
%

)
Orderless IO (IOPSX10)

3

A

B

C

D

E

F

G

HDD

supercap

HDD

 1351

 2131

2297
2296584403

 y = (3.4 X 10) x-1.1

Figure 1: Ordered write vs. Orderless write, Except
‘HDD’, all are Flash storages; A: (1ch)/eMMC5.0, B:
(1ch)/UFS2.0, C: (8ch)/SATA3.0, D: (8ch)/NVMe, E:
(8ch)/SATA3.0 (supercap), F: (8ch)/PCIe, G: (32ch)
Flash array, The number next to each point is the IOPS
of write() followed by fdatasync().

after the data block associated with the preceding re-
quest is completely transferred to the storage device and
is made durable. We call this mechanism a Transfer-and-
Flush. For decades, interleaving the write requests with
a Transfer-and-Flush has been the fundamental principle
to guarantee the storage order in a set of requests [24, 16].

We observe a phenomenal increase in the performance
and the capacity of the Flash storage. The performance
increase owes much to the concurrency and the paral-
lelism in the Flash storage, e.g. the multi-channel/way
controller [73, 6], the large size storage cache [48], and
the deep command queue [19, 27, 72]. A state of the
art NVMe SSD reportedly exhibits up to 750 KIOPS
random read performance [72]. It is nearly 4,000× of
a HDD’s performance. The capacity increase is due to
the adoption of the finer manufacturing process (sub-10
nm) [25, 36], and the multi-bits per cell (MLC, TLC, and
QLC) [5, 11]. Meanwhile, the time to program a Flash
cell has barely improved, and is even deteriorating in
some cases [22].

The Transfer-and-Flush based order-preserving mech-
anism conflicts with the parallelism and the concurrency
in the Flash storage. It disables the parallelism and the
concurrency feature of the Flash storage and exposes
the raw Flash cell programming latency to the host. The

USENIX Association 16th USENIX Conference on File and Storage Technologies 211

overhead of the Transfer-and-Flush mechanism will be-
come more significant as the Flash storage employs a
higher degree of parallelism and the denser Flash de-
vice. Fig. 1 illustrates an important trend. We measure
the sustained throughput of orderless random write (plain
buffered write) and the ordered random write in EXT4
filesystem. In ordered random write, each write request is
followed by fdatasync(). X-axis denotes the through-
put of orderless write which corresponds to the rate at
which the storage device services the write requests at its
full throttle. This usually matches the vendor published
performance of the storage device. The number next to
each point denotes the sustained throughput of the or-
dered write. The Y-axis denotes the ratio between the
two. In a single channel mobile storage for smartphone
(SSD A), the performance of ordered write is 20% of
that of unordered write (1351 IOPS vs. 7000 IOPS). In
a thirty-two channel Flash array (SSD G), this ratio de-
creases to 1% (2296 IOPS vs. 230K IOPS). In SSD with
supercap (SSD E), the ordered write performance is 25%
of that of the unordered write. The Flash storage uses su-
percap to hide the flush latency from the host. Even in
a Flash storage with supercap, the overhead of Transfer-
and-Flush is significant.

Many researchers have attempted to address the over-
head of storage order guarantee. The techniques de-
ployed in the production platforms include non-volatile
writeback cache at the Flash storage [23], no-barrier
mount option at the EXT4 filesystem [15], and transac-
tional checksum [56, 32, 64]. Efforts such as transac-
tional filesystem [50, 18, 54, 35, 68] and transactional
block device [30, 74, 43, 70, 52] save the application
from the overhead of enforcing the storage order asso-
ciated with filesystem journaling. A school of work ad-
dress more fundamental aspects in controlling the stor-
age order, such as separating the ordering guarantee
from durability guarantee [9], providing a programming
model to define the ordering dependency among the set
of writes [20], and persisting a data block only when the
result needs to be externally visible [49]. Despite their el-
egance, these works rely on Transfer-and-Flush when it
is required to enforce the storage order. OptFS [9] relies
on Transfer-and-Flush in enforcing the order between the
journal commit and the associated checkpoint. Feather-
stitch [20] relies on Transfer-and-Flush to implement the
ordering dependency between the patchgroups.

In this work, we revisit the issue of eliminating the
Transfer-and-Flush overhead in the modern IO stack. We
develop a Barrier-Enabled IO stack, in which the filesys-
tem can issue the following request before the preced-
ing request is serviced and yet the IO stack can enforce
the storage order between them. The barrier-enabled IO
stack consists of the cache barrier-aware storage device,
the order-preserving block device layer, and the bar-

rier enabled filesystem. For cache barrier-aware storage
device, we exploit the “cache barrier” command [28].
The barrier-enabled IO stack is built upon the founda-
tion that the host can control a certain partial order in
which the cache contents are flushed. The “cache bar-
rier” command precisely serves this purpose. For the
order-preserving block device layer, the command dis-
patch mechanism and the IO scheduler are overhauled so
that the block device layer ensures that the IO requests
from the filesystem are serviced preserving a certain par-
tial order. For the barrier-enabled filesystem, we define
new interfaces, fbarrier() and fdatabarrier(), to
separate the ordering guarantee from the durability guar-
antee. They are similar to fsync() and fdatasync(),
respectively, except that they return without waiting for
the associated blocks to become durable. We modify
EXT4 for the order-preserving block device layer. We
develop dual-mode journaling for the order-preserving
block device. Based upon the dual-mode journaling, we
newly implement fbarrier() and fdatabarrier()

and rewrite fsync().
Barrier-enabled IO stack removes the flush overhead

as well as the transfer overhead in enforcing the stor-
age order. While large body of the works have focused
on eliminating the flush overhead, few works have ad-
dressed the overhead of DMA transfer to enforce the stor-
age order. The benefits of the barrier-enabled IO stack
include the followings;

• The application can control the storage order virtually
without any overheads, including the flush overhead,
DMA transfer overhead, and context switch.

• The latency of a journal commit decreases signifi-
cantly. The journaling module can enforce the storage
order between the journal logs and the journal com-
mit block without interleaving them with flush or with
DMA transfer.

• Throughput of the filesystem journaling improves sig-
nificantly. The dual-mode journaling commits multi-
ple transactions concurrently and yet can guarantee the
durability of the individual journal commit.

By eliminating the Transfer-and-Flush overhead, the
barrier-enabled IO stack successfully exploits the con-
currency and the parallelism in modern Flash storage.

2 Background
2.1 Orders in IO stack
A write request travels a complicated route until the
data blocks reach the storage surface. The filesystem
puts the request to the IO scheduler queue. The block
device driver removes one or more requests from the
queue and constructs a command. It probes the device
and dispatches the command if the device is available.

212 16th USENIX Conference on File and Storage Technologies USENIX Association

Writeback
Cache

Flash
IO Scheduler

Command
Queue

Host Storage

Dispatch
Queue

I D X P

Figure 2: IO stack Organization

The device is available if the command queue is not full.
The storage controller inserts the incoming command
at the command queue. The storage controller removes
the command from the command queue and services it (
i.e. transfers the associated data block between the host
and the storage). When the transfer finishes, the device
signals the host. The contents of the writeback cache are
committed to the storage surface either periodically or by
an explicit request from the host.

We define four types of orders in the IO stack; Issue
Order, I , Dispatch Order, D , Transfer Order, X , and
Persist Order, P . The issue order I = {i1, i2, . . . , in} is
a set of write requests issued by the file system. The sub-
script denotes the order in which the requests enter the IO
scheduler. The dispatch order D = {d1,d2, . . . ,dn} de-
notes a set of the write requests dispatched to the stor-
age device. The subscript denotes the order in which
the requests leave the IO scheduler. The transfer order,
X = {x1,x2, . . . ,xn}, is the set of transfer completions.
The persist order, P = {p1, p2, . . . , pn}, is a set of oper-
ations that make the data blocks in the writeback cache
durable. We say that a partial order is preserved if the
relative position of the requests against a designated re-
quest, barrier, are preserved between two different types
of orders. We use the notation ‘=’ to denote that a partial
order is preserved. The partial orders between the differ-
ent types of orders may not coincide due to the following
reasons.

• I 6= D . The IO scheduler reorders and coalesces
the IO requests subject to the scheduling principle,
e.g. CFQ, DEADLINE, etc. When there is no schedul-
ing mechanism, e.g. NO-OP scheduler [3] or NVMe
[13] interface, the dispatch order may be equal to the
issue order.

• D 6= X . The storage controller can freely schedule
the commands in its command queue. In addition, the
commands can be serviced out-of-order due to the er-
rors, the time-outs, and the retry.

• X 6= P . The writeback cache of the storage is not
FIFO. In Flash storage, persist order is governed not
by the order in which the data blocks are made durable
but by the order in which the associated mapping table
entries are updated. The two may not coincide.

Due to all these uncertainties, the modern IO stack is said
to be orderless [8].

2.2 Transfer-and-Flush
Enforcing a storage order corresponds to preserving a
partial order between the order in which the filesystem
issues the requests, I , and the order in which the associ-
ated data blocks are made durable, P . It is equivalent to
collectively enforcing the partial orders between the pair
of the orders in the adjacent layers in Fig. 2. It can be
formally represented as in Eq. 1.

(I = P)≡ (I = D)∧ (D = X)∧ (X = P) (1)

The modern IO stack has evolved under the assumption
that the host cannot control the persist order, i.e. X 6=
P . This is due to the physical characteristics of the ro-
tating media. For rotating media such as HDDs, a per-
sist order is governed by disk scheduling algorithm. The
disk scheduling is entirely left to the storage controller
due to its complicated sector geometry which is hidden
from outside [21]. When the host blindly enforces a cer-
tain persist order, it may experience anomalous delay in
IO service. Due to this constraint of X 6= P , Eq. 1 is
unsatisfiable. The constraint that the host cannot control
the persist order is a fundamental limitation in modern
IO stack design.

The block device layer adopts the indirect and the ex-
pensive approach to control the storage order in spite
of the constraint X 6= P . First, after dispatching the
write command to the storage device, the caller post-
pones dispatching the following command until the pre-
ceding command is serviced, i.e. until the associated
DMA transfer completes. We refer to this mechanism as
Wait-on-Transfer. Wait-on-Transfer mechanism ensures
that the commands are serviced in order and to satisfy
D = X . Wait-on-Transfer is expensive; it blocks the
caller and interleaves the requests with DMA transfer.
Second, when the preceding command is serviced, the
caller issues the flush command and waits for its com-
pletion. The caller issues the following command only
after the flush command returns. This is to ensure that
the associated data blocks are persisted in order and to
satisfy X = P . We refer to this mechanism as Wait-
on-Flush. The modern block device layer uses Wait-on-
Transfer and Wait-on-Flush in pair when it needs to en-
force the storage order between the write requests. We
call this mechanism as Transfer-and-Flush.

The cost of Transfer-and-Flush is prohibitive. It neu-
tralizes the internal parallelism of the Flash storage con-
troller, stalls the command queue, and exposes the caller
to DMA transfer and raw cell programming delays.

2.3 Analysis: fsync() in EXT4
We examine how the EXT4 filesystem controls the stor-
age order in an fsync(). In Ordered journaling mode
(default), the data blocks are persisted before the journal

USENIX Association 16th USENIX Conference on File and Storage Technologies 213

Storage

Filesystem

fsync()

start

JBD

Block Layer

fsync()

return

D FlushJD JC Flush

DMA Transfer Context Switch Execution

Figure 3: DMA, flush, and context switches in fsync(),
‘D’, ‘JC’ and ‘JC’ denote the DMA transfer time for D,
JD and JC, respectively. ‘Flush’ denotes the time to ser-
vice the flush request.

transaction. Fig. 3 illustrates the behavior of an fsync().
The filesystem issues the write requests for a set of dirty
pages, D. D may consist of the data blocks from dif-
ferent files. After issuing the write requests, the appli-
cation thread blocks waiting for the completion of the
DMA transfer. When the DMA transfer completes, the
application thread resumes and triggers the JBD thread
to commit the journal transaction. After triggering the
JBD thread, the application thread sleeps again. When
the JBD thread makes journal transaction durable, the
fsync() returns. It should be emphasized that the ap-
plication thread triggers the JBD thread only after D is
transferred. Otherwise, the storage controller may ser-
vice the write request for D and the write requests for
journal commit in an out-of-order manner, and the stor-
age controller may persist the journal transaction prema-
turely (before D is transferred).

A journal transaction is usually committed using two
write requests: one for writing the coalesced chunk of the
journal descriptor block and the log blocks and the other
for writing the commit block. In the rest of the paper,
we will use JD and JC to denote the coalesced chunk of
the journal descriptor and the log blocks, and the com-
mit block, respectively. In committing a journal trans-
action, JBD needs to enforce the storage orders in two
relations: within a transaction and between the transac-
tions. Within a transaction, JBD needs to ensure that JD
is made durable ahead of JC. Between the journal trans-
actions, JBD has to ensure that journal transactions are
made durable in order. When either of the two conditions
are violated, the file system may recover incorrectly in
case of unexpected failure [67, 9]. For the storage order
within a transaction, JBD interleaves the write request
for JD and the write request for JC with Transfer-and-
Flush. To control the storage order between the transac-
tions, JBD thread waits for JC to become durable before
it starts committing the following transaction. JBD uses
Transfer-and-Flush mechanism in enforcing both intra-
transaction and inter-transaction storage order.

In earlier days of Linux, the block device layer ex-
plicitly issued a flush command in committing a jour-

nal transaction [15]. In this approach, the flush command
blocks not only the caller but also the other requests in
the same dispatch queue. Since Linux 2.6.37, the filesys-
tem (JBD) implicitly issues a flush command [16]. In
writing JC, JBD tags the write request with REQ FLUSH

and REQ FUA. Most storage controllers have evolved to
support these two flags; with these two flags, the storage
controller flushes the writeback cache before servicing
the command and in servicing the command it directly
persists JC to storage surface bypassing the writeback
cache. In this approach, only the JBD thread blocks and
the other threads that share the same dispatch queue can
proceed. Our effort can be thought as a continuation to
this evolution of the IO stack. We mitigate the Transfer-
and-Flush overhead by making the storage device more
capable: supporting a barrier command and by redesign-
ing the host side IO stack accordingly.

3 Order-Preserving Block Device Layer
3.1 Design
The order-preserving block device layer consists of the
newly defined barrier write command, order-preserving
dispatch module, and Epoch-based IO scheduler. We
overhaul the IO scheduler, the dispatch module, and the
write command so that they can preserve the partial order
between the different types of orders, I = D , D = X ,
and X = P , respectively. Order-preserving dispatch
module eliminates the Wait-on-Transfer overhead and
the newly defined barrier write command eliminates the
wait-on-flush overhead. They collectively together pre-
serve the partial order between the issue order I and the
persist order P without Transfer-and-Flush.

The order-preserving block device layer categorizes
the write requests into two categories, orderless write
and order-preserving write. The order-preserving re-
quests are the ones that are subject to the storage or-
dering constraint. Orderless request is the one which
is irrelevant to the ordering dependency and which can
be scheduled freely. We distinguish the two to avoid
imposing unnecessary ordering constraint in scheduling
the requests. The details are to come shortly. We re-
fer to a set of the order-preserving requests that can

fbarrier()

BarrierFS

(Dual Mode Journaling)

Order Preserving

Dispatch

Epoch Based

IO Scheduler

Barrier Compliant Storage Device

fdatabarrier()

WRITE with

BARRIER flag BARRIER

File

System

Block

Layer

File

System

Block

Layer

Figure 4: Organization of the barrier-enabled IO stack

214 16th USENIX Conference on File and Storage Technologies USENIX Association

be reordered with each other as an epoch [14]. We
define a special type of order-preserving write as a
barrier write. A barrier write is used to delimit an
epoch. We introduce two new attributes REQ ORDERED

and REQ BARRIER for the bio object and the request

object to represent an order-preserving write and a bar-
rier write. REQ ORDERED attribute is used to specify the
order-preserving write. Barrier write request has both
REQ ORDERED and REQ BARRIER attributes. The order-
preserving block device layer handles the request differ-
ently based upon its category. Fig. 4 illustrates the orga-
nization of Barrier-Enabled IO stack.

3.2 Barrier Write, the Command
The “cache barrier,” or “barrier” for short, command is
defined in the standard command set for mobile Flash
storage [28]. With barrier command, the host can control
the persist order without explicitly invoking the cache
flush. When the storage controller receives the barrier
command, the controller guarantees that the data blocks
transferred before the barrier command becomes durable
after the ones that follow the barrier command do. A
few eMMC products in the market support cache bar-
rier command [1, 2]. The barrier command can satisfy
the condition X = P in Eq. 1 which has been unsat-
isfiable for several decades due to the mechanical char-
acteristics of the rotating media. The naive way of using
barrier is to replace the existing flush operation [66]. This
simple replacement still leaves the caller under the Wait-
on-Transfer overhead to enforce the storage order.

Implementing a barrier as a separate command oc-
cupies one entry in the command queue and costs the
host the latency of dispatching a command. To avoid this
overhead, we define a barrier as a command flag. We des-
ignate one unused bit in the SCSI command for a bar-
rier flag. We set the barrier flag of the write command to
make itself a barrier write. When the storage controller
receives a barrier write command, it services the barrier
write command as if the barrier command has arrived
immediately following the write command.

With reasonable complexity, the Flash storage can be
made to support a barrier write command [30, 57, 39].
When the Flash storage has Power Loss Protection (PLP)
feature, e.g. a supercapacitor, the writeback cache con-
tents are guaranteed to be durable. The storage controller
can flush the writeback cache fully utilizing its paral-
lelism and yet can guarantee the persist order. In Flash
storage with PLP, we expect that the performance over-
head of the barrier write is insignificant.

For the devices without PLP, the barrier write com-
mand can be supported in three ways; in-order writeback,
transactional writeback, or in-order recovery. In in-order
writeback, the storage controller flushes the data blocks
in epoch granularity. The amount of data blocks in an

epoch may not be large enough to fully utilize the paral-
lelism of the Flash storage. The in-order writeback style
of the barrier write implementation can bring the perfor-
mance degradation in cache flush. In transactional write-
back, the storage controller flushes the writeback cache
contents as a single unit [57, 39]. Since all epochs in the
writeback cache are flushed together, the persist order
imposed by the barrier command is satisfied. The trans-
actional writeback can be implemented without any per-
formance overhead if the controller exploits the spare
area of the Flash page to represent a set of pages in
a transaction [57]. The in-order recovery method relies
on a crash recovery routine to control the persist order.
When multiple controller cores concurrently write the
data blocks to multiple channels, one may have to use so-
phisticated crash recovery protocol such as ARIES [46]
to recover the storage to consistent state. If the entire
Flash storage is treated as a single log device, we can
use simple crash recovery algorithm used in LFS [61].
Since the persist order is enforced by the crash recovery
logic, the storage controller can flush the writeback cache
at the full throttle as if there is no ordering dependency.
The controller is saved from performance penalty at the
cost of complexity in the recovery routine.

In this work, we modify the firmware of the UFS stor-
age device to support the barrier write command. We use
a simple LFS style in-order recovery scheme. The mod-
ified firmware is loaded at the commercial UFS product
of the Galaxy S6 smartphone1. The modified firmware
treats the entire storage device as a single log structured
device. It maintains an active segment in memory. FTL
appends incoming data blocks to the active segment in
the order in which they are transferred. When an active
segment becomes full, the controller stripes the active
segment across the multiple Flash chips in log-structured
manner. In crash recovery, the UFS controller locates the
beginning of the most recently flushed segment. It scans
the pages in the segment from the beginning till it en-
counters the page that has not been programmed success-
fully. The storage controller discards the rest of the pages
including the incomplete one.

Developing a barrier-enabled SSD controller is an en-
gineering exercise. It is governed by a number of design
choices and should be addressed in a separate context. In
this work, we demonstrate that the performance benefit
achieved by the barrier command well deserves its com-
plexity if the host side IO stack can properly exploit it.

3.3 Order-Preserving Dispatch
Order-preserving dispatch is a fundamental innovation in
this work. In order-preserving dispatch, the block device

1Some of the authors are firmware engineers at Samsung Electron-
ics and have an access to the FTL firmware of Flash storage products.

USENIX Association 16th USENIX Conference on File and Storage Technologies 215

finish I/O

re-run

IRQ

receive

CMD

decode

CMD

Block Layer

Filesystem

Device

submit I/O

reordering

& merge
dispatch

DMA

transfer

Wi Wi+1(WoD) Wi+1(WoT)

WoD WoT

Figure 5: Wait-on-Dispatch vs Wait-on-Transfer, Wi: ith

write request, Wi+1(WoD): (i+ 1)th write request under
Wait-on-Dispatch, Wi+1(WoT): (i+1)th write request un-
der Wait-on-Transfer

layer dispatches the following command immediately af-
ter it dispatches the preceding one (Fig. 5) and yet the
host can ensure that the two commands are serviced in
order. We refer to this mechanism as Wait-on-Dispatch.
The order-preserving dispatch is to satisfy the condition
D = X in Eq. 1 without Wait-on-Transfer overhead.

The dispatch module constructs a command from
the requests. The dispatch module constructs the bar-
rier write command when it encounters the barrier write
request, i.e. the write request with REQ ORDERED and
REQ BARRIER flags. For the other requests, it constructs
the commands as it used to do in the legacy block device.

Implementing an order-preserving dispatch is rather
simple; the block device driver sets the priority of a bar-
rier write command as ordered. Then, the SCSI compli-
ant storage device services the command satisfying the
ordering constraint. The following is the reason. SCSI
standard defines three command priority levels: head of
the queue, ordered, and simple [59]. With each, the stor-
age controller puts the incoming command at the head of
the command queue, at the tail of the command queue
or at an arbitrary position determined at its disposal, re-
spectively. The default priority is simple. The command
with simple priority cannot be inserted in front of the ex-
isting ordered or head of the queue command. Exploit-
ing the command priority of existing SCSI interface, the
order-preserving dispatch module ensures that the bar-
rier write is serviced only after the existing requests in
the command queue are serviced and before any of the
commands that follow the barrier write are serviced.

The device can temporarily be unavailable or the
caller can be switched out involuntarily after dispatch-
ing a write request. The order-preserving dispatch mod-
ule uses the same error handling routine of the existing
block device driver; the kernel daemon inherits the task
and retries the failed request after a certain time interval,
e.g. 3 msec for SCSI devices [59]. The ordered priority
command has rarely been used in the existing block de-
vice implementations. This is because when the host can-
not control the persist order, enforcing a transfer order
with ordered priority command barely carries any mean-

ing from the perspective of ensuring the storage order. In
the emergence of the barrier write, the ordered priority
plays an essential role in making the entire IO stack an
order-preserving one.

The importance of order-preserving dispatch cannot
be emphasized further. With order-preserving dispatch,
the host can control the transfer order without releas-
ing the CPU and without stalling the command queue.
IO latency can become more predictable since there ex-
ists less chance that the CPU scheduler interferes with
the caller’s execution. ∆WoT and ∆WoD in Fig. 5 illustrate
the delays between the consecutive requests in Wait-on-
Transfer and Wait-on-Dispatch, respectively. In Wait-on-
Dispatch, the host issues the next request Wi+1(WoD) im-
mediately after it issues Wi. In Wait-on-Transfer, the host
issues the next request Wi+1(WoT) only after Wi is ser-
viced. ∆WoD is an order of magnitude smaller than ∆WoT .

3.4 Epoch-Based IO scheduling
Epoch-based IO scheduling is designed to preserve the
partial order between the issue order and the dispatch or-
der. It satisfies the condition I = D . It is designed with
three principles; (i) it preserves the partial order between
the epochs, (ii) the requests within an epoch can be freely
scheduled with each other, and (iii) an orderless request
can be scheduled across the epochs.

When an IO request enters the scheduler queue, the IO
scheduler determines if it is a barrier write. If the request
is a barrier write, the IO scheduler removes the barrier
flag from the request and inserts it into the queue. Oth-
erwise, the scheduler inserts it to the queue as is. When
the scheduler inserts a barrier write to the queue, it stops
accepting more requests. Since the scheduler blocks
the queue after it inserts the barrier write, all order-
preserving requests in the queue belong to the same
epoch. The requests in the queue can be freely re-ordered
and merged with each other. The IO scheduler uses the
existing scheduling discipline, e.g. CFQ. The merged re-
quest will be order-preserving if one of the components
is order-preserving request. The IO scheduler designates
the last order-preserving request that leaves the queue as
a new barrier write. This mechanism is called Epoch-
Based Barrier Reassignment. When there are not any
order-preserving requests in the queue, the IO sched-
uler starts accepting the IO requests again. When the
IO scheduler unblocks the queue, there can be one or
more orderless requests in the queue. These orderless re-
quests are scheduled with the requests in the following
epoch. Differentiating orderless requests from the order-
preserving ones, we avoid imposing unnecessary order-
ing constraint on the irrelevant requests.

Fig. 6 illustrates an example. The circle and the
rectangle that enclose the write request denote the
order-preserving flag and barrier flag, respectively. An

216 16th USENIX Conference on File and Storage Technologies USENIX Association

W3

W3
W4 Block

Device

{W1, W2, W4}

I/O Scheduler

W1W2W4 W3 W2W1

W4

W2W1

{W1, W2, W4}
W1

W2

W4

W5

W6

W3

W5W6

W5

W5

fsync() Wi: Write Request i

REQ_ORDERED: REQ_BARRIER:

Epoch Epoch

Figure 6: Epoch Based Barrier Reassignment

fdatasync() creates three write requests: w1,w2, and
w4. The barrier-enabled filesystem, which will be de-
tailed shortly, marks the write requests as ordering pre-
serving ones. The last request, w4, is designated as
a barrier write and an epoch, {w1,w2,w4}, is estab-
lished. A pdflush creates three write requests w3,w5,
and w6. They are all orderless writes. The requests
from the two threads are fed to the IO scheduler as
w1,w2,w3,w5,wbarrier

4 ,w6. When the barrier write, w4,
enters the queue, the scheduler stops accepting the new
request. Thus, w6 cannot enter the queue. The IO sched-
uler reorders the requests in the queue and dispatches
them as w2,w3,w4,w5,wbarrier

1 order. The IO scheduler
relocates the barrier flag from w4 to w1. The epoch is
preserved after IO scheduling.

The order-preserving block device layer now satis-
fies all three conditions, I = D ,D = X and X = P
in Eq. 1 with an Epoch-based IO scheduling, an order-
preserving dispatch and a barrier write, respectively. The
order-preserving block device layer successfully elimi-
nates the Transfer-and-Flush overhead in controlling the
storage order and can control the storage order with only
Wait-on-Dispatch overhead.

4 Barrier-Enabled Filesystem

4.1 Programming Model
The barrier-enabled IO stack offers four synchroniza-
tion primitives: fsync(), fdatasync(), fbarrier(),
and fdatabarrier(). We propose two new filesys-
tem interfaces, fbarrier() and fdatabarrier(), to
separately support ordering guarantee. fbarrier() and
fdatabarrier() synchronize the same set of blocks
with fsync() and fdatasync(), respectively, but they
return without ensuring that the associated blocks be-
come durable. fbarrier() bears the same semantics as
osync() in OptFS [9] in that it writes the data blocks
and the journal transactions in order but returns without
ensuring that they become durable.
fdatabarrier() synchronizes the modified blocks,

but not the journal transaction. Unlike fdatasync(),
fdatabarrier() returns without persisting the as-
sociated blocks. fdatabarrier() is a generic stor-
age barrier. By interleaving the write() calls with
fdatabarrier(), the application ensures that the data

blocks associated with the write requests that precede
fdatabarrier() are made durable ahead of the data
blocks associated with the write requests that follow
fdatabarrier(). It plays the same role as mfence for
memory barrier [53]. Refer to the following codelet. Us-
ing fdatabarrier(), the application ensures that the
”world” is made durable only after ”Hello” does.

write(fileA, "Hello") ;

fdatabarrier(fileA) ;

write(fileA, "World") ;

The order-preserving block device layer is filesystem ag-
nostic. In our work, we modify EXT4 for barrier enabled
IO stack.

4.2 Dual Mode Journaling

Filesystem

Storage

fsync()

JBD

D FlushJD JC Flush

DMA Transfer Context Switch Execution

(a) fsync() in EXT4; JBD writes JC with FLUSH/FUA. The latter
’Flush’ for persisting ’JC’ directly to the storage surface.

()

Storage

Filesystem

fsync()

Commit

D FlushJD JC

Flush

(b) fsync() and fbarrier() in BarrierFS
Figure 7: Details of fsync() and fbarrier()

Committing a journal transaction essentially consists
of two saparate tasks: (i) dispatching the write commands
for JD and JC and (ii) making JD and JC durable. Ex-
ploiting the order-preserving nature of the underlying
block device, we physically separate the control plane ac-
tivity (dispatching the write requests) and the data plane
activity (persisting the associated data blocks and jour-
nal transaction) of a journal commit operation. Further,
we allocate the separate threads to each task so that the
two activities can proceed in parallel with minimum de-
pendency. The two threads are called as commit thread
and flush thread, respectively. We refer to this mecha-
nism as Dual Mode Journaling. Dual Mode Journaling
mechanism can support two journaling modes, durability
guarantee mode and ordering guarantee mode, in versa-
tile manner.

The commit thread is responsible for dispatching the
write requests for JD and JC. The commit thread writes

USENIX Association 16th USENIX Conference on File and Storage Technologies 217

each of the two with a barrier write so that JD and JC
are persisted in order. The commit thread dispatches the
write requests without any delay in between (Fig. 7(b)).
In EXT4, JBD thread interleaves the write request for JC
and JD with Transfer-and-Flush (Fig. 7(a)). After dis-
patching the write request for JC, the commit thread in-
serts the journal transaction to the committing transac-
tion list and hands over the control to the flush thread.

The flush thread is responsible for (i) issuing the flush
command, (ii) handling error and retry and (iii) removing
the transaction from the committing transaction list. The
behavior of the flush thread varies subject to the dura-
bility requirement of the journal commit. If the journal
commit is triggered by fbarrier(), the flush thread re-
turns after removing the transaction from the committing
transaction list. It returns without issuing the flush com-
mand. If the journal commit is triggered by fsync(), the
flush thread involves more steps. It issues a flush com-
mand and waiting for the completion. When the flush
completes, it removes the the associated transaction from
the committing transaction list and returns. BarrierFS
supports all journal modes in EXT4; WRITEBACK, OR-
DERED and DATA.

The dual thread organization of BarrierFS journaling
bears profound implications in filesystem design. First,
the separate support for the ordering guarantee and the
durability guarantee naturally becomes an integral part
of the filesystem. Ordering guarantee involves only the
control plane activity. Durability guarantee requires the
control plane activity as well as data plane activity. Bar-
rierFS partitions the journal commit activity into two
independent components, control plane and data plane
and dedicates separate threads to each. This modular de-
sign enables the filesystem primitives to adaptively adjust
the activity of the data plane thread with respect to the
durability requirement of the journal commit operation;
fsync() vs. fbarrier(). Second, the filesystem jour-
naling becomes concurrent activity. Thanks to the dual
thread design, there can be multiple committing transac-
tions in flight. In most journaling filesystems that we are
aware of, the filesystem journaling is a serial activity; the
journaling thread commits the following transaction only
after the preceding transaction becomes durable. In dual
thread design, the commit thread can commit a new jour-
nal transaction without waiting for the preceding com-
mitting transaction to become durable. The flush thread
asynchronously notifies the application thread about the
completion of the journal commit.

4.3 Synchronization Primitives
In fbarrier() and fsync(), BarrierFS writes D, JD,
and JC in a piplelined manner without any delays in
between (Fig. 7(b)). BarrierFS writes D with one or
more order-preserving writes whereas it writes JD and

JC with the barrier writes. In this manner, BarrierFS
forms two epochs {D,JD} and {JC} in an fsync() or
in an fbarrier() and ensures the storage order between
these two epochs. fbarrier() returns when the filesys-
tem dispatches the write request for JC. fsync() returns
after it ensures that JC is made durable. Order-preserving
block device satisfies prefix constraint [69]. When JC be-
comes durable, the order-preserving block device guar-
antees that all blocks associated with preceding epochs
have been made durable. An application may repeatedly
call fbarrier() committing multiple transactions si-
multaneously. By writing JC with a barrier write, Barri-
erFS ensures that these committing transactions become
durable in order. The latency of an fsync() reduces sig-
nificantly in BarrierFS. It reduces the number of flush
operations from two in EXT4 to one and eliminates the
Wait-on-Transfer overheads (Fig. 7).

In fdatabarrier() and fdatasync(), BarrierFS
writes D with a barrier write. If there are more than
one write requests in writing D, only the last one is set
as a barrier write and the others are set as the order-
preserving writes. An fdatasync() returns after the
data blocks, D, become durable. An fdatabarrier()

returns immediately after dispatching the write requests
for D. fdatabarrier() is the crux of the barrier-
enabled IO stack. With fdatabarrier(), the applica-
tion can control the storage order virtually without any
overheads: without waiting for the flush, without wait-
ing for DMA completion, and even without the context
switch. fdatabarrier() is a very light-weight storage
barrier.

An fdatabarrier() (or fdatasync()) may not find
any dirty pages to synchronize upon its execution. In
this case, BarrierFS explicitly triggers the journal com-
mit. It forces BarrierFS to issue the barrier writes for JD
and JC. Through this mechanism, fdatabarrier() or
fdatasync() can delimit an epoch as desired by the ap-
plication even in the absence of any dirty pages.

4.4 Handling Page Conflicts
A buffer page may have been held by the committing
transaction when an application tries to insert it to the
running transaction. We refer to this situation as page
conflict. Blindly inserting a conflict page into the run-
ning transaction yields its removal from the committing
transaction before it becomes durable. The EXT4 filesys-
tem checks for the page conflict when it inserts a buffer
page to the running transaction [67]. If the filesystem
finds a conflict, the thread delegates the insertion to the
JBD thread and blocks. When the committing transaction
becomes durable, the JBD thread identifies the conflict
pages in the committed transaction and inserts them to
the running transaction. In EXT4, there can be at most
one committing transaction. The running transaction is

218 16th USENIX Conference on File and Storage Technologies USENIX Association

guaranteed to be free from page conflict when the JBD
thread has made it durable and finishes inserting the con-
flict pages to the running transaction.

In BarrierFS, there can be more than one committing
transactions. The conflict pages may be associated with
different committing transactions. We refer to this sit-
uation as multi-transaction page conflict. As in EXT4,
BarrierFS inserts the conflict pages to the running trans-
action when it makes a committing transaction durable.
However, to commit a running transaction, BarrierFS has
to scan all buffer pages in the committing transactions
for page conflicts and ensure that it is free from any page
conflicts. When there exists large number of committing
transactions, the scanning overhead to check for the page
conflict can be prohibitive in BarrierFS.

To reduce this overhead, we propose the conflict-page
list for a running transaction. The conflict-page list rep-
resents the set of conflict pages associated with a running
transaction. The filesystem inserts the buffer page to the
conflict-page list when it finds that the buffer page that
it needs to insert to the running transaction is subject to
the page conflict. When the filesystem has made a com-
mitting transaction durable, it removes the conflict pages
from the conflict-page list in addition to inserting them to
the running transaction. A running transaction can only
be committed when the conflict-page list is empty.

4.5 Concurrency in Journaling

tD tX tF

tD+tX+tF

tD
BarrierFS

EXT4

(quick flush)

EXT4

(full flush)

t

tD+tX+t

EXT4

(no flush)

tD+tX

Txi

Txi

Txi

Txi

Txi+1

Txi+1

Txi+1

Figure 8: Concurrency in filesystem journaling under
varying storage order guarantee mechanisms, tD: dis-
patch latency, tX : transfer latency, tε : flush latency in su-
percap SSD, tF : flush latency

We examine the degree of concurrency in journal com-
mit operation under different storage order guarantee
mechanisms: BarrierFS, EXT4 with no-barrier option
(EXT4 (no flush)), EXT4 with supercap SSD (EXT4
(quick flush)), and plain EXT4 (EXT4 (full flush)). With
no-barrier mount option, the JBD thread omits the
flush command in committing a journal transaction. With
this option, the EXT4 guarantees neither durability nor
ordering in journal commit operation since the storage
controller may make the data blocks durable out-of-

order. We examine this configuration to illustrate the
filesystem journaling behavior when the flush command
is removed in the journal commit operation.

In Fig. 8, each horizontal line segment represents a
journal commit activity. It consists of the solid line seg-
ment and the dashed line segment. The end of the hor-
izontal line segment denotes the time when the transac-
tion reaches the disk surface. The end of the solid line
segment represents the time when the journal commit
returns. If they do not coincide, it means that the jour-
nal commit finishes before the transaction reaches the
disk surface. In EXT4 (full flush), EXT4 (quick flush),
and EXT4 (no flush), the filesystem commits a new
transaction only after preceding journal commit finishes.
The journal commit is a serial activity. In EXT4 (full
flush), the journal commit finishes only after all associ-
ated blocks are made durable. In EXT4 (quick flush), the
journal commit finishes more quickly than in EXT4 (full
flush) since the SSD returns the flush command without
persisting the data blocks. In EXT4 (no flush), the jour-
nal commit finishes more quickly than EXT (quick flush)
since it does not issue the flush command. In journal-
ing throughput, BarrierFS prevails the remainders by far
since the interval between the consecutive journal com-
mits is as small as the dispatch latency, tD.

The concurrencies in journaling in EXT4 (no flush)
and in EXT4 (quick flush) have their price. EXT4 (quick
flush) requires the additional hardware component, su-
percap, in the SSD. EXT4 (quick flush) guarantees nei-
ther durability or ordering in the journal commit. Bar-
rierFS commits multiple transactions concurrently and
yet can guarantee the durability of the individual journal
commit without the assistance of additional hardware.

The barrier enabled IO stack does not require any ma-
jor changes in the existing in-memory or on-disk struc-
ture of the IO stack. The only new data structure we in-
troduce is the “conflict-page-list” for a running transac-
tion. Barrier enabled IO stack consists of approximately
3K LOC changes in the IO stack of the Linux kernel .

4.6 Comparison with OptFS
As the closest approach of our sort, OptFS deserves an
elaboration. OptFS and barrier-enabled IO stack differ
mainly in three aspects; the target storage media, the
technology domain, and the programming model. First,
OptFS is not designed for the Flash storage but the
barrier-enabled IO stack is. OptFS is designed to reduce
the disk seek overhead in a filesystem journaling; via
committing multiple transactions together (delayed com-
mit) and via making the disk access sequential (selec-
tive data mode journaling). Second, OptFS is the filesys-
tem technique while the barrier enabled IO stack deals
with the entire IO stack; the storage device, the block
device layer and the filesystem. OptFS is built upon the

USENIX Association 16th USENIX Conference on File and Storage Technologies 219

legacy block device layer. It suffers from the same over-
head as the existing filesystems do. OptFS uses Wait-on-
Transfer to control the transfer order between D and JD.
OptFS relies on Transfer-and-Flush to control the stor-
age order between the journal commit and the associated
checkpoint in osync(). Barrier-enabled IO stack elim-
inates the overhead of Wait-on-Transfer and Transfer-
and-Flush in controlling the storage order. Third, OptFS
focuses on revising the filesystem journaling model. Bar-
rierFS is not limited to revising the filesystem journaling
model but also exports generic storage barrier with which
the application can group a set of writes into an epoch.

5 Applications
To date, fdatasync() has been the sole resort to en-
force the storage order between the write requests. The
virtual disk managers for VM disk image, e.g., qcow2,
use fdatasync() to enforce the storage order among
the writes to the VM disk image [7]. SQLite uses
fdatasync() to control the storage order between the
undo-log and the journal header and between the up-
dated database node and the commit block [37]. In a sin-
gle insert transaction, SQLite calls fdatasync() four
times, three of which are to control the storage order. In
these cases, fdatabarrier() can be used in place of
fdatasync(). In some modern applications, e.g. mail
server [62] or OLTP, fsync() accounts for the dominant
fraction of IO. In TPC-C workload, 90% of IOs are cre-
ated by fsync() [51]. With improved fsync() of Bar-
rierFS, the performance of the application can increase
significantly. Some applications prefer to trade the dura-
bility and the freshness of the result for the performance
and scalability of the operation [12, 17]. One can replace
all fsync() and fdatasync() with ordering guaran-
tee counterparts, fbarrier() and fdatabarrier(),
respectively, in these applications.

6 Experiment
We implement a barrier-enabled IO stack on three dif-
ferent platforms, enterprise server (12 cores, Linux
3.10.61), PC server (4 cores, Linux 3.10.61) and smart-
phone (Galaxy S6, Android 5.0.2, Linux 3.10). We test
three storage devices: 843TN (SATA 3.0, QD2=32, 8
channels, supercap), 850PRO (SATA 3.0, QD=32, 8
channels), and mobile storage (UFS 2.0, QD=16, single
channel). We compare the BarrierFS against EXT4 and
OptFS [9]. We refer to each of these as supercap-SSD,
plain-SSD, and UFS, respectively. We implement barrier
write command in UFS device. In plain-SSD and super-
cap SSD, we assume that the performance overhead of
barrier write is 5% and none, repsectively.

2QD: queue depth

 0

 20

 40

 60

 80

 100

plain-SSD supercap-SSD UFS
 0
 4
 8
 12
 16
 20
 24
 28
 32

IO
P

S
 (

X
1

0

)
3

Q
u

e
u

e
 D

e
p

th

XnF
X

B
P

0.170.02

0.80

30.7 29.6

0.51

0.84

30.8
29.5

0.63

14.8

7.03

Figure 9: 4KB Randwom Write; XnF: write() fol-
lowed by fdatasync(), X: write() followed by
fdatasync()(no-barrier option), B: write() fol-
lowed by fdatabarrier(), P: orderless write()

 0
 8

 16
 24
 32

 0 0.05 0.1 0.15 0.2

Q
D

time (sec)

(a) Wait-on-Transfer, plain SSD

 0
 8

 16
 24
 32

 0 0.05 0.1 0.15 0.2

Q
D

time (sec)

(b) Barrier Write, plain SSD

 0
 4
 8

 12
 16

 0.2 0.25 0.3 0.35 0.4

Q
D

time (sec)

(c) Wait-on-Transfer, UFS

 0
 4
 8

 12
 16

 0.2 0.25 0.3 0.35 0.4

Q
D

time (sec)

(d) Barrier Write, UFS

Figure 10: Queue Depth, 4KB Random Write

6.1 Order-Preserving Block Layer
We examine the performance of 4 KByte random write
with different ways of enforcing the storage order: P
(orderless write [i.e. plain buffered write]), B (barrier
write), X (Wait-on-Transfer) and XnF (Transfer-and-
Flush). Fig. 9 illustrates the result.

The overhead of Transfer-and-Flush is severe. With
Transfer-and-Flush, the IO performances of the ordered
write are 0.5% and 10% of orderless write in plain-SSD
and UFS, respectively. In supercap SSD, the performance
overhead is less significant, but is still considerable; the
performance of the ordered write is 35% of the orderless
write in UFS. The overhead of DMA transfer is signifi-
cant. When we interleave the write requests with DMA
transfer, the IO performance is less than 40% of the or-
derless write in each of the three storage devices.

The overhead of barrier write is negligible. When us-
ing a barrier write, the ordered write exhibits 90% perfor-
mance of the orderless write in plain-SSD and super-cap
SSD. For UFS, it exhibits 80% performance of the order-
less write. The barrier write drives the queue to its maxi-
mum in all three Flash storages. The storage performance
is closely related to the command queue utilization [33].
In Wait-on-Transfer, the queue depth never goes beyond
one (Fig. 10(a) and Fig. 10(c)). In barrier write, the queue
depth grows near to its maximum in all storage devices
(Fig. 10(b) and Fig. 10(d)).

220 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 1

 2

 3

plain-SSD supercap-SSD UFS

N
o

.
o

f
C

tx

EXT4-DR BFS-DR EXT4-OD BFS-OD

2.001.98

1.02

0.12

2.00

1.32
1.01

0.16

2.001.99

1.01

0.21

Figure 11: Average Number of Context Switches, EXT4-
DR: fsync(), BFS-DR: fsync(), EXT-OD: fsync()
with no-barrier, BFS-OD: fbarrier(), ‘DR’ = dura-
bility guarantee, ‘OD’ = ordering guarantee, ‘EXT4-OD’
guarantees only the transfer order, but not storage order.

6.2 Filesystem Journaling
We examine the latency, the number of context switches
and the queue depth in filesystem journaling in EXT4
and BarrierFS. We use Mobibench [26]. For latency,
we perform 4 KByte allocating write() followed by
fsync(). With this, an fsync() always finds the up-
dated metadata to journal and the fsync() latency prop-
erly represents the time to commit a journal transaction.
For context switch and queue depth, we use 4 KByte
non-allocating random write followed by different syn-
chronization primitives.

Latency: In plain-SSD and supercap-SSD, the average
fsync() latency decreases by 40% when we use Barri-
erFS against when we use EXT4 (Table 2). In UFS, the
fsync() latency decreases by 60% in BarrierFS com-
pared against EXT4. UFS experiences more significant
reduction in fsync() latency than the other SSDs do.

BarrierFS makes the fsync() latency less variable.
In supercap-SSD and UFS, the fsync() latencies at
the 99.99th percentile are 30× of the average fsync()

latency (Table 2). In BarrierFS, the tail latencies at
99.99th percentile decrease by 50%, 20%, and 70%
in UFS, plain-SSD, and supercap-SSD, respectively,
against EXT4.

(%) UFS plain-SSD supercap-SSD
EXT4 BFS EXT4 BFS EXT4 BFS

µ 1.29 0.51 5.95 3.52 0.15 0.09
Median 1.20 0.44 5.43 3.01 0.15 0.09

99th 4.15 3.51 11.41 8.96 0.16 0.10
99.9th 22.83 9.02 16.09 9.30 0.28 0.24

99.99th 33.10 17.60 17.26 14.19 4.14 1.35

Table 1: fsync() latency statistics (msec)

Context Switches: We examine the number of ap-
plication level context switches in different journaling
modes (Fig. 11). In EXT4, fsync() wakes up the caller
twice: after D is transferred and after the journal transac-
tion is made durable(EXT4-DR). This applies to all three
storages. In BarrierFS, the number of context switches
in an fsync() varies subject to the storage device. In
UFS and supercap SSD, fsync() of BarrierFS wakes

 0

 4

 8

 12

 16

 0 0.2 0.4 0.6 0.8

Q
D

time (msec)

fsync()
 start

 next

fsync()

(a) Durability Guarantee

 0

 4

 8

 12

 16

 0 0.2 0.4 0.6 0.8

Q
D

time (msec)

dispatch

complete

(b) Ordering Guarantee

Figure 12: Queue Depth in BarrierFS: fsync() and
fbarrier()

up the caller twice, as in the case of fsync() of EXT4.
However, the reasons are entirely different. In UFS and
supercap-SSD, the intervals between the successive write
requests are much smaller than the timer interrupt inter-
val due to small flush latency. A write() request rarely
finds the updated metadata and an fsync() often resorts
to an fdatasync(). fdatasync() wakes up the caller
(the application thread) twice in BarrierFS: after transfer-
ring D and after flush completes. In plain SSD, fsync()
of BarrierFS wakes up the caller once: after the trans-
action is made durable. The plain-SSD uses TLC Flash.
The interval between the successive write()s is longer
than the timer interrupt interval. The application thread
blocks after triggering the journal commit and and wakes
up after the journal commit operation completes.

BFS-OD manifests the benefits of BarrierFS. The
fbarrier() rarely finds updated metadata since it re-
turns quickly and as a result, most fbarrier() calls are
serviced as fdatabarrier(). fdatabarrier() does
not block the caller and therefore does not accompany
any involuntary context switch.

Command Queue Depth: In BarrierFS, the host dis-
patches the write requests for D, JD, and JC in tan-
dem. Ideally, there can be as many as three commands
in the queue. We observe only up to two commands in
the queue in servicing an fsync() (Fig. 12(a)). This
is due to the context switch between the application
thread and the commit thread. Writing D and writing
JD are 160 µsec apart, but it takes 70µsec to service
the write request for D. In fbarrier(), BarrierFS suc-
cessfully drives the command queue to its full capacity
(Fig. 12(b)).

Throughput and Scalability: The filesystem journal-
ing is a main obstacle against building an manycore scal-
able system [44]. We examine the throughput of filesys-
tem journaling in EXT4 and BarrierFS with a varying
number of CPU cores in a 12 core machine. We use mod-
ified DWSL workload in fxmark [45]; each thread per-
forms a 4-Kbyte allocating write followed by fsync().
Each thread operates on its own file. BarrierFS exhibits
much more scalable behavior than EXT4 (Fig. 13). In
plain-SSD, BarrierFS exhibits 2× performance against
EXT4 in all numbers of cores (Fig. 13(a)). In supercap-

USENIX Association 16th USENIX Conference on File and Storage Technologies 221

SSD, the performance saturates with six cores in both
EXT4 and BarrierFS. BarrierFS exhibits 1.3× journal-
ing throughput against EXT4 (Fig. 13(b)).

6.3 Server Workload
We run two workloads: varmail [71] and OLTP-
insert [34]. OLTP-insert workload uses MySQL
DBMS [47]. varmail is a metadata-intensive workload.
It is known for the heavy fsync() traffic. There are total
four combinations of the workload and the SSD (plain-
SSD and supercap-SSD) pair. For each combination,
we examine the benchmark performances for durability
guarantee and ordering guarantee, respectively. For dura-
bility guarantee, we leave the application intact and use
two filesystems, the EXT4 and the BarrierFS (EXT4-DR
and BFS-DR). The objective of this experiment is to
examine the efficiency of fsync() implementations
in EXT4 and BarrierFS, respectively. For ordering
guarantee, we test three filesystems, OptFS, EXT4 and
BarrierFS. In OptFS and BarrierFS, we use osync()

and fdatabarrier() in place of fsync(), respec-
tively. In EXT4, we use nobarrier mount option. This
experiment examines the benefit of Wait-on-Dispatch.
Fig. 14 illustrates the result.

Let us examine the performances of varmail work-
load. In plain-SSD, BFS-DR brings 60% performance
gain against EXT4-DR in varmail workload. In
supercap-SSD, BFS-DR brings 10% performance gain
against EXT4-DR. The experimental result of supercap-
SSD case clearly shows the importance of eliminating
the Wait-on-Transfer overhead in controlling the stor-
age order. The benefit of BarrierFS manifests itself when
we relax the durability guarantee. In ordering guaran-
tee, BarrierFS achieves 80% performance gain against
EXT4-OD. Compared to the baseline, EXT4-DR, Bar-
rierFS achieves 36× performance (1.0 vs. 35.6 IOPS)
when we enforce only ordering guarantee with BarrierFS
(BFS-OD) in plain SSD .

In MySQL, BFS-OD prevails EXT4-OD by 12%.
Compared to the baseline, EXT4-DR, BarrierFS
achieves 43× performance (1.3 vs. 56.0 IOPS) when
we enforce only ordering guarantee with BarrierFS
(BFS-OD) in plain SSD.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12

o
p

s
/s

e
c
 (

X
1

03
)

#core

EXT4-DR BFS-DR

(a) plain-SSD

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

o
p

s
/s

e
c
 (

X
1

03)

#core

EXT4-DR BFS-DR

(b) supercap-SSD

Figure 13: fxmark: scalability of filesystem journaling

6.4 Mobile Workload: SQLite
We examine the performances of the libarary based em-
bedded DBMS, SQLite, under the durability guarantee
and the ordering guarantee, respectively. We examine
two journal modes, PERSIST and WAL. We use ’Full
Sync’ and the WAL file size is set to 1,000 pages, both of
which are default settings [58]. In a single insert trans-
action, SQLite calls fdatasync() four times. Three of
them are to control the storage order and the last one is
for making the result of a transaction durable.

For durability guarantee mode, We replace the first
three fdatasync()’s with fdatabarrier()’s and
leave the last one. In mobile storage, BarrierFS achieves
75% performance improvement against EXT4 in de-
fault PERSIST journal mode under durability guar-
antee (Fig. 15). In ordering guarantee, we replace
all four fdatasync()’s with fdatabarrier()’s. In
UFS, SQLite exhibits 2.8× performance gain in BFS-
OD against EXT4-DR. The benefit of eliminating the
Transfer-and-Flush becomes more dramatic as the stor-
age controller employs higher degree of parallelism. In
plain-SSD, SQLite exhibits 73× performance gain in
BFS-OD against EXT4-DR (73 vs. 5300 ins/sec).

Notes on OptFS: OptFS does not perform well in our
experiment (Fig. 14 and Fig. 15), unlike that in [9]. We
find two reasons. First, the benefit of delayed checkpoint
and selective data mode journaling becomes marginal in
Flash storage. Second, in Flash storage (i.e. the storage
with short IO latency) the delayed checkpoint and the
selective data mode journaling negatively interact with
each other and bring substantial increase in the memory
pressure. The increased memory pressure severely im-
pacts the performance of osync(). The osync() scans
all dirty pages for the checkpoint at its beginning. Selec-
tive data mode journaling inserts the updated data blocks
to the journal transaction. Delayed checkpoint prohibits
the data blocks in the journal transaction from being
checkpointed until the associated ADN arrives. As a re-
sult, osync() checkpoints only a small fraction of dirty
pages each time it is called. The dirty pages in the jour-
nal transactions are scanned multiple times before they
are checkpointed. The osync() shows particularly poor
performance in OLTP workload (Fig. 14), where most

 0

 10

 20

 30

 40

 50

 60

Varmail OLTP-insert Varmail OLTP-insert

EXT4-DR BFS-DR OptFS EXT4-OD BFS-OD

plain-SSD supercap-SSD

1.01.6

19.4 21.1

35.8

1.31.3

(X10)
3

7.0

51.9
56.0

18.6
21.7

18.3

36.3

28.9 29.3
20.3

7.9

33.3
39.2

Figure 14: varmail (ops/s) and OLTP-insert (Tx/s)

222 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.5

 1

 1.5

 2

PERSIST WAL

T
x
/s

 (
X

1
0

)

3

0.3
0.4

EXT4-DR BFS-DR

0.6
0.7

0.6 0.6

1.3
1.4

(a) UFS

 0

 3

 6

 9

 12

PERSIST WAL

T
x
/s

 (
X

1
0

)

3

 0.1 0.3
 0.8

 3.5

EXT4-ODOptFS BFS-OD

 5.3

0.30.3

0.9

6.5

9.1

(b) plain-SSD

Figure 15: SQLite Performance: ins/sec, 100K inserts

updates are subject to data mode journaling.

6.5 Crash Consistency
We test if the BarrierFS recovers correctly against the
unexpected system failure. We use CrashMonkey for
the test [40]. We modify CrashMonkey to understand
the barrier write so that the CrashMonkey can prop-
erly delimit an epoch when it encounters a barrier
write. We run two workloads; rename root to sub and
create delete. For durability guarantee (fsync()),
BarrierFS passes all 1,000 test cases as EXT4 does in
both workloads. For ordering guarantee (fsync() in
EXT4-OD and fbarrier() in BarrierFS), BarrierFS
passes all 1,000 test cases whereas EXT4-OD fails in
some cases. This is not surprising since EXT4 with
nobarrier option guarantees neither the transfer orders
nor the persist orders in committing the filesystem jour-
nal transaction.

Scenario - EXT4-DR BFS-DR EXT4-OD BFS-OD

A
clean 1000 1000 547 1000
fixed 0 0 0 0
failed 0 0 453 0

B
clean 1000 1000 109 1000
fixed 0 0 891 0
failed 0 0 0 0

Table 2: Crash Consistency Test of EXT4 and Barri-
erFS, Scenario A: rename root to sub, Scenario B:
create delete

7 Related Work
Featherstitch [20] proposes a programming model to
specify the set of requests that can be scheduled to-
gether, patchgroup, and the ordering dependency be-
tween them, pg depend(). While xsyncfs [49] miti-
gates the overhead of fsync(), it needs to maintain com-
plex causal dependencies among buffered updates. NoFS
(no order file system) [10] introduces “backpointer” to
eliminate the Transfer-and-Flush based ordering in the
file system. It does not support transaction.

A few works proposed to use multiple running trans-
actions or multiple committing transactions to circum-
vent the Transfer-and-Flush overhead in filesystem jour-
naling [38, 29, 55]. IceFS [38] allocates separate running
transaction for each container. SpanFS [29] splits a jour-

nal region into multiple partitions and allocates commit-
ting transactions for each partition. CCFS [55] allocates
separate running transactions for individual threads. In
these systems, each journaling session still relies on the
Transfer-and-Flush mechanism.

A number of file systems provide a multi-block atomic
write feature [18, 35, 54, 68] to relieve applications from
the overhead of logging and journaling. These file sys-
tems internally use the Transfer-and-Flush mechanism
to enforce the storage order in writing the data blocks
and the associated metadata blocks. Exploiting the order-
preserving block device layer, these filesystems can use
Wait-on-Dispatch mechanism to enforce the storage or-
der between the data blocks and the metadata blocks and
can be saved from the Transfer-and-Flush overhead.

8 Conclusion
The Flash storage provides the cache barrier command to
allow the host to control the persist order. HDD cannot
provide this feature. It is time for designing the new IO
stack for the Flash storage that is free from the unnec-
essary constraint inherited from the old legacy that the
host cannot control the persist order. We built a barrier-
enabled IO stack based upon the foundation that the
host can control the persist order. In the barrier-enabled
IO stack, the host can dispense with Transfer-and-Flush
overhead in controlling the storage order and can suc-
cessfully saturate the underlying Flash storage. We like
to conclude this work with two key observations. First,
the “cache barrier” command is a necessity rather than
a luxury. It should be supported in all Flash storage
products ranging from the mobile storage to the high-
performance Flash storage with supercap. Second, the
block device layer should be designed to eliminate the
DMA transfer overhead in controlling the storage order.
As the Flash storage becomes quicker, the relative cost
of tardy “Wait-on-Transfer” will become more substan-
tial. To saturate the Flash storage, the host should be able
to control the transfer order without interleaving the re-
quests with DMA transfer.

We hope that this work provides a useful foundation
in designing a new IO stack for the Flash storage3.

9 Acknowledgement
We would like to thank our shepherd Vijay Chi-
dambaram and the anonymous reviewers for their valu-
able feedback. We also would like to thank Jayashree
Mohan for her help in CrashMonkey. This work is
funded by Basic Research Lab Program (NRF, No.
2017R1A4A1015498), the BK21 plus (NRF), ICT R&D
program (IITP, R7117-16-0232) and Samsung Elec.

3The source code for barrier enabled IO stack is available at https:
//github.com/ESOS-Lab/barrieriostack.

USENIX Association 16th USENIX Conference on File and Storage Technologies 223

https://github.com/ESOS-Lab/barrieriostack
https://github.com/ESOS-Lab/barrieriostack

References

[1] emmc5.1 solution in sk hynix. https://www.skhynix.
com/kor/product/nandEMMC.jsp.

[2] Toshiba expands line-up of e-mmc version 5.1 com-
pliant embedded nand flash memory modules. http:

//toshiba.semicon-storage.com/us/company/

taec/news/2015/03/memory-20150323-1.html.

[3] AXBOE, J. Linux block IO present and future. In Proc. of
Ottawa Linux Symposium (Ottawa, Ontario, Canada, Jul
2004).

[4] BEST, S. JFS Overview. http://jfs.sourceforge.

net/project/pub/jfs.pdf, 2000.

[5] CHANG, Y.-M., CHANG, Y.-H., KUO, T.-W., LI, Y.-
C., AND LI, H.-P. Achieving SLC Performance with
MLC Flash Memory. In Proc. of DAC 2015 (San Fran-
cisco, CA, USA, 2015).

[6] CHEN, F., LEE, R., AND ZHANG, X. Essential roles
of exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In Proc.
of IEEE HPCA 2011 (San Antonio, TX, USA, Feb 2011).

[7] CHEN, Q., LIANG, L., XIA, Y., CHEN, H., AND KIM,
H. Mitigating sync amplification for copy-on-write vir-
tual disk. In Proc. of USENIX FAST 2016 (Santa Clara,
CA, 2016), pp. 241–247.

[8] CHIDAMBARAM, V. Orderless and Eventually
Durable File Systems. PhD thesis, UNIVIRSITY OF
WISCONSIN–MADISON, 2015.

[9] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Optimistic Crash
Consistency. In Proc. of ACM SOSP 2013 (Farming-
ton, PA, USA, Nov 2013). https://github.com/

utsaslab/optfs.

[10] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Consistency
Without Ordering. In Proc. of USENIX FAST 2012 (San
Jose, CA, USA, Feb 2012).

[11] CHO, Y. S., PARK, I. H., YOON, S. Y., LEE, N. H.,
JOO, S. H., SONG, K.-W., CHOI, K., HAN, J.-M.,
KYUNG, K. H., AND JUN, Y.-H. Adaptive multi-pulse
program scheme based on tunneling speed classification
for next generation multi-bit/cell NAND flash. IEEE
Journal of Solid-State Circuits(JSSC) 48, 4 (2013), 948–
959.

[12] CIPAR, J., GANGER, G., KEETON, K., MORREY III,
C. B., SOULES, C. A., AND VEITCH, A. LazyBase:
trading freshness for performance in a scalable database.
In Proc. of ACM EuroSys 2012 (Bern, Switzerland, Apr
2012).

[13] COBB, D., AND HUFFMAN, A. NVM express and the
PCI express SSD Revolution. In Proc. of Intel Developer
Forum (San Francisco, CA, USA, 2012).

[14] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK,
E., LEE, B., BURGER, D., AND COETZEE, D. Better I/O
through byte-addressable, persistent memory. In Proc. of
ACM SOSP 2009 (Big Sky, MT, USA, Oct 2009).

[15] CORBET, J. Barriers and journaling filesystems. http:

//lwn.net/Articles/283161/, August 2010.

[16] CORBET, J. The end of block barriers. https://lwn.

net/Articles/400541/, August 2010.

[17] CUI, H., CIPAR, J., HO, Q., KIM, J. K., LEE, S., KU-
MAR, A., WEI, J., DAI, W., GANGER, G. R., GIBBONS,
P. B., ET AL. Exploiting bounded staleness to speed
up big data analytics. In Proc. of USENIX ATC 2014
(Philadelihia, PA, USA, Jun 2014).

[18] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS,
R., AND STOICA, I. Wide-area Cooperative Storage with
CFS. In Proc. of ACM SOSP 2001 (Banff, Canada, Oct
2001).

[19] DEES, B. Native command queuing-advanced perfor-
mance in desktop storage. IEEE Potentials Magazine 24,
4 (2005), 4–7.

[20] FROST, C., MAMMARELLA, M., KOHLER, E., DE LOS

REYES, A., HOVSEPIAN, S., MATSUOKA, A., AND

ZHANG, L. Generalized File System Dependencies. In
Proc. of ACM SOSP 2007 (Stevenson, WA, USA, Oct
2007).

[21] GIM, J., AND WON, Y. Extract and infer quickly: Ob-
taining sector geometry of modern hard disk drives. ACM
Transactions on Storage (TOS) 6, 2 (2010).

[22] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The
bleak future of nand flash memory. In Proc.of USENIX
FAST 2012 (Berkeley, CA, USA, 2012).

[23] GUO, J., YANG, J., ZHANG, Y., AND CHEN, Y. Low
cost power failure protection for mlc nand flash storage
systems with pram/dram hybrid buffer. In Proc. of DATE
2013 (Alpexpo Grenoble, France, 2013), pp. 859–864.

[24] HELLWIG, C. Patchwork block: update documentation
for req flush / req fua. https://patchwork.kernel.

org/patch/134161/.

[25] HELM, M., PARK, J.-K., GHALAM, A., GUO, J., WAN

HA, C., HU, C., KIM, H., KAVALIPURAPU, K., LEE,
E., MOHAMMADZADEH, A., ET AL. 19.1 A 128Gb
MLC NAND-Flash device using 16nm planar cell. In
Proc. of IEEE ISSCC 2014 (San Francisco, CA, USA, Feb
2014).

[26] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y.
I/O Stack Optimization for Smartphones. In Proc. of
USENIX ATC 2013 (San Jose, CA, USA, Jun 2013).

[27] JESD220C, J. S. Universal Flash Storage(UFS) Version
2.1.

[28] JESD84-B51, J. S. Embedded Multi-Media
Card(eMMC) Electrical Standard (5.1).

[29] KANG, J., ZHANG, B., WO, T., YU, W., DU, L., MA,
S., AND HUAI, J. SpanFS: A Scalable File System on
Fast Storage Devices. In Proc. of USENIX ATC 2015
(Santa Clara, CA, USA, Jul 2015).

[30] KANG, W.-H., LEE, S.-W., MOON, B., OH, G.-H.,
AND MIN, C. X-FTL: Transactional FTL for SQLite
Databases. In Proc. of ACM SIGMOD 2013 (New York,
NY, USA, Jun 2013).

224 16th USENIX Conference on File and Storage Technologies USENIX Association

https://www.skhynix.com/kor/product/nandEMMC.jsp
https://www.skhynix.com/kor/product/nandEMMC.jsp
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://jfs.sourceforge.net/project/pub/jfs.pdf
http://jfs.sourceforge.net/project/pub/jfs.pdf
https://github.com/utsaslab/optfs
https://github.com/utsaslab/optfs
http://lwn.net/Articles/283161/
http://lwn.net/Articles/283161/
https://lwn.net/Articles/400541/
https://lwn.net/Articles/400541/
https://patchwork.kernel.org/patch/134161/
https://patchwork.kernel.org/patch/134161/

[31] KESAVAN, R., SINGH, R., GRUSECKI, T., AND PATEL,
Y. Algorithms and data structures for efficient free space
reclamation in wafl. In Proc. of USENIX FAST 2017
(Santa Clara, CA, 2017), USENIX Association, pp. 1–14.

[32] KIM, H.-J., AND KIM, J.-S. Tuning the ext4 filesys-
tem performance for android-based smartphones. In Proc.
of ICFCE 2011 (2011), S. Sambath and E. Zhu, Eds.,
vol. 133 of Advances in Intelligent and Soft Computing,
Springer, pp. 745–752.

[33] KIM, Y. An empirical study of redundant array of inde-
pendent solid-state drives (RAIS). Springer Cluster Com-
puting 18, 2 (2015), 963–977.

[34] KOPYTOV, A. SysBench manual. http:

//imysql.com/wp-content/uploads/2014/10/

sysbench-manual.pdf, 2004.

[35] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A
New File System for Flash Storage. In Proc. of USENIX
FAST 2015 (Santa Clara, CA, USA, Feb 2015).

[36] LEE, S., LEE, J.-Y., PARK, I.-H., PARK, J., YUN, S.-
W., KIM, M.-S., LEE, J.-H., KIM, M., LEE, K., KIM,
T., ET AL. 7.5 A 128Gb 2b/cell NAND flash memory in
14nm technology with tPROG=640us and 800MB/s I/O
rate. In Proc. of IEEE ISSCC 2016 (San Francisco, CA,
USA, Feb 2016).

[37] LEE, W., LEE, K., SON, H., KIM, W.-H., NAM, B.,
AND WON, Y. WALDIO: eliminating the filesystem jour-
naling in resolving the journaling of journal anomaly. In
Proc. of USENIX ATC 2015 (Santa Clara, CA, USA, Jul
2015).

[38] LU, L., ZHANG, Y., DO, T., AL-KISWANY, S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Physical Disentanglement in a Container-Based
File System. In Proc. of USENIX OSDI 2014 (Broom-
field, CO, USA, Oct 2014).

[39] LU, Y., SHU, J., GUO, J., LI, S., AND MUTLU, O.
Lighttx: A lightweight transactional design in flash-based
ssds to support flexible transactions. In Proc. of IEEE
ICCD 2013.

[40] MARTINEZ, A., AND CHIDAMBARAM, V. Crashmon-
key: A framework to automatically test file-system crash
consistency. In 9th USENIX Workshop on Hot Top-
ics in Storage and File Systems (HotStorage 17) (Santa
Clara, CA, 2017). https://github.com/utsaslab/

crashmonkey.

[41] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER,
A., TOMAS, A., AND VIVIER, L. The new ext4 filesys-
tem: current status and future plans. In Proc. of Linux
symposium 2007 (Ottawa, Ontario, Canada, Jun 2007).

[42] MCKUSICK, M. K., GANGER, G. R., ET AL. Soft Up-
dates: A Technique for Eliminating Most Synchronous
Writes in the Fast Filesystem. In Proc. of USENIX ATC
1999 (Monterey, CA, USA, Jun 1999).

[43] MIN, C., KANG, W.-H., KIM, T., LEE, S.-W., AND

EOM, Y. I. Lightweight application-level crash consis-
tency on transactional flash storage. In Proc. of USENIX
ATC 2015 (Santa Clara, CA, USA, Jul 2015).

[44] MIN, C., KASHYAP, S., MAASS, S., AND KIM, T. Un-
derstanding Manycore Scalability of File Systems. In
Proc. of USENIX ATC 2016 (Denver, CO, USA, Jun
2016).

[45] MIN, C., KASHYAP, S., MAASS, S., AND KIM, T. Un-
derstanding manycore scalability of file systems. In
Proc.of USENIX ATC 2016 (Denver, CO, 2016), pp. 71–
85.

[46] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH,
H., AND SCHWARZ, P. ARIES: a transaction recov-
ery method supporting fine-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Transac-
tions on Database Systems(TODS) 17, 1 (1992), 94–162.

[47] MYSQL, A. Mysql 5.1 reference manual. Sun Microsys-
tems (2007).

[48] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A.
Write Off-loading: Practical Power Management for En-
terprise Storage. ACM Transactions on Storage(TOS) 4,
3 (2008), 10:1–10:23.

[49] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN,
P. M., AND FLINN, J. Rethink the Sync. In Proc. of
USENIX OSDI 2006 (Seattle, WA, USA, Nov 2006).

[50] OKUN, M., AND BARAK, A. Atomic writes for data in-
tegrity and consistency in shared storage devices for clus-
ters. In Proc. of ICA3PP 2002 (Beijing, China, Oct 2002).

[51] OU, J., SHU, J., AND LU, Y. A high performance file
system for non-volatile main memory. In Proc. of ACM
EuroSys 2016 (London, UK, Apr 2016).

[52] OUYANG, X., NELLANS, D., WIPFEL, R., FLYNN, D.,
AND PANDA, D. K. Beyond block I/O: Rethinking tra-
ditional storage primitives. In Proc. of IEEE HPCA 2011
(San Antonio, TX, USA, Feb 2011).

[53] PALANCA, S., FISCHER, S. A., MAIYURAN, S., AND

QAWAMI, S. Mfence and lfence micro-architectural im-
plementation method and system, July 5 2016. US Patent
9,383,998.

[54] PARK, S., KELLY, T., AND SHEN, K. Failure-atomic
Msync(): A Simple and Efficient Mechanism for Preserv-
ing the Integrity of Durable Data. In Proc. of ACM Eu-
roSys 2013 (Prague, Czech Republic, Apr 2013).

[55] PILLAI, T. S., ALAGAPPAN, R., LU, L., CHI-
DAMBARAM, V., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Application crash consistency
and performance with ccfs. In Proc.of USENIX FAST
2017 (Santa Clara, CA, 2017), pp. 181–196.

[56] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N.,
AGRAWAL, N., GUNAWI, H. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. IRON File Sys-
tems. In Proc. of ACM SOSP 2005 (Brighton, UK, Oct
2005).

[57] PRABHAKARAN, V., RODEHEFFER, T. L., AND ZHOU,
L. Transactional flash. In Proc. of USENIX OSDI 2008
(Berkeley, CA, USA, 2008), pp. 147–160.

USENIX Association 16th USENIX Conference on File and Storage Technologies 225

http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://github.com/utsaslab/crashmonkey
https://github.com/utsaslab/crashmonkey

[58] PUROHITH, D., MOHAN, J., AND CHIDAMBARAM, V.
The dangers and complexities of sqlite benchmarking. In
Proceedings of the 8th Asia-Pacific Workshop on Systems
(New York, NY, USA, 2017), APSys ’17, ACM, pp. 3:1–
3:6.

[59] REV, H. SCSI Commands Reference Manual.
http://www.seagate.com/files/staticfiles/

support/docs/manual/Interface%20manuals/

100293068h.pdf/, Jul 2014. Seagate.

[60] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS) 9, 3 (2013).

[61] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS) 10, 1 (Feb.
1992), 26–52.

[62] SEHGAL, P., TARASOV, V., AND ZADOK, E. Evaluat-
ing Performance and Energy in File System Server Work-
loads. In Proc. of USENIX FAST 2010 (San Jose, CA,
USA, Feb 2010).

[63] SELTZER, M. I., GANGER, G. R., MCKUSICK, M. K.,
SMITH, K. A., SOULES, C. A., AND STEIN, C. A. Jour-
naling Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems. In Proc. of USENIX ATC 2000
(San Diego, CA, USA, Jun 2000).

[64] SHILAMKAR, G. Journal Checksums. http:

//wiki.old.lustre.org/images/4/44/Journal-\

checksums.pdf, May 2007.

[65] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON,
C., NISHIMOTO, M., AND PECK, G. Scalability in the
xfs file system. In Proc. of USENIX ATC 1996 (Berkeley,
CA, USA, 1996).

[66] TS’O, T. Using Cache barrier in liue of REQ FLUSH.
http://www.spinics.net/lists/linux-ext4/

msg49018.html, September 2015.

[67] TWEEDIE, S. C. Journaling the linux ext2fs filesystem.
In Proc.of The Fourth Annual Linux Expo (Durham, NC,
USA, May 1998).

[68] VERMA, R., MENDEZ, A. A., PARK, S., MANNAR-
SWAMY, S., KELLY, T., AND MORREY, C. Failure-
Atomic Updates of Application Data in a Linux File Sys-
tem. In Proc. of USENIX FAST 2015 (Santa Clara, CA,
USA, Feb 2015).

[69] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P.,
KIRUBANANDAM, J., ALVISI, L., AND DAHLIN, M.
Robustness in the salus scalable block store. In Proceed-
ings of the 10th USENIX Conference on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA,
2013), nsdi’13, USENIX Association, pp. 357–370.

[70] WEISS, Z., SUBRAMANIAN, S., SUNDARARAMAN, S.,
TALAGALA, N., ARPACI-DUSSEAU, A., AND ARPACI-
DUSSEAU, R. ANViL: Advanced Virtualization for Mod-
ern Non-Volatile Memory Devices. In Proc. of USENIX
FAST 2015 (Santa Clara, CA, USA, Feb 2015).

[71] WILSON, A. The new and improved FileBench. In Proc.
of USENIX FAST 2008 (San Jose, CA, USA, Feb 2008).

[72] XU, Q., SIYAMWALA, H., GHOSH, M., SURI, T.,
AWASTHI, M., GUZ, Z., SHAYESTEH, A., AND BAL-
AKRISHNAN, V. Performance Analysis of NVMe SSDs
and Their Implication on Real World Databases. In Proc.
of ACM SYSTOR 2015 (Haifa, Israel, May 2015).

[73] Y. PARK, S., SEO, E., SHIN, J. Y., MAENG, S., AND

LEE, J. Exploiting Internal Parallelism of Flash-based
SSDs. IEEE Computer Architecture Letters(CAL) 9, 1
(2010), 9–12.

[74] ZHANG, C., WANG, Y., WANG, T., CHEN, R., LIU,
D., AND SHAO, Z. Deterministic crash recovery
for NAND flash based storage systems. In Proc. of
ACM/EDAC/IEEE DAC 2014 (San Francisco, CA, USA,
Jun 2014).

226 16th USENIX Conference on File and Storage Technologies USENIX Association

http://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068h.pdf/
http://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068h.pdf/
http://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068h.pdf/
http://wiki.old.lustre.org/images/4/44/Journal-\checksums.pdf
http://wiki.old.lustre.org/images/4/44/Journal-\checksums.pdf
http://wiki.old.lustre.org/images/4/44/Journal-\checksums.pdf
http://www.spinics.net/lists/linux-ext4/msg49018.html
http://www.spinics.net/lists/linux-ext4/msg49018.html

Ø·¹¸óÐ»®º±®³¿²½» Ì®¿²¿½¬·±² Ð®±½»·²¹ ·² Ö±«®²¿´·²¹ Ú·´» Í§¬»³

Ç±²¹»±µ Í±²ô Í«²¹¹±² Õ·³ô Ø»±² Ç±«²¹ Ç»±³ô ¿²¼ Ø§«½µ Ø¿²�

Í»±«´ Ò¿¬·±²¿´ Ë²·ª»®·¬§ô �Ü±²¹¼«µ É±³»²ù Ë²·ª»®·¬§

ß¾¬®¿½¬

°´·½¿¬·±² ¾§ µ»»°·²¹ ¬®¿½µ ±º «²½±³³·¬¬»¼ ½¸¿²¹»

·² ¬¸» ¶±«®²¿´ ¿®»¿ ø¶±«®²¿´·²¹÷ ¿²¼ ©®·¬·²¹ ½±³³·¬¬»¼

½¸¿²¹» ¬± ¬¸»·® ±®·¹·²¿´ ¿®»¿ ¿¬ ¿ ½»®¬¿·² °±·²¬ ø½¸»½µó

°±·²¬·²¹÷ò Ì¸»§ ¹»²»®¿´´§ «» ½±¿®»ó¹®¿·²»¼ ´±½µ·²¹ ¬±

¿½½» ¸¿®»¼ ¼¿¬¿ ¬®«½¬«®» ¿²¼ °»®º±®³ ×ñÑ ±°»®¿¬·±²

¬»³ ±º¬»² º¿½» ¬¸» °®±¾´»³ ±º ´±½µ ½±²¬»²¬·±² ¿²¼ «²ó

¼»®«¬·´·¦¿¬·±² ±º ×ñÑ ¾¿²¼©·¼¬¸ ±² ³«´¬·ó½±®» ©·¬¸ ¸·¹¸ó

°»®º±®³¿²½» ¬±®¿¹»ò Ì± ¿¼¼®» ¬¸»» ·«»ô ©» ¼»ó

·¹² ¶±«®²¿´·²¹ ¿²¼ ½¸»½µ°±·²¬·²¹ ½¸»³» ¬¸¿¬ »²¿¾´»

½±²½«®®»²¬ «°¼¿¬» ±² ¼¿¬¿ ¬®«½¬«®» ¿²¼ °¿®¿´´»´·¦» ×ñÑ

±°»®¿¬·±²ò É» ·³°´»³»²¬ ±«® ½¸»³» ·² ÛÈÌìñÖÞÜî

¿²¼ »ª¿´«¿¬» ¬¸»³ ±² ¿ éîó½±®» ³¿½¸·²» ©·¬¸ ¿ ¸·¹¸ó

°»®º±®³¿²½» ÒÊÓ» ÍÍÜò Ì¸» »¨°»®·³»²¬¿´ ®»«´¬ ¸±©

¾§ «° ¬± ¿¾±«¬ îòî¨ ¿²¼ ïòë¨ ½±³°¿®»¼ ¬± ¬¸» »¨·¬·²¹

°»½¬·ª»´§ò

ï ×²¬®±¼«½¬·±²

¬»³ ¸¿ª» ¿¼±°¬»¼ ¿ ¶±«®²¿´·²¹ ¬»½¸²·¯«» ¬± ¹«¿®¿²ó

¬»» ¬¸» ¿¬±³·½·¬§ ¿²¼ ¼«®¿¾·´·¬§ò Ö±«®²¿´·²¹ ´±¹ ³±¼·ó

¬·±² ¾»º±®» «°¼¿¬·²¹ ¬¸» ±®·¹·²¿´ ¿®»¿ò ßº¬»® ¬¸» ¬®¿²ó

¿½¬·±² · ½±³³·¬¬»¼ô ¬¸» ½±³³·¬¬»¼ ¬®¿²¿½¬·±² · ©®·¬ó

¬»² ·²¬± ¬¸» ±®·¹·²¿´ ¿®»¿ ¾§ ½¸»½µ°±·²¬·²¹ ø©®·¬»ó¿¸»¿¼

½®¿¸ó½±²·¬»²½§ ¬± ¿°°´·½¿¬·±² ¾§ ®»½±ª»®·²¹ ¬¸» ½±³ó

³·¬¬»¼ ¬®¿²¿½¬·±² ·² ½¿» ±º ½®¿¸» Åëô îíô îìÃò

ß´¬¸±«¹¸ ½®¿¸ó½±²·¬»²½§ · «°°±®¬»¼ «·²¹ ¶±«®ó

º¿½» ¿ °»®º±®³¿²½» ¾±¬¬´»²»½µ ±² ³«´¬·ó½±®» ¿²¼ ¸·¹¸ó

°»®º±®³¿²½» ¬±®¿¹» Åïëô ïêô îïÃò Ì¸» °»®º±®³¿²½» ¾±¬ó

¬´»²»½µ ³¿·²´§ ¿®·» º®±³ øï÷ ¼¿¬¿ ¬®«½¬«®» º±® ¬®¿²¿½ó

¬·±² °®±½»·²¹ °®±¬»½¬»¼ ¾§ ²±²ó½¿´¿¾´» ´±½µ ¿²¼ øî÷

»®·¿´·¦»¼ ×ñÑ ±°»®¿¬·±² ¾§ ¿ ·²¹´» ¬¸®»¿¼ò Ú±® »¨¿³°´»ô

·² ÛÈÌìñÖÞÜîô ³«´¬·°´» ¿°°´·½¿¬·±² ¬¸®»¿¼ ·²»®¬ ¬¸»·®

±©² ¾«ºº»® ·²¬± ¬¸» ®«²²·²¹ ¬®¿²¿½¬·±² ¾§ «·²¹ ½±¿®»ó

¹®¿·²»¼ ´±½µ·²¹ ©¸·½¸ ½¿² ²»¹¿¬·ª»´§ ¿ºº»½¬ ½¿´¿¾·´·¬§

±² ³«´¬·ó½±®»ò ×² ¿¼¼·¬·±²ô ¿ ·²¹´» ¿°°´·½¿¬·±² ¬¸®»¿¼

°»®º±®³ ½¸»½µ°±·²¬ ×ñÑ ±°»®¿¬·±² ©¸·½¸ ½¿² «²¼»®«¬·ó

´·¦» ¸·¹¸ó°»®º±®³¿²½» ¬±®¿¹»ò

Ì± ¸¿²¼´» ¬¸»» ·«»ô °®»ª·±« ¬«¼·» Åïêô îïÃ ·²ó

®·» ¿³±²¹ ¬¸» ¼±³¿·² ¿²¼ ¼»´»¹¿¬» ¿² ×ñÑ ±°»®¿¬·±² ¬±

¬¸» ½±®®»°±²¼·²¹ ¼±³¿·² ¬± ®»¼«½» ¬¸» ´±½µ ½±²¬»²¬·±²

¿²¼ »¨°´±·¬ ¬¸» ¼»ª·½» °¿®¿´´»´·³ò Ó·² »¬ ¿´ò ÅîïÃ ±¾ó

·² ³¿²§ ×ñÑó·²¬»²·ª» ¿°°´·½¿¬·±²ò Ì¸»§ ¼»·¹²»¼ ¿²¼

·³°´»³»²¬»¼ ¿ ¾»²½¸³¿®µ ¬± »ª¿´«¿¬» ¬¸» ½¿´¿¾·´·¬§ ±º

Ñ«® ¬«¼§ · ·² ´·²» ©·¬¸ ¬¸»» ¿°°®±¿½¸» Åïêô îïÃ ·²

¬»®³ ±º ·²ª»¬·¹¿¬·²¹ ¬¸» ´±½µ·²¹ ¿²¼ ×ñÑ ±°»®¿¬·±² ±º

±º ¸¿®»¼ ¼¿¬¿ ¬®«½¬«®» ¿²¼ ×ñÑ °®±½»·²¹ ·² ¬®¿²¿½ó

¬·±² °®±½»·²¹ò

×² ¬¸· °¿°»®ô ©» °®±°±» ¿ ¬®¿²¿½¬·±² °®±½»·²¹ ©·¬¸

¬©± ³¿·² ½¸»³» ¬± ¿½¸·»ª» ¸·¹¸ó°»®º±®³¿²½» ×ñÑ ¿

º±´´±©æ øï÷ É» «» ´±½µóº®»» ¼¿¬¿ ¬®«½¬«®» ¿²¼ ±°»®¿ó

¬·±² ¬± ®»¼«½» ¬¸» ´±½µ ½±²¬»²¬·±²ò Ì¸· ½¸»³» ¿´´±©

³«´¬·°´» ¬¸®»¿¼ ¬± ¿½½» ¬¸» ¼¿¬¿ ¬®«½¬«®» ø»ò¹òô ´·²µ»¼

´·¬÷ ½±²½«®®»²¬´§ò øî÷ É» °®±°±» ¿ °¿®¿´´»´ ×ñÑ ½¸»³»

¬¸¿¬ °»®º±®³ ×ñÑ ±°»®¿¬·±² ¾§ ³«´¬·°´» ¬¸®»¿¼ ·² ¿ °¿®ó

¿´´»´ ¿²¼ ½±±°»®¿¬·ª» ³¿²²»®ò Ì¸· ½¸»³» ¿´´±© ³«´¬·ó

°´» ¬¸®»¿¼ ¬± ½±±°»®¿¬» ·² ×ñÑ °®±½»·²¹ ¿²¼ ·«»ñ½±³ó

¬»½¸²·¯«» ¬± ¬®¿²¿½¬·±² °®±½»·²¹ ø·ò»òô ®«²²·²¹ô ½±³ó

³·¬¬·²¹ô ½¸»½µ°±·²¬·²¹ô ¿²¼ ®»½±ª»®§÷ ±² ÛÈÌìñÖÞÜî ·²

Ô·²«¨ µ»®²»´ ìòçòïò

¬»³ ±² ¿ éîó½±®» ³¿½¸·²» ©·¬¸ ¿² ×²¬»´ Ðíéðð ÒÊÓ»

ÍÍÜ ÅïìÃ «·²¹ ³»¬¿¼¿¬¿ ¿²¼ ¼¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ ·²

¬¸» ±®¼»®»¼ ¿²¼ ¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ò Ì¸» »¨°»®·³»²ó

¬¸» °»®º±®³¿²½» ¾§ «° ¬± ¿¾±«¬ îòî¨ ¿²¼ îòï¨ ·² ¬¸» ±®ó

¼»®»¼ ³±¼» ¿²¼ ¬¸» ¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ô ®»°»½¬·ª»´§ô

³«´¬·ó½±®» ½¿´¿¾·´·¬§ò

Ì¸» ½±²¬®·¾«¬·±² ±º ±«® ©±®µ ¿®» ¿ º±´´±©æ

É» ¿²¿´§¦» ¬¸» ´±½µ·²¹ ¿²¼ ×ñÑ ±°»®¿¬·±² ·² ¬®¿²ó

¿½¬·±² °®±½»·²¹ ±º ÛÈÌìñÖÞÜî ·² ¬»®³ ±º ·¬ °®±ó

½»¼«®»ò

É» ¼»·¹² ¿²¼ ·³°´»³»²¬ ¿ ¬®¿²¿½¬·±² °®±½»·²¹

©·¬¸ ½±²½«®®»²¬ ´±½µóº®»» «°¼¿¬» ±² ¼¿¬¿ ¬®«½¬«®»

USENIX Association 16th USENIX Conference on File and Storage Technologies 227

T1
jh6 jh8jh7head jh9 jh10

T3

T4

S

T5 jh11 jh13jh12head jh14 jh15

committing
transaction
(TxID: n-1)

T1

running
transaction

(TxID: n)

T2

transaction buffer list

transaction buffer list

jh1 jh3jh2 jh4 jh5

ST2

T1

T3
checkpointing

transaction
(TxID: n-2)

T3

T3

I/O

T4

M

head

T3
checkpoint list

228 16th USENIX Conference on File and Storage Technologies USENIX Association

¬± ¹»¬ ¿ ®«²²·²¹ ¬®¿²¿½¬·±² ¿®» ¾´±½µ»¼ «²¬·´ ¬¸» ®«²ó

²·²¹ ¬®¿²¿½¬·±² · ¿ª¿·´¿¾´»ò ×¬ · ¾»½¿«» ¬¸»®» ¿®» ±²´§

±²» ®«²²·²¹ ¬®¿²¿½¬·±² ¿²¼ ±²» ½±³³·¬¬·²¹ ¬®¿²¿½¬·±²

¿¬ ¿²§ ¬·³» ·² ¬¸» ½±³°±«²¼ ¬®¿²¿½¬·±² ½¸»³» Åïêô îíÃò

ßº¬»® ¹»¬¬·²¹ ¬¸» ®«²²·²¹ ¬®¿²¿½¬·±²ô ¬¸» ¬¸®»¿¼ ³±¼ó

·º§ ¬¸»·® ±©² ¾«ºº»® ¿²¼ ¬¸»² ¬®§ ¬± ·²»®¬ ·¬ ·²¬± ¿ ¬®¿²ó

¿½¬·±² ¾«ºº»® ´·¬ ¾§ «·²¹ ¬¸» ¶¸ ±º ¬¸» ¾«ºº»® ø¾¸÷ò

Ì± ·²»®¬ ¬¸» ¶¸ô ¬¸» ¬¸®»¿¼ ¬®§ ¬± ¿½¯«·®» ¿ ´·¬ ´±½µ

ø¶ ´·¬ ´±½µ÷ ©¸·½¸ · ¿ °·² ´±½µò ß ¬¸®»¿¼ô ©¸·½¸

¿½¯«·®» ¬¸» ´·¬ ´±½µô ¿±½·¿¬» ¬¸» ¶¸ ©·¬¸ ¬¸» ®«²²·²¹

¬®¿²¿½¬·±² ¿²¼ ·²»®¬ ¬¸» ¶¸ ·²¬± ¬¸» ¬¿·´ ±º ¬¸» ´·¬ò

·²»®¬ ±°»®¿¬·±²ò Ú·²¿´´§ô ¬¸» ¬¸®»¿¼ ½±³°´»¬» ·¬ ±©²

¬®¿²¿½¬·±² °®±½»·²¹ ¾§ ¼»½®»¿·²¹ ¬¸» ²«³¾»® ±º «°ó

¼¿¬»ò

¬·±²ô «½¸ ¿ ¬®«²½¿¬»ø÷ô ¬¸» ¬¸®»¿¼ ½¿² ·²ª¿´·¼¿¬»

¾«ºº»® ¬¸¿¬ ¿®» ¿´®»¿¼§ ¿±½·¿¬»¼ ©·¬¸ ¿ ¬®¿²¿½¬·±²ò ×²

¬¸· ½¿»ô ¾§ ¿½¯«·®·²¹ ¬¸» ¬¿¬» ´±½µ ¿²¼ ¬¸» ´·¬ ´±½µô

¿ ¬¸®»¿¼ ®»³±ª» ¬¸» ¶¸ º®±³ ¬¸» ¬®¿²¿½¬·±² ¾«ºº»® ±®

½¸»½µ°±·²¬ ´·¬ ¿²¼ ¼·¿±½·¿¬» ¬¸» ¶¸ º®±³ ¬¸» ®«²ó

²·²¹ ±® ½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ·º ·¬ · ¿±½·¿¬»¼ ©·¬¸

¬¸» ®«²²·²¹ ±® ½¸»½µ°±·²¬ ¬®¿²¿½¬·±²ô ®»°»½¬·ª»´§ò ×º

¬¸» ¶¸ · ¿±½·¿¬»¼ ©·¬¸ ¿ ½±³³·¬¬·²¹ ¬®¿²¿½¬·±²ô ¬¸»

¬¸®»¿¼ »¬ ¬¸» ¶¸ ¿ º®»»¼å ¾±¬¸ ¬¸» ¶¸ ¿²¼ ·¬ ¾«ºº»® ©·´´

¾» º®»»¼ ´¿¬»® ¼«®·²¹ ¬¸» ½±³³·¬ °®±½»¼«®»ò ß ¼·½«»¼

¿¾±ª»ô ÛÈÌìñÖÞÜî »²«®» ½±®®»½¬ «°¼¿¬» ±² ¬¸» ¬®¿²ó

¿½¬·±² ¬¿¬» ¿²¼ ¬¸» ¬®¿²¿½¬·±² ¾«ºº»® ´·¬ ¾§ ¬¸» ¬¿¬»

´±½µ ¿²¼ ¬¸» ´·¬ ´±½µô ®»°»½¬·ª»´§ò

Ý±³³·¬¬·²¹ ¬®¿²¿½¬·±²ò Ì± ½±³³·¬ ¿ ¬®¿²¿½¬·±²ô ¿

¶±«®²¿´ ¬¸®»¿¼ ©¿µ» «° ¿²¼ °®±½»» ¿ ½±³³·¬ °®±½»ó

¼«®»ò Ì¸» ¶±«®²¿´ ¬¸®»¿¼ ½¸¿²¹» ¬¸» ®«²²·²¹ ¬®¿²¿½¬·±²

¬± ¿ ½±³³·¬¬·²¹ ¬®¿²¿½¬·±² ¿²¼ ·¬ ¬¿¬» ¬± ½±³³·¬¬·²¹ ¾§

¿½¯«·®·²¹ ¬¸» ¬¿¬» ´±½µò Ì¸»²ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼ ©¿·¬

º±® ±¬¸»® ¿°°´·½¿¬·±² ¬¸®»¿¼ ¬± ½±³°´»¬» ¬¸»·® ¬®¿²¿½¬·±²

°®±½»·²¹ ¾§ ½¸»½µ·²¹ ¬¸» ¬ «°¼¿¬» ª¿®·¿¾´»ò ×º ¬¸»

¶¸ · ¿´®»¿¼§ ¿±½·¿¬»¼ ©·¬¸ ¿ ®«²²·²¹ ¬®¿²¿½¬·±²ô ¬¸»

¶¸ ³«¬ ¾» ³±ª»¼ ¬± ¿ ½±³³·¬¬·²¹ ¬®¿²¿½¬·±²ò Ó»¿²ó

©¸·´»ô ¬¸» ½±³³·¬¬·²¹ ¬®¿²¿½¬·±² ¼±» ²±¬ ¿½½»°¬ ¿²§

½®»¿¬·±² ±º ¿ ²»© ®«²²·²¹ ¬®¿²¿½¬·±²ò É·¬¸ ¬¸» ½±³³·¬ó

¬·²¹ ¬®¿²¿½¬·±²ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼ °®»°¿®» º±® ¶±«®²¿´

×ñÑ ¾§ ½®»¿¬·²¹ ¿ ©¿·¬ ´·¬ô ©¸·½¸ · «»¼ ¬± ©¿·¬ º±® ¬¸»

½±³°´»¬·±² ±º ×ñÑò Ì¸»²ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼ º»¬½¸» ¬¸»

¶¸ º®±³ ¬¸» ¸»¿¼ ø¬ ¾«ºº»®÷ ±º ¬¸» ¬®¿²¿½¬·±² ¾«ºº»®

´·¬ ¿²¼ ½®»¿¬» ¿ ½±°§ ±º ·¬ ¾«ºº»® ½¿´´»¼ º®±¦»² ¾«ºº»®

øº®±¦»² ¾¸÷ ¬± °®»»®ª» ¬¸» ½±²¬»²¬ ±º ¬¸» ¾«ºº»®ò Ì¸»

¶±«®²¿´ ¬¸®»¿¼ ®»³±ª» ¬¸» ¶¸ º®±³ ¬¸» ´·¬ ¾§ «°¼¿¬·²¹

¬¸» ¸»¿¼ ±º ¬¸» ´·¬ ¬± ¬¸» ²»¨¬ ±º ¬¸» ¸»¿¼ ¿²¼ ·²»®¬ ¬¸»

¶¸ ·²¬± ¬¸» ¸¿¼±© ´·¬ «²¼»® ¬¸» ´·¬ ´±½µò Ì¸» ¸¿¼±©

´·¬ ø¬ ¸¿¼±©÷ ·²½´«¼» ¬¸» º®±¦»² ¾«ºº»®ò

Ì± °»®º±®³ ¿ ¾¿¬½¸»¼ ¶±«®²¿´ ×ñÑô ¬¸» ¶±«®²¿´ ¬¸®»¿¼

¿¹¹®»¹¿¬» ¬¸» º®±¦»² ¾«ºº»® ¾§ ·²»®¬·²¹ ·¬ ·²¬± ¿ ©®·¬»

¾«ºº»® ø©¾«º÷ ¿²¼ ¬¸» ©¿·¬ ´·¬ò ×º ¬¸» ²«³¾»® ±º ·²»®¬»¼

¾«ºº»® ø¾«º

¬¸» ¶±«®²¿´ ¬¸®»¿¼ ·«» ×ñÑ ¬± ¬¸» ¶±«®²¿´ ¿®»¿ ¾§ ½¿´´ó

·²¹ «¾³·¬ ¾¸ø÷ ¿²¼ °®»°¿®» º±® ¬¸» ²»¨¬ ×ñÑò ßºó

¬»® ·«·²¹ ¿´´ ¬¸» ×ñÑ ®»¯«»¬ º±® ¶±«®²¿´·²¹ô ¬¸» ¶±«®²¿´

¬¸®»¿¼ ©¿·¬ º±® ¬¸» ½±³°´»¬·±² ±º ×ñÑò ß²¼ ¬¸»² ®»ó

³±ª» ¬¸» ¶¸ º®±³ ¬¸» ¸¿¼±© ´·¬ ¿²¼ ·²»®¬ ·¬ ·²¬± ¬¸»

º±®¹»¬ ´·¬ «²¼»® ¬¸» ´·¬ ´±½µò Ì¸» º±®¹»¬ ´·¬ ø¬ º±®¹»¬÷

·²½´«¼» ¾±¬¸ ¬¸» º®±¦»² ¾«ºº»® º®±³ ¬¸» ¸¿¼±© ´·¬ ¿²¼

¾«ºº»® ¬± ¾» º®»»¼ò ßº¬»® ¿´´ ¬¸» ×ñÑ ¿®» ½±³°´»¬»¼ô ¬¸»

¶±«®²¿´ ¬¸®»¿¼ ©®·¬» ¬¸» ½±³³·¬ ¾´±½µ º±® ¬¸» ¬®¿²¿½ó

°´¿§ ±® ¼·½¿®¼ ¬¸» ¬®¿²¿½¬·±² ¿½½±®¼·²¹ ¬± ¬¸» »¨·¬»²½»

±º ¬¸» ½±³³·¬ ¾´±½µ ±º ¬¸» ¬®¿²¿½¬·±²ò Ì¸»²ô ¬¸» ¶±«®ó

²¿´ ¬¸®»¿¼ ³¿µ» ¿ ½¸»½µ°±·²¬ ´·¬ ©·¬¸ ¬¸» ¾«ºº»® ¬¸¿¬

¿®» ²±¬ º®»»¼ ¿²¼ ¬·´´ ¼·®¬§ ·² ¬¸» º±®¹»¬ ´·¬ «²¼»® ¬¸» ´·¬

´±½µò Ú·²¿´´§ô ¬¸» ½±³³·¬¬»¼ ¬®¿²¿½¬·±² · ·²»®¬»¼ ·²¬±

¬¸» ¬¿·´ ±º ¿ ½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ´·¬ º±® ½¸»½µ°±·²¬·²¹

¾§ ¿½¯«·®·²¹ ¬¸» ¬¿¬» ¿²¼ ´·¬ ´±½µò

Ý¸»½µ°±·²¬·²¹ ¬®¿²¿½¬·±²ò É¸»² ¿ ¬®¿²¿½¬·±²

²»»¼ ¬± ¾» ½¸»½µ°±·²¬»¼ô ¿°°´·½¿¬·±² ¬¸®»¿¼ ¬®§ ¬± ¿½ó

¯«·®» ¿ ½¸»½µ°±·²¬ ³«¬»¨ ´±½µ ø¶ ½¸»½µ°±·²¬ ³«¬»¨÷

¿²¼ °»®º±®³ ¿ ¾¿¬½¸»¼ ×ñÑ ±°»®¿¬·±²ò ß ©·²²»® ¬¸®»¿¼ô

©¸·½¸ ¿½¯«·®» ¬¸» ³«¬»¨ ´±½µô °»®º±®³ ¬¸» ½¸»½µ°±·²¬

×ñÑ ±°»®¿¬·±² ©¸·´» ±¬¸»® ¬¸®»¿¼ ¿®» ¾´±½µ»¼ «²¬·´ ¬¸»

×ñÑ ±°»®¿¬·±² ¿®» ½±³°´»¬»¼ò Ì¸»²ô ¬¸» ¬¸®»¿¼ ¬®·» ¬±

¿½¯«·®» ¬¸» ´·¬ ´±½µ ¬± ¹»¬ ¬¸» ¬®¿²¿½¬·±² ¿²¼ ¿½½» ·¬

½¸»½µ°±·²¬ ´·¬ò Ì¸» ´·¬ ´±½µ · «»¼ ·²½» ±¬¸»® ¬¸®»¿¼

½¿² ¿½½» ¬¸» ½¸»½µ°±·²¬ ´·¬ ¬± ®»³±ª» ¬¸» ¶¸ ©¸»²

¬¸»§ º®»» ¬¸» ¾«ºº»® ±º ¬¸» ¶¸ô ©¸·½¸ ¼± ²±¬ ²»»¼ ¬± ¾»

½¸»½µ°±·²¬»¼ò

Ë²¼»® ¬¸» ³«¬»¨ ¿²¼ ´·¬ ´±½µô ¬¸» ©·²²»® ¬¸®»¿¼ ¿¹ó

¹®»¹¿¬» ¬¸» ¾«ºº»® ¾§ º»¬½¸·²¹ ¬¸» ¶¸ º®±³ ¬¸» ½¸»½µó

°±·²¬ ´·¬ ¿²¼ ·²»®¬·²¹ ¬¸» º»¬½¸»¼ ¾«ºº»® ·²¬± ¿ ½¸»½µó

°±·²¬ ¾«ºº»® ø¶ ½¸µ°¬ ¾¸÷ ¬± ·«» ¬¸» ×ñÑ ·² ¿ ¾¿¬½¸»¼

³¿²²»®ò Í·³·´¿® ¬± ¬¸» ½±³³·¬ °®±½»¼«®»ô ¬¸» ¶¸ · ®»ó

³±ª»¼ ¿²¼ ®»ó·²»®¬»¼ ·²¬± ¿ ½¸»½µ°±·²¬ ·± ´·¬ô ©¸·½¸ ·

«»¼ º±® ×ñÑ ½±³°´»¬·±²ò ×º ¬¸» ²«³¾»® ±º ¿¹¹®»¹¿¬»¼

¾«ºº»® ø¾¿¬½¸ ½±«²¬

¬¸®»¸±´¼ô ¬¸» ¬¸®»¿¼ ®»´»¿» ¬¸» ´·¬ ´±½µ ¿²¼ ·«» ¬¸»

×ñÑò Ì¸»²ô ¬¸» ¬¸®»¿¼ °®»°¿®» º±® ¬¸» ²»¨¬ ×ñÑ ¾§ ¿½ó

¯«·®·²¹ ¬¸» ´·¬ ´±½µò ßº¬»® ·«·²¹ ¿´´ ¬¸» ×ñÑô ¬¸» ¬¸®»¿¼

½±³°´»¬» ¬¸»³ ±²» ¾§ ±²» ¾§ º»¬½¸·²¹ ¬¸» ¶¸ º®±³ ¬¸»

½¸»½µ°±·²¬ ·± ´·¬ò É¸»² º»¬½¸·²¹ ¬¸» ¶¸ô ¬¸» ¬¸®»¿¼ «»

¬¸» ´·¬ ´±½µò ßº¬»® ¬¸»²ô ¬¸» ¬¸®»¿¼ »¬ ¬¸» ²»¨¬ ¬®¿²ó

¿½¬·±² ¬± ¾» ½¸»½µ°±·²¬»¼ ·² ¬¸» ½¸»½µ°±·²¬ ¬®¿²¿½¬·±²

´·¬ «²¼»® ¬¸» ´·¬ ´±½µò Ú·²¿´´§ô ¬¸» ½¸»½µ°±·²¬»¼ ¬®¿²ó

¿½¬·±² · º®»»¼ô ©¸·½¸ ¼»²±¬» ¬¸» »²¼ ±º ¿ ´·º» ½§½´» ±º

¬¸» ¬®¿²¿½¬·±²ô ¿²¼ ¬¸» ´·¬ ´±½µ ¿²¼ ¬¸» ³«¬»¨ ´±½µ ¿®»

®»´»¿»¼ò

í Ü»·¹² ¿²¼ ×³°´»³»²¬¿¬·±²

Ì± ¿½¸·»ª» ¸·¹¸»® ×ñÑ °»®º±®³¿²½» ±² ³«´¬·ó½±®» ©·¬¸

¸·¹¸ó°»®º±®³¿²½» ¬±®¿¹»ô ©» ¿·³ ¬± ®»¼«½» ¬¸» ´±½µ

½±²¬»²¬·±² ¿²¼ ³¿¨·³·¦» ×ñÑ °¿®¿´´»´·³ ·² ¬®¿²¿½¬·±²

USENIX Association 16th USENIX Conference on File and Storage Technologies 229

creat() write() write()

TxID: 1 (running)
journal area original area

jh1 jh2 jh3

JS() JS() JS()

application thread journal thread

Time

transaction buffer list checkpoint list

write() creat()

TxID: 1 (committing)

journal area original area

jh1 jh2 jh3

JIO() JIO() JIO()

bh1

jh1 jh2 jh3

TxID: 1 (checkpointing)

write()creat()

journal area original area

jh1 jh2 jh3

write()

sub()sub()sub() sub()sub()sub()

bh2 bh3 bh1 bh2 bh3 bh1 bh2 bh3

JW() JW() JW()

JCT()

Ú·¹«®» íæ Ñª»®¿´´ ¿®½¸·¬»½¬«®» ø¿°°æ ¿°°´·½¿¬·±²ô ¶¸æ ¶±«®²¿´ ¸»¿¼ô ¾¸æ ¾«ºº»® ¸»¿¼ô Ì¨×Üæ ¬®¿²¿½ó

¬·±² ×Üô ÖÍø÷æ ¶¾¼î ¶±«®²¿´ ¬¿®¬ø÷ô ÖÝÌø÷æ ¶¾¼î ¶±«®²¿´ ½±³³·¬ ¬®¿²¿½¬·±²ø÷ô Ö×Ñø÷æ ¶±«®²¿´ ·± ¬¿®¬ø÷ô ÖÉø÷æ

¶¾¼î ´±¹ ©¿·¬ º±® °¿½»ø÷ô «¾ø÷æ «¾³·¬ ¾¸ø÷÷

°®±½»·²¹ò Ì± ¼± ¬¸·ô ©» °®±°±» ¿ ¬®¿²¿½¬·±² °®±ó

½»·²¹ ©·¬¸ ¬©± ³¿·² ½¸»³» ¬¸¿¬ »²¿¾´» ½±²½«®®»²¬

«°¼¿¬» ±² ¸¿®»¼ ¼¿¬¿ ¬®«½¬«®» ¿²¼ ½±±°»®¿¬·ª»´§ °¿®ó

¿´´»´·¦» ×ñÑ ±°»®¿¬·±²ò É» ¿°°´§ ¬¸»» ½¸»³» ¬± ¬¸»

¬®¿²¿½¬·±² °®±½»·²¹ ·² ÛÈÌìñÖÞÜîò

É» ³¿·²¬¿·² ¬¸» ½±³°±«²¼ ¬®¿²¿½¬·±² ½¸»³» ±º

ÛÈÌìñÖÞÜî ¬± »¨°´±·¬ ·¬ ¿¼ª¿²¬¿¹» ÅîíÃò Ú±® »¨¿³°´»ô

·¬ °®±ª·¼» ¿ ¾»¬¬»® °»®º±®³¿²½» ©¸»² ¬¸» ¿³» ³»¬¿ó

¼¿¬¿ ±® ¼¿¬¿ · º®»¯«»²¬´§ «°¼¿¬»¼ ©·¬¸·² ¿ ¸±®¬ °»®·±¼

±º ¬·³»ò É·¬¸ ¬¸· ¿¼ª¿²¬¿¹»ô ©» ·³°´»³»²¬ ±«® ½¸»³»

·² ¬¸» ½±³°±«²¼ ¬®¿²¿½¬·±²ò É» ¿´± °®»»®ª» ¬¸» »¨·¬ó

·²¹ ±®¼»®·²¹ ±º ©®·¬» ±°»®¿¬·±² ¿²¼ ¬®¿²¿½¬·±²ô «½¸ ¿

¬¸» ±®¼»®·²¹ ±º ¶±«®²¿´ ¾´±½µ ¿²¼ ¿ ½±³³·¬ ¾´±½µô ½±³ó

³·¬¬·²¹ ¿²¼ ½¸»½µ°±·²¬·²¹ô ¿²¼ ½¸»½µ°±·²¬ò Ì¸»®»º±®»ô

§¬»³ò

Ú«®¬¸»®³±®»ô ©» ¼± ²±¬ ±°¬·³·¦» ¿´´ ´±½µ·²¹ ±°»®¿ó

¬·±² ·² ¬®¿²¿½¬·±² °®±½»·²¹ ¾«¬ º±½« ±² ¬¸» ´·¬ ´±½µ

º±® ³¿²¿¹»³»²¬ ±º ¶±«®²¿´ ¸»¿¼ ¿²¼ ¬¸» ½¸»½µ°±·²¬ ³«ó

¬»¨ ´±½µ º±® »®·¿´·¦»¼ ×ñÑ ±°»®¿¬·±²ò Ý±³°¿®»¼ ¬± ¬¸»

´·¬ ´±½µ ¿²¼ ¬¸» ³«¬»¨ ´±½µô ±¬¸»® ´±½µ ø»ò¹òô ¬¿¬» ´±½µ÷

«¿¬·±²ô ¿ ©»´´ ¿ ±¬¸»® ©±®µ ÅïêÃò Ø±©»ª»®ô «½¸ ´±½µ

½¿² ¾» ¿ °»®º±®³¿²½» ¾±¬¬´»²»½µ ·² ¿ ³¿·ª» ²«³¾»® ±º

½±®»ô ©¸·½¸ · ¾»§±²¼ ¬¸· °¿°»®å ¬¸»®»º±®»ô ©» ´»¿ª» ¬¸»

´¿¬»²¬ °»®º±®³¿²½» ·«» ¿ ¿ º«¬«®» ©±®µò

íòï Ü»·¹²

Ú·¹«®» í ¸±© ¿² ±ª»®¿´´ ¿®½¸·¬»½¬«®» ±º °®±°±»¼

½¸»³»ò É¸»² ¿°°´·½¿¬·±² ¬¸®»¿¼ «°¼¿¬» ¬¸» ³»¬¿ó

¼¿¬¿ ¿²¼ ¼¿¬¿ ¾§ ½¿´´·²¹ §¬»³ ½¿´´ô «½¸ ¿ ½®»¿¬ø÷

¿²¼ ©®·¬»ø÷ô ¬¸»§ ¬¿®¬ ¿ ¬®¿²¿½¬·±² ø·ò»òô Ì¨×Üæ ï÷

¾§ ½¿´´·²¹ ¶¾¼î ¶±«®²¿´ ¬¿®¬ø÷ò Ì¸»§ ·²»®¬ ¬¸»·®

½±²½«®®»²¬´§ò É¸»² ¬¸» ¬®¿²¿½¬·±² ²»»¼ ¬± ½±³³·¬ô

¬¸» ¶±«®²¿´ ¬¸®»¿¼ ¾»¹·² ¬¸» ½±³³·¬ °®±½» ¾§ ½¿´´ó

·²¹ ¶¾¼î ¶±«®²¿´ ½±³³·¬ ¬®¿²¿½¬·±²ø÷ ¿²¼ ¬¿®¬

¶±«®²¿´ ×ñÑò ß°°´·½¿¬·±² ¬¸®»¿¼ô ©¸·½¸ ½¿²²±¬ ½®»ó

¿¬» ²±® ¶±·² ¿ ®«²²·²¹ ¬®¿²¿½¬·±²ô ¶±·² ¿²¼ °»®º±®³

¬¸» ¶±«®²¿´ ×ñÑ ©·¬¸ ¬¸» ¶±«®²¿´ ¬¸®»¿¼ ¾§ ½¿´´·²¹

¶±«®²¿´ ·± ¬¿®¬ø÷ò Ì¸»§ º»¬½¸ ¬¸» ¾«ºº»® ·² ¬¸»

¬®¿²¿½¬·±² ¾«ºº»® ´·¬ ½±²½«®®»²¬´§ ¿²¼ ©®·¬» ¬¸»³ ¬± ¬¸»

¶±«®²¿´ ¿®»¿ ·² °¿®¿´´»´ ¾§ ½¿´´·²¹ «¾³·¬ ¾¸ø÷ò Ì¸»²ô

¬¸» ¬¸®»¿¼ ½±²½«®®»²¬´§ ·²»®¬ ¬¸» ½±³³·¬¬»¼ ¾«ºº»® ·²¬±

¬¸» ½¸»½µ°±·²¬ ´·¬ò É¸»² ¬¸» °¿½» º±® ¶±«®²¿´·²¹ · ²±¬

»²±«¹¸ô ¿°°´·½¿¬·±² ¬¸®»¿¼ ¬¿®¬ ¬± °»®º±®³ ¬¸» ½¸»½µó

°±·²¬ ×ñÑ ¾§ ½¿´´·²¹ ¶¾¼î ´±¹ ©¿·¬ º±® °¿½»ø÷ò

Ì¸»§ º»¬½¸ ¬¸» ½±³³·¬¬»¼ ¾«ºº»® ·² ¬¸» ½¸»½µ°±·²¬ ´·¬

½±²½«®®»²¬´§ ¿²¼ ©®·¬» ¬¸»³ ¬± ¬¸» ±®·¹·²¿´ ¿®»¿ ·² °¿®¿´ó

´»´ ¾§ ½¿´´·²¹ «¾³·¬ ¾¸ø÷ò

íòïòï Ý±²½«®®»²¬ «°¼¿¬» ±² ¼¿¬¿ ¬®«½¬«®»

É» ³¿²¿¹» ¬¸» ´·²µ»¼ ´·¬ º±® ¬®¿²¿½¬·±² °®±½»·²¹ ·²

¿ ´±½µóº®»» ³¿²²»® ¿ ¸±©² ·² Ú·¹«®» ìò Ì± ¬¸· »²¼ô ·²ó

¬»¿¼ ±º ¬¸» »¨·¬·²¹ ½·®½«´¿® ¼±«¾´§ ´·²µ»¼ ´·¬ô ©» «»

²±²ó½·®½«´¿® ¼±«¾´§ ´·²µ»¼ ´·¬ ¿²¼ ¿¼¼ ¬¸» ¬¿·´ ¬± ¬¸»

´·¬ ¬± »²¿¾´» ´±½µóº®»» ±°»®¿¬·±²ò ×² ¬¸» ½·®½«´¿® ¼±«ó

¾´§ ´·²µ»¼ ´·¬ô ©¸»² ¿² ·¬»³ · ·²»®¬»¼ ·²¬± ¬¸» ´·¬ô ¬¸»

³«´¬·°´» °±·²¬»® ¬¸¿¬ ´·²µ ¬¸» ·¬»³ô ¸»¿¼ô ¿²¼ ¬¿·´ ¿®» «°ó

×²¬»¿¼ô ©» ¿¼¼ ¬¸» ¬¿·´ ¿²¼ »¬ ¬¸» ¬¿·´ù ²»¨¬ ·¬»³ ¿ ¿

½±²¬¿²¬ ÒËÔÔ ª¿®·¿¾´» ÅïÃô ©¸·½¸ ¿´´±© « ¬± ·¼»²¬·º§

¬¸» ´¿¬ »´»³»²¬ ±º ¬¸» ´·¬ ¿²¼ ·²»®¬ ¬¸» ·¬»³ ·²¬± ¬¸» ¬¿·´

¿¬±³·½¿´´§ò

×ÒÍÛÎÌò É» °®±ª·¼» ¿ ½±²½«®®»²¬ ·²»®¬ ±°»®¿¬·±² ¬±

¿¼¼ ¿² ·¬»³ ¬± ¿ ´·¬ò ×² ¬¸» »¨·¬·²¹ ¬®¿²¿½¬·±² °®±½»ó

·²¹ô ¬¸» ·¬»³ ¿®» ·²»®¬»¼ ·²¬± ¬¸» ¬¿·´ ±º ¬¸» ´·¬ ·² ¬¸»

·²½±³·²¹ ±®¼»®ò Í·³·´¿® ¬± ¬¸» »¨·¬·²¹ ½¸»³» ¾«¬ ©·¬¸ó

±«¬ ´±½µ·²¹ô ©» ½±²½«®®»²¬´§ «°¼¿¬» ¬¸» ¬¿·´ ¾§ ¬¸» ·²ó

½±³·²¹ ·¬»³ «·²¹ ¿² ¿¬±³·½ »¬ ·²¬®«½¬·±²ò ×² ¿² »¨ó

¿³°´» ¸±©² ·² Ú·¹«®» ìø¿÷ô ¾»º±®» ¶¸ë · ·²»®¬»¼ ·²¬±

¿ ¶±«®²¿´·²¹ ´·¬ ø»ò¹òô ¬®¿²¿½¬·±² ¾«ºº»® ´·¬ ±® ½¸»½µó

°±·²¬ ´·¬÷ô ¬¸» ¶±«®²¿´·²¹ ´·¬ ½±²·¬ ±º º±«® ¶¸ô ¿²¼ ¬¸»

¬¿·´ °±·²¬ ¶¸ì ©¸·½¸ · ·²»®¬»¼ ¾§ Ìïò É¸»² Ìî ·²»®¬

¶¸ëô ¬¸» ¬¸®»¿¼ ¿¬±³·½¿´´§ «°¼¿¬» ¬¸» ¬¿·´ ¿²¼ ¬¸» ¶¸ëù

°®»ª·±« ·¬»³ ¾§ ¶¸ë ¿²¼ ¶¸ìô ®»°»½¬·ª»´§ô ¾§ »¨»½«¬·²¹

¬¸» ¿¬±³·½ »¬ ±°»®¿¬·±²ò Þ§ «°¼¿¬·²¹ ¬¸» °®»ª·±« ·¬»³

ø ¶¸ì÷ ±º ¶¸ë ¿¬±³·½¿´´§ô ¬¸» ²»¨¬ ·¬»³ ±º ¶¸ì · ¼»½·¼»¼ ¿

230 16th USENIX Conference on File and Storage Technologies USENIX Association

jh1 jh2 jh4 jh5
next

T1

head

prev

next

prevprev

next

T2

set removed

T3 1 23

atomic set
(insert)

atomic set
(insert)

atomic set
(remove)

jh3

next

prev

insert GC list
(logically remove)

tail

logical
remove

I/O

time

GC list

jh removed jh

I/O

I/O
processing

I/O
GC list

free
insert

I/O

<safe point>
physical
remove

journaling listjournaling list

1 2

3

jh1 jh2

next

prev
jh3

next

prev

fetch
jh1

head

compare jh1

head
swap

fetch atomic compare and swap

jh4

next

prev
jh5

next

prev
jh1 jh2

next
jh3

next
jh4

next

prev
jh5

next

prevprevprev

USENIX Association 16th USENIX Conference on File and Storage Technologies 231

jh1 jh2

next

prev

atomic
CAS

T1

issue I/O

bh1

insert bh1 to
T1's wait list

jh3 jh4

shared
linked list

(journaling list)

issue I/O

bh4

issue I/O

insert bh4 to
T4's wait list

per-thread
linked list
(wait list)

atomic
CAS

T2

atomic
CAS

T3

atomic
CAS

T4

bh3

insert bh3 to
T3's wait list

removed

bypass I/O

jh5

next

prev

next

prev

next

prev

issue I/O

bh5

insert bh5 to
T5's wait list

atomic
CAS

T5

232 16th USENIX Conference on File and Storage Technologies USENIX Association

½¸»½µ ©¸»¬¸»® ¬¸» ±´¼ ¬¿·´ »¨·¬ ±® ²±¬ò ×º ·¬ ¼±» ²±¬

»¨·¬ô ¬¸» ¸»¿¼ ø¬ ¾«ºº»®÷ ±º ¬¸» ´·¬ · «°¼¿¬»¼ ¾§ ¬¸»

·²»®¬»¼ ¶¸

»®©·»ô ¬¸» ²»¨¬ ·¬»³ ±º ¬¸» ±´¼ ¬¿·´ · «°¼¿¬»¼ ¾§ ¬¸»

·²»®¬»¼ ¶¸ò

Ú±® ®»³±ª» ±°»®¿¬·±²ô ©» «» ±«® ¬©±ó°¸¿» ®»³±ª»

±°»®¿¬·±²ò É¸»² ¬¸» ¬¸®»¿¼ ®»³±ª» ¬¸»·® ¶¸ô ¬¸»§ ¹»¬

¬¸» ÙÝ ´·¬ ±º ¬¸» ¬®¿²¿½¬·±² ·º ¬¸» ¶¸ · ¿±½·¿¬»¼

©·¬¸ ®«²²·²¹ ±® ½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ø´·²» ïéóîð ¿²¼

îìóîé÷ò Ú±® ¬¸» ´±¹·½¿´ ®»³±ª» ±°»®¿¬·±² ø´·²» ëîóêï÷ô

¬¸» ¬¸®»¿¼ ³¿®µ ¬¸» ¶¸ ¿ ®»³±ª»¼ ¾§ »¨»½«¬·²¹ ¬¸»

¿¬±³·½ »¬ ·²¬®«½¬·±² ¿²¼ ·²»®¬ ¬¸» ¶¸ ·²¬± ¬¸» ÙÝ

´·¬ ¿¬±³·½¿´´§ ¾§ «·²¹ ¹½ °®»ªñ²»¨¬ ¶¸ò

Ì¸»²ô ¬¸» ¾¸ · «²´·²µ»¼ º®±³ ¬¸» ®»³±ª»¼ ¶¸ ø´·²» ëç÷ô

¿²¼ ¬¸» ¶¸ù ¬®¿²¿½¬·±² ±® ½° ¬®¿²¿½¬·±²

»¬ ¬± ÒËÔÔ ·² ¬¸» ½¿» ±º ®«²²·²¹ ±® ½¸»½µ°±·²¬·²¹ ¬®¿²ó

¿½¬·±²ô ®»°»½¬·ª»´§ ø´·²» êð÷ò Ì¸· ³»¿² ¬¸¿¬ ¬¸» ¶¸ ·

²±¬ ¿±½·¿¬»¼ ©·¬¸ ¬¸» ¾¸ ¿²¼ ¬¸» ¬®¿²¿½¬·±² ¿²§ ´±²¹»®ò

Ì¸«ô ¬¸» ¶¸ ¾»½±³» ¿² ±¾±´»¬» ¬®«½¬«®»ô ¿²¼ ¬¸» ¾¸

¹»¬ º®»»¼ ¿¬ ¬¸· °±·²¬ò Ì¸· ±°»®¿¬·±² ±² ¬¸» ¾¸ · °»®ó

º±®³»¼ ¿º»´§ ·²½» ¬¸» ±°»®¿¬·±² · °®±¬»½¬»¼ ¾§ ¿ °·²

´±½µ ø¶¾¼ ´±½µ ¾¸ ¬¿¬»÷ °»® ¾¸ ¿ ¿³» ¿ ¬¸» »¨·¬ó

·²¹ ½¸»³»ò Ó»¿²©¸·´»ô ·² ¬¸» ½¿» ±º ½±³³·¬¬·²¹ ¬®¿²ó

¿½¬·±²ô ¬¸» ¬¸®»¿¼ ±²´§ ³¿®µ ¬¸» ¶¸ ¿ ®»³±ª»¼ ø´·²»

îí÷ô ¿²¼ ¾±¬¸ ¾¸ ¿²¼ ¶¸ ©·´´ ¾» º®»»¼ ¼«®·²¹ ¬¸» ½±³³·¬

°®±½»¼«®»ò

íòîòî Ý±³³·¬¬·²¹ ¬®¿²¿½¬·±²

Ü«®·²¹ ¬¸» »¨·¬·²¹ ½±³³·¬ °®±½»¼«®»ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼

«°¼¿¬» ¬¸» ´·¬ «²¼»® ¬¸» ´·¬ ´±½µ ¿²¼ °»®º±®³ ¶±«®²¿´

×ñÑ ±°»®¿¬·±² ¾§ ¿ ·²¹´» ¬¸®»¿¼ò Ñ² ¬¸» ±¬¸»® ¸¿²¼ô

·² ±«® ½±³³·¬ °®±½»¼«®»ô ©» «°¼¿¬» ¬¸» ´·¬ ¾§ «·²¹

±«® ½±²½«®®»²¬ «°¼¿¬» ±°»®¿¬·±² ¿²¼ °¿®¿´´»´·¦» ¬¸» ×ñÑ

±°»®¿¬·±² ·² ¿ ½±±°»®¿¬·ª» ³¿²²»®ò

Ì± ½±³³·¬ ¿ ¬®¿²¿½¬·±²ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼ ¹»¬ ¿

½±³³·¬¬·²¹ ¬®¿²¿½¬·±² ·³·´¿® ¬± ¬¸» »¨·¬·²¹ °®±½»¼«®»

øÐ®±½»¼«®» îô ´·²» íóç÷ò Ì¸»²ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼ ¬¿®¬

¬¸» °¿®¿´´»´ ×ñÑ ¾§ »¬¬·²¹ ¬¸» ¶±«®²¿´ ·± ª¿®·¿¾´» ø´·²»

ïð÷ò Ì¸· ·²º±®³ ¿°°´·½¿¬·±² ¬¸®»¿¼ ¬¸¿¬ ¬¸» ×ñÑ °®±ó

½»·²¹ · ·²·¬·¿¬»¼ò Ò±¬» ¬¸¿¬ ·² ¬¸» »¨·¬·²¹ °®±½»¼«®»ô

¿°°´·½¿¬·±² ¬¸®»¿¼ ¿®» ¾´±½µ»¼ ©¸»² ¿ ®«²²·²¹ ¬®¿²¿½ó

¬·±² · ²±¬ ¿ª¿·´¿¾´» ¿²¼ ½¿²²±¬ ¾» ²»©´§ ½®»¿¬»¼ò ×²ó

¬»¿¼ ±º ¾´±½µ·²¹ ¬¸» ¬¸®»¿¼ô ©» »²¿¾´» ¬¸» ¬¸®»¿¼ ¬±

°»®º±®³ ¬¸» ×ñÑ °®±½»·²¹ ¿´±²¹ ©·¬¸ ¬¸» ¶±«®²¿´ ¬¸®»¿¼

¾§ ½¿´´·²¹ ¶±«®²¿´ ·± ¬¿®¬ø÷ øÐ®±½»¼«®» ïô ´·²» ííô

Ð®±½»¼«®» îô ´·²» ïïô ¿²¼ Ð®±½»¼«®» íô ´·²» î÷ò Ì¸«ô ¬¸»

¬¸®»¿¼ ½¿² ¶±·² ¬¸» ×ñÑ °®±½»·²¹ ·º ·¬ · ·²·¬·¿¬»¼ ¾§ ¬¸»

¶±«®²¿´ ¬¸®»¿¼ øÐ®±½»¼«®» íô ´·²» ëóê÷ò

Ì± ¸¿²¼´» ¬¸» ¶±·²»¼ ¬¸®»¿¼ô ©» ®»½±®¼ ¬¸» ²«³¾»®

±º ¬¸®»¿¼ ¾§ »¨»½«¬·²¹ ¿¬±³·½ ¿¼¼ñ«¾ ·²¬®«½¬·±²ì

ì §²½ ¿¼¼ñ«¾ ¿²¼ º»¬½¸ø¬§°» ö°¬®ô ¬§°» ª¿´÷æ Ì¸»» ¾«·´¬ó·²

º«²½¬·±² ¿¬±³·½¿´´§ ¿¼¼ñ«¾¬®¿½¬ ¬¸» ª¿´«» ±º ª¿´ ¬±ñº®±³ ¬¸» ª¿®·¿¾´»

¬¸¿¬ ö°¬® °±·²¬ ¬±ò Ì¸» º«²½¬·±² ®»¬«®² ¬¸» ²»© ª¿´«» ±º ¬¸» ª¿®·¿¾´»

¬¸¿¬ ö°¬® °±·²¬ ¬± ÅîèÃò

ÐÎÑÝÛÜËÎÛ î Ýó´·µ» °»«¼±ó½±¼» ±º ±«® ½±³³·¬¬·²¹

¬®¿²¿½¬·±² øï÷

ïæ ñö¬¸» ¶±«®²¿´ ¬¸®»¿¼ ½±³³·¬ ¿ ¬®¿²¿½¬·±²öñ

îæ ¶¾¼î ¶±«®²¿´ ½±³³·¬ ¬®¿²¿½¬·±²ø¶±«®²¿´÷º
íæ ½±³³·¬ ¬®¿²¿½¬·±² ã ¶±«®²¿´óâ¶ ®«²²·²¹ ¬®¿²¿½¬·±²å

ìæ ©®·¬» ´±½µø¶±«®²¿´óâ¶ ¬¿¬» ´±½µ÷å

ëæ ¶±«®²¿´óâ¶ ½±³³·¬¬·²¹ ¬®¿²¿½¬·±² ã ½±³³·¬ ¬®¿²¿½¬·±²å

êæ ¶±«®²¿´óâ¶ ®«²²·²¹ ¬®¿²¿½¬·±² ã ÒËÔÔå

éæ ©¸·´»ø¿¬±³·½ ®»¿¼ø¬®¿²¿½¬·±²óâ¬ «°¼¿¬»÷÷ºòòò¹
èæ ©®·¬» «²´±½µø¶±«®²¿´óâ¶ ¬¿¬» ´±½µ÷å

çæ ¬®¿²¿½¬·±² ã ¶±«®²¿´óâ¶ ½±³³·¬¬·²¹ ¬®¿²¿½¬·±²å

ïðæ ¿¬±³·½ »¬ø¬®¿²¿½¬·±²óâ¶±«®²¿´ ·±ô ¬¿®¬÷å

ïïæ ¶±«®²¿´ ·± ¬¿®¬ø¶±«®²¿´÷å

ïîæ ©¸·´»ø¿¬±³·½ ®»¿¼ø¬®¿²¿½¬·±²óâ²«³ ·± ¬¸®»¿¼÷ ÿã ð÷å

ïíæ ä·«» ¿²¼ ½±³°´»¬» ¿ ½±³³·¬ ¾´±½µâ

ïìæ ©®·¬» ´±½µø¶±«®²¿´óâ¶ ¬¿¬» ´±½µ÷å

ïëæ ä·²»®¬ ¬¸» ½±³³·¬¬»¼ ¬®¿²¿½¬·±² ·²¬± ¿ ½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ´·¬

ïêæ ø¶±«®²¿´óâ¶ ½¸»½µ°±·²¬ ¬®¿²¿½¬·±²÷ «·²¹ ±«® ½±²½«®®»²¬ ·²»®¬â

ïéæ ©®·¬» «²´±½µø¶±«®²¿´óâ¶ ¬¿¬» ´±½µ÷å

ïèæ ¿¬±³·½ »¬ø¬®¿²¿½¬·±²óâ½° ·±ô ¬¿®¬÷å

ïçæ ¹

ÐÎÑÝÛÜËÎÛ í Ýó´·µ» °»«¼±ó½±¼» ±º ±«® ½±³³·¬¬·²¹

¬®¿²¿½¬·±² øî÷

ïæ ñö¬¸» ¶±«®²¿´ ¬¸®»¿¼ °»®º±®³ ¶±«®²¿´ ×ñÑ ©·¬¸ ¿°°´·½¿¬·±² ¬¸®»¿¼öñ

îæ ¶±«®²¿´ ·± ¬¿®¬ø¶±«®²¿´÷º
íæ ·ºøø¬®¿²¿½¬·±² ã ¶±«®²¿´óâ¶ ½±³³·¬¬·²¹ ¬®¿²¿½¬·±²÷ ãã ÒËÔÔ÷

ìæ ®»¬«®²å

ëæ ·ºø¿¬±³·½ ®»¿¼ø¬®¿²¿½¬·±²óâ¶±«®²¿´ ·±÷ ãã ¬±°÷

êæ ®»¬«®²å

éæ ¿¬±³·½ ¿¼¼ø¬®¿²¿½¬·±²óâ²«³ ·± ¬¸®»¿¼ô ï÷å

èæ ½®»¿¬» ©¿·¬ ´·¬ø´±½¿´ ©¿·¬ ´·¬÷å ññ ½®»¿¬» ¿ ´±½¿´ ©¿·¬ ´·¬ °»® ¬¸®»¿¼

çæ ©¸·´»øø¶¸ ã ¬®¿²¿½¬·±²óâ¬ ¾«ºº»®÷ ÿã ÒËÔÔ÷º
ïðæ ·ºø¿¬±³·½ ½¿ø¬®¿²¿½¬·±²óâ¬ ¾«ºº»®ô ¶¸ô ¶¸óâ²»¨¬÷ ÿã ¶¸÷

ïïæ ½±²¬·²«»å

ïîæ ·ºø¿¬±³·½ ®»¿¼ø¶¸óâ®»³±ª»¼÷ ãã ®»³±ª»¼÷

ïíæ ½±²¬·²«»å

ïìæ ä³¿µ» ¿ º®±¦»² ¾«ºº»® øº®±¦»² ¾¸÷â

ïëæ «¾³·¬ ¾¸øÉÎ×ÌÛô ¶¸óâº®±¦»² ¾¸÷å

ïêæ ¿¼¼ ©¿·¬ ´·¬ø´±½¿´ ©¿·¬ ´·¬ô ¶¸óâº®±¦»² ¾¸÷å

ïéæ ¹
ïèæ ¿¬±³·½ »¬ø¬®¿²¿½¬·±²óâ¶±«®²¿´ ·±ô ¬±°÷å

ïçæ ©¿·¬ ¶±«®²¿´ ·±ø©¿·¬ ´·¬÷å

îðæ ¿¬±³·½ «¾ø¬®¿²¿½¬·±²óâ²«³ ·± ¬¸®»¿¼ô ï÷å

îïæ ¹

îîæ ©¿·¬ ¶±«®²¿´ ·±ø´±½¿´ ©¿·¬ ´·¬÷º
îíæ ©¸·´»øÿ©¿·¬ ´·¬ »³°¬§ø´±½¿´ ©¿·¬ ´·¬÷º
îìæ º®±¦»² ¾¸ ã ´·¬ »²¬®§ø´±½¿´ ©¿·¬ ´·¬ò²»¨¬ô òòò÷å

îëæ ©¿·¬ ±² ¾«ºº»®øº®±¦»² ¾¸÷å

îêæ ¶¸ ã º®±¦»² ¾¸óâ¾¸óâ¶¸å

îéæ ¶¸óâ¬®¿²¿½¬·±² ã ÒËÔÔå

îèæ ·ºø¿¬±³·½ ®»¿¼ø¶¸óâ®»³±ª»¼÷ ÿã ®»³±ª»¼ úú ¶¾¼¼·®¬§ø¶¸óâ¾¸÷÷

îçæ ¿¼¼ ¾«ºº»®ø¶¸ô ¬®¿²¿½¬·±²ô ¬®¿²¿½¬·±²óâ¬ ½¸»½µ°±·²¬ ´·¬ô

íðæ ¬®¿²¿½¬·±²óâ¬ ½¸»½µ°±·²¬ ´·¬ ¬¿·´÷å

íïæ ¹
íîæ ¹

øÐ®±½»¼«®» íô ´·²» é ¿²¼ îð÷ ¿²¼ ½®»¿¬» ¬¸» °»®ó¬¸®»¿¼

©¿·¬ ´·¬ º±® ¬¸» °¿®¿´´»´ ×ñÑ ½±³°´»¬·±² ø´·²» è÷ò Ì¸»²ô

©» ¿´´±© »¿½¸ ¬¸®»¿¼ ¬± º»¬½¸ ¬¸» ¶¸ º®±³ ¬¸» ¬®¿²¿½¬·±²

¾«ºº»® ´·¬ ¾§ «·²¹ ±«® ½±²½«®®»²¬ º»¬½¸ ±°»®¿¬·±²ô ©¸·½¸

»¨»½«¬» ¬¸» ¿¬±³·½ ½¿ ·²¬®«½¬·±²ë ø´·²» çóïé÷ò ×º ¬¸»

º»¬½¸»¼ ¶¸ ©¿ ´±¹·½¿´´§ ®»³±ª»¼ô ¬¸» ¬¸®»¿¼ ¾§°¿»

¿²¼ ®»¬®·» ¬± º»¬½¸ ¬¸» ²»¨¬ ¶¸ò Ñ¬¸»®©·»ô »¿½¸ ¬¸®»¿¼

ë §²½ ª¿´ ½±³°¿®» ¿²¼ ©¿°ø¬§°» ö°¬®ô ¬§°» ±´¼ª¿´ô ¬§°» ²»©ó

ª¿´÷æ Ì¸· ¾«·´¬ó·² º«²½¬·±² °»®º±®³ ¿² ¿¬±³·½ ½±³°¿®» ¿²¼ ©¿° ±°ó

»®¿¬·±²ò ×º ¬¸» ½«®®»²¬ ª¿´«» ±º ö°¬® · ±´¼ª¿´ô ¬¸»² ©®·¬» ²»©ª¿´ ·²¬±

ö°¬®ò Ñ¬¸»®©·»ô ²± ±°»®¿¬·±² · °»®º±®³»¼ò Ì¸» º«²½¬·±² ®»¬«®² ¬¸»

½±²¬»²¬ ±º ö°¬® ¾»º±®» ¬¸» ±°»®¿¬·±² ÅîèÃò

USENIX Association 16th USENIX Conference on File and Storage Technologies 233

½®»¿¬» ¿ º®±¦»² ¾«ºº»®ô «¾³·¬ ¬¸» ×ñÑ ±º ¬¸» ¾«ºº»® ¬±

¬¸» ¶±«®²¿´ ¿®»¿ô ¿²¼ ·²»®¬ ¬¸» ¾«ºº»® ·²¬± ·¬ ±©² ©¿·¬

´·¬ ·² °¿®¿´´»´ò

ßº¬»® ¿´´ ¬¸» ×ñÑ ¿®» ·«»¼ô ©» ¬±° ²»© «°½±³·²¹

¬¸®»¿¼ º®±³ ¶±·²·²¹ ¬¸» ×ñÑ °®±½»·²¹ ¾§ «²»¬¬·²¹ ¬¸»

¶±«®²¿´ ·± ª¿®·¿¾´» ø´·²» ïè÷ò Ì¸»²ô ¬¸» ¶±·²»¼ ¬¸®»¿¼

½±³°´»¬» ¬¸» ×ñÑ ¾§ «·²¹ ¬¸»·® ±©² ©¿·¬ ´·¬ ø´·²» ïç

¿²¼ îîóíî÷ò Ì¸®±«¹¸ ¬¸» °®±½»¼«®» ¿¾±ª»ô ¬¸» °¿®¿´´»´

×ñÑ · ½±³°´»¬»¼ ¾§ ©®·¬·²¹ ¿´´ ¬¸» ¾«ºº»® ¬± ¬¸» ¶±«®²¿´

Ð®±°»®¬§ ïò Ûª»®§ ¾´±½µ ¿±½·¿¬»¼ ©·¬¸ ¿ ¬®¿²¿½¬·±²

· ©®·¬¬»² ¬± ¬¸» ¶±«®²¿´ ¿®»¿ ¿¬ ¿ ½±³³·¬ °®±½»¼«®»ò

Ûª»®§ ¿°°´·½¿¬·±² ¬¸®»¿¼ ·²½®»¿» ¬ «°¼¿¬» ¾»º±®»

·²»®¬·²¹ ·¬ ¶¸ øÐ®±½»¼«®» ïô ´·²» íê÷ ¿²¼ ¼»½®»¿»

¬ «°¼¿¬» ¿º¬»® ·²»®¬·²¹ ·¬ ¶¸ øÐ®±½»¼«®» ïô ´·²» ìî÷ò

Þ»º±®» ¬¸» ¶±«®²¿´ ¬¸®»¿¼ ¬¿®¬ ¬¸» °¿®¿´´»´ ×ñÑ °®±½»ó

·²¹ ¾§ »¬¬·²¹ ¶±«®²¿´ ·± øÐ®±½»¼«®» îô ´·²» ïð÷ô ¬¸»

¬¸®»¿¼ ©¿·¬ «²¬·´ ¬ «°¼¿¬» ¾»½±³» ð øÐ®±½»¼«®» îô

´·²» é÷ò Ì¸· °®»ª»²¬ ¿°°´·½¿¬·±² ¬¸®»¿¼ º®±³ ¬¿®¬·²¹

¶¸ ¿®»

·²»®¬»¼ ·²¬± ¬¸» ¬®¿²¿½¬·±² ¾«ºº»® ´·¬ò Ì¸«ô ·¬ »²«®»

¬¸¿¬ ¿´´ ¬¸» ¾«ºº»® ¿±½·¿¬»¼ ©·¬¸ ¬¸» ¬®¿²¿½¬·±² ¿®»

©®·¬¬»² ¬± ¬¸» ¶±«®²¿´ ¿®»¿ »ª»² ·º ¬¸» °¿®¿´´»´ ×ñÑ · »²ó

¿¾´»¼ò

É¸·´» ½±³°´»¬·²¹ ¬¸» ×ñÑ øÐ®±½»¼«®» íô ´·²» îîóíî÷ô

¬¸» ¬¸®»¿¼ ·²»®¬ ¬¸» ¶¸ ·²¬± ¿ ½¸»½µ°±·²¬ ´·¬ ·º ¬¸» ¶¸

¿®» ²±¬ ®»³±ª»¼ ´±¹·½¿´´§ ¿²¼ ¬¸»·® ¾«ºº»® ¿®» ¬·´´ ¼·®¬§ò

¬¸» ½¸»½µ°±·²¬ ´·¬ ©¸·´» ½±³°´»¬·²¹ ¬¸» ×ñÑ ¾»º±®» ¬¸»

½±³³·¬ ¾´±½µ · ©®·¬¬»²ò Ø±©»ª»®ô ¬¸» ´·¬ · ²±¬ «»¼ º±®

°®»»®ª» ¬¸» ±®¼»®·²¹ ±º ½±³³·¬¬·²¹ ¿²¼ ½¸»½µ°±·²¬·²¹ò

×² ¿¼¼·¬·±²ô ©» «» ¬¸» ©¿·¬ ´·¬ ·²¬»¿¼ ±º ¬¸» ¸¿¼±©

´·¬ ¿²¼ ·²½´«¼» ¿´´ ¬¸» º®±¦»² ¾«ºº»® ·² ¬¸» ©¿·¬ ´·¬ò

×²¬»¿¼ ±º ¬¸» º±®¹»¬ ´·¬ô ©» «» ¬¸» ÙÝ ´·¬ ¿²¼ ·²»®¬

¬¸» ¶¸ ©¸·½¸ ¿®» ¿±½·¿¬»¼ ©·¬¸ ¾«ºº»® ¬± ¾» º®»»¼ ¬±

¬¸» ÙÝ ´·¬ò ßº¬»® ½±³°´»¬·²¹ ¿´´ ¬¸» ×ñÑô ¬¸» ¶±«®²¿´

·²¹ ¬¸» ²«³¾»® ±º ¶±·²»¼ ¬¸®»¿¼ ¾»º±®» ©®·¬·²¹ ¬¸» ½±³ó

³·¬ ¾´±½µ øÐ®±½»¼«®» îô ´·²» ïîóïí÷ò Ì¸· °®±½»¼«®» ¿¬ó

Ð®±°»®¬§ îò ß ¬®¿²¿½¬·±² · ½±³³·¬¬»¼ ±® «²½±³³·¬¬»¼

ø¿¬±³·½·¬§÷ ¿½½±®¼·²¹ ¬± ¬¸» ½±³³·¬ ¾´±½µò

Ûª»®§ ¿°°´·½¿¬·±² ¬¸®»¿¼ ¬¸¿¬ ¶±·² ¬¸» ×ñÑ °®±½»·²¹

·²½®»¿» ²«³ ·± ¬¸®»¿¼ ¾»º±®» ·«·²¹ ×ñÑ øÐ®±½»ó

¼«®» íô ´·²» é÷ ¿²¼ ¼»½®»¿» ²«³ ·± ¬¸®»¿¼ ¿º¬»®

½±³°´»¬·²¹ ×ñÑ øÐ®±½»¼«®» íô ´·²» îð÷ò Ì¸» ¶±«®²¿´

¬¸®»¿¼ ©¿·¬ «²¬·´ ²«³ ·± ¬¸®»¿¼ ¾»½±³» ð ¾»º±®»

¬¸» ¶±«®²¿´ ¬¸®»¿¼ ©®·¬» ¬¸» ½±³³·¬ ¾´±½µ øÐ®±½»¼«®» îô

´·²» ïî÷ò Ì¸· ³»¿² ¬¸¿¬ ¿´´ ¬¸» ¶±«®²¿´ ¾´±½µ ¿®» ©®·¬ó

¬»² ¾»º±®» ¬¸» ½±³³·¬ ¾´±½µ · ©®·¬¬»² ¬± ¬¸» ¶±«®²¿´ ¿®»¿ò

Ì¸«ô ·¬ »²«®» ¬¸» ¿¬±³·½·¬§ ±º ¬¸» ¬®¿²¿½¬·±² ¾§ °®»ó

»®ª·²¹ ¬¸» ±®¼»®·²¹ ¾»¬©»»² ¬¸» ¶±«®²¿´ ¾´±½µ ¿²¼ ¬¸»

½±³³·¬ ¾´±½µò

Ú·²¿´´§ô ¬¸» ¶±«®²¿´ ¬¸®»¿¼ ·²»®¬ ¬¸» ½±³³·¬¬»¼ ¬®¿²ó

¿½¬·±² ·²¬± ¬¸» ½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ´·¬ ¾§ «·²¹ ¬¸»

¬¿¬» ´±½µ ø¶ ¬¿¬» ´±½µ÷ ¿²¼ ±«® ½±²½«®®»²¬ ·²»®¬ ±°ó

»®¿¬·±²ô ¿²¼ »¬ ¬¸» ½° ·± ª¿®·¿¾´» ¬± ¬¿®¬ ¬¸» ½¸»½µó

°±·²¬ ×ñÑ ø´·²» ïìóïè÷ò

íòîòí Ý¸»½µ°±·²¬·²¹ ¬®¿²¿½¬·±²

×² ¬¸» »¨·¬·²¹ °®±½»¼«®»ô ©¸»² ¿ ¬®¿²¿½¬·±² ²»»¼ ¬±

¾» ½¸»½µ°±·²¬»¼ô ¿² ¿°°´·½¿¬·±² ¬¸®»¿¼ °»®º±®³ ½¸»½µó

°±·²¬ ×ñÑ ±°»®¿¬·±² ¾§ ¿½¯«·®·²¹ ¿ ½¸»½µ°±·²¬ ³«¬»¨

´±½µ ø¶ ½¸»½µ°±·²¬ ³«¬»¨÷ò Ó»¿²©¸·´»ô ±¬¸»® ¿°°´·ó

½¿¬·±² ¬¸®»¿¼ô ©¸·½¸ º¿·´ ¬± ¿½¯«·®» ¬¸» ´±½µô ¿®» ¾´±½µ»¼

¬¸» ×ñÑ °¿®¿´´»´·³ò

Ì± »²¿¾´» ¿ °¿®¿´´»´ ½¸»½µ°±·²¬ ×ñÑô ©» ¿´´±© ¬¸»

¬¸®»¿¼ ¬± ¶±·² ¬¸» ×ñÑ °®±½»·²¹ ·²¬»¿¼ ±º «·²¹ ¬¸»

³«¬»¨ ´±½µ ¿²¼ ¬¸» ½¸»½µ°±·²¬ ¾«ºº»®ò Ø±©»ª»®ô »ª»²

©·¬¸ ¬¸» °¿®¿´´»´ ×ñÑô ¬¸» ×ñÑ ·«»ñ½±³°´»¬» ±°»®¿¬·±²

»®¬ ¬¸» ¶¸ º®±³ñ·²¬± ¬¸» ½¸»½µ°±·²¬ñ½¸»½µ°±·²¬ ·± ´·¬ò

Ì¸«ô ©» º»¬½¸ ¬¸» ¶¸ ¾§ «·²¹ ±«® ½±²½«®®»²¬ º»¬½¸ ±°ó

»®¿¬·±²ô ·«» ¬¸» ×ñÑô ¿²¼ ½±³°´»¬» ¬¸» ×ñÑ ¾§ «·²¹

¬¸» °»®ó¬¸®»¿¼ ©¿·¬ ´·¬ ·² °¿®¿´´»´ ·²¬»¿¼ ±º ¬¸» ¹´±¾¿´

½¸»½µ°±·²¬ ·± ´·¬ò

É¸»² ¿ ½¸»½µ°±·²¬ · ¬®·¹¹»®»¼ô ¿°°´·½¿¬·±² ¬¸®»¿¼

¹»¬ ¿ ¬®¿²¿½¬·±² ¬± ¾» ½¸»½µ°±·²¬»¼ ·º ¬¸» ¬®¿²¿½¬·±²

· ¿ª¿·´¿¾´» øÐ®±½»¼«®» ìô ´·²» îóí÷ò Ì¸»²ô ¬¸» ¬¸®»¿¼

½¸»½µ ©¸»¬¸»® ¬¸» ¬®¿²¿½¬·±² ½¿² ¾» ½¸»½µ°±·²¬»¼ ±®

²±¬ ¾§ «·²¹ ¬¸» ½° ·± ª¿®·¿¾´» ø´·²» ìóë÷ò Í·³·´¿® ¬±

±«® ½±³³·¬ °®±½»¼«®»ô ©» ®»½±®¼ ¬¸» ²«³¾»® ±º ¶±·²»¼

¬¸®»¿¼ô ¿²¼ »¿½¸ ¬¸®»¿¼ ½®»¿¬» ·¬ ±©² ©¿·¬ ´·¬ ø´·²» êó

é÷ò Ú±® ¬¸» ½±²½«®®»²¬ ¿²¼ °¿®¿´´»´ ×ñÑ ·«»ô »¿½¸ ¬¸®»¿¼

½±²½«®®»²¬´§ º»¬½¸» ¬¸» ¶¸ º®±³ ¬¸» ½¸»½µ°±·²¬ ´·¬ô «¾ó

³·¬ ¬¸» ×ñÑ ±º ¬¸» ¾«ºº»® ¿±½·¿¬»¼ ©·¬¸ ¬¸» ¶¸ ¬± ¬¸»

±®·¹·²¿´ ¿®»¿ô ¿²¼ ·²»®¬ ¬¸» ¾«ºº»® ·²¬± ¬¸» ©¿·¬ ´·¬ ±º

»¿½¸ ¬¸®»¿¼ ·² °¿®¿´´»´ ø´·²» èóïë÷ò ×º ¬¸» º»¬½¸»¼ ¶¸ ©¿

®»³±ª»¼ ´±¹·½¿´´§ô ¬¸» ¬¸®»¿¼ ®»¬®·» ¬± º»¬½¸ ¬¸» ²»¨¬ ¶¸ò

ßº¬»® ·«·²¹ ¿´´ ¬¸» ×ñÑô ©» ¬±° ²»© «°½±³·²¹ ¬¸®»¿¼

º®±³ ¶±·²·²¹ ¬¸» ×ñÑ °®±½»·²¹ ¾§ «²»¬¬·²¹ ¬¸» ½° ·±

ª¿®·¿¾´» ø´·²» ïê÷ò Ì¸»²ô ¬¸» ¶±·²»¼ ¬¸®»¿¼ ¼·¿±½·¿¬»

¬¸» ¶¸ º®±³ ¬¸» ¬®¿²¿½¬·±² ©¸·´» ½±³°´»¬·²¹ ¬¸» ×ñÑ

ø´·²» ïé ¿²¼ îèóíì÷ò

·²¹ ¬¸®»¿¼ ¾§ ¼»½®»¿·²¹ ¬¸» ²«³¾»® ±º ¶±·²»¼ ¬¸®»¿¼

ø´·²» ïè÷ò Ì¸» ´¿¬ ¬¸®»¿¼ »¬ ¬¸» ²»¨¬ ¬®¿²¿½¬·±² ¬±

¾» ½¸»½µ°±·²¬»¼ ¾§ «°¼¿¬·²¹ ¬¸» ¸»¿¼ ±º ¬¸» ½¸»½µ°±·²¬

¬®¿²¿½¬·±² ´·¬ ¬± ¬¸» ²»¨¬ ±º ¬¸» ¸»¿¼ «·²¹ ¬¸» ¿¬±³·½

º±´´±©·²¹ °®±°»®¬§ò

Ð®±°»®¬§ íò Ý±³³·¬¬»¼ ¬®¿²¿½¬·±² Òóï · ½¸»½µ°±·²¬»¼

°®·±® ¬± ½±³³·¬¬»¼ ¬®¿²¿½¬·±² Òò

234 16th USENIX Conference on File and Storage Technologies USENIX Association

ÐÎÑÝÛÜËÎÛ ì Ýó´·µ» °»«¼±ó½±¼» ±º ±«® ½¸»½µ°±·²¬ó

·²¹ ¬®¿²¿½¬·±²

ïæ ¶¾¼î ´±¹ ©¿·¬ º±® °¿½»ø¶±«®²¿´÷º
îæ ·ºøø¬®¿²¿½¬·±² ã ¶±«®²¿´óâ¶ ½¸»½µ°±·²¬ ¬®¿²¿½¬·±²÷ ãã ÒËÔÔ÷

íæ ®»¬«®²å

ìæ ·ºø¿¬±³·½ ®»¿¼ø¬®¿²¿½¬·±²óâ½° ·±÷ ãã ¬±°÷

ëæ ®»¬«®²å

êæ ¿¬±³·½ ¿¼¼ø¬®¿²¿½¬·±²óâ½° ²«³ ·± ¬¸®»¿¼ô ï÷å

éæ ½®»¿¬» ©¿·¬ ´·¬ø´±½¿´ ©¿·¬ ´·¬÷å ññ ½®»¿¬» ¿ ´±½¿´ ©¿·¬ ´·¬ °»® ¬¸®»¿¼

èæ ©¸·´»øø¶¸ ã ¬®¿²¿½¬·±²óâ¬ ½¸»½µ°±·²¬ ´·¬÷ ÿã ÒËÔÔ÷º
çæ ·ºø¿¬±³·½ ½¿ø¬®¿²¿½¬·±²óâ¬ ½¸»½µ°±·²¬ ´·¬ô ¶¸ô ¶¸óâ²»¨¬÷ ÿã ¶¸÷÷

ïðæ ½±²¬·²«»å

ïïæ ·ºø¿¬±³·½ ®»¿¼ø¶¸óâ®»³±ª»¼÷ ãã ®»³±ª»¼÷

ïîæ ½±²¬·²«»å

ïíæ «¾³·¬ ¾¸øÉÎ×ÌÛô ¶¸óâ¾¸÷å

ïìæ ¿¼¼ ©¿·¬ ´·¬ø´±½¿´ ©¿·¬ ´·¬ô ¶¸óâ¾¸÷å

ïëæ ¹
ïêæ ¿¬±³·½ »¬ø¬®¿²¿½¬·±²óâ½° ·±ô ¬±°÷å

ïéæ ©¿·¬ ½° ·±ø´±½¿´ ©¿·¬ ´·¬÷å

ïèæ ·ºø¿¬±³·½ «¾ø¬®¿²¿½¬·±²óâ½° ²«³ ·± ¬¸®»¿¼ô ï÷ ãã ð÷º
ïçæ ä»¬ ¬¸» ²»¨¬ ¬®¿²¿½¬·±² ¬± ¾» ½¸»½µ°±·²¬»¼

îðæ ·² ¬¸» ½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ´·¬ «·²¹ ¿¬±³·½ ½¿â

îïæ ©¸·´»øø¶¸ ã ¬®¿²¿½¬·±²óâ¹½ ¸»¿¼÷ ÿã ÒËÔÔ÷º
îîæ ¬®¿²¿½¬·±²óâ¹½ ¸»¿¼ ã ¶¸óâ¹½ ²»¨¬å

îíæ º®»»ø¶¸÷å

îìæ ¹
îëæ º®»»ø¬®¿²¿½¬·±²÷å

îêæ ¹
îéæ ¹

îèæ ©¿·¬ ½° ·±ø´±½¿´ ©¿·¬ ´·¬÷º
îçæ ©¸·´»øÿ©¿·¬ ´·¬ »³°¬§ø´±½¿´ ©¿·¬ ´·¬÷º
íðæ ¾¸ ã ´·¬ »²¬®§ø´±½¿´ ©¿·¬ ´·¬ò²»¨¬ô òòò÷å

íïæ ©¿·¬ ±² ¾«ºº»®ø¾¸÷å

íîæ ¾¸óâ¶¸óâ½° ¬®¿²¿½¬·±² ã ÒËÔÔå

ííæ ¹
íìæ ¹

ß ½±³³·¬¬»¼ ¬®¿²¿½¬·±² · ·²»®¬»¼ ·²¬± ¬¸» ¬¿·´ ±º ¬¸»

½¸»½µ°±·²¬ ¬®¿²¿½¬·±² ´·¬ ·² ¬¸» ½±³³·¬¬»¼ ±®¼»® øÐ®±ó

½»¼«®» îô ´·²» ïëóïê÷ò Ì¸» ´¿¬ ¬¸®»¿¼ »¬ ¬¸» ²»¨¬ ¬®¿²ó

¿½¬·±² ¬± ¾» ½¸»½µ°±·²¬»¼ ·² ¬¸» ½¸»½µ°±·²¬ ¬®¿²¿½¬·±²

´·¬ ·² ¬¸» ½±³³·¬¬»¼ ±®¼»® øÐ®±½»¼«®» ìô ´·²» ïçóîð÷ò

Ì¸· ³»¿² ¬¸¿¬ ·º ¬®¿²¿½¬·±² Òóï · ½±³³·¬¬»¼ °®·±® ¬±

¬®¿²¿½¬·±² Òô ¬®¿²¿½¬·±² Ò · ²±¬ ½¸»½µ°±·²¬»¼ °®·±®

¬± ¬®¿²¿½¬·±² Òóïò Ì¸«ô ·¬ »²«®» ¬¸¿¬ ¿´´ ¬¸» ¾«ºº»®

·² ¬¸» ¬®¿²¿½¬·±² ¿®» ©®·¬¬»² ¬± ¬¸» ±®·¹·²¿´ ¿®»¿ ·² ¬¸»

Ð®±°»®¬§ ïô îô ¿²¼ íò

Ì¸»²ô ¬¸» ´¿¬ ¬¸®»¿¼ °¸§·½¿´´§ ®»³±ª» ¿´´ ¬¸» ±¾±ó

´»¬» ¶¸ ·² ¬¸» ÙÝ ´·¬ ±º ¬¸» ¬®¿²¿½¬·±² ø´·²» îïóîì÷ò ß¬

¬¸· °±·²¬ô ©» ½¿² ®»½´¿·³ ¬¸» ¶¸ ¿º»´§ò ×¬ · ¾»½¿«» ¿´´

¬¸» ¬®¿²¿½¬·±² °®±½»·²¹ · »²¼»¼æ øï÷ Ò± ±¬¸»® ¬¸®»¿¼

®»º»®»²½» ¬¸» ´±¹·½¿´´§ ®»³±ª»¼ ¶¸ ·² ¬¸» ¬®¿²¿½¬·±²

·²½» ¿´´ ¬¸» ×ñÑ °®±½»·²¹ · »²¼»¼ò øî÷ Ò± ±¬¸»® ¬¸®»¿¼

·²»®¬ ¿²§ ´±¹·½¿´´§ ®»³±ª»¼ ¶¸ ·²¬± ¬¸» ÙÝ ´·¬ ±º ¬¸»

¬®¿²¿½¬·±² ·²½» ¿´´ ¬¸» ¶¸ ·² ¬¸» ¬®¿²¿½¬·±² ¿®» ¼·ó

¿±½·¿¬»¼ º®±³ ¬¸» ¬®¿²¿½¬·±²ò Ú·²¿´´§ô ¬¸» ´¿¬ ¬¸®»¿¼

º®»» ¬¸» ½¸»½µ°±·²¬»¼ ¬®¿²¿½¬·±² ø´·²» îë÷ò

íòîòì Î»½±ª»®§

×² ¬¸» »¨·¬·²¹ ®»½±ª»®§ °®±½»¼«®»ô ¿ ·²¹´»ó¬¸®»¿¼»¼ °®±ó

½» ø·ò»òô ³±«²¬ °®±½»÷ °»®º±®³ ¬¸» ®»½±ª»®§ ±°»®¿ó

¬·±²ò Ì± ±°¬·³·¦» ¬¸» ®»½±ª»®§ °®±½»¼«®»ô ©» ½®»¿¬» ³«´ó

¬·°´» ¬¸®»¿¼ ¬± °»®º±®³ ½¿² ¿²¼ ®»°´¿§ ×ñÑ ±°»®¿¬·±² ·²

°¿®¿´´»´ ¿²¼ ¼± ²±¬ «» ¿²§ ¿¼¼·¬·±²¿´ ´±½µò É¸»² ³«´ó

¬·°´» ¬¸®»¿¼ ¬¿®¬ ¬¸» ½¿² ±°»®¿¬·±²ô »¿½¸ ¬¸®»¿¼ ³¿µ»

¿ ´±½¿´ ©¿·¬ ´·¬ ¬± ½±³°´»¬» ¬¸» ×ñÑ ·² °¿®¿´´»´ò Ì¸»²ô

·¬ ¿¬±³·½¿´´§ ¹»¬ ·¬ ±©² ±ºº»¬ ©¸·½¸ · ¬¸» ´±¹·½¿´ °±ó

·¬·±² ·² ¬¸» ¶±«®²¿´ ¿®»¿ ¾§ »¨»½«¬·²¹ ¬¸» ¿¬±³·½ ¿¼¼

·²¬®«½¬·±²ò Û¿½¸ ¬¸®»¿¼ ¹»¬ ·¬ ±©² ¾«ºº»® ¾¿»¼ ±² ¬¸»

±ºº»¬ô ·«» ¬¸» ®»¿¼ ®»¯«»¬ º±® ¬¸» ¾«ºº»® ·² °¿®¿´´»´ô

¿²¼ ·²»®¬ ¬¸» ¾«ºº»® ·²¬± ±©² ©¿·¬ ´·¬ò Ì¸· °®±½» ·

®»°»¿¬»¼ º±® ¿´´ ¬¸» ¾«ºº»® ©¸·½¸ ²»»¼ ¬± ¾» ½¿²²»¼ò ßºó

¬»® ¬¸» ¬¸®»¿¼ ½±³°´»¬» ¬¸» ×ñÑ º±® ¬¸» ½¿² ±°»®¿¬·±²

·² °¿®¿´´»´ô ¬¸»§ ½±²½«®®»²¬´§ ·²»®¬ ¬¸» ¾«ºº»® ·²½´«¼»¼

·² ¬¸»·® ±©² ©¿·¬ ´·¬ ·²¬± ¿ ¹´±¾¿´ ´·¬ º±® ¬¸» ®»°´¿§ ±°ó

»®¿¬·±²ò

×² ¬¸» ½¿» ±º ¬¸» ®»°´¿§ ±°»®¿¬·±²ô »¿½¸ ¬¸®»¿¼ ³¿µ»

¿ ´±½¿´ ©¿·¬ ´·¬ ·³·´¿® ¬± ¬¸» ½¿» ±º ¬¸» ½¿² ±°»®¿¬·±²

¿²¼ ½±²½«®®»²¬´§ º»¬½¸» ¬¸» ¾«ºº»® ¬± ¾» ®»°´¿§»¼ º®±³

¬¸» ´·¬ò Ì¸»²ô ·¬ ·«» ¬¸» ©®·¬» ®»¯«»¬ ·² °¿®¿´´»´ ¿²¼

·²»®¬ ¬¸» ¾«ºº»® ·²¬± ·¬ ±©² ©¿·¬ ´·¬ò ßº¬»® ·«·²¹ ¿´´

¬¸» ×ñÑ º±® ¬¸» ®»°´¿§ ±°»®¿¬·±²ô ¬¸» ¬¸®»¿¼ ½±³°´»¬»

¬¸» ×ñÑ ·² °¿®¿´´»´ò Ì¸· ®»½±ª»®§ ½¸»³» ³¿µ» ¬¸» ®»ó

ì Ûª¿´«¿¬·±²

ìòï Û¨°»®·³»²¬¿´ »¬«°
É» °»®º±®³ ¿´´ ±º ¬¸» »¨°»®·³»²¬ ±² ¿ éîó½±®» ³¿½¸·²»

©·¬¸ º±«® ×²¬»´ È»±² Ûéóèèéð °®±½»±® ø©·¬¸±«¬ ¸§ó

°»®¬¸®»¿¼·²¹÷ô ïê Ù·Þ ÜÎßÓô ¿²¼ ÐÝ× íòð ·²¬»®º¿½»ò

Ú±® ¬±®¿¹»ô ¬¸» ³¿½¸·²» ¸¿ ¿² èðð Ù·Þ ×²¬»´ Ðíéðð

ÒÊÓ» ÍÍÜ ÅïìÃô ©¸·½¸ ¸¿ ïè ½¸¿²²»´ò Ì¸» ³¿½¸·²»

®«² Ë¾«²¬« ïêòðìòï ÔÌÍ ¼·¬®·¾«¬·±² ©·¬¸ ¿ Ô·²«¨ µ»®ó

²»´ ìòçòïò É» »ª¿´«¿¬» ¬¸» »¨·¬·²¹ ÛÈÌì ¿²¼ º«´´§ ±°¬·ó

º¿«´¬÷ ¿²¼ ¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ò Ì± °®»»²¬ ¿ °»®º±®ó

³¿²½» ¾®»¿µ¼±©²ô ©» ¿´± »ª¿´«¿¬» ¿² ±°¬·³·¦»¼ ÛÈÌì

©·¬¸ ±«® °¿®¿´´»´ ×ñÑ ½¸»³» øÐóÛÈÌì÷ò ×² ÐóÛÈÌìô ©»

¿´´±© ¬¸» ¿°°´·½¿¬·±² ¬¸®»¿¼ ¬± °»®º±®³ ¬¸» ×ñÑ ±°»®ó

¿¬·±² ¾§ ²±¬ ¾´±½µ·²¹ ¾«¬ ¶±·²·²¹ ¬¸»³ ¬± ¬¸» ¶±«®²¿´

¿²¼ ½¸»½µ°±·²¬ ×ñÑ ·² ¿ °¿®¿´´»´ ¿²¼ ½±±°»®¿¬·ª» ³¿²ó

²»®ò Ø±©»ª»®ô ©» ¬·´´ «°¼¿¬» ¬¸» ¼¿¬¿ ¬®«½¬«®» «ó

·²¹ ¶ ´·¬ ´±½µò Ì¸®±«¹¸ ¬¸· »ª¿´«¿¬·±²ô ©» ½±³°¿®»

¬¸» °»®º±®³¿²½» ±º ±«® ¬©± ½¸»³»ò É» ®«² ³»¬¿¼¿¬¿

¿²¼ ¼¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ô «½¸ ¿ ¬±µ«¾»²½¸ ÅçÃô

¸±©² ·² Ì¿¾´» ïò É» ª¿®§ ¬¸» ²«³¾»® ±º ½±®» º®±³

ï ¬± éîô ¿²¼ ¬¸» ²«³¾»® ±º ¬¸®»¿¼ · »¯«¿´ ¬± ¬¸¿¬ ±º ¬¸»

½±®»ò É» ®«² »¿½¸ ¬»¬ ¬»² ¬·³» ¿²¼ ®»°±®¬ ¬¸» ¿ª»®¿¹»ò

ìòî Ð»®º±®³¿²½» ®»«´¬

ìòîòï Ñ®¼»®»¼ ³±¼»

É» °®»»²¬ ¬¸» °»®º±®³¿²½» ®»«´¬ ·² ¬¸» ±®¼»®»¼ ³±¼»

¿ ¸±©² ·² Ú·¹«®» êò ×² ¬¸» ½¿» ±º ¬±µ«¾»²½¸ ¿

USENIX Association 16th USENIX Conference on File and Storage Technologies 235

Þ»²½¸³¿®µ Ü»½®·°¬·±² Ð¿®¿³»¬»®

Ì±µ«¾»²½¸ ø³·½®± ¾»²½¸³¿®µ÷ Ú·´»æ íðôðððôðððô ×ñÑ ·¦»æ ìÕ·Þ

Í§¾»²½¸ ø³·½®± ¾»²½¸³¿®µ÷ Ü¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ ø®¿²¼±³ ©®·¬»÷

Ú·´»¾»²½¸ Ê¿®³¿·´ ø³¿½®± ¾»²½¸³¿®µ÷ Ó»¬¿¼¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ ø®»¿¼ñ©®·¬» ®¿¬·± ã ïæï÷ Ú·´»æ íððôðððô Ü·®»½¬±®§ ©·¼¬¸æ ïðôððð

Ú·´»¾»²½¸ Ú·´»»®ª»® ø³¿½®± ¾»²½¸³¿®µ÷ Ü¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ ø®»¿¼ñ©®·¬» ®¿¬·± ã ïæî÷ Ú·´»æ ïôðððôðððô Ü·®»½¬±®§ ©·¼¬¸æ ïðôððð

Ì¿¾´» ïæ É±®µ´±¿¼ ¼»½®·°¬·±² ¿²¼ °¿®¿³»¬»®

EXT4 P-EXT4 O-EXT4

0

50

100

150

200

250

1 2 4 8 18 36 54 72
The number of cores

ø¿÷ Ì±µ«¾»²½¸

0

500

1000

1500

2000

1 2 4 8 18 36 54 72
The number of cores

ø¾÷ Í§¾»²½¸

0

200

400

600

800

1000

1 2 4 8 18 36 54 72
The number of cores

ø½÷ Ê¿®³¿·´

0

400

800

1200

1600

2000

1 2 4 8 18 36 54 72
The number of cores

ø¼÷ Ú·´»»®ª»®

Ú·¹«®» êæ Ñ®¼»®»¼ ³±¼»

EXT4 P-EXT4 O-EXT4

0

50

100

150

200

250

1 2 4 8 18 36 54 72
The number of cores

ø¿÷ Ì±µ«¾»²½¸

0

100

200

300

400

500

600

1 2 4 8 18 36 54 72
The number of cores

ø¾÷ Í§¾»²½¸

0
100
200
300
400
500
600
700

1 2 4 8 18 36 54 72
The number of cores

ø½÷ Ê¿®³¿·´

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72
The number of cores

ø¼÷ Ú·´»»®ª»®

Ú·¹«®» éæ Ü¿¬¿ ¶±«®²¿´·²¹ ³±¼»

¸±©² ·² Ú·¹«®» êø¿÷ô ¬¸» °»®º±®³¿²½» ¹®±©¬¸ ±º ÛÈÌì

· ²±¬ ²±¬·½»¿¾´» ¿ ¬¸» ²«³¾»® ±º ½±®» ·²½®»¿»ò Ðó

ÛÈÌì ·³°®±ª» ¬¸» °»®º±®³¿²½» ¾§ ïòç¨ ½±³°¿®»¼ ¬±

ÛÈÌìò Ø±©»ª»®ô ½±³°¿®»¼ ¬± º«´´ ±°¬·³·¦¿¬·±²ô ¬¸·

®»«´¬ ¸±© ¬¸» ´·³·¬¿¬·±² ±º ±«® °¿®¿´´»´ ×ñÑ ½¸»³»ô

©¸·½¸ ¼±» ²±¬ ¸¿²¼´» ¬¸» ´±½µ ½±²¬»²¬·±²ò Ì¸®±«¹¸

º«´´ ±°¬·³·¦¿¬·±²ô ÑóÛÈÌì ·³°®±ª» ¬¸» °»®º±®³¿²½» ¾§

îòî¨ ¿¬ éî ½±®» ½±³°¿®»¼ ¬± ÛÈÌìò Ó»¿²©¸·´»ô ¬¸» °»®ó

º±®³¿²½» ±º ÑóÛÈÌì · ¿´³±¬ ¬¸» ¿³» ¾»§±²¼ ïè ½±®»

·²½» ¬¸» ¾¿²¼©·¼¬¸ · ¿¬«®¿¬»¼ ¼«» ¬± ¬¸» ´·³·¬»¼ ©®·¬»

¾¿²¼©·¼¬¸ ¿²¼ ¬¸» ½¸¿²²»´ ±º ¬¸» ÍÍÜò ×² ¬¸» ½¿» ±º

§¾»²½¸ ¿ ¸±©² ·² Ú·¹«®» êø¾÷ô ÐóÛÈÌì ¿²¼ ÑóÛÈÌì

·³°®±ª» ¬¸» °»®º±®³¿²½» ¾§ ïíòèû ¿²¼ ïêòíûô ®»°»½ó

¬·ª»´§ô ½±³°¿®»¼ ¬± ÛÈÌì ¿¬ éî ½±®»ò Ì¸» °»®º±®³¿²½»

·³°®±ª»³»²¬ · ´±©»® ¬¸¿² ¬¸¿¬ ±º ¬±µ«¾»²½¸ ·²½» §ó

¾»²½¸ ¿ ¿ ¼¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ ¹»²»®¿¬» º¿® º»©»®

¶±«®²¿´ ×ñÑ º±® ³»¬¿¼¿¬¿ò

Ë²¼»® ¬¸» ª¿®³¿·´ ©±®µ´±¿¼ ¿ ¸±©² ·² Ú·¹«®» êø½÷ô

ÐóÛÈÌì ¿²¼ ÑóÛÈÌì ½¿´» ©»´´ ½±³°¿®»¼ ¬± ¬¸» ½¿»

±º ¬±µ«¾»²½¸ ¿²¼ ±«¬°»®º±®³ ÛÈÌì ¾§ ïòçî¨ ¿²¼ îòðí¨

¿¬ éî ½±®»ô ®»°»½¬·ª»´§ò ÑóÛÈÌì ¿½¸·»ª» «° ¬± çïìòí

Ó·Þñò Í·²½» ¬¸» ©±®µ´±¿¼ ¹»²»®¿¬» ¿ ³·¨¬«®» ±º ®»¿¼ó

ñ©®·¬» ±°»®¿¬·±² «²´·µ» ¬±µ«¾»²½¸ô ¬¸» ¿ª¿·´¿¾´» ¾¿²¼ó

©·¼¬¸ ·²½®»¿»ô ¿²¼ ¬¸»®»º±®»ô ¬¸» °»®º±®³¿²½» ¹®¿¼«ó

¿´´§ ½¿´» ¿¬ ¿´´ ½±®»ò Ó»¿²©¸·´»ô ¬¸» °»®º±®³¿²½» ±º

ÛÈÌì ¼»½®»¿» ¾»§±²¼ ëì ½±®» ¼«» ¬± ¬¸» ´±½µ ½±²ó

«®» êø¼÷ô ÐóÛÈÌì ¿²¼ ÑóÛÈÌì ±«¬°»®º±®³ ÛÈÌì ¾§

§¬»³ ½¿´» ·² ¿ ·³·´¿® ¬®»²¼ ¿¬ »¿½¸ ½±®»ô ¿²¼ ¬¸»

SpanFS O-EXT4

0

200

400

600

800

1000

1 2 4 8 18 36 54 72
The number of cores

ø¿÷ Ê¿®³¿·´

0

200

400

600

800

1000

1200

1 2 4 8 18 36 54 72
The number of cores

ø¾÷ Ú·´»»®ª»®

Ú·¹«®» èæ Ý±³°¿®·±² ©·¬¸ Í°¿²ÚÍ

°»®º±®³¿²½» ¹¿° · ²±¬ ²±¬·½»¿¾´»ò Ì¸» ®»¿±² · ¬¸¿¬ô

· ¼¿¬¿ó·²¬»²·ª»ô ©¸·½¸ ¹»²»®¿¬» ¿ ´±© ²«³¾»® ±º ³»¬¿ó

°®±ª» ¬¸» °»®º±®³¿²½» ·² ¬¸» ±®¼»®»¼ ³±¼» ¾§ ®»¼«½·²¹

¬¸» ´±½µ ½±²¬»²¬·±² ¿²¼ °¿®¿´´»´·¦·²¹ ¬¸» ×ñÑ ±°»®¿¬·±²ô

»°»½·¿´´§ º±® ³»¬¿¼¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ò

ìòîòî Ü¿¬¿ ¶±«®²¿´·²¹ ³±¼»

É» °®»»²¬ ¬¸» °»®º±®³¿²½» ®»«´¬ ·² ¬¸» ¼¿¬¿ ¶±«®²¿´·²¹

³±¼» ¿ ¸±©² ·² Ú·¹«®» éò ×² ¬¸» ½¿» ±º ¬±µ«¾»²½¸ ¿

¸±©² ·² Ú·¹«®» éø¿÷ô ÐóÛÈÌì ¿²¼ ÑóÛÈÌì ±«¬°»®º±®³

ÛÈÌì ¾§ éíû ¿²¼ èèòîû ¿¬ éî ½±®»ô ®»°»½¬·ª»´§ò Ì¸»

®»«´¬ ¸±© ¬¸¿¬ ¬¸» ±ª»®¿´´ ¿°»½¬ ±º ¬¸» °»®º±®³¿²½»

· ·³·´¿® ¬± ¬¸¿¬ ·² ¬¸» ±®¼»®»¼ ³±¼»ò ×² ¬¸» ½¿» ±º

§¾»²½¸ ¿ ¸±©² ·² Ú·¹«®» éø¾÷ô ÐóÛÈÌì ¿²¼ ÑóÛÈÌì

¸±© ïòïé¨ ¿²¼ îòï¨ º¿¬»® °»®º±®³¿²½» ¬¸¿² ÛÈÌì ¿¬

éî ½±®»ô ®»°»½¬·ª»´§ò Ì¸» °»®º±®³¿²½» ·³°®±ª»³»²¬ ·

¸·¹¸»® ¬¸¿² ¬¸¿¬ ·² ¬¸» ±®¼»®»¼ ³±¼» ·²½» ¬¸» ©±®µ´±¿¼

¹»²»®¿¬» ³¿²§ ¶±«®²¿´ ×ñÑ º±® ¼¿¬¿ò ß´±ô ¬¸» ®»«´¬

¸±© ¬¸¿¬ ¬¸» ·³°®±ª»³»²¬ ¾§ ±«® °¿®¿´´»´ ×ñÑ ½¸»³» ·

´±© ¼«» ¬± ¬¸» ´·¬ ´±½µ ½±²¬»²¬·±²ò

236 16th USENIX Conference on File and Storage Technologies USENIX Association

Ú·´» §¬»³ Ü»ª·½»ó´»ª»´ ¾¿²¼©·¼¬¸ É®·¬» ¬·³» ¶ ½¸»½µ°±·²¬ ³«¬»¨ ¶ ´·¬ ´±½µ ¶ ¬¿¬» ´±½µ Ñ¬¸»®

ÛÈÌì êçî Ó·Þñ ëîîîð øïððû÷ ïéçìê øíìòìû÷ êïíî øïïòéû÷ ïðî øðòîû÷ îèðìð øëíòéû÷

ÐóÛÈÌì èðë Ó·Þñ ìëïîì øïððû÷ ð ìèçð øïðòèû÷ èé øðòîû÷ ìðïìé øèçû÷

ÑóÛÈÌì ïìîê Ó·Þñ îëðéè øïððû÷ ð ð ïèî øðòéû÷ îìèçê øççòíû÷

Ì¿¾´» îæ Ü»ª·½»ó´»ª»´ ¾¿²¼©·¼¬¸ ¿²¼ ¬±¬¿´ »¨»½«¬·±² ¬·³» ±º ³¿·² ´±½µ ¿²¼ ©®·¬» ±°»®¿¬·±²

Ó±¼» Ñ®¼»®»¼ Ü¿¬¿ ¶±«®²¿´·²¹

Ñ°»®¿¬·±² ½¿² ®»°´¿§ ±¬¸»® ½¿² ®»°´¿§ ±¬¸»®

ÛÈÌì ííï ³ êî ³ é ³ íïï ³ èï ³ ë ³

ÑóÛÈÌì ïîë ³ íì ³ ç ³ ïïé ³ íé ³ ì ³

Ì¿¾´» íæ Î»½±ª»®§ °»®º±®³¿²½»

Ë²¼»® ¬¸» ª¿®³¿·´ ©±®µ´±¿¼ ¿ ¸±©² ·² Ú·¹«®» éø½÷ô

ÐóÛÈÌì ¿²¼ ÑóÛÈÌì ±«¬°»®º±®³ ÛÈÌì ¾§ íïòíû ¿²¼

íçòíû ¿¬ éî ½±®»ô ®»°»½¬·ª»´§ò Ë²´·µ» ¬¸» ½¿» ±º ¬¸» ±®ó

¼»®»¼ ³±¼»ô ¬¸» °»®º±®³¿²½» · ¿¬«®¿¬»¼ ¿²¼ «¬¿·²»¼

¾»§±²¼ ïè ½±®» ·²½» ©®·¬·²¹ ¾±¬¸ ¬¸» ³»¬¿¼¿¬¿ ¿²¼ ¬¸»

¼¿¬¿ ³¿µ» ¬¸» °»®º±®³¿²½» ®»¿½¸ ¬¸» º«´´ ¾¿²¼©·¼¬¸

º¿¬»®ò Ó»¿²©¸·´»ô ¬¸» °»®º±®³¿²½» ±º ÛÈÌì ¼»½®»¿»

¸±©² ·² Ú·¹«®» éø¼÷ô ÐóÛÈÌì ¿²¼ ÑóÛÈÌì ±«¬°»®º±®³

ÛÈÌì ¾§ ïòïé¨ ¿²¼ îòðï¨ ¿¬ éî ½±®»ô ®»°»½¬·ª»´§ò Ñó

ÛÈÌì ¿½¸·»ª» «° ¬± ïðêìòê Ó·Þñò Ì¸» °»®º±®³¿²½» ±º

ÐóÛÈÌì ¿²¼ ÛÈÌì ¼»½®»¿» ¾»§±²¼ íê ½±®»ô ©¸·½¸

¼»³±²¬®¿¬» ¬¸» ²»»¼ º±® ¾±¬¸ ½±²½«®®»²¬ «°¼¿¬» ±²

¼¿¬¿ ¬®«½¬«®» ¿²¼ °¿®¿´´»´ ×ñÑò Ó»¿²©¸·´»ô ÑóÛÈÌì

½¿´» ©»´´ ¬± ïè ½±®» ¿²¼ ·²½®»¿» ¬¸» °»®º±®³¿²½»

«²¬·´ éî ½±®»ò Þ»§±²¼ íê ½±®»ô ¬¸» ®¿¬» ±º ¾¿²¼©·¼¬¸

¹®±©¬¸ · ®»¼«½»¼ ¼«» ¬± ¬¸» ¾¿²¼©·¼¬¸ ´·³·¬ ±º ¬¸» ÍÍÜò

¾»½±³» ´¿®¹»® ·² ¼¿¬¿ó·²¬»²·ª» ©±®µ´±¿¼ò

©±®µ´±¿¼ ·² ¬¸» ±®¼»®»¼ ¿²¼ ¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ô ®»ó

°»½¬·ª»´§ò É» »¬ ¬¸» ²«³¾»® ±º ¼±³¿·² ·² Í°¿²ÚÍ ¿

§¬»³ ½¿´» ©»´´ «²¬·´ ¬¸» °»®º±®³¿²½» · ¿¬«®¿¬»¼ ·²

¾±¬¸ ©±®µ´±¿¼ò Ó»¿²©¸·´»ô ÑóÛÈÌì ¹»²»®¿´´§ ¸±©

¾»¬¬»® °»®º±®³¿²½» ¿²¼ ·³°®±ª» ¬¸» °»®º±®³¿²½» ¾§ «°

´±¿¼ô ®»°»½¬·ª»´§ô ½±³°¿®»¼ ¬± Í°¿²ÚÍò Û°»½·¿´´§ô ·²

¬¸» ½¿» ±º ¬¸» ª¿®³¿·´ ©±®µ´±¿¼ô ¬¸» °»®º±®³¿²½» ±º

ÑóÛÈÌì · ·³·´¿® ±® ´±©»® ¬¸¿² ¬¸¿¬ ±º Í°¿²ÚÍ ¿¬ ¿

³¿´´ ²«³¾»® ±º ½±®» ©¸·´» ÑóÛÈÌì ¸±© ¾»¬¬»® °»®ó

º±®³¿²½» ¬¸¿² Í°¿²ÚÍ ¿ ¬¸» ²«³¾»® ±º ½±®» ·²½®»¿»ò

Ì¸» ®»«´¬ ¸±© ¬¸¿¬ ±«® ½¸»³» ½¿² ¼»´·ª»® ¾»¬¬»® °»®ó

ìòí Û¨°»®·³»²¬¿´ ¿²¿´§·

Ì¿¾´» î ¸±© ¬¸» ¬±¬¿´ »¨»½«¬·±² ¬·³» º±® ¬¸» ³¿·² ´±½µ

¿²¼ ¬¸» ¼»ª·½»ó´»ª»´ ¾¿²¼©·¼¬¸ ¿¬ éî ½±®» ·² ¬¸» ½¿»

±º ¬¸» §¾»²½¸ ©±®µ´±¿¼ ·² ¬¸» ¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ò

Ú±® ¬¸· »¨°»®·³»²¬ô ©» ³»¿«®»¼ ¬¸» »¨»½«¬·±² ¬·³» ¾§

«·²¹ ¿ ¬·³» º«²½¬·±² ø¹»¬®¿©³±²±¬±²·½ø÷÷ º±® ´±©»®

±ª»®¸»¿¼ ¿²¼ ³±®» ½±®®»½¬²»ò ß ¸±©² ·² ¬¸» ¬¿¾´»ô

·² ÛÈÌìô ¬¸» »¨»½«¬·±² ¬·³» ±º ¬¸» ½¸»½µ°±·²¬ ³«¬»¨

¿²¼ ´·¬ ´±½µ ¬¿µ» ¿ ´¿®¹» °±®¬·±² ±º ¬¸» ¬±¬¿´ ©®·¬» ¬·³»ò

×² ÐóÛÈÌìô ¬¸» ¾¿²¼©·¼¬¸ ·²½®»¿» ¾§ ïêòíûô ¿²¼ ¬¸»

©®·¬» ¬·³» ¼»½®»¿» ¾§ ïëòéû ½±³°¿®»¼ ¬± ÛÈÌìô ®»ó

°»½¬·ª»´§ò ß ¬¸» ¬±¬¿´ ©®·¬» ¬·³» ¼»½®»¿»ô ¬¸» ¬·³» ±º

¬¸» ´·¬ ¿²¼ ¬¿¬» ´±½µ ¼»½®»¿» ©¸·´» ¬¸» ´·¬ ´±½µ ¬·´´

¬¿µ» «° ïðòèû ±º ¬¸» ¬±¬¿´ ©®·¬» ¬·³»ò Ì¸· ¼»³±²¬®¿¬»

¬¸¿¬ ¬¸» ´·¬ ´±½µ ½±²¬»²¬·±² ½¿² ¾» ¿ °»®º±®³¿²½» ¾±¬¬´»ó

²»½µ ·² ±«® °¿®¿´´»´ ×ñÑ ½¸»³»ò ×² ÑóÛÈÌìô ¬¸» ¾¿²¼ó

©·¼¬¸ ·²½®»¿» ¾§ îòðê¨ô ¿²¼ ¬¸» ©®·¬» ¬·³» ¼»½®»¿»

¾§ îòðè¨ ½±³°¿®»¼ ¬± ÛÈÌìò Ì¸· · ¿½¸·»ª»¼ ¾§ ®»ó

³±ª·²¹ ¬¸» ´·¬ ´±½µ ½±²¬»²¬·±² ª·¿ ±«® ½±²½«®®»²¬ «°¼¿¬»

½¸»³»ò Ó»¿²©¸·´»ô ¬¸» ½±²¬»²¬·±² ±² ¬¸» ¬¿¬» ´±½µ ·²ó

½®»¿» ¼«» ¬± ¬¸» ®»³±ª¿´ ±º ¬¸» ´·¬ ´±½µ ¾«¬ ¬¸» °±®¬·±²

· ¬·´´ ³¿´´ò Ý±²»¯«»²¬´§ô ¬¸· ®»«´¬ ¼»³±²¬®¿¬» ¬¸¿¬

ÑóÛÈÌì ¿½¸·»ª» ¸·¹¸ó°»®º±®³¿²½» ¬®¿²¿½¬·±² °®±½»ó

·²¹ ¾§ »²¿¾´·²¹ ¾±¬¸ ½±²½«®®»²¬ «°¼¿¬» ¿²¼ °¿®¿´´»´ ×ñÑò

ìòì Î»½±ª»®§ °»®º±®³¿²½»

Ì± »ª¿´«¿¬» ¬¸» ®»½±ª»®§ °»®º±®³¿²½»ô ©» «»¼

¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ô ®»°»½¬·ª»´§ò É¸·´» ®«²²·²¹ ¬¸»

¾»²½¸³¿®µô ©» ®¿²¼±³´§ ½«¬ ¬¸» °±©»® ±º ¬¸» ³¿½¸·²»ô

»®»¼ ¬± ¿ ½±²·¬»²¬ ¬¿¬» ¿º¬»® ³±®» ¬¸¿² íð ½®¿¸»ò Ì¿ó

¾´» í ¸±© ¬¸» ®»½±ª»®§ °»®º±®³¿²½» ±º ¬¸» ±®¼»®»¼ ¿²¼

®»°´¿§ ±°»®¿¬·±² ±½½«°§ ¬¸» ³¿·² °¿®¬ ±º ¬¸» ¬±¬¿´ ®»½±ªó

»®§ ¬·³» ·² ¿´´ ½¿»ò Ì¸®±«¹¸ °¿®¿´´»´·¦·²¹ ½¿² ¿²¼ ®»ó

°´¿§ ×ñÑ ±°»®¿¬·±²ô ÑóÛÈÌì ·³°®±ª» ¬¸» ®»½±ª»®§ °»®ó

º±®³¿²½» ¾§ îòíè¨ ¿²¼ îòëï¨ ½±³°¿®»¼ ¬± ÛÈÌì ·² ¬¸»

±®¼»®»¼ ¿²¼ ¼¿¬¿ ¶±«®²¿´·²¹ ³±¼»ô ®»°»½¬·ª»´§ò Ì¸· ®»ó

«´¬ ¼»³±²¬®¿¬» ¬¸¿¬ ±«® ½¸»³» ½¿² ¿´± ¾» ¿°°´·»¼ ¬±

¬¸» ®»½±ª»®§ °®±½»¼«®» ¬± °®±ª·¼» º¿¬»® ®»½±ª»®§ ¬·³»ò

ë Î»´¿¬»¼ É±®µ

Ô±½µóº®»» ¼¿¬¿ ¬®«½¬«®»ò Ê¿´±· ÅííÃ °®±ª·¼» ´±½µó

º®»» ¼¿¬¿ ¬®«½¬«®» ¿²¼ ¿´¹±®·¬¸³ º±® ·³°´»³»²¬·²¹ ¿

¸¿®»¼ ·²¹´§ó´·²µ»¼ ´·¬ô ¿´´±©·²¹ ½±²½«®®»²¬ ¬®¿ª»®¿´ô

·²»®¬·±²ô ¿²¼ ¼»´»¬·±²ò Æ¸¿²¹ »¬ ¿´ò ÅíëÃ ·²¬®±¼«½» ²»©

´±½µóº®»» ¿²¼ ©¿·¬óº®»» «²±®¼»®»¼ ´·²µ»¼ ´·¬ ¿´¹±®·¬¸³ò

±®¼»®»¼ ´·²µ»¼ ´·¬ ¬¸¿¬ «°°±®¬ ©¿·¬óº®»» ·²»®¬ô ®»³±ª»ô

¿²¼ ´±±µ«° ±°»®¿¬·±²ò Ñ«® ¬«¼§ · ·²°·®»¼ ¾§ ¬¸»»

©±®µ Åííô íëÃô ¿²¼ ©» «» ¿ ª¿®·¿²¬ ±º ¬¸»» ·³°´»³»²ó

¬¿¬·±² ¿²¼ ¿°°´§ ·¬ ¬± ¬®¿²¿½¬·±² °®±½»·²¹ ·² ¿ ¶±«®ó

USENIX Association 16th USENIX Conference on File and Storage Technologies 237

Í½¿´¿¾´» ¼¿¬¿¾¿» §¬»³ò Í·´± ÅíðÃ · ¿² ·²ó

³»³±®§ ¼¿¬¿¾¿» §¬»³ ¼»·¹²»¼ º±® ³«´¬·ó½±®» ³¿ó

½¸·²»ò Í·´± ·³°´»³»²¬ ¿ ª¿®·¿²¬ ±º ±°¬·³·¬·½ ½±²½«®ó

®»²½§ ½±²¬®±´ ·² ©¸·½¸ ¬®¿²¿½¬·±² ©®·¬» ¬¸»·® «°¼¿¬»

¬± ¸¿®»¼ ³»³±®§ ±²´§ ¿¬ ½±³³·¬ ¬·³» ¿²¼ «» ¿ ¼»ó

½»²¬®¿´·¦»¼ ¬·³»¬¿³° ¾¿»¼ ¬»½¸²·¯«» ¬± ª¿´·¼¿¬» ¬®¿²ó

¿½¬·±² ¿¬ ½±³³·¬ ¬·³»ò Í·´±Î ÅíéÃ ¿¼¼ ¿¼¼·¬·±²¿´ º»¿ó

¬«®»ô «½¸ ¿ ´±¹¹·²¹ô ½¸»½µ°±·²¬·²¹ô ¿²¼ ®»½±ª»®§ ¬±

Í·´±ò ×¬ «» ½±²½«®®»²½§ ·² ¿´´ °¿®¬ ±º ¬¸» §¬»³ò Ú±®

»¨¿³°´»ô ¬¸» ´±¹ · ©®·¬¬»² ½±²½«®®»²¬´§ ¬± »ª»®¿´ ¼·µô

¿²¼ ¿ ½¸»½µ°±·²¬ · ¬¿µ»² ¾§ »ª»®¿´ ½±²½«®®»²¬ ¬¸®»¿¼

¬¸¿¬ ¿´± ©®·¬» ¬± ³«´¬·°´» ¼·µò Ñ«® ¬«¼§ · ·² ´·²» ©·¬¸

¬¸»» ©±®µ Åíðô íéÃ ·² ¬»®³ ±º ·²ª»¬·¹¿¬·²¹ ¬¸» ³«´¬·ó

½±®» ½¿´¿¾·´·¬§ ¾«¬ ©» º±½« ±² ¬¸» ¬®¿²¿½¬·±² °®±½»ó

Í½¿´¿¾´» µ»®²»´ò Ý»®¾»®« ÅîéÃ ³·¬·¹¿¬» ½±²¬»²¬·±²

±² ³¿²§ ¸¿®»¼ ¼¿¬¿ ¬®«½¬«®» ©·¬¸·² ÑÍ µ»®²»´ ¾§

½´«¬»®·²¹ ³«´¬·°´» ½±³³±¼·¬§ ±°»®¿¬·²¹ §¬»³ ¿¬±° ¿

ª·®¬«¿´ ³¿½¸·²» ³±²·¬±®ò Þ±§¼óÉ·½µ·¦»® »¬ ¿´ò ÅìÃ ¿²¿ó

´§¦» ¬¸» ½¿´¿¾·´·¬§ ±º »ª»² §¬»³ ¿°°´·½¿¬·±² ®«²²·²¹

¾·´·¬§ ¾±¬¬´»²»½µ ·²·¼» ¿ Ô·²«¨ µ»®²»´ò Î¿¼·¨ÊÓ ÅéÃ

°®»»²¬ ¿ ½¿´¿¾´» ª·®¬«¿´ ³»³±®§ ¿¼¼®» °¿½» º±®

²±²ó±ª»®´¿°°·²¹ ±°»®¿¬·±²ò ×¬ ¿ª±·¼ ½¿½¸» ´·²» ½±²ó

¬»²¬·±² «·²¹ ¬¸®»» ¬»½¸²·¯«»ô ©¸·½¸ ¿®» ®¿¼·¨ ¬®»»ô Î»ó

º½¿½¸»ô ¿²¼ ¬¿®¹»¬»¼ ÌÔÞ ¸±±¬¼±©²ò Ñ«® ¬«¼§ · ·²ó

°·®»¼ ¾§ ¬¸»» ©±®µ Åîéô ìô éÃ ¿²¼ ·² ´·²» ©·¬¸ ¬¸»³

·² ¬»®³ ±º ·²ª»¬·¹¿¬·²¹ ¬¸» ½¿´¿¾·´·¬§ ±º ÑÍ µ»®²»´ ±²

³«´¬·ó½±®»ò ×² ½±²¬®¿¬ô ©» º±½« ±² ¬®¿²¿½¬·±² °®±½»ó

Í½¿´¿¾´» ¬±®¿¹» ¬¿½µò Æ¸»²¹ »¬ ¿´ò ÅíêÃ °®»»²¬

¿ ¬±®¿¹» §¬»³ º±® ¿®®¿§ ±º ½±³³±¼·¬§ ÍÍÜò Ì¸»§

½®»¿¬» ¼»¼·½¿¬»¼ ×ñÑ ¬¸®»¿¼ º±® »¿½¸ ÍÍÜ ¿²¼ ¼»°´±§

¿ »¬ó¿±½·¿¬·ª» °¿®¿´´»´ °¿¹» ½¿½¸»ô ©¸·½¸ ¼·ª·¼» ¬¸»

¹´±¾¿´ °¿¹» ½¿½¸» ·²¬± ³¿´´ ¿²¼ ·²¼»°»²¼»²¬ »¬ ¬±

®»¼«½» ´±½µ ½±²¬»²¬·±²ò Ó«´¬·Ô¿²» ÅïëÃ · ¿ ª·®¬«¿´ó

·¦»¼ ¬±®¿¹» §¬»³ º±® ÑÍó´»ª»´ ª·®¬«¿´·¦¿¬·±² ±² ³¿²§

½±®»ò ×¬ ¾«·´¼ ¿² ·±´¿¬»¼ ×ñÑ ¬¿½µ ±² ¬±° ±º ¿ ª·®¬«ó

¿´·¦»¼ ¬±®¿¹» ¼»ª·½» ¬± »´·³·²¿¬» ½±²¬»²¬·±² ±² ¸¿®»¼

µ»®²»´ ¼¿¬¿ ¬®«½¬«®» ¿²¼ ´±½µò Ñ«® ¬«¼§ · ·² ´·²» ©·¬¸

¬¸»» ©±®µ Åíêô ïëÃ ·² ¬»®³ ±º ³·¬·¹¿¬·²¹ ¬¸» ½±²¬»²¬·±²

±² ¸¿®»¼ ®»±«®½»ò ×² ½±²¬®¿¬ô ©» º±½« ±² «°¼¿¬·²¹

¬¸» ¼¿¬¿ ¬®«½¬«®» ½±²½«®®»²¬´§ ·² ¿ ´±½µóº®»» ³¿²²»® ·²

×½»ÚÍ ÅïçÃ °¿®¬·¬·±² ¬¸» ±²ó

¼·µ ®»±«®½» ¿³±²¹ ¿ ²»© ½±²¬¿·²»® ¿¾¬®¿½¬·±² ½¿´´»¼

½«¾» ¬± °®±ª·¼» ·±´¿¬»¼ ×ñÑ ¬¿½µ º±® ´±½¿´·¦»¼ ®»¿½¬·±²

¼¿¬»ò Ì¸«ô ¬¸» ¼¿¬¿ ¿²¼ ×ñÑ ©·¬¸·² »¿½¸ ½«¾» ¿®» ¼·»²ó

¬¿²¹´»¼ º®±³ ¬¸» ¼¿¬¿ ¿²¼ ×ñÑ ±«¬·¼» ±º ·¬ò Í°¿²ÚÍ ÅïêÃ

»®ª·½»ô «½¸ ¿ ¼¿¬¿ ¿´´±½¿¬·±² ¿²¼ ¶±«®²¿´·²¹ô ·²¼»°»²ó

¼»²¬´§ò Ý«®¬·óÓ¿«®§ »¬ ¿´ò ÅèÃ °®»»²¬ ¿ ¼¿¬¿ °¿®¬·¬·±²ó

°®±½»±® ³±¼»´ º±® ·²½®»³»²¬¿´ ¿¼ª¿²½» ·² °¿®¿´´»´·³ò

Ó·² »¬ ¿´ò ÅîïÃ ¿²¿´§¦» ¬¸» ³¿²§ó½±®» ½¿´¿¾·´·¬§ ±º

¸·¼¼»² ½¿´¿¾·´·¬§ ¾±¬¬´»²»½µ ·² ³¿²§ ×ñÑó·²¬»²·ª» ¿°ó

°´·½¿¬·±²ò ·Ö±«®²¿´·²¹ ÅîíÃ ·³°®±ª» ¬¸» °»®º±®³¿²½»

±º ¿² º§²½ø÷ ½¿´´ò ×¬ ¶±«®²¿´ ±²´§ ¬¸» ½±®®»°±²¼·²¹

©¸·´» »¨°´±·¬·²¹ ¬¸» ¿¼ª¿²¬¿¹» ±º ¬¸» ½±³°±«²¼ ¬®¿²ó

¿½¬·±² ½¸»³»ò ·Ö±«®²¿´·²¹ ¿´± ¸¿²¼´» ³«´¬·°´» º§²½

½¿´´ ·³«´¬¿²»±«´§ ¾§ ¿´´±©·²¹ »¿½¸ ½±®» ¬± ¸¿ª» ·¬

±©² ·¶±«®²¿´ ¿®»¿ ¬± ·³°®±ª» ¬¸» ½¿´¿¾·´·¬§ò Í½¿´»ÚÍ ÅíÃ

³¿²§ó½±®» ½¿´¿¾·´·¬§ò Í½¿´»ÚÍ ¼»´¿§ °®±°¿¹¿¬·²¹ «°ó

¼¿¬» ¬± ¬¸» ¼·µ «²¬·´ ¿² º§²½ ½¿´´ô ©¸·½¸ ³»®¹» ¬¸»

°»®ó½±®» ´±¹ ¿²¼ ¿°°´·» ¬¸» ±°»®¿¬·±² ¬± ¼·µò ×² ½±²ó

¬®¿¬ ©·¬¸ ±«® ½¸»³»ô Í½¿´»ÚÍ «» ¬¸» °»®ó½±®» ´±¹ ¬±

¿ª±·¼ ¬¸» ´±½µ ½±²¬»²¬·±² ¿²¼ ¬·³»¬¿³° ¬± ±®¬ ¬¸» ±°ó

»®¿¬·±² ·² ¬¸» ´±¹ò Ñ«® ¬«¼§ · ·² ´·²» ©·¬¸ ¬¸»» ¿°ó

°®±¿½¸» Åïçô ïêô èô îïô îíô íÃ ·² ¬»®³ ±º ·²ª»¬·¹¿¬·²¹

¬®¿¬ô ©» »²¿¾´» ½±²½«®®»²¬ «°¼¿¬» ±² ¼¿¬¿ ¬®«½¬«®» ·²

¿ ´±½µóº®»» ³¿²²»® ¿²¼ °¿®¿´´»´·¦» ×ñÑ ±°»®¿¬·±² ½±±°»®ó

¿¬·ª»´§ ·² ¬®¿²¿½¬·±² °®±½»·²¹ ¾§ º±½«·²¹ ·¬ ·²¬»®²¿´

±°»®¿¬·±²ò

ê Ý±²½´«·±² ¿²¼ Ú«¬«®» É±®µ
×² ¬¸· °¿°»®ô ©» ·²ª»¬·¹¿¬» ¬¸» ´±½µ·²¹ ¿²¼ ×ñÑ ±°»®¿ó

¬®«½¬«®» ¿²¼ ×ñÑ ±°»®¿¬·±² ¾§ ¿ ·²¹´» ¬¸®»¿¼ ½¿² ¾»

°»®º±®³¿²½» ¾±¬¬´»²»½µ ±² ¿ ³«´¬·ó½±®» °´¿¬º±®³ ·²½±®ó

°±®¿¬·²¹ ¸·¹¸ó°»®º±®³¿²½» ¬±®¿¹»ò Ì± ¸¿²¼´» ¬¸· ·«»ô

©» °®»»²¬ ¿ ¬®¿²¿½¬·±² °®±½»·²¹ ©·¬¸ ½±²½«®®»²¬ «°ó

¼¿¬» ±² ¼¿¬¿ ¬®«½¬«®» ¿²¼ °¿®¿´´»´ ×ñÑ ±°»®¿¬·±²ò Û¨ó

¸·¹¸»® °»®º±®³¿²½» ¿²¼ ½¿´» ¾»¬¬»® ¬¸¿² ¬¸» »¨·¬·²¹

³»²¬ ´±½µóº®»» ³»½¸¿²·³ ¬± ¸¿²¼´» ¬¸» ´±½µ º±® ±¬¸»®

«¿¬» ¬¸»³ ·² ¼·ºº»®»²¬ ¬±®¿¹» »²ª·®±²³»²¬ò

é ß½µ²±©´»¼¹³»²¬
É» ¬¸¿²µ ±«® ¸»°¸»®¼ô Ü«¸§¿²¬¸ Ò¿®¿§¿²¿²ô ¿²¼

¿²±²§³±« ®»ª·»©»® º±® ª¿´«¿¾´» ½±³³»²¬ ¬¸¿¬

¹®»¿¬´§ ·³°®±ª»¼ ±«® °¿°»®ò Ì¸· ®»»¿®½¸ ©¿ «°ó

°±®¬»¼ ¾§ Ò¿¬·±²¿´ Î»»¿®½¸ Ú±«²¼¿¬·±² ±º Õ±®»¿

øÒÎÚ÷ øîðïëÓíÝìßéðêëêìëô îðïëÓíÝìßéðêëêìêô

îðïêÎïÜïßïÞðíçíìíçí÷ò

238 16th USENIX Conference on File and Storage Technologies USENIX Association

Î»º»®»²½»

ÅïÃ ßÐÌô Õòô ÜÛ ÞÑÛÎô Úò Íòô ßÒÜ ÑÔÜÛÎÑÙô ÛòóÎò

»¯«»²¬·¿´ ¿²¼ ½±²½«®®»²¬ °®±¹®¿³ò Í°®·²¹»® Í½·»²½» ú Þ«·ó

²» Ó»¼·¿ô îðïðò

ÅîÃ ßÎÐßÝ×óÜËÍÍÛßËô ßò Ýò Ó±¼»´ó¾¿»¼ º¿·´«®» ¿²¿´§· ±º ¶±«®ó

Ð®±½»»¼·²¹ ±º ¬¸» îððë ×²¬»®²¿¬·±²¿´

Ý±²º»®»²½» ±² Ü»°»²¼¿¾´» Í§¬»³ ¿²¼ Ò»¬©±®µ øÉ¿¸·²¹¬±²ô

ÜÝô ËÍßô îððë÷ô ÜÍÒ ùðëô ×ÛÛÛ Ý±³°«¬»® Í±½·»¬§ô °°ò èðî�

èïïò

ÅíÃ ÞØßÌô Íò Íòô ÛÏÞßÔô Îòô ÝÔÛÓÛÒÌÍô ßò Ìòô ÕßßÍØÑÛÕô

Óò Úòô ßÒÜ ÆÛÔÜÑÊ×ÝØ

«·²¹ ¿² ±°»®¿¬·±² ´±¹ò ×² Ð®±½»»¼·²¹ ±º ¬¸» îê¬¸ Í§³°±·«³ ±²

Ñ°»®¿¬·²¹ Í§¬»³ Ð®·²½·°´» øîðïé÷ô ßÝÓô °°ò êç�èêò

ÅìÃ ÞÑÇÜóÉ×ÝÕ×ÆÛÎô Íòô ÝÔÛÓÛÒÌÍô ßò Ìòô ÓßÑô Çòô

ÐÛÍÌÛÎÛÊô ßòô ÕßßÍØÑÛÕô Óò Úòô ÓÑÎÎ×Íô Îòô ÆÛÔÜÑÊ×ÝØô

Òòô ÛÌ ßÔò ß² ¿²¿´§· ±º ´·²«¨ ½¿´¿¾·´·¬§ ¬± ³¿²§ ½±®»ò ×²

ÑÍÜ× øîðïð÷ô ª±´ò ïðô °°ò èê�çíò

ÅëÃ ÝØ×ÜßÓÞßÎßÓô Êòô Ð×ÔÔß×ô Ìò Íòô ßÎÐßÝ×óÜËÍÍÛßËô ßò Ýòô

ßÒÜ ßÎÐßÝ×óÜËÍÍÛßËô Îò Øò Ñ°¬·³·¬·½ ½®¿¸ ½±²·¬»²½§ò ×²

Ð®±½»»¼·²¹ ±º ¬¸» Ì©»²¬§óÚ±«®¬¸ ßÝÓ Í§³°±·«³ ±² Ñ°»®¿¬ó

·²¹ Í§¬»³ Ð®·²½·°´» øÒ»© Ç±®µô ÒÇô ËÍßô îðïí÷ô ÍÑÍÐ ùïíô

ßÝÓô °°ò îîè�îìíò

ÅêÃ ÝØËÌßÒ×ô Íòô ßÒÜÛÎÍÑÒô Ñò Ìòô ÕßÆßÎô Óò Ôòô ÔÛÊÛÎÛÌÌô

Þò Éòô ÓßÍÑÒô Éò ßòô Í×ÜÛÞÑÌØßÓô Îò Òòô ÛÌ ßÔò Ì¸»

Ð®±½»»¼·²¹ ±º ¬¸» ËÍÛÒ×È É·²¬»® ïççî

Ì»½¸²·½¿´ Ý±²º»®»²½» øïççî÷ô Í¿² Ú®¿²·½±ô Ýßô ËÍßô °°ò ìí�

êðò

ÅéÃ ÝÔÛÓÛÒÌÍô ßò Ìòô ÕßßÍØÑÛÕô Óò Úòô ßÒÜ ÆÛÔÜÑÊ×ÝØô Òò

Î¿¼·¨ª³æ Í½¿´¿¾´» ¿¼¼®» °¿½» º±® ³«´¬·¬¸®»¿¼»¼ ¿°°´·½¿ó

¬·±²ò ×² Ð®±½»»¼·²¹ ±º ¬¸» è¬¸ ßÝÓ Û«®±°»¿² Ý±²º»®»²½» ±²

Ý±³°«¬»® Í§¬»³ øîðïí÷ô ßÝÓô °°ò îïï�îîìò

ÅèÃ ÝËÎÌ×ÍóÓßËÎÇô Óòô ÜÛÊßÜßÍô Êòô ÚßÒÙô Êòô ßÒÜ ÕËÔÕßó

ÎÒ×

ïî¬¸ ËÍÛÒ×È

Í§³°±·«³ ±² Ñ°»®¿¬·²¹ Í§¬»³ Ü»·¹² ¿²¼ ×³°´»³»²¬¿¬·±²

øÑÍÜ× ïê÷ øÙßô îðïê÷ô ËÍÛÒ×È ß±½·¿¬·±²ô °°ò ìïç�ìíìò

ÅçÃ ÛÍÓÛÌô Öòô ÞÛÒÜÛÎô Óò ßòô ÚßÎßÝØóÝÑÔÌÑÒô Óòô ßÒÜ

ÕËÍÆÓßËÔ Ø±¬ó

Í¬±®¿¹» øîðïî÷ò

ÅïðÃ ÚßÍØÛØ

îò ×² Ð®±½»»¼·²¹ ±º ¬¸» îððê Ô·²«¨ Í§³°±·«³ øîððê÷ô Ý·¬»»»®ô

°°ò îèç�íðîò

ÅïïÃ ÙÎßÇô Öòô ßÒÜ ÎÛËÌÛÎô ßò Ì®¿²¿½¬·±² °®±½»·²¹æ ½±²½»°¬

¿²¼ ¬»½¸²·¯«»ò Û´»ª·»®ô ïççîò

ÅïîÃ ØßÙÓßÒÒô Îò

¹·²¹ ¿²¼ ¹®±«° ½±³³·¬ô ª±´ò îïò ßÝÓô ïçèéò

ÅïíÃ ØßÌÆ×ÛÔÛÚÌØÛÎ×ÑËô ßòô ßÒÜ ßÒßÍÌßÍ×ßÜ×Íô Íò Êò ×³ó

Ì®¿²ò Í¬±®¿¹» çô ï øÓ¿®ò îðïí÷ô îæï�îæîéò

ÅïìÃ ×ÒÌÛÔ ÍÑÔ×Ü ÍÌßÌÛ ÜÎ×ÊÛ ÜÝ Ðíéðð ÍÛÎ×ÛÍò

¸¬¬°æññ©©©ò·²¬»´ò½±³ñ½±²¬»²¬ñ¼¿³ñ©©©ñ°«¾´·½ñ

«ñ»²ñ¼±½«³»²¬ñ°®±¼«½¬ó°»½·º·½¿¬·±²ñ

¼ó¼½ó°íéððó°»½ò°¼ºô îðïëò

ÅïëÃ ÕßÒÙô Öòô ØËô Ýòô ÉÑô Ìòô ÆØß×ô Çòô ÆØßÒÙô Þòô ßÒÜ ØËß×ô

Öò Ó«´¬·´¿²»æ Ð®±ª·¼·²¹ ª·®¬«¿´·¦»¼ ¬±®¿¹» º±® ±ó´»ª»´ ª·®¬«¿´ó

·¦¿¬·±² ±² ³¿²§½±®»ò Ì®¿²ò Í¬±®¿¹» ïîô í øÖ«²» îðïê÷ô ïîæï�

ïîæíïò

ÅïêÃ ÕßÒÙô Öòô ÆØßÒÙô Þòô ÉÑô Ìòô ÇËô Éòô ÜËô Ôòô Óßô Íòô ßÒÜ

ØËß×

×² îðïë ËÍÛÒ×È ß²²«¿´ Ì»½¸²·½¿´ Ý±²º»®»²½» øËÍÛÒ×È ßÌÝ

ïë÷ øÍ¿²¬¿ Ý´¿®¿ô Ýßô îðïë÷ô ËÍÛÒ×È ß±½·¿¬·±²ô °°ò îìç�îêïò

ÅïéÃ Õ×Óô Üòô ÐßÎÕô Öòô ÔÛÛô ÕòóÙòô ßÒÜ ÔÛÛô Íò Ú±®»²·½ ß²¿´§·

±º ß²¼®±·¼ Ð¸±²» Ë·²¹ Û¨¬ì Ú·´» Í§¬»³ Ö±«®²¿´ Ô±¹ò Í°®·²¹»®

Ò»¬¸»®´¿²¼ô Ü±®¼®»½¸¬ô îðïîô °°ò ìíë�ììêò

ÅïèÃ ÕÑÐÇÌÑÊô ßò Í§¾»²½¸æ ¿ §¬»³ °»®º±®³¿²½» ¾»²½¸³¿®µò

ËÎÔæ ¸¬¬°æññ§¾»²½¸ò ±«®½»º±®¹»ò ²»¬ øîððì÷ò

ÅïçÃ ÔËô Ôòô ÆØßÒÙô Çòô ÜÑô Ìòô ßÔóÕ×ÍÉßÒÇô Íòô ßÎÐßÝ×ó

ÜËÍÍÛßËô ßò Ýòô ßÒÜ ßÎÐßÝ×óÜËÍÍÛßËô Îò Øò Ð¸§·½¿´ ¼·ó

ÑÍÜ× øîðïì÷ô

°°ò èï�çêò

ÅîðÃ ÓßÌØËÎô ßòô ÝßÑô Óòô ÞØßÌÌßÝØßÎÇßô Íòô Ü×ÔÙÛÎô ßòô

ÌÑÓßÍô ßòô Ê×Ê×ÛÎô Ôòô ßÒÜ Íô Þò Íò ßò ß ¿²¼ ª·ª»®ô

×² ×² Ñ¬¬¿©¿ Ô·²«¨ Í§³°±·«³ò ¸¬¬°æññ±´òïðèò®»¼¸¿¬ò½±³ñîððéñ

Î»°®·²¬ñ³¿¬¸«®óÎ»°®·²¬ò°¼º øîððé÷ò

ÅîïÃ Ó×Òô Ýòô ÕßÍØÇßÐô Íòô ÓßßÍÍô Íòô ßÒÜ Õ×Óô Ìò Ë²¼»®ó

îðïê ËÍÛÒ×È

ß²²«¿´ Ì»½¸²·½¿´ Ý±²º»®»²½» øËÍÛÒ×È ßÌÝ ïê÷ øÜ»²ª»®ô ÝÑô

îðïê÷ô ËÍÛÒ×È ß±½·¿¬·±²ô °°ò éï�èëò

ÅîîÃ xÑÍÌÔËÒÜô Öòô ßÒÜ ÉÎ×ÙÍÌßÜô Ìò Ó«´¬·°´» ¿¹¹®»¹¿¬» »²¬®§

°±·²¬ º±® ±©²»®¸·° ¬§°»ò ÛÝÑÑÐ îðïî�Ñ¾¶»½¬óÑ®·»²¬»¼ Ð®±ó

¹®¿³³·²¹ øîðïî÷ô ïëê�ïèðò

ÅîíÃ ÐßÎÕô Üòô ßÒÜ ÍØ×Òô Üò ·¶±«®²¿´·²¹æ Ú·²»ó¹®¿·²»¼ ¶±«®²¿´·²¹

º±® ·³°®±ª·²¹ ¬¸» ´¿¬»²½§ ±º º§²½ §¬»³ ½¿´´ò ×² îðïé ËÍÛÒ×È

ß²²«¿´ Ì»½¸²·½¿´ Ý±²º»®»²½» øËÍÛÒ×È ßÌÝ ïé÷ øÍ¿²¬¿ Ý´¿®¿ô

Ýßô îðïé÷ô ËÍÛÒ×È ß±½·¿¬·±²ô °°ò éèé�éçèò

ÅîìÃ Ð×ÔÔß×ô Ìò Íòô ßÔßÙßÐÐßÒô Îòô ÔËô Ôòô ÝØ×ÜßÓÞßÎßÓô Êòô

ßÎÐßÝ×óÜËÍÍÛßËô ßò Ýòô ßÒÜ ßÎÐßÝ×óÜËÍÍÛßËô Îò Øò ß°ó

°´·½¿¬·±² ½®¿¸ ½±²·¬»²½§ ¿²¼ °»®º±®³¿²½» ©·¬¸ ½½ºò ×² îðïé

ËÍÛÒ×È ß²²«¿´ Ì»½¸²·½¿´ Ý±²º»®»²½» øËÍÛÒ×È ßÌÝ ïé÷ øÍ¿²¬¿

Ý´¿®¿ô Ýßô îðïé÷ô ËÍÛÒ×È ß±½·¿¬·±²ò

ÅîëÃ ÐÎßÞØßÕßÎßÒô Êòô ßÎÐßÝ×óÜËÍÍÛßËô ßò Ýòô ßÒÜ ßÎÐßÝ×ó

ÜËÍÍÛßË

¬»³ò ×² ËÍÛÒ×È ß²²«¿´ Ì»½¸²·½¿´ Ý±²º»®»²½»ô Ù»²»®¿´ Ì®¿½µ

øîððë÷ô ª±´ò ïçìô °°ò ïçê�îïëò

ÅîêÃ ÎÛ×ÍÛÎô Øò Î»·»®ºô îððìò

ÅîéÃ ÍÑÒÙô Èòô ÝØÛÒô Øòô ÝØÛÒô Îòô ÉßÒÙô Çòô ßÒÜ ÆßÒÙô Þò ß

½¿» º±® ½¿´·²¹ ¿°°´·½¿¬·±² ¬± ³¿²§ó½±®» ©·¬¸ ± ½´«¬»®·²¹ò ×²

Ð®±½»»¼·²¹ ±º ¬¸» Í·¨¬¸ Ý±²º»®»²½» ±² Ý±³°«¬»® Í§¬»³ øÒ»©

Ç±®µô ÒÇô ËÍßô îðïï÷ô Û«®±Í§ùïïô ßÝÓô °°ò êï�éêò

ÅîèÃ ÍÌßÔÔÓßÒô Îò Óòô ßÒÜ ÜÛÊÛÔÑÐÛÎÝÑÓÓËÒ×ÌÇô Ùò Ë·²¹

Ì¸» Ù²« Ý±³°·´»® Ý±´´»½¬·±²æ ß Ù²« Ó¿²«¿´ Ú±® Ù½½ Ê»®·±²

ìòíòíò Ý®»¿¬»Í°¿½»ô Ð¿®¿³±«²¬ô Ýßô îððçò

ÅîçÃ ÍÉÛÛÒÛÇô ßòô ÜÑËÝÛÌÌÛô Üòô ØËô Éòô ßÒÜÛÎÍÑÒô Ýòô

Ò×ÍØ×ÓÑÌÑô Óòô ßÒÜ ÐÛÝÕ

¬»³ò ×² ËÍÛÒ×È ß²²«¿´ Ì»½¸²·½¿´ Ý±²º»®»²½» øïççê÷ô ª±´ò ïëò

ÅíðÃ ÌËô Íòô ÆØÛÒÙô Éòô ÕÑØÔÛÎô Ûòô Ô×ÍÕÑÊô Þòô ßÒÜ ÓßÜÜÛÒô

Íò Í°»»¼§ ¬®¿²¿½¬·±² ·² ³«´¬·½±®» ·²ó³»³±®§ ¼¿¬¿¾¿»ò ×²

Ð®±½»»¼·²¹ ±º ¬¸» Ì©»²¬§óÚ±«®¬¸ ßÝÓ Í§³°±·«³ ±² Ñ°»®¿¬·²¹

Í§¬»³ Ð®·²½·°´» øîðïí÷ô ßÝÓô °°ò ïè�íîò

ÅíïÃ ÌÉÛÛÜ×Û Ñ¬¬¿©¿ Ô·²«¨ Í§³ó

°±·«³ øîððð÷ô °°ò îì�îçò

ÅíîÃ ÌÉÛÛÜ×Û Ì¸»

Ú±«®¬¸ ß²²«¿´ Ô·²«¨ Û¨°± øïççè÷ò

ÅííÃ ÊßÔÑ×Íô Öò Üò Ô±½µóº®»» ´·²µ»¼ ´·¬ «·²¹ ½±³°¿®»ó¿²¼ó©¿°ò ×²

Ð®±½»»¼·²¹ ±º ¬¸» Ú±«®¬»»²¬¸ ß²²«¿´ ßÝÓ Í§³°±·«³ ±² Ð®·²ó

½·°´» ±º Ü·¬®·¾«¬»¼ Ý±³°«¬·²¹ øÒ»© Ç±®µô ÒÇô ËÍßô ïççë÷ô

ÐÑÜÝ ùçëô ßÝÓô °°ò îïì�îîîò

ÅíìÃ É×ÔÍÑÒ Ð®±½»»¼ó

·²¹ ±º ê¬¸ ËÍÛÒ×È Ý±²º»®»²½» ±² Ú·´» ¿²¼ Í¬±®¿¹» Ì»½¸²±´±¹·»

øîððè÷ò

USENIX Association 16th USENIX Conference on File and Storage Technologies 239

ÅíëÃ ÆØßÒÙô Õòô ÆØßÑô Çòô ÇßÒÙô Çòô Ô×Ëô Çòô ßÒÜ ÍÐÛßÎô Óò

Ð®¿½¬·½¿´ ²±²ó¾´±½µ·²¹ «²±®¼»®»¼ ´·¬ò ×² Ð®±½»»¼·²¹ ±º ¬¸»

îé¬¸ ×²¬»®²¿¬·±²¿´ Í§³°±·«³ ±² Ü·¬®·¾«¬»¼ Ý±³°«¬·²¹ ó Ê±´ó

«³» èîðë øÒ»© Ç±®µô ÒÇô ËÍßô îðïí÷ô Ü×ÍÝ îðïíô Í°®·²¹»®ó

Ê»®´¿¹ Ò»© Ç±®µô ×²½òô °°ò îíç�îëíò

ÅíêÃ ÆØÛÒÙô Üòô ÞËÎÒÍô Îòô ßÒÜ ÍÆßÔßÇô ßò Íò Ì±©¿®¼ ³·´´·±²

Ð®±ó

½»»¼·²¹ ±º ¬¸» ×²¬»®²¿¬·±²¿´ Ý±²º»®»²½» ±² Ø·¹¸ Ð»®º±®³¿²½»

Ý±³°«¬·²¹ô Ò»¬©±®µ·²¹ô Í¬±®¿¹» ¿²¼ ß²¿´§· øÒ»© Ç±®µô ÒÇô

ËÍßô îðïí÷ô ÍÝ ùïíô ßÝÓô °°ò êçæï�êçæïîò

ÅíéÃ ÆØÛÒÙô Éòô ÌËô Íòô ÕÑØÔÛÎô Ûòô ßÒÜ Ô×ÍÕÑÊô Þò Ú¿¬

¼¿¬¿¾¿» ©·¬¸ º¿¬ ¼«®¿¾·´·¬§ ¿²¼ ®»½±ª»®§ ¬¸®±«¹¸ ³«´¬·½±®»

°¿®¿´´»´·³ò ×² ïï¬¸ ËÍÛÒ×È Í§³°±·«³ ±² Ñ°»®¿¬·²¹ Í§¬»³

Ü»·¹² ¿²¼ ×³°´»³»²¬¿¬·±² øÑÍÜ× ïì÷

ËÍÛÒ×È ß±½·¿¬·±²ô °°ò ìêë�ìééò

240 16th USENIX Conference on File and Storage Technologies USENIX Association

Designing a True Direct-Access File System with DevFS

Sudarsun Kannan, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
University of Wisconsin–Madison

Yuangang Wang, Jun Xu, Gopinath Palani
Huawei Technologies

Abstract
We present DevFS, a direct-access file system embed-
ded completely within a storage device. DevFS provides
direct, concurrent access without compromising file sys-
tem integrity, crash consistency, and security. A novel
reverse-caching mechanism enables the usage of host
memory for inactive objects, thus reducing memory load
upon the device. Evaluation of an emulated DevFS pro-
totype shows more than 2x higher I/O throughput with
direct access and up to a 5x reduction in device RAM
utilization.

1 Introduction

The world of storage, after decades of focus on hard-
drive technologies, is finally opening up towards a new
era of fast solid-state storage devices. Flash-based SSDs
have become standard technology, forming a new perfor-
mance tier in the modern datacenter [7, 32]. New, faster
flash memory technologies such as NVMe [20] and stor-
age class memory (SCM) such as Intel’s 3D X-point [1]
promise to revolutionize how we access and store persis-
tent data [10, 13, 50, 53]. State-of-the-art flash memory
technologies have reduced storage-access latency to tens
of microseconds compared to milliseconds in the hard-
drive era [34, 52, 58].

To fully realize the potential of these storage devices,
a careful reconsideration of the software storage stack
is required. The traditional storage stack requires ap-
plications to trap into the OS and interact with multiple
software layers such as the in-memory buffer cache, file
system, and device drivers. While spending millions of
cycles is not a significant problem for slow storage de-
vices such as hard drives [3,13,58], for modern ultra-fast
storage, software interactions substantially amplify ac-
cess latencies, thus preventing applications from exploit-
ing hardware benefits [3, 9, 34, 50]. Even the simple act
of trapping into and returning from the OS is too costly
for modern storage hardware [14, 49, 58].

To reduce OS-level overheads and provide direct stor-
age access for applications, prior work such as Ar-
rakis [34], Moneta-D [8], Strata [26], and others [20, 49,
50] split the file system into user-level and kernel-level
components. The user-level component handles all data-
plane operations (thus bypassing the OS), and the trusted
kernel is used only for control-plane operations such as
permission checking. However, prior approaches fail to
deliver several important file-system properties. First,
using untrusted user-level libraries to maintain file sys-
tem metadata shared across multiple applications can se-
riously compromise file-system integrity and crash con-
sistency. Second, unlike user-level networking [51], in
file systems, data-plane operations (e.g., read or write to
a file) are closely intertwined with control-plane opera-
tions (e.g., block allocation); bypassing the OS during
data-plane operations can compromise the security guar-
antees of a file system. Third, most of these approaches
require OS support when sharing data across applications
even for data-plane operations.

To address these limitations, and realize a true user-
level direct-access file system, we propose DevFS, a
device-level file system inside the storage hardware.
The DevFS design uses the compute capability and
device-level RAM to provide applications with a high-
performance direct-access file system that does not com-
promise integrity, concurrency, crash consistency, or se-
curity. With DevFS, applications use a traditional POSIX
interface without trapping into the OS for control-plane
and data-plane operations. In addition to providing di-
rect storage access, a file system inside the storage hard-
ware provides direct visibility to hardware features such
as device-level capacitance and support for processing
data from multiple I/O queues. With capacitance, DevFS
can safely commit data even after a system crash and also
reduce file system overhead for supporting crash consis-
tency. With knowledge of multiple I/O queues, DevFS
can increase file system concurrency by providing each
file with its own I/O queue and journal.

USENIX Association 16th USENIX Conference on File and Storage Technologies 241

A file system inside device hardware also introduces
new challenges. First, even modern SSDs have limited
RAM capacity due to cost ($/GB) and power constraints.
In DevFS, we address this dilemma by introducing re-
verse caching, an approach that aggressively moves in-
active file system data structures off the device to the
host memory. Second, a file system inside a device is
a separate runtime and lacks visibility to OS state (such
as process credentials) required for secured file access.
To overcome this limitation, we extend the OS to co-
ordinate with DevFS: the OS performs down-calls and
shares process-level credentials without impacting direct
storage access for applications.

To the best of our knowledge, DevFS is the first design
to explore the benefits and implications of a file system
inside the device to provide direct user-level access to ap-
plications. Due to a lack of real hardware, we implement
and emulate DevFS at the device-driver level. Evalua-
tion of benchmarks on the emulated DevFS prototype
with direct storage access shows more than 2x higher
write and 1.6x higher read throughput as compared to a
kernel-level file system. DevFS memory-reduction tech-
niques reduce file system memory usage by up to 5x.
Evaluation of a real-world application, Snappy compres-
sion [11], shows 22% higher throughput.

In Section 2, we first categorize file systems, and then
discuss the limitations of state-of-the-art user-level file
systems. In Section 3, we make a case for a device-level
file system. In Section 4, we detail the DevFS design and
implementation, followed by experimental evaluations in
Section 5. In Section 6, we describe the related literature,
and finally present our conclusions in Section 7.

2 Motivation

Advancements in storage hardware performance have
motivated the need to bypass the OS stack and provide
applications with direct access to storage. We first dis-
cuss hardware and software trends, followed by a brief
history of user-level file systems and their limitations.

2.1 H/W and S/W for User-Level Access
Prior work has explored user-level access for PCI-based
solid state drives (SSD) and nonvolatile memory tech-
nologies.
Solid-state drives. Solid-state drives (SSD) have be-
come the de facto storage device for consumer elec-
tronics as well as enterprise computing. As SSDs
have evolved, their bandwidth has significantly increased
along with a reduction in access latencies [6, 57]. To
address system-to-device interface bottlenecks, modern
SSDs have switched to a PCIe-based interface that can
support up to 8-16 GB/s maximum throughput and 20-50
µs access latencies. Further, these modern devices use a

large pool of I/O queues to which software can concur-
rently submit requests for higher parallelism.

With advancements in SSD hardware performance,
bottlenecks have shifted to software. To reduce software
overheads on the data path and exploit device-level par-
allelism, new standards such as NVMe [54] have been
adopted. NVMe allows software to bypass device driver
software and directly program device registers with sim-
ple commands for reading and writing the device [18].
Storage class memory technologies. Storage class
memory (SCM), such as Intel’s 3D Xpoint [1] and HP’s
memristors, are an emerging class of nonvolatile mem-
ory (NVM) that provide byte-addressable persistence
and provide access via the memory controller. SCMs
have properties that resemble DRAM more than a block
device. SCMs can provide 2-4x higher capacity than
DRAMs, with variable read (100-200ns) and write la-
tency (400-800ns) latency. SCM bandwidth ranges from
8 GB/s to 20 GB/s, which is significantly faster than
state-of-the-art SSDs. Importantly, read (loads) and
writes (stores) to SCMs happen via the processor cache
which plays a vital role in application performance.

Several software solutions that include kernel-level
file systems [10, 13, 55, 56], user-level file systems [49],
and object storage [17, 50] libraries have been pro-
posed for SCM. Kernel-level file systems retain the
POSIX-based block interface and focus on thinning the
OS stack by replacing page cache and block layers with
simple byte-level load and store operations. Alterna-
tive approaches completely bypass the kernel by us-
ing an object-based or POSIX-compatible interface over
memory-mapped files [49].

2.2 File System Architectures
We broadly categorize file systems into three types: (1)
kernel-level file systems, (2) hybrid user-level file sys-
tems, and (3) true user-level direct-access file systems.
Figure 1 shows these categories, and how control-plane
and data-plane operations are managed by each. The
figure additionally shows a hybrid user-level file system
with a trusted server and a Fuse-based file system.
Kernel-level traditional file systems. Kernel-level file
systems act as a central entity managing data and meta-
data operations as well as control-plane operations [13,
28, 56]. As shown in Figure 1, kernel-level file sys-
tems preserve the integrity of metadata and provide crash
consistency. Applications using kernel-level file systems
trap into the OS for both data-plane and control-plane
plane operations.
Hybrid user-level file systems. To allow applications
to access storage hardware directly without trapping into
the kernel, a class of research file systems [8,26,34] split
the file system across user and kernel space. In this pa-
per, we refer to these as hybrid user-level file systems. As

242 16th USENIX Conference on File and Storage Technologies USENIX Association

SSD

 (a) Kernel-level FS

Application
FS lib

(b) Hybrid user-level FS

Coordinate sharing,
protection

Manage
metadata

(d) FUSE-based user-level FS (e) True user-level direct-access FS

Read/Write
data

Read protected
data

Data allocation and
protection

Coordinate sharing,
protection

Application

Read/Write

 FS kernel

Coordinate sharing,
protection, manage
metadata

Read/write data
Read metadata

Application
FS lib

(c) Hybrid user-level FS with server

Manage
metadata

Read/Write
data

Trusted
service

Application

Read/Write data

FS daemon

Read/Write data
Read metadata Coordinate sharing,

protection, manage
metadata

Fuse driver

Application
FS lib

 SSD

 FS kernel
 FS kernel FS kernel

 FS kernel

 SSD SSD SSD DevFS

Read/write data
Read metadata

Coordinate sharing,
protection, manage
metadata

Figure 1: File system categories. (a) shows a kernel-level file system, which manages control-plane and data-plane operations.
(b) shows a hybrid user-level file system in which a user library manages data-plane operations. (c) shows a hybrid user-level file
system with a trusted server. The server partially manages control-plane operations. (d) shows a Fuse-based file system. (e) shows
a true user-level direct-access file system inside the device. The device file system fully manages the control-plane and data-plane.

shown in Figure 1.b, the user-level file system manages
all data and metadata updates without trapping into the
kernel for common-case read and writes. The kernel file
system is used only for control-plane operations such as
permission checks, security, and data sharing across ap-
plications.

More specifically, Arrakis [34] is a hybrid user-level
file system that proposes a generic user-level I/O frame-
work for both network and storage. Arrakis aims to
realize the ideas of U-Net [51] for modern hardware
by virtualizing storage for each application and manag-
ing all data-plane operations at user-level, but does trap
into the OS for control-plane operations. Strata [26], a
hybrid user-level file system designed to combine ultra-
fast NVM with high-capacity SSD and hard disk, uses
NVM as a memory-mapped user-space log and writes
application’s data-plane operations to a log. A back-
ground thread uses a kernel-level file system to digest
the logs to SSD or hard disk. For sharing files across
processes, Strata traps into the kernel-level file system,
which coordinates concurrent data and metadata updates.

Moneta-D [8] is a hybrid user-level file system that
customizes SSDs to provide direct-access for data-plane
operations. Moneta-D virtualizes an I/O interface (I/O
channel) instead of storage to provide isolation and con-
currency. Metadata operations are split between user-
level and kernel-level. Operations such as file creation
and size extension happen inside the kernel. Moneta-
D enforces permission checks for data-plane operations
with a user-level driver that reads a file’s permission and
stores them in hardware registers; during an I/O oper-
ation, the driver compares the hardware register values
with process credentials.

Finally, TxDev [37] proposes a transactional flash sys-
tem in which each process encapsulates its updates into
a transaction request, and the flash device serializes and
atomically commits the transactions. While TxDev can
reduce the overheads of transactions in either user-level
or kernel-level file systems, the resulting system has the

same structural advantages and disadvantages of other
hybrid user-level file systems.

Hybrid file systems with trusted server. Another class
of hybrid file systems, such as Aerie [49], aims to reduce
kernel overheads for control-plane operations by using a
trusted user-level third-party server similar to a microker-
nel design [30] (see Figure 1.c). The trusted server runs
in a separate address space and facilitates control-plane
operations such as permission checking and data sharing;
the server also interacts with the OS for other privileged
operations.

Fuse-based user-level file systems. Another class of
user-level file systems widely known as Fuse [38, 47],
are mainly used for customizing and extending the in-
kernel file system. As shown in Figure 1.d, in Fuse, the
file system is split across a kernel driver and a user-level
daemon. All I/O operations trap into the kernel, and the
kernel driver simply queues I/O requests for the custom
user-level file system daemon to process requests and re-
turn control to the application via the driver; as a result,
Fuse file systems add an extra kernel trap for all I/O op-
erations. Because we focus on direct-access storage so-
lutions, we do not study Fuse in rest of this paper.

True direct-access user-level file system. In this pa-
per, we propose DevFS, a true user-level direct-access
file system as shown in Figure 1.e. DevFS pushes the file
system into the device, thus allowing user-level libraries
and applications to access storage without trapping into
the OS for both control-plane and data-plane operations.

2.3 Challenges
Current state-of-the-art hybrid user-level file systems fail
to satisfy three important properties – integrity, crash
consistency, and permission enforcement – without trad-
ing away direct storage access. We discuss the chal-
lenges in satisfying these properties while providing di-
rect access next.

USENIX Association 16th USENIX Conference on File and Storage Technologies 243

2.3.1 File System Integrity
Maintaining file system integrity is critical for correct be-
havior of a file system. In traditional file systems, only
the trusted kernel manages and updates both in-memory
and persistent metadata. However, satisfying file system
integrity is hard with a hybrid user-level file system for
the following reasons.
Single process. In hybrid user-level file systems such as
Arrakis and Moneta-D, each application uses an instance
of a file system library that manages both data and meta-
data. Consider an example of appending a block to a file:
the library must allocate a free block, update the bitmap,
and update the inode inside a transaction. A buggy or
malicious application sharing the address space with the
file system library can easily bypass or violate the trans-
action and incorrectly update the metadata; as a result,
the integrity of the file system is compromised. An al-
ternative approach is to use a trusted user-level server as
in Aerie [49]. However, because applications and the
user-level server run in different address spaces, applica-
tions must context-switch even for data-plane operations,
thus reducing the benefits of direct storage access [58].
The metadata integrity problem cannot be solved by us-
ing TxDev (a transactional flash) in a hybrid user-level
file system because TxDev cannot verify the contents of
transactions composed by an untrusted user-level library.
Concurrent access and sharing. Maintaining integrity
with hybrid user-level file systems is more challenging
when applications concurrently access the file system or
share data. Updates to in-memory and on-disk metadata
must be serialized and ordered across all library instances
with some form of shared user-level locking and transac-
tions across libraries. However, a malicious or buggy ap-
plication can easily bypass the lock or the transaction to
update metadata or data, which can lead to an incorrect
file system state [25]. Prior systems such as Arrakis [34]
and Strata [26] sidestep this problem by trapping into
the OS for concurrent file-system access (common-case)
and concurrent file access (rare). In contrast, approaches
such as Aerie suffer from the context-switch problem.

2.3.2 Crash Consistency
A system can crash or lose power before all in-memory
metadata is persisted to storage, resulting in arbitrary file
system state such as a persisted inode without its pointed-
to data [4, 35, 36]. To provide crash consistency, kernel
file systems carefully orchestrate the order of metadata
and data updates. For example, in an update transaction,
data blocks are first flushed to a journal, followed by the
metadata blocks, and finally, a transaction commit record
is written to the journal; at some point, the log updates
are checkpointed to the original data and metadata loca-
tions to free space in the log.

For user-level file systems, every application’s un-

trusted library instance must provide crash consistency,
which is challenging for the following reasons. First,
if even a single library or application violates the order-
ing protocol, the file system cannot recover to a consis-
tent state after a crash. Second, with concurrent file sys-
tem access, transactions across libraries must be ordered;
as discussed earlier, serializing updates with user-level
locking is ineffective and can easily violate crash con-
sistency guarantees. While a trusted third-party server
can enforce ordering, applications suffer from context
switches and thus do not achieve the goal of direct ac-
cess.

2.3.3 Permission Enforcement
Enforcing permission checks for both the control-plane
and data-plane is critical for file system security. In a
kernel-level file system, when a process requests an I/O
operation, the file system uses OS-level process creden-
tials and compares it with the corresponding file (inode)
permission. Hybrid user-level file systems [34] use the
trusted OS for permission checks only for control-plane
operation, and bypass the checks for common-case data-
plane operations. Avoiding permission checks for data-
plane operations violates security guarantees, specifi-
cally when multiple applications share a file system.

3 The Case For DevFS

In the pursuit of providing direct storage access to user-
level applications, prior hybrid approaches fail to satisfy
one or more fundamental properties of a file system. To
address the limitations, and design a true direct-access
file system, we propose DevFS, a design that moves the
file system inside the device. Applications can directly
access DevFS using a standard POSIX interface. DevFS
satisfies file system integrity, concurrency, crash consis-
tency, and security guarantees of a kernel-level file sys-
tem. DevFS also supports a traditional file-system hier-
archy such as files and directories, and their related func-
tionality instead of primitive read and write operations.
DevFS maintains file system integrity and crash consis-
tency because it is trusted code that acts as a central en-
tity. With minimal support and coordination with the OS,
DevFS also enforces permission checks for common-
case data-plane operations without requiring applications
to trap into the kernel.

3.1 DevFS Advantages And Limitations
Moving a file system inside the device provides numer-
ous benefits but also introduces new limitations.
Benefits. An OS-level file system generally views
storage as a black box and lacks direct control over
many hardware components, such as device memory,
I/O queues, power-loss-protection capacitors, and the file

244 16th USENIX Conference on File and Storage Technologies USENIX Association

translation layer (FTL). This lack of control results in a
number of limitations.

First, even though storage controllers often contain
multiple CPUs that can concurrently process requests
from multiple I/O queues [20], a host-based user-level
or kernel-level file system cannot control how the device
CPUs are utilized, the order in which they process re-
quest from queues, or the mapping of queues to elements
such as files. However, a device-level file system can
redesign file system data structures to exploit hardware-
level concurrency for higher performance.

Second, some current devices contain capacitors that
can hold power until the device CPUs safely flush all
device-memory state to persistent storage in case of an
untimely crash [22, 44]. Since software file systems can-
not directly use these capacitors, they always use high-
overhead journaling or copy-on-write crash consistency
techniques. In contrast, a device-level file system can
ensure key data structures are flushed if a failure occurs.

Finally, in SSDs and storage class memory technolo-
gies, the FTL [21] performs block allocation, logical-to-
physical block translation, garbage collection, and wear-
leveling, but a software file system must duplicate many
of these tasks since it lacks visibility of the FTL. We be-
lieve that DevFS provides an opportunity to integrate file
system and FTL functionality, but we do not yet explore
this idea, leaving it to future work.

Limitations. Moving the file system into the stor-
age device introduces both hardware and software lim-
itations. First, device-level RAM is limited by cost
and power consumption; currently device RAM is used
mainly by the FTL [16] and thus the amount is propor-
tional to the size of the logical-to-physical block map-
ping table (e.g., a 512 GB SSD requires a 2 GB RAM). A
device-level file system will substantially increase mem-
ory footprint and therefore must strive to reduce its mem-
ory usage. Second, the number of CPUs inside a storage
device can be limited and slower compared to host CPUs.
While the lower CPU count impacts I/O parallelism and
throughput, the slower CPUs reduce instructions per cy-
cle (IPC) and thus increase I/O latency. Finally, imple-
menting OS utilities and features, such as deduplication,
incremental backup, and virus scans, can be challeng-
ing. We discuss these limitations and possible solutions
in more detail in § 4.7.

Regarding software limitations, a device-level file sys-
tem runs in a separate environment from the OS and
hence cannot rely on the OS for certain functionality or
information. In particular, a device-level file system must
manage its own memory and must provide a mechanism
to access process credentials from the OS.

3.2 Design Principles
To exploit the benefits and address the limitations of
a device-level file system, we formulate the following
DevFS design principles.
Principle 1: Disentangle file system data structures to
embrace hardware-level parallelism. To utilize the
hardware-level concurrency of multiple CPU controllers
and thousands of I/O queues from which a device can
process I/O requests, DevFS maps each fundamental data
unit (i.e., a file) to an independent hardware resource.
Each file has its own I/O queue and in-memory journal
which enables concurrent I/O across different files.
Principle 2: Guarantee file system integrity without
compromising direct user-level access. To maintain
integrity, the DevFS inside the device acts as a trusted
central entity and updates file system metadata. To fur-
ther maintain integrity when multiple process share data,
DevFS shares per-file structures across applications and
serializes updates to these structures.
Principle 3: Simplify crash consistency with storage
hardware capacitance. Traditional OS-level file sys-
tems rely on expensive journaling or log-structured (i.e.,
copy-on-write) mechanisms to provide crash consis-
tency. While journaling suffers from “double write” [35]
costs, log-structured file systems suffer from high
garbage-collection overheads [5]. In contrast, DevFS ex-
ploits the power-loss-protection capacitors in the hard-
ware to safely update data and metadata in-place with-
out compromising crash consistency. DevFS thus avoids
these update-related overheads.
Principle 4: Reduce the device memory footprint of
the file system. Unlike a kernel-level file system,
DevFS cannot use copious amounts of RAM for its data
and metadata structures. To reduce memory usage, in
DevFS, only in-memory data structures (inodes, dentries,
per-file structures) of active files are kept in device mem-
ory, spilling inactive data structures to host memory.
Principle 5: Enable minimal OS-level state sharing
with DevFS. DevFS is a separate runtime and imple-
ments its own memory management. Concerning state
sharing, because DevFS does not have information about
processes, we extend the OS to share process credentials
with DevFS. The credentials are used by DevFS for per-
mission checks across control-plane and data-plane oper-
ations without forcing applications to trap into the kernel.

4 Design

DevFS provides direct user-level access to storage with-
out trapping into the OS for most of its control-plane and
data-plane operations. DevFS does not compromise ba-
sic file system abstractions (such as files, directories) and
properties such as integrity, concurrency, consistency,
and security guarantees. We discuss how DevFS realizes

USENIX Association 16th USENIX Conference on File and Storage Technologies 245

Jf

data	blocks

Global	file	system	structures
DevFS

Open(F1,	flags,	PERM)		

Per-file	structures

OS	allocated		
command	buffer

Submission		
queue	(SQ)		

In-memory	
journal

journal		

Fd

Application

User	FS	lib
Cmd:	ops	=DEVFS_Open,		
																				perm=PERM,	path=F1

2 Write(fd,	buff,	4k,	off=1)

Cmd:	payload=buff,		ops	=WRITE,			
										UID=	1,	off	=	1,		size=	4k

Controller	(CPU)

On-disk	file	metadata

In-memory	metadata

User	space

In-memory	filemap	tree
/root

/root/dir1/root/proc

filemap:	
						*dentry	
						*inode;	
						*queues	
				*mem_journal	
					*disk_journal	

1

Super	
block Bitmaps Inodes Dentries Completion	

queue	(SQ)		

Super	
block Bitmaps Inodes Dentries

Figure 2: DevFS high-level design. The file system data
structure is partitioned into global and per-file structures. The
per-file structures are created during file setup. DevFS meta-
data structures are similar to other kernel-level file system.

the design principles discussed earlier.

4.1 Disentangling File System Structures
To exploit hardware-level concurrency, DevFS provides
each file with a separate I/O queue and journal. DevFS
is compatible with traditional POSIX I/O interface.
Global and per-file structures. In DevFS, the file sys-
tem data structures are divided into global and per-file
structures as shown in Figure 2. The global data struc-
tures manage state of an entire file system, including
metadata such as the superblock, inodes, and bitmaps.
The per-file structures enable concurrency: given that
modern controllers contain up to four CPUs [41], and
this amount is expected to increase [19], DevFS at-
tempts to utilize multiple CPUs. In contrast to prior ap-
proaches such as Moneta-D that provide each application
with its own I/O channel, DevFS provides a per-file I/O
queue and journal. DevFS also maintains an in-memory
filemap structure for each file. The filemap structure is
created during file creation (or during file open if it is not
available in device memory) and is maintained in a red-
black tree as shown in the figure. Processes sharing a
file also share a filemap structure which serializes access
across the per-file I/O queue and the journal.

Most data structures of DevFS are similar to a kernel-
level file system. Hence, we reuse and extend in-memory
and on-disk data structures from the state-of-the-art per-
sistent memory file system (PMFS) [13]. We use PMFS
because it provides direct-access to storage bypassing
the file system page cache. Specifically, the DevFS su-
perblock contains global information of a file system,
each inode contains per-file metadata and a reference to
per-file memory and disk journal, and finally, directory
entries (dentries) are maintained in a radix-tree indexed
by hash values of file path names.
File system interface. Unlike prior approaches that

expose the storage device as a block device for direct
access [34], DevFS supports the POSIX I/O interface
and abstractions such as files, directories, etc. Similar to
modern NVMe-based devices with direct-access capabil-
ity, DevFS uses command-based programming. To sup-
port POSIX compatibility for applications, a user-level
library intercepts I/O calls from applications and con-
verts the I/O calls to DevFS commands. On receipt, the
DevFS controller (device CPU) uses the request’s file de-
scriptor to move the request to a per-file I/O queue for
processing and writing to storage.

4.2 Providing File System Integrity
To maintain integrity, file system metadata is always up-
dated by the trusted DevFS. In contrast to hybrid user-
level file systems that allow untrusted user-level libraries
to update metadata [34], in DevFS, there is no concern
about the legitimacy of metadata content (beyond that
caused by bugs in the file system).

When a command is added to a per-file I/O queue,
DevFS creates a corresponding metadata log record (e.g.,
for a file append command, the bitmap and inode block),
and adds the log record to a per-file in-memory journal
using a transaction. When DevFS commits updates from
an in-memory I/O queue to storage, it first writes the data
followed by the metadata. Updates to global data struc-
tures (such as bitmaps) are serialized using locks.

DevFS supports file sharing across processes without
trapping into the kernel. Because each file has separate
in-memory structures (i.e., an I/O queue and journal),
one approach would be to use separate per-file structures
for each instance of an open file and synchronize up-
dates across structures; however, synchronization costs
and device-memory usage would increase linearly with
the number of processes sharing a file. Hence, DevFS
shares in-memory structures across processes and seri-
alizes updates using a per-file filemap lock; to order
updates, DevFS tags each command with a time-stamp
counter (TSC). Applications requiring strict data order-
ing for shared files could implement custom user-level
synchronization at application-level.

4.3 Simplifying Crash Consistency
DevFS avoids logging to persistent storage by using de-
vice capacitors that can hold power until the device con-
troller can safely flush data and metadata to storage. Tra-
ditional kernel-level file systems use either journaling or
a copy-on-write techniques, such as log-structured up-
dates, to provide crash consistency; the benefits and im-
plications of these designs are well documented [5, 40].
Journaling commits data and metadata updates to a per-
sistent log before committing to the original data and
metadata location; as a result, journaling suffers from the
“double write” problem [40, 56]. The log-structured de-
sign avoids double writes by treating an entire file system

246 16th USENIX Conference on File and Storage Technologies USENIX Association

1. Reserve during file
system mount

App
Inode Cache

Dentry cache

(6) move to cache

(5) close(“file”)

3. Check host for
dentry and inode

(2) open(“file”)

Device	Memory

Inode list
lllCacheDentry list
cachefile ptr list

DevFS
Host Memory

(4) move to device and

delete cache

Figure 3: DevFS reverse caching design. DevFS keeps
only active and essential file system structures in device mem-
ory, and reverse caches others to host memory.

as a log, appending data and metadata blocks; however,
a log-structured design suffers from high garbage collec-
tion costs [40]. DevFS uses device-level capacitance to
avoid both the double-write and garbage-collection prob-
lems.

Modern enterprise SSDs provide power-loss-
protection capacitors inside device hardware that can
hold power until controllers can safely flush contents of
device-level DRAM [22, 44]. In existing systems, the
device DRAM primarily contains the FTL’s logical-to-
physical block translation table, block error correction
(ECC) flags, and in-flight data yet to be flushed to
storage. Since DevFS runs inside the device, it uses
device-level DRAM for all file system data structures.

Although the goal of hardware capacitance is to safely
flush device in-memory contents to storage, flushing
larger amounts of memory would require a more expen-
sive capacitor; in addition, not all DevFS state needs to
be made persistent. To minimize the memory state that
must be flushed, DevFS leverages its per-file in-memory
journals, as shown in Figure 2. As described previously,
after an I/O command is added to a device queue, DevFS
writes the command’s metadata to a per-file in-memory
journal. If a power failure or crash occurs, the device
capacitors can hold power for controllers to safely com-
mit in-memory I/O queues and journals to storage, thus
avoiding journal writes to storage.

4.4 Minimizing Memory Footprint
We next discuss how DevFS manages device mem-
ory followed by three memory reduction techniques.
The techniques include on-demand allocation, reverse
caching, and a method to decompose inode structures.

DevFS uses its own memory allocator. Unlike
the complex-but-generic Linux slab allocator [15], the
DevFS allocator is simple and customized to manage
only DevFS data structures. In addition to device mem-
ory, DevFS reserves and manages a DMA-able region in
the host for reverse caching.

In DevFS, there are four types of data structures that
dominate memory usage: in-memory inodes, dentries,
file pointers, and the DevFS-specific per-file filemap

/*	Devfs	inode	structure	*/	
struct	devfs_inode_info	{	

				/*DevFS	specific	fields*/	
			inode_list		/*parent	directory	list*/	
			page_tree;	/*radix	tree	of	all	pages*/				
			journals	/*per	file	journals	*/	

…….	
/*Frequently	accessed*/	
struct	inode		vfs_inode	
}

/*	Decomposed	structure*/	
struct	devfs_inode_info	{	

				/*always	kept	in	device*/	
			struct	*inode_device;					

		/*moved	to	host	upon	close*/	
		struct	*inode_host;	
}	

Figure 4: Decomposing large structures. Large static
in-memory inode is decomposed to a dynamically allocatable
device and host structure. The host structure is reverse cached.

structure. Examining the data structures in detail, we see
that each inode, dentry, file pointer, and filemap consume
840 bytes, 192 bytes, 256 bytes, and 156 bytes respec-
tively. Since inodes are responsible for the most mem-
ory usage, we examine them further. We find that 593
bytes (70.5%) of the inode structure are used by generic
fields that are frequently updated during file operations;
referred to as the VFS inode in other file systems, this
includes the inode number, a pointer to its data blocks,
permissions, access times, locks, and a reference to the
corresponding dentry. The remaining 247 bytes (29.5%)
of the inode are used by DevFS-specific fields, which in-
clude a reference to in-memory and on-disk journals, the
dentry, the per-file structure, other list pointers, and per-
file I/O queues. To reduce the device memory usage, we
propose the following techniques.

On-demand memory allocation. In a naive DevFS
design, the in-memory structures associated with a file,
such as the I/O queue, in-memory journal, and filemap,
are each allocated when a file is opened or created and
not released until a file is deleted; however, these struc-
tures are not used until an I/O is performed. For work-
loads that access a large number of files, device memory
consumption can be significant. To reduce memory con-
sumption, DevFS uses on-demand allocation that delays
allocation of in-memory structures until a read or write
request is initiated; these structures are also aggressively
released from device memory when a file is closed. Ad-
ditionally, DevFS dynamically allocates the per-file I/O
queue and memory journal and adjusts their sizes based
on the availability of free memory.

Reverse caching metadata structures. In traditional
OS-level file systems, the memory used by in-memory
metadata structures such as inodes and dentries is a small
fraction of the overall system memory; therefore, these
structures are cached in memory even after the corre-
sponding file is closed in order to avoid reloading the
metadata from disk when the file is re-accessed. How-
ever, caching metadata in DevFS can significantly in-
crease memory consumption. To reduce device memory
usage, DevFS moves certain metadata structures such as
in-memory inodes and dentries to host memory after a

USENIX Association 16th USENIX Conference on File and Storage Technologies 247

file is closed. We call this reverse caching because meta-
data is moved off the device to the host memory.

Figure 3 shows the reverse caching mechanism. A
DMA-able host-memory cache is created when DevFS is
initialized. The size of the host cache can be configured
when mounting DevFS depending on the availability of
free host memory; the cache is further partitioned into
inode and dentry regions. After moving an inode or den-
try to host memory, all its corresponding references (e.g.,
the inode list of a directory) are updated to point to the
host-memory cache. When a file is re-opened, the cached
metadata is moved back to device memory. Directories
are reverse-cached only after all files in a directory are
also reverse-cached. Note that the host cache contains
only inodes and dentries of inactive (closed) files, since
deleted files are also released from the host cache. Fur-
thermore, in case of an update to in-memory structures
that are reverse-cached, the structures are moved to de-
vice memory and cached structures in the host mem-
ory are deleted. As a result, reverse caching does not
introduce any consistency issues. Although using host
memory instead of persistent storage as a cache avoids
serializing and deserializing data structures, the over-
head of data movement between device and host mem-
ory depends on interface bandwidth. The data movement
overhead could be further reduced by using incremental
(delta-based) copying techniques.
Decomposing file system structures. One problem
with reverse caching for a complicated and large struc-
ture such as an inode is that some fields are accessed even
after a file is closed. For example, a file’s inode in the
directory list is traversed for search operations or other
updates to a directory. Moving these structures back and
forth from host memory can incur high overheads. To
avoid this movement, we decompose the inode structure
into a device-inode and host-inode structure as shown in
the Figure 4. The device-inode contains fields that are
accessed even after a file is closed, and therefore only
the host-inode structure is moved to host memory. Each
host inode is approximately 593 bytes of the overall 840
bytes. Therefore, this decomposition along with reverse
caching significantly reduces inode memory use.

4.5 State Sharing for Permission Check
DevFS provides security for control-plane and data-
plane operations without trapping into the kernel by ex-
tending the OS to share application credentials.

In a kernel-level file system, before an I/O operation,
the file system uses the credentials of a process from the
OS-level process structure and compares them with per-
mission information stored in an inode of a file or direc-
tory. However, DevFS is a separate runtime and cannot
access OS-level data structures directly. To overcome
this limitation, as shown in Figure 5, DevFS maintains

APP

User-FS
OS

Host CPU Credentials
0 Task1.cred
1 Task1.cred
… …
24 Task2.cred

Set	credential		
in		DevFS

DevFS	 Permission	manager

Write(UID,	buff,	4k,off=1)

payload=buff	
ops	=	READ	
UID=	1	
off	=	1	
size	=	4K

t_cred	=	get_task_cred(CPUID)	
inode_cred	=	get_inode_cred(fd)	
compare_cred(t_cred,	inode_cred)	

1

Process	scheduled	to	CPU

User	

2

3

4

Figure 5: DevFS permission check design. The OS is
responsible for updating DevFS credential table with process
credentials after a context-switch.

a credential table in device memory that can be accessed
and updated only by the OS, which updates the table with
credential information of a new process scheduled on a
host CPU. When an I/O request is sent from the host,
the request is tagged with an ID number of the initiating
CPU. We assume that CPU ID tagged with a request is
unforgeable by an untrusted process; DevFS can be eas-
ily extended to support other types of unforgeable IDs.
Before processing a request, DevFS performs a simple
table lookup to compare credentials of a process running
on the initiating CPU with the corresponding inode’s per-
missions. Invalid requests are returned with a permission
error in the request’s completion flag.

We note that one intricate scenario can occur when
a process is context-switched from its host CPU before
DevFS can process the request. We address this scenario
using the following steps: first, whenever a new process
is scheduled to use a host CPU, the OS scheduler up-
dates the credential table in DevFS with credentials of
currently running process; second, a request is admitted
to the device I/O queue only after a permission check.
These steps allow DevFS to safely execute requests in
the I/O queue even after a process is context-switched.
Our future work will examine the overheads of OS down-
calls to update the device-level credential table when pro-
cesses are frequently context-switched across host CPUs.

4.6 Implementation and Emulation
We implement the DevFS prototype to understand the
benefits and implications of a file system inside a storage
device. Due to the current lack of programmable stor-
age hardware, we implement DevFS as a driver in the
Linux 4 kernel and reserve DRAM at boot time to em-
ulate DevFS storage. We now describe our implementa-
tion of the DevFS user-level library and device-level file
system.
User-level library and interface. DevFS utilizes
command-based I/O, similar to modern storage hard-
ware such as NVMe [54, 57]. The user library has three
primary responsibilities: to create a command buffer in
host memory, to convert the applications POSIX inter-
face into DevFS commands and add them to the com-

248 16th USENIX Conference on File and Storage Technologies USENIX Association

mand buffer, and to ring a doorbell for DevFS to pro-
cess the request. When an application is initialized, the
user-level library creates a command buffer by making an
ioctl call to the OS, which allocates a DMA-able memory
buffer, registers the allocated buffer, and returns the vir-
tual address of the buffer to the user-level library. Cur-
rently, DevFS does not support sharing command buffers
across processes, and the buffer size is restricted by the
Linux kernel allocation (kmalloc()) upper limit of 4 MB;
these restrictions can be addressed by memory-mapping
a larger region of shared memory in the kernel. The user-
library adds I/O commands to the buffer and rings a door-
bell (emulated with an ioctl) with the address of the com-
mand buffer from which DevFS can read I/O requests,
perform permission checks, and add them to a device-
level I/O queue for processing. For simplicity, our cur-
rent library implementation only supports synchronous
I/O operations: each command has an I/O completion
flag that will be set by DevFS, and the user-library must
wait until an I/O request completes. The user-library is
implemented in about 2K lines of code.
DevFS file system. Because DevFS is a hardware-
centric solution, DevFS uses straightforward data struc-
tures and techniques that do not substantially increase
memory or CPU usage. We extend PMFS with DevFS
components and structures described earlier. Regard-
ing DevFS block management, each block in DevFS is
a memory page; pages for both metadata and data are al-
located from memory reserved for DevFS storage. The
per-file memory journal and I/O queue size are set to
a default of 4 KB but are each configurable during file
system mount. The maximum number of concurrently
opened files or directories is limited by the number of
I/O queues and journals that can be created in DevFS
memory. Finally, DevFS does not yet support memory-
mapped I/O. DevFS is implemented in about 9K lines of
code.

4.7 Discussion
Moving the file system inside a hardware device avoids
OS interaction and allows applications to attain higher
performance. However, a device-level file system also
introduces CPU limitations and adds complexity in de-
ploying new file system features.
CPU limitations. The scalability and performance
of DevFS is dependant on the device-level CPU core
count and their frequency. These device CPU limita-
tions can impact (a) applications (or a system with many
applications) that use several threads for frequent and
non-dependant I/O operations, (b) multi-threaded appli-
cations that are I/O read-intensive or metadata lookup-
intensive, and finally, (c) CPU-intensive file system fea-
tures such as deduplication or compression. One pos-
sible approach to address the CPU limitation is to iden-

tify file-system operations and components that are CPU-
intensive and move them to the user-level library in a
manner that does not impact integrity, crash consistency,
and security. However, realizing this approach would
require extending DevFS to support a broader set of
commands from the library in addition to application-
level POSIX commands. Furthermore, we believe that
DevFS’s direct-access benefits could motivate hardware
designers to increase CPU core count inside the storage
device [19], thus alleviating the problem.

Feature support. Moving the file system into stor-
age complicates the addition of new file system features,
such as snapshots, incremental backup, deduplication, or
fixing bugs; additionally, limited CPU and memory re-
sources also add to the complexity. One approach to
solving this problem is by implementing features that
can be run in the background in software (OS or library),
exposing the storage device as a raw block device, and
using host CPU and memory. Another alternative is
to support “reverse computation” by offloading file sys-
tem state and computation to the host. Our future work
will explore the feasibility of these approaches by ex-
tending DevFS to support snapshots, deduplication, and
software RAID. Regarding bug fixes, changes to DevFS
would require a firmware upgrade, which is supported by
most hardware vendors today [45]. Additionally, with in-
creasing focus on programmability of I/O hardware (e.g.,
NICs [8,29]) as dictated by new standards (e.g., NVMe),
support for embedding software into storage should be-
come less challenging.

5 Evaluation

Our evaluation of DevFS aims to answer the following
important questions.

• What is the performance benefit of providing appli-
cations with direct-access to a hardware-level file
system?

• Does DevFS enable different processes to simulta-
neously access both the same file system and the
same files?

• What is the performance benefit of leveraging de-
vice capacitance to reduce the double write over-
head of a traditional journal?

• How effective are DevFS’s memory reduction
mechanisms and how much do they impact perfor-
mance?

• What is the impact of running DevFS on a slower
CPU inside the device compared to the host?

We begin by describing our evaluation methodology and
then we evaluate DevFS on micro-benchmarks and real-
world applications.

USENIX Association 16th USENIX Conference on File and Storage Technologies 249

0

4

8

12

16

1KB 4KB 16KB

10
0K

 O
ps

/S
ec

on
d

(a) Random write

NOVA
DevFS [naive]
DevFS [+cap]
DevFS [+cap +direct]

0

10

20

30

40

1KB 4KB 16KB

(b) Random read

Write Size Read Size

Figure 6: Write and Read throughput. The graph shows
results for Filebench random write and read micro-benchmark.
X-axis varies the write size, and the file size is kept constant to
32 GB. Results show single thread performance. For DevFS,
the per-file I/O queue and in-memory journal is set to 4 KB.

5.1 Methodology
For our experiments, we use a 40-core Intel Xeon 2.67
GHz dual socket system with 128 GB memory. DevFS
reserves 60 GB of memory to emulate storage with max-
imum bandwidth and minimum latency. DevFS is run on
4 of the cores to emulate a storage device with 4 CPU
controllers and with 2 GB of device memory, matching
state-of-the-art NVMe SSDs [41, 42].

5.2 Performance
Single process performance. We begin by evaluating
the benefits of direct storage access for a very simple
workload of a single process accessing a single file with
the Filebench workload generator [48]. We study three
versions of DevFS: a naive version of DevFS with tra-
ditional journaling, DevFS with hardware capacitance
support (+cap), and DevFS with capacitance support and
without kernel traps (+cap +direct). We emulate DevFS
without kernel traps by replicating the benchmark inside
a kernel module. For comparison, we use NOVA [56], a
state-of-the-art kernel-level file system for storage class
memory technologies. Although NOVA does not provide
direct access, it does use memory directly for storage and
uses a log-structured design.

Figure 6.a shows the throughput of random writes
as a function of I/O size. As expected, NOVA per-
forms better than naive DevFS with traditional journal-
ing. Because NOVA uses a log-structured design and
writes data and metadata to storage only once, it out-
performs DevFS-naive with traditional journaling since
DevFS-naive writes to an in-memory journal, a per-file
storage log, and the final checkpointed region. For larger
I/O sizes (16 KB), the data write starts dominating the
cost, thus reducing the impact of journaling on the per-
formance.

However, DevFS with capacitance support,
DevFS+cap, exploits the power-loss-protection ca-
pability and only writes metadata to the in-memory
journal; both the metadata and the data can be directly

0

0.5

1

1.5

2

1 4 8 12 16

10
0K

 O
ps

/S
ec

on
d

(a) Without data sharing

NOVA DevFS [+cap] DevFS [+cap +direct]

#. of Instances

0

0.5

1

1.5

2

1 4 8 12 16

(b) With data sharing

#. of Instances

Figure 7: Concurrent access throughput. (a) shows
throughput without data sharing. (b) shows throughput with
data sharing. The x-axis shows the number of concurrent in-
stances. Each instance opens ten files, appends 256 MB to each
file using 4 KB writes, and then closes the files. DevFS uses up
to 4 device CPUs.

committed to storage in-place without a storage log. For
1-KB writes, DevFS+cap achieves up to 27% higher
throughput than the naive DevFS approach and 12%
higher than NOVA. DevFS+cap outperforms NOVA be-
cause NOVA must issue additional instructions to flush
its buffers, ordering writes to memory with a barrier
after each write operation. Finally, by avoiding kernel
traps, DevFS+cap+direct provides true direct-access to
storage and improves performance by more than 2x and
1.8x for 1-KB and 4-KB writes respectively.

Figure 6.b shows random read throughput. NOVA pro-
vides higher throughput than both the DevFS-naive and
DevFS+cap approaches because our prototype manages
all 4 KB blocks of a file in a B-tree and traverses the tree
for every read operation; in contrast, NOVA simply maps
a file’s contents and converts block offsets to physical ad-
dresses with bit-shift operations, which is much faster.
Even with our current implementation, DevFS+direct
outperforms all other approaches since it avoids expen-
sive kernel traps. We believe that incorporating NOVA’s
block mapping technique into DevFS would further im-
prove read performance.
Concurrent access performance. One of the advan-
tages of DevFS over existing hybrid user-level file sys-
tems is that DevFS enables multiple competing processes
to share the same file system and the same open files. To
demonstrate this functionality, we begin with a workload
in which processes share the same file system, but not the
same files: each process opens ten files, appends 256 MB
to each file using 4-KB writes, and then closes the files.
In Figure 7.a, the number of processes is varied along the
x-axis, where each process writes to a separate directory.

For a single process, DevFS+direct provides up to a
39% improvement over both NOVA and DevFS+cap by
avoiding kernel traps. Since each file is allocated its own
I/O queues and in-memory journal, the performance of
DevFS scales well up to 4 instances; since we are emu-
lating 4 storage CPUs, beyond four instances, the device

250 16th USENIX Conference on File and Storage Technologies USENIX Association

CPUs are shared across multiple instances and perfor-
mance does not scale well. In contrast, NOVA is able to
use all 40 host CPUs and scales better.

To demonstrate that multiple processes can simultane-
ously access the same files, we modify the above work-
load so that each instance accesses the same ten files;
the results are shown in Figure 7.b. As desired for file
system integrity, when multiple instances share and con-
currently update the same file, DevFS serializes meta-
data updates and updates to the per-file I/O queue and
in-memory journal. Again, scaling of DevFS is severely
limited beyond 4 instances given the contention for the
4 device CPUs. In other experiments, not shown due to
space limitations, we observe that increasing the number
of device CPUs directly benefits DevFS scalability.
Summary. By providing direct-access to storage with-
out trapping into the kernel, DevFS can improve write
throughput by 1.5x to 2.3x and read throughput by 1.2x
to 1.3x. DevFS also benefits from exploiting device ca-
pacitance to reduce journaling cost. Finally, unlike hy-
brid user-level file systems, DevFS supports concurrent
file-system access and data sharing across processes;
lower I/O throughput beyond four concurrent instances
is mainly due to a limited number of device-level CPUs.

5.3 Impact of Reverse Caching
A key goal of DevFS is to reduce memory usage of the
file system. We first evaluate the effectiveness of DevFS
memory optimizations to reduce memory usage and then
investigate the impact on performance.

5.3.1 Memory Reduction
To understand the effectiveness of DevFS memory-
reduction techniques, we begin with DevFS+cap
and analyze three memory reduction techniques:
DevFS+cap+demand allocates each in-memory
filemap on-demand and releases them after a file is
closed; DevFS+cap+demand+dentry reverse caches
the corresponding dentry after a file is closed;
DevFS+cap+demand+dentry+inode also decomposes a
file’s inode into inode-device and inode-host structures
and reverse caches the inode-host structure. Because
we focus on memory reduction, we do not consider
DevFS+direct in this experiment.

Figure 8 shows the amount of memory consumed for
the four versions of DevFS on Filebench’s file-create
workload that opens a file, writes 16 KB, and then closes
the file for 1 million files. In the baseline (DevFS+cap),
three data structures dominate memory usage: the DevFS
inode (840 bytes), the dentry (192 bytes), and the filemap
(156 bytes). While file pointers, per-file I/O queues, and
in-memory journals are released after a file is closed, the
three other structures are not freed until the file is deleted.

The first memory optimization, DevFS+cap+demand,
dynamically allocates the filemap when a read or write

0

400

800

1200

1600

+cap +cap
+demand

+cap
+demand
+dentry

+cap
+demand
+dentry
+inode

M
em

or
y

(M
B)

filemap dentry inode

Figure 8: DevFS memory reduction. +cap represents a
baseline without memory reduction. Other bars show incre-
mental memory reduction technique impact.

0

0.5

1

1.5

2

Create-files Reopen-files
10

0K
 O

ps
/S

ec
on

d

+cap
+cap +demand
+cap +demand +dentry
+cap +demand +dentry +inode
+cap +demand +dentry +inode +direct

Figure 9: Throughput impact of memory reduction.
Reopen-files benchmark reopens closed files; as a result, struc-
tures cached in host memory are moved back to device.

is performed and releases the filemap after closing the
file; this reduces memory consumption by 156 MB
(13.4%). Reverse caching of dentries, shown by
DevFS+cap+demand+dentry, reduces device memory
usage by 193 MB (16.6%) by moving them to the host
memory; the small dentry memory usage visible in the
graph represents directory dentries which are not moved
to the host memory in order to provide fast directory
lookup. Finally, decomposing the large inode structure
into two smaller structures, inode-device (262 bytes) and
inode-host (578 bytes), and reverse caching the inode-
host structure reduces memory usage significantly. The
three mechanisms cumulatively reduce device memory
usage by up to 78% (5x) compared to the baseline. In
our current implementation, we consider only these three
data structures, but reverse caching could easily be ex-
tended to other file system data structures.

5.3.2 Performance Impact
The memory reduction techniques used by DevFS
do have an impact on performance. To evaluate
their impact on throughput, in addition to the file-
create benchmark used above, we also evaluate a
file-reopen workload that re-opens each of the files
in the file-create benchmark immediately after it is
closed. We also show the throughput for direct-access
(DevFS+cap+demand+dentry+inode+direct) that avoids
expensive kernel traps.

For both benchmarks, DevFS with no memory opti-

USENIX Association 16th USENIX Conference on File and Storage Technologies 251

0
0.2
0.4
0.6
0.8

1
1.2

1KB 4KB 16KB 64KB 256KB

10
0K

 O
ps

/S
ec

on
d

(a) Snappy throughput

NOVA DevFS [naive]
DevFS [+cap] DevFS [+cap +direct]

0
0.2
0.4
0.6
0.8

1
1.2

1.2 1.4 1.8 2.2 2.6

(b) CPU speed impact
Write Size CPU Frequency in GHz

Figure 10: Snappy compression throughput and CPU
speed impact. Application uses 4 CPUs. Memory reduction
techniques are enabled for DevFS (+cap) and DevFS (+cap
+direct). For DevFS (+cap +direct), Snappy is run as a kernel
module. The CPU speed is varied by scaling the frequency.

mizations and DevFS with on-demand allocation have
similar throughput because the only difference is ex-
actly when the filemap is allocated. However, the re-
verse caching techniques do impact throughput. For
the file-create benchmark, reverse caching only the
dentry (DevFS+cap+demand+dentry) reduces through-
put by 5%, while also reverse caching the inode
(DevFS+cap+demand+dentry+inode) by 13%. Perfor-
mance degradation occurs because reverse caching in-
volves significant work: allocating memory in the host
DRAM, copying structures to host memory, updating the
parent list with the new memory address, and later re-
leasing the device memory. The performance of reverse
caching inodes is worse than that of dentries, due to their
relative sizes (578 bytes vs 196 bytes). While the direct-
access approach has similar overheads, by avoiding ker-
nel traps for file open, write, and close, and it provides
higher performance compared to all other approaches.

With the file-reopen benchmark, reverse caching
moves the corresponding inodes and dentries back to de-
vice memory, causing a throughput drop of 26%. Our
results for the file-reopen benchmark can be consid-
ered worst-case behavior since most real-world applica-
tions spend more time performing I/O before closing a
file. Our current mechanism performs aggressive reverse
caching, but could easily be extended to slightly delay
reverse caching based on the availability of free memory
in the device.
Summary. DevFS memory-reduction techniques can
reduce device DRAM usage by up to 5x. Although
worst-case benchmarks do suffer some performance im-
pact with these techniques, we believe memory reduction
is essential for device-level file systems and that DevFS
will obtain both memory reduction and high performance
for realistic workloads.

5.4 Snappy File Compression
To understand the performance impact on a real-world
application, we use Snappy [11] compression. Snappy is

widely used as a data compression engine for several ap-
plications including MapReduce, RocksDB, MongoDB,
and Google Chrome. Snappy reads a file, performs com-
pression, and writes the output to a file; for durability,
we add an fsync() after writing the output. Snappy op-
timizes throughput and is both CPU- and I/O-intensive;
for small files, the I/O time dominates the computation
time. Snappy can be used at both user-level and kernel-
level [23] which helps us to understand the impact of di-
rect access. For the workload, we use four application
threads, 16 GB of image files from OpenImage reposi-
tory [24], and vary the size of files from 1 KB to 256 KB.

Comparing the performance of NOVA, DevFS-naive,
DevFS+cap, and DevFS+direct, we see the same trends
for the Snappy workload as we did for the previous
micro-benchmarks. As shown in Figure 10.a, NOVA
performs better than DevFS-naive due to DevFS-naive’s
journaling cost, while DevFS+cap removes this over-
head. Because DevFS+direct avoids trapping into the
kernel when reading and writing across all application
threads, it provides up to 22% higher throughput than
DevFS-cap for 4-KB files; as the file size increases, the
benefit of DevFS+direct is reduced since compression
costs dominate runtime.

Device CPU Impact. One of the challenges of DevFS
is that it is restricted to the CPUs on the storage device,
and these device CPUs may be slower than those on the
host. To quantify this performance impact, we run the
Snappy workload as we vary the speed of the “device”
CPUs, keeping the “host” CPUs at their original speed
of 2.6 GHz [27]; the threads performing compression al-
ways run on the fast “host” CPUs. Figure 10.b shows
the performance impact for 4-KB file compression for
two versions of DevFS; we choose 4-KB files since it
stresses DevFS performance more than with larger files
(which instead stress CPU performance). As expected,
DevFS-direct consistently performs better than DevFS-
cap. More importantly, we do see that reducing de-
vice CPU frequency does have a significant impact on
performance (e.g., reducing device CPU frequency from
2.6 GHz to 1.4 GHz reduces throughput by 66%). How-
ever, comparing across graphs, we see that even with a
1.8 GHz device CPU, the performance of DevFS-direct
is similar to that of NOVA running on all high-speed host
CPUs. For workloads that are more CPU intensive, the
impact of slower device CPUs on DevFS performance is
smaller (not shown due to space constraints).

Summary. DevFS-direct provides considerable perfor-
mance improvement even for applications that are both
CPU and I/O-intensive. We observe that although slower
device CPUs do impact performance of DevFS, DevFS
can still outperform other approaches.

252 16th USENIX Conference on File and Storage Technologies USENIX Association

6 Related Work

Significant prior work has focused on providing direct-
access to storage, moving computation to storage, or pro-
grammability of SSDs.
Direct-access storage. Several hybrid user-level file
system implementations, such as Intel’s SPDK [18],
Light NVM [6], and Micron’s User Space NVME [33]
provide direct-access to storage by exposing them as a
raw block device and exporting a userspace device driver
for block access. Light NVM goes one step further to en-
able I/O-intensive applications to implement their own
FTL. However, these approaches do not support tradi-
tional file-system abstractions and instead expose storage
as a raw block device; they do not support fundamental
properties of a file system such as integrity, concurrency,
crash consistency, or security.
Computation inside storage. Providing compute ca-
pability inside storage for performing batch tasks have
been explored for past four decades. Systems such as
CASSM [46] and RARES [31] have proposed adding
several processors to a disk for performing computa-
tion inside storage. ActiveStorage [2, 39] uses one CPU
inside a hard disk for performing database scans and
search operations, whereas Smart-SSD [12] is designed
for query processing inside SSDs. Architectures such as
BlueDBM [19] have shown the benefits of scaling com-
pute and DRAM inside flash memory for running “big
data” applications. DevFS also uses device-level RAM
and compute capability; however, DevFS uses these re-
sources for running a high-performance file system that
applications can use.
Programmability. Willow [43] develops a system to
improve SSD programmability. Willow’s I/O component
is offloaded to an SSD to bypass the OS and perform di-
rect read and write operations. However, without a cen-
tralized file system, Willow also has the same general
structural advantages and disadvantages of hybrid user-
level file systems.

7 Conclusion
In this paper, we address the limitations of prior hybrid
user-level file systems by presenting DevFS, an approach
that pushes file system functionality down into device
hardware. DevFS is a trusted file system inside the de-
vice that preserves metadata integrity and concurrency
by exploiting hardware-level parallelism, leverages hard-
ware power-loss control to provide low-overhead crash
consistency, and coordinates with the OS to satisfy se-
curity guarantees. We address the hardware limitations
of low device RAM capacity by proposing three mem-
ory reduction techniques (on-demand allocation, reverse
caching, and decomposing data structures) to reduce file
system memory usage by 5x(at the cost of a small per-

formance reduction). Performance evaluation of our
DevFS prototype shows more than 2x improvement in
I/O throughput with direct-access to storage. We believe
our DevFS prototype is a first step towards building a
true direct-access file system. Several engineering chal-
lenges, such as realizing DevFS in real hardware, sup-
porting RAID, and integrating DevFS with the FTL, re-
main as future work.

Acknowledgements

We thank the anonymous reviewers and Ed Nightin-
gale (our shepherd) for their insightful comments. We
thank the members of the ADSL for their valuable input.
This material was supported by funding from NSF grants
CNS-1421033 and CNS-1218405, and DOE grant DE-
SC0014935. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and may not reflect the views of NSF, DOE,
or other institutions.

USENIX Association 16th USENIX Conference on File and Storage Technologies 253

References

[1] Intel-Micron Memory 3D XPoint. http://intel.ly/

1eICR0a.

[2] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active Disks:
Programming Model, Algorithms and Evaluation. SIGPLAN
Not., 33(11):81–91, October 1998.

[3] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K.
Gupta, and Steven Swanson. Onyx: A Protoype Phase Change
Memory Storage Array. In Proceedings of the 3rd USENIX con-
ference on Hot topics in storage and file systems, HotStorage’11,
Portland, OR, 2011.

[4] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Oper-
ating Systems: Three Easy Pieces. Arpaci-Dusseau Books, 0.91
edition, May 2015.

[5] Valerie Aurora. Log Structured File System Issues. https://

lwn.net/Articles/353411/.

[6] Matias Bjørling, Javier González, and Philippe Bonnet. Light-
NVM: The Linux Open-channel SSD Subsystem. In Proceedings
of the 15th Usenix Conference on File and Storage Technologies,
FAST’17, Santa clara, CA, USA, 2017.

[7] Eric Brewer. FAST Keynote: Disks and their Cloudy Future,
2015. https://www.usenix.org/sites/default/files/

conference/protected-files/fast16_slides_brewer.

pdf.

[8] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup
De, Joel Coburn, and Steven Swanson. Providing Safe, User
Space Access to Fast, Solid State Disks. SIGARCH Comput. Ar-
chit. News, 40(1), March 2012.

[9] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp,
Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps:
Making Persistent Objects Fast and Safe with Next-generation,
Non-volatile Memories. In Proceedings of the Sixteenth In-
ternational Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XVI, New-
port Beach, California, USA, 2011.

[10] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better
I/O Through Byte-addressable, Persistent Memory. In Proceed-
ings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP ’09, Big Sky, Montana, USA, 2009.

[11] Jeff Dean, Sanjay Ghemawat, and Steinar H. Gunderson. Snappy
Compession. https://github.com/google/snappy.

[12] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park,
Kwanghyun Park, and David J. DeWitt. Query Processing on
Smart SSDs: Opportunities and Challenges. In Proceedings of
the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, pages 1221–1230, New York, NY,
USA, 2013. ACM.

[13] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy,
Philip Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson.
System Software for Persistent Memory. In Proceedings of the
Ninth European Conference on Computer Systems, EuroSys ’14,
pages 15:1–15:15, New York, NY, USA, 2014. ACM.

[14] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An
Operating System Architecture for Application-level Resource
Management. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, SOSP ’95, Copper Mountain,
Colorado, USA, 1995.

[15] Mel Gorman. Understanding the Linux Virtual Memory Man-
ager. http://bit.ly/1n1xIhg.

[16] Jun He, Sudarsun Kannan, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. The Unwritten Contract of Solid State
Drives. In Proceedings of the Twelfth European Conference on
Computer Systems, EuroSys ’17, pages 127–144, New York, NY,
USA, 2017. ACM.

[17] Intel. NVM Library. https://github.com/pmem/nvml.

[18] Intel. Storage Performance Development Kit. http://www.

spdk.io/.

[19] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John
Ankcorn, Myron King, Shuotao Xu, and Arvind. BlueDBM:
Distributed Flash Storage for Big Data Analytics. ACM Trans.
Comput. Syst., 34(3):7:1–7:31, June 2016.

[20] Hyeong-Jun Kim, Young-Sik Lee, and Jin-Soo Kim. NVMeDi-
rect: A User-space I/O Framework for Application-specific Op-
timization on NVMe SSDs. In 8th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage 16), Denver, CO,
2016. USENIX Association.

[21] Jesung Kim, Jong Min Kim, S. H. Noh, Sang Lyul Min, and
Yookun Cho. A Space-Efficient Flash Translation Layer for Com-
pactFlash Systems. IEEE Transactions on Consumer Electronics,
48(2):366–375, May 2002.

[22] Kingston. Kingston power loss control. https:

//www.kingston.com/us/ssd/enterprise/technical_

brief/tantalum_capacitors.

[23] Andi Kleen. Snappy Kernel Port. https://github.com/

andikleen/snappy-c.

[24] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami
Abu-El-Haija, Alina Kuznetsova, Hassan Rom, Jasper Uijlings,
Stefan Popov, Andreas Veit, Serge Belongie, Victor Gomes, Ab-
hinav Gupta, Chen Sun, Gal Chechik, David Cai, Zheyun Feng,
Dhyanesh Narayanan, and Kevin Murphy. OpenImages: A public
dataset for large-scale multi-label and multi-class image classifi-
cation. Dataset available from https://github.com/openimages,
2017.

[25] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith
Makam. High Performance Metadata Integrity Protection in the
WAFL Copy-on-Write File System. In 15th USENIX Confer-
ence on File and Storage Technologies (FAST 17), pages 197–
212, Santa Clara, CA, 2017. USENIX Association.

[26] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Em-
mett Witchel, and Thomas Anderson. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, 2017.

[27] Etienne Le Sueur and Gernot Heiser. Dynamic Voltage and Fre-
quency Scaling: The Laws of Diminishing Returns. In Pro-
ceedings of the 2010 International Conference on Power Aware
Computing and Systems, HotPower’10, Vancouver, BC, Canada,
2010.

[28] Changman Lee, Dongho Sim, Joo-Young Hwang, and Sangyeun
Cho. F2FS: A New File System for Flash Storage. In Proceed-
ings of the 13th USENIX Conference on File and Storage Tech-
nologies, FAST’15, Santa Clara, CA, 2015.

[29] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu,
Yongqiang Xiong, Andrew Putnam, Enhong Chen, and Lintao
Zhang. KV-Direct: High-Performance In-Memory Key-Value
Store with Programmable NIC. In Proceedings of the 26th Sym-
posium on Operating Systems Principles, SOSP ’17, Shanghai,
China, 2017.

[30] J. Liedtke. On Micro-kernel Construction. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems Principles,
SOSP ’95, Copper Mountain, Colorado, USA, 1995.

254 16th USENIX Conference on File and Storage Technologies USENIX Association

http://intel.ly/1eICR0a
http://intel.ly/1eICR0a
https://lwn.net/Articles/353411/
https://lwn.net/Articles/353411/
https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/fast16_slides_brewer.pdf
https://github.com/google/snappy
http://bit.ly/1n1xIhg
https://github.com/pmem/nvml
http://www.spdk.io/
http://www.spdk.io/
https://www.kingston.com/us/ssd/enterprise/technical_brief/tantalum_capacitors
https://www.kingston.com/us/ssd/enterprise/technical_brief/tantalum_capacitors
https://www.kingston.com/us/ssd/enterprise/technical_brief/tantalum_capacitors
https://github.com/andikleen/snappy-c
https://github.com/andikleen/snappy-c

[31] Chyuan Shiun Lin, Diane C. P. Smith, and John Miles Smith.
The Design of a Rotating Associative Memory for Relational
Database Applications. ACM Trans. Database Syst., 1(1):53–65,
March 1976.

[32] Justin Meza, Qiang Wu, Sanjev Kumar, and Onur Mutlu. A
Large-Scale Study of Flash Memory Failures in the Field. SIG-
METRICS Perform. Eval. Rev., 43(1):177–190, June 2015.

[33] Micron. Micron User Space NVMe. https://github.com/

MicronSSD/unvme/.

[34] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos,
Arvind Krishnamurthy, Thomas Anderson, and Timothy Roscoe.
Arrakis: The Operating System is the Control Plane. In Pro-
ceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, Broomfield, CO, 2014.

[35] Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan,
Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Application Crash Consistency and
Performance with CCFS. In Proceedings of the 15th Usenix Con-
ference on File and Storage Technologies, FAST’17, Santa clara,
CA, USA, 2017.

[36] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. All File Systems
Are Not Created Equal: On the Complexity of Crafting Crash-
consistent Applications. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation,
OSDI’14, Broomfield, CO, 2014.

[37] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou.
Transactional Flash. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Implementation,
OSDI’08, San Diego, California, 2008.

[38] Aditya Rajgarhia and Ashish Gehani. Performance and Exten-
sion of User Space File Systems. In Proceedings of the 2010
ACM Symposium on Applied Computing, SAC ’10, pages 206–
213, New York, NY, USA, 2010. ACM.

[39] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active
Storage for Large-Scale Data Mining and Multimedia. In Pro-
ceedings of the 24rd International Conference on Very Large
Data Bases, VLDB ’98, pages 62–73, San Francisco, CA, USA,
1998. Morgan Kaufmann Publishers Inc.

[40] Mendel Rosenblum and John K. Ousterhout. The Design and
Implementation of a Log-structured File System. ACM Trans.
Comput. Syst., 10(1), February 1992.

[41] Samsung. NVMe SSD 960 Polaris Controller. http:

//www.samsung.com/semiconductor/minisite/

ssd/downloads/document/NVMe_SSD_960_PRO_EVO_

Brochure.pdf.

[42] Samsung. Samsung nvme ssd 960 data sheet. http:

//www.samsung.com/semiconductor/minisite/ssd/

downloads/document/Samsung_SSD_960_PRO_Data_

Sheet_Rev_1_1.pdf.

[43] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven Swan-
son. Willow: A User-programmable SSD. In Proceedings of the
11th USENIX Conference on Operating Systems Design and Im-
plementation, OSDI’14, Broomfield, CO, 2014.

[44] Y. Son, J. Choi, J. Jeon, C. Min, S. Kim, H. Y. Yeom, and H. Han.
SSD-Assisted Backup and Recovery for Database Systems. In
2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pages 285–296, April 2017.

[45] StorageReview.com. Firmware Upgrade. http://www.

storagereview.com/how_upgrade_ssd_firmware.

[46] Stanley Y. W. Su and G. Jack Lipovski. CASSM: A Cellular
System for Very Large Data Bases. In Proceedings of the 1st
International Conference on Very Large Data Bases, VLDB ’75,
Framingham, Massachusetts, 1975.

[47] Bharath Kumar Reddy Vangoor, Vasily Tarasov, and Erez Zadok.
To FUSE or Not to FUSE: Performance of User-space File Sys-
tems. In Proceedings of the 15th Usenix Conference on File and
Storage Technologies, FAST’17, Santa clara, CA, USA, 2017.

[48] Tarasov Vasily. Filebench. https://github.com/

filebench/filebench.

[49] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M.
Swift. Aerie: Flexible File-system Interfaces to Storage-class
Memory. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, Amsterdam, The Netherlands,
2014.

[50] Haris Volos, Andres Jaan Tack, and Michael M. Swift.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of
the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS
XVI, Newport Beach, California, USA, 2011.

[51] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-level Network Interface for Parallel and Distributed Com-
puting. In Proceedings of the Fifteenth ACM Symposium on Op-
erating Systems Principles, SOSP ’95, Copper Mountain, Col-
orado, USA, 1995.

[52] Michael Wei, Matias Bjørling, Philippe Bonnet, and Steven
Swanson. I/O Speculation for the Microsecond Era. In Proceed-
ings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference, USENIX ATC’14, Philadelphia, PA, 2014.

[53] Matthew Wilcox and Ross Zwisler. Linux DAX. https://www.
kernel.org/doc/Documentation/filesystems/dax.txt.

[54] NVM Express Workgroup. NVMExpress Specification. ://

www.nvmexpress.org/resources/specifications/.

[55] Xiaojian Wu and A. L. Narasimha Reddy. SCMFS: A File System
for Storage Class Memory. In Proceedings of 2011 International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’11, Seattle, Washington, 2011.

[56] Jian Xu and Steven Swanson. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In Pro-
ceedings of the 14th Usenix Conference on File and Storage Tech-
nologies, FAST’16, 2016.

[57] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri,
Manu Awasthi, Zvika Guz, Anahita Shayesteh, and Vijay Bal-
akrishnan. Performance Analysis of NVMe SSDs and Their Im-
plication on Real World Databases. In Proceedings of the 8th
ACM International Systems and Storage Conference, SYSTOR
’15, Haifa, Israel, 2015.

[58] Jisoo Yang, Dave B. Minturn, and Frank Hady. When Poll is
Better Than Interrupt. In Proceedings of the 10th USENIX Con-
ference on File and Storage Technologies, FAST’12, San Jose,
CA, 2012.

USENIX Association 16th USENIX Conference on File and Storage Technologies 255

https://github.com/MicronSSD/unvme/
https://github.com/MicronSSD/unvme/
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/NVMe_SSD_960_PRO_EVO_Brochure.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/Samsung_SSD_960_PRO_Data_Sheet_Rev_1_1.pdf
http://www.storagereview.com/how_upgrade_ssd_firmware
http://www.storagereview.com/how_upgrade_ssd_firmware
https://github.com/filebench/filebench
https://github.com/filebench/filebench
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
://www.nvmexpress.org/resources/specifications/
://www.nvmexpress.org/resources/specifications/

FStream: Managing Flash Streams in the File System

Eunhee Rho, Kanchan Joshi, Seung-Uk Shin, Nitesh Jagadeesh Shetty
Joo-Young Hwang, Sangyeun Cho, Daniel DG Lee, Jaeheon Jeong

Samsung Electronics Co., Ltd.

Abstract
The performance and lifespan of a solid-state drive
(SSD) depend not only on the current input workload
but also on its internal media fragmentation formed over
time, as stale data are spread over a wide range of phys-
ical space in an SSD. The recently proposed streams
gives a means for the host system to control how data are
placed on the physical media (abstracted by a stream)
and effectively reduce the media fragmentation. This
work proposes FStream, a file system approach to tak-
ing advantage of this facility. FStream extracts streams
at the file system level and avoids complex application
level data mapping to streams. Experimental results
show that FStream enhances the filebench performance
by 5%∼35% and reduces WAF (Write Amplification
Factor) by 7%∼46%. For a NoSQL database benchmark,
performance is improved by up to 38% and WAF is re-
duced by up to 81%.

1 Introduction
Solid-state drives (SSDs) are rapidly replacing hard disk
drives (HDDs) in enterprise data centers. SSDs maintain
the traditional logical block device abstraction with the
help from internal software, commonly known as flash
translation layer (FTL). The FTL allows SSDs to sub-
stitute HDDs without complex modification in the block
device interface of an OS.

Prior work has revealed, however, that this compatibil-
ity comes at a cost; when the underlying media is frag-
mented as a device is aged, the operational efficiency of
the SSD deteriorates dramatically due to garbage collec-
tion overheads [11, 13]. More specifically, a user write
I/O translates into an amplified amount of actual media
writes [9], which shortens device lifetime and hampers
performance. The ratio of the actual media writes to the
user I/O is called write amplification factor (WAF).

A large body of prior work has been undertaken to ad-
dress the write amplification problem and the SSD wear-

out issue [3, 7]. To the same end, we focus on how to take
advantage of the multi-streamed SSD mechanism [8].
This mechanism opens up a way to dictate data place-
ment on an SSD’s underlying physical media, abstracted
by streams. In principle, if the host system perfectly
maps data having the same lifetime to the same streams,
an SSD’s write amplification becomes one, completely
eliminating the media fragmentation problem.

Prior works have revealed two strategies to leverage
streams. The first strategy would map application data
to disparate streams based on an understanding of the
expected lifetime of those data. For example, files in dif-
ferent levels of a log-structured merge tree could be as-
signed to a separate stream. Case studies show that this
strategy works well for NoSQL databases like Cassandra
and RocksDB [8, 14]. Unfortunately, this application-
level customization strategy requires that a system de-
signer understand her target application’s internal work-
ing fairly well, remaining a challenge to the designer.
The other strategy aimed to “automate” the process of
mapping write I/O operations to an SSD stream with no
application changes. For example, the recently proposed
AutoStream scheme assigns a stream to each write re-
quest based on estimated lifetime from past LBA access
patterns [15]. However, this scheme has not been proven
to work well under complex workload scenarios, partic-
ularly when the workload changes dynamically. More-
over, LBA based pattern detection is not practical when
file data are updated in an out-of-place manner, as in
copy-on-write and log-structured file systems. The above
sketched strategies capture the two extremes in the de-
sign space—application level customization vs. block
level full automation.

In this work, we take another strategy, where we sep-
arate streams at the file system layer. Our approach is
motivated by the observation that file system metadata
and journal data are short-lived and are good targets for
separation from user data. Naturally, the primary compo-
nent of our scheme, when applied to a journaling file sys-

USENIX Association 16th USENIX Conference on File and Storage Technologies 257

tem like ext4 and xfs, is to allocate a separate stream for
metadata and journal data, respectively. As a corollary
component of our scheme, we also propose to separate
databases redo/undo log file as a distinct stream at the
file system layer. We implement our scheme, FStream,
in Linux ext4 and xfs file systems and perform experi-
ments using a variety of workloads and a stream-capable
NVMe (NVM Express) SSD. Our experiments show that
FStream robustly achieves a near-optimal WAF (close to
1) across the workloads we examined. We make the fol-
lowing contributions in this work.

• We provide an automated multi-streaming of differ-
ent types of file system generated data with respect
to their lifetime;

• We enhance the existing journaling file systems,
ext4 and xfs, to use the multi-streamed SSDs with
minimally invasive changes; and

• We achieve stream classification for application
data using file system layer information.

The remainder of this paper is organized as follows.
First, we describe the background of our study in Sec-
tion 2, with respect to the problems of previous multi-
stream schemes. Section 3 describes FStream and its im-
plementation details. We show experimental results in
Section 4 and conclude in Section 5.

2 Background
2.1 Write-amplification in SSDs
Flash memory has an inherent characteristic of erase-
before-program. Write, also called “program” operation,
happens at the granularity of a NAND page. A page can-
not be rewritten unless it is “erased” first. In-place update
is not possible due to this erase-before-write characteris-
tic. Hence, overwrite is handled by placing the data in
a new page, and invalidating the previous one. Erase
operation is done in the unit of a NAND block, which
is a collection of multiple NAND pages. Before eras-
ing a NAND block, all its valid pages need to be copied
out elsewhere; this is done in a process called garbage-
collection (GC). These valid page movements cause ad-
ditional writes that consume bandwidth, thereby leading
to performance degradation and fluctuation. These ad-
ditional writes also reduce endurance as program-erase
cycles are limited for NAND blocks. One way to mea-
sure GC overheads is write amplification factor (WAF),
which is described as the ratio of writes performed on
flash memory to writes requested from the host system.

WAF =
Amount of writes committed to flash

Amount of writes that arrived from the host
WAF may soar more often than not as an SSD experi-

ences aging [8].

2.2 Multi-streamed SSD
The multi-streamed SSD [8] endeavors to keep WAF in
check by focusing on the placement of data. It allows
the host to pass a hint (stream ID) along with write re-
quests. The stream ID provides a means to convey hints
on lifetime of data that are getting written [5]. The multi-
streamed SSD groups data having the same stream ID to
be stored to the same NAND block. By avoiding mixing
data of different lifetime, fragmentation is reduced inside
NAND blocks. Figure 1 shows an example of how the
data placement using multi-stream could reduce media
fragmentation.

Figure 1: Data placement comparison for two write sequences. Here
H=Hot, C=Cold, and we assume there are four pages per flash block.

Multi-stream is now a part of T10 (SCSI) standard,
and under discussion in NVMe (NVM Express) working
group. NVMe 1.3 specification introduces support for
multi-stream in the form of “directives” [1]. An NVMe
write command has the provision to carry a stream ID.

2.3 Leveraging Streams
While the multi-streamed SSD provides the facility of
segregating data into streams, its benefit largely depends
upon how well the streams are leveraged by the host.
Identifying what should and should not go into the same
stream is of cardinal importance for maximum bene-
fit. Previous work [8, 14] shows benefits of application-
assigned streams. This approach has the benefit of de-
termining data lifetime accurately, but it involves mod-
ifying the source code of the target application, leading
to increased deployment effort. Also when multiple ap-
plications try to assign streams, a centralized stream as-
signment is required to avoid conflicts. Instead of di-
rect assignment of stream IDs, recently Linux (from 4.13
kernel) supports fcntl() interface to send data life-
time hints to file systems to exploit the multi-streamed
SSDs [2, 6]. AutoStream [15] takes stream management
to the NVMe device driver layer. It monitors requests

258 16th USENIX Conference on File and Storage Technologies USENIX Association

from file systems and estimates data lifetime. However,
only limited information (e.g., request size, block ad-
dresses) is available in the driver layer, and even worse,
the address-based algorithm may be ineffective under a
copy-on-write file system.

Our approach, FStream, implements stream manage-
ment intelligence at the file system layer. File systems
have readily the information about file system generated
data such as metadata and journal. To detect lifetime of
user data, we take a simple yet efficient method which
uses file’s name or extension. For the sake of brevity, we
do not cover the estimation of user data lifetime in detail
at the file system layer.

3 FStream
We start by highlighting the motivation behind employ-
ing multi-stream in file systems. This is followed by
overview of ext4 and xfs on-disk layout and journaling
methods. Then we delve into the details of Ext4Stream
and XFStream, which are stream-aware variants of ext4
and xfs, respectively.

3.1 Motivation
Applications can have better knowledge about the life-
time and update frequency of data that they write than file
systems do. However, applications do not know about
the lifetime and update frequency of file system meta-
data. The file system metadata usually have different
update frequencies than applications’ data, and are of-
ten influenced by on-disk layout and write policy of a
particular file system. Typically file systems keep data
and metadata logically separated, but they may not re-
main “physically” separated on SSDs. While carrying
out file operations, metadata writes may get mixed with
data writes in the same NAND block or one type of meta-
data may get mixed with another type of metadata. File
systems equipped with stream separation capability may
reduce the mixing of applications’ data and file system
metadata, and improve WAF and performance.

3.2 Ext4 metadata and journaling
The ext4 file system divides the disk-region in multi-
ple equal-size regions called “block groups,” as shown
in Figure 2. Each block group contains data and their re-
lated metadata together which helps in reducing seeks for
HDDs. Ext4 introduces flex-bg feature, which “clubs” a
series of block groups whose metadata are consolidated
in the first block group. Each file/directory requires an
inode, which is of size 256 bytes by default. These in-
odes are stored in the inode table. inode bitmap and block
bitmap are used for allocation of inodes and data blocks,
respectively. Group descriptor contains the location of

other metadata regions (inode table, block bitmap, inode
bitmap) within the block group. Another type of meta-
data is a directory block.

Figure 2: Ext4 on-disk layout. For simplicity, we have not shown
flex-bg.

File-system consistency is achieved through write-
ahead logging in journal. Journal is a special file whose
blocks reside in user data area, pre-allocated at the
time of file system format. Ext4 has three journal-
ing modes; data-writeback (metadata journaling), data-
ordered (metadata journaling + write data before meta-
data), and data-journal (data journaling). The default
mode is data-ordered.

Figure 3: Ext4 journal in ordered mode. Ext4 writes data and jour-
nal in sequence. Metadata blocks are written to their actual home loca-
tion after they are persisted to the journal.

Ext4 journals at a block granularity, i.e., even if few
bytes of an inode are changed, the entire block (typically
4KiB) containing many inodes is journaled. For jour-
naling it takes assistance from another component called
journaling block device (JBD), which has its own kernel
thread called jbd2. The journal area is written in a cir-
cular fashion. Figure 3 shows journaling operation in the
ordered mode. During a transaction, ext4 updates meta-
data in in-memory buffers, and informs the jbd2 thread to
commit a transaction. jbd2 maintains a timer (default 5
seconds), on expiry of which it writes modified metadata
into the journal area, apart from transaction related book-
keeping data. Once changes have been made durable,the
transaction is considered committed. Then, the metadata
changes in memory are flushed to their original locations
by write-back threads, which is called checkpointing.

3.3 Xfs metadata and journaling
Similar to ext4, xfs also divides the disk region into
multiple equal-size regions called allocation groups, as
shown in Figure 4. The primary objective of allocation

USENIX Association 16th USENIX Conference on File and Storage Technologies 259

groups is to increase parallelism rather than disk local-
ity, unlike EXT4 block groups. Each allocation group
maintains its own superblock and other structures for
free space management and inode allocation, thereby al-
lowing parallel metadata operations. Free space man-
agement within an allocation group is done by using B+
trees. Inodes are allocated in chunks of 64. These chunks
are managed in another B+ tree meant exclusively for in-
ode allocation.

Figure 4: Xfs on-disk layout.

For transaction safety, xfs implements metadata jour-
naling. A separate region called “log” is created during
file system creation (mkfs.xfs). Log is written in a cir-
cular fashion as transactions are performed. Xfs main-
tains many log buffers (default 8) in memory, which can
record the changes for multiple transactions. Default
commit interval is 30 seconds. During commit, modified
log buffers are written to on-disk log area. Post commit,
modified metadata buffers are scheduled for flushing to
their actual disk locations.

3.4 Ext4Stream: Multi-stream in ext4

Table 1 lists the streams we introduced in ext4. These
streams can be enabled with the corresponding mount
option listed in the table.

Mount-option Stream
journal-stream Separate journal writes
inode-stream Separate inode writes
dir-stream Separate directory blocks
misc-stream Separate inode/block bitmap and

group descriptor
fname-stream Assign distinct stream to file(s)

with specific name
extn-stream File-extension based stream

Table 1: Streams introduced in Ext4Stream.

The journal stream mount option is to separate jour-
nal writes. We added a j streamid field in the
journal s structure. When ext4 is mounted with the
journal stream option, a stream ID is allocated and
stored in the j streamid field. jbd2 passes this stream
ID when it writes dirty buffers and descriptor blocks in a
journal area using submit bh and related functions.

Ext4 makes use of buffer-head (bh) structures for var-
ious metadata buffers including inode, bitmaps, group
descriptors and directory data blocks. We added a new
field streamid in buffer-head to store a stream ID, and
modified submit bh. While forming an I/O from buffer-
head, this field is also set in bio, taking stream ID infor-
mation to a lower layer. Ext4Stream maintains stream
IDs for different metadata regions in its superblock, and,
depending on the type of metadata buffer-head, it sets
bh->streamid accordingly.

The inode stream mount option is to separate in-
ode writes. Default inode size is 256 bytes, so sin-
gle 4KiB FS block can store 16 inodes. Modification
in one inode leads to writing of an entire 4KiB block.
When Ext4Stream modifies inode buffer, it also sets
bh->streamid with the stream ID meant for the inode
stream.

The dir stream mount option is to keep directory
blocks into its own stream. When a new file or subdirec-
tory is created inside a directory, a new directory entry
needs to be added. This triggers either update of an ex-
isting data block belonging to the directory or addition
of a new data block. Directory blocks are organized in a
htree; leaf nodes contain directory entries and non-leaf
nodes contain indexing information. We assign a same
stream ID for both types of directory blocks.

The misc stream is to keep inode/block bitmap blocks
and group descriptor blocks into a stream. These regions
receive updates during the creation/deletion of file/direc-
tory and when data blocks are allocated to file/directory.
We group these regions into a single stream because they
are of small size.

The fname stream helps to put data of certain special
files into distinct stream. Motivation is to use this for
separating undo/redo log for SQL and NoSQL databases.

The extn stream is to enable file extension based
stream recognition. Data blocks of certain files, such as
multimedia files, can be considered cold. Ext4Stream
can parse extension of files during file creation. If it
matches with some well-known extensions, file is as-
signed a different stream ID. This helps prevent hot
or cold data blocks getting mixed with other types of
data/metadata blocks.

3.5 XFStream: Multi-stream in xfs

Table 2 lists the streams we introduced to xfs. These
streams can be enabled with the corresponding mount
options listed in the table.

Xfs implements its own metadata buffering rather than
using page cache. The xfs buf t structure is used to
represent a buffer. Apart from metadata, in-memory
buffers of log are implemented via xfs buf t. When the
buffer is flushed, a bio is prepared out of xfs buf t. We

260 16th USENIX Conference on File and Storage Technologies USENIX Association

Mount-option Stream
log stream Separate writes occurring in log
inode stream Separate inode writes
fname stream Assign distinct stream to file(s)

with specific name

Table 2: Streams introduced in XFStream.

added a new field called streamid in xfs buf t, and
used that to set the stream information in bio.

The log stream enables XFStream to perform writes
in the log area with its own stream ID. Each mounted xfs
volume is represented by a xfs mount t structure. We
added the field log streamid in it, which is set when xfs
is mounted with log stream. This field is used to con-
vey stream information in xfs buf t representing the
log buffer.

The inode stream mount option enables XFStream
to separate inode writes into a stream. A new field
ino streamid kept in xfs mount t is set to stream ID
meant for inodes. This field is used to convey stream
information in xfs buf t representing the inode buffer.

Finally, the fname stream enables XFStream to as-
sign a distinct stream to file(s) with specific name(s).

4 Evaluation
Our experimental system configurations are as follows.

• System: Dell Poweredge R720 server with 32 cores
and 32GB memory,

• OS: Linux kernel 4.5 with io-streamid support,

• SSD: Samsung PM963 480GB, with the allocation
granularity 1 of 1.1GB,

• Benchmarks: filebench [12], YCSB (Yahoo!
Cloud Serving Benchmark) 0.1.4 [4] on Cassandra
1.2.10 [10].

The SSD we used supports up to 9 streams; eight NVMe
standard compliant streams and one default stream. If
a write command does not specify its stream ID, it is
written to the default stream.

We conduct experiments in two parts; the first part is
to measure the benefit of separating file system metadata
and journal. Each test starts with a fresh state involving
device format and file system format. To reduce vari-
ance between the runs, we disable lazy journal and in-
ode table initialization at the time of ext4 format. As a
warming workload for filebench, we write a single file
sequentially to fill 80% of logical device capacity, to en-
sure that 80% of the logical space stays valid throughout

1A multi-streamed SSD allocate and expand stream in the unit of
allocation granularity

the test. Remaining logical space involves the actual ex-
periment. The varmail and fileserver workloads included
in the filebench are used to simulate mail server and file
server workloads, respectively. The number of files in
both workloads is set to 900,000; default values are used
for other parameters. Each filebench workload is run for
two hours with 14GB of files, performing deletion, cre-
ation, append, sync (only for varmail), and random read.
Since the size of the workloads is smaller than that of
RAM, vast majority of the operations that actually reach
the device are likely to be write operations. In order to
acquire WAF, we retrieve the number of NAND writes
and host writes from FTL, and divide the former by the
latter.

In the second part, we measure the benefits in data-
intensive workloads by applying automatic stream as-
signment on certain application specific files. Previ-
ous work [8] has reported improvement by modify-
ing Cassandra source to categorize writes into multiple
streams. FStream assigns distinct stream to Cassandra
Commitlog through fname stream facility. Load phase
involves loading 120,000,000 keys, followed by insertion
of 80,000,000 keys during run phase.

4.1 Filebench results

Category
varmail fileserver

ext4 ext4
-nj

xfs ext4 xfs

Journal 61% - 60% 26% 16%
Inode 8% 21% 9% 16% 32%
Directory 4% 15.8% - 3% -
Other meta 0.2% 0.2% - 0.2% -
Data 26.8% 63% 31% 54.8% 52%

Table 3: Distribution of I/O types during a filebench run.

The benefit of separating metadata or journal into dif-
ferent streams depends on the amount of metadata write
traffic and degree of mixing among various I/O types.
As shown in Figure 5, Ext4Stream shows 35% perfor-
mance increase and 25% WAF reduction than baseline
ext4 for varmail. XFStream shows 22% performance
increase and 14% WAF reduction for varmail compared
to xfs. Both Ext4Stream and XFStream show more en-
hancements for varmail than for fileserver, because var-
mail is more metadata-intensive than fileserver, as shown
in Table 3.

To investigate the effect of the stream separation for
file systems without journaling, we disable the journal in
ext4, denoted as ext4-nj. Under varmail workload, ext4-
nj performs better than ext4 by 62%, which is mainly
due to the removal of journal writes. Stream separation

USENIX Association 16th USENIX Conference on File and Storage Technologies 261

0

20000

40000

60000

80000

100000

120000

O
pe

ra
tio

ns
/s

ec

Varmail Fileserver Cassandra

Ext4 Ext4Stream Ext4-NJ Ext4Stream-NJ XFS XFStream Ext4-DJ Ext4Stream-DJ

35%

26%

22%

5%

9%
38%

19%
38%

(a) Throughput comparison

0

0.5

1

1.5

2

2.5

Varmail Fileserver Cassandra

Ext4 Ext4Stream Ext4-NJ Ext4Stream-NJ XFS XFStream Ext4-DJ Ext4Stream-DJ

25% 46% 14% 7% 14% 81%
66%

45%

W
AF

(b) WAF comparison

Figure 5: Above graphs show performance and WAF improvement percentage obtained with multi-stream variants of file-systems. Here Ext4-NJ
denotes Ext4 without journal, and Ext4-DJ denotes Ext4 with data journal.

improves the performance and WAF of ext-nj by 26%
and 46%, respectively.

A key observation in fileserver is that reducing meta-
data writes is more important for performance than re-
ducing journal writes. xfs generates 16% more inode
writes and 10% less journal writes for fileserver than
ext4. Though the sum of metadata and journal writes
is similar, xfs’s performance is less than half of ext4’s
performance. The reason is that the metadata writes are
random access while journal writes are sequential. Se-
quential writes are better for FTL’s GC efficiency, and
hence are good for performance and lifetime.

Another important observation comes from ext4 file-
server write distribution in Table 3 which shows 16%
inode write, but only 0.2% other-meta which includes
inode-bitmap as well. This is because of a jbd2 opti-
mization. If a transaction modifies an already-dirty meta
buffer, jbd2 delays its writeback by resetting its dirty
timer, which is why inode/block bitmap buffer writes
remain low despite large number of block/inode alloca-
tions.

As shown in Fig 5(b), ext4 WAF remains close to one
during the fileserver test. However, when ext4 is oper-
ated with data=journal mode (shown by ext4-DJ), WAF
soars above 1.5 due to continuous mixing between jour-
nal and application-data. Ext4Stream-DJ eliminates this
mixing and brings WAF down back to near one.

4.2 Cassandra results
Cassandra workloads are data-intensive. Database
changes are first made to an in-memory structure, called
“memtable”, and are written to an on-disk commitlog
file. The commitlog implements the consistency for Cas-
sandra databases as file system journal does for ext4 and
xfs. It is written far more often than file system jour-
nal. By separating the commitlog from databases, done
by file systems through detecting the file name of com-
mitlog files, we observe 38% throughput improvement
and 81% WAF reduction. Cassandra commitlog files are

named as commitlog-* with date and time information.
With fname stream option, files with their names start-
ing with commitlog flow into a single stream. Even if
multiple instances of Cassandra run on a single SSD,
commitlog files are written only to the stream assigned
by fname stream.

5 Conclusions
In this paper, we advocate an approach of applying multi-
stream in the file system layer in order to address the
SSD aging problem and GC overheads. Previous pro-
posals of using multi-stream are either application level
customization or block level full automation. We aimed
to make a new step forward from those proposals. We
separate streams at the file system level. We focused
on the attributes of file system generated data, such as
journal and metadata, because they are short-lived thus
suitable for stream separation. We implemented an auto-
matic separation of those file system generated data, with
no need for user intervention. Not only have we provided
fully automated separation of metadata and journal, but
also we advise to separate the redo/undo logs used by
applications to different streams. Physical data separa-
tion achieved by our stream separation scheme, FStream,
helps FTL reduce GC overheads, and thereby enhance
both performance and lifetime of SSDs. We applied
FStream to ext4 and xfs and obtained encouraging results
for various workloads that mimic real-life servers in data
centers. Experimental results showed that our scheme
enhances the filebench performance by 5%∼35% and re-
duces WAF by 7%∼46%. For a Cassandra workload,
performance is improved by up to 38% and WAF is re-
duced by up to 81%.

Our proposal can bring sizable benefits in terms of
SSD performance and lifetime. As future work, we con-
sider applying FStream to log-structured file systems,
like f2fs, and copy-on-write file systems, e.g., btrfs. We
also plan to evaluate how allocation granularity and op-
timal write size affects the performance and endurance.

262 16th USENIX Conference on File and Storage Technologies USENIX Association

References
[1] The NVM Express 1.3 Specification. http://www.

nvmexpress.org/.

[2] AXBOE, J. Add support for write life time hints, June 2017.

[3] CHIANG, M.-L., LEE, P. C., AND CHANG, R.-C. Managing
flash memory in personal communication devices. In Consumer
Electronics, 1997. ISCE’97., Proceedings of 1997 IEEE Interna-
tional Symposium on (1997), IEEE, pp. 177–182.

[4] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN,
R., AND SEARS, R. Benchmarking cloud serving systems with
ycsb. In Proceedings of the 1st ACM symposium on Cloud com-
puting (2010), ACM, pp. 143–154.

[5] EDGE, J. Stream IDs and I/O hints, May 2016.

[6] EDGE, J. Stream ID status update, Mar 2017.

[7] HSIEH, J.-W., KUO, T.-W., AND CHANG, L.-P. Efficient iden-
tification of hot data for flash memory storage systems. ACM
Transactions on Storage (TOS) 2, 1 (2006), 22–40.

[8] KANG, J.-U., HYUN, J., MAENG, H., AND CHO, S. The multi-
streamed solid-state drive. In 6th USENIX Workshop on Hot Top-
ics in Storage and File Systems (HotStorage 14) (Philadelphia,
PA, 2014), USENIX Association.

[9] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A flash-
memory based file system. In Usenix Winter (1995), pp. 155–164.

[10] LAKSHMAN, A., AND MALIK, P. Cassandra. http://

cassandra.apache.org/, July 2008.

[11] SHIMPI, A. L. The ssd anthology: Understanding ssds and new
drivers from ocz. http://db-engines.com/en/ranking/

wide+column+store, February 2014.

[12] TARASOV, V., ZADOK, E., AND SHEPLER, S. Filebench: A
flexible framework for file system benchmarking. USENIX; login
41 (2016).

[13] YAN, S., LI, H., HAO, M., TONG, M. H., SUNDARARAMAN,
S., CHIEN, A. A., AND GUNAWI, H. S. Tiny-tail flash: Near-
perfect elimination of garbage collection tail latencies in nand
ssds. In FAST (2017), pp. 15–28.

[14] YANG, F., DOU, K., CHEN, S., HOU, M., KANG, J., AND CHO,
S. Optimizing nosql DB on flash: A case study of rocksdb. In
2015 IEEE 15th Intl Conf on Scalable Computing and Commu-
nications, Beijing, China, August 10-14, 2015 (2015), pp. 1062–
1069.

[15] YANG, J., PANDURANGAN, R., CHOI, C., AND BALAKRISH-
NAN, V. Autostream: automatic stream management for multi-
streamed ssds. In Proceedings of the 10th ACM International
Systems and Storage Conference, SYSTOR 2017, Haifa, Israel,
May 22-24, 2017 (2017), pp. 3:1–3:11.

USENIX Association 16th USENIX Conference on File and Storage Technologies 263

http://www.nvmexpress.org/
http://www.nvmexpress.org/
http://cassandra.apache.org/
http://cassandra.apache.org/
http://db-engines.com/en/ranking/wide+column+store
http://db-engines.com/en/ranking/wide+column+store

Improving Docker Registry Design based on Production Workload Analysis
Ali Anwar1, Mohamed Mohamed2, Vasily Tarasov2, Michael Littley1,
Lukas Rupprecht2, Yue Cheng3∗, Nannan Zhao1, Dimitrios Skourtis2,
Amit S. Warke2, Heiko Ludwig2, Dean Hildebrand2†, and Ali R. Butt1

1Virginia Tech, 2IBM Research–Almaden, 3George Mason University

Abstract
Containers offer an efficient way to run workloads as

independent microservices that can be developed, tested
and deployed in an agile manner. To facilitate this pro-
cess, container frameworks offer a registry service that
enables users to publish and version container images
and share them with others. The registry service plays a
critical role in the startup time of containers since many
container starts entail the retrieval of container images
from a registry. To support research efforts on optimizing
the registry service, large-scale and realistic traces are re-
quired. In this paper, we perform a comprehensive char-
acterization of a large-scale registry workload based on
traces that we collected over the course of 75 days from
five IBM data centers hosting production-level registries.
We present a trace replayer to perform our analysis and
infer a number of crucial insights about container work-
loads, such as request type distribution, access patterns,
and response times. Based on these insights, we derive
design implications for the registry and demonstrate their
ability to improve performance. Both the traces and the
replayer are open-sourced to facilitate further research.

1 Introduction

Container management frameworks such as Docker [22]
and CoreOS Container Linux [3] have established con-
tainers [41, 44] as a lightweight alternative to virtual
machines. These frameworks use Linux cgroups and
namespaces to limit the resource consumption and vis-
ibility of a container, respectively, and provide isolation
in shared, multi-tenant environments at scale. In con-
trast to virtual machines, containers share the underlying
operating system kernel, which enables fast deployment
with low performance overhead [35]. This, in turn, is
driving the rapid adoption of the container technology in
the enterprise setting [23].

The utility of containers goes beyond performance, as
they also enable a microservice architecture as a new
model for developing and distributing software [16, 17,
24]. Here, individual software components focusing on
small functionalities are packaged into container images

∗Most of this work was done while at Virginia Tech.
†Now at Google.

that include the software and all dependencies required
to run it. These microservices can then be deployed
and combined to construct larger, more complex archi-
tectures using lightweight communication mechanisms
such as REST or gRPC [9].

To facilitate the deployment of microservices, Docker
provides a registry service. The registry acts as a central
image repository that allows users to publish their im-
ages and make them accessible to others. To run a spe-
cific software component, users then only need to “pull”
the required image from the registry into local storage.
A variety of Docker registry deployments exist such as
Docker Hub [5], IBM Cloud container registry [12], or
Artifactory [1].

The registry is a data-intensive application. As the
number of stored images and concurrent client requests
increases, the registry becomes a performance bottleneck
in the lifecycle of a container [37, 39, 42]. Our esti-
mates show that the widely-used public container reg-
istry, Docker Hub [5], stores at least hundreds of ter-
abytes of data, and grows by about 1,500 new pub-
lic repositories daily, which excludes numerous private
repositories and image updates. Pulling images from a
registry of such scale can account for as much as 76% of
the container start time [37]. Several recent studies have
proposed novel approaches to improve Docker client and
registry communication [37, 39, 42]. However, these
studies only use small datasets and synthetic workloads.

In this paper, for the first time in the known litera-
ture, we perform a large-scale and comprehensive analy-
sis of a real-world Docker registry workload. To achieve
this, we started with collecting long-span production-
level traces from five datacenters in IBM Cloud container
registry service. IBM Cloud serves a diverse set of cus-
tomers, ranging from individuals, to small and medium
businesses, to large enterprises and government institu-
tions. Our traces cover all availability zones and many
components of the registry service over the course of 75
days, which totals to over 38 million requests and ac-
counts for more than 181.3 TB of data transferred.

We sanitized and anonymized the collected traces
and then created a high-speed, distributed, and versa-
tile Docker trace replayer. To the best of our knowl-
edge, this is the first trace replayer for Docker. To facil-
itate future research and engineering efforts, we release

USENIX Association 16th USENIX Conference on File and Storage Technologies 265

both the anonymized traces and the replayer for public
use at https://dssl.cs.vt.edu/drtp/. We be-
lieve our traces can provide valuable insights into con-
tainer registry workloads across different users, applica-
tions, and datacenters. For example, the traces can be
used to identify Docker registry’s distinctive access pat-
terns and subsequently design workload-aware registry
optimizations. The trace replayer can be used to bench-
mark registry setups as well as for testing and debugging
registry enhancements and new features.

We further performed comprehensive characterization
of the traces across several dimensions. We analyzed
the request ratios and sizes, the parallelism level, the
idle time distribution, and the burstiness of the workload,
among other aspects. During the course of our investi-
gation, we made several insightful discoveries about the
nature of Docker workloads. We found, for example, that
the workload is highly read-intensive comprising of 90-
95% pull compared to push operations. Given the fact
that our traces come from several datacenters, we were
able to find both common and divergent traits of differ-
ent registries. For example, our analysis reveals that the
workload not only depends on the purpose of the reg-
istry but also on the age of the registry service. The older
registry services show more predictable trends in terms
of access patterns and image popularity. Our analysis,
in part, is tailored to exploring the feasibility of caching
and prefetching techniques in Docker. In this respect,
we observe that 25% of the total requests are for top 10
repositories and 12% of the requests are for top 10 lay-
ers. Moreover, 95% of the time is spent by the registry
in fetching the image content from the backend object
store. Finally, based on our findings, we derive several
design implications for container registry services.

2 Background
Docker [22] is a container management framework that
facilitates the creation and deployment of containers.
Each Docker container is spawned from an image—a
collection of files sufficient to run a specific container-
ized application. For example, an image which pack-
ages the Apache web server contains all dependencies
required to run the server. Docker provides convenient
tools to combine files in images and run containers from
images on end hosts. Each end host runs a daemon pro-
cess which accepts and processes user commands.

Images are further divided into layers, each consist-
ing of a subset of the files in the image. The layered
model allows images to be structured in sub-components
which can be shared by other containers on the same
host. For example, a layer may contain a certain ver-
sion of the Java runtime environment and all containers
requiring this version can share it from a single layer, re-

ducing storage and network utilization.

2.1 Docker Registry
To simplify their distribution, images are kept in an on-
line registry. The registry acts as a storage and con-
tent delivery system, holding named Docker images.
Some popular Docker registries are Docker Hub [5],
Quay.io [20], Artifactory [1], Google Container Reg-
istry [8], and IBM Cloud container registry [12].

Users can create repositories in the registry, which
hold images for a particular application or system such
as Redis, WordPress, or Ubuntu. Images in such repos-
itories are often used for building other application im-
ages. Images can have different versions, known as tags.
The combination of user name, repository name, and tag
uniquely identifies an image.

Users add new images or update existing ones by
pushing to the registry and retrieve images by pulling
from the registry. The information about which layers
constitute a particular image is kept in a metadata file
called manifest. The manifest also describes other image
settings such as target hardware architecture, executable
to start in a container, and environment variables. When
an image is pulled, only the layers that are not already
available locally are transferred over the network.

In this study we use Docker Registry’s version 2 API
which relies on the concept of content addressability.
Each layer has a content addressable identifier called
digest, which uniquely identifies a layer by taking a
collision-resistant hash of its data (SHA256 by default).
This allows Docker to efficiently check whether two lay-
ers are identical and deduplicate them for sharing be-
tween different images.
Pulling an Image. Clients communicate with the reg-
istry using a RESTful HTTP API. To retrieve an image, a
user sends a pull command to the local Docker daemon.
The daemon then fetches the image manifest by issu-
ing a GET <name>/manifests/<tag> request, where
<name> defines user and repository name while <tag>

defines the image tag.
Among other fields, manifest contains name, tag, and

fsLayers fields. The daemon uses the digests from
the fsLayers field to download individual layers that
are not already available in local storage. The client
checks if a layer is available in the registry by using
HEAD <name>/blobs/<digest> requests.

Layers are stored in the registry as compressed tarballs
(“blobs” in Docker terminology) and are pulled by is-
suing a GET <name>/blobs/<digest> request. The
registry can redirect layer requests to a different URL,
e.g., to an object store, which stores the actual layers. In
this case, the Docker client downloads the layers directly
from the new location. By default, the daemon down-
loads and extracts up to three layers in parallel.

266 16th USENIX Conference on File and Storage Technologies USENIX Association

https://dssl.cs.vt.edu/drtp/

Registry
Object
store

Broadcaster

Registry

Registry

Stats counter

Nginx

Figure 1: IBM Cloud Registry architecture. Nginx receives
users requests and forwards them to registry servers. Registry
servers fetch data from the backend object store and reply back.

Pushing an Image. To upload a new image to the reg-
istry or update an existing one, clients send a push com-
mand to the daemon. Pushing works in reverse order
compared to pulling. After creating the manifest locally
the daemon first pushes all the layers and then the mani-
fest to the registry.

Docker checks if a layer is already present in the
registry by issuing a HEAD <name>/blobs/<digest>

request. If the layer is absent, its upload starts with
a POST <name>/blobs/uploads/ request to the reg-
istry which returns a URL containing a unique upload
identifier (<uuid>) that the client can use to transfer
the actual layer data. Docker then uploads layers using
monolithic or chunked transfers. Monolithic transfer up-
loads the entire data of a layer in a single PUT request. To
carry out chunked transfer, Docker specifies a byte range
in the header along with the corresponding part of the
blob using PATCH <name>/blobs/uploads/<uuid>

requests. Then Docker submits a final PUT re-
quest with a layer digest parameter. After all lay-
ers are uploaded, the client uploads the manifest using
PUT <name>/manifests/<digest> request.

2.2 IBM Cloud Container Registry
In this work we collect traces from IBM’s container reg-
istry which is a part of the IBM Cloud platform [11].
The registry is a key component for supporting Docker
in IBM Cloud and serves as a sink for container images
produced by build pipelines and as the source for con-
tainer deployments. The registry is used by a diverse
set of customers, ranging from individuals, to small and
medium businesses, to large enterprises and government
institutions. These customers use the IBM container reg-
istry to distribute a vast variety of images that include
operating systems, databases, cluster deployment setups,
analytics frameworks, weather data solutions, testing in-
frastructures, continuous integration setups, etc.

The IBM Cloud container registry is a fully managed,
highly available, high-performance, v2 registry based on
the open-source Docker registry [4]. It tracks the Docker
project codebase in order to support the majority of the
latest registry features. The open-source functionality is
extended by several microservices, offering features such
as multi-tenancy with registry namespaces, a vulnerabil-

ity advisor, and redundant deployment across availability
zones in different geographical regions.

IBM’s container registry stack consists of over eigh-
teen components. Figure 1 depicts three components that
we trace in our study: 1) Nginx, 2) registry servers, and
3) broadcaster. Nginx acts as a load balancer and for-
wards customers’ HTTPS connections to a selected reg-
istry server based on the requested URL. Registry servers
are configured to use OpenStack Swift [18, 25, 26] as a
backend object store. The broadcaster provides registry
event filtering and distribution, e.g., it notifies the vulner-
ability advisor component on new image pushes.

Though all user requests to the registry pass through
Nginx, Nginx logs contain only limited information. To
obtain complete information required for our analysis
we also collected traces at registry servers and broad-
caster. Traces from registry servers provide information
about request distribution, traces from Nginx provide re-
sponse time information, and broadcaster traces allow us
to study layer sizes.

The IBM container registry setup spans five geo-
graphical locations: Dallas (dal), London (lon), Frank-
furt (fra), Sydney (syd), and Montreal. Every geo-
graphical location forms a single Availability Zone (AZ),
except Dallas and Montreal. Dallas hosts Staging (stg)
and Production (dal) AZs, while Montreal is home for
Prestaging (prs) and Development (dev) AZs. The dal,
lon, fra, and syd AZs are client-facing and serving
production workloads, while stg is a staging location
used internally by IBM employees. prs and dev are
used exclusively for internal development and testing of
the registry service. Out of the four production registries
dal is the oldest, followed by lon, and fra. Syd is the
youngest registry and we started collecting traces for it
since its first day of operation.

Each AZ has an individual control plane and ingress
paths, but backend components, e.g. , object storage, are
shared. This means that AZ’s are completely network
isolated but images are shared across AZ’s. The reg-
istry setup is identical in hardware, software, and system
configuration across all AZs, except for prs and dev.
prs and dev are only half the size of the other AZs, be-
cause they are used for development and testing and do
not directly serve clients. Every AZ hosts six registry
instances, except for prs and dev, which host three.

3 Tracing Methodology
To collect traces from the IBM Cloud registry, we ob-
tained access to the system’s logging service (§3.1). The
logging service collects request logs from the different
system components and the log data contains a variety
of information, such as the requested image, the type of
request and a timestamp (§3.2). This information is suf-
ficient to carry out our analysis. Besides collecting the

USENIX Association 16th USENIX Conference on File and Storage Technologies 267

Aavailablity Zone Duration Trace data Filtered and Requests Data ingress Data egress Images pushed Images pulled Up since
(days) (GB) anonym. (GB) (millions) (TB) (TB) (1,000) (1,000) (mm/yy)

Dallas (dal) 75 115 12 20.85 5.50 107.5 356 5,000 06/15
London (lon) 75 40 4 7.55 1.70 25.0 331 2,200 10/15

Frankfurt (fra) 75 17 2 1.80 0.40 3.30 90 950 04/16
Sydney (syd) 65 5 0.5 1.03 0.29 1.87 105 360 04/16
Staging (stg) 65 25 3.2 5.90 2.41 29.2 327 1,560 -

Prestaging (prs) 65 4 0.5 0.75 0.23 2.45 65 140 -
Development (dev) 55 2 0.2 0.34 0.01 1.44 15 70 -

TOTAL 475 208 22.4 38.22 10.54 170.76 1289 10280 -

Table 1: Characteristics of studied data. dal and lon were migrated to v2 in April 2016.

{
" host " : " 579633 fd " ,
" h t t p . request . du ra t i on " : 0 . 879271282 ,
" h t t p . request . method " : "GET" ,
" h t t p . request . remoteaddr " : " 40535 j f 8 " ,
" h t t p . request . u r i " : " v2 / ca64 k j 67 / as87d65g / blobs / b

26s986d " ,
" h t t p . request . useragent " : " docker / 17 . 04 . 0−ce go /

go1 . 7 . 5 . .) " ,
" h t t p . response . s ta tus " : 200 ,
" h t t p . response . w r i t t e n " : 1518 ,
" i d " : " 9 f 63984h " ,
" timestamp " : " 2017−07−01T01 : 39 : 37 . 098Z"

}

Figure 2: Sample of anonymized data.

traces, we also developed a trace replayer (§3.3) that can
be used by others to evaluate, e.g., Docker registry’s per-
formance. In this paper we used the trace replayer to
evaluate several novel optimizations the were inspired by
the results of the trace analysis. We made the traces and
the replayer publicly available at:
https://dssl.cs.vt.edu/drtp/

3.1 Logging Service
Logs are centrally managed using an “ELK” stack (Elas-
ticSearch [7], Logstash [14] and Kibana [13]). A
Logstash agent on each server ships logs to one of
the centralized log servers, where they are indexed and
added to an ElasticSearch cluster. The logs can then be
queried using the Kibana web UI or using the Elastic-
Search APIs directly. ElasticSearch is a scalable and re-
liable text-based search engine which allows to run full
text and structured search queries against the log data.
Each AZ has its own ElasticSearch setup deployed on
five to eight nodes and collects around 2 TB of log data
daily. This includes system usage, health information,
logs from different components etc. Collected data is in-
dexed by time.

3.2 Collected Data
For trace collection we pull data from the ElasticSearch
setup of each AZ for the “Registry”, “Nginx”, and
“Broadcaster” components as shown in Figure 1. We fil-
ter all requests that relate to pushing and pulling of im-
ages, i.e. GET, PUT, HEAD, PATCH and POST requests. Ta-
ble 1 shows the high-level characteristics of the collected
traces. The total amount of our traces spans seven avail-
ability zones and a duration of 75 days from 06/20/2017
to 09/02/2017. This results in a total of 208 GB of trace
data containing over 38 million requests, with more than
180TB of data transferred in them (data ingress/egress).

Registry

Client 1

Master Client 2

Client 3

Registry

Trace

Round Robin/

Hashing

Figure 3: Trace replayer. Master parses the trace and forwards
request to one of the clients either in round robin or applying
hash to the http.request.remoteaddr field in the trace.

Next, we combine the traces from different components
by matching the incoming HTTP request identifier across
the components. Then we remove redundant fields to
shrink the trace size and in the end we anonymize them.
The total size of the anonymized traces is 22.4 GB.

Figure 2 shows a sample trace record. It con-
sists of 10 fields: the host field shows the
anonymized registry server which served the re-
quest; http.request.duration is the response time
of the request in seconds; http.request.method
is the HTTP request method (e.g., PUT or GET);
http.request.remoteaddr is the anonymized
remote client IP address; http.request.uri is the
anonymized requested url; http.request.useragent
shows the Docker client version used to make
the request; http.response.status shows
the HTTP response code for this request;
http.response.written shows the amount of
data that was received or sent; id shows the unique
request identifier; timestamp contains the request
arrival time in UTC timezone.

3.3 Trace Replayer
To study the collected traces further and use them to eval-
uate various registry optimizations, we designed and im-
plemented a trace replayer. It consists of a master node
and multiple client nodes as shown in Figure 3. The mas-
ter node parses the anonymized trace file one request at
a time and forwards it to one of the clients. Requests are
forwarded to clients in either round robin fashion or by
hashing the http.request.remoteaddr field in the
trace. By using hashing, the trace replayer maintains the
request locality to ensure all HTTP requests correspond-
ing to one image push or pull are generated by the same
client node as they were seen by the original registry ser-
vice. In some cases this option may generate workload

268 16th USENIX Conference on File and Storage Technologies USENIX Association

https://dssl.cs.vt.edu/drtp/

skewness as some of the clients issue more requests than
others. This method is useful for large-scale testing with
many clients.

Clients are responsible for issuing the HTTP requests
to the registry setup. For all PUT layer requests, a client
generates a random file of corresponding size and trans-
fers it to the registry. As the content of the newly gen-
erated file is not same as the content of the layer seen
in the trace, the digest/SHA256 is going to be different
for the two. Hence, upon successful completion of the
request, the client replies back to the master with the re-
quest latency as well as the digest of the newly generated
file. The master keeps track of the mapping between the
digest in the trace and its corresponding newly generated
digest. For all future GET requests for this layer, the mas-
ter issues requests for the new digest instead of the one
seen in the trace. For all GET requests the client just re-
ports the latency.

The trace replayer runs in two phases: warmup and
actual testing. During the warmup phase, the master it-
erates over the GET requests to make sure that all corre-
sponding manifests and layers already exist in the reg-
istry setup. In the testing phase all requests are issued in
the same order as seen in the trace file.

The requests are issued by the trace replayer in two
modes: 1) “as fast as possible”, and 2) “as is”, to ac-
count for the timestamp of each request. The master side
of the trace replayer is multithreaded and each client’s
progress is tracked in a separate thread. Once all clients
finish their jobs, aggregated throughput and latency is
calculated. Per-request latency and per-client latency and
throughput are recorded separately.

The trace replayer can operate in two modes to per-
form two types of analysis: 1) performance analysis of a
large scale registry setup and 2) offline analysis of traces.
Performance analysis mode. The Docker registry uti-
lizes multiple resources (CPU, Memory, Storage, Net-
work) and provisioning them is hard without a real work-
load. The performance analysis mode allows to bench-
mark what throughput and latency can a Docker reg-
istry installation achieve when deployed on specific pro-
visioned resources. For example, in a typical deploy-
ment, Docker is I/O intensive and the replayer can be
used to benchmark network storage solutions that act as
a backend for the registry.
Offline analysis mode. In this mode, the master does not
forward the requests to the clients but rather hands them
off to an analytic plugin to handle any requested opera-
tion. This mode is useful to perform offline analysis of
the traces. For example, the trace player can simulate dif-
ferent caching policies and determine the effect of using
different cache sizes. In Sections §5.3 and §5.4 we use
this mode to perform caching and prefetching analysis.
Additional analysis. By making our traces and trace re-

0%	
20%	
40%	
60%	
80%	

100%	

da
l	

lo
n	 fr
a	

sy
d	

st
g	

pr
s	

de
v	

Re
qu

es
ts
	

pull	 push	

(a) Push vs. Pull.

0%	

20%	

40%	

60%	

80%	

100%	

dal	 lon	 fra	 syd	 stg	 prs	 dev	

Re
qu

es
ts
	

GET	 POST	 HEAD	 PUT	 PATCH	

(b) Request Ratio.
Figure 4: Image pull vs. push ratio, and distribution of HTTP
requests served by registry.

player publicly available we enable more detailed analy-
sis in the future. For example, one can create a module
for the replayer’s performance analysis mode that ana-
lyzes request arrival rates with a user-defined time gran-
ularity. One may also study the impact of using content
delivery networks to cache popular images by running
the trace replayer in the performance analysis mode. Fur-
thermore, to understand the effect of deduplication on
data reduction in the registry, researchers can conduct
studies on real layers in combination with our trace re-
player. The relationship between resource provisioning
vs. workload demands can be established by benchmark-
ing registry setups using our trace replayer and traces.

4 Workload Characterization
To determine possible registry optimizations, such as
caching, prefetching, efficient resource provisioning, and
site-specific optimizations, we center our workload anal-
ysis around the following five questions:

1. What is the general workload the registry serves?
What are request type and size distributions? (§4.1)

2. Do response times vary between production, staging,
pre-staging, and development deployments? (§4.2)

3. Is there spatial locality in registry requests? (§4.3)
4. Do any correlations exist among subsequent requests?

Can future requests be predicted? (§4.4)
5. What are the workload’s temporal properties? Are

there bursts and is there any temporal locality? (§4.5)

4.1 Request Analysis
We start with the request type and size analysis to under-
stand the basic properties of the registry’s workload.
Request type distribution. Figure 4(a) shows the ratio
of images pulled from vs. pushed to the registry. As ex-
pected, the registry workload is read-intensive. For dal,
lon, and fra, we observe that 90%–95% of requests
are pulls (i.e. reads). Syd exhibits a lower pull ratio of
78% because it is a newer installation and, therefore, it is
being populated more intensively than mature registries.
Non-production registries (stg, prs, dev) also demon-
strate a lower (68–82%) rate of pulls than production
registries, due to higher image churn rates. Each push

USENIX Association 16th USENIX Conference on File and Storage Technologies 269

100 102 104

Response time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(a) GET layers.

100 101 102 103
Response time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(b) PUT layers.

100 102 104

Response time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(c) PATCH layers.

10−1 100 101 102
Response time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(d) GET manifests.

100 101 102
Response time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(e) PUT manifests.
Figure 8: CDF of response time for GET, PUT, PATCH requests to layers and GET and PUT requests to manifests.

0%	
20%	
40%	
60%	
80%	

100%	

da
l	

lo
n	 fr
a	

sy
d	

st
g	

pr
s	

de
v	

Re
qu

es
ts
	

Layers	 Manifests	

(a) Pull.

0%	
20%	
40%	
60%	
80%	

100%	
da
l	

lo
n	 fr
a	

sy
d	

st
g	

pr
s	

de
v	

Re
qu

es
ts
	

Layers	 Manifests	

(b) Push.
Figure 5: The ratio of requests that access either an image
manifest or a layer.

102 104 106 108 1010
Size (Bytes)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts

dal
lon
fra

syd
stg
prs
dev

(a) Layers.

103 104 105 106 107
Size (Bytes)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts

dal
lon
fra

syd
stg
prs
dev

(b) Manifests.
Figure 6: CDF of manifest and layer sizes for GET requests.

or pull consists of a sequence of HTTP requests as dis-
cussed in §2. Figure 4(b) shows the distribution of differ-
ent HTTP requests served by the registry. All registries
receive more than 60% of GET requests and 10%–22% of
HEAD requests. PUT requests are 1.9–5.8× more com-
mon than PATCH requests because PUTs are used for up-
loading manifests (in addition to layers) and many layers
are small enough to be uploaded in a single request.

Figures 5(a) and 5(b) show the manifest vs. layer ratio
for pull and push image requests, respectively. We in-
clude GET requests in pull count, while pushes include
PUT or HEAD requests to account for attempts to upload
the layers that are already present in the registry. For
pulls we observe that, except for syd and fra, 50% or
more requests retrieve layers rather than manifests. This
is expected as a single manifest refers to multiple layers.
Our investigation revealed that the divergent behavior of
syd and fra is caused by their clients trying to pull im-
ages that they have already pulled in the past. This results

0 100 101 102 103
Requests per minute

0.0
0.2
0.4
0.6
0.8
1.0

M
in
ut
es dal

lon
fra
syd
stg
prs
dev

Figure 7: CDF of requests per minute.

into many GET requests to the manifests without subse-
quent GET requests to the layers. For pushes, we see that
accesses to layers dominate accesses to manifests.
Request size distribution. Figure 6 shows the CDF of
manifest and layer sizes for GET and PUT requests. In
Figure 6(a) we observe that about 65% of the layers are
smaller than 1 MB and around 80% are smaller than
10 MB. In Figure 6(b), we find that the typical manifest
size is around 1 KB for all AZs except for lon where
50% of the GET requests are for manifests larger than
10 KB. For lon, a large number of requests are for man-
ifests that are compatible with the older Docker version,
hence increasing their size. We observe similar trends for
PUTs for all the AZs (not shown in the Figures).

4.2 Registry Load and Response Time

Load distribution. Figure 7 shows the CDF of received
requests per minute over time. dal has the highest over-
all load and services at least 100 requests per minute
more than 80% of the time. lon and stg are second
and third, followed by fra, syd, prs, and dev, in de-
scending order. This trend is consistent across the dif-
ferent request types (not shown). The ordering of AZs
by the load yields two main observations. First, devel-
opment and pre-staging registries experience low utiliza-
tion. dev, for example, does not receive any requests
57% of the time. Second, registry load increases with
its age. In our traces dal and lon have been running
the longest while fra and syd have only been deployed
recently.
Response time distribution. Figure 8 shows the CDFs
of response time of different requests to layers and to

270 16th USENIX Conference on File and Storage Technologies USENIX Association

0% 25% 50% 75%100%
% of layers

0.0

0.2

0.5

0.8

1.0

Ac
ce

ss
es

dal
lon
fra

syd
stg
prs
dev

(a) Layer popularity.

0% 25% 50% 75%100%
% of manifests

0.0

0.2

0.5

0.8

1.0

Ac
ce

ss
es

dal
lon
fra

syd
stg
prs
dev

(b) Manifest popularity.

0% 25% 50% 75%100%
% of repos

0.0

0.2

0.5

0.8

1.0

Ac
ce

ss
es

dal
lon
fra

syd
stg
prs
dev

(c) Repository popularity.

0% 25% 50% 75%100%
% of clients

0.0

0.2

0.5

0.8

1.0

Ac
ce

ss
es

dal
lon
fra

syd
stg
prs
dev

(d) Client popularity.
Figure 10: CDF of access for layers, manifests, repositories, and clients.

0%	

5%	

10%	

15%	

20%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	
stg	 prs	 dev	

(a) Layers popularity

0%	

20%	

40%	

60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	

stg	 prs	 dev	

(b) Manifests popularity

0%	

10%	

20%	

30%	

40%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	

stg	 prs	 dev	

(c) Repos popularity

0%	
10%	
20%	
30%	
40%	
50%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	o
f	r
eq

ue
st
s	

Popularity	rank	

dal	 lon	 fra	 syd	

stg	 prs	 dev	

(d) Clients popularity

Figure 11: Popularity of top ten layers, manifests, repositories, and clients.

100 102 104 106 1081010
Size (Bytes)

100

101

102

103

104

Re
sp

on
se

 ti
m
e
(s
ec

) dal
lon
fra
syd
stg
prs
dev

Figure 9: Dependency of response time on the layer size.

manifests. As dal is the highest loaded AZ, its request
response times are higher compared to other AZs. More
than 60% of the GET layer requests take more than one
second to finish (Figure 8(a)). For the top 25% of re-
quests we see a response time of ten seconds and higher.
fra, syd, prs, and dev are not highly loaded, so they
have the lowest latency in serving the GET layer requests.
PUT and PATCH layer requests (Figures 8(b) and 8(c))
follow similar trends. However, PATCH requests are vis-
ibly slower than GETs and PUTs as they carry more data.
We also analyze the dependency of response time on the
layer size (see Figure 9) and find that response times re-
main nearly constant for layers smaller than 1 MB and
then start to grow linearly.

Figure 8(d) and 8(e) show the response time distri-
butions for PUT and GET requests to manifests, respec-
tively. Since manifests are smaller and cached, we ob-
serve significantly smaller and more stable latencies than
that of requests serving layers. One interesting obser-
vation is that lon has the highest response time when
serving manifests (300-400 ms more than dal). This

is because lon serves manifests with larger sizes com-
pared to other AZs. This is also consistent with the re-
sults shown in Figure 6(b). For the PUT manifest re-
quests we observe a more uniform trend across the AZs
as the size of the new manifests is similar for all the AZs.

4.3 Popularity Analysis
In this section we study the popularity of layers, mani-
fests, users, repositories, and clients to answer whether
image accesses are skewed and produce hot-spots.
Popularity distribution. Figure 10 shows the CDF of
the access rate of layers, manifests, repositories, and
clients. Figure 10(a) demonstrates that there is a heavy
skew in layer accesses. For example, the 1% most fre-
quently accessed layers in dal account for 42% of all
requests while in syd this increases to 59%. However,
requests to the dev and prs sites are almost evenly dis-
tributed. The reason is that during testing, developers
frequently push or pull images that are not available nei-
ther at registry nor at client side. We also observe that
the younger AZs experience a higher skew compared to
the older AZs. We believe this is due to the fact that
accesses become more evenly distributed over a long pe-
riod of time.

For manifest accesses (Figure 10(b)) skew is more sig-
nificant than for layers. This confirms that there are in-
deed hot images which can benefit from caching. Repos-
itory accesses (Figure 10(c)) reflect this fact but show
slightly less skew as manifests are contained in reposito-
ries and hence there are less repositories than manifests.
The same trend holds for users under which repositories
are stored (not shown in Figure 10). Furthermore, we

USENIX Association 16th USENIX Conference on File and Storage Technologies 271

find that client accesses are also heavily skewed (Fig-
ure 10(d)). This means that there are few highly ac-
tive clients while most of them only submit few requests.
This trend is consistent across all AZs. While this does
not directly affect the workload, clients can be biased to-
wards a certain subset of images which will contribute to
the access skew.
Top-10 analysis. To further understand the popular-
ity distribution of registry items, we analyze the top 10
hottest items in each category. Figure 11(a) shows the
access rates for the top 10 layers, which account for 8%–
30% of all accesses depending on the registry. The most
popular layer (rank 1) in all AZs absorbs 1–10% of all
requests while in syd it absorbs 19%. The popularity
rate drops rapidly as we move from most popular to tenth
most popular layer. The relative amount of accesses for
the top 10 layers is the lowest for dal as it stores the
most layers and experiences the highest amount of re-
quests.

For the top 10 manifests (Figure 11(b)), we observe
that some container images are highly popular and ac-
count for as many as 40% of the requests in fra and
syd, and 60% in prs. Note that a manifest is fetched
even if the image is already cached at the client side.
Hence, a manifest fetch does not necessarily mean that
the corresponding layers are fetched (§4.4). Similar to
Figure 10, the skew decreases for repository popularity
(Figure 11(c)) and user popularity. Part of the reason for
the small number of highly accessed images in younger
AZ is that registry services in production are tested pe-
riodically to monitor their health and performance. For
the AZs with a smaller workload (fra and syd), those
test images make up three out of the top five most ac-
cessed images. We intentionally did not exclude these
images from our analysis as they are typically part of the
registry workload in production environments.

Figure 11(d) shows that the most popular client sub-
mits around 15% of the total requests. This excludes prs
and dev, which are used by the registry development
team for internal development and testing. These two
AZs only have a small number of clients, and 2 clients
contribute around 80% of all requests.

Overall, the detailed top-10 analysis shows that while
there are a few highly popular test images, the popu-
larity of the remaining hot items is decreasing fast and
hence, overly small caches will be insufficient to effec-
tively cache data. For example, based on these results,
we estimate that a cache size of 2% of the dataset size
can provide 40% and higher hit ratios.

We also analyzed the pull count of the top 10 hottest
repositories on Docker Hub. We found that the most
downloaded repository (Alpine Linux) has a pull count of
more than 1 billion while the tenth most popular reposi-
tory (Ubuntu) has a pull count of 369 million. This trend

0 100 101 102 103
Subsequent GET layer req.

0.0

0.2

0.4

0.6

0.8

1.0

GE
T
m
an

ife
st
 re

q.

dal
lon
fra
syd
stg
prs
dev

(a) Subsequent GET layers per
GET manifest.

0 100 101 102
Subsequent GET layer req.

0.0

0.2

0.4

0.6

0.8

1.0

PU
T
la
ye

r +

 G
ET

 m
an

ife
st
 re

q.

dal
lon
fra
syd
stg
prs
dev

(b) Subsequent GET layers per
PUT layer + GET manifest.

Figure 12: Relationship between GET manifest and subse-
quent GET layer requests.

further verifies that caching can be highly effective for
increasing the performance of container registries.

4.4 Request Correlation
In this section we investigate whether a GET request for
a certain manifest always results in subsequent GET re-
quests to the corresponding layers. Therefore, we define
a client session as the duration from the time a client con-
nects until a certain threshold. We varied the threshold
from 1 to 10 minutes but could not observe significant
differences. However, values less than 1 minute dramati-
cally affect the results as that is less than the typical time
a client takes to pull an image. We set the session thresh-
old to 1 minute and then count all GET layer requests that
follow a GET manifest request within a session.

Figure 12(a) shows the CDF of the number of times
clients issue the corresponding GET layer requests af-
ter retrieving a manifest. In most cases, ranging from
96% for dev to 73% for fra, GET manifest requests are
not followed by any subsequent request. The reason is
that whenever a client has already fetched an image and
then pulls an image, only the manifest file is requested
to check if there has been any change in the image. This
shows that there is no strong correlation between GET
manifest and layer requests.

We then focused only on GET manifest request that
were received within the session of a PUT request to
the same repository, from which the manifest is fetched
(Figure 12(b)). This leads to a significant increase in
subsequent GET layer requests within a session for all
production and staging AZs. The manifest requests not
followed by GET layer requests are due to the fact that
clients sometimes pull the same image more than once.
Overall, our analysis reveals a strong correlation between
GET manifest and subsequent layer requests if preceding
PUT requests are considered.

4.5 Temporal Properties
Next, we investigate whether the workload shows any
temporal patterns.

272 16th USENIX Conference on File and Storage Technologies USENIX Association

0 100 101 102
Number of clients

0.0
0.2
0.4
0.6
0.8
1.0

Ti
m
e

dal
lon
fra
syd
stg
prs
dev

(a) Client concurrency.

0 100 101 102 103
Number of requests

0.0
0.2
0.4
0.6
0.8
1.0

Ti
m
e

dal
lon
fra
syd
stg
prs
dev

(b) Request concurrency.
Figure 13: CDF of client and request concurrency.

0 6 12 18
Hours

0

5

10

15

20

Re
qu

es
ts
 (1

00
0)

dal
lon
fra

syd
stg

prs
dev

(a) Hours of day

M
on Tu
e

W
ed Th
u Fr
i

Sa
t

Su
n

Day

200

400

Re
qu

es
ts
 (1

00
0) dal

lon
fra

syd
stg

prs
dev

(b) Days of week
Figure 14: Average number of requests over the tracing period
for each hour of the day and day of the week.

Client and request concurrency. We start with measur-
ing how many clients and requests are active at a given
point in time. Active clients are the clients that main-
tain a connection to the registry, while active requests
are the requests that were received but have not yet been
processed by the registry. Figures 13(a) and 13(b) show
the results for clients and requests, respectively. Overall,
the median number of concurrently active clients is low,
ranging from 0.6 clients for dev to 7 clients for dal.
However, there are peak periods during which several
hundred clients are connected at the same time. We ob-
serve a similar trend for concurrently active requests.

To understand whether these peak periods follow a
certain pattern, we plot the average number of requests
per hour and day across all traced hours and days in Fig-
ures 14(a) and Figure 14(b). For dal, we observe that
request numbers are decreasing during the night and over
the weekend. While other AZs show a similar trend, it
is less pronounced at those sites. This suggests that reg-
istry resources can be provisioned statically for hours and
days. We plan to explore short-term bursts in the future.
Inter-arrival and idle times. Next, we look at request
inter-arrival and idle times to study whether the registry
experiences longer periods of idleness, during which less
resources are required. Inter-arrival time is defined as the
time between two subsequent requests. Idle time is the
time during which there are no active requests.

Figure 15(a) shows the inter-arrival times. dal, lon

10−3 100 103
Time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(a) Request inter-arrival time.

10−3 100 103
Time (sec)

0.0
0.2
0.4
0.6
0.8
1.0

Re
qu

es
ts dal

lon
fra
syd
stg
prs
dev

(b) Request idle time.
Figure 15: CDF of request inter-arrival and idle times

and stg experience the highest request frequency with a
99th percentile of inter-arrival time around 3 s while for
other AZs it is around 110 s. When looking at idle times
(Figure 15(b)), we observe that idle periods are short and
in most cases below 1 s. However, the amount of ex-
perienced idle periods varies significantly across AZs.
Throughout the entire collection time, dal saw only ap-
proximately 0.1 million idle periods while lon experi-
enced more than 1.5 million. While some AZs expe-
rience a large amount of idle periods, their duration is
short and hence, they are hard to exploit with traditional
resource provisioning approaches.

4.6 Analysis Summary
We summarize our analysis in seven observations:

1. GET requests are dominant in all registries and more
than half of the requests are for layers, opening an op-
portunity for effective layer caching and prefetching at
the registry.

2. 65% and 80% of all layers are smaller than 1 MB and
10 MB, respectively, making individual layers suitable
for caching.

3. The registry load is affected by the registry’s intended
use case and the age of the registry. Younger, non-
production registries experience lower loads compared
to longer running, production systems. This should be
considered when provisioning resources for an AZ to
save cost and use existing resources more efficiently.

4. Response times correlate with registry load and hence
also depend on the age (younger registries experience
less load) and the use case of the registry.

5. Registry accesses to layers, manifests, repositories,
and by users are heavily skewed. Few extremely
hot images are accessed frequently but the popular-
ity drops rapidly. Therefore, caching techniques are
feasible but cache sizes should be selected carefully.

6. There is a strong correlation between PUT requests
and subsequent GET manifest and GET layer requests.
The registry can leverage this pattern to prefetch the
layers from the backend object store to the cache, sig-
nificantly reducing pull latencies for the client. This
correlation exists for both popular as well as non-

USENIX Association 16th USENIX Conference on File and Storage Technologies 273

10
2

10 10
3

10
4

10
5

10
6

10
7

10
8

10
9

Figure 16: Effect of various backend storage technologies on
registry performance.

popular images.
7. While there are weak declines in request rates during

weekends, we did not find pronounced repeated spikes
that can be used to improve resource provisioning.

5 Registry Design Improvements

In this section, we use the observations from §4 to design
two improvements to the container registry: (i) a multi-
layer cache for popular layers; and (ii) a tracker for newly
pushed layers, which enables prefetching of the newest
layers from the backend object store. We evaluate our
design using our trace replayer.

5.1 Implementation
We implemented the trace replayer and its performance
analysis mode in Python. This mode allows us to study
the effect of different storage technologies on response
latency. We use Bottle [2] for routing requests between
the master and clients and the dxf library [6] for storing
and retrieving data in/from the registry. For caching and
prefetching, we implemented two separate modules. To
implement the in-memory layer cache, we modified the
Swift storage driver for the registry (about 200 LoC mod-
ified/added). The modified driver stores the small sized
layers in memory and uses Swift for larger layers.

5.2 Performance Analysis
The registry is launched on a 32 core machine with
64 GB of main memory and 512 GB of SSD storage,
and the Swift object store runs on a separate set of nodes
of similar configuration. The trace replayer is started on
an additional six nodes (one master and five clients). We
made sure that the trace replayer or the object store are
never the bottleneck during this analysis. All nodes are
connected via 10 Gbps network links. To drive the anal-
ysis, the trace replayer is used to replay 10,000 requests
from the dal trace (August 1st , 2017 starting at 12 am).

We compare four different backends: 1) Swift;
2) memory for layers smaller than 1 MB and Swift for
rest of the layers (Memory + Swift); 3) local file system
with SSD (Local FS); and 4) Redirection, i.e. the registry

replies back with the link to the layer in Swift and the
client then fetches the layer directly from Swift. Swift,
Local FS, and Redirection are by default supported by
the Docker registry.

Figure 16 shows the latency vs. layer size for all
backends. We observe that, for small sized layers (i.e.
layers less than 1 MB), the response time is the lowest
(0.008 s on average) for Memory + Swift. This is fol-
lowed by Local FS, which yields an average response
time of around 0.013 s and Swift with an average re-
sponse time of 0.07 s. Redirection performs the worst
with average response time of 0.11 s.

For large size objects, we observe that Memory +
Swift and Local FS are comparable and both beat Swift
and Redirection. Moreover, for layers slightly larger than
1 MB, Swift outperforms Redirection. However, for very
large layers, Swift and Redirection perform similarly,
with average response latencies of 0.63 s and 0.59 s, re-
spectively.

The results highlight the advantage of having a fast
backend storage system for the registry, and demonstrate
the opportunity for caching to significantly improve reg-
istry performance.

5.3 Two-level Cache
In designing our cache, we chose to exploit the high ca-
pacity memory as well as SSDs that are present in mod-
ern server machines. We also observed that a small frac-
tion of layers are too large to justify the use of memory to
cache them. Consequently, we design a two-level cache
consisting of main memory (for smaller layers) and SSDs
(for larger layers). We do not have to deal with possi-
ble cache invalidation as layers are content addressable
and any change in a layer also changes its digest. This
results in a “new” layer for caching while the older ver-
sion of the layer is no longer accessed and eventually gets
evicted from the cache.

Hit ratio analysis. We perform a simulation-based
evaluation of our two-level cache for the registry servers.
For these experiments, we mimic the IBM registry server
setup. We simulate the same number of servers as there
are in each AZ and for each server, we add memory and
SSD caches. The registry servers do not share the cache
as the Docker registry implementation is non-distributed.
However, the setup can be scaled by adding more registry
servers behind the Nginx load balancer.

We use the LRU caching policy for both the mem-
ory and the SSD level cache. We select cache sizes of
2%, 4%, 6%, 8%, and 10% of the data ingress for each
AZ. The data ingress of an AZ is the amount of new data
stored in that AZ during the 75 days period during which
we collected the traces. For the SSD level cache sizes, we
select 10×, 15×, and 20× the size of the memory cache.
Any object evicted from the memory cache goes first to

274 16th USENIX Conference on File and Storage Technologies USENIX Association

0%	
20%	
40%	
60%	
80%	

100%	

2%	 4%	 6%	 8%	10%	 2%	 4%	 6%	 8%	10%	 2%	 4%	 6%	 8%	10%	 2%	 4%	 6%	 8%	10%	 2%	 4%	 6%	 8%	10%	 2%	 4%	 6%	 8%	10%	 2%	 4%	 6%	 8%	10%	

dal	 lon	 fra	 syd	 stg	 prs	 dev	

Hi
t	r
at
io
	

LRU:mem	 LRU:mem+SSD(10x)	 LRU:mem+SSD(15x)	 LRU:mem+SSD(20x)	

Figure 17: Hit ratio of LRU caching policy for both the memory and the SSD level cache.

the SSD cache before it is completely evicted. We store
layers smaller than 100 MB in the memory level cache,
while larger layers are stored in the SSD level cache. For
our analysis, we iterate over the traces to warm the cache
and start calculating the hit and miss ratios upon observ-
ing the first eviction from the cache. Given our long trace
period, the first eviction happens early relative to the time
it takes to replay all traces.

Figure 17 shows the hit ratios. We see that for the
production and staging AZs, adding even a single level
of LRU-based memory cache yields a hit ratio of 40%
for dal with a cache size of 2% of ingress data and as
high as 78% for fra and syd with a cache size of 10%
of ingress data.

Increasing the cache size increases the hit ratio, until
it reaches the max of 78%. This is because we only put
layers less than 100 MB in the memory cache. However,
when we enable the second level cache, we achieve a
combined hit ratio of 100% with 6% cache size for dal
and 4% cache size for the other four AZs. We observe
different results for the prs and dev AZs. As these two
traces represent testing interactions by the registry devel-
opment team, we do not see any advantage of using the
cache in this case.

5.4 Prefetching Layers
Our second design improvement is to enable prefetch-
ing of layers from the backend object store by predicting
what layers are most likely to be requested. Therefore,
we use our observations of the push-pull relationship es-
tablished in §4.4 to predict what layers to prefetch as
shown in Algorithm 1.

In §4.4, we observed that the incoming PUT requests
determine which layers will be prefetched when the reg-
istry receives a subsequent GET manifest request. When
a PUT is received, the repository and the layer speci-
fied in the request will be added to a look up table that
includes the request arrival time and the client address.
When a GET manifest request is received from a client
within a certain threshold LMthresh, the host checks if the
look up table contains the repository specified in the re-
quest. If it is a hit and the client’s address is not present
in the table, then the address of the client is added to the
table and the layer is prefetched from the backend object
store. Note that both the amount of time that the entries

Algorithm 1: Layers Prefetching Algorithm.
Input: LMthresh: Threshold for duration between PUT layer and

subsequent GET manifest requests, MLthresh: Threshold
for duration to keep prefetched layer.

1 while true do
2 r ← request received
3 if r = PUT layer then

/* Create new entry for layer */

4 RepoMap[r.repo] ← NewEntry(r.client,r.layer)
5 RepoMap[r.repo] ← set LM_timer

/* When LM_timer > LMthresh, entry is evicted */

6 else if r = GET mani f est then
7 if r.client not in RepoMap[r.repo] for r.layer then
8 RepoMap[r.repo] ← add r.client
9 Pre f etchedLayers ← prefetch r.layer

10 Pre f etchedLayers[r.layer] ← set ML_timer
/* When ML_timer > MLthresh, layer is evicted */

11 pre f etch++

12 else if r = GET layer then
13 if r.layer in Pre f etchedLayers then
14 serve from Pre f etchedLayers[r.layer]
15 pre f etch_hit ++

16 else
17 serve from object store

0	
1	

10	
100	

1h	 12h	 1d	 1h	 12h	 1d	 1h	 12h	 1d	 1h	 12h	 1d	 1h	 12h	 1d	 1h	 12h	 1d	 1h	 12h	 1d	

dal	 lon	 fra	 syd	 stg	 prs	 dev	hi
ts
/p
re
fe
tc
he

s	 ML-thresh:1	hour	 ML-thresh:12	hours	 ML-thresh:1	day	

Figure 18: Hits/prefetch ratio.

remain in the look up table and how long the layers are
cached at the registry side, defined by MLthresh, are con-
figurable.

Hits/prefetch analysis. We tested our algorithm us-
ing different values for retaining look up table entries,
LMthresh, and retaining prefetched layers, MLthresh. We
use values of 1 hour, 12 hours, and 1 day for each of the
threshold parameters. Figure 18 shows the results. Sin-
gle bars represent MLthresh values while groups of bars
are assigned to LMthresh values.

On one hand, we find that increasing MLthresh can sig-
nificantly increase the hit/prefetch ratio. On the other
hand, increasing the retention threshold for the look up
table entries only marginally increases the hit ratio. This
is because the longer an entry persists in the table, the
fewer prefetches it serves as the record of clients added
to the table increases. We also find that the maximum

USENIX Association 16th USENIX Conference on File and Storage Technologies 275

amount of memory used by dal, lon, fra, syd, prs,
and dev is 10 GB, 1.7 GB, 0.5 GB, 1 GB, 2 MB, and
69 MB respectively. We note that for both prs and dev
the maximum amount of memory is low because they
experience less activity and therefore contain less PUT
requests compared to other cases.

Our analysis shows that it is possible to improve reg-
istry performance by adding an appropriate sized cache.
For small layers, a cache can improve response latencies
by an order of magnitude and achieve hit ratios above
90%. We also show that it is possible to predict the
GET layer requests under certain scenario to facilitate
prefetching.

6 Related Work
To put our study in context we start with describing
related research on Docker containers, Docker registry,
workload analysis, and data caching.
Docker containers. Improving performance of con-
tainer storage has recently attracted attention from both
industry and academia. DRR [34] improves common
copy-on-write performance targeting a dense container-
intensive workload. Tarasov et al. [45] study the im-
pact of the storage driver choice on the performance of
Docker containers for different workloads running inside
the containers. Contrary to this work, we focus on the
registry side of a container workload.
Docker registry. Other works have looked at optimizing
image retrieval from a registry side [37, 42]. Slacker [37]
speeds up the container startup time by utilizing lazy
cloning and lazy propagation. Images are fetched from
a shared NFS store and only the minimal amount of data
needed to start the container is retrieved initially. Ad-
ditional data is fetched on demand. However, this de-
sign tightens the integration between the registry and the
Docker client as clients now need to be connected to the
registry at all times (via NFS) in case additional image
data is required. Contrariwise, our study focuses on the
current state-of-the-art Docker deployment in which the
registry is an independent instance and completely de-
coupled from the clients.

CoMICon [42] proposes a system for cooperative
management of Docker images among a set of nodes us-
ing peer-to-peer (P2P) protocol. In its essence, CoMI-
Con attempts to fetch a missing layer from a node in
close proximity before asking a remote registry for it.
Our work is orthogonal to this approach as it analyzes a
registry production workload. The results of our analysis
and the collected traces can also be used to evaluate new
registry designs such as CoMICon.

To the best of our knowledge, similar to IBM Cloud,
most public registries [5, 8, 19] use the open-source im-
plementation of the Docker registry [4]. Our findings are

applicable to all such registry deployments.
Workload analysis studies. A number of works [27, 38]
have studied web service workloads to better understand
how complex distributed systems behave at scale. Sim-
ilar studies exist [31, 30] which focus on storage and
file system workloads to understand access patterns and
locate performance bottlenecks. No prior work has ex-
plored the emerging container workloads in depth.

Slacker [37] also includes the HelloBench [10] bench-
mark to analyze push/pull performance of images. How-
ever, Slacker looks at client-side performance while our
analysis is focused at registry side. Our work takes a
first step in performing a comprehensive and large-scale
study on real-world Docker container registries.
Caching and prefetching. Caching and prefetching
have long been effective techniques to improve system
performance. For example, modern datacenters use dis-
tributed memory cache servers [15, 21, 32, 33] to im-
prove database query performance by caching the query
results. A large body of research [28, 29, 36, 40, 43,
46, 47] studied the effects of combining caching and
prefetching. In our work we demonstrate that the addi-
tion of caches significantly improves container registry’s
performance, while layer prefetching reduces the pull la-
tency for large and less popular images.

7 Conclusion
Docker registry platform plays a critical role in providing
containerized services. However, heretofore, the work-
load characteristics of production registry deployments
have remained unknown. In this paper, we presented the
first characterization of such a workload. We collected
and analyzed large-scale trace data from five geographi-
cally distributed datacenters housing production Docker
registries. The traces span 38 million requests over a pe-
riod of 75 days, resulting in 181.3 TB of traces.

In our workload analysis we answer pertinent ques-
tions about the registry workload and provide insights to
improve the performance and usage of Docker registries.
Based on our findings, we proposed effective caching
and prefetching strategies which exploit registry-specific
workload characteristics to significantly improve perfor-
mance. Finally, we have open-sourced our traces and
also provide a trace replayer, which can be used to serve
as a solid basis for new research and studies on container
registries and container-based virtualization.

Acknowledgments. We thank our shepherd, Pramod Bha-
totia, and reviewers for their feedback. We would also like
to thank Jack Baines, Stuart Hayton, James Hart, IBM Cloud
container services team, and James Davis. This work is spon-
sored in part by IBM, and by the NSF under the grants: CNS-
1565314, CNS-1405697, and CNS-1615411.

276 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Artifactory. https://www.jfrog.com/
confluence/display/RTF/Docker+
Registry.

[2] Bottle: Python Web Framework. https://
github.com/bottlepy/bottle.

[3] CoreOS. https://coreos.com/.

[4] Docker-Registry. https://github.com/
docker/docker-registry.

[5] Dockerhub. https://hub.docker.com.

[6] dxf. https://github.com/davedoesdev/
dxf.

[7] ElastiSearch. https://github.com/
elastic/elasticsearch.

[8] Google Container Registry. https://cloud.
google.com/container-registry/.

[9] gRPC. https://grpc.io/.

[10] HelloBench. https://github.com/
Tintri/hello-bench.

[11] IBM Cloud. https://www.ibm.com/
cloud-computing/.

[12] IBM Cloud Container Registry. https:
//console.bluemix.net/docs/
services/Registry/index.html.

[13] Kibana. https://github.com/elastic/
kibana.

[14] Logstash. https://github.com/elastic/
logstash.

[15] Memcached. https://memcached.org/.

[16] Microservices and Docker containers. goo.gl/
UrVPdU.

[17] Microservices Architecture, Containers and
Docker. goo.gl/jsQ1sL.

[18] OpenStack Swift. https://docs.
openstack.org/swift/.

[19] Project Harbor. https://github.com/
vmware/harbor.

[20] Quay.io. https://quay.io/.

[21] Redis. https://redis.io/.

[22] What is Docker. https://www.docker.
com/what-docker.

[23] 451 RESEARCH. Application Containers Will Be
a $2.7Bn Market by 2020. http://bit.ly/
2uryjDI.

[24] AMARAL, M., POLO, J., CARRERA, D., MO-
HOMED, I., UNUVAR, M., AND STEINDER, M.
Performance evaluation of microservices architec-
tures using containers. In IEEE NCA (2015).

[25] ANWAR, A., CHENG, Y., GUPTA, A., AND BUTT,
A. R. Taming the cloud object storage with mos.
In ACM PDSW (2015).

[26] ANWAR, A., CHENG, Y., GUPTA, A., AND BUTT,
A. R. Mos: Workload-aware elasticity for cloud
object stores. In ACM HPDC (2016).

[27] ATIKOGLU, B., XU, Y., FRACHTENBERG, E.,
JIANG, S., AND PALECZNY, M. Workload anal-
ysis of a large-scale key-value store. In ACM SIG-
METRICS (2012).

[28] BUTT, A. R., GNIADY, C., AND HU, Y. C. The
performance impact of kernel prefetching on buffer
cache replacement algorithms. In ACM SIGMET-
RICS (2005).

[29] CAO, P., FELTEN, E. W., KARLIN, A. R., AND
LI, K. Implementation and performance of inte-
grated application-controlled file caching, prefetch-
ing, and disk scheduling. ACM Trans. Comput.
Syst. 14, 4 (Nov. 1996), 311–343.

[30] CHEN, M., HILDEBRAND, D., KUENNING, G.,
SHANKARANARAYANA, S., SINGH, B., AND
ZADOK, E. Newer is sometimes better: An evalu-
ation of nfsv4.1. In ACM SIGMETRICS (2015).

[31] CHEN, Y., SRINIVASAN, K., GOODSON, G., AND
KATZ, R. Design implications for enterprise stor-
age systems via multi-dimensional trace analysis.
In ACM SOSP (2011).

[32] CHENG, Y., GUPTA, A., AND BUTT, A. R. An
in-memory object caching framework with adap-
tive load balancing. In ACM EuroSys (2015).

[33] CHENG, Y., GUPTA, A., POVZNER, A., AND
BUTT, A. R. High performance in-memory
caching through flexible fine-grained services. In
ACM SOCC (2013).

[34] DELL EMC. Improving Copy-on-Write Perfor-
mance in Container Storage Drivers. https://
www.snia.org/sites/default/files/
SDC/2016/presentations/capacity_
optimization/FrankZaho_Improving_
COW_Performance_ContainerStorage_
Drivers-Final-2.pdf.

[35] FELTER, W., FERREIRA, A., RAJAMONY, R.,
AND RUBIO, J. An Updated Performance Com-
parison of Virtual Machines and Linux Containers.
In IEEE ISPASS (2015).

[36] GNIADY, C., BUTT, A. R., AND HU, Y. C.
Program-counter-based pattern classification in
buffer caching. In USENIX OSDI (2004).

USENIX Association 16th USENIX Conference on File and Storage Technologies 277

https://www.jfrog.com/confluence/display/RTF/Docker+Registry
https://www.jfrog.com/confluence/display/RTF/Docker+Registry
https://www.jfrog.com/confluence/display/RTF/Docker+Registry
https://github.com/bottlepy/bottle
https://github.com/bottlepy/bottle
https://coreos.com/
https://github.com/docker/docker-registry
https://github.com/docker/docker-registry
https://hub.docker.com
https://github.com/davedoesdev/dxf
https://github.com/davedoesdev/dxf
https://github.com/elastic/elasticsearch
https://github.com/elastic/elasticsearch
https://cloud.google.com/container-registry/
https://cloud.google.com/container-registry/
https://grpc.io/
https://github.com/Tintri/hello-bench
https://github.com/Tintri/hello-bench
https://www.ibm.com/cloud-computing/
https://www.ibm.com/cloud-computing/
https://console.bluemix.net/docs/services/Registry/index.html
https://console.bluemix.net/docs/services/Registry/index.html
https://console.bluemix.net/docs/services/Registry/index.html
https://github.com/elastic/kibana
https://github.com/elastic/kibana
https://github.com/elastic/logstash
https://github.com/elastic/logstash
https://memcached.org/
goo.gl/UrVPdU
goo.gl/UrVPdU
goo.gl/jsQ1sL
https://docs.openstack.org/swift/
https://docs.openstack.org/swift/
https://github.com/vmware/harbor
https://github.com/vmware/harbor
https://quay.io/
https://redis.io/
https://www.docker.com/what-docker
https://www.docker.com/what-docker
http://bit.ly/2uryjDI
http://bit.ly/2uryjDI
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf
https://www.snia.org/sites/default/files/SDC/2016/presentations/capacity_optimization/FrankZaho_Improving_COW_Performance_ContainerStorage_Drivers-Final-2.pdf

[37] HARTER, T., SALMON, B., LIU, R., ARPACI-
DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H.
Slacker: Fast Distribution with Lazy Docker Con-
tainers. In USENIX FAST (2016).

[38] HUANG, Q., BIRMAN, K., VAN RENESSE, R.,
LLOYD, W., KUMAR, S., AND LI, H. C. An
analysis of facebook photo caching. In ACM SOSP
(2013).

[39] KANGJIN, W., YONG, Y., YING, L., HANMEI,
L., AND LIN, M. Fid: A faster image distribu-
tion system for docker platform. In IEEE AMLCS
(2017).

[40] LI, M., VARKI, E., BHATIA, S., AND MER-
CHANT, A. Tap: Table-based prefetching for stor-
age caches. In USENIX FAST (2008).

[41] MENAGE, P. B. Adding Generic Process Con-
tainers to the Linux Kernel. In Linux Symposium
(2007).

[42] NATHAN, S., GHOSH, R., MUKHERJEE, T., AND
NARAYANAN, K. CoMICon: A Co-Operative
Management System for Docker Container Images.
In IEEE IC2E (2017).

[43] PATTERSON, R. H., GIBSON, G. A., GINTING,
E., STODOLSKY, D., AND ZELENKA, J. Informed
prefetching and caching. In ACM SOSP (1995).

[44] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E.,
BAVIER, A., AND PETERSON, L. Container-
based Operating System Virtualization: A Scalable,
High-performance Alternative to Hypervisors. In
ACM EuroSys (2007).

[45] TARASOV, V., RUPPRECHT, L., SKOURTIS, D.,
WARKE, A., HILDEBRAND, D., MOHAMED, M.,
MANDAGERE, N., LI, W., RANGASWAMI, R.,
AND ZHAO, M. In search of the ideal storage con-
figuration for Docker containers. In IEEE AMLCS
(2017).

[46] WIEL, S. P. V., AND LILJA, D. J. When caches
aren’t enough: data prefetching techniques. Com-
puter 30, 7 (Jul 1997), 23–30.

[47] ZHANG, Z., KULKARNI, A., MA, X., AND
ZHOU, Y. Memory resource allocation for file sys-
tem prefetching: From a supply chain management
perspective. In ACM EuroSys (2009).

278 16th USENIX Conference on File and Storage Technologies USENIX Association

RAID+: Deterministic and Balanced Data Distribution
for Large Disk Enclosures

Guangyan Zhang∗, Zican Huang∗, Xiaosong Ma†, Songlin Yang∗, Zhufan Wang∗, Weimin Zheng∗
∗Tsinghua University, †Qatar Computing Research Institute, HBKU

Abstract
Existing RAID solutions partition large disk enclosures
so that each RAID group uses its own disks exclusively.
This achieves good performance isolation across under-
lying disk groups, at the cost of disk under-utilization and
slow RAID reconstruction from disk failures.

We propose RAID+, a new RAID construction mech-
anism that spreads both normal I/O and reconstruction
workloads to a larger disk pool in a balanced man-
ner. Unlike systems conducting randomized placement,
RAID+ employs deterministic addressing enabled by the
mathematical properties of mutually orthogonal Latin
squares, based on which it constructs 3-D data templates
mapping a logical data volume to uniformly distributed
disk blocks across all disks. While the total read/write
volume remains unchanged, with or without disk fail-
ures, many more disk drives participate in data service
and disk reconstruction. Our evaluation with a 60-drive
disk enclosure using both synthetic and real-world work-
loads shows that RAID+ significantly speeds up data re-
covery while delivering better normal I/O performance
and higher multi-tenant system throughput.

1 Introduction

For the past 30 years, Redundant Array of Inexpen-
sive Disks (RAID) [40] has been used pervasively in
servers and shared computing platforms. With parity-
based RAID levels (e.g., RAID-5 and RAID-6), users
obtain high performance via parallel accesses and reli-
ability via data redundancy.

With continued advance in disk capacity and slow im-
provement in speed, however, RAID rebuild time keeps
increasing [13, 54]. For example, a recent NetApp docu-
ment specifies that a 2TB SATA 7200-RPM disk takes
12.8 hours to rebuild on an idle system [12]. When
performed online on a heavily loaded system, rebuild
can take dramatically longer. Such slow rebuild brings
two consequences. First, it raises the risk of a second
failure and consequently data loss. Second, prolonged

recovery subjects foreground applications to long peri-
ods of I/O performance degradation. Note that high-
performance solid-state drives (SSDs) actually exacer-
bate this problem, as their growing deployment promotes
storage system construction using more high-density,
low-performance hard disks [43].

One inherent reason for such slow recovery is that,
with conventional RAID, each disk drive involved in
RAID reconstruction is read or written entirely. Despite
the growing width of RAID arrays (with each array typ-
ically containing several to around a dozen disks), the
recovery time is determined by reading/writing an en-
tire disk. No matter how many disk arrays coexist in a
shared/virtual storage system, resources are isolated be-
tween underlying RAID arrays. Idle or lightly-loaded
disks cannot offer help to peers in other RAID arrays,
who might be overwhelmed by high access traffic, RAID
recovery, or, in the worst case, both.

Many approaches to enhancing the reconstruction per-
formance have been proposed [3, 18, 21, 28, 42, 52, 55,
56], which fall into three categories: 1) designing bet-
ter data layout in a disk group [18, 48, 52, 56], 2) op-
timizing the reconstruction workflow [19, 31, 45, 54],
and 3) improving the rate control of RAID reconstruction
[32, 44, 47]. Most methods focused on a single RAID
group, and to our best knowledge, no solution yet has
eliminated load imbalance both in normal operations and
during RAID reconstruction. While random data place-
ment can utilize larger groups of disks [12, 16, 41, 51], it
requires extra book keeping and lookup, and does not de-
liver load balance within shorter ranges of blocks (crucial
for sequential access and RAID rebuild performance, as
shown in our experiments).

This paper presents RAID+, a new RAID construction
mechanism that spreads both normal and reconstruction
I/O to effectively utilize emerging commodity enclosures
(such as the NetAPP DE6600 and EMC VNX-series)
with dozens of or even 100+ disks. Unlike systems
conducting random placement, RAID+ employs a deter-
ministic addressing algorithm that leverages the mathe-

USENIX Association 16th USENIX Conference on File and Storage Technologies 279

matical properties of mutually orthogonal Latin squares.
Such properties allow RAID+ to construct 3-D data tem-
plates, each employing a user-specified RAID level and
stripe width, that map logical data extents to uniformly
distributed disk blocks within a larger disk pool.

While the total read/write volume remains unchanged,
with or without disk failures, RAID+ enlists many more
disk drives in data service and disk reconstruction. This
allows it to provide more consistent performance, much
faster recovery, and better protection from permanent
data loss. In addition, in multi-tenant settings it automat-
ically lends elastic resources to individual workloads’
varying intensity, via a flexible and scalable integration
of multiple disk groups. We find that this often leads
to higher overall resource utilization, though like most
schemes for workload consolidation, in the worst case
it may incur I/O interference. Such elasticity, combined
with the capability of constructing multiple logical vol-
umes adopting different RAID levels and stripe widths
within the same physical pool, makes RAID+ especially
attractive to cloud and shared datacenter environments
employing large disk enclosures/trays.

We implemented a RAID+ prototype by modifying
the Linux MD (Multiple Devices) driver, and evaluated
it using a 60-drive disk enclosure. Results show that
RAID+ in most cases outperforms both RAID-50 and
randomized RAID-5 placement schemes, while offering
faster reconstruction (2.1-7.5× over RAID-50, 1.0-2.5×
over hash-based random placement). Like randomized
placement, it significantly improves overall throughput
in multi-tenant environments (average 2.1× over RAID-
5). But unlike randomized placement, RAID+’s deter-
ministic addressing allows simple implementation and
delivers better sequential performance (for application
and rebuild I/O) by guaranteeing uniform data distribu-
tion within smaller extents and retaining spatial locality.

2 RAID+ Overview

2.1 Latin Square Based Data Organization
With conventional k-disk RAID arrays, each data stripe
is exactly k-block wide (including both data and par-
ity), squarely striking through all disks. The RAID type
(level) and stripe width both remain fixed throughout a
given disk array. RAID+, instead, uses Latin-square-
based templates to allocate space from a larger n-disk ar-
ray. A template constructs n×(n−1) k-block stripes, each
mapped to a k-subset of the n disks. Different k values
and RAID types can be adopted by different templates
sharing the same n disks. Like conventional RAID,
RAID+ arrays can be hardware- or software-based, of-
fered as RAID+ enclosures with special RAID adapters
or formed by software on top of connected disks.

Figure 1(a) portrays conventional RAIDs, where disks
are physically partitioned into two RAID groups, with
potentially different RAID settings. Each disk belongs to
one fixed RAID array, except the shared hot spares. One
can integrate multiple underlying RAID groups (likely
homogeneous in this case) into a logical volume, by
concatenating them, or striping data across them. The
widely adopted RAID-50, for example, belongs to the
latter case. Alternatively, one can build a logical vol-
ume on each underlying RAID group, separately serving
different workloads sharing the disk pool. These two op-
tions are used in our experiments for single- and multi-
workload evaluation, respectively.

With conventional RAID organization, when a failure
happens, the recovery process only involves disks within
the same RAID group, reading from the k−1 surviving
drives and reconstructing lost data on a spare drive in its
entirety. As a result, the rebuild speed is capped by the
slower between read and write speeds of a single disk.

Figure 1(b) shows an alternative approach, where
RAID volumes are built by distributing blocks in each
k-block RAID stripe to randomly selected k disks. This
retains the fault tolerance of RAID yet spreads each vol-
ume to all n disks within the pool.

Figure 1(c) shows our proposed RAID+, also a flat or-
ganization of the same n-disk pool, where two data tem-
plates are used to carve space uniformly from all disks.
Each template is designed by “stacking” a sequence of
k n×n mutually orthogonal Latin squares, whose defini-
tion is given in the next section. Each Latin square cell
stores a disk ID within [0,n−1]. Cells at the same loca-
tion through the k layers then form a k-width data stripe
(highlighted). Given such a set of k Latin-squares, one
can easily compute the locations of any stripe’ blocks, on
a k-subset of the n drives. The mathematical properties
of mutually orthogonal Latin squares guarantee the uni-
form data distribution on all working drives, either for
normal or single-failure recovery accesses. Since data
distribution by each template is always uniform, users
can host different RAID organizations within the same n-
drive disk pool, such as RAID-5 using the red and RAID-
6 using the blue template.

When a disk failure occurs, both random placement
and RAID+ allow all surviving disks to equally partici-
pate in reconstruction, cutting theoretical RAID rebuild
time to k/(n−1) of that of conventional RAID. Also, hot
spares are optional with these organizations. However, as
we shall see later in the paper, RAID+’ deterministic and
uniform data placement enables it to achieve perfect load
balance within smaller address extents and retain spatial
locality, both significant advantages (crucial to sequen-
tial access and RAID rebuild) over random schemes.

In addition, a RAID+ pool can perform in an interim
mode with multiple disk failures, by continuously main-

280 16th USENIX Conference on File and Storage Technologies USENIX Association

RAID-5 RAID-6

Disk Array 0 Disk Array 1 Hotspare

RAID-5 RAID-6

Disk array 0 Disk array 1 Hotspare

... ...

(a) Conventional RAID

n-disk shared pool

Randomized mapping

Stripe

RAID-5 RAID-6

... ...

(b) Random data placement

n×nMOLS n-disk shared poolData template 0RAID-5 RAID-6 Stripe StripeRAID-666666666666666666666666666StripeRAID 5Stri n×nMOLS Data template 1
(c) RAID+

Figure 1: Different ways of utilizing a disk pool much larger than typical RAID array sizes

Application I/O Rebuild I/O
Isol. T hrp Trebuild Interf. MT T DL

RAID-5C High T · k C/B Part-High t
RAID-50 Low T · (n− s) C/B Part-High t
RAID+ Low T ·n C·k/(B·(n−1)) Univ-Low > t · (k−1)/k

Table 1: Comparison of RAID-5 organizations

taining its uniform or near-uniform data distribution. In
fact, RAID+ reserves space for data recovery and always
performs a fast all-to-all reconstruction. When hot spares
are available or failed disks are repaired, the recovered
data will be replicated to replacement disk(s) in back-
ground, hiding the slow single-disk writing latency.

2.2 Comparison of RAID Usage Modes
Table 1 gives several major metrics, comparing RAID+
with common existing solutions utilizing larger disk
pools. s denotes the number of hot spare disks, while
C and B denote single-disk capacity and bandwidth, re-
spectively. Without loss of generality, we use RAID-5 as
the elementary RAID level. Here RAID-5C and RAID-50
refer to the aforementioned “concatenated” and “striped”
volume construction modes. We omit random placement
schemes as they are similar to RAID+ in these aspects
(but suffer from inferior load balance and locality).

For application I/O, RAID-5C has good inter-
application isolation, as different workloads are more
likely to involve separate underlying RAID-5 arrays,
while both RAID-50 and RAID+ would be subject to per-
formance interference from concurrent workloads. The
tradeoff is aggregate performance per volume: files on
RAID-5C can only utilize 1-2 physical k-disk RAID ar-
ray at a time, while RAID-50 and RAID+ could enlist
most or all disks. This applies to both sequential accesses
(in bandwidth) and random ones (in IOPS).

For RAID rebuild I/O, both RAID-5C and RAID-50
limit reconstruction to the physical array with the disk
failure. Their recovery time (Trebuild) is equivalent to a
single-disk full scan, assuming perfect read-write over-
lap. In contrast, RAID+ enlists all n−1 surviving disks in
the read-write of the k-disk capacity (C·k), making recov-
ery itself much faster. Regarding application-perceived
interference, with RAID-5C the RAID reconstruction
process is only visible to accesses to the same physi-
cal array. RAID-50 gets similar partial exposure with
random accesses, but could be universally affected with

larger, sequential reads/writes, as shown in our evalua-
tion (Table 3). With RAID+’s all-to-all data recovery,
reconstruction traffic can be perceived by most user re-
quests, but the interference is lighter and lasts shorter.

Finally, the MT T DL column describes mean time to
data loss, considering the probability of non-recoverable
failures (such as second disk failure before reconstruc-
tion completes with RAID-5). We find RAID-5C and
RAID-50 with the same MT T DL and give a conservative
lower bound for RAID+ relative to it. The bound is fairly
close to 1 and configurable by k. With RAID-6, however,
we found that RAID+ actually enjoys a significant im-
provement in MT T DL over conventional systems [49],
by prioritizing the reconstruction of significantly fewer
yet more vulnerable stripes.

3 Latin Squares for Data Distribution

We first introduce basic concepts and theorems of mutu-
ally orthogonal Latin squares (MOLS), followed by an
example illustrating its use in constructing RAID+.

L0

a: (1, 2, 3)
b: (2, 3, 4)
c: (3, 4, 0)
d: (4, 0, 1)
e: (0, 1, 2)
f: (2, 4, 1)
g: (3, 0, 2)
h: (4, 1, 3)
i: (0, 2, 4)
j: (1, 3, 0)
k: (3, 1, 4)
l: (4, 2, 0)

m: (0, 3, 1)
n: (1, 4, 2)
o: (2, 0, 3)
p: (4, 3, 2)
q: (0, 4, 3)
r: (1, 0, 4)
s: (2, 1, 0)
t: (3, 2, 1)

D0 D1 D2 D3 D4

Stripes

Data Layout

a b
d d c
e e e c

a a
b b

d

c

f f
i h h
j j i j

f g
g h

i

g

k k
m m l
o n o o

l k
n m

n

l

r p
r s q
s t t t

p p
s q

r

q

MOLS

L1

L2

1
1 3 42
2 4 03

2 3 0 14
3 4 1 20
4 0 2 31

0

0

1

1 3 42

2 4 03

2 3 0 14

3 4 1 20

4 0 2 31

0

1

1 3 42

2 4 03

2 3 0 14

3 4 1 20

4 0 2 31

11
2

22
4

33

Figure 2: RAID+ layout (n = 5, k = 3)

Definition 1. A Latin square of order n is an n×n array
filled with n different items, each occurring exactly once
in each row and column.

Definition 2. Let L1 and L2 be two n-order Latin
squares. L1 and L2 are mutually orthogonal if, when su-

USENIX Association 16th USENIX Conference on File and Storage Technologies 281

perimposed, each of the n2 ordered pairs occur exactly
once across the overlapping cells of the two squares.

Definition 3. Given a set of Latin squares, if all its mem-
ber pairs are mutually orthogonal, we call it a set of mu-
tually orthogonal Latin squares (MOLS).

For example, the left side in Figure 2 gives three sam-
ple 5-order MOLS. Here the item set I = {0,1,2,3,4}
has each member appearing strictly once in any
row/column of the three 5×5 squares. When any two of
these MOLS are stacked together and one reads through
the 25 aligned cell-pairs, each unique pair 〈i, j〉(i ∈ I, j ∈
I) also appears exactly once.

Theorem 1. With any given order n, there can be at most
(n−1) MOLS, with this upper bound achieved when n is
a power of a prime number.

Theorem 2. When n is a power of a prime number, a
complete set of (n−1) MOLS can be constructed by fill-
ing the ith square Li (0 < i < n) using Li[x,y] = i·x+ y.1

With such construction, the first row of all n−1 MOLS
are identical, as shown in Figure 2. However, below the
first row, the corresponding values at coordinates [x,y]
across all or any subset of the n− 1 MOLS are guaran-
teed to be distinct.

Next we reuse the Latin squares shown in Figure 2 to
illustrate how RAID+ works. With RAID+ templates,
the order of Latin squares (n, 5 in this case) corresponds
to the disk pool size. The number of Latin squares
“stacked together” (k, 3 in this case) corresponds to the
RAID stripe width. Suppose we now construct a logical
RAID-5 volume, distributing data blocks with a stripe
width of 3 across 5 disks.

We ignore the first row of all squares and construct
n(n−1) stripes by copying contents from the remaining
n(n− 1) cells across all three squares. The middle col-
umn in Figure 2 gives a full list of these 20 stripes. The
derived n(n−1) stripe sequence guides block assignment
onto the n disks: each item maps to the corresponding
disk ID. E.g., the first stripe (“stripe a”) is made by look-
ing up the [1,0] cell of L0, L1, and L2, resulting in tuple
〈1,2,3〉. Its 3 blocks (2 data and 1 parity) will thus reside
on disks (1, 2, 3), respectively, while those from “stripe
b” will reside on disks (2, 3, 4), and so on.

The right column in Figure 2 gives the resulted data
layout from the disks’ point of view. As these 20 3-block
stripes guarantee a uniform distribution of disk ID num-
bers, the 60 blocks form a 5×12 RAID+ template, to be
repeatedly used in distributing data to the 5 disks.

The intuition is that aside from the first row, k MOLS
give us uniform and deterministic data distribution across
n disks, with k-block stripes. Unlike traditional RAID

1“·” and “+” here denote finite field multiplication and addition [7].

systems, where the disk array size equals the stripe
width, our MOLS-based design allows k (and the RAID
type) to be decoupled from n, enabling the construction
of different virtual RAID volumes with small or moder-
ate stripe widths on top of much larger disk pools.

As to be discussed in more details later, another desir-
able feature of MOLS is that, when one of the disks fails,
blocks needed to recover the lost data are also uniformly
distributed among the n−1 surviving disks. This allows
for quick read, reproduction, and write of the (temporar-
ily) lost data in parallel by these n−1 disks.

4 Normal Data Layout

4.1 Valid Disk Pool Sizes of RAID+
The precondition of building a RAID+ system is that we
can construct (k+m) n-order MOLS, k of which used to
construct the normal data layout and m reserved as spare
MOLS for data redistribution in the face of disk failures
(details in Section 5). m should be large enough to sup-
port the highest fault tolerance level among all RAID vol-
umes within this RAID+ pool. For example, if a volume
adopts RAID-6, then we need m≥2.

Although the number of n-order MOLS for general n
remains an open problem, (n−1) is known to exist when
n is a power of a prime number [7]. Therefore, as long
as n, the total number of disks, is one such valid pool
size, one can perform the deterministic calculation of n−
1 MOLS using the algorithm given in Theorem 2. Also,
with these valid n values, the corresponding MOLS set
possesses several attractive properties for balanced data
and recovery load distribution.

The requirement may sound demanding, but it turns
out qualifying numbers are abundant and not far apart.
For example, between 4 and 128, we have the following
42 valid n values: 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25
27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71,
73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125,
127, and 128. Since our envisioned RAID+ disk pools
contain dozens of to 100+ disks, there are plenty of valid
n values to choose from.

The density of valid n values further allows physi-
cal performance isolation should it be desired. Multi-
ple RAID+ logical sub-pools can be constructed within
a larger physical pool. E.g., a 60-disk pool can sup-
port sub-pools with configuration (11+49), (23+37),
(8+11+41), etc., all with valid sub-pool n values.

4.2 Stripes-to-Disks Mapping
RAID+ supports two modes, a normal layout, with guar-
anteed uniform distribution across all disks, and an in-
terim layout, with uniform or slightly skewed data dis-
tribution among surviving disks, under one or more disk
failures. Below we give more formal discussion of data

282 16th USENIX Conference on File and Storage Technologies USENIX Association

1 2 3

3 4 0

0 1 2

2 3 4

4 0 1

Stripe a

Stripe c

Stripe e

Stripe b

Stripe d

=

1,2,3,4,0, 1,2,3,4,0

Read sequence

=

=

=

3

3

(a) Read friendly

1 2 3

4 0 1

2 3 4

0 1 2

3 4 0

Stripe a

Stripe d

Stripe b

Stripe e

Stripe c

Write Sequence

1,2,3,4,0, 1,2,3,4,0, 1,2,3,4,0

+1

1
+1

4
+1

2
+1

33

4

(b) Write friendly

Figure 3: Stripe order for a 5-disk array (k = 3). Gray indi-
cates parity blocks. The head of each stripe equals the tail of the
previous one added by 0 (read-friendly) or 1 (write-friendly).

organization with RAID+ under normal operation with a
valid initial disk pool size n, with failure recovery and
interim layout discussed in the next section.

Given k MOLS of order n, {L0,L1, ...,Lk−1}, a RAID+
template is constructed by traversing these k Latin
squares simultaneously in a row-major order from the
second row on. For each position [x,y] (0 < x < n,
0 ≤ y < n), the k-block stripe Sx,y is obtained by listing
the corresponding values of Li at this position: Sx,y =
{L0[x,y],L1[x,y], ...,Lk−1[x,y]}, giving the disk IDs to
place the k blocks of Sx,y. Since n− 1 rows with n
columns in the Latin squares are traversed, there are
n(n−1) stripes in a full cycle of this RAID+ template.

Below are the major properties of MOLS-based data
layout. The proofs are omitted due to the space limit.

Property 1. With normal data layout, any two blocks
within a data stripe are placed on separate disk drives.

This property guarantees that (1) the I/O workload in
accessing each k-block stripe is uniformly distributed to
k disks, and (2) a single disk failure results in the loss of
at most one data block within any stripe.

Property 2. With normal data layout, the n disks are
assigned equal shares of both data and parity blocks.

This property guarantees the same read-write load bal-
ancing as with RAID-5, allowing equal distribution of
both data and parity blocks. This is particularly im-
portant to storage devices with asymmetric read-write
performance and/or write leveling requirement, such as
NAND flash disks. Unlike RAID-5, though, RAID+ de-
couples the stripe size k from a potentially much larger
pool size n, allowing load balancing to be performed at a
much wider scope, without sacrificing the fault tolerance
allowed by the adopted RAID level.

4.3 Throughput-Friendly Addressing
So far, the RAID+ template gives a deterministic map-
ping from data blocks in any k-block stripe to n disks.
However, since each stripe will be mapped to a k-subset

of n disks, the ordering of the n× (n− 1) stripes within
the logical address space has impact on disk contention,
I/O parallelism utilization, and spatial locality.

To this end, RAID+ allows stripe ordering (block
addressing) to be done in different ways considering
workload-specific needs. In particular, different RAID+
volumes sharing the same physical n-disk pool can each
adopt its own addressing strategy. Below we describe
two sample addressing algorithms targeting large se-
quential reads and writes, respectively (considering that
block addressing matters less with random accesses). For
the ease of illustration, we adopt simple RAID-4, where
the first two blocks in each stripe are data blocks and
the last one parity. The key difference between the two
patterns here is that with RAID redundancy, sequential
reads will skip parity blocks while sequential writes need
to update both data and parity.

RAID+ performs stripe ordering by rows in the
MOLS, with the process repeated at each row. To form
the n-stripe sequence for the xth row (Sx,0, Sx,1, ...,
Sx,n−1), RAID+ starts by setting Sx,0 as the stripe given
at the [x,0] position of the MOLS, walking through the
remainder of the row as follows:
• Sequential-read friendly ordering The head of each

subsequent stripe is the tail of its predecessor (Fig-
ure 3(a)). I.e., we choose Sx,i such that Sx,i(0) =
Sx,i−1(k− 1). The rationale here is that the last block
within a RAID-4 stripe is a parity block, which will
not be involved in user read operations.

• Sequential-write friendly ordering The head of each
subsequent stripe is the sum of the tail of the previous
one and x (Figure 3(b)). I.e., we choose Sx,i such that
Sx,i(0) = Sx,i−1(k−1)+x. This is considering that for
full-stripe writes resulted from sequential write work-
loads, all the blocks within a stripe will be updated.

Finally, such logical ordering of stripes within a
RAID+ volume also corresponds to the relative order-
ing of blocks on each disk. E.g., the middle column in
Figure 2 gives a “plain” row-major stripe ordering (nei-
ther read- nor write-optimized). This ordering uniquely
defines the block ordering on each of the 5 disks (the col-
umn below each disk ID). In this case, D0 carries blocks
assigned to “0”: the 3rd block in stripe c, the 2nd in d, the
1st in e, ..., etc. Given n, k, the block addressing scheme,
and the RAID level adopted, the logical to physical block
mapping within any RAID+ template can be completed
by simple calculation. Our implementation uses a tiny
lookup table (sized 93KB for n = 59 and k = 7) to accel-
erate such in-template data addressing.

4.4 Multi-Template Storage/Addressing
One major advantage of RAID+ is to accommo-
date multiple virtual RAID arrays (volumes) within
the same shared disk pool, each servicing different

USENIX Association 16th USENIX Conference on File and Storage Technologies 283

users/workloads. Every such virtual array comes with
its own MOLS-based template, stripe width ki and RAID
level, block size, as well as block addressing scheme.
Within the large n-disk physical address space, capacity
is allocated at the granularity of RAID+ templates.

RAID+ uses a per-volume index table to store the
physical locations of its template instantiation. Since
the templates are rather large, containing n(n−1)× ki
blocks for the ith volume, maintaining such mapping (one
“base address” per template instance) brings little over-
head. Logical blocks of a given volume can then be
easily mapped to its physical location by coupling the
proper template instance offset with in-template address-
ing discussed earlier. Compared to random data distribu-
tion [12, 16, 41, 51], RAID+ offers uniform data distri-
bution and direct addressing while only requiring single-
step, template-level offset maintenance and lookup.

5 Data Recovery and Interim Layout

L3

a: (1, 2, 3);
b: (2, 3, 4);
c: (3, 4, 0);1
d: (4, 0, 1);2
e: (0, 1, 2);3
f: (2, 4, 1);

g: (3, 0, 2);4
h: (4, 1, 3);
i: (0, 2, 4);1
j: (1, 3, 0);2
k: (3, 1, 4);
l: (4, 2, 0);3

m: (0, 3, 1);4
n: (1, 4, 2);

o: (2, 0, 3);1
p: (4, 3, 2);

q: (0, 4, 3);2
r: (1, 0, 4);3
s: (2, 1, 0);4
t: (3, 2, 1);

0

3

1 3 42

4 1 20

1 2 4 03

4 0 2 31

2 3 0 14

D0 D1 D2 D3 D4

Stripes
Data Layout

a b

d d c

e e e c

a a

b b

d

c

f f

i h h

j j i j

f g

g h

i

g

k k

m m l

o n o o

l k

n m

n

l

r p

r s q

s t t t

p p

s q

r

q

MOLS

c g

i j l

d e

m

o sq r

);
0)));;;11
1) 2

11

0

1

1 3 42

2 4 03

2 3 0 14

3 4 1 20

4 0 2 31

0

1

1 3 42

2 4 03

2 3 0 14

3 4 1 20

4 0 2 31

0

1

1 3 42

2 4 03

2 3 0 14

3 4 1 20

4 0 2 31

L2
L1

L0

Figure 4: Interim data layout for a 5-disk RAID+ array when
one disk fails. RAID+ uses the fourth MOLS, L3, to generate
uniform data distribution.

The MOLS-based RAID+ data distribution offers all-
to-all fast data recovery involving all surviving disks in
a disk pool, directly into an interim layout. When the
failed disk gets repaired or replaced, the normal data lay-
out can be restored in background.

5.1 Interim Layout under 1-disk Failure
Upon a disk failure in an n-disk pool, RAID+ performs
fast data recovery to recalculate the lost blocks and dis-
tribute them to the (n−1) surviving disks. Thanks again
to MOLS properties, when n is a valid pool size (power
of prime), the resulted interim data layout preserves uni-
form data distribution. Suppose disk D f (f ∈ [0,n−1])
fails, below we describe the construction of the interim

layout with k-block stripes, reusing the former example.
Figure 4 illustrates this process, where D f is D0.

Let R be the set of stripes affected by D f ’s failure,
which contain the item f (0 in this example). For any
template, there are a total of n(n−1)k/n= (n−1)k blocks
on each disk. As each stripe cannot have two blocks as-
signed to the same disk, these (n−1)k blocks correspond
to the same number of stripes that are involved in data
recovery, as shown in the middle column of Figure 4.

Recall that a valid pool size n allows for (n−1) n-order
MOLS, out of which k are used for the normal layout.
Now we select any one from the remaining (n−k−1)
MOLS, as Lk (Latin square L3 in Figure 4). This addi-
tional Latin square will be used to guide the placement
of blocks assigned to D f , with the item f in the affected
stripes replaced with a new surviving disk ID.

The intuition is that when we append the new Latin
square to the back of the existing k MOLS “stack” and
read through each position [x,y], we extend the k-block
stripes to (k+1)-block ones, with again uniformly dis-
tributed item-set permutations. Now take each affected
stripe, and replace the (now missing) f with the item r at
the corresponding position in Lk, we relocate the missing
block used to be assigned to D f to the surviving disk Dr.
E.g., in Figure 4, each “0” in these 12 stripes would be re-
placed with another integer in {1,2,3,4}, such as stripe c
transforming from (3,4,0) to (3,4,1), as the correspond-
ing position in the additional Latin square (L3[1,2]) has
item “1”. The first two blocks in this affected stripe, on
D3 and D4 respectively, would not need to move.

Below are the major properties associated with
MOLS-based data layout concerning data recovery and
the interim layout, assuming a valid pool size n.

Property 3. With the n-disk normal layout, all blocks
correlated with those on any given drive (i.e., blocks
sharing stripes with blocks on this disk) are distributed
evenly among the other disks.

The implication here is that when the first disk fails,
the read workload to recover unavailable blocks is evenly
distributed among all surviving disks.

Property 4. With the (n−1)-disk interim layout, any
two blocks within a data stripe are still placed on sep-
arate disk drives.

Property 5. All the (n−1)k missing blocks on any sin-
gle failed disk can be redistributed to all the surviving
(n−1) disks evenly, each receiving k additional blocks.

These two properties imply that (1) the write workload
involved in RAID+ recovery from a single-disk failure is
also uniformly distributed among all surviving disks, (2)
data stripes in the (n−1)-disk interim layout preserves
the same RAID fault tolerance as in the normal layout,

284 16th USENIX Conference on File and Storage Technologies USENIX Association

and (3) the (n−1)-disk interim layout also retains the
uniform data distribution to allow perfectly balanced I/O
servicing even after losing one disk.

The particular significance of (n−1)-disk interim lay-
out lies in the fact that the probability of single-disk fail-
ure is much higher than that of having two or more failed
disks, especially when hot spares are available. Consid-
ering this, plus that disk capacity is relatively abundant
in typical server environments, RAID+ performs an ad-
ditional performance optimization by reserving recovery
data space with normal data layout. More specifically,
RAID+ actually allocates n×k physical blocks per disk
for a data template. (n−1)k of them are used to store
data/parity blocks in the normal layout, while the remain-
ing k blocks (the green area in Figure 4) are reserved for
storing reconstructed data whenever there is a single-disk
failure. This way, under such a failure, the reconstructed
data are physically adjacent to the normal layout blocks,
preserving spatial locality in data accesses. In our im-
plementation, the content of the aforementioned small
lookup table is modified to support fast interim data ad-
dressing, without additional space overhead.

5.2 Parallel Data Recovery
Under a single disk failure, the MOLS-based design lets
both read and write workloads involved in RAID re-
construction and temporary relocation be uniformly dis-
tributed to the entire pool. This breaks the performance
limit of conventional RAID systems, where the recovery
work is only distributed within the RAID array affected.

However, even with uniform data distribution, the par-
allel read/write operations in data recovery could still
generate resource contention, transient load imbalance,
or unnecessary disk seeks, if care is not taken. To this
end, RAID+ orchestrates its all-to-all data reconstruction
by letting the surviving disks work on a subset of the
(n−1)k affected stripes at a time, alternating between
reader and writer roles. Barriers are used in between such
iterations, creating a natural break point for RAID+ to
check upon user I/O requests, potentially slowing down
or temporarily suspending the recovery depending on the
current application request intensity, QoS specifications,
and configurable system policies (such as starvation pre-
vention to ensure the completion of data recovery).

5.3 Multiple Disk Failures
MOLS-based design also handles multiple failures
gracefully. If another disk failure occurs after data recov-
ery from a disk failure, we repeat the process described
in Section 5.1 with another spare Latin square. When
m disks are lost but tolerated by the adopted RAID level,
by appending m spare MOLS to the stack of k used in the
normal layout, we can calculate the eventual (n−m)-disk
interim layout. Recognizing that the affected data stripes

have different degrees of data loss, RAID+ prioritizes the
reconstruction of the more vulnerable stripes.

Due to space limit, we give a brief summary of related
results: when a RAID+ pool keeps losing disks (with-
out disk replacement), Monte Carlo simulation shows
very slight imbalance in data distribution (CoV of up to
0.29%), while system experiments show application per-
formance degradation of up to 6% (except with sequen-
tial read, where RAID+ loses the benefit of its unique
read-friendly addressing when more disks fail).

6 Evaluation

We implemented RAID+ in the MD (Multiple Devices)
driver in Linux Kernel 3.14.35, a software RAID system
that forms a common framework for all RAID systems
tested in our evaluation. Despite theoretical properties
appearing sophisticated, MOLS-based addressing is sim-
ple to implement, taking a mere 12 lines of code.
Test platform Our testbed uses a SuperMicro 4U stor-
age server with two 12-core Intel XEON E5-2650 V4
processors and 128GB DDR4 memory, running Ubuntu
14.04 with Linux kernel v3.14.35. Two AOC-S3008L-
L8I SAS JBOD adapters, each connected to a 30-bay
SAS3 expander backplane via two channels, host 60 Sea-
gate Constellation 7200RPM 2TB HDDs. The I/O chan-
nels afford a total I/O bandwidth of 24GB/s (400MB/s
for each disk), significantly exceeding the aggregate se-
quential bandwidth from the disks. In all experiments,
50GB capacity of each disk is used.
RAID configurations Unless otherwise noted, our tests
use 59 out of the aforementioned 60-disk pool (n = 59).
The stripe width k is set at 7 (6+1 RAID).

For comparison, we evaluate two commonly adopted
conventional RAID organizations utilizing such large
disk pools, both of which build eight 6+1 RAID-5 arrays
with 64KB stripe unit size, consuming 56 disks with the
last 3 reserved as hot spares. RAID-5C divides each ar-
ray into multiple 1GB extents and concatenates them in a
round-robin manner, while RAID-50 stripes across these
8 arrays at block size of 12MB (2MB×6).

We also evaluate two randomized data placement
schemes, RAIDR and RAIDH. Both place blocks within
each stripe to different disks while aiming for balanced
data distribution to all n disks. To assign a block to a
disk, RAIDR utilizes the system random number gener-
ator (with system time as seed) and is therefore nonde-
terministic. RAIDH, instead, uses the Jenkins hash func-
tion [26] adopted by systems such as Ceph [9, 50]. If
a block is mapped to a disk already used in the current
stripe, mapping will be recalculated until collision free
(following CRUSH [51] for RAIDH). Our experiments
find the two schemes often perform similarly, in which
case we show only results of the better one.

USENIX Association 16th USENIX Conference on File and Storage Technologies 285

of disks RAID-50 RAIDR RAIDH RAID+
56+3 307s 60s 102s 41s
28+3 307s 99s 143s 83s

Table 2: Offline rebuild time comparison

Both RAID+ and the random schemes build (6+1)
RAID-4 arrays, with 64KB stripe unit size. Such strip-
ing continues on the same set of disks until a 2MB space
allocation unit is filled per disk, before starting a new 7-
block stripe. We have also implemented RAID-6 and ob-
served similar performance trends, but omit results here
due to space limit.
I/O Workloads We use three types of I/O workloads:

• Synthetic workloads: we use fio [15], a widely used
I/O workload generator to produce four representa-
tive elementary workloads: sequential read, sequential
write, random read, and random write.

• I/O traces: We use 8 public block-level I/O traces,
namely src1 1, usr 1, prn 0, prn 1, proj 0, and
prxy 1 from MSR Cambridge [37], plus Fin2 and
WebS 2 from SPC [1]. Based on load level observed,
we followed existing practice in prior research [17, 27,
48] and accelerated the SPC traces (Fin2 by 5× and
WebS 2 by 3×) while replaying all others a tempo.

• I/O-intensive applications: we also use four I/O-
heavy real applications: GridGraph [60] (an out-of-
core graph engine), TPC-C [46] (in-house implemen-
tation of the well-known RDBMS transaction bench-
mark standard), a Facebook-like photo access work-
load (synthesized using Facebook’s published work-
load characteristics [4, 24]), and a MongoDB [35]
NoSQL workload from the YCSB suite [11].

6.1 Reconstruction Performance
We start by evaluating reconstruction performance, one
major advantage of RAID+ over alternative schemes,
with disk failures created by unplugging random disk(s).
Offline rebuild Table 2 gives the offline rebuild time
with a single-disk failure. RAID+ is tested with two valid
n values, 59 and 31 (shared by the random schemes). The
same pools would give RAID-50 3 hotspares each, with
8 and 4 RAID-5 arrays respectively. RAID-5C results
would be identical to RAID-50 here.

In both cases, RAID+ consistently outperforms RAID-
50, delivering a speedup of 7.5× and 3.7×. Such results
approach the theoretical speedup of 8.29 and 4.29, re-
spectively, given in Table 1. The gap is mainly due to
less sequential reconstruction read/write patterns com-
pared with RAID-50, as RAID+’s recovery load per
disk is much smaller yet non-contiguous. Unlike RAID-
50, with rebuild time independent of the disk pool size,
RAID+ spreads the rebuild workload to larger pools uni-
formly and lowers the rebuild time proportionally.

The two random schemes outperform RAID-50 here
also by having more disks participate in recovery. How-
ever, their rebuild takes significantly longer than that
of RAID+. Further examination reveals that though
they achieve overall balanced data distribution, random
schemes suffer much higher skewness within each win-
dow of dozens/hundreds of blocks. E.g., within a RAID+
template size, the RAIDH has CoV of rebuild read/write
load distribution of 31.9%/38.9%, while RAIDR has
12.72%/33.87%.2 Such “local load balance” is crucial
for RAID rebuild, with sequential and synchronized op-
erations, where overloaded stragglers could easily drag
down the entire array’s recovery progress. RAID+, in
contrast, retains its absolute load balance within such
smaller windows and delivers much higher rebuild speed.

Finally, this advantage grows with the disk pool size
n, as such perfect local load balance gives RAID+
higher profit margin by evenly utilizing n disks. In this
sense, RAID-50 has recovery bandwidth independent of
n by utilizing a small fixed-size sub-pool. The random
schemes perform between these two extremes, achieving
good global yet poor local load balance.

0 300 600 900 1200 1500 1800
0

100

200

300

400

500

T
ra
n
s
a
c
ti
o
n
s
p
e
r
1
0
s

Time (s)

RAID-5C RAID-50 RAID
H

RAID+

Figure 5: TPC-C online rebuild w. single-disk failure

Single-workload online rebuild Next, we examine on-
line rebuild by creating a single-disk failure and perform-
ing reconstruction without stopping the execution of ap-
plication(s). Figure 5 illustrates one sample test case
(TPC-C). It plots the number of transactions committed
per 10-second episode along the timeline, with a disk
failure incurred at 300 seconds into the execution.

First, results demonstrate that RAID+ matches the
TPC-C throughput of RAID-50 and RAIDH (all beat-
ing RAID-5C, unsurprisingly) in normal operation. Sec-
ond, RAID+ offers much shorter online rebuild time
than conventional RAID (396 seconds vs. RAID-5C’s
1137 and RAID-50’s 858). RAIDH comes closer, but
still takes 11.4% longer than RAID+. Third, RAID+,
RAID-50, and RAIDH bring similar degrades to TPC-
C performance during rebuild. Although RAID-5C sees
smaller relative performance impact, its degraded perfor-
mance still lags behind due to its lower baseline. Overall,

2Here RAIDR has more even read distribution due to larger read
volume than write in rebuild. RAIDH however exhibits more skewed
distribution of blocks to read involved in recovery, with CoV level ap-
pearing to be dependent on the hash function used.

286 16th USENIX Conference on File and Storage Technologies USENIX Association

App RAID-50 RAID-5C RAIDH RAID+

FaceBook
app perf 1 1.02 1.41 1.42
reb perf 1 1.05 2.29 2.36

TPC-C
app perf 1 0.61 1.00 1.03
reb perf 1 0.75 1.94 2.17

GridGraph
app perf 1 0.27 1.22 1.23
reb perf 1 3.14 2.05 2.06

MongoDB
app perf 1 0.89 0.99 1.01
reb perf 1 1.05 1.60 2.08

Table 3: Online rebuild performance comparison, in
terms of speedup against corresponding RAID-50 results

during the 900 seconds following the disk failure’s on-
set, RAID+ manages to complete 44.43%, 139.70%, and
5.11% more transactions than RAID-50, RAID-5C, and
RAIDH, respectively. TPC-C throughput stays consistent
as recovery progresses, as its degradation is dominated
by the rebuild I/O activities rather than transactions that
happen to hit the failed disk.

Table 3 summarizes online reconstruction perfor-
mance, giving both the application performance and the
rebuild speed, all in the form of speedup with respect
to corresponding RAID-50 results (the higher the bet-
ter). We use the same RAID rebuild rate setting (minimal
at 80MB/s and maximum at 200 MB/s) within the MD
driver for RAID-50 and RAID-5C, and configure RAID+
and RAIDH to avoid application performance degrada-
tion from the RAID-50 baseline during rebuild (with
only one exception where RAIDH achieves 99% of the
baseline performance). The results reveal that RAID+
and RAIDH simultaneously improve both the applica-
tion and rebuild performance from RAID-50. Between
them, RAID+ is consistently better, with significantly
faster rebuild and slightly better application performance
for TPC-C and NoSQL. RAID-5C, at least with the de-
fault rate control setting, loses on both fronts (except for
FaceBook, where it slightly outperforms RAID-50).
Multi-workload online rebuild For multi-workload
evaluation, we use a smaller pool size of 29,3 with stripe
width remaining at 7, to construct 4 logical RAID vol-
umes. RAID-5 builds 4 disjoint 6+1 arrays, plus one
last disk reserved as hot spare. RAID+ constructs 4 vol-
umes with the same deterministic template (n = 29,k =
7) across the entire pool. RAIDH randomly distributes
blocks from 4 virtual 6+1 array volumes to all 29 disks.

In each experiment, we sample 4 out of 8 MSR/SPC
I/O traces as a workload mix to run simultaneously on
the RAID volumes, for 28 minutes. The requests are
replayed using the original timestamps, therefore iden-
tical sets of requests are issued across tests. We create a
single-disk failure in the whole pool at time 0 and per-
form reconstruction without stopping user applications.

3Considering the moderate request levels in test programs/traces,
the smaller pool size allows us to test smaller (and higher number of)
workload mixes, with results easier to plot and analyze.

Figure 6 illustrates one such test case, showing the av-
erage I/O request latency in 60-second episodes along
the execution timeline, for each workload. With RAID-
5, the failure is contained within one volume (running
Fin2 in Figure 6(a)), while with other schemes, it affects
all volumes. The vertical lines indicate time points when
each scheme finishes online rebuild. Similar to single-
workload results, RAID+ has slightly faster rebuild than
RAIDH, both beating RAID-5 by almost 4 times. In-
tuitively, RAID+ and RAIDH excel by spreading re-
build work to all 4 volumes rather than only one, which
also enables them to eliminate dramatic latency increases
brought by RAID-5’s online rebuild (Figure 6(a)). Thus
compared with RAID-5, during the entire reconstruction,
RAID+ and RAIDH reduces the Fin2 workload average
latency by over 90%, and the 99% tail latency by 89%
(48ms vs. 418ms).

As expected, involving all disks expose the failure to
all 4 volumes, roughly doubling the average latency of
RAID+/RAIDH before rebuild completes over RAID-5
for the prxy 1 and WebS 2 workloads. However, the
much shorter rebuild time not only reduces system vul-
nerability, but also prevents any volume to be under dra-
matic performance degradation for prolonged periods.
Note that while inter-volume isolation is broken here,
disk failures are not user application artifacts but anoma-
lies from the underlying platform. Therefore, RAID+ al-
lows a larger disk pool to become more resilient, recover
faster from failures, and provide more consistent perfor-
mance during recovery.

6.2 Normal I/O Performance
Single-workload evaluation Figure 7 gives the normal
synthetic workload performance running fio, with vary-
ing request sizes. The access footprint is large enough to
span all RAID-5 arrays with RAID-5C. All RAID sys-
tems, including RAID+, perform very similarly in ran-
dom read/write tests. Therefore, we only show sequen-
tial performance here.

RAID+ slightly outperforms RAID-50 in most cases,
by using 59 rather than 56 disks. Compared to them,
RAIDH offers moderately lower sequential performance,
again due to poor local load balance and inferior spa-
tial locality within each disk. RAID-5C predictably lags
behind others with sequential accesses, as in most cases
only one RAID-5 array is utilized.

Figure 8 shows results with two sample MSR traces,
plotting latency data points (averaged over 60-second
episodes) along the execution timeline. Again RAID+
outperforms RAID-50, with an average improvement of
6.23% under prxy 1 and 87.04% under usr 1. This
is because RAID+ uses all 59 disks (rather than 56)
and usr 1 is read-dominant [37], with RAID+ adopts
read-friendly addressing in this set of tests. For similar

USENIX Association 16th USENIX Conference on File and Storage Technologies 287

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
-20

0

20

40

60

80

100

120

140

160

180 RAID+

RAID
H

RAID-5

L
a
te
n
c
y
(m
s
)

Time (min)

RAID-5 (1,532 s)

RAID
H
(405s)

RAID+ (398s)

(a) Fin2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25 RAID+

RAID
H

RAID-5

L
a
te
n
c
y
(m
s
)

Time (min)

RAID
H
(405s)

RAID+ (398s)

RAID-5 (1,532 s)

(b) prxy 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

5

10

15

20

25

30

35

40

45

RAID+

RAID
H

RAID-5

L
a
te
n
c
y
(m
s
)

Time (min)

RAID
H
(405s)

RAID+ (398s)

RAID-5 (1,532 s)

(c) src1 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

2

4

6

8

10

12

14
RAID+

RAID
H

RAID-5

L
a
te
n
c
y
(m
s
)

Time (min)

RAID
H
(405s)

RAID+ (398s)

RAID-5 (1,532 s)

(d) WebS 2

Figure 6: Sample multi-workload performance w. online rebuild

16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B

0

2

4

6

8

10

RAID+

RAID
H

RAID-50

RAID-5C

B
a
n
d
w
id
th
(G
B
/s
)

I/O Size

(a) Sequential read

16
KB
32
KB
64
KB
12
8K
B
25
6K
B
51
2K
B
1M
B
2M
B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

RAID+

RAID
H

RAID-50

RAID-5C

B
a
n
d
w
id
th
(G
B
/s
)

I/O Size

(b) Sequential write

Figure 7: Normal fio sequential performance

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

100

L
a
te
n
c
y
(m
s
)

Time (min)

RAID+

RAID
R

RAID-50

RAID-5C

(a) prxy 1

0 1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

260

280

300

320

340

L
a
te
n
c
y
(m
s
)

Time (min)

RAID+

RAID
R

RAID-50

RAID-5C

(b) usr 1

Figure 8: Normal trace workload performance

reasons, RAIDR loses slightly to RAID+ under usr 1,
and wins slightly under prxy 1, as it also uses all disks
and the read-friendly addressing may bring minor side-
effects for the more write-intensive prxy 1 workload.

Finally, Table 4 compares application performance.
Note that unlike other cases, TPC-C uses transactions per
minute committed, the higher the better. With Facebook-
like photo and MongoDB, both having primarily ran-
dom accesses, all four RAID organizations have data
distributed to all disks and report very similar perfor-
mance results. Since GridGraph is primarily sequential,
RAID-5C can mostly utilize only one or two underlying
RAID-5 arrays. Therefore, all three other schemes have
a more than 4-fold speedup over RAID-5C, and RAID+
has minor advantage over RAID-50 by using slightly
more disks, and over RAIDH by having better spatial lo-
cality. With TPC-C, which has both random and sequen-
tial accesses, RAID+ slightly outperforms both RAID-50
and RAIDH. Again RAID-5C clearly underperforms.
Multi-workload system throughput Now we examine
normal performance with multiple workloads sharing the

RAID-5C RAID-50 RAIDH RAID+
FaceBook (s) 168.18 165.85 176.20 168.8
MongoDB (s) 160.85 150.76 147.02 147.34
GridGraph (s) 1021.86 236.96 236.85 220.98

TPC-C (TpmC) 1345.2 2193 2192 2265

Table 4: Normal application performance

0 1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

S
p
e
e
d
u
p

Time (min)

usr_1

prn_0

src1_1

Fin2

(a) RAID+ speedup over RAID-5

200 220 240 260 280 300
0

2

4

6

8

10

12

14

16

I/
O
s

Time(ms)

usr_1

prn_0

src1_1

Fin_2

(b) Sample load variation

Figure 9: Case study with sample 4-workload mix

underlying disk pool, using the 29-disk, 4-volume set-
ting similar to that in online reconstruction tests (Fig-
ure 6). We evaluated all unique 4-workload combina-
tions from the 8 MSR/SPC traces, executing each of
these 70 workload mixes on 4 RAID volumes built with
RAID-5, RAIDH, and RAID+.

Here we adopt weighted speedup [14], a widely-used
multi-workload performance metric in computer archi-
tecture, to measure the overall system throughput. As
each workload is replayed at fixed speed (by timestamps
given in traces), we use 1/latency to replace the typ-
ical IPC (Instructions Per Cycle) measurement in ar-
chitecture studies, calculating the weighted speedup as
1
n ∑

n
i=1(L

c
i /Li) for an n-application workload mix. Here

Lc
i and Li denote the average latency of the ith workload

using conventional RAID (RAID-5) and the system to be
evaluated, respectively. I.e., RAID-5 is used as the base-
line for measuring performance speedup.

To summarize the results, both RAIDH and RAID+ de-
liver considerable weighted speedup in all 70 test cases,
demonstrating their capability of consistently improving
the overall system throughput by utilizing more disks
simultaneously. More specifically, RAIDH obtains an
average weighted speedup of 1.83 (over 1.33 in 80%
of cases) over the 4-volume RAID-5 baseline, while

288 16th USENIX Conference on File and Storage Technologies USENIX Association

RAID+ performs better, with average weighted speedup
of 2.05 (over 1.5 in 80% of cases).

Figure 9 showcases one sample test case (running
src1 1, usr 1, prn 0, and Fin2), showing the speedup
(based on average latency in each one-minute episode)
of RAID+ over RAID-5 along the timeline. All but one
speedup data points are above 1, with prn 0 reaching
over 25 at one point. By zooming into the request pat-
terns, we find such large profit comes from the bursti-
ness in most workloads. Figure 9(b) illustrates this for
a 100ms-long window, 200ms into the execution, show-
ing the per-ms request count for each workload. At this
granularity, one clearly sees that the workloads have spo-
radic requests and often form interleaving bursts. The
most bursty workloads, prn 0 and src1 1, benefit more
from RAID+ and RAIDH, which use all disks to serve
each volume. In particular, during request peaks these
workloads see faster processing and lower I/O queue
wait time, as confirmed by our detailed profiling, hence
achieving the 25× (transient) speedup.

While the majority of the 70 mixes possess such “com-
plementary” request patterns, there are cases where two
or more workloads have sustained simultaneously inten-
sive I/O activities, leading to slowdown of individual
workload. However, among the total of 280 executions
(70 mixed runs with 4 workloads per mix), there are only
39 cases of slowdown. Again, if a workload has to be
guaranteed stronger performance isolation, RAID+ pools
can be physically partitioned (such as building 41+19
volumes within a 60-disk enclosure).

6.3 Sensitivity to Internal Parameters
Finally, we study the impact of RAID+’s key parameters.
Figure 10(a) shows both the aggregate random read and
write throughput (left y axis) and the offline rebuild time
(right y axis) with RAID+ pool size n, increased from 41
to 59, while fixing k at 7 and block size at 2MB.

These results show that the random read performance
increases linearly with n (by up to 39%), due to uni-
form load distribution to all disks in the pool. The write
throughput, though also growing steadily (by up to 24%),
is much lower, as each of these 64KB write will bring
at least four underlying I/O operations, for reading and
writing back both the concerned data and parity blocks.
In addition, such read-modify-write operations are syn-
chronized, further lowering the aggregate throughput.
The offline rebuild time, unsurprisingly, decreases as n
grows and conforms to the model shown in Table 1.

Figure 10(b) shows similar experiments, with n fixed
at 59 and varying k. With regard to user I/O perfor-
mance, as modeled in Table 1, the aggregate throughput
is mostly independent of k and the rebuild time grows
linearly with it. One unexpected exception is with k=3,
where the write bandwidth appears considerably higher

than any other k values. By using the iostat tool, we
find that with k = 3 there are significantly fewer disk
reads for parity calculation. Here with the 2+1 data-
parity setup, there are higher chances for parity data to
be reconstructed from cached data blocks.

Next, in Figure 10(c) we fix both n (59) and k (7) and
change the block size. As expected, the block size has lit-
tle impact on the random read/write performance. Mean-
while, the rebuild time decreases significantly, though
not linearly. As RAID+’s rebuild access pattern intro-
duces less regular access patterns compared with those of
conventional RAID systems, larger block sizes improve
performance by promoting sequential accesses.

Last, to examine the effect of throughput-friendly
block addressing (Section 4.3), we run the fio sequen-
tial read and write workloads, with I/O sizes of 2MB.
Figure 10(d) shows the results using four stripe order-
ing strategies: 1) “native”, original stripe ordering from a
RAID+ template (stripes a to t in Figure 2), 2) “random”,
randomized stripe ordering using a pseudo-random func-
tion, 3) “read-opt”, our proposed read-friendly ordering,
and 4) “write-opt”, our proposed write-friendly ordering.
Bandwidths shown are normalized to “native”. While the
native and randomized strategies almost perform identi-
cally, the read-friendly strategy does generate a 28% im-
provement with sequential reads. Write-friendly order-
ing, on the other hand, brings a much smaller profit (4%).
Again, unlike the “pure” sequential streams with reads,
writes are not exactly sequential due to read-modify-
write of both data and parity blocks.

7 Related Work

Data Layout Optimization Existing RAID layout op-
timizations roughly form two categories: 1) distributing
either data blocks or parity blocks evenly across all the
disks (e.g., RAID-5 vs. RAID-4), and 2) exploiting spa-
tial data locality (e.g., left-symmetric RAID-5 [30]). In-
spired by them, RAID+ spreads data and parity blocks in
a much larger shared pool, with its throughput-friendly
block addressing promoting access locality.

The parity declustering layout [36] utilizes as few
disks as possible in data reconstruction, further analysed
and extended/optimized by many [2, 10, 18, 20]. How-
ever, unlike with RAID+, rebuild is still capped by the
write speed of the replacement disk, though these solu-
tions do spread rebuild reads to remaining disks.

ZFS [6] uses “dynamic striping” to distribute load
across “virtual devices”, dynamically adjusting strip-
ing width and device selection to facilitate fast out-of-
place updates and balanced capacity utilization. Systems
such as IBM XIV [25] and the Flat Datacenter Stor-
age (FDS) [38] use pseudo-random algorithms to dis-
tribute replicated data across all drives. If used for build-

USENIX Association 16th USENIX Conference on File and Storage Technologies 289

0

5

10

15

20

25
IO
P
S
(×
1
0
3
)

of Disks

Random Read

Random Wrtie

Rebuild Time

41 43 47 53 59
0

15

30

45

60

75

R
e
b
u
ild
T
im
e
(s
)

(a) Different disk numbers

0

5

10

15

20

25

30

IO
P
S
(×
1
0
3
)

Stripe Width

Random Read

Random Wrtie

Rebuild Time

3 5 7 9 11
0

15

30

45

60

75

R
e
b
u
ild
T
im
e
(s
)

(b) Different stripe widths

128 256 512 1024 2048 4096
0

5

10

15

20

25

30

IO
P
S
(×

1
0

3

)

Random Read

Random Wrtie

Rebuild Time

0

20

40

60

80

100

120

R
e
b
u
ild
T
im
e
(s
)

Block Size (KB)

(c) Different block sizes

Seq Read Seq Write
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.04

N
o
rm
a
liz
e
d
P
e
rf

Workloads

Native Read-opt

Random Write-Opt
1.28

(d) Different stripe orders

Figure 10: Impact of several factors on RAID+’s performance

ing logical RAID volumes, in stripe placement ZFS and
FDS would follow round-robin order (with optimizations
on starting point selection), resulting in limited recov-
ery bandwidth as a fixed “neighborhood” of disks would
carry data relevant to recovery. XIV behaves similar to
the RAIDR/RAIDH schemes we evaluated.

Work also exists on designing data organizations sen-
sitive to workload characteristics or application scenar-
ios. E.g., Disk Caching Disk (DCD) [23, 39] uses an ad-
ditional disk as a cache to convert small random writes
into large log appends. HP’s AutoRAID [53] parti-
tions RAID storage and differentiates the handling of
hot and cold data. ALIS [22] and BORG [5] reorga-
nize frequently accessed blocks (and block sequences) to
place them sequentially in a dedicated area. These tech-
niques are orthogonal to ours and can be incorporated by
RAID+ to improve application performance.
Optimizations on RAID Reconstruction Prior stud-
ies have targeted improving reconstruction performance.
Many of them focus on designing better data layout in
a disk group [18, 29, 33, 52, 56], to minimize I/O for
recovery or distribute rebuild I/O as evenly as possi-
ble. Other approaches optimize the RAID reconstruc-
tion workflow to make full use of higher sequential
bandwidth, such as DOR (Disk-Oriented Reconstruc-
tion) [20], PR [31], and others [18, 42, 52, 55, 56]. In ad-
dition, PRO [45] rebuilds frequently-accessed areas first
and S2-RAID [48] optimizes reads and writes separately
for faster recovery. Finally, task scheduling techniques
optimize reconstruction rate control [32, 44, 47].

Except for WorkOut [54], which outsources part of
user requests to surrogate disks during reconstruction,
existing studies focus on improvement within one RAID
group. RAID+ takes a different path from all, with built-
in “backup” layouts to utilize all disks in a larger pool in
reconstruction, while maintaining the fault tolerance and
flexibility of smaller, logical RAID arrays.
RAID Scaling Adding disks to an array requires data
movement to regain uniform distribution. Zhang et al.
proposed batch movement and lazy metadata update to
speed up data redistribution [57, 58]. FastScale [59]
uses a deterministic function to minimize data migra-
tion while balancing data distribution. CRAID [34] uses
a dedicated caching partition to capture and redistribute

only hot data to incremental devices.
Another approach is randomized RAID, which ran-

domly chooses a fraction of blocks to be moved to newly
added disks. Prior work to this end [8, 16, 41] re-
duces migration, but produces unbalanced distribution
after several expansions [34]. Also, existing randomized
RAID systems require extra book keeping and look-up.

RAID+, in contrast, allows large disk enclosures to di-
rectly host user volumes, each using its own RAID con-
figuration, with templates stamping out allocations in all
shapes and sizes. Meanwhile, it is not designed for dy-
namic, heterogeneous distributed environments targeted
by methods like CRUSH [51].

8 Conclusion

This paper proposes RAID+, a new RAID architecture
that breaks the resource isolation between multiple co-
located RAID volumes and allows the decoupling of
stripe width k from disk group size n. It uses a novel
Latin-square-based data template to guarantee uniform
and deterministic data distribution of k-block stripes to
all n disks, where n could be much larger than k. It also
delivers near-uniform distribution in both user data and
RAID reconstruction content even after one or several
disk failures, as well as fast RAID rebuild.

With RAID+, users can deploy large disk pools with
virtual RAID volumes constructed and configured dy-
namically, according to different application demands.
By utilizing all disks evenly while maintaining spatial
locality, it enhances both multi-tenant system throughput
and single-workload application performance.

9 Acknowledgment

We thank all reviewers for their insightful comments, and
especially our shepherd Gala Yadgar for her guidance
during our camera-ready preparation. We also thank Mu
Lin and Xiaokang Sang for helpful discussions. This
work was partially supported by the National Natural
Science Foundation of China (under Grant 61672315)
and the National Grand Fundamental Research 973 Pro-
gram of China (under Grant 2014CB340402).

290 16th USENIX Conference on File and Storage Technologies USENIX Association

References

[1] Umass trace repository. http://traces.cs.umass.

edu/index.php/Storage/Storage, 2017.

[2] Guillermo A. Alvarez, Walter A. Burkhard, Larry J.
Stockmeyer, and Flaviu Cristian. Declustered disk array
architectures with optimal and near-optimal parallelism.
In Proceedings of 25th International Symposium on Com-
puter Architecture (ISCA’98), pages 109–120, 1998.

[3] Eitan Bachmat and Jiri Schindler. Analysis of methods
for scheduling low priority disk drive tasks. In Proceed-
ings of the International Conference on Measurements
and Modeling of Computer Systems (SIGMETRICS’02),
pages 55–65, 2002.

[4] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel,
and Peter Vajgel. Finding a needle in Haystack: Face-
book’s photo storage. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implemen-
tation (OSDI’10), pages 47–60, 2010.

[5] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam
Burnett, Jason Liptak, Raju Rangaswami, and Vage-
lis Hristidis. BORG: Block-reORGanization and self-
optimization in storage systems. In Proceedings of the
7th USENIX Conference on File and Storage Technolo-
gies (FAST’09), pages 183–196, 2009.

[6] Jeff Bonwick and Bill Moore. ZFS: The last word in file
systems. https://wiki.illumos.org/download/

attachments/1146951/zfs_last.pdf, 2007.

[7] Raj Chandra Bose and Sharadchandra S Shrikhande. On
the construction of sets of mutually orthogonal Latin
squares and the falsity of a conjecture of Euler. Transac-
tions of the American Mathematical Society, 95(2):191–
209, 1960.

[8] André Brinkmann, Kay Salzwedel, and Christian Schei-
deler. Efficient, distributed data placement strategies for
storage area networks. In Proceedings of the 12th An-
nual ACM Symposium on Parallel Algorithms and Archi-
tectures (SPAA’00), pages 119–128, 2000.

[9] Ceph. libcrush. https://github.com/ceph/

libcrush, 2017.

[10] Siu-Cheung Chau and Ada Wai-Chee Fu. A gracefully
degradable declustered RAID architecture. Cluster Com-
puting, 5(1):97–105, 2002.

[11] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking cloud
serving systems with YCSB. In Proceedings of the 1st
ACM symposium on Cloud computing (SOCC’10), pages
143–154, 2010.

[12] Netapp Corporation. How long does it approximately take
for a RAID reconstruction? https://kb.netapp.com/

support/s/article/ka21A0000000jOzQAI/how-

long-does-it-approximately-take-for-a-

raid-reconstruction?language=en_US, 2017.

[13] Oracle Corporation. A better RAID strategy
for high capacity drives in mainframe storage.
http://www.oracle.com/technetwork/articles/

systems-hardware-architecture/raid-

strategy-hi-capacity-drives-170907.pdf,
2013.

[14] Stijn Eyerman and Lieven Eeckhout. System-level perfor-
mance metrics for multiprogram workloads. IEEE micro,
28(3), 2008.

[15] fio. https://github.com/axboe/fio, 2017.

[16] Ashish Goel, Cyrus Shahabi, Shu yuen Didi Yao, and
Roger Zimmermann. SCADDAR: An efficient random-
ized technique to reorganize continuous media blocks.
In Proceedings of the 18th International Conference on
Data Engineering (ICDE’02), pages 473–482, 2002.

[17] Raúl Gracia-Tinedo, Josep Sampé, Edgar Zamora, Marc
Sánchez-Artigas, Pedro Garcı́a-López, Yosef Moatti, and
Eran Rom. Crystal: Software-defined storage for multi-
tenant object stores. In Proceedings of the 15th USENIX
Conference on File and Storage Technologies (FAST’17),
pages 243–256, 2017.

[18] Mark Holland and Garth A. Gibson. Parity declustering
for continuous operation in redundant disk arrays. In Pro-
ceedings of the 5th International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS’92), pages 23–35, 1992.

[19] Mark Holland, Garth A. Gibson, and Daniel P. Siewiorek.
Fast, on-line failure recovery in redundant disk arrays.
In Proceedings of The Twenty-Third International Sym-
posium on Fault-Tolerant Computing (FTCS-23), pages
422–431, 1993.

[20] Mark C. Holland. On-line data reconstruction in redun-
dant disk arrays. PhD thesis, Pittsburgh, PA, USA, 2001.

[21] Robert Y. Hou, Jai Menon, and Yale N. Patt. Balancing
I/O response time and disk rebuild time in a RAID5 disk
array. In Proceedings of the Twenty-sixth Hawaii Interna-
tional Conference on System Sciences (HICSS-26), pages
70–79 vol.1, 1993.

[22] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young.
The automatic improvement of locality in storage sys-
tems. ACM Transactions on Computer Systems (TOCS),
23(4):424–473, November 2005.

[23] Yiming Hu and Qing Yang. DCD - Disk Caching Disk: A
new approach for boosting I/O performance. In Proceed-
ings of the 23rd International Symposium on Computer
Architecture (ISCA’96), pages 169–178, 1996.

[24] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt
Lloyd, Sanjeev Kumar, and Harry C. Li. An analysis of

USENIX Association 16th USENIX Conference on File and Storage Technologies 291

Facebook photo caching. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles
(SOSP’13), pages 167–181, 2013.

[25] IBM. IBM XIV storage system architecture and
implementation. http://www.redbooks.ibm.com/

redbooks/pdfs/sg247659.pdf, 2017.

[26] Robert J. Jenkins. Hash functions for hash ta-
ble lookup. http://burtleburtle.net/bob/hash/

evahash.html, 1997.

[27] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and
Jihong Kim. Lifetime improvement of NAND flash-based
storage systems using dynamic program and erase scal-
ing. In Proceedings of the 12th USENIX Conference on
File and Storage Technologies (FAST’14), pages 61–74,
2014.

[28] Hannu H. Kari, Heikki K. Saikkonen, Nohpill Park, and
Fabrizio Lombardi. Analysis of repair algorithms for
mirrored-disk systems. IEEE Transactions on Reliabil-
ity, 46(2):193–200, 1997.

[29] Osama Khan, Randal Burns, James Plank, William
Pierce, and Cheng Huang. Rethinking erasure codes for
cloud file systems: Minimizing I/O for recovery and de-
graded reads. In Proceedings of the 10th USENIX Confer-
ence on File and Storage Technologies (FAST’12), pages
251–264, 2012.

[30] Edward K. Lee and Randy H. Katz. The performance of
parity placements in disk arrays. IEEE Transactions on
Computers (TOC), 42(6):651–664, Jun 1993.

[31] Jack Y. B. Lee and John C. S. Lui. Automatic re-
covery from disk failure in continuous-media servers.
IEEE Transactions on Parallel and Distributed Systems
(TPDS), 13(5):499–515, 2002.

[32] Christopher R. Lumb, Jiri Schindler, Gregory R. Ganger,
David Nagle, and Erik Riedel. Towards higher disk head
utilization: Extracting free bandwidth from busy disk
drives. In Proceedings of the 4th Conference on Sym-
posium on Operating System Design & Implementation
(OSDI’00), pages 87–102, 2000.

[33] Jai Menon and Dick Mattson. Distributed sparing in disk
arrays. In Digest of Papers COMPCON Spring 1992,
pages 410–421, 1992.

[34] Alberto Miranda and Toni Cortes. CRAID: online RAID
upgrades using dynamic hot data reorganization. In Pro-
ceedings of the 12th USENIX conference on File and Stor-
age Technologies (FAST’14), pages 133–146, 2014.

[35] MongoDB. https://www.mongodb.com/, 2017.

[36] Richard R. Muntz and John C. S. Lui. Performance anal-
ysis of disk arrays under failure. In Proceedings of the
16th International Conference on Very Large Data Bases
(VLDB’90), pages 162–173, 1990.

[37] Dushyanth Narayanan, Austin Donnelly, and Antony
Rowstron. Write off-loading: Practical power manage-
ment for enterprise storage. ACM Transactions on Stor-
age (TOS), 4(3):10:1–10:23, 2008.

[38] Edmund B. Nightingale, Jeremy Elson, Jinliang Fan,
Owen Hofmann, Jon Howell, and Yutaka Suzue. Flat
datacenter storage. In Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI’12), pages 1–15, 2012.

[39] Tycho Nightingale, Yiming Hu, Qing Yang, Ty-
cho Nightingale Y, Yiming Hu Z, and Qing Yang Y. The
design and implementation of a DCD device driver for
Unix. In Proceedings of the 1999 USENIX Technical
Conference (ATC’99), pages 295–308, 1999.

[40] David A. Patterson, Garth A. Gibson, and Randy H. Katz.
A case for redundant arrays of inexpensive disks (RAID).
In Proceedings of the 1988 ACM International Confer-
ence on Management of Data (SIGMOD’88), pages 109–
116, 1988.

[41] Beomjoo Seo and Roger Zimmermann. Efficient disk
replacement and data migration algorithms for large
disk subsystems. ACM Transactions on Storage (TOS),
1(3):316–345, August 2005.

[42] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Improving storage system avail-
ability with D-GRAID. In Proceedings of the USENIX
Conference on File and Storage Technologies (FAST’04),
pages 15–30, 2004.

[43] Marc Staimer and Antony Adshead. Post-RAID
alternatives address RAID’s shortcomings. http:

//www.computerweekly.com/feature/Post-RAID-

alternatives-address-RAIDs-shortcomings,
2010.

[44] Eno Thereska, Jiri Schindler, John S. Bucy, Brandon
Salmon, Christopher R. Lumb, and Ganger R. Ganger.
A framework for building unobtrusive disk maintenance
applications. In Proceedings of the 3rd USENIX Confer-
ence on File and Storage Technologies (FAST’04), pages
213–226, 2004.

[45] Lei Tian, Dan Feng, Hong Jiang, Ke Zhou, Lingfang
Zeng, Jianxi Chen, Zzhikun Wang, and Zhenlei Song.
PRO: A popularity-based multi-threaded reconstruction
optimization for RAID-structured storage systems. In
Proceedings of the 5th USENIX Conference on File and
Storage Technologies (FAST’07), pages 277–290, 2007.

[46] tpcc mysql. https://github.com/Percona-Lab/

tpcc-mysql, 2017.

[47] Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Ganger R. Ganger. Argon: Performance insulation
for shared storage servers. In Proceedings of the 5th
USENIX Conference on File and Storage Technologies
(FAST’07), pages 5–5, 2007.

292 16th USENIX Conference on File and Storage Technologies USENIX Association

[48] Jiguang Wan, Jibin Wang, Changsheng Xie, and Qing
Yang. S2-RAID: Parallel RAID architecture for fast data
recovery. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 25(6):1638–1647, 2014.

[49] Zhufan Wang. Reliability analysis on RAID+.
https://github.com/RAIDPLUS/Additional-

materials/raw/master/reliability.pdf, 2018.

[50] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of the
7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI ’06), pages 307–320, 2006.

[51] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and
Carlos Maltzahn. CRUSH: Controlled, scalable, decen-
tralized placement of replicated data. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing
(SC’06), 2006.

[52] Brent Welch, Marc Unangst, Zainul Abbasi, Garth A.
Gibson, Brian Mueller, Jason Small, Jim Zelenka, and
Bin Zhou. Scalable performance of the Panasas parallel
file system. In Proceedings of the 6th USENIX Confer-
ence on File and Storage Technologies (FAST’08), pages
2:1–2:17, 2008.

[53] John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The HP AutoRAID hierarchical storage sys-
tem. ACM Transactions on Computer System (TOCS),
14(1):108–136, February 1996.

[54] Suzhen Wu, Hong Jiang, Dan Feng, Lei Tian, and
Bo Mao. WorkOut: I/O workload outsourcing for boost-
ing RAID reconstruction performance. In Proceedings of
the 7th USENIX Conference on File and Storage Tech-
nologies (FAST’09), pages 239–252, 2009.

[55] Tao Xie and Hui Wang. MICRO: A multilevel caching-
based reconstruction optimization for mobile storage
systems. IEEE Transactions on Computers (TOC),
57(10):1386–1398, 2008.

[56] Qin Xin, Ethan L. Miller, and Thomas J. E. Schwarz.
Evaluation of distributed recovery in large-scale stor-
age systems. In Proceedings of 13th International
Symposium on High-Performance Distributed Computing
(HPDC’04), pages 172–181, 2004.

[57] Guangyan Zhang, Jiwu Shu, Wei Xue, and Weiming
Zheng. SLAS: An efficient approach to scaling round-
robin striped volumes. ACM Transactions on Storage
(TOS), 3(1):3:1–3:39, 2007.

[58] Guangyan Zhang, Weiming Zheng, and Jiwu Shu. ALV:
A new data redistribution approach to RAID-5 scaling.
IEEE Transactions on Computers (TOC), 59(3):345–357,
March 2010.

[59] Weiming Zheng and Guangyan Zhang. FastScale: Ac-
celerate RAID scaling by minimizing data migration. In

Proceedings of the 9th USENIX Conference on File and
Storage Technologies (FAST’11), pages 149–161, 2011.

[60] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
Graph: Large-scale graph processing on a single ma-
chine using 2-level hierarchical partitioning. In Proceed-
ings of the 2015 USENIX Annual Technical Conference
(ATC’15), pages 375–386, 2015.

USENIX Association 16th USENIX Conference on File and Storage Technologies 293

Logical Synchronous Replication in the Tintri VMstore File System

Gideon Glass ∗, Arjun Gopalan, Dattatraya Koujalagi, Abhinand Palicherla, and Sumedh Sakdeo †

Tintri, Inc.

{gxglass, arjun91, dattatraya, abhinandh, sumedhsakdeo}@gmail.com

Abstract
A standard feature of enterprise data storage systems

is synchronous replication: updates received from clients
by one storage system are replicated to a remote stor-
age system and are only acknowledged to clients after
having been stored persistently on both storage systems.
Traditionally these replication schemes require configu-
ration on a coarse granularity, e.g. on a LUN, filesys-
tem volume, or whole-system basis. In contrast to this,
we present a new architecture which operates on a fine
granularity—individual files and directories. To imple-
ment this, we use a combination of novel per-file ca-
pabilities and existing techniques to solve the following
problems: tracking parallel writes in flight on indepen-
dent storage systems; replicating arbitrary filesystem op-
erations; efficiently resynchronizing after a disconnect;
and verifying the integrity of replicated data between two
storage systems.

1 Introduction
Synchronous replication in enterprise data storage sys-
tems allows customers to situate redundant storage sys-
tems at campus or metropolitan distances. This provides
continuous availability in the event of hardware failures,
power or cooling failures, or other disasters. One of the
storage systems acts as primary, responsible for accept-
ing IO from clients. The peer storage system acts as
secondary and is responsible for accepting replicated IO
from the primary system. In the common case when both
storage systems are in a synced state, a cluster failover
involving a role reversal between the primary and sec-
ondary can occur without loss of data.

To handle temporary outages (e.g. minor network
glitches, non-disruptive software upgrades of either stor-
age system), the primary and secondary coordinate to
bring both the storage systems into a consistent state,

∗Currently at Google.
†Currently at Lyft.

without timing out client operations. To handle outages
of arbitrary duration (e.g. power failure, lengthy network
disruptions, or maintenance related activities) where the
secondary is offline or unreachable by the primary, some
mechanism for efficient resynchronization is required—
once the secondary comes back on line, the primary sys-
tem should be able to generate and replicate the delta
changes that occurred while the secondary was offline.

A related feature that is often supported is transparent
failover. In the event of a failure of the primary storage
system, it enables the secondary system to take over in
a way that does not disrupt client applications—with no
loss of data and no loss of availability. This failover can
be manually driven or automated. Figure 1 illustrates a
typical deployment.

We have addressed the problems of synchronous repli-
cation and transparent failover by designing, implement-
ing, and deploying a system that is flexible, efficient,
and intuitive to use. Our system supports logical syn-
chronous replication—the ability to only replicate a por-
tion of the file system namespace, specified as a top-level
directory. Designing this system involved solving several
sub-problems:

• maximizing the overlap of write execution on the
Primary and Secondary storage systems to mini-
mize latency overhead of mirroring; a novel filesys-
tem metadata mechanism is used for this purpose
(Section 4).

• replicating complex, arbitrary filesystem opera-
tions; a two-phase commit protocol is used for this
(Section 5).

• efficiently resynchronizing the two storage systems
after extended disconnects (Section 6).

Finally, we have implemented a novel distributed in-
tegrity check that allows us to verify periodically or on
demand that Primary and Secondary contain identical
data (Section 7).

USENIX Association 16th USENIX Conference on File and Storage Technologies 295

host 2host 1 host 3

VMstore A VMstore B

A site
network

10 Gbps+, <=10ms RTT B site
network

host 4 host 5 host 6

low bandwidth
<= 500ms RTT

quorum
service

Figure 1: Generic synchronous replication deployment topol-
ogy with multiple client hosts, a primary storage system, a sec-
ondary storage system, and a quorum service to facilitate auto-
matic failover.

2 VMstore Background
In this section we discuss specific characteristics of our
workloads and why they motivate logical replication, and
our technology base.

2.1 Workload
As its name suggests, VMstore is a specialized storage
system designed for virtualization workloads. By default
the system exposes a single NFS (or SMB) mount point.
On NAS storage, virtual machines (VMs) are typically
stored in self-contained directories named after the VM.
VM directories typically contain on the order of ten to
twenty files, which are either small (e.g. text configu-
ration files) or very large—virtual disk image files cor-
responding to the virtual disks associated with the VM.
VMstore does not support general purpose NFS work-
loads. As a result, the system can be substantially sim-
plified in one dimension: the number of files it is required
to support. VMstore models vary, but support on the or-
der of 100,000 files per system. The median usage is
far below these limits, with most systems having under
10,000 files. This simplification affects our replication-
related design choices and will be discussed in further
sections. A final important aspect of our workload is
that file writes comprise in excess of 99.9% of muta-
tion events; file and directory creation, deletion, renames,
etc are not uncommon but are generally associated with
VM provisioning activities, not with ongoing application
workloads running within VM’s themselves.

Another aspect of the system is the desire to maxi-
mize simplicity for the user. A high priority is placed
on making the system usable by IT generalists and vir-
tualization administrators. As a result, the system does
not expose traditional storage abstractions such as RAID
groups, filesystem volumes, or LUNs to users. Con-
sequently, apart from conceivably replicating the entire

storage array, there is no obvious storage abstraction on
which to expose synchronous replication for configura-
tion purposes. 1

From our prior experience with asynchronous replica-
tion, we know that many customers choose not to repli-
cate significant portions of their workloads. As an exam-
ple, a development/test customer may choose to repli-
cate virtual machines housing important data (source
code control system, bug database, etc) but not virtual
machines running automated continuous integration test
workloads. Customers generally are very aware of the
relative differences in value of the data inside the dif-
ferent types of virtual machines in their environments.
Commonly, a minority of VM’s are actually configured
for replication. This varies on a continuum, of course,
but in rough numbers, it is common for, say, 25% of vir-
tual machines to be configured for replication.

Based on these requirements—that enterprise cus-
tomers be able to simply express replication policy on a
subset of the files and their systems and efficiently repli-
cate that data across geographically disparate locations,
we introduce logical synchronous replication as a mech-
anism to continuously replicate fine-grained subsets of
file system state.

2.2 Filesystem Architecture
The VMstore file system is a purpose-built storage sys-
tem implementing all layers of the storage stack from
RAID to file access protocols (NFS and SMB) in a user
level filesystem process. Features expected of an enter-
prise storage system, such as durable writes, automatic
crash recovery (from NVRAM), compression, dedupli-
cation, snapshots, writable clones, and asynchronous
replication are present.

The VMstore file system is a log-structured file sys-
tem [9]. As such, data is never overwritten in place.
Additionally, it implements a transaction system allow-
ing arbitrarily complex metadata updates with ACID se-
mantics. (This system is based on Stasis [10] but with
significant local enhancements to integrate with the VM-
store log-structured storage system.) We use this facil-
ity to construct novel mechanisms to track file writes in
progress and to implement per-file content checksums;
these are discussed in further sections.

For high availability (HA) within a given system, a
VMstore system contains two controllers (x86 servers),
each with its own NVRAM and set of network inter-
faces. The controllers access shared storage devices
(SSD and/or HDD, depending on model). High availabil-
ity is implemented in an active/passive model. For pur-

1Per-VM synchronous replication was an option we considered.
However, this does not work well with transparent failover, discussed in
the next section, because it would require a customer-assigned Cluster
IP address on a per-VM basis.

296 16th USENIX Conference on File and Storage Technologies USENIX Association

poses of synchronous replication, we do not assume local
high availability; replication simply runs on whichever
local controller is Active.

3 Replication System Overview
This section introduces our synchronous replication sys-
tem, describes its configuration model for users, dis-
cusses error situations and how we handle them, and out-
lines how we support transparent failover.

3.1 Introduction
A requirement from our customer base is to support not
just synchronous replication but also client-transparent
failover across storage systems; customers do not want to
perform any reconfiguration in the event of a total failure
of one storage system, or a data center outage. To dis-
tinguish between local-system HA-related failover and
failover across VMstores in a synchronous replication re-
lationship, we refer to the former as local failover or HA
failover and to the latter as cluster failover. By trans-
parent we mean specifically that clients are not aware
of failovers occurring, except for brief periods of dis-
connection. In particular, no reconfiguration of client
hosts is needed—failover, either local failover or cluster
failover—requires no manual intervention.

In our environment, virtualized guest operating sys-
tems (Linux and Windows) use internal I/O timeouts of
60 seconds or higher. Within VMstore, we require inter-
nal failovers to complete within 30 seconds. This gives
the hypervisor clients enough time to reconnect and reis-
sue I/Os so that guest operating systems do not time out.

We introduce the notion of a mirrored datastore—
essentially an IP address and a mount point—as the basis
for configuring synchronous replication. We require each
mirrored datastore to have a dedicated Cluster IP address
associated with it. This IP address is mounted by clients
for IO operations and fails over between the two storage
systems, similar to how local system Data IP addresses
are failed over during local HA failover. To make this
concrete, Table 1 provides an example showing a mix of
synchronously replicated and unreplicated datastores.

Cluster IP Mount Point Replicated?

10.200.200.5 /tintri No
10.300.100.60 /tintri/alpha Yes
10.300.100.61 /tintri/beta Yes

Table 1: Example client view of datastores on a VMstore.

The network requirements for Cluster IP addresses are
simple: client hosts must be able to reach this address
regardless of which VMstore happens to be the Primary

at any point in time.2

In our system, synchronous replication is applied re-
cursively to all content under the mirrored datastore. In
practice this means that a virtual machine which the cus-
tomer desires to replicate should simply be placed within
a mirrored datastore top-level directory (e.g. /tintri/al-
pha/ImportantMachine), and one which is not desired to
be synchronously replicated should be placed in the top-
level directory (e.g. /tintri/LessImportantMachine). Note
that the contents of alpha and beta from Table 1 may
be replicated to different peer VMstores, or to the same
peer VMstore; they are configured independently and are
managed independently within VMstore. The cluster IP
addresses associated with these datastores are also inde-
pendently managed and are exported by whichever VM-
store system is the replication primary. To simplify error
checking and to avoid problems with conflicting policies,
we allow only top-level subdirectories to be replicated.
The root directory (exported as /tintri) cannot be config-
ured for replication. Customers wanting to replicate their
entire workload can simply place all VM’s within one or
more mirrored datastore subdirectories.

3.2 Failure Model and Operational Re-
quirements

The failure model we assume is as follows. Machines
may fail at any time, e.g. because of software crashes or
power failures. Datacenters or the network may fail any
time and for extended durations. The network may cor-
rupt packets (and go undetected by the TCP checksum);
we detect this via strong checksums in our messaging
protocol and handle it as we would handle a transient
TCP connection loss (i.e. by simply reconnecting). We
assume peers are not malicious/Byzantine and VMstores
always authenticate each other as the first step in each
connection. Finally, individual devices (SSDs or HDDs)
may fail, but lower levels of the filesystem insulate repli-
cation from having to handle device errors.

We now discuss the operational requirements of our
system. Availability is important but consistency (data
integrity) takes precedence over availability when there
is a tradeoff. Availability, in turn, takes precedence over
absolute redundancy. As discussed in detail in Sec-
tion 3.3, this is done by taking the Secondary out of
sync when necessary, and then resychronizing it when
it comes back on line. An optional mode, which we have
not implemented, would be for the Primary to fail I/Os
which it could not replicate due to the Secondary (or net-
work) being down. This might conceivably be useful for
customers who prioritize absolute redundancy over avail-
ability.

2For cross-site replication, this requires the use of a stretched layer 2
or layer 3 network. Customers who deploy synchronous replication
typically already have this in place.

USENIX Association 16th USENIX Conference on File and Storage Technologies 297

3.3 Replication States
Figure 2 depicts a slightly simplified view of the state of
a given mirrored datastore within a given VMstore sys-
tem. Each VMstore maintains its state for a given data-
store separately, so for a given mirrored datastore there
are really two instances of this state machine operating
in a loosely coupled manner.

The following invariants relate to the state machine
and affect allowable state changes.

1. Only one VMstore may be Primary at any given
time. Whichever system is Primary owns the Clus-
ter IP address and advertises it on the network.

2. Upon initial configuration of synchronous replica-
tion, the Primary system may have a significant
amount of data in the configured subdirectory. An
initialization process is required to bring the Sec-
ondary into sync. The initialization process is es-
sentially a special case of resynchronization (dis-
cussed in Section 6) in which the Secondary hap-
pens to be empty at the start of the process. This
process may take a significant amount of time. The
top row of the state machine contains states related
to initialization/resync. The datastore is not in sync
in these states.

3. During initialization and resync, the Secondary
does not have a complete copy of data. Cluster
failover is not possible until initialization/resync
completes.

4. The normal state of operation is that both systems
are connected and in sync (the Primary is in state
3; the Secondary is in state 7). In this state, client
operations are fully replicated and are persisted to
NVRAM on both systems prior to being acknowl-
edged to clients (i.e., normal synchronous replica-
tion semantics are in effect).

5. Automatic cluster failover (of Secondary to Pri-
mary) requires a quorum—two of three systems. An
external quorum service having storage independent
of the two VMstores is provided for this purpose.
Automatic cluster failover is initiated by an in-sync
Secondary after a period of time (30 seconds) for
which it has not heard from the nominal Primary,
provided the Secondary can communicate with the
quorum service.

6. Conversely, to handle a Secondary which is inacces-
sible, a Primary must undergo a transition to mark
the datastore as being “out of sync” (not shown in
Figure 2). There is a subtlety here: the Secondary,
meanwhile, may have initiated a cluster failover in
conjunction with the quorum service. As a result,
a Primary must coordinate with the quorum service
in order to mark a Secondary as being out of sync,
and must be prepared for this to fail (i.e. if the Sec-
ondary already took over). If that fails, the former

Primary must relinquish ownership of the datastore
and must drop in-flight I/O requests and not return
errors to clients.3

A design choice we enforce is that operations which
can succeed on the Primary but which fail on the Sec-
ondary result in the Primary taking the Secondary out of
sync immediately (a transition from state 3 → state 4
→ state 2). The most likely example of this type would
be the Secondary being out of space; less commonly,
the Secondary might encounter some other limit (e.g.,
number of files, number of snapshots) that might prevent
an operation that otherwise can succeed on the Primary.
Again this policy reflects the choice to prioritize avail-
ability over absolute redundancy in some conditions. (To
recover from this condition, the Primary will periodically
reconnect to the Secondary and attempt to resync it; this
will succeed if the user has freed up capacity or otherwise
addressed the constraint that earlier had caused failure.)

The state machine also reflects a practical engineer-
ing consideration: taking the Secondary out of sync then
later resyncing it has a non-trivial minimum cost, and we
seek to avoid taking a Secondary out of sync if possi-
ble. This corresponds to two practical scenarios: brief
network outages, and local HA failovers due to software
crashes and restarts.

In practice this means that we attempt to recover from
brief disconnects (up to approximately 30 seconds) by
pausing client acknowledgments at the Primary, and at-
tempting to reconnect to the Secondary in the back-
ground. If the reconnect attempt succeeds within the
timeout, the Primary will resend buffered, unacknowl-
edged updates (and only then ack the client), and the
system will stay in Sync. The states in the second
row of Figure 2 reflect these activities. “Catching Up”
in the state descriptions refers to replicating (possibly
re-replicating) buffered updates from the Primary; Sec-
tions 4 and 5 discuss this in detail.

The protocol between the VMstores and the quorum
service solves a standard distributed consensus problem
and will not be discussed in detail. The quorum service is
provided by a standalone software application which can
be installed by the customer in a virtual machine either
on premises or in the public cloud; the main operational
requirements are that the storage for the quorum service
must be independent from the VMstores for which it is
arbitrating, and network connectivity to the quorum ser-
vice should be good.

3In practice, a soon-to-be-former Primary that becomes isolated on
the network must relinquish ownership of the mirrored datastore, and
must give up the Cluster IP, before the Secondary takes over, to prevent
both systems from attempting to advertise the Cluster IP on the net-
work. The Primary transitions out of the Primary/Synced/Connected
state using a smaller timeout (e.g. 25 seconds) than the timeout driving
the Secondary’s attempt to initiate cluster failover. These transitions
are not shown on the diagram for brevity.

298 16th USENIX Conference on File and Storage Technologies USENIX Association

Primary state machine Secondary state machine

Figure 2: Replication System State Machine. This is shown from the point of view of a mirrored datastore in a single VMstore.
The other VMstore will be in one of the other states. For brevity, states relating to automatic cluster failover are not shown.

3.4 Client Transparency
Implementing transparent cluster failover requires that
clients of a failed storage system be able to reconnect to
the Cluster IP address and see a view of the world exactly
consistent with what they previously saw. This includes
file content, user-visible metadata (path names, file at-
tributes, etc) and client system-visible metadata (e.g.,
NFS file handles). To implement this, we assign internal
file identifiers and NFS file handles as follows. The Pri-
mary makes all such assignments without having to co-
ordinate with the Secondary—the fact that it is Primary
gives it the right to assign these values.4

• File Global Identification. We identify each file
in every mirrored datastore with a globally unique
FileId. This consists of a 128-bit datastore-specific
UUID and a datastore-relative 64-bit monotonically
increasing counter. The global FileID value is used
extensively within the replication system, as the val-
ues are the same on both systems.

• NFS File Handles must be stable across cluster
failovers. File handles are based on the global

4A side effect of this scheme is that at initialization, if the source
datastore directory contains existing content, that content must be re-
assigned new file identifiers—and consequently, file handles—to avoid
possible conflicts with unrelated existing content on the Secondary. We
require that this content be off-line while this occurs, as clients will en-
counter stale file handles if accessing content during this process. In
practice, customers almost always configure synchronous replication
on empty source directories and migrate data into the mirrored datas-
tore by using live storage migration features (e.g., Storage vMotion) in
the virtualization system.

FileId. Because only the Primary system assigns
FileId’s, and because FileId’s are unique within a
datastore (due to containing the datastore UUID as
a prefix), we avoid any need for granular synchro-
nization to negotiate assignment of these values.

• Operation sequencing: Operation Sequence Num-
bers (OSN’s) are used to globally order all opera-
tions within a mirrored datastore. An OSN consists
of a 64-bit cluster generation number, incremented
whenever a cluster failover occurs, and a 64-bit lo-
cal sequence number, assigned and incremented on
the cluster Primary for every new incoming opera-
tion. Replicated operations are tagged with OSN’s
for bookkeeping purposes.

During a cluster failover in which a Primary loses
ownership of a datastore, the system must be able to iden-
tify stale operations and drop them, rather than execute
them. A full description of the solution to this problem is
beyond the scope of this paper, but to summarize, we tag
all requests entering the system with tokens which con-
tain among other things the cluster generation number.
Requests tagged with generation numbers older than the
current generation number must be dropped.

4 Data Path: Writes
Minimizing write latency is an important consideration
in primary storage systems. Users expect write latencies
on unreplicated systems to be at most small numbers of
milliseconds. Replication distances are typically small.
Industry-wide guidance typically calls for not more than

USENIX Association 16th USENIX Conference on File and Storage Technologies 299

SMB/RPC Receive IO from
Client

QoS Admission
Control

FileOps
WRITE/READ

FileOps
OTHER

SMB/RPC Send Response
to Client

OPERATION SPLITTER

HANDSHAKE

SMB/RPC Receive IO from
Client

QoS Admission
Control

FileOps
WRITE/READ

FileOps
OTHER

SMB/RPC Send Response
to Client

OPERATION SPLITTER

HANDSHAKE

PRIMARY
IO STACK

SECONDARY
IO STACK

S
Y
N
C
R
E
P
L

P
R
O
T
O
C
O
L

Figure 3: IO stack with operation splitting and handshake for
synchronous replication between a pair of storage systems.

10ms RTT between storage systems; customers com-
monly deploy with 1-2ms RTT. In order to maximize
overlap between write execution on the Primary, repli-
cation of writes to the Secondary, and write execution
on the Secondary, we perform replication processing as
early in the pipeline as possible.

Figure 3 depicts logical steps in write processing
inside the VMstore file system. The top box indi-
cates protocol processing for Microsoft SMB [1] or
RPC/XDR [11, 12] processing for NFS. The module la-
beled “operation splitter” refers to front-end synchronous
replication processing—it splits write operations for lo-
cal processing and enqueues them for transmission to
the Secondary. The operation can then traverse various
stages of the pipeline in parallel on both the storage sys-
tems. In case one storage system is under contention, the
operation would experience queueing delays only on that
individual storage system.

The modules labeled “FileOps Write/Read”, and
“FileOps Other” correspond to existing IO stack process-
ing for reads, writes, and all other operations (file cre-
ations, deletions, truncations, directory operations, etc).
Once operations have executed locally within the Pri-
mary VMstore, flow returns to synchronous replication
in the box labeled “Handshake Module”. On the Primary,
the handshake module will hold onto the write operation
until the Secondary sends an acknowledgement for this
write or until such time as synchronous replication al-
lows the operation to be acknowledged to the protocol
client, whichever is sooner. The latter corresponds to
when the response from the Secondary takes longer than
the allowed time forcing the Primary to go out of sync (as
described in Section 3.3). On the Secondary, the hand-

shake module will hold onto the write operation until the
Primary has acknowledged completing the write to the
Secondary. This step is required because the Secondary
keeps track of writes that are still pending execution on
the Primary and the acknowledgement from the Primary
is used to free up metadata for the write on the Secondary
(discussed below).

4.1 File Locks
The desire to achieve maximum parallelism within the
system must be balanced against concerns for correct-
ness. Here are some cases that illustrate these considera-
tions:

1. Suppose a file is created and then is immediately
written. What happens on the Secondary if, because
of queueing at different points in processing within
the system, the write operation is able to be pro-
cessed on the Secondary before the file create oper-
ation completes its processing? The Secondary may
have allowed the Primary to acknowledge the file
creation to the client before the Secondary has ac-
tually finished processing the file creation—the op-
eration may have been intent-logged only (this is
discussed in Section 5).

2. What happens if a client issues a write to a given
file, at a given [Offset, Byte Count], and then issues
a separate, overlapping write before the first write
has acknowledged? How do we ensure that these
writes are processed in the same order on the two
systems?

In designing our replication system, an important con-
sideration was to avoid modifying a lot of the existing
file system logic as far as possible. In VMstore, meta-
data operations (e.g. file creates) are executed by threads
in a particular thread pool. Write operations are executed
separately by a software pipeline involving a different set
of threads.

To address these issues, the operation splitter module
(Figure 3) imposes two kinds of file locks: per-file oper-
ation locks and range locks. The per-file operation locks
are acquired by reads, writes, and metadata operations
prior to their execution. Reads and writes acquire oper-
ation locks in a shared mode, whereas metadata opera-
tions like truncate, file create, rename, etc acquire them
in an exclusive mode. This causes metadata operations
to be executed in isolation on both the storage systems
and solves case 1 above. To address case 2, we introduce
range locks maintained on a tuple consisting of < FileID,
StartOffset, RequestSize >. Write and read operations
acquire locks using the respective offset and byte count
values specified in the operation. This allows reads and
writes to non-overlapping byte ranges to execute in par-
allel. In practice lock contention is not a problem be-
cause clients do not issue update patterns that inherently

300 16th USENIX Conference on File and Storage Technologies USENIX Association

race. This is because guest operating systems are gener-
ally careful to avoid issuing multiple outstanding writes
to overlapping ranges of disk blocks.

4.2 Metadata Support and Distributed Re-
covery of Writes

As noted earlier, one of the challenges of any syn-
chronous replication system is to keep track of all writes
in progress. We leverage a combination of NVRAM and
our flexible metadata transactional system for this pur-
pose. For each synchronous replication datastore, we
maintain a persistent hash table that contains one en-
try per in-flight write. Entry tuples are <FileId, OSN,
byte offset, length> with OSN being the key. We re-
fer to these tuples as PAW Entries (“Primary Acknowl-
edgement Waiting”) on the Primary. On the Secondary,
the same set of tuples are maintained for writes which
have been received and executed and we refer to them as
SAW entries (“Secondary Acknowledgement Waiting”).
To summarize, the presence of a PAW entry means that
the Primary is waiting for an acknowledgement from the
Secondary and the presence of a SAW entry means that
the Secondary is waiting for an acknowledgement from
the Primary.

PAW/SAW metadata is associated with each write op-
eration as it proceeds through various write processing
stages within VMstore. As part of the metadata trans-
action which updates file metadata to point to a newly-
written block, the transaction also commits a PAW entry
identifying the block in question. This is done both on
the Primary and the Secondary. Identifying all blocks
which may be dirty on both sides requires iterating over
all PAW/SAW records in the mirrored datastore. The
cost of this is proportional to the number of in-flight IOs
in the system, which is bounded. If the system under-
goes a local HA failover before the transaction commits
and persists, the PAW/SAW information can be retrieved
from NVRAM along with the data and other information
about the write.

The PAW/SAW update sequence across the two sys-
tems is as follows:

1. When processing a write, the Primary will create a
local PAW entry;

2. After receiving the write, the Secondary will have
stabilized the write to NVRAM and will subse-
quently create a SAW entry for itself; the Secondary
then acks the write to the Primary;

3. At this point (and after its local NVRAM update
is finished), the Handshake Module on the Primary
acks the write to the client;

4. Simultaneously, the Primary acks the Secondary’s
ack and releases its PAW entry;

5. Upon receipt of the second ack, the Secondary can
free its SAW entry.

Note that the Secondary commits writes to NVRAM
and SSD storage independent of the Primary. As a result,
scenarios like the following are possible:

1. Primary receives writes W1 and W2 (could be to the
same or different files).

2. These writes are mirrored to Secondary and are en-
queued for local processing on Primary.

3. Primary writes W2 persistently. However, before
writing W1 to NVRAM, the Primary crashes and
performs a local HA failover.

4. Secondary writes W1 persistently. However, before
writing W2 to NVRAM, the Secondary crashes and
also performs a local HA failover.

5. The Primary and Secondary complete local HA
failovers independently.

6. After recovering, the Primary is able to connect to
the Secondary and must now reconcile W1 and W2.

To handle this situation and really any situation where
a Primary and Secondary have become disconnected
(and one or both may have restarted), after every recon-
nect we perform what we call distributed recovery. This
happens regardless of whether the systems are in-sync or
not. To handle in-progress unacknowledged writes, both
sides iterate over all the PAW/SAW entries in the datat-
store. The Secondary sends its set to the Primary which
merges it with its own. Then, the Primary simply reads
out its copy of data for all blocks involved and sends the
data to the Secondary to rewrite the relevant blocks. This
ensures that the datastore contents are identical upon the
completion of distributed recovery (for the in-sync case).
Once this completes, new writes are allowed into the sys-
tem on the Primary.

In the scenario described above, W2 is persisted on
Secondary for the first time as part of distributed recov-
ery. With respect to W1, the data on Secondary under-
goes a rollback to the contents as dictated by the Primary.
This is correct because neither W1 nor W2 was acknowl-
edged to the client prior to the sequence of crashes.5

At some point it is necessary to remove PAW/SAW en-
tries to bound the work involved in distributed recovery.
If the write has persisted on the Secondary, and the Pri-
mary has an acknowledgement of that, the correspond-
ing PAW entry is deleted on the Primary. Similarly, if the
write has persisted on the Primary, and the Secondary has
an acknowledgement for that, the corresponding SAW
entry is deleted on the Secondary. PAW and SAW entry
deletions correspond to Steps 4 and 5 respectively in the
PAW/SAW update sequence described above.

5Presumably the client will reconnect per its normal logic and reis-
sue both writes to the Primary. However, if the client also crashes—
which is fine—then both the Primary and Secondary end up with only
write W2 written persistently. This is also fine: there is no guarantee
about whether the storage systems stabilized an unacknowledged write,
and there is no ordering guarantee between simultaneously executing
unacknowledged writes.

USENIX Association 16th USENIX Conference on File and Storage Technologies 301

5 General Filesystem Operations
We use the term metadata operations (or just metadata
ops) to refer to all filesystem modifications other than file
writes. Many of these operations are familiar POSIX/N-
FSv3 operations: file creation and deletion, directory cre-
ation and deletion, rename, setattr, link creation, and so
on. Additionally, we implement several proprietary op-
erations. A full description of these operations is beyond
the scope of this paper, but to summarize, the operations
are space reservation (in which the system attempts to re-
serve physical capacity for the full logical size of a given
file); file-level snapshot creation and deletion; and file-
level clone creation.6

Metadata ops differ from writes in several important
ways. While they are not infrequent (they may occur tens
to hundreds of times per second, in active provisioning
workloads), they are much less frequent than writes, giv-
ing us more implementation flexibility. Second, whereas
writes can be undone simply by reading out data from
the Primary and overwriting whatever data may exist on
the Secondary (Section 4.2), there is no equivalent mech-
anism available to undo metadata operations. Thus, a
more general mechanism is required to track in-flight
metadata ops.

5.1 Operation Logging and States
We implement a scheme similar to two-phase commit to
ensure that both systems track metadata ops and agree
that they can be executed prior to executing them. Prior
to being executed, metadata operations along with their
respective OSN’s, operation-specific arguments, etc., are
intent logged on both sides. Physically, the log is simply
a space-reserved file in a hidden, unreplicated portion of
the file system. One intent log is maintained for each mir-
rored datastore. Log updates are efficient: we utilize the
existing file write path which provides low-latency stable
writes via NVRAM. The log size is not large because the
log can be logically truncated regularly with no impact
on performance. Note that the log is not used when the
datastore is out of sync, so there are no limitations arising
from log storage capacity.

Figure 4 depicts the general flow for metadata opera-
tions. To summarize, both sides log each operation along
with an operation state:

• PENDING
• COMMITTED
6VMstore implements VM level snapshots as point-in-time snap-

shots over the set of files comprising the physical embodiment of the
virtual machine: various metadata files and the virtual disk files, and
possibly files capturing dynamic state, e.g. memory and swap. Within
VMstore, a VM level snapshot consists of a set of file-level snapshots,
taken atomically, and a certain amount of snapshot-wide metadata. VM
level clones are implemented by instantiating a set of file-level clones,
writable files which reference an underlying base snapshot in a read-
only manner.

Figure 4: Metadata operation execution scheme that imple-
ments a two-phase commit protocol.

• ROLLED BACK
Either side may decide that an operation may not suc-

ceed, for a variety of operation-specific reasons. For ex-
ample, space reservation may fail on the Secondary but
not on the Primary. In general, the protocol gives the
Secondary the opportunity to determine if an operation
should fail.

The first step in processing is for the Primary to vali-
date the request (arguments are valid, resources are avail-
able, etc). If this fails, an immediate failure is returned
to the client. If this succeeds, the operation is logged in
the PENDING state and the operation is replicated to the
Secondary. This Secondary then decides whether the op-
eration can succeed. For operations which the Secondary
cannot execute, it simply sends a ROLLED BACK reply
to the Primary. For successful operations, the Secondary
first logs them in the COMMITTED state, then executes
them, then sends a COMMIT reply back to the Primary.
At this point the Primary executes the operation.

As part of executing metadata operations, the exist-
ing code paths all utilize the VMstore transaction mech-
anism. We augment these code paths to tag each file with
the OSN of each completed operation for reasons dis-
cussed in the next section. Finally, when both sides fin-
ish executing the operation, file locks are released, and
the Primary is allowed to acknowledge the operation to
the client.

5.2 Distributed Recovery For Metadata
Operations

Crash recovery for metadata operations must handle the
same sort of considerations that were discussed above
for write operations: messages may be lost; local HA

302 16th USENIX Conference on File and Storage Technologies USENIX Association

failovers may occur at any time; etc. To recover in-flight
metadata operations, we adopt an approach conceptually
similar to what we used for in-flight write operations. We
consolidate intent log entries on both sides by finding all
entries in the COMMITTED state in both systems’ intent
logs. Note that, as it is implemented currently, the Sec-
ondary always commits a given entry first: it does this
before sending a reply to the Primary that, upon receipt,
allows the Primary to commit the operation. Thus, dis-
tributed recovery for metadata ops involves scanning the
live portion of the intent log on the Primary for commit-
ted operations and simply sending them all to the Sec-
ondary. By definition, every log entry in the intent log
that is in the COMMITTED state needs to be reapplied
if it has not already been applied. Both the Primary and
Secondary also take care of this during system start up.

In general, metadata operations are not idempotent.
Some are, but we handle the general case and ensure that
all metadata operations are executed exactly once. Log
replay handles this simply and efficiently by comparing
each operation’s OSN with the last-executed OSN on
the respective files. Operations which have already been
done are simply ignored. The same OSN based compar-
ison is also used in the replay of write operations where
these writes are just discarded if the corresponding files
have subsequently been deleted.

Because of the need to correctly interleave meta-
data operations with file writes, the relationship between
metadata distributed recovery and file write distributed
recovery is simple: metadata distributed recovery is done
first, then file writes are recovered. This ensures that files
are created prior to writes being recovered.

6 Data Path: Resync
Efficient resynchronization is important in any syn-
chronous replication scheme, because the alternative is
basically untenable: rereplicate the entire copy of data
from the Primary, possibly tens to hundreds of terabytes.
This section describes how we perform resynchroniza-
tion using file-level snapshots.

As discussed in Section 3, our threshold for extended
disconnects is 30 seconds, after which one of two things
can happen—the Secondary takes over and becomes Pri-
mary (in conjunction with a Quorum Server), or the Pri-
mary marks the Secondary as being “out of sync”. In
the latter case, the Primary stops replicating operations
to the Secondary but continues to execute them locally.
This will be the state of the datastore on the Secondary
until the Secondary becomes reachable again, at which
point we begin the process of resync. To allow for effi-
cient resync some method is needed to track incremental
changes that occurred after the systems went out of sync.

In VMstore we leverage efficient per-file snapshots
that are implemented internally as a linked list of per-

sistent delta B-trees by the filesystem metadata layer. At
the time of going out of sync, the Primary will create a
special resync snapshot on all file(s) within the affected
mirrored datastore. (This is possible because our snap-
shots are relatively cheap, and the number of files, as
mentioned earlier, is bounded and small.) The state of
the Secondary can be determined by the Primary in the
future when it is time to perform resync, from the com-
bination of the data captured in the resync snapshots and
the metadata about writes in-flight tracked via the PAW/-
SAW entries. When resync begins, the Primary is able to
efficiently identify data written after going out of sync by
observing the delta between the time at which the resync
snapshots were created and the current filesystem state.
No work is required to materialize these deltas; they are
maintained directly by the underlying filesystem meta-
data layer and can simply be read out on a per-file basis.

When the systems are out of sync, arbitrary filesystem
manipulations may occur on the Primary—files and di-
rectories may be deleted, renamed, created from scratch,
etc. One of the goals for resync is to avoid replicating
updates to files which have subsequently been deleted
on the Primary. Of course, the basic requirement is that
resync must bring the Secondary into a state of being
identical with the Primary. With this in mind, we per-
form resync processing in three steps:

1. Bring the Secondary into a state of being identical
with the content in the resync snapshots. This ap-
plies to files which existed at the time the Secondary
went out of sync, and is skipped for files created af-
ter the systems went out of sync. Arbitrary meta-
data operations that were in-flight when going out
of sync are also reapplied on the Secondary.

2. Bring the Secondary directory namespace into sync
with the Primary. This handles all deletions, re-
names, and file creations that occurred while out of
sync. This also enables us to replicate new names-
pace manipulation operations while resyncing.

3. Resync file content on a file by file basis. Within
each file, resync on an offset range by offset range
basis.

Step (1) is similar to the distributed recovery proce-
dure discussed above that we run immediately after con-
necting in-sync systems that have been briefly discon-
nected; the difference is that with resync, the file content
must be read from the file-level resync snapshots on the
Primary, not from the current live version of the file. As
with the distributed recovery scheme, the PAW/SAW per-
sistent metadata identifies blocks which were subject to
in-flight writes at the time the systems went out of sync.
Note that after going out of sync, the PAW/SAW meta-
data is essentially frozen to preserve the knowledge of
which blocks had ongoing writes until the time we can
use this information in resync. For files which exist on

USENIX Association 16th USENIX Conference on File and Storage Technologies 303

both Secondary and Primary (this is the normal case for
long lived workloads), after this step, the Secondary is
now identical in content to the Primary at the time the
resync snapshot was taken on the Primary.

Step (2) allows us to optimize out writes that occurred
to files which were subsequently deleted on the Primary,
and to generally reclaim these files on the Secondary as
early as possible. This reduces pressure for filesystem
capacity on the Secondary and avoids scenarios where
the Secondary may run out of space simply because it
hasn’t yet deleted files that we know have been deleted
from the Primary.

Finally in Step (3) we iterate over all files on the Pri-
mary. The delta between the current file’s content and
the resync snapshot can be extracted efficiently on the
Primary and the data read out and sent. Internally in
VMstore, files are identified by a local FileId value, a 64-
bit monotonically increasing sequence number. Files are
resynced in increasing order of local FileId. This makes
it fairly simple to persistently track resync progress;
within a given mirrored datastore, we store a single lo-
cal FileId value persistently during resync. Similarly, the
offset within the resync snapshot is checkpointed as well.
This allows resync to resume without performing a large
amount of re-replication of data in the event of a local
crash and restart on the Primary while it is performing
resync. Checkpointing resync progress at a granular level
is important because large virtual disk files (e.g., in ex-
cess of 10TiB) are not uncommon.

New writes to files which have been created after the
systems begin resync and writes to offset ranges in files
that have already been resynced are handled by mirroring
them synchronously. This ensures that resync converges
toward completion, i.e. it does not run the risk of falling
behind incoming live writes and never completing.

6.1 Handling user-created snapshots
VMstore implements VM-level snapshots (scheduled or
manual) using per-file snapshots. These per-file snap-
shots are atomically created across the set of files com-
prising a given VM. This complicates resync. At the start
of resync, there may exist file level snapshots on the Pri-
mary which were created while the systems were out of
sync. Conversely, there may exist file-level snapshots
on the Secondary which were deleted from the Primary
while the systems were out of sync. Similar to how file
deletions are replicated during resync prior to sending
incremental data, we replicate discrete snapshot deletion
operations first, prior to replicating snapshot contents.

With the exception of clone create, snapshot create,
and snapshot delete operations, most of the metadata op-
erations that the Primary receives while resyncing are
replicated to the Secondary immediately because the
namespaces are in-sync. New snapshot creates are only

replicated if the files involved are in-sync on the Sec-
ondary. Snapshot deletes are only replicated if the snap-
shot has been resynced to the Secondary. Clone creates
are only replicated if the required backing snapshot is
present on the Secondary. The resync process must even-
tually take care of replicating any of these operations if
they are delayed from being replicated at the time they
were issued to the Primary. Note that these operations
themselves are not logged; the resulting file system state
(the set of snapshots and clones) is discovered by the lo-
cal FileId-based iteration described above.

7 Distributed Integrity Verification
The VMstore file system implements an incrementally-
updated per-file content checksum for purposes of data
integrity verification. The checksum is neither a cryp-
tographic checksum nor a guarantee that corruption has
not occurred; rather it is a probabilistic mechanism de-
signed as an extra check on top of many other mech-
anisms (transactions, crash recovery, NVRAM, careful
design, code review, thorough testing, etc) used collec-
tively to ensure data integrity.

The checksum physically comprises approximately
1KB of metadata; file writes update portions of this
checksum based on the file offset being written and the
block content itself. Each block write updates the check-
sum using 7 bits derived from data in the write. The
checksum metadata updates are performed efficiently us-
ing the transactional metadata mechanism noted in Sec-
tion 2 (essentially the related metadata updates—system-
wide statistics, file statistics, B-Tree updates to point to
new blocks, etc—are logged together). Additionally, at
the time of snapshot creation, a file’s current checksum
is stored with the associated file-level snapshot metadata.

The checksum values are used in several places. Dur-
ing file deletion, each block’s checksum contribution is
logically subtracted from the remaining file checksum
value, and at the end of deletion, the checksum must be
logically zero. Similar logic is used when truncating a
file to zero bytes in size.

In synchronous replication, the basic requirement to
maintain identical copies of files on both systems (as
long as the systems are in sync) enables us to leverage
the file content checksums for integrity verification. In-
tegrity verification involves the following steps. First,
writes and other operations are temporarily paused using
the exclusive file-level lock mechanism described in Sec-
tion 4.1. Next, in-flight operations are flushed through
the system. Following this, the Primary reads out its per-
file checksum values and sends them to the Secondary,
which reads out its values and compares them. These
checksums are expected to match across the two systems.

In order to avoid blocking file operations for an ex-
tended period of time, which could be the case if the data-

304 16th USENIX Conference on File and Storage Technologies USENIX Association

store contains several thousands of files, distributed in-
tegrity checking is done in a batched manner. This allows
us to acquire file-level locks one batch at a time as op-
posed to for the entire datastore. The batch size is chosen
such that integrity checking is transparent to clients—it
lasts at most a few seconds for any given file—and such
that it minimizes network communication.

Content checksum mismatches are expected never to
occur in practice. However, if they are encountered, the
system takes the Secondary out of sync and lets the Pri-
mary continue servicing client IOs, to avoid interruption
of service. Additionally the system logs the affected files
and their checksum values on both sides. The differences
in the checksums allow us to identify a set of candidate
file blocks that may be different, and if the number of
blocks in this set is below a threshold, the systems ad-
ditionally read out and save off the affected blocks for
later inspection. This mechanism has been occasionally
useful in debugging the system during development.

In production we run the verification procedure such
that each file is checked once every 24 hours, provided
that the datastore is in-sync. Additionally, we also proac-
tively perform checksum verifications at certain points,
e.g. just prior to user-initiated cluster failover and at the
end of resync.

8 Evaluation
We have implemented a heavily multithreaded write
pipeline, each stage of which does asynchronous pro-
cessing. This improves performance and also isolates
processing of mirrored and non-mirrored datastore re-
quests. We evaluated our implementation to answer the
following questions:

• What is the overhead of synchronous replication on
read and write throughput?

• What is the impact of the VMstore network RTT on
client latency for various write workloads?

CPU Xeon E5-2630 v2 (2x6 cores, 2.60GHz)
RAM 64GB DDR3 at 1600 Mhz
Flash 11x480GB SATA SSDs
Disks 13x4TB SAS SED HDDs
NIC Intel X540-T2 at 10Gbps

Table 2: VMstore hardware configuration used in experiments.

Experiment setup: We used two VMstores running
Tintri OS 4.3 (see Table 2 for hardware configuration7);
one as the Primary and the other as the Secondary con-
nected to each other through a 10Gbps ethernet link. We

7As it happens, we used model T850, introduced in 2014, for these
experiments. Two generations of newer hardware families have suc-
ceeded this model, so performance on current systems will be higher.

8 64 256
0

200

400

600

800

1,000

1,200

343

751

843

194

670

789
718

1,233 1,233

655

1,233 1,233

IO size (KiB)

T
hr

ou
gh

pu
t(

M
iB

/s
ec

)

writes baseline
writes w/ sync repl

reads baseline
reads w/ sync repl

Figure 5: Throughput comparison between baseline perfor-
mance and performance with synchronous replication for dif-
ferent IO sizes. The RTT was 100 µs; no additional delay was
induced in the network.

also had a Linux-based physical client machine which
was connected to the Primary through a 10Gbps ether-
net link. A tool that drives synthetic IO traffic over NFS
was used to generate random read and write IO traffic
with 8KiB, 64KiB and 256KiB block sizes. These IO
sizes were chosen because they represent the majority
of workload sizes observed in VM workloads. The net-
work RTT between both the VMstores and between the
client and the primary VMstore as measured by ping us-
ing a packet size of 64 bytes was observed to be 100µs
on average. In some experiments, we used the tc (traffic
control) Linux utility to vary the RTT between the two
VMstores.

8.1 Throughput
Figure 5 graphs read and write throughput for various IO
sizes—8KiB, 64KiB and 256KiB under two scenarios:
i) baseline performance when synchronous replication
is not enabled, and ii) performance when synchronous
replication is enabled.

Synchronous replication imposes a 43% overhead in
throughput for 8KiB writes, 11% for 64KiB writes and
6-7% for 256KiB writes. The difference is significant for
8KiB writes because of the per-request processing over-
head of replication in our system. This is due to file range
locks, sending the request through various queues, mem-
ory allocation, and other assorted software overhead.

Synchronous replication imposes a very minor over-
head on read performance; about 8% for 8KiB reads.
This is because reads to files in synchronously replicated
datastores also have to acquire shared file locks. Larger
64KiB and 256KiB IO size reads end up saturating the
10 Gbps network link even when synchronous replica-

USENIX Association 16th USENIX Conference on File and Storage Technologies 305

0.1 1 5 10
0

2

4

6

8

10

12

14

RTT (ms)

C
lie

nt
L

at
en

cy
(m

s)

8KiB
64KiB
256KiB

Figure 6: Impact of VMstore network RTT on client latency
for various write workloads. For each workload, the client-side
load was kept constant for all RTT values.

Workload Throughput(MiB/sec)
0.1 ms 1 ms 5 ms 10 ms

8KiB 205 167 80 50
64KiB 725 660 340 250

256KiB 754 671 380 240

Table 3: Write throughput for different RTT values. The client-
side load was fixed for each workload as the RTT was varied.

tion is enabled because bulk data movement dominates
the fixed processing costs in the file system.

Performance in our system is subject to continuous im-
provement; with techniques like batching of small writes
and write acknowledgements over the network, tuning of
TCP connection performance and optimizing read-only
workloads, we are confident that we can improve the
performance of small reads and writes in subsequent re-
leases of our software.

8.2 Latency
Figure 6 graphs the average client visible latency for var-
ious write workloads and for different values of RTT be-
tween the two VMstores. For all IO sizes, the trend ob-
served is expected. The client visible latency increases
as the RTT increases because every write has to be syn-
chronously replicated to the Secondary. Additionally, as
discussed in Section 4, the execution of writes on the
Primary and Secondary is allowed to overlap. So, for
lower values of RTT, the individual VMstore IO process-
ing times will dominate the client latency and there is a
value of RTT beyond which the RTT will start to domi-
nate the client latency. This RTT crossover point depends
on the cost of IO processing in the file system as well as
the cost of mirroring and is hence workload dependent.

We also observe that the client latencies for 8KiB
writes and 64KiB writes are close to each other at lower
RTT values even though the latter has a higher mirroring
cost. This is because various parts of the Tintri VMstore

file system are optimized for 64KiB IO requests.
The difference in the client latency and the RTT gives

the average overhead from synchronous replication and
IO processing. From Figure 6, we observe that this over-
head remains constant at around 3-4 ms for all work-
loads. This is expected because for a fixed client-side
queue depth, any increase in the RTT should only affect
the end-to-end client latency and not the latency over-
head from synchronous replication. Of course, another
consequence of this is reduced throughput. Table 3 cap-
tures the actual throughput observed at different RTT val-
ues.

9 Implementation Experience and Lessons
Learned

Currently the system is in production use at dozens of
sites globally. This section discusses our experiences in
designing, building, testing, and deploying the system.

Usability: Space limitations prevent us from present-
ing our user interfaces for configuring the system, oper-
ational monitoring, and latency visualization. However,
it is fair to say that the feedback from customers about
the usability of the system has been extremely positive.
The one area where there is a usability challenge relates
to functionality which we deferred implementing, dis-
cussed next.

Functionality: From the beginning we designed for
automated cluster failover. However, there was acute
pressure to deliver some functionality to customers as
quickly as possible. As a result, we elected to deliver
functionality in a phased manner, and did not make au-
tomatic cluster failover available initially. In retrospect,
demand for automatic cluster failover was higher than
anticipated, and lack of this support has delayed adop-
tion of the system to some extent.

Performance: Apart from the up-front design work
to integrate replication carefully with the existing write
pipeline (Section 4) to allow maximal parallelization, we
did a modest amount of performance tuning specifically
on the replication data paths. There is more that could
be done to reduce the throughput gap between unrepli-
cated writes and replicated writes, especially at 8KiB.
However, as anticipated, the ability to let customers eas-
ily not replicate large portions of their workloads, com-
bined with the performance-related work that we did do,
has had the net result that there have been minimal per-
formance problems in practice.

Complexity: Prior to undertaking synchronous repli-
cation, we had implemented asynchronous snapshot-
based replication in VMstore. Synchronous replica-
tion is significantly more complex for a number of rea-
sons. First, it necessarily involves fairly significant sur-
gical modifications to various write paths and high level

306 16th USENIX Conference on File and Storage Technologies USENIX Association

filesystem operation implementations. By comparison,
asynchronous replication on the source system only has
to consume snapshots after their creation, and the snap-
shot abstraction generally insulates asynchronous repli-
cation from the dynamic churn of ongoing filesystem
operations. Second, synchronous replication must at-
tempt to ensure both low latency and high through-
put; asynchronous replication only needs to deliver suf-
ficient throughput. Third, asynchronous replication has
no equivalent of client transparent failover or automated
cluster failover; failovers involve external reconfigura-
tion of the customer’s virtualization environment, imple-
mented by higher level disaster recovery orchestration
software, not by the filesystem replication system.

As a result, the synchronous replication implemen-
tation required roughly three times as many lines of
code compared to asynchronous replication (approxi-
mately 100,000 and 35,000, respectively). Additionally,
the asynchronous replication code is more self-contained
and hence simpler to reason about. To a first approxima-
tion synchronous replication took perhaps five times the
number of person-months of engineering effort, spread
over roughly twice as much calendar time.

Correctness: The distributed data integrity verifica-
tion mechanism (Section 7) proved invaluable during de-
velopment and testing. The per-file content checksums
on which this mechanism depends had previously been
implemented a number of years before we began the syn-
chronous replication project, and had been used exten-
sively in internal testing. We had not enabled file content
checksums in production due to lingering performance
issues in certain scenarios. As part of the synchronous
replication project, we decided early on to do the work
necessary to allow us to enable the file content check-
sums in production. This allowed us to build the dis-
tributed integrity checking mechanism on top of the file
content checksum mechanism. This took several months
of effort on the part of several engineers, but was surely
worth it. This mechanism caught a handful of subtle bugs
during development and internal testing. However, in a
year of shipping the system to dozens of customers, we
have not experienced a single data path related customer
found defect; the distributed data integrity check has not
failed in production.

10 Related Work
In general, synchronous replication schemes in commer-
cial enterprise storage systems are not well described in
the literature. Seneca [7] describes a detailed taxonomy
of design choices for remote mirroring, and a design for a
remote mirroring protocol with correctness validation us-
ing I/O automata-based simulation. It also presents some
details of existing systems as of 2003, many of which are
still in use. Snapmirror [8] discusses an asynchronous

replication scheme of using self-consistent snapshots of
the data mirrored from a source to a destination volume.
The focus is on system performance at the cost of data
loss. The tolerance to data loss is proportional to the fre-
quency of taking and mirroring snapshots.

For resynchronization, some enterprise data storage
systems (e.g., Symmetrix [4] and Linbit [2]) use bitmaps
to keep track of writes that have been processed on the
primary but not yet replicated to the secondary. Other
systems (e.g., MetroCluster [6]) use filesystem volume
level snapshots or system-wide snapshots to achieve this.
In contrast, our system uses granular per-file metadata
and file-level snapshots.

Some enterprise storage systems also implement syn-
chronous replication to guarantee zero divergence in
data between a pair of storage systems. EMC Recov-
erPoint [4] supports synchronous replication over IP or
over FibreChannel network. Their host-based I/O split-
ting technology is used to mirror application writes with
minimal perceivable impact on host performance. HP
3PAR Peer Persistence [5] maintains a synchronized
copy of data between a pair of storage nodes, with
the host maintaining an active path to one array and a
standby path to the other array. A transparent failover
and failback between this pair of storage nodes is made
possible using a Quorum Witness. These systems oper-
ate on the basis of LUNs and thus require significantly
more operational expertise compared to our system.

Veritas Volume Replicator [3] is a host-based soft-
ware system. It makes use of Storage Replicator Log
which is essentially a circular buffer to persistently re-
member writes to be queued for replication to the sec-
ondary. Writes have to be first written to this storage
replicator log, then replicated to the secondary for persis-
tence. This serialization of IOs is suboptimal compared
to our scheme where writes occur in parallel on the pri-
mary and secondary.

11 Conclusion

We have implemented logical synchronous replication, a
new approach to solving an old problem. We have intro-
duced novel mechanisms to track writes in-flight and rec-
oncile them across systems after reconnects. Addition-
ally, we leverage two-phase commit to replicate complex
filesystem operations, and granular per-file snapshots to
implement efficient resynchronization. A datastore-wide
distributed data integrity verification procedure built on a
novel per-file checksum scheme ensures that the system
is operating correctly. The flexibility of replicating only
a selected portion of a filesystem has proven intuitive and
easy to use by users.

USENIX Association 16th USENIX Conference on File and Storage Technologies 307

12 Acknowledgments
We would like to thank Fred Douglis, Mark Grit-
ter, Tyler Harter, Ed Lee, and Ashok Sudarsanam for
their helpful comments on early drafts of this pa-
per. The anonymous reviewers and our shepherd,
Andy Warfield, provided insightful feedback that greatly
enhanced the presentation of our material. We would like
to thank our management at Tintri (Ashok Sudarsanam,
Tom Theaker, Tony Chang, and Kieran Harty) for their
support in publishing this paper. Finally, we would like
to thank the many engineers at Tintri, past and present,
who contributed to building this system.

References

[1] [MS-SMB2]: Server Message Block (SMB)
Protocol Versions 2 and 3. https:

//msdn.microsoft.com/en-us/library/

cc246482.aspx.

[2] The quick-sync bitmap. https://docs.

linbit.com/doc/users-guide-83/

s-quick-sync-bitmap/.

[3] Veritas volume replicator option by symantec.
http://eval.symantec.com/mktginfo/

products/White_Papers/Storage_Server_

Management/sf_vvr_wp.pdf, 2006. White
paper guide to understanding volume replicator.

[4] EMC VNX Replication Technolo-
gies an overview. https://www.

emc.com/collateral/white-papers/

h12079-vnx-replication-technologies-overview-wp.

pdf, 2015. White paper highlighting EMC VNX
replication technology.

[5] Implementing vsphere metro storage clus-
ter using hpe 3par peer persistence.
https://www.hpe.com/h20195/V2/GetPDF.

aspx/4AA4-7734ENW.pdf, 2016. White paper
highlighting HPE 3PAR Peer Persistence.

[6] MetroCluster management and disaster recovery
guide. https://library.netapp.com/ecm/

ecm_download_file/ECMLP2495113, 2017.
White paper highlighting MetroCluster.

[7] Minwen Ji, Alistair C. Veitch, and John Wilkes.
Seneca: remote mirroring done write. In Proceed-
ings of the General Track: 2003 USENIX Annual
Technical Conference, June 9-14, 2003, San Anto-
nio, Texas, USA, pages 253–268. USENIX, 2003.

[8] Hugo Patterson, Stephen Manley, Mike Feder-
wisch, Dave Hitz, Steve Kleiman, and Shane

Owara. Snapmirror®: File system based asyn-
chronous mirroring for disaster recovery. In Pro-
ceedings of the 1st USENIX Conference on File and
Storage Technologies, FAST’02, pages 9–9, Berke-
ley, CA, USA, 2002. USENIX Association.

[9] Mendel Rosenblum and John K Ousterhout. The
design and implementation of a log-structured file
system. ACM Transactions on Computer Systems
(TOCS), 10(1):26–52, 1992.

[10] Russell Sears and Eric Brewer. Stasis: Flexible
transactional storage. In Proceedings of the 7th
Symposium on Operating Systems Design and Im-
plementation, OSDI ’06, pages 29–44, Berkeley,
CA, USA, 2006. USENIX Association.

[11] Raj Srinivasan. RPC: Remote Procedure Call Pro-
tocol Specification Version 2. RFC 1831, August
1995.

[12] Raj Srinivasan. XDR: External Data Representa-
tion Standard. RFC 1832, August 1995.

308 16th USENIX Conference on File and Storage Technologies USENIX Association

https://msdn.microsoft.com/en-us/library/cc246482.aspx
https://msdn.microsoft.com/en-us/library/cc246482.aspx
https://msdn.microsoft.com/en-us/library/cc246482.aspx
https://docs.linbit.com/doc/users-guide-83/s-quick-sync-bitmap/
https://docs.linbit.com/doc/users-guide-83/s-quick-sync-bitmap/
https://docs.linbit.com/doc/users-guide-83/s-quick-sync-bitmap/
http://eval.symantec.com/mktginfo/products/White_Papers/Storage_Server_Management/sf_vvr_wp.pdf
http://eval.symantec.com/mktginfo/products/White_Papers/Storage_Server_Management/sf_vvr_wp.pdf
http://eval.symantec.com/mktginfo/products/White_Papers/Storage_Server_Management/sf_vvr_wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.emc.com/collateral/white-papers/h12079-vnx-replication-technologies-overview-wp.pdf
https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA4-7734ENW.pdf
https://www.hpe.com/h20195/V2/GetPDF.aspx/4AA4-7734ENW.pdf
https://library.netapp.com/ecm/ecm_download_file/ECMLP2495113
https://library.netapp.com/ecm/ecm_download_file/ECMLP2495113

ALACC: Accelerating Restore Performance of Data Deduplication Systems
Using Adaptive Look-Ahead Window Assisted Chunk Caching

Zhichao Cao, Hao Wen, Fenggang Wu, and David H.C. Du
Department of Computer Science, University of Minnesota, Twin Cities

{caoxx380, wenxx159, wuxx0835, du}@umn.edu

Abstract

Data deduplication has been widely applied in storage
systems to improve the efficiency of space utilization.
In data deduplication systems, the data restore perfor-
mance is seriously hindered by read amplification since
the accessed data chunks are scattered over many con-
tainers. A container consisting of hundreds or thousands
data chunks is the data unit to be read from or write to
the storage. Several schemes such as forward assem-
bly, container-based caching, and chunk-based caching
are used to reduce the number of container-reads dur-
ing the restore process. However, how to effectively use
these schemes to get the best restore performance is still
unclear.

In this paper, we first study the trade-offs of using
these schemes in terms of read amplification and com-
puting time. We then propose a combined data chunk
caching and forward assembly scheme called ALACC
(Adaptive Look-Ahead Chunk Caching) for improving
restore performance which can adapt to different dedu-
plication workloads with a fixed total amount of mem-
ory. This is accomplished by extending and shrinking
the look-ahead window adaptively to cover an appro-
priate data recipe range and dynamically deciding the
memory to be allocated to forward assembly area and
chunk-based caching. Our evaluations show the restore
throughput of ALACC is higher than that of the optimum
case of various configurations using the fixed amount of
memory allocated to forward assembly and to chunk-
based caching.

1 Introduction

Coming into the second decade of the twenty-first cen-
tury, social media, cloud computing, big data, and other
emerging applications are generating an extremely huge
amount of data daily. Data deduplication is thus widely
used in both primary and secondary storage systems to
eliminate the duplicated data at chunk-level or file-level.
In chunk-level data deduplication systems, the original
data stream is segmented into data chunks and the du-

plicated data chunks are eliminated (not to store). The
original data stream is then replaced by an ordered list
of references, called recipe, to the unique data chunks.
A unique chunk is a new data chunk which has not ap-
peared before. At the same time, only these unique data
chunks are stored in the persistent storage. To maxi-
mize the I/O efficiency, instead of storing each single
data chunk separately, these unique chunks are packed
into containers based on the order of their appearances in
the original data stream. A container which may consist
of hundreds or thousands of data chunks is the basic unit
of data read from or written to storage with a typical size
of 4MB or larger.

Restoring the original data is the reverse process of
deduplication. Data chunks are accessed based on their
indexing order in the recipe. The recipe includes the
metadata information of each data chunk (e.g., chunk
ID, chunk size, container address and offset). The corre-
sponding data chunks are assembled in a memory buffer.
Once the buffer is full, it will be sent back to the request-
ing client such that one buffer size data is restored. Re-
questing a unique or duplicate data chunk may trigger a
container read if the data chunk is not currently available
in memory, which causes a storage I/O and impacts re-
store performance. Our focus is specifically on restore
performance in secondary storage systems.

In order to reduce the number of container-reads, we
may read ahead the recipe and allocate the data chunks
to the buffers in the Forward Assembly Area (FAA).
We can also cache the read-out container (container-
based caching) or a subset of data chunks (chunk-based
caching) for future use. If a requested data chunk is not
currently available in memory, it will trigger a container-
read. It is also possible that only a few data chunks in
the read-out container can be used in the current FAA.
Therefore, to restore one container size of the original
data stream, several more containers may have to be read
from the storage causing read amplification. Read am-
plification causes low throughput and long completion
time for the restore process. Therefore, the major goal of
improving the restore performance is to reduce the num-
ber of container-reads [1]. For a given data stream, if

USENIX Association 16th USENIX Conference on File and Storage Technologies 309

its deduplication ratio is higher, its read amplification is
potentially more severe.

There are several studies that address the restore per-
formance issues [1, 2, 3, 4, 5, 6, 7]. The container-based
caching scheme is used in [3, 4, 5, 7]. To use the mem-
ory space more efficient, a chunk-based LRU caching
is applied in [1, 6]. In the restore, the sequence of fu-
ture accesses is precisely recorded in the recipe. Using
a look-ahead window or other methods can identify the
future information to achieve a more effective caching
policy. Lillibridge et al. [1] propose a forward assem-
bly scheme. The proposed scheme reserves and uses
multiple container size buffer in FAA to restore the data
chunks with a look-ahead window which is the same size
as FAA. Park et al. [7] use a fixed size look-ahead win-
dow to identify the cold containers and evict them first in
a container-based caching scheme.

The following issues are not fully addressed in the
existing work. First, the performance and efficiency of
container-based caching, chunk-based caching and for-
ward assembly vary as the workload locality changes.
When the total size of available memory for restore is
fixed, how to use these schemes in an efficient way and
make them adapt to the workload changing are very chal-
lenging. Second, how big is the look-ahead window and
how to use the future information in the look-ahead win-
dow to improve the cache hit ratio are less explored.
Third, acquiring and processing the future access infor-
mation in the look-ahead window requires computing
overhead. How to make better trade-offs to achieve good
restore performance, but limit the computing overhead is
also an important issue.

To address these issues, in this paper we design a hy-
brid scheme which combines chunk-based caching and
forward assembly. We also propose new ways of exploit-
ing the future access information obtained in the look-
ahead window to make better decisions on which data
chunks are to be cached or evicted. The sizes of the look-
ahead window, chunk cache, and FAA are dynamically
adjusted to reflect the future access information in the
recipe.

In this paper, we first propose a look-ahead window
assisted chunk-based caching scheme. A large Look-
Ahead Window (LAW) provides the future data chunk
access information to both FAA and chunk cache. Note
that the first portion of the LAW (as the same size as that
of FAA) is used to place chunks in FAA and the second
part of the LAW is used to identify the caching candi-
dates, evicting victims and accessing sequence of data
chunks. We will only cache the data chunks that appear
in the current LAW. Therefore, a cached data chunk is
classified as either an F-chunk or a P-chunk. F-chunks
are the data chunks that will be used in the near future
(appear in the second part of LAW). P-chunks are the

data chunks that only appear in the first part of the LAW.
If most of the cache space is occupied by the F-chunks,
we may want to increase the cache space. If most of the
cache space is occupied by P-chunks, caching is not very
effective at this moment. We may consider to reduce the
cache space or to enlarge the LAW.

Based on the variation of the numbers of F-chunks,
P-chunks, and other measurements, we then propose a
self-adaptive algorithm (ALACC) to dynamically adjust
the sizes of memory space allocated for FAA and chunk
cache, and the size of LAW. If the number of F-chunks
is low, ALACC extends the LAW size to identify more
F-chunks to be cached. If the number of P-chunks is ex-
tremely high, ALACC either reduces the cache size or
enlarges LAW size to adapt to the current access pattern.
When the monitored measurements indicate that FAA
performs better, ALACC increases the FAA size, thus
reduces the chunk caching space, and gradually shrinks
LAW. Since we consider a fixed amount of available
memory, a reduction of chunk cache space will increase
the same size of FAA or vice versa. For the reason that
LAW only involves meta-data information which takes
up a smaller data space, we ignore the space required by
LAW, but focus more on the computing overhead caused
by the operations of LAW in this paper.

Our contributions can be summarized as follows:

• We comprehensively investigate the performance
trade-offs of container-based caching, chunk-based
caching and forward assembly in different work-
loads and memory configurations.

• We propose ALACC to dynamically adjust the sizes
of FAA and chunk cache to adapt to the changing of
chunk locality to get the best restore performance.

• By exploring the cache efficiency and overhead of
different LAW size, we propose and implement an
effective LAW with its size dynamically adjusted to
provide essential information for FAA and chunk
cache and avoid unnecessary overhead.

The rest of the paper is arranged as follows. Section
2 reviews the background of data deduplication and the
current schemes of improving restore performance. Sec-
tion 3 compares and analyzes different caching schemes.
We first present a scheme with the pre-determined and
fixed sizes of the forward assembly area, chunk cache,
and LAW in Section 4. Then, the adaptive algorithm is
proposed and discussed in Section 5. A brief introduc-
tion of the prototype implementation is in Section 6 and
the evaluation results and analyses are shown in Section
7. Finally, we provide some conclusions and discuss the
future work in Section 8.

310 16th USENIX Conference on File and Storage Technologies USENIX Association

2 Background and Related Work

In this section, we first review the deduplication and re-
store process. Then, the related studies of improving re-
store performance are presented and discussed.

2.1 Data Deduplication Preliminary

Data deduplication is widely used in the secondary
storage systems such as archiving and backup systems
to improve the storage space utilization [8, 9, 10, 11,
12, 13, 14, 15]. Recently, data deduplication is also ap-
plied in the primary storage systems such as SSD array
to make better trade-offs between cost and performance
[16, 17, 18, 19, 20, 21, 22, 23]. To briefly summarize
deduplication, as a data stream is written to the storage
system, it is divided into data chunks, which are repre-
sented by a secure hash value called a fingerprint. The
chunk fingerprints are searched in the indexing table to
check their uniqueness. Only the new unique chunks are
written to containers, and the original data stream is rep-
resented with a recipe consisting of a list of data chunk
meta-information including the fingerprint.

Restoring the original data stream back is the reverse
process of deduplication. Starting from the beginning of
the recipe, the restore engine identifies the data chunk
meta-information sequentially, accesses the chunks ei-
ther from memory or from storage, and assembles the
chunks in an assembling buffer in memory. To get a
chunk from storage to memory, the entire container hold-
ing the data chunk will be read, and the container may be
distant from the last accessed container. Once the buffer
is full, data is flushed out to the requested client.

In the worst case, to assemble N duplicated chunks,
we may need N container-reads. A straightforward so-
lution to reduce the container-reads is to cache some of
the containers or data chunks. Since some data chunks
will be used very shortly after they are read into memory,
these cached chunks can be directly copied from cache
to the assembling buffer which can reduce the number of
container-reads. Another way to reduce the number of
container-reads is to store (re-write) some of the dupli-
cated data chunks together with the unique chunks during
the deduplication process in the same container. There-
fore, the duplicated chunks and unique chunks will be
read out together in the same container and thus avoids
the needs of accessing these duplicated chunks from
other containers. However, this approach will reduce the
effectiveness of data deduplication.

2.2 Related Work on Restore Performance Im-
provement

Selecting and storing some duplicated data chunks
during the deduplication process and designing efficient

caching policies during the restore process are two ma-
jor research directions to improve the restore perfor-
mance. In the remaining of this subsection, we first
review the studies of selectively storing the duplicated
chunks. Then, we introduce the container-based caching,
chunk-based caching and forward assembly.

There have been several studies focusing on how to se-
lect and store the duplicated data chunks to improve the
restore performance. The duplicated data chunks have al-
ready been written to the storage when they first appeared
as unique data chunks and dispersed over different phys-
ical locations in different containers, which creates the
chunk fragmentation issue [3]. During the restore pro-
cess, restoring these duplicated data chunks causes po-
tential random container-reads which lead to a low re-
store throughput. Nam et al. [3, 4] propose a way to
measure the chunk fragmentation level (CFL). By stor-
ing some of the duplicated chunks to keep the CFL lower
than a given threshold in a segment of the recipe, the
number of container-reads is reduced.

Kaczmarczyk et al. [2] use the mismatching de-
gree between the stream context and disk context of the
chunks to make the decision of storing selected dupli-
cated data chunks. The container capping is proposed by
Lillibridge et al. [1]. The containers storing the dupli-
cated chunks are ranked and the duplicated data chunks
in the lower ranking containers are selected and stored
again. In a historical-based duplicated chunk rewrit-
ing algorithm [5], the duplicated chunks in the inherited
sparse containers are rewritten. Due to the fact that re-
writing some selected duplicated data chunks again sac-
rifices the deduplication ratio and the selecting and re-
writing can be applied separately during the deduplica-
tion process, we will consider only the restore process in
this paper.

Different caching policies are studied in [1, 2, 3, 4, 6,
7, 24, 25]. Kaczmarczyk et al. [2] and Nam et al. [3, 4]
use container-based caching. Other than using recency
to identify the victims in the cache, Park et al. [7] pro-
pose a future reference count based caching policy with
the information from a fixed size look-head window. Be-
lady’s optimal replacement policy can only be used in a
container-based caching schema [5]. It requires extra ef-
fort to identify and store the replacement sequence dur-
ing the deduplication. If a smaller caching granularity
is used, a better performance can be achieved. Instead
of caching containers, some of the studies directly cache
data chunks to achieve higher cache hit ratio [1, 6]. Al-
though container-based caching has lower operating cost,
chunk-based caching can better filter out the data chunks
that are irrelevant to the near future restore and better im-
prove the cache space utilization.

However, the chunk-based caching with LRU also has
some performance issues. The historical based LRU may

USENIX Association 16th USENIX Conference on File and Storage Technologies 311

Table 1: Data Sets
Data Set Name ds 1 ds 2 ds 3

Deduplication Ratio 1.03 2.35 2.11
Reuse Distance (# containers) 24 18 26

fail to identify data chunks in the read-in container which
are not used in the past and current assembling buffers,
but they will be used in the near future. This results in
cache misses. To address this issue, a look-ahead win-
dow which covers a range of future accesses from the
recipe can provide the crucial future access information
to improve the cache effectiveness.

A special fashion of chunk-based caching proposed by
Lillibridge et al. is called forward assembly [1]. Multiple
containers (say k) are used as assembling buffers called
Forward Assembly Area (FAA) and a look-ahead win-
dow of the same size is used to identify the data chunks
to be restored in the next k containers. FAA can be con-
sidered as a chunk-based caching algorithm. It caches
all the data chunks that appear in the next k containers
and evicts any data chunk which does not appear in these
containers. Since data chunks are directly copied from
container-read buffer to FAA, it avoids the memory-copy
operations from the container-read buffer to the cache.
Therefore, forward assembly has lower overhead com-
paring with the chunk-based caching. Forward assembly
can be very effective if each unique data chunk will re-
appear in a short range from the time it is being restored.

As discussed, there is still a big potential to improve
the restore performance if we effectively combine for-
ward assembly and chunk-based caching using the fu-
ture access information in the LAW. In this paper, we
consider the total amount memory available to FAA and
chunk cache is fixed. If the memory allocation for these
two can vary according to the locality changing, the num-
ber of container-reads may be further reduced.

3 Analysis of Cache Efficiency

Before we start to discuss the details of our proposed de-
sign, we first compare and analyze the cache efficiency
of container-based caching, chunk-based caching, and
forward assembly. The observations and knowledge we
learned will help our design. The traces used in the ex-
periments of this section are summarized in Table 1. ds 1
and ds 2 are the last version of EMC 1 and FSL 1 traces
respectively which are introduced in detail in Section 7.1.
ds 3 is a synthetic trace based on ds 2 with larger re-use
distance. The container size is 4MB. Computing time is
used to measure the management overhead. It is defined
as the total restore time excluding the storage I/O time
which includes the cache adjustment time, memory-copy

0

50

100

150

200

250

300

C
on

ta
in

er
-r

ea
ds

pe
r

10
0M

B

R
es

to
re

d

Total Cache Size

Container_LRU
Chunk_LRU

(a) # Containers-reads per 100MB
restored as cache size varies from
32MB to 1GB

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

C
om
pu
tin
g
T
im
e

(s
ec
on
ds
/G
B
)

Total Cache Size

Container_LRU
Chunk_LRU

(b) Computing time per 1GB re-
stored as cache size varies from
32MB to 1GB

Figure 1: The cache efficiency comparison between
chunk-based caching and container-based caching

time, CPU operation time, and others.

3.1 Caching Chunks vs. Caching Containers

Technically, caching containers can avoid the
memory-copy from the container-read buffer to the
cache. If the entire cache space is the same, the cache
management overhead of container-based caching is
lower than that of chunk-based caching. In most cases,
some data chunks in a read-in container are irrelevant to
the current and near-future restore process. Container-
based caching still caches these chunks and wastes the
valuable memory space. Also, some of the useful data
chunks are forced to be evicted together with the whole
container which increases the cache miss ratio. Thus,
without considering managing overhead, caching chunks
can achieve better cache hit ratio than caching containers
if we apply the same cache policy in most workloads.
This is especially true if we use LAW as a guidance of
future accesses. Only in the extreme cases that most data
chunks in the container are used very shortly and there
is very high temporal based locality, the cache hit ratio
of caching containers can be better than that of caching
chunks.

We use the ds 2 trace to evaluate and compare the
number of container-reads and the computing overhead
of caching chunks and caching containers. We imple-
mented the container-based caching and chunk-based
caching with the same LRU policy. The assembling
buffer used is one container size. As shown in Fig-
ure 1(b), the computing time of restoring 1GB data of
caching chunks is about 15-150% higher than that of
caching containers. Theoretically, the LRU cache in-
sertion, lookup and eviction are O(1) time complexity.
However, the computing time drops in both designs as
the cache size increases. The reason is that with larger
memory size more containers or data chunks can be
cached and the cache eviction happens less frequently.
There will be fewer memory-copy of containers or data
chunks, which leads to less computing time.

312 16th USENIX Conference on File and Storage Technologies USENIX Association

0

1

2

3

4

5

ds_1 ds_2 ds_3

C
om

pu
tin

g
T

im
e

(s
ec

on
ds

/G
B

)

Forward Assembly chunk_caching

(a) Computing time per 1GB restored

29
30
31
32
33
34
35
36
37
38

ds_1 ds_2 ds_3

R
re

st
or

eT
hr

ou
gh

pu
t

(M
B

/S
)

Forward Assembly chunk_caching

(b) Restore throughput

Figure 2: The cache efficiency comparison between for-
ward assembly and chunk-based caching

Also, due to fewer cache replacements in the
container-based caching, the computing time of caching
containers drops quicker than that of caching chunks.
However, as shown in Figure 1(a), the number of
container-reads of caching chunks is about 30-45% fewer
than that of caching containers. If one container-read
needs 30ms, about 3% fewer container-reads can cover
the extra computing time overhead of caching chunks.
Therefore, caching chunks is preferred in the restore pro-
cess, especially when the cache space is limited.

3.2 Forward Assembly vs. Caching Chunks

Comparing with chunk-based caching, forward as-
sembly does not have the overhead of cache replacement
and the overhead of copying data chunks from container-
read buffer to the cache. Thus, the computing time of for-
ward assembly is much lower than that of chunk-based
caching. As for the cache efficiency, the two approaches
have their own advantages and disadvantages with dif-
ferent data chunk localities. If most of the data chunks
are unique or the chunk re-use locality is high in a short
range (e.g., within the FAA range), forward assembly
performs better than chunk-based caching. In this sce-
nario, most of the data chunks in the read-in containers
will only be used to fill the current FAA. In the same
scenario, if chunk-based caching can intelligently choose
the data chunks to be cached based on the future access
information in LAW, it can achieve a similar number of
container-reads but it has larger computing overhead.

If the re-use distances of many duplicated data chunks
are out of the FAA range, chunk-based caching per-
forms better than forward assembly. Since these dupli-
cated data chunks could not be allocated in the FAA, ex-
tra container-reads are needed when restoring these data
chunks via forward assembly. In addition, a chunk in the
chunk cache is only stored once while in forward assem-
bly it needs to be stored multiple times in its appearing
locations in the FAA. Thus, chunk-based caching can po-
tentially cover more data chunks with larger re-use dis-
tances. When the managing overhead is less than the

time saved by the reduction of container-reads, chunk-
based caching performs better.

We use the aforementioned three traces to compare the
efficiency of forward assembly with that of chunk-based
caching. The memory space used by both schemes is
64MB. For chunk-based caching, it uses the same size
LAW as FAA to provide the information of data chunks
accessed in the future. It caches the data chunks that ap-
pear in the LAW first, then adopts the LRU as its caching
policy to manage the rest of caching space. As shown in
Figure 2(a), the computing time of forward assembly is
smaller than that of chunk-based caching. The restore
throughput of forward assembly is higher than that of
chunk based caching except in ds 3 as shown in Figure
2(b). In ds 3, the re-use distances of 77% of the dupli-
cated data chunks are larger than the FAA range. More
cache misses occur in forward assembly, while chunk-
based caching can effectively cache some of these data
chunks. In general, if the deduplication ratio is extremely
low or most of the chunk re-use distances can be cov-
ered by the FAA, the performance of forward assembly
is better than that of chunk-based caching. Otherwise,
chunk-based caching can be a better choice.

4 Look-Ahead Window Assisted Chunk-
based Caching

As discussed in the previous sections, combining for-
ward assembly with chunk-based caching can potentially
adapt to various workloads and achieve better restore
performance. In this section, we design a restore algo-
rithm with the assumption that the sizes of FAA, chunk
cache and LAW are all fixed. We call the memory space
used by chunk-based caching chunk cache. We first dis-
cuss how the FAA, chunk-based caching and LAW coop-
erate together to restore the data stream. Then, a detailed
example is presented to better demonstrate our design.

FAA consists of several container size memory buffers
and they are arranged in a linear order. We call each con-
tainer size buffer an FAB. A restore pointer pinpoints the
data chunk in the recipe to be found and copied to its cor-
responding location in the first FAB at this time. The data
chunks before the pointer are already assembled. Other
FABs are used to hold the accessed data chunks if these
chunks also appeared in these FABs. LAW starts with the
first data chunk in the first FAB (FAB1 in the example)
and covers a range bigger than that of FAA in the recipe.
In fact, the first portion of the LAW (equivalent to the
size of FAA) is used for the forward assembly purpose
and the remaining part of LAW is used for the purpose
of chunk-based caching.

An assembling cycle is the process to completely re-
store the first FAB in the FAA. That is, the duration af-
ter the previous first FAB is written back to the client

USENIX Association 16th USENIX Conference on File and Storage Technologies 313

Persistent
Storage

2 5 10 14 10 15 17 22…… ……

Look-Ahead Window Covered Range

Chunk Cache

22 18

Restored Data

UnknownFAACovered Range

2 822 18 23 12 13 32 23 28 6

102 518 10222 822

FAA

FAB1 FAB2

=

Restored

1712 1310

12

13

10

5

2

8

Information for Chunk Cache

F-cache P-cache

High Priority End

Low Priority End

……

22

restore

18

Container Read Buffer

Client

Figure 3: An example of look-ahead window assisted
chunk-based caching

and a new empty FAB is added to the end of FAA to
the time when the new first FAB is completely filled up.
At the end of one assembling cycle (i.e., the first FAB is
completely assembled), the content of the FAB is written
back to the requested client as the restored data and this
FAB is removed from the FAA. At the same time, a new
empty FAB will be added to the end of the FAA so that
FAA is maintained with the same size. For the LAW, the
first portion (one container size) corresponding to the re-
moved FAB is dropped and one more segment of recipe
(also one container size) is appended to the end of LAW.
Then, the restore engine starts the next assembly cycle to
fill in the new first FAB of the current FAA.

During the assembling cycle, the following is the pro-
cedure of restoring the data chunk pointed by the restore
pointer. If the data chunk at the restore pointer has al-
ready been stored by previous assembling operations, the
pointer will be directly moved to the next one. If the data
chunk has not been stored at its location in the FAB, the
chunk cache is checked first. If the chunk is found in the
cache, the data chunk is copied to the locations where
this data chunk appears in all the FABs including the lo-
cation pointed by the restore pointer. Also, the priority
of the chunk in the cache is adjusted accordingly. If the
chunk is not in the chunk cache, the container that holds
the data chunk will be read in from the storage. Then,
each data chunk in this container is checked with LAW
to identify all the locations it appears in the FAA. Then,
the data chunk is copied to the corresponding locations
in all FABs if they exist. Next, we have to decide which
chunks in this container are to be inserted to the chunk
cache according to a caching policy, and it will be de-
scribed later. After this data chunk is restored, the restore
pointer moves to the next data chunk in the recipe. The
read-in container will be replaced by the next requested
container. An example is shown in Figure 3, and it will
be described in detail in the last part of this section.

When inserting data chunks from the read-in container
to the chunk cache, we need to identify the potential us-
age of these chunks in the LAW and treat them accord-
ingly. Based on the second portion of LAW (i.e., the
remaining LAW after the size of FAA), the data chunks
from the read-in container can be classified into three cat-
egories: 1) U-chunk (Unused chunk) is a data chunk that
does not appear in the current entire LAW, 2) P-chunk
(Probably used chunk) is a data chunk that appears in the
current FAA but does not appear in the second portion of
the LAW, and 3) F-chunk (Future used chunk) is a data
chunk that will be used in the second portion of the LAW.
Note that a F-chunk may or may not be used in the FAA.

F-chunks are the data chunks that should be cached. If
more cache space is still available, we may cache some
P-chunks according to their priorities. That is, F-chunks
have priority over P-chunks for caching. However, each
of them has a different priority policy. The priority of
F-chunks is defined based on the ordering of their ap-
pearance in the second portion of the LAW. That is, an
F-chunk to be used in the near future in the LAW has a
higher priority over another F-chunk which will be used
later in the LAW. The priority of P-chunks is LRU based.
That is, the most recently used (MRU) P-chunk has a
higher priority over the least recently used P-chunks. Let
us denote the cache space used by F-chunks (P-chunks)
as F-cache (P-cache). The boundary between the F-cache
and P-cache is dynamically changing as the number of
F-chunks and that of P-chunks vary.

When the LAW advances, new F-chunks are added to
the F-cache. An F-chunk that has been restored and no
longer appeared in the LAW will be moved to the MRU
end of the P-cache. That is, this chunk becomes a P-
chunk. The priorities of some F-chunks are adjusted ac-
cording to their future access sequences. The new P-
chunks are added to the P-cache based on the LRU order
of their last appearance. Some P-chunks may become
F-chunks if they appear in the newly added portion of
LAW. When the cache eviction happens, data chunks are
evicted from the LRU end of the P-cache first. If there
is no P-chunk in P-cache, eviction starts from the lowest
priority end of the F-cache.

Figure 3 is an example to show the entire working pro-
cess of our design. Suppose one container holds 4 data
chunks. The LAW covers the data chunks of 4 contain-
ers in the recipe from chunk 18 to chunk 28. The data
chunks before the LAW have been assembled and writ-
ten back to the client. The data chunks beyond the LAW
is unknown to the restore engine at this moment. There
are two buffers in the FAA denoted as FAB1 and FAB2.
Each FAB has a size of one container and also holds 4
data chunks. FAA covers the range from chunk 18 to
chunk 17. The rest information of data chunks in the
LAW (from chunk 22 to chunk 28) are used for the chunk

314 16th USENIX Conference on File and Storage Technologies USENIX Association

cache. The red frames in the figure show the separations
of data chunks in containers. The labeled chunk number
represents the chunk ID and is irrelevant to the order of
the data chunk appearing in the recipe.

In FAB1, chunks 18, 2, 5 have already been stored and
the current restore pointer is at data chunk 10 (pointed
by the red arrow). This data chunk has neither been allo-
cated nor been cached. The container that stores chunk
10, 12, 13 and 17 is read out from the storage to the con-
tainer read buffer. Then, the data of chunk 10 is copied
to the FAB1. At the same time, chunk 10 also appears
in the FAB2 and the chunk is stored in the corresponding
position too. Next, the restore pointer moves to the chunk
14 at the beginning of the FAB2. Since FAB1 has been
fully assembled, its content is written out as restored data
and it is removed from FAA. The original FAB2 becomes
the new FAB1 and a new FAB (represented with dotted
frames) is added after FAB1 and becomes the new FAB2.

All the data chunks in the container read buffer are
checked with the LAW. Data chunk 10 is used in the FAA
but it does not appear again in the rest of LAW. So chunk
10 is a P-chunk and it is inserted to the MRU end of the
P-cache. Chunk 12 and chunk 13 are not used in the cur-
rent FAA but they will be used in the next two assembling
cycles within the LAW. They are identified as F-chunks
and added to the F-cache. Notice that chunk 12 appears
after chunk 22 and chunk 13 is used after chunk 12 as
shown in the recipe. Therefore, chunk 13 is inserted into
the low priority end and chunk 12 has the priority higher
than chunk 13. Chunk 17 has neither been used in the
FAA nor appeared in the LAW. It is a U-chunk and it will
not be cached. When restoring chunk 14, a new con-
tainer will be read into the container read buffer and it
will replace the current one.

5 The Adaptive Algorithm

The performance of the look-ahead window assisted
chunk-based caching is better than that of simply com-
bining the forward assembly with LRU-based chunk
caching. However, the sizes of FAA, chunk cache and
LAW are pre-determined and fixed in this design. As
discussed in the previous sections, FAA and chunk cache
have their own advantages and disadvantages for dif-
ferent workloads. In fact, in a given workload like a
backup trace, most data chunks are unique at the begin-
ning. Later in different sections of the workload, they
may have various degrees of duplication and re-usage.

Therefore, the sizes of FAA and chunk cache can be
dynamically changed to reflect the locality of the cur-
rent section of a workload. It is also important to figure
out what the appropriate LAW size is to get the best re-
store performance given a configuration of the FAA and
chunk cache. We propose an adaptive algorithm called

0

5

10

15

20

25

30

35

40

12 24 48 96 192 384 768

R
es
to
re
T
hr
ou
gh
pu
t

(M
B
/S
)

Look AheadWindow size
(# of containers)

(a) Restore throughput

0

2

4

6

8

10

12

14

12 24 48 96 192 384 768

C
om
pu
tin
g
T
im
e

(s
ec
on
ds
/G
B
)

Look AheadWindow Size
(# of containers)

(b) Computing time per 1GB restored

Figure 4: The restore performance and computing over-
head variation as the LAW size increases

ALACC that can dynamically adjust the sizes of FAA,
chunk cache and LAW according to the workload vari-
ation during the restore process. First, we evaluate and
analyze the restore performance of using different LAW
sizes. Then, we present the details of ALACC.

5.1 Performance Impact of LAW Size

We did an experiment that varies the LAW sizes for a
given workload and compared the restore throughput and
required computing overhead. We use an 8MB (2 con-
tainer size) FAA and a 24MB (6 container size) chunk
cache as the memory space configuration and increase
the LAW size from 12 container size to 768 container
size (it covers the original data stream size from 48MB to
3GB). As shown in Figure 4, the computing time contin-
uously increases as the LAW size increases due to higher
overhead to process and maintain the information in the
LAW. When the size of LAW is larger than 96, the restore
throughput starts to decrease. The performance degrada-
tion is caused by the increase of computing overhead and
less efficiency of chunk cache. Thus, using an appropri-
ate LAW size is important to make better trade-offs be-
tween cache efficiency and computing overhead.

We can explain the observation by analyzing the chunk
cache efficiency. Suppose the LAW size is SLAW chunks,
the FAA size is SFAA chunks, and the chunk cache size is
Scache chunks. Note that we use a container size as the ba-
sic unit for allocation and the number of containers can
be easily translated to the number of chunks. Assume
one data chunk Ci is used at the beginning of the FAA
and it will be reused after DCi chunks (i.e., the reuse dis-
tance of this chunk). If DCi < SFAA, it will be reused in
the FAA. If SFAA < DCi , this chunk should be either an F-
chunk or a P-chunk. However, the chunk category highly
depends on the size of SLAW . If the LAW only covers
the FAA range (SFAA = SLAW < DCi), the proposed algo-
rithm degenerates to the LRU-based chunk caching algo-
rithm. If SFAA < DCi < SLAW , we can definitely identify
this chunk as an F-chunk and decide to cache this chunk.
However, if SLAW < DCi , this chunk will be identified as

USENIX Association 16th USENIX Conference on File and Storage Technologies 315

a P-chunk and it may or may not be cached (this depends
on the available space in cache). Therefore, at least we
should ensure SFAA +Scache ≤ SLAW .

If the LAW size is large enough and most of the chunk
cache space are occupied by F-chunks, the cache effi-
ciency is high. However, once the cache is full of F-
chunks, the newly identified F-chunk may or may not
be inserted into the cache. This depends on its reuse
order. Thus, continuing increase the LAW size would
not further improve the cache efficiency. What is worse,
a larger LAW size requires more CPU and memory re-
sources to identify and maintain the future access infor-
mation. As we discuss before, if SLAW is the same as
SFAA, all cached chunks are P-chunks and chunk caching
becomes an LRU-based algorithm.

Thus, the best trade-off between cache efficiency and
overhead is when the total number of P-chunks is as low
as possible but not 0. However, it may be hard to main-
tain the number of P-chunks low all the time, especially
when there is a very limited number of F-chunks identi-
fied with a large LAW size. In this case, the size of LAW
should not be extended or it should be decreased slightly.

5.2 ALACC

Based on the previous analysis, we propose an adap-
tive algorithm, which dynamically adjusts the memory
space ratio of FAA and chunk cache, and the size of
LAW. We apply the adjustment at the end of each as-
sembling cycle right after the first FAB is restored. Sup-
pose at the end of ith assembling cycle, the sizes of FAA,
chunk cache and LAW are Si

FAA, Si
cache and Si

LAW con-
tainer size respectively. Si

FAA + Si
cache is fixed. To avoid

an extremely large LAW size, we set a maximum size of
LAW (MaxLAW) that is allowed during the restore.

The algorithm of ALACC optimizes the memory allo-
cation to FAA and chunk cache first. On one hand, if the
workload has an extremely low locality or its duplicated
data chunk re-use distance is small, FAA is preferred. On
the other hand, according to the total number of P-chunk
in the cache, the chunk cache size is adjusted. Then, ac-
cording to the memory space allocation changing and the
total number of F-chunk in the cache, the LAW size is
adjusted to optimize the computing overhead. The de-
tailed adjustment conditions and actions are described in
the following part of this section.

In our algorithm, the conditions of increasing the FAA
size are examined first. If any of these conditions is sat-
isfied, FAA will be increased by 1 container size and the
size of chunk cache will be decreased by 1 container ac-
cordingly. Otherwise, we will check the conditions of
adjusting the chunk cache size. Notice that the size of
FAA and chunk cache could remain the same if none of
the adjustment conditions are satisfied. Finally, the LAW
size will be changed.

FAA and LAW Size Adjustment. As discussed in
Section 3.2, FAA performs better than chunk cache when
1) the data chunks in the first FAB are identified mostly
as unique data chunks and these chunks are stored in
the same or close containers, or 2) the re-use distance
of most duplicated data chunks in this FAB is within the
FAA range. Regarding the first condition, we consider
that the FAB can be filled in by reading in no more than
2 containers and none of the data chunks needed by the
FAB is from the chunk cache. When this happens, we
consider this assembling cycle FAA effective. For Con-
dition 2, we observed that if the re-use distances of 80%
or more of the duplicated chunks in this FAB is smaller
than the FAA size, forward assembly performs better.

Therefore, based on the observations, we use either of
the following two conditions to increase the FAA size.
First, if the number of consecutive FAA effective assem-
bling cycles becomes bigger than a given threshold, we
increase the FAA size by 1 container. Here, we use the
current FAA size, Si

FAA, as the threshold to measure this
condition at the end of ith assembling cycle. When Si

FAA
size is small, the condition is easier to satisfy and the
size of FAA can be increased faster. When Si

FAA is large,
the condition is more difficult to satisfy. After increasing
the FAA size by one, the count of consecutive FAA ef-
fective assembling cycles is reset to 0. Second, the data
chunks used during the ith assembling cycle to fill up the
first FAB in FAA are examined. If the re-use distances
of more than 80% of these examined chunks during the
ith assembling cycle are smaller than Si

FAA + 1 container
size, the size of FAA will be increased by 1 container.
That is, Si+1

FAA = Si
FAA +1.

If the FAA size is increased by 1 container, the size
of chunk cache will decrease by 1 container accordingly.
Originally, Si

LAW −Si
FAA container size LAW information

is used by Si
cache container size cache. After the FAA

adjustment, Si
LAW −Si

FAA +1 container size LAW is used
by Si

cache− 1 container size cache, which wastes the in-
formation in the LAW. Thus, the LAW size is decreased
by 1 container size to avoid the same size LAW used
by a now smaller size chunk cache. After the new sizes
of FAA, chunk cache and LAW are decided, two empty
FABs (one to replace the re-stored FAB and the other re-
flects the increasing size of FAA) will be added to the end
of FAA and the chunk cache starts to evict data chunks.
Then, the (i+1)th assembling cycle will start.

Chunk Cache and LAW Size Adjustment. If there
is no adjustment to the FAA size, we now consider the
adjustment of chunk cache size. After finished the ith as-
sembling cycle, the total number (NF−chunk) of F-chunks
in the F-cache and the total number (NP−chunk) of P-
chunks in the P-cache are counted. Also, the number
of F-chunks that are newly added to the F-cache during
the ith assembling cycle is denoted by NF−added . These

316 16th USENIX Conference on File and Storage Technologies USENIX Association

newly added F-chunks either come from the read-in con-
tainers in the ith assembling cycle or are transformed
from P-chunks due to the extending of the LAW. We ex-
amine the following three conditions.

First, if NP−chunk becomes 0, it indicates that all the
cache space is occupied by F-chunks. The current LAW
size is too large and the number of F-chunks based on
the current LAW is larger than the chunk cache capacity.
Therefore, the chunk cache size will be increased by 1
container. Meanwhile, the size of LAW will decrease by
1 container to reduce the unnecessary overhead. Second,
if the total size of NF−added is bigger than 1 container,
it indicates that the total number of F-chunks increases
very quickly. Thus, we increase the chunk cache size by
1 container and decrease LAW by 1 container. Notice
that a large NF−added can happen when NP−chunk is either
small or large. This condition will make our algorithm
quickly react to the changing of the workload.

Third, if NP−chunk is very large (i.e., NF−chunk is very
small), the chunk cache size will be decreased by 1 con-
tainer. In this situation, the LAW size is adjusted dif-
ferently according to either of the following two con-
ditions: 1) In the current workload, there are few data
chunks in the FAB that are reused in the future, and
2) The size of LAW is too small, it cannot look ahead
far enough to find more F-chunks for the current work-
load. For Condition 1, we decrease the LAW size by
1 container. For Condition 2, we increase the LAW
size by K containers. Here, K is calculated by K =
(MaxLAW − Si

LAW)/(Si
FAA + Si

cache). If LAW is small, its
size is increased by a larger amount. If LAW is big, its
size will be increased slowly.

LAW Size Independent Adjustment If none of the
aforementioned conditions are satisfied (the sizes of FAA
and chunk cache remain the same), the LAW size will
be adjusted independently. Here, we use the NF−chunk
to decide the adjustment. If NF−chunk is smaller than a
given threshold (e.g., 20% of the total chunk cache size),
the LAW size will be slightly increased by 1 container
to process more future information. If NF−chunk is higher
than the threshold, the LAW size will be decreased by 1
to reduce the computing overhead.

ALACC makes the trade-offs between computing
overhead and the reduction of container-reads, such that
a higher restore throughput can be achieved. Instead
of using a fixed value as the threshold, we tend to dy-
namically change FAA size and LAW size. It can slow
down the adjustments when the overhead is big (when
the LAW size is large) and it can speed up the adjust-
ment when the overhead is small to quickly reduce the
container-reads (when FAA size is small).

6 Prototype Implementation

We implemented a prototype of a deduplication system
(a C program with 11k LoC) with several restore designs:
FAA, container-based caching, chunk-based caching,
LAW assisted chunk-based caching, and ALACC. For
the deduplication process, it can be configured to use dif-
ferent container size and chunk size (fixed size chunking
and variable size chunking) to process the real world data
or to generate deduplication traces.

To satisfy the flexibility and efficiency requirements
of ALACC, we implemented several data structures. All
the data chunks in the chunk cache are indexed by a hash-
map to speed up the searching operation. F-chunks are
ordered by their future access sequence provided by the
LAW and P-chunks are indexed by an LRU list. The
LAW maintains the data chunk metadata (chunk ID, size,
container ID, address and offset in the container) in the
same order as they are in the recipe. Although the in-
sertion and deletion in the LAW is O(1) by using the
hashmap, identifying the F-chunk priority is O(log(N)),
where N is the LAW size.

A Restore Recovery Log (RRL) is maintained to en-
sure reliability. When one FAB is full and flushed out,
the chunk ID of the last chunk in the FAB, the chunk
location in the recipe, the restored data address, FAA,
chunk cache and LAW configurations are logged to the
RRL. If the system is down, by using the information in
the RRL, the restore process can be recovered to the lat-
est restored cycle. The FAA, chunk cache and LAW will
be initiated and reconstructed.

7 Performance Evaluation

To comprehensively evaluate our design, we imple-
ment five restore engines including ALACC, LRU-based
container caching (Container LRU), LRU-based chunk
caching (Chunk LRU), forward assembly (FAA), and
fixed combination of forward assembly and chunk-based
caching. However, in the last case, we show only the Op-
timal Fix Configuration (Fix Opt). Fix Opt is obtained
by exhausting all possible fixed combinations of FAA,
chunk cache, and LAW sizes.

7.1 Experimental Setup and Data Sets
The prototype is deployed on a Dell PowerEdge

R430 server with a 2.40GHz Intel Xeon with 24 cores
and 32GB of memory using Seagate ST1000NM0033-
9ZM173 SATA hard disk with 1TB capacity as the stor-
age. The container size is configured as 4MB. All five
implementations are configured with one container size
space as container read buffer and memory size of S con-
tainers. Container LRU and Chunk LRU use one con-
tainer for FAA and S− 1 for container or chunk cache.

USENIX Association 16th USENIX Conference on File and Storage Technologies 317

Table 2: Characteristics of datasets

Dataset FSL 1 FSL 2 EMC 1 EMC 2
Size 103.5GB 317.4GB 29.2GB 28.6GB
ACS1 4KB 4KB 8KB 8KB
DR2 3.82 4.88 1.04 4.8
CFL3 13.3 3.3 14.7 19.3
1 ACS stands for Average Chunk Size
2 DR stands for the Deduplication Ratio, which is the original

data size divided by the deduplicated data size.
3 CFL stands for the Chunk Fragmentation Level, which

is the average number of containers that stores the data
chunks from one container size of original data stream.
High CFL value leads to low restore performance.

FAA uses LAW of S container size and all S memory
space as the forward assembly area. The specific config-
uration of Fix Opt is given in Section 7.2. In all experi-
ments, ALACC is initiated with S/2 container size FAA,
S/2 container size chunk cache and 2S container size
LAW before the execution. For the reason that ALACC
requires to maintain at least one container size space as
FAB, the FAA size varies from 1 to S and the chunk cache
size varies from (S−1) to 0 accordingly. After one ver-
sion of backup is restored, the cache is cleaned.

We use four deduplication traces in the experiments
as shown in Table 2. FSL 1 and FSL 2 are two differ-
ent backup traces from FSL /home directory snapshots
of the year 2014 [26]. Each trace has 6 full snapshot
backups and the average chunk size is 4KB. EMC 1 and
EMC 2 are the weekly full-backup traces from EMC and
each trace has 6 versions and 8KB average chunk size
[27]. EMC 1 was collected from an exchange server and
EMC 2 was the /var directory backup from a revision
control system.

To measure the restore performance, we use the speed
factor, computing cost factor and restore throughput as
the metrics. The speed factor (MB/container-read) is
defined as the mean data size restored per container
read. Higher speed factors indicate higher restore per-
formance. The computing cost factor (second/GB) is de-
fined as the time spent on computing operations (sub-
tracting the storage I/O time from the restore time) per
GB data restored and the smaller value is preferred. The
restore throughput (MB/second) is calculated from the
original data stream size divided by the total restore time.
We run each test 5 times and present the mean value. No-
tice that, for the same trace using the same caching pol-
icy, if the restore machine and the storage are different,
the computing cost factor and restore throughput can be
different while the speed factor is the same.

Table 3: The FAA/chunk cache/LAW configuration (# of
containers) of Fix Opt for each deduplication trace

FSL 1 FSL 2 EMC 1 EMC 2
Size 4/12/56 6/10/72 2/14/92 4/12/64

2
4
6
8

10

12

14

12

13

14

15

16

17

18

162432
40

48
56

64
72

80
88

96

FA
A
Si
ze

R
es
to
re
T
hr
ou
gh
pu
t(
M
B
/S
)

LAWSize

12-13 13-14 14-15 15-16 16-17 17-18

Figure 5: The restore throughput of different FAA, chunk
cache and LAW size configurations

7.2 Optimal Performance of Fixed Configura-
tions

In LAW assisted chunk-based caching design, the
sizes of FAA, chunk cache and LAW are fixed and are
not changed during the restore process. To find out the
best performance of a configuration for a specific trace
with a given memory size, in our experiments we run all
possible configurations for each trace to discover the op-
timal throughput. This optimal configuration is indicated
by Fix Opt. For example, for 64MB memory, we vary
the FAA size from 4MB to 60MB and the chunk cache
size from 60MB to 4MB. At the same time, the LAW size
increases from 16 containers to 96 containers. Each test
tries one set of fixed configuration and finally, we draw a
three-dimensional figure to find out the optimal results.

An example is shown in Figure 5, for FSL 1, the op-
timal configuration has 4 containers of FAA, 12 con-
tainers of chunk cache and a LAW size of 56 contain-
ers. One throughput peak is when the LAW is small.
The computing cost is low while the container-reads are
slightly higher. The other throughput peak is when the
LAW is relatively large. With more future information,
the container-reads are lower but the computing cost is
higher. The optimal configuration of each trace is shown
in Table 3, the sizes of FAA and chunk cache can be cal-
culated by the number of containers times 4MB.

7.3 Restore Performance Comparison

Using the same restore engine and storage as discover-
ing the Fix Opt, we evaluate and compare the speed fac-

318 16th USENIX Conference on File and Storage Technologies USENIX Association

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(a) Speed factor of FSL 1

0

4

8

12

16

20

0 1 2 3 4 5

C
om

pu
tin

g
 C

os
t

Fa
ct

or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(b) Computing cost factor of FSL 1

0

5

10

15

20

25

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(M

B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(c) Restore throughput of FSL 1

0

1

2

3

4

5

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(d) Speed factor of FSL 2

0

2

4

6

8

10

12

0 1 2 3 4 5

C
om
pu
tin
g
C
os
tF
ac
to
r

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(e) Computing cost factor of FSL 2

0

10

20

30

40

50

60

70

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(M

B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(f) Restore throughput of FSL 2

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(g) Speed factor of EMC 1

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

C
om
pu
tin
g
C
os
tF
ac
to
r

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(h) Computing cost factor of EMC 1

0

10

20

30

40

50

60

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(
M
B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(i) Restore throughput of EMC 1

0

1

2

3

4

5

0 1 2 3 4 5

Sp
ee
d
Fa
ct
or

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(j) Speed factor of EMC 2

0

0.4

0.8

1.2

1.6

2

0 1 2 3 4 5

C
om
pu
tin
g
C
os
tF
ac
to
r

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(k) Computing cost factor of EMC 2

0

15

30

45

60

75

90

105

0 1 2 3 4 5

R
es
to
re
T
hr
ou
gh
pu
t(M

B
/S
)

Version Number

Container_LRU Chunk_LRU
FAA Fix_Opt
ALACC

(l) Restore throughput of EMC 2

Figure 6: The restore performance results comparison of Container LRU, Chunk LRU, FAA, Fix Opt and ALACC.
Notice that the speed factor, computing cost factor and restore throughput vary largely in different traces, we use
different scales among subfigures to show the relative improvement or difference of the five designs in the same trace.

USENIX Association 16th USENIX Conference on File and Storage Technologies 319

Table 4: The percentage of memory size occupied by
FAA of ALACC in each restore testing case

Version # 0 1 2 3 4 5
FSL 1 50% 38% 39% 38% 40% 38%
FSL 2 67% 67% 64% 69% 64% 57%
EMC 1 26% 24% 14% 17% 16% 16%
EMC 2 7% 8% 8% 8% 8% 7%

tor, computing cost and restore performance (through-
put) of the four traces with 64MB total memory. The
evaluation results are shown in Figure 6. As indicated in
Table 2, the CFL of FSL 2 is much lower than the oth-
ers, which leads to a very close restore performance of
all the restore designs. However, when the CFL is high,
ALACC is able to adjust the sizes of FAA, chunk cache,
and LAW to adapt to the highly fragmented chunk stor-
ing, and achieves higher restore performance.

The computing cost varies in different traces and ver-
sions. In most cases, the computing cost of FAA is rela-
tively lower than the others, because it avoids the cache
insertion, look-up, and eviction operations. As expected,
the computing overhead of Chunk LRU is usually higher
than that of Container LRU due to more management
operations for smaller caching granularity. However, in
EMC 2, the computing overhead of Container LRU is
much higher than the other four designs. The overhead
is caused by the high frequent cache replacement and
extremely high cache miss ratio. The cache miss ra-
tio of Container LRU is about 3X higher than that of
Chunk LRU. The time of reading containers from stor-
age to the read-in buffer dominates the restore time.
Thus, the speed factor can nearly determine the restore
performance. Comparing the speed factor and restore
throughput of the same trace, for example, trace FS 1 in
Figure 6(a) and 6(c), the curves of the same cache policy
are very similar.

For all 4 traces, the overall average speed factor
of ALACC is 83% higher than Container LRU, 37%
higher than FAA, 12% higher than Chunk LRU and 2%
higher than Fix Opt. The average computing cost of
ALACC is 27% higher than that of Container LRU, 23%
higher than FAA, 33% lower than Chunk LRU and 26%
lower than Fix Opt. The average restore throughput
of ALACC is 89% higher than that of Container LRU,
38% higher than FAA, 14% higher than Chunk LRU
and 4% higher than Fix Opt. In our experiments, the
speed factor of ALACC is higher than those of Con-
tainer LRU, Chunk LRU, and FAA. More importantly,
ALACC achieves at least a similar or better performance
as Fix Opt. By dynamically adjusting the sizes of FAA,
chunk cache and LAW, the improvement of the restore
throughput is higher than the speed factor. Notice that we

Table 5: The average LAW size (# of containers) of
ALACC in each restore testing case

Version # 0 1 2 3 4 5
FSL 1 31.2 30.5 31.4 32.2 32.0 30.7
FSL 2 44.6 44.1 40.1 32.3 32.8 36.9
EMC 1 77.1 83.1 88.7 84.2 76.1 82.6
EMC 2 95.3 95.2 95.1 95.3 94.8 95.2

need tens of experiments to find out the optimal config-
urations of Fix Opt which is almost impossible to carry
out in a real-world production scenario.

The main goal of ALACC is to make better trade-
offs between the number of container-reads and the re-
quired computing overhead. The average percentage of
the memory space occupied by FAA of ALACC is shown
in Table 4 and the average LAW size is shown in Table
5. The percentage of chunk cache in the memory can be
calculated by (1−FAA percentage). The mean FAA size
and LAW size vary largely in different workloads. The
restore data with larger data chunk re-use distance usu-
ally needs smaller FAA size, larger cache size, and larger
LAW size, like in traces FSL 1, FSL 2, and EMC 2.
One exception is trace EMC 1. This trace is very spe-
cial, only about 4% data chunks are duplicated chunks
and they are scattered over many containers. The per-
formances of Container LRU, Chunk LRU and FAA are
thus very close since extra container-reads will always
happen when restoring the duplicated chunks. By adap-
tively extending the LAW to a larger size (about 80 con-
tainers and 5 times larger than FAA cover range) and us-
ing larger chunk cache space, ALACC successfully iden-
tifies the data chunks that will be used in far future and
caches them. Therefore, ALACC can outperform others
in such an extreme workload. Assuredly, ALACC has
the highest computing overhead (about 90% higher than
others in average) as shown in Figure 6(h).

Comparing the trend of varying FAA and LAW sizes
of Fix Opt (shown in Table 3) with that of ALACC
(shown in Tables 4 and 5), we can find that ALACC
usually applies smaller LAW and larger cache size than
Fix Opt. Thus, ALACC achieves lower computing cost
and improves the restore throughput as shown in Figures
6(b), 6(e) and 6(k). In EMC 2, ALACC has a larger
cache size and a larger LAW size than those of Fix Opt.
After we exam the restore log, we find that the P-chunks
occupied 95% the cache space in more than 90% of the
assembling cycles. A very small portion of data chunks
is duplicated many times, which can explain why the
Chunk LRU performs close to Fix Opt. In such an ex-
treme case, ALACC makes the decision to use a larger
cache space and a larger LAW size such that it can still
adapt to the workload and maintain a high speed factor

320 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 200

 400

 600

 800

 1000

 0 500 1000 1500 2000 2500 3000P
-c

h
u

n
k

s
p

er
 c

o
n

ta
in

er

Asssemble cycle number

’FSL_2_v1.log’ using 14

(a) P-chunk numbers per container size chunk cache

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000 2500 3000

F
A

A
 s

iz
e

Asssemble cycle number

’FSL_2_v1.log’ using 4

(b) FAA size (# of containers)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000 2500 3000

C
ac

h
e

si
ze

Asssemble cycle number

’FSL_2_v1.log’ using 5

(c) Chunk cache size (# of containers)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

L
A

W
 S

iz
e

Asssemble cycle number

’FSL_2_v1.log’ using 6

(d) LAW size (# of containers)

Figure 7: The variation of P-chunk numbers per con-
tainer size chunk cache, FAA size, chunk cache size, and
LAW size during the restore of FSL 1 in version 0

and high restore throughput as shown in Figures 6(j) and
6(l). In general, ALACC successfully adapts to the lo-
cality changing and delivers high restore throughput for
a given workload.

7.4 The Adaptive Adjustment in ALACC

To verify the adaptive adjustment process of ALACC,
we write the log at the end of each assembling cycle
and using P-chunk as an example to show the size ad-
justment of FAA, chunk cache and LAW by ALACC.
The log records the P-chunk numbers per container size
cache , the sizes of FAA, chunk cache, and LAW. We use
FSL 2 version 1 as an example and the results are shown
in Figure 7. The number of P-chunks per container size
cache is very low at the beginning and varies sharply as
assembly cycle increases as shown in Figure 7(a). One
container size cache can store about 1000 data chunks
in average. During the assembling cycle range (1000–

1500), most of the chunk cache space is occupied by
the P-chunks and there are few duplicated data chunks.
Thus, ALACC uses a larger FAA and a smaller LAW.

If the number of P-chunk is relatively low, more
caching space is preferred. For example, in the assem-
bling cycle range (700–900), the number of P-chunks is
lower than 200 (i.e., more than 80% of the chunk cache
space is used for F-chunks). As expected, the FAA size
drops quickly and the chunk cache size increases sharply
and stays at a high level. Meanwhile, since the cache
space is increased, the LAW size is also increased to
cover larger recipe range and to identify more F-chunks.
In general, ALACC successfully monitors the workload
variation and self-adaptively reacts to the number of P-
chunks variation as expected, and thus, delivers higher
restore throughput without manual adjustments.

8 Conclusion and Future Work

Improving restore performance of deduplication system
is very important. In this paper, we studied the effec-
tiveness and the efficiency of different caching mecha-
nisms applied to the restore process. Based on the ob-
servations of the caching efficiency experiments, we de-
sign an adaptive algorithm called ALACC which is able
to adaptively adjust the sizes of the FAA, chunk cache
and LAW according to the workload changes. By mak-
ing better trade-offs between the number of container-
reads and computing overhead, ALACC achieves much
better restore performance than container-based caching,
chunk-based caching and forward assembly. In our ex-
periments, the restore performance of ALACC is slightly
better than the best performance of restore engine with
all possible configurations of fixed sizes of FAA, chunk
cache and LAW. In our future work, duplicated data
chunk rewriting will be investigated and integrated with
ALACC to further improve the restore performance of
data deduplication systems for both primary and sec-
ondary storage systems.

Acknowledgments

We thank all the members in CRIS group to provide
the useful comments to improve our design. We thank
Dongchul Park for assistance with the trace exploring
and pre-processing, and Baoquan Zhang for the specific
reviewing comments. We would like to thank our shep-
herd, Philip Shilane, for his useful comments and sug-
gestions. This work is partially supported by the fol-
lowing NSF awards: 1305237, 1421913, 1439622 and
1525617.

USENIX Association 16th USENIX Conference on File and Storage Technologies 321

References

[1] Mark Lillibridge, Kave Eshghi, and Deepavali
Bhagwat. Improving restore speed for backup
systems that use inline chunk-based deduplication.
In 11th USENIX Conference on File and Storage
Technologies (FAST 13), pages 183–198, 2013.

[2] Michal Kaczmarczyk, Marcin Barczynski, Woj-
ciech Kilian, and Cezary Dubnicki. Reducing im-
pact of data fragmentation caused by in-line dedu-
plication. In Proceedings of the 5th Annual Inter-
national Systems and Storage Conference, page 15.
ACM, 2012.

[3] Youngjin Nam, Guanlin Lu, Nohhyun Park, Wei-
jun Xiao, and David HC Du. Chunk fragmenta-
tion level: An effective indicator for read perfor-
mance degradation in deduplication storage. In
High Performance Computing and Communica-
tions (HPCC), 2011 IEEE 13th International Con-
ference on, pages 581–586. IEEE, 2011.

[4] Young Jin Nam, Dongchul Park, and David HC
Du. Assuring demanded read performance of data
deduplication storage with backup datasets. In
Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2012
IEEE 20th International Symposium on, pages
201–208. IEEE, 2012.

[5] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuon-
ing Chen, Wen Xia, Fangting Huang, and Qing
Liu. Accelerating restore and garbage collection in
deduplication-based backup systems via exploiting
historical information. In USENIX Annual Techni-
cal Conference (USENIX ATC 14), pages 181–192,
2014.

[6] Bo Mao, Hong Jiang, Suzhen Wu, Yinjin Fu, and
Lei Tian. Sar: Ssd assisted restore optimization for
deduplication-based storage systems in the cloud.
In Networking, Architecture and Storage (NAS),
2012 IEEE 7th International Conference on, pages
328–337. IEEE, 2012.

[7] Dongchul Park, Ziqi Fan, Young Jin Nam, and
David HC Du. A lookahead read cache: Improving
read performance for deduplication backup stor-
age. Journal of Computer Science and Technology,
32(1):26–40, 2017.

[8] Benjamin Zhu, Kai Li, and R Hugo Patterson.
Avoiding the disk bottleneck in the data domain
deduplication file system. In 6th USENIX Confer-
ence on File and Storage Technologies (FAST 08),
volume 8, pages 1–14, 2008.

[9] Wei Zhang, Tao Yang, Gautham Narayanasamy,
and Hong Tang. Low-cost data deduplication for
virtual machine backup in cloud storage. In Hot-
Storage, 2013.

[10] Fanglu Guo and Petros Efstathopoulos. Building a
high-performance deduplication system. In 2011
USENIX Annual Technical Conference (USENIX
ATC 11), 2011.

[11] Min Fu, Dan Feng, Yu Hua, Xubin He, Zuon-
ing Chen, Wen Xia, Yucheng Zhang, and Yujuan
Tan. Design tradeoffs for data deduplication perfor-
mance in backup workloads. In 13th USENIX Con-
ference on File and Storage Technologies (FAST
15), pages 331–344, 2015.

[12] Jaehong Min, Daeyoung Yoon, and Youjip Won.
Efficient deduplication techniques for modern
backup operation. IEEE Transactions on Comput-
ers, 60(6):824–840, 2011.

[13] Deepavali Bhagwat, Kave Eshghi, Darrell DE
Long, and Mark Lillibridge. Extreme binning:
Scalable, parallel deduplication for chunk-based
file backup. In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems, 2009.
MASCOTS’09. IEEE International Symposium on,
pages 1–9. IEEE, 2009.

[14] Sean Quinlan and Sean Dorward. Venti: A new ap-
proach to archival storage. In 1st USENIX Confer-
ence on File and Storage Technologies (FAST 02),
volume 2, pages 89–101, 2002.

[15] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt,
Michal Kaczmarczyk, Wojciech Kilian, Przemys-
law Strzelczak, Jerzy Szczepkowski, Cristian Un-
gureanu, and Michal Welnicki. Hydrastor: A scal-
able secondary storage. In 7th USENIX Conference
on File and Storage Technologies (FAST 09), vol-
ume 9, pages 197–210, 2009.

[16] Kiran Srinivasan, Timothy Bisson, Garth R Good-
son, and Kaladhar Voruganti. idedup: latency-
aware, inline data deduplication for primary stor-
age. In 10th USENIX Conference on File and Stor-
age Technologies (FAST 12), volume 12, pages 1–
14, 2012.

[17] Wenji Li, Gregory Jean-Baptise, Juan Riveros, Giri
Narasimhan, Tony Zhang, and Ming Zhao. Cached-
edup: in-line deduplication for flash caching. In
14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 301–314, 2016.

322 16th USENIX Conference on File and Storage Technologies USENIX Association

[18] Biplob K Debnath, Sudipta Sengupta, and Jin Li.
Chunkstash: Speeding up inline storage deduplica-
tion using flash memory. In USENIX annual tech-
nical conference (USENIX ATC 10), 2010.

[19] Yoshihiro Tsuchiya and Takashi Watanabe. Dblk:
Deduplication for primary block storage. In Mass
Storage Systems and Technologies (MSST), 2011
IEEE 27th Symposium on, pages 1–5. IEEE, 2011.

[20] Vasily Tarasov, Deepak Jain, Geoff Kuenning,
Sonam Mandal, Karthikeyani Palanisami, Philip
Shilane, Sagar Trehan, and Erez Zadok. Dmdedup:
Device mapper target for data deduplication. In
2014 Ottawa Linux Symposium, 2014.

[21] Sonam Mandal, Geoff Kuenning, Dongju Ok,
Varun Shastry, Philip Shilane, Sun Zhen, Vasily
Tarasov, and Erez Zadok. Using hints to im-
prove inline block-layer deduplication. In 14th
USENIX Conference on File and Storage Technolo-
gies (FAST 16), pages 315–322, 2016.

[22] Zhuan Chen and Kai Shen. Ordermergededup:
Efficient, failure-consistent deduplication on flash.
In 14th USENIX Conference on File and Storage
Technologies (FAST 16), pages 291–299, 2016.

[23] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi
Ottean, Jin Li, and Sudipta Sengupta. Primary
data deduplication-large scale study and system de-
sign. In 2012 USENIX Annual Technical Confer-
ence (USENIX ATC 12), pages 285–296, 2012.

[24] Ziqi Fan, David HC Du, and Doug Voigt. H-arc: A
non-volatile memory based cache policy for solid
state drives. In Mass Storage Systems and Tech-
nologies (MSST), 2014 30th Symposium on, pages
1–11. IEEE, 2014.

[25] Ziqi Fan, Fenggang Wu, Dongchul Park, Jim Diehl,
Doug Voigt, and David HC Du. Hibachi: A coop-
erative hybrid cache with nvram and dram for stor-
age arrays. In Mass Storage Systems and Technolo-
gies (MSST), 2017 IEEE 33th Symposium on. IEEE,
2017.

[26] http://tracer.filesystems.org/.

[27] Nohhyun Park and David J Lilja. Characteriz-
ing datasets for data deduplication in backup ap-
plications. In Workload Characterization (IISWC),
2010 IEEE International Symposium on, pages 1–
10. IEEE, 2010.

USENIX Association 16th USENIX Conference on File and Storage Technologies 323

UKSM: Swift Memory Deduplication via Hierarchical and Adaptive
Memory Region Distilling

Nai Xia† Chen Tian† Yan Luo‡ Hang Liu‡ Xiaoliang Wang†

†State Key Laboratory for Novel Software Technology, Nanjing University, China
‡Department of Electrical and Computer Engineering, University of Massachusetts Lowell, USA

{xianai, tianchen, waxili}@nju.edu.cn, {Yan Luo, Hang Liu}@uml.edu

Abstract
In cloud computing, deduplication can reduce memory

footprint by eliminating redundant pages. The respon-

siveness of a deduplication process to newly generated

memory pages is critical. State-of-the-art Content Based

Page Sharing (CBPS) approaches lack responsiveness as

they equally scan every page while finding redundancies.

We propose a new deduplication system UKSM, which

prioritizes different memory regions to accelerate the

deduplication process and minimize application penalty.

With UKSM, memory regions are organized as a distill-

ing hierarchy, where a region in a higher level receives

more CPU cycles. UKSM adaptively promotes/demotes

a region among levels according to the region’s estimated

deduplication benefit and penalty. UKSM further in-

troduces an adaptive partial-page hashing scheme which

adjusts a global page hashing strength parameter accord-

ing to the global degree of page similarity. Experiments

demonstrate that, with the same amount of CPU cycles in

the same time envelop, UKSM can achieve up to 12.6×
and 5× more memory saving than CBPS approaches on

static and dynamic workloads, respectively.

1 Introduction
In cloud computing, multiple virtual machines (VMs)/

containers (e.g., dockers)/ processes are consolidated to

share a physical sever. For a public cloud, the more

VMs that can be packed into one host, the more VMs

can be sold to tenants. For a private cluster, the more

processes that can be packed into one host, the fewer the

number of hosts needs to be purchased and maintained.

In this context, available memory space can be a major

bottleneck which limits the number of VMs/container-

s/processes that can be consolidated [1].

Memory deduplication can reduce memory footprint

by eliminating redundant pages. This is particularly

true when similar OSes/applications/data are used across

different VMs. For instance, Chang et al. [2] observed

as much as 86% redundant pages in real-world ap-

plications. Essentially, memory deduplication detects

those redundant pages, and merges them by enabling

transparent page sharing. It is important to mention

that deduplication has penalty besides benefit. These

shared pages are managed in a copy-on-write (COW)

fashion, that is, when a write request happens to one

of the transparently shared pages, this specific page can

not be shared any more. A new copy of this page will

be generated in the memory so that the write request is

applied there, which is called page COW-broken.

The responsiveness of the deduplication process to

newly generated pages is critical. For a production

system, the memory is always dynamic, where pages

come and go. As demonstrated by our typical cloud com-

puting workload experiment (Section 8), if an approach

cannot catch up with the generation speed of memory

redundancy, memory pages would be swapped out to the

disk, and the whole system is slowed down.

State-of-the-art Content Based Page Sharing (CBPS)

approaches lack responsiveness as they equally scan

every page to find redundancies. CBPS is a major

deduplication method in Linux, Xen and VMware [3, 4,

5]. It is capable of full memory scan and it is easy to

be integrated into main stream systems. For example,

Linux’s Kernel Same-page Merging (KSM) is a kernel

feature that deduplicates pages for both virtualized and

non-virtualized environments. In short, CBPS uses a

scanner to calculate the hash value for every candidate

page. If two pages share the same hash value, a byte-by-

byte memory comparison is performed. If duplication

confirmed, one page is merged to the other. It should

be noted that: NOT all pages are created equal. Due to

their applications’ nature, some pages have little chance

of being identical to others. These so called sparse pages

should be tested in the last place. Some pages, although

identical to others at the very beginning, can quickly

become either COW-broken or freed. We refer to them

as COW-broken pages and short-lived pages respectively.

An ideal candidate page for deduplication should remain

USENIX Association 16th USENIX Conference on File and Storage Technologies 325

static (i.e., not COW-broken or freed) for a reason-

able period of time. A deduplication approach should

prioritize these statically-duplicated pages. Further,

deduplication operations performed on different pages

may have different degrees of performance impacts on

applications. We should also minimize deduplication’s

penalty on running applications due to operations such

as page table locks and recovery of COW-broken pages.

Our observation is that pages within the same memory
region present similar duplication patterns (Section 3).

Here a memory region refers to a continuous virtual

memory region allocated by an application (i.e., allo-

cated by malloc, brk, mmap etc). In some regions,

most pages are statically-duplicated. In other regions,

most identical pages may quickly become COW-broken

or freed. According to the dominant page pattern, we

can label a region as one of the four types of sparse,

COW-broken, short-lived and statically-duplicated (i.e.,
with a high duplication ratio, long-lived and seldom-

changed). Intuitively, if we can prioritize pages in

statically-duplicated regions for testing redundancy, the

deduplication speed could be significantly accelerated.

However, the challenge is how to distill these regions

without testing every page at the first place?

Our key insight is that for each memory region, we can

estimate its duplication ratio by sampling only a portion

of all pages, at the same time monitor its degree of

dynamics and lifetime. We can then distinguish sparse,

short-lived and frequently COW-broken regions from

statically-duplicated regions. To this end, we propose

a new deduplication system Ultra KSM (UKSM). Build

on top of KSM, UKSM improves traditional CBPS

designs by prioritizing statically-duplicated regions over

other regions to accelerate the deduplication process and

minimize application penalty (Section 4).

UKSM introduces a hierarchy of sampling levels, each

of which maintains a linked-list of memory regions.

Each time an application mmap-s a new memory region,

this region is immediately inserted into the list of the

bottom level, which has the lowest scanning speed hence

the lowest sampling density. A single thread iterates

over levels to sample and deduplicate pages in each

level. After each round of sampling, the duplication

ratio and COW ratio of each region are compared with

a set of threshold values. Once a memory region is

identified as a potential statically-duplicated region, it

is promoted from the current level to the next higher

level which has a higher scanning speed hence a higher

sampling density. This hierarchical architecture ensures

system responsiveness by investing more CPU resources

in regions in higher levels (Section 5).

To minimize the computational cost, we further devel-

op a new partial-page hashing scheme called Adaptive

Partial Hashing (APH). Let page hash strength denotes

the number of bytes hashed in each sampling page.

We define profit as the time saved compared to the

strongest page hash strength and penalty as the wasted

time of futile memory comparison due to hash collision.

APH adaptively selects a global page hash strength to

maximize the overall benefit which is profit subtracting

penalty. Our novel progressive hash algorithm can sup-

port hash strength adaptation with incremental cost. Note

that APH can improve other deduplication approaches as

well since they are mostly hash-based (Section 6).

UKSM is implemented in both Linux kernel and

Xen. The approach can detect and merge duplicated

memory pages in real-time without intruding other parts

of a system (e.g., I/O, file system, etc). Experiments

demonstrate that, with the same amount of CPU cycles

in the same time envelop, UKSM can achieve up to

12.6×/5× more memory saving than CBPS approaches

(e.g., KSM) on static/dynamic workloads, respectively.

UKSM also significantly outperforms XLH (i.e., 50%

more memory saving with the same amount of CPU

consumption), a state-of-the-art I/O hint based approach.

UKSM introduces negligible CPU consumption (around

0.2% of one core) when the host has no more page to be

deduplicated, at the same time can respond to emerging

duplicated pages rapidly (Sections 7 and 8).

UKSM is an open source project and benefits a

wide range of applications [6]. Its patches for Linux

kernel were first released in 2012 and have been kept

synchronized with upstream kernel releases ever since.

UKSM has been downloaded for over 30,000 times (at

our site [6] alone, not including those re-distributed by

other developers) at the time of the paper’s publication.

Besides the default versions, UKSM was also ported to

kernels for desktop/server Linux systems [7, 8, 9, 10, 11]

and Android systems [12, 13, 14, 15, 16] by third-party

developers.

2 Related Work
Content-based Page Sharing (CBPS) VMWare ESX

server [5] is the pioneer of content based page sharing ap-

proaches, where memory pages are scanned one-by-one.

To control realtime CPU overhead, pages are randomly

selected at a fixed scanning speed. A hash function is

applied to each page for checking the similarity among

pages. Pages that hash to the same value are byte-by-byte

fully compared before they can be shared through copy-

on-write. IBM Active Memory Deduplication [17] uses

a similar approach for hypervisors in Power systems.

CBPS for Xen was proposed by Kloster et al. [4] and lat-

er extended by XDE [18]. They detect page similarity by

SuperFastHashing 64-byte blocks at two fixed locations

in each page [19].

Linux Kernel Same-page Merging (KSM) [20] allows

applications (including KVM [21]) to share identical

326 16th USENIX Conference on File and Storage Technologies USENIX Association

memory pages via full page comparison. KSM works

well for deduplicating fairly static pages. Singleton [22]

extends KSM to consider host disk cache in a VM envi-

ronment and improves the scanner from full-page com-

parison to SuperFastHash-based hash comparison. Red

Hat Enterprise Linux uses a dedicated user space daemon

named ksmtuned [23] to adjust KSM scanning speed

under certain circumstances. For example, it increases

the scanning speed when memory usage exceeds some

threshold and the system is starting virtual machines. It

is a very limited approach that simply adjusts scanning

speed according to coarse grained system information

which may not always imply page duplication. KSM

would waste CPU resources if this kind of implication

fails. It is hard for ksmtuned to achieve maximum saving

across different workload patterns [3], although it does

improve performance if optimized case by case.

Instead of treating every page equally, UKSM pri-
oritizes different memory regions to accelerate the
deduplication process. APH shares partial page hashing
ideas [18] but can adapt the global page hash strength
according to page similarity in the whole system.

Catalyst [24] offloads page hashing computation to

GPU to improve deduplication performance. The need of

special hardware support increases deployment complex-

ity. SmartMD [25] uses page access information moni-

tored by lightweight schemes to improve the efficiency of

large page (e.g. 2M-pages) deduplication. This work is

orthogonal to UKSM since we address the more general

problem of page deduplication.

I/O hint based page sharing KSM++ [26] proposed

a deduplication scanner based on I/O hints. XLH [27]

utilizes cross layer I/O hints in the host’s virtual file

system to find sharing opportunities earlier without rais-

ing the deduplication overhead. A generalized memory

deduplication was proposed in [28] that leverages the

free memory pool information in guest VMs. It treats

free memory pages as duplicates of an all-zero page

to improve the efficiency of deduplication. I/O-hinted

approaches cannot detect dynamically created duplicated

pages (e.g., anonymous pages created by applications in

Docker containers).

CMD [29] is a classification-based deduplication ap-

proach. Pages are classified according to their access

characteristics. Comparison trees introduced in KSM

are subsequently divided into multiple trees dedicated to

each class. Thus, page comparisons are performed only

in the same class which reduces futile comparison among

different classes. However, the above strategies require

dedicated hardware monitors to capture system I/O or

page access characteristics, which incurs significant de-

ployment complexity.

In this paper, we focus on improving CBPS because of
its capability of full memory scan and easy integration to

all existing systems, neither of which is the case for I/O
hint based page sharing option.
Storage deduplication is different Deduplication

projects in disk storage systems [30, 31, 32, 33, 34]

are important related works. However, there exist two

significant differences.

First, UKSM faces the challenge of responsiveness

which is not the case for disk storage deduplication

projects. For instance, when a large volume of dupli-

cated pages are generated, memory deduplication system

needs to quickly identify and remove these duplicates

before they exhaust available physical memory and cause

memory swap out.

Second, since memory is dynamically updated while

disk storage is relatively static, memory deduplication

pays attention to more characteristics than just a dupli-

cation ratio that is the centerpiece for disk deduplication

As reflected in this work, UKSM also considers COW

ratio and lifetime characteristics of memory regions.

3 Observations
This section discusses two key observations that motivate

the design of UKSM.

Observation # 1: Most pages within the same
region present similar duplication patterns.
All heap memory allocation operations end up relying

on mmap to claim memory spaces. For each call, mmap

allocates a memory region that encompasses one or

multiple virtual pages with continuous virtual addresses.

Our intuition is that pages in the same memory region

might exhibit same characteristics for deduplication. For

instance, KVM exploits mmap to allocate memory space

for each guest VM’s OS. If two memory regions from

different VMs store the same disk content for a long

term, pages in them are friendly to deduplication. As

a comparison, if a region of a network program serves as

its busy network socket buffer, pages in it may not worth

to be deduplicated even if many of them are identical. It

will lead to frequent COW-broken operations.

Settings We use KVM and Docker as workloads

for analysis of duplicated, COW-broken and short-lived

pages. For the container workload, we make a Docker

image from a Ubuntu based system with Apache web

server and MySQL database serving a WordPress web-

site. We then start three Docker containers from this

image. For the KVM workload, we start three KVM

virtual machines all installed with Ubuntu 16.04.

Results Page duplications demonstrate strong locality

with respect to application memory regions. For both

KVM and Docker, we evenly divide their virtual memory

spaces (each contains many small memory regions) to

1,000 buckets. The number of duplicated pages in each

bucket is presented in Figure 1(a). It is clear that most

duplicated pages concentrate on a portion of memory

USENIX Association 16th USENIX Conference on File and Storage Technologies 327

0 200 400 600 800 1000
0

2

4

6

8
x 104

KVM Memory Space

D
up

lic
at

ed
 P

ag
es

0 200 400 600 800 1000
0

2000

4000

6000

8000

Docker Memory Space

D
up

lic
at

ed
 P

ag
es

(a) Number of duplicated pages

0 2 4 6 8 10 12 14 16 18
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Memory Region Index

N
um

be
r o

f P
ag

es

sparse
COW−Broken
statically−duplicate

(b) A snapshot of Docker memory fragment

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
100

102

104

106

108

N
um

be
r o

f R
eg

io
ns

Region Lifetime (seconds)

(c) Distribution of short-lived regions

Figure 1: Memory regions in VM and container environments.

regions. We randomly demonstrate a bucket, which

contains 18 memory regions from different processes, of

one Docker’s memory space. Note that some regions

are so small in size (e.g., regions 3, 6, 8) that they

are almost invisible in the bar illustration. As shown

in Figure 1(b), most pages in the same region share

similarity in redundancy. Some regions are sparse and

contain little duplications (e.g., regions 1 and 2). Some

are highly statically-duplicated (e.g., region 12). Regions

5 and 16 are more complicated, where different kinds of

pages coexist in the same region. Figure 1(c) presents the

region distribution, whose lifetime is less than 5 seconds,

of the Docker workload. We can see that a huge number

of regions are short-lived.

Observation # 2: Partial page hashing need
to be adaptive
XDE [18] has demonstrated that partial page hashing

can improve scan performance. We further observe

that hashing a fixed number of bytes for each page,

albeit partially, can limit the benefits of partial page

hashing because different scenarios may have drastically

different workloads.

For example, image display application renders a

dotted image with the same color background. In this

case, we need to hash more bytes in order to differentiate

highly similar (but not identical) pages to avoid time-

consuming byte-by-byte page comparison. While for

other workloads, pages may be quite different to each

other. An crypto application tends to hold memory

regions with encrypted data as content. Hashing one

or two bytes is already enough to identify the difference

between pages.

Real world systems may be filled with all kinds of

workloads. The workload might even evolve with time.

For example, a container may hold a remote desktop,

the user may close a paint application and open a https

browser.

4 Overview
UKSM consists of two unique components, that is,

memory region hierarchical distilling (in Section 5) and

adaptive partial page hashing (in Section 6). Figure 2

demonstrates how these two components identify dupli-

cated pages with minimal scanning overhead through

a simple example. There are nine memory regions

(R0 - R8). Figure 2(a) and 2(b) demonstrate two whole

memory sampling rounds (i.e., round 1 and 10).

Memory region hierarchical distilling manages mem-

ory regions by levels. There are N levels as shown in

Figure 2, and every region falls into one of the N levels.

Level N is the highest level and level 1 is the lowest

level. A higher level has a higher scanning speed hence

a higher sampling density. Let each gray bar represents a

sampled page. Demonstrated in the figures, the sampling

interval decreases as the level increases. Each newly

allocated memory region is first inserted into level 1 of

the hierarchy. Newly added pages may not be statically-

deduplicated. Computing power should not be invested

on these regions before they are proved worthwhile. That

is why we put them into the lowest level of the hierarchy.

During each sampling round, every memory region is

sampled and filtered with a group of distilling parameters

to decide whether it should be “promoted” to the next

higher level or “demoted” to the next lower level . If

all duplicated pages in a region are merged at some scan

level, it goes back to level 1. If a region is unmapped it

will be tagged and removed from the linked level later

by the scanner. For example, in round 1 of Figure 2(a),

regions R3 and R8 reside in level 2 and N respectively.

When the scan thread proceeds to round 10, regions R3

has been promoted to level N while R8 has been demoted

to level 2. Further elaboration of this technique are

discussed in Section 5.

To further minimize the computational overhead,

UKSM introduces the Adaptive Partial page Hashing

(APH) approach. The key idea is that we will adjust

a global hash strength after each global page sampling

round in order to achieve a more cost-effective scanning.

For example, in Figure 2, each star represents a hashing

byte in each page. In round 1 of Figure 2(a), the hash

strength is one byte per page. Based on the feedback

from preceding sampling rounds, in round 10 of Fig-

ure 2(b), we increase the hash strength to two bytes per

328 16th USENIX Conference on File and Storage Technologies USENIX Association

Level 2

R4

Sampled page

R6R2

Level N

Level 1

Memory region

(a) round 1 with a smaller hash strength

Level 2

R4

R0

R1

R6R5

Level N

Level 1

R7

R3

R8

Sampling interval

R1 R8

R3R0

R5 R2*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*
*

* * * ** ** ** ** *

*R7

* Hashing bytes

(b) round 10 with a larger hash strength
Figure 2: Memory region hierarchical distilling in two sampling rounds with different hash strength.

0 10 20 30 40 50 60 70 80 90 100
Normalized elapsed time (%)

100

102

M
em

or
y

Sa
vi

ng
 (M

B)

statically-duplicated
COW-broken
short-lived

(a) Memory saving

0 10 20 30 40 50 60 70 80 90 100
Normalized elapsed time (%)

10-5

100

M
em

or
y

Sa
vi

ng
 (M

B) statically-duplicated
COW-broken
short-lived

(b) Mix with sparse background

Figure 3: Results with different workloads (Y-axis in

each figure is exponential).

page. This design significantly improves per-page scan

speed so that the overall system can respond to emerging

duplicated pages rapidly and at the same time remains

very low CPU consumption when no good candidates

for deduplication exist. Details about hashing strength

and feedback controls are discussed in Section 6.

5 Hierarchical Region Distilling
This section introduces design details of memory region

hierarchical distilling. By analyzing the deduplication

gain and lose of each kind of memory regions, we

discuss distilling and scan principals (Section 5.1). Then

whether a memory region is “promoted” or “demoted”

is dominated by a set of threshold values (Section 5.2).

At last, we present the hierarchical sampling procedure

(Section 5.3).

5.1 Memory region characterization
Intuitively, a memory region should contain many

statically-duplicated pages in order to be deduplication-

friendly. In contrast, the unfriendly one could be

frequently COW-broken, short-lived, or contain little

identical content.

We uses three metrics to study the deduplication ef-

fects over a specific kind of regions. The first two metrics

measure the gain and lose associated with deduplication,

which are memory saving and CPU consumption, respec-

tively. The third metric is performance impact, which re-

flects the slowdown ratio a deduplication method brought

to a running application. Note this parameter is more

comprehensive than the CPU consumption metric be-

cause a slowdown can result from cache/memory con-

tention even if the deduplication worker (e.g., ksmd – the

kernel thread worker of KSM) executes on a dedicated

CPU core. Ideally, we would like to maximize the first

metric and minimize the other two.

This section utilizes four application configurations to

emulate different workloads. Particularly, we use a mem-

ory footprint of about 2 GB for each of the statically-
duplicated, COW-broken and sparse workloads. The

compiling of the Linux kernel serves as an benchmark

for short-lived workload which consumes about 30 MB

memory space (only the anonymous pages, not including

the file cache). We take KSM as the representative of ex-

isting CBPS approaches to demonstrate the complexity

of balancing among three metrics. We record the max-

imum time needed for deduplicating all eligible pages

of the statically-duplicated workload when using 100%

capacity of a single CPU core. Then we normalize the

time in x-axes of Figure 3, to demonstrate the progress

of deduplicating each workload.

Memory saving vs. CPU consumption. Figure 3(a)

shows how average memory saving progresses with time

for statically-duplicated, COW-broken and short-lived
workloads. Firstly, more CPU consumption does bring

more memory saving, until the last duplicated page is

merged. The deduplication speed, which is the slope of

each line, drops rapidly as time goes on for statically-
duplicated workload. Secondly, the memory saving of

statically-duplicated workload is two orders of magni-

tude higher than that of COW-broken and short-lived

USENIX Association 16th USENIX Conference on File and Storage Technologies 329

Table 1: Distilling and sampling parameters

Vcow Only regions whose COW-broken ratios are lower

than this threshold can be promoted.

Vdup Only regions whose duplication ratios are larger

than this threshold can be promoted.

Vli f e Only regions lived longer than this threshold can be

effectively scanned.

Ts The sleep time in each sleep-scan cycle of the scan

thread.

tl The expected time of sampling round for level l (in

seconds).

t The expected time of a global sampling round (in

seconds).

p The invested CPU percentage).

s The estimated CPU cost of sampling one page.

workloads, which is consistent with our expectation. So

we conclude that, for statically-duplicated workloads,

invested computation is effective at the beginning. After

all candidate pages are merged, further scan needs to be

slowed down. For dynamic workloads (COW-broken and

short-lived), higher CPU consumption is required to save

the same amount of memory. Users may need to decide

if the trade-off is worthwhile.

In Figure 3(b), we let each workload mixed with

a sparse workload. The amount of memory saving

decreases significantly. It is clear that scan of sparse
regions in a system should be delayed, if not totally

avoided, as much as possible.

Performance impact. We further study the performance

impact to CPU intensive workloads brought by this hash-

based KSM. One workload is a full SPEC-CPU2006

benchmark, and the other is the COW-broken Linux

compiling workload mentioned above. If the scanning

thread works at full speed with enough CPU resources

(i.e., scanning thread and workload threads each has its

dedicated CPU core), the performance impact to COW-
broken workload is 29.7%, and the impacts to other

workloads range from 1.5% to 22.9%.

In-depth profiling shows that: 1) even with abundant

CPU cores to separate workloads and the scanner, in-

tensive scanning of CPU bound workloads makes the

scanning thread contending more for memory manage-

ment locking (i.e., VMA locks, page table locks, etc),

which introduces higher overhead for these workloads;

2) deduplication on frequently COW-broken pages may

not bring much memory saving, but will bring many

COW-broken page faults on merged pages, thus deteri-

orate performance.

5.2 Candidate region identification
The key characteristics (i.e., COW ratio, duplication
ratio, and average page lifetime) that indicate the du-

plication qualities of each memory region should be

obtained first. This section introduces corresponding

quantitative threshold values that can decide whether we

“promote” or “demote” a memory region. Table 1 details

these three thresholds, i.e., Vdup, Vcow and Vli f e. In partic-

ular, a regions with duplication ratio above Vdup, COW-

broken ratio below Vcow and life longer than Vli f e can be

identified as a good candidate for statically-duplicated.

To control CPU overhead, we make the scanner work

in a sleep-scan cyclic pattern with sleep time Ts. This

parameter is related to the life time threshold.

For a memory region, the first parameter duplication

ratio is estimated by dividing the duplicated page counter

by the number of the pages sampled in this round. To

compute its COW ratio, we need to obtain the number of

COW-broken page faults on merged pages during each

sampling round. This information can be easily obtained

by hooking the page fault handler function. The last

parameter lifetime is decided by the sleep time Ts and

the sampling round time t (sum of tl for each level in

Table 1). Only those regions which live across this sleep-

scan cycle time may get sampled.

How to choose threshold values? Threshold values

of duplication ratio, COW-broken threshold, lifetime are

critical parameters for UKSM. We design UKSM as a

general system and it targets a wide range of scenarios.

The default settings of 10%, 50%, 100ms are obtained

empirically and are shown to work well for a wide range

of systems. The global sampling round time can be

configured in the range of 2 - 20s with further details

explained in Section 7. However, we also leave these

parameters configurable for expert users who can tune

UKSM to meet their application-specific needs. As far

as we know, many follow-up production systems extend

various configurations of UKSM to meet their particular

needs [7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. The auto-tuning

of these parameters could be a future work.

Why use the same set of threshold values across all
levels? The higher the level is, the higher the page

scanning frequency is. There is a larger chance of false
positive in a lower level, where a low duplication ratio

region may accidently get promoted. Hence, even with

the same set of threshold values at all levels, we can

successfully demote false positive regions and promote

real positive regions. Further, UKSM performs merge

together with the scanning. Every time a new duplicated

page is found, besides being counted in the duplication

ratio calculation, the page is merged directly. Statisti-

cally, even with the same threshold, regions in a higher

level should have a larger duplication ratio than those in

a lower level.

330 16th USENIX Conference on File and Storage Technologies USENIX Association

For (; ;) {
A g l o b a l s a m p l i n g round {

S l e e p Ts ;

promote / demote r e g i o n s ;

For (l = 1 , l<= N, l ++) {
s can l e v e l l w i th bu dg e t t i me tl ;

}
}

}
Figure 4: Workflow of UKSM hierarchical sampling.

5.3 Hierarchical sampling procedure
Now that UKSM has the information of the key features

of each memory region and the promotion criteria, this

section discusses our hierarchical sampling approach

which manages memory regions by levels and each

region only belongs to one level. For instance, Figure

2(a) and 2(b) manage 9 regions by N levels. Figure 4

shows the workflow.

Scan a level When sample a specific level, all memory

regions are grouped to be one flat linear space. The

memory scanner starts at page offset of zero in this linear

space and picks sample points by the length of interval.
Note that a higher level possesses a smaller interval. If a

sample point falls in a region, one page will be selected

from this region. Particularly, we introduce a region

specific offset permutation scheme to avoid sampling the

same page repeatedly. For instance, although R2 from

level 1 is sampled in both rounds of Figure 2(a) and

Figure 2(b), different pages are picked.

Once the page is selected, our scanner will get the

page’s hash value according to current hash strength (i.e.,
bytes hashed in each page), and looks it up in two red-

black trees trying to find a collision. One of the red-

black trees (Trs) tracks the “merged” pages whereas the

other one (Trus) records the “unmerged” ones. If the

sampled page has an identical page in Trs, we increase

the region’s counter by one. If the sampled page is

found to be identical to one of the pages in Trus, we

move the page to Trs and increase the counters of both

regions. Eventually, we update the page table and release

redundant pages accordingly. UKSM keeps “merged”

and “unmerged” page hashes in separate trees because

merged pages should be managed in a read-only tree.

Write to any node in this tree causes a COW operation.

This scan continues until the sample point reaches the

boundary of the linear space. We call it a sampling round

in this level. The scanner then proceeds to the next level.

A global sampling round A global round is finished

after the level N sampling. then the scanner restarts from

level 1. After each global round, the scanner estimates

each region’s duplication and COW-broken ratios. It is

easy to see that with sufficient lifetime, every page of a

memory region will be scanned. If a region is unmapped
before every page is scanned, it will be removed from

that level.

Sampling time control For each level, we can easily

get the number of pages in one level as Ll . With invested

CPU computation p and the estimated time of sampling

one page s, we get the average page processing speed

as p/s. Assuming the expected sampling round time

for this level is tl , the number of sample points in one

round is n = t · p/s. The sampling interval in each level

is determined by Ll/n = Ll · s/(tl · p). The sleep time

is Ts, so the active time of each sleep-active cycle is

Ts · p/(1− p). Then we can get the number of pages to

scan during each active cycle as Ts · p/(s · (1− p)).
In summary, users can configure two parameters

which are p and t, as the invested CPU computation time

and global sampling round time, respectively. According

to our empirical study, p and t can be configured in the

ranges of 0.2% - 95% and 2 - 20s, respectively.

6 Adaptive Partial Hashing
We propose a new page hashing function to reduce per-

page scan and deduplication cost. The key idea is to

partially hash a page. if the hash value is already

sufficient to distinguish different pages, we do not need

to hash a full page. Generally, the new hash function

should have the following features:

• The hash strength (i.e. bytes hashed in a page)

should be adjustable. If the memory pages are

“quite different”, a weaker strength is used. Oth-

erwise, a stronger strength is applied.

• With the strongest strength, the hashing function

should have a comparable speed and collision rate

to SuperFastHash for arbitrary workloads.

• With weak strength values, the hash function should

be significantly faster than SuperFastHash.

• The hash function should be bidirectional progres-

sive with cost proportional to the delta of strength,

hence the page hash values with an updated strength

can be incrementally computed from previous val-

ues.

6.1 Hash strength adaptation
A weak hash strength may increase the possibility of

false positive, which can result in additional overhead

on memcmp. For each sampling round, we quantify the

profit for using some hash strength by the time saved

compared to that of using the strongest strength. We

quantify its penalty by the additional time of memcmp
due to collision. The calculation for both profit and

penalty is instrumented in the scan functions. The aim

of hash strength adaptation is to maximize the overall

benefit of profit-penalty. In what follows, we explain

how our adaptive algorithm finds the optimal strength for

the hash function.

When the system starts up, the hash strength is ini-

tialized with half of the strongest strength. After the

USENIX Association 16th USENIX Conference on File and Storage Technologies 331

d e f i n e STREN FULL (4 0 9 6 / s i z e o f (u32))

u32 s h i f t r , s h i f t l ;

u32 r a n d o m o f f s e t s [STREN FULL] ;

u32 random sample hash (u32 h a s h i n i t ,

void ∗ p age add r , u32 s t r e n g t h) {
u32 hash = h a s h i n i t ;

u32 i , pos , l oo p = s t r e n g t h ;

u32 ∗key = (u32 ∗) p a g e a d d r ;

i f (s t r e n g t h > STREN FULL)

loop = STREN FULL ;

f o r (i = 0 ; i < l oop ; i ++) {
pos = r a n d o m o f f s e t s [i] ;

hash += key [pos] ;

hash += (hash << s h i f t l) ;

hash ˆ= (hash >> s h i f t r) ;

}
re turn hash ;

}
Figure 5: Progressive hash procedure.

first sampling round, the system enters a “probing” state

trying to search for a strength that leads to a better overall

benefit and finally stays in a dynamically “stable” state.

The searching in the probing state simulates the TCP

slow start process. The system firstly decreases the hash

strength by a size variable named delta (initialized with

1) and checks if this change results in larger benefit. If it

does, the system goes on trying until the benefit begins

to decrease. During this process, delta will be doubled

each time till the max value 32. Then the system records

the maximum benefit point achieved and reset delta to 1.

Similarly, the system will search in the other direction

when increasing the hash strength. Once the system

reaches an optimal point, it enters a stable state.

The state changes from stable to probing is triggered

by one of the following conditions: 1) The benefit of the

last sampling round deviates more than 50% from the

benefit value when the system enters a stable state; 2)

There is no memcmp caused by hash collision in the last

two sampling rounds; 3) Every 1000 sampling rounds

have been passed.

6.2 Progressive hash algorithm
We decide to use random sampling to fulfill the feature

of dynamically adjustable strength. A universal random

permutation of all the 32-bit-aligned offsets in a page is

computed when the deduplication system is initialized.

This is important because randomization is necessary

in cases where some pages have specific patterns (e.g.,
leading zeros). When a page is hashed with strength I,
only the first I 32-bit data units are read and calculated

from the page with the corresponding offsets in the

permutation. In order to limit the execution time for the

strongest strength, we derive the hash algorithm based

on Jenkins’s “one-at-a-time hash” [35] which is also the

ancestor of SuperFastHash. The algorithm framework is

shown in Figure 5. In the code, random offsets is the

Key bitsHash Bits

Bias value100

0

-100

(a) SuperFastHash avalanche

Key bitsHash bits

Bias value100

0

-100

(b) Random sample hash avalanche

Figure 6: The avalanche effects over a 4KB page.

buffer holding the random permutation of offsets; shiftl
and shiftr are the two values we need to parameterize to

further satisfy other features required for collision rate

and incremental/decremental calculation; STREN FULL
is the strength for hashing a full 4 KB page content.

Achieve low collision To ensure a low collision rate,

we study the avalanche effect [36, 37, 38] of the hash

function in our algorithm when hashing a full page with

different shiftl and shiftr values. Avalanche is a desirable

property of hash algorithms to achieve low collision

rate wherein if the input is changed slightly the output

can change significantly in pseudo-random manner. We

evaluate the avalanche effect with an initially zeroed two

dimensional matrix which we call avalanche bias matrix.

Given a randomly generated key of page size, we flip

the i-th bit. If this operation leads to the flipping of

the j-th bit of the hash value, we increase point (i, j)
in bias matrix by one, and if the j-th bit of hash value

is not affected, we decrease bias matrix(i, j) by one.

This process is repeated for multiple times, then we

calculate the average value of bias matrix(i, j) for all

i ∈ [0,32767], j ∈ [0,31]. Ideally, one bit changes in

the key will affect the output of hash value with 50%

probability. Therefore, the corresponding bias matrix
entry should approximate 0 on average.

Figure 6(a) is the 3D visualization for such an

avalanche bias matrix of SuperFastHash. We can see

that most of the points are closed to the bias value = 0

332 16th USENIX Conference on File and Storage Technologies USENIX Association

u32 r e v e r s e a d d e q s h i f t l (u32 n) {
u32 r e t = n , t u r n = 1 ;

n <<= s h i f t l ;

whi le (n != 0) {
i f (t u r n)

r e t −= n ;

e l s e
r e t += n ;

t u r n = ! t u r n ;

n <<= s h i f t l ;

}
re turn r e t ;

}

u32 r e v e r s e x o r e q s h i f t r (u32 n) {
u32 r e t = n ;

n >>= s h i f t r ;

whi le (n != 0) {
r e t ˆ= n ;

n >>= s h i f t r ;

}
re turn r e t ;

}
Figure 7: Reverse functions for progressive hash.

plane except for the last several key bytes. We therefore

evaluate the avalanche effect of the hash algorithm by

the number of the “bad points” whose deviation from the

bias value = 0 plane exceeds a threshold (for our case,

we take 50). We conduct an exhaustive search of all

possible (shiftl, shiftr) value pairs and generate a priority

list of them (omitted due to space limitation). The

avalanche behavior of our hash algorithm with maximum

strength is illustrated in Figure 6(b). It is better than that

of SuperFastHash as illustrated.

Achieve progressive hashing Assume the recorded

hash value of a page is achieved at strength S1 but the

current strength is S2, the updated hash value can be

achieved with additional computation using the recorded

result for S1. If S2 > S1, this can be done by filling the

hash init parameter (in Figure 5) with the hash value at

strength S1. If S2 < S1, the hash calculation must be

reversed. The “+=” operation can be reversed with “-

=”. The “+=” and “ˆ=” operations combined with “<<”

and “>>” can be reversed by the code in Figure 7.

Small values of shiftl and shiftr will increase the cost

of reverse operations. We choose the pair of (19, 16)

from the priority list for (shiftl, shiftr) which brings

very good avalanche effect and at the same time makes

the cost of the reverse operation comparable to that of

progressive hash operation. We compare the speed of

random sample hash with maximum strength and Su-

perFastHash and find that our algorithm is only about 2%

slower than SuperFastHash. The final avalanche effect

result of our hash algorithm with maximum strength is

slightly better (fewer “bad points” as we state above)

than that of SuperFastHash.

Why use a global hash strength design instead per-
region or per-app hash strength? Here hash strength

denotes how many 32-bit words are hashed to generate

a fixed length hash value. If we use different numbers

of 32-bit words for two different pages, these two pages

cannot be compared directly. That is why we use a global

hash strength, so that every pair of pages can compare

their hash values directly.

Why develop APH based on SuperFastHash? There

are some newly developed fast hash algorithms, such as

Spooky [39], xxHash [40], and Murmur [41], which are

much faster than SuperFastHash. Whether an algorithm

can derive an adaptive version depends on its design

details. Using one of those hashes in our adaptive hash

framework could be an interesting future work.

7 Implementation and Configuration

UKSM is implemented in both Linux kernel and Xen,

each with more than 6,000 lines of C code. In Linux,

UKSM hooks the Linux kernel memory management

subsystem for monitoring the creation and termination

of application memory regions. The kernel page fault

routine is also hooked to log COW-broken events in each

region. UKSM scanner is created as a kernel thread

uksmd. In Xen, UKSM scanner is implemented as a

softirq service routine of the Xen hypervisor. The Xen

memory management subsystem is also hooked in the

same way as in Linux kernel.

To facilitate drop-in utilization of UKSM, we borrow

the idea of “CPU governors” with which the Linux

kernel simplifies the configuration for Intel CPU fre-

quency [42]. We define several default parameter sets

named as “governors” to represent “how aggressive” the

scanner should be. These “governors” are Full, Medium,

Low, and Quiet. With the Full governor, it can use up

to 95% CPU and finishes one global sampling round in

2 seconds. From Full to Low, each governor doubles

the global sampling round time and reduces the top CPU

usage by half. The Quiet governor is designed to be

used in battery powered systems where workloads are

static most of the time (e.g., Android). It has a top CPU

consumption of 1% and a global sampling round time

up to 20 seconds. We use the workload of booting 25
VMs in Section 8 to depict the performance metrics of

UKSM under different governors. The results are shown

in Figure 8(a) (plotting only Full and Quiet for clarity)

and Figure 8(b). We can see that with the Low governor,

UKSM can already catch up with the booting process

(about 260 seconds). The main difference is how fast

a governor can catch up. We also observe that the CPU

cycles consumed by the governors are proportional to the

number of pages they deduplicate. It is consistent with

our design purpose. Since the Full governor is more

responsive, we choose Full as the default governor and

use it for all later evaluations unless specified otherwise.

USENIX Association 16th USENIX Conference on File and Storage Technologies 333

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Seconds

C
PU

 U
til

iz
at

io
n

(%
)

Full
Quiet

(a) CPU consumption for governors

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Seconds

M
em

or
y

Sa
vi

ng
 (M

B)

Full
Medium
Low
Quiet

(b) Memory saving for governors

KVM Docker
0

500

1000

1500

2000

2500

To
ta

l C
PU

 T
im

e
U

se
d

(S
ec

on
ds

)

2
3
4
5

(c) Performance with different level numbers

Figure 8: Performance metrics under different configurations

For the scan levels, the bottom level serves as a

baseline sampling with CPU consumption as low as pos-

sible. We believe 0.2% should be acceptable for general

systems. The CPU consumption of the top level is given

by the “governor”. The CPU consumption for each

intermediate level is halved. The sampling round time

for each level is evenly derived from global sampling

round time. The number of scan levels determines how

smooth the promoting process could be: more levels

will make a memory region more carefully sampled

before it is intensively scanned. On the other hand,

less levels will make the system response more quickly

to emerging duplication but may suffer false positives

caused by sampling singularity (i.e., a region is falsely

identified as “good” after one scanning round). We

tested the configuration from 2 levels to 5 levels with

real world benchmarks used in Section 8. As shown in

Figure 8(c), for larger regions of the KVM workload,

sampling singularities are less likely to happen. So 3-

level-sampling is the best choice. For smaller regions

of the docker workload, 5 level is the best choice. We

choose 4 levels as UKSM default.

Till the time of this paper being written, the feedbacks

from different sources have demonstrated that while

the system design stems from a server environment, its

design and parameters are shown to work in a wide

range of environments such as a mobile system (e.g.
Android). Only very few people adjusted the individual

parameters according to their specific requirement. We

leave comprehensive parameters tuning under different

types of workload as our future work.

8 Evaluation
We evaluate our UKSM implementation in comparison

with the Linux kernel KSM. The operating system for

our benchmarks is CentOS 7 with vanilla Linux kernel

4.4. The hardware setting is Intel(R) Core(TM) i7 CPU

920 with four 2.67GHz cores and with 12 GB RAM. The

benchmarks include emulated workloads and real-world

workloads. For fair comparison, the native Linux KSM

scanner is upgraded to use SuperFastHash, which has a

better performance. Our evaluation centers around five

key questions:

How efficient is UKSM on different workloads? Us-

ing emulated workloads each focusing on a single type,

we show that UKSM can be up to 12.6× more efficient

than KSM on densely/sparsely 1:1 mixed workloads and

can be up to 5× more efficient than KSM on frequently

COW-broken workloads (Section 8.1).

How flexible is UKSM with customization? On

the same set of workloads, we show that UKSM can

filter different types of memory regions with different

thresholds. With UKSM, users can customize their

trade-offs, while previous approaches like KSM cannot

(Sections 8.1.2 and 8.1.3).

What is the performance v.s. overhead tradeoff of
UKSM on production workloads? By experiments

on KVM VMs and Docker containers, we show that

UKSM significantly outperforms ksmtuned-enhanced

KSM in VM benchmarks. It can deduplicate the typical

setup of Docker containers (which cannot be handled by

KSM) with negligible CPU consumption (less than 1%

of one core). The results also prove that our approach

outperforms XLH even without I/O hints. The experi-

ments on desktop servers with mixed workloads shows

that UKSM can deduplicate newly generated pages in

seconds (Section 8.2).

How does Adaptive Partial Hashing perform com-
pared to non-adaptive algorithms? We analyze the

effectiveness of APH on densely and sparsely duplicated

pages. We find that APH alone can make the scanning

speed of UKSM up to 7× that of KSM on typical cloud

workloads (Section 8.3).

How large is the application penalty of UKSM? For

native environments, UKSM’s penalty is less than 3%.

For virtualized environments, UKSM’s penalty is less

than 1.8% (Section 8.4).

8.1 Deduplication efficiency analysis
8.1.1 Statically mixed workload
We first evaluate the deduplication efficiency of

UKSM and KSM on a static workload. This workload

is composed of two programs. Each program creates 4

GB memory. One fills memory with identical page data.

The other program fills memory with random data. After

they complete filling pages, we start the UKSM/KSM

334 16th USENIX Conference on File and Storage Technologies USENIX Association

0 100 200 300 400 500 600
Seconds

4000

5000

6000

7000

8000

9000

10000

11000
M

em
or

y
U

til
iz

at
io

n
(M

B)
UKSM
KSM 100 Pages
KSM 1000 Pages
KSM 2000 Pages

(a) Deduplication speed and memory saving

0 100 200 300 400 500 600
Seconds

0

10

20

30

40

50

60

70

80

90

100

C
PU

 (%
 o

ne
 c

or
e)

UKSM
KSM 100 Pages
KSM 1000 Pages
KSM 2000 Pages

(b) CPU consumption

0 50 100 150 200 250 300
Seconds

0

500

1000

1500

2000

2500

3000

3500

4000

M
em

or
y

U
til

iz
at

io
n

(M
B)

KSM 2%
KSM 10%
KSM 20%
UKSM 2%
UKSM 10%
UKSM 20%

(c) Memory Utilization for COW-broken

Figure 9: Benchmark performance comparison.

daemon. Since the default scanning speed (100 pages

each cycle) of KSM is very low, we also obtain the results

of KSM when scanning 1000 and 2000 pages each cycle.

As illustrated in Figure 9(a), it takes only 5 seconds

for UKSM to merge all duplicated pages. While the

deduplication time for KSM at 100, 1000, 2000 pages

are 611, 95, 61 seconds respectively.

We then analyze the CPU usage of UKSM and KSM

in the above benchmark. As shown in Figure 9(b), the

CPU consumption pattern of UKSM is composed of

very thin spikes and with average CPU of less than 1%.

UKSM only reaches its peak CPU consumption (around

95%) at the 5th second. KSM constantly demonstrates

very high CPU consumption especially at high scanning

speed. This phenomenon reflects the fact that UKSM re-

acts rapidly to emerging duplicated pages and has a very

low background CPU usage (recall that the pre-defined

value for sampling level 1 is 0.2%) when all duplicated

pages are already merged.

We then calculate the deduplication efficiency as

memory saving over deduplication CPU consumption,

where deduplication CPU consumption is the sum of

CPU consumption ratios of each second before al-

l pages are deduplicated. From calculation, we find

that UKSM is 8.3×, 12.6×, 11.5× more efficient than

that of KSM at scan speed of 100, 1000, 2000 pages

respectively.

8.1.2 COW-broken workload
We then demonstrate how UKSM improves over KSM

on frequently COW-broken workloads. We emulate this

case with a program that maps 2GB of memory and

repeatedly memset one full page (with the same content)

every 10 ms from the start to the end of the region.

With the default setting of UKSM (COW-broken ratio

threshold of 50%), it totally avoids intensively scanning

this workload. However, UKSM can be configured

to scan this workload if we disable the COW-broken

filtering (note that KSM cannot be customized to avoid

scanning this workload).

We make both KSM and UKSM consume about the

same CPU power (2%, 10% and 20% of one core) and

then compare the memory saving of them as shown in

Figure 9(c). We can see that KSM saves only about 1/3

to 1/5 of the memory that could be saved by UKSM.

Furthermore, the performance of UKSM is quite stable,

in contrast, the memory saving of KSM suffers from

large variations.

8.1.3 Short-lived workload
We emulate this case by a program that infinitely repeats

a cycle of “mmap a region of 500MB pages of the same

content, sleep for time of T , then unmap this region and

sleep for another T ”. We observe that even with very

aggressive settings of KSM (sleep time sets to 20ms,

pages to scan sets to 2000, consuming about 50% CPU),

it cannot merge a single page if T is less than 2 seconds.

Although it totally filters out this case with its default

settings, it is possible to make UKSM sensitive to short-

lived pages. After we assign its sleep time to 20ms, its

max CPU consumption to 50% and its sampling round

time of each level to be 50ms, 20ms, 10ms, and 5ms,

respectively, UKSM can merge almost all the pages even

if T is less than 200ms.

8.2 Real world benchmarks
8.2.1 KVM virtual machines
Booting 25 VMs with abundant memory We uss

the same benchmark used in XLH [27], As XLH is

not an open-source implementation, we use an almost

identical hardware/software platform settings. Thus we

can compare our results with theirs. We booted 25

VMs (installed with Ubuntu server 16.04) each with a

single VCPU and 512MB of memory in parallel, with

starting time of 10 seconds apart. KSM is configured

with the settings as that in XLH. UKSM uses the default

settings. After about 260 seconds, all VMs are fully

booted. Up to this point, UKSM has merged 5.3GB of

memory, about 3× of what KSM has merged (Figure

10(a)). We need a warming up time to build rb-tree,

offset and figure out duplications. That explains why in

around 100 sec we have a jump. KSM and UKSM use

about the same amount of CPU resources during this

process. [27] reported that XLH can achieve only 2×
the memory saving compared to KSM with same CPU

resources. This implies that UKSM outperforms XLH

significantly.

USENIX Association 16th USENIX Conference on File and Storage Technologies 335

0 50 100 150 200 250
Seconds

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
M

em
or

y
Sa

vi
ng

 (M
B)

UKSM
KSM

(a) 25 VMs Memory Saving

0 100 200 300 400 500 600
Seconds

0

10

20

30

40

50

60

70

80

90

100

C
PU

 (%
 o

ne
 c

or
e)

KSM
UKSM

(b) 40 VMs CPU

0 50 100 150 200 250 300 350 400 450 500 550
Seconds

0

2000

4000

6000

8000

10000

12000

M
em

or
y

U
til

iz
at

io
n

(M
B)

KSM
KSM Swap
UKSM

(c) 40 VMs Memory Utilization

Figure 10: Real workload performance comparison.

0 50 100 150 200 250 300
Seconds

200

250

300

350

400

450

500

550

600

An
on

ym
ou

s
M

em
or

y
(M

B)

UKSM Enabled
UKSM Disabled

(a) Deduplication for Docker containers.

bw
av

es

ga
mes

s
milc

ze
us

mp

gro
mac

s

ac
tus

ADM

les
lie

3d
na

md
de

alI
I

so
ple

x

po
vra

y

ca
lcu

lix

em
sF

DTD
ton

to lbm wrf

sp
hin

x3
0

500

1000

1500

2000

Ti
m

es
 (s

ec
on

ds
)

Orig
UKSM

(b) CPU2006 fp, 1 CPU core

bw
av

es

ga
mes

s
milc

ze
us

mp

gro
mac

s

les
lie

3d
na

md
de

alI
I

so
ple

x

ca
lcu

lix

msF
DTD

ton
to lbm wrf

sp
hin

x3
0

500

1000

1500

2000

2500

Ti
m

es
 (s

ec
on

ds
)

Orig
UKSM

(c) CPU2006 fp benchmarks in KVM

Figure 11: (a) Deduplication for Docker containers; (b), (c) Performance impact of UKSM.

Booting 40 VMs with memory overcommit We boot

40 VMs (with a single VCPU and 1GB of memory) in

parallel, with starting time of 10 seconds apart. We

record the total boot time, memory and swap usage

until the system stabilized. In this benchmark, we

compare UKSM (with default settings) with KSM set-

tings adjusted by ksmtuned. As mentioned in related

work, ksmtuned can dynamically increase and decrease

the KSM scanning speed according to memory usage.

Figure 10(b) illustrates the CPU utilization of UKSM and

KSM during the deduplication process; from calculation,

the aggregated CPU utilization of UKSM is about half of

KSM. Figure 10(c) shows that, with KSM and ksmtuned,

the system triggers about 1.3GB of swap and this slows

down the boot process of the VMs significantly (from

about 420 seconds to 550 seconds). UKSM uses only

half of physical memory and requires no swap usage

when the system stabilizes. The peak memory usage

with UKSM is only 32% of that with KSM. With KSM,

the last VM booted still waits for a long time before

it can be logged in after ksmtuned shuts down KSM at

480 seconds. Moreover, when the swapping storm is

triggered, the system suffers bad responsiveness, which

would be a devastating user experience.

8.2.2 Docker containers
We start 3 Docker containers each running a WordPress

website in LAMP environment (i.e., Linux, MySQL,

Apache and PHP). Each website contains a page with

the same set of images and texts. Then we uses Firefox to

emulate normal user connections by making it refreshing

Table 2: UKSM introduced space saving and time con-

sumption for mixed workload.
Application Okular PDF Firefox FlashPlayer GIMP

Space saving (MB) 415 27 63 39

Time (s) 2 5 4 1

each website’s page every second. Figure 11(a) shows

the amount of the anonymously mapped memory in this

process when UKSM is enabled or disabled. We find that

the average memory used with UKSM enabled is only

61% of that when it is disabled. The CPU consumption

during this process of uksmd is mostly less than 1% (one

core) with few spikes to around 3%. At the time of this

paper is written, no other open source implementation

to our knowledge can deduplicate memory of containers,

hence we do not compare with others in this benchmark.

It’s worthy to note that Docker containers try hard

to share the underlying files with aufs [43]. There

may not be that much duplication in file cached pages.

UKSM only handles anonymous pages for containers by

now. File cache deduplication is left as our future work.

8.2.3 Mixed workload on desktop server
In this Ubuntu desktop server, we run four applications,

i.e., Okular PDF reader, Firefox browser, FlashPlayer,

and GIMP painter, simultaneously. The default memory

is around 1,248 MB. We then perform operations with

each software separately. At the same, we record the

time and deduplication gain of UKSM, by monitoring

the htop tool. With UKSM, it takes only 2/5/4/1

seconds to deduplicate 415/27/63/39 MB memory for

336 16th USENIX Conference on File and Storage Technologies USENIX Association

Okular/Firefox/FlashPlayer/GIMP in this mixed wowrk-

load environment. Consistent with our design principal,

UKSM works well in real world systems.

8.3 Analysis of Adaptive Partial Hashing
In the first two experiments, we use two extreme sce-

narios, one system contains no duplication, and one full

of duplicated pages. Thus, UKSM hierarchical region

distilling has no effect at all, since all regions are at either

the highest level, or the lowest level. In this case, the only

difference between UKSM and KSM is that UKSM turns

on APH.

8.3.1 Effectiveness of Adaptive Partial Hashing
Scanning speed in regions with low redundancy We

first demonstrate how fast the optimized system can scan

regions with low page redundancy. One extreme case is

when the system is full of “quite different” pages, that

is, no two pages have the identical 32-bit words at the

same offset. That makes the hash strength drop to 1, or

in other words, the hashing cost is about 1/1000 of the

SuperFastHash hashing. The maximum scanning speed

of UKSM in this case is about 5.9× higher than that of

the hash-based KSM or 7.4× higher than the original

KSM. On the other hand, if the pages are quite similar

but not equal, the strength of hash function may rise to

1,024 words. In this worst case, the maximum scanning

speed is about the same as the hash-based KSM, which

is expected by the fact that the hash algorithm with the

strongest strength is comparable to SuperFastHash.

Deduplication speed on highly redundant regions We

then measure the maximum speed for merging identical

pages when hash strength is 1. It’s approximately 2.5×
higher than that of the hash-based KSM or 7× higher

than that of the original KSM. When increasing the

strength of hash function to the maximum value, the

merge speed becomes comparable to hash-based KSM

or about 3× that of the original KSM.

8.3.2 Strength of hash function
The actual scan/deduplication speed on real workloads

depends on the memory content pattern and our system

adapts its page hash strength accordingly. A comprehen-

sive testing on a variety of workloads has shown that

the hash strength is usually within 100 words (recall

that the highest value is 1,024). The scan speed of

UKSM at this hash strength is about 6 to 7× higher

than that of the original KSM or 2 to 5× higher than

that of the hash-based KSM. We expect even smaller

strength values in scientific computing or data processing

environments. For example, the hash strength for all

12 SPEC-CPU2006 benchmarks ranges from 2 to 17,

with the average of 7.5. These results validate the

effectiveness of our hashing design.

8.4 Performance Impact
We evaluate the runtime overhead of UKSM using CPU

intensive workloads of Standard Performance Evaluation

Corporation (SPEC) CPU2006 benchmarks with uksmd
under the Full governor. The experiments are firstly run

on the host and then inside KVM virtual machines.

CPU2006 on host We evaluate UKSM in two scenarios,

where 1) UKSM and CPU2006 are running within one

CPU core; 2) The system has enough CPU resources so

that UKSM will not compete with CPU2006. The result

of CPU2006 float point benchmarks in the first scenario

is shown in Figure 11(b). We can see that the average

overhead is less than 3.0%. The average overhead in

the second scenario is about 1.5%. We observe similar

results with CPU2006 integer benchmarks (2.7%). We

do not show the other figures due to space limitation.

CPU2006 in KVM The benchmarks run inside 2 VMs.

Two CPU cores are enabled on the host for VMs. Each

VM is assigned with 1 VCPU. As illustrated in Figure

11(c), the average overhead for CPU2006 float point is

1.8% (0.9% on CPU2006 integer group).

It is worth noting that these results are the worst case

upper bound under the Full governor. We achieved

almost the same memory saving for these benchmarks

under the Low governor with negligible overhead.

9 Conclusion
We design a novel memory deduplication system called

UKSM that (1) samples the whole memory with an en-

hanced hashing scheme to estimate the duplication ratio

and dynamics of each memory region; and (2) performs

different scanning policies for different regions to max-

imize computation efficiency and minimize application

penalty. Experiments on both emulated workloads and

real-world benchmarks show substantial improvements

compared to standard Linux KSM and I/O hints based

approach XLH.

Acknowledgment
The authors would like to thank our shepherd Prof.

Hong Jiang and anonymous reviewers for their valu-

able comments. This work was supported in part by

the National Science and Technology Major Project of

China under Grant Number 2017ZX03001013-003, the

Fundamental Research Funds for the Central Universi-

ties under Grant Number 0202-14380037, the National

Natural Science Foundation of China under Grant Num-

bers 61772265, 61370028, 61602194, and 61321491,

the National Science Foundation under Grant Number-

s 1547428 and 1738965, the Collaborative Innovation

Center of Novel Software Technology and Industrializa-

tion, and the Jiangsu Innovation and Entrepreneurship

(Shuangchuang) Program.

USENIX Association 16th USENIX Conference on File and Storage Technologies 337

References

[1] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-

Lee Tan, and Meihui Zhang. In-memory big data

management and processing: A survey. IEEE
Transactions on Knowledge and Data Engineering,

27(7):1920–1948, 2015.

[2] Chao-Rui Chang, Jan-Jan Wu, and Pangfeng Liu.

An empirical study on memory sharing of virtual

machines for server consolidation. In IEEE In-
ternational Symposium on Parallel and Distributed
Processing with Applications (ISPA), pages 244–

249, 2011.

[3] Shashank Rachamalla, Debahuti Mishra, and Parag

Kulkarni. Share-o-meter: An empirical analysis of

ksm based memory sharing in virtualized systems.

In IEEE International Conference on High Perfor-
mance Computing (HiPC), 2013.

[4] Jacob Faber Kloster, Jesper Kristensen, and Arne

Mejlholm. Determining the use of interdomain

shareable pages using kernel introspection. De-
partment of Computer Science, Aalborg University,

2007.

[5] Carl A Waldspurger. Memory resource manage-

ment in vmware esx server. ACM SIGOPS Operat-
ing Systems Review, 36(SI):181–194, 2002.

[6] Uksm official site. http://
kerneldedup.org/en/projects/uksm/.

[7] Xanmod kernel 4.4.0 for ubuntu linux. https://
ubuntuforums.org/showthread.php?t=
2307617.

[8] Openmandriva lx 2014.2 kernel. https://
wiki.openmandriva.org/en/2014.2/New.

[9] Achlinux port of linux-pf-lts 3.14.72-1.

https://aur.archlinux.org/packages/
linux-pf-lts/.

[10] Opensuse linux port of kernel-postfactum.

https://software.opensuse.org/
package/kernel-postfactum.

[11] Calculate linux 14.16. http://
distrowatch.com/?newsid=08899.

[12] Shinto kernel secondreality v40a05. https:
//www.precog.me/2015/02/27/release-
shinto-kernel-secondreality-
v40a05/3/.

[13] Xda-developers, charm-kiss kernel 20140107.

http://forum.xda-developers.com/
showthread.php?t=2487113.

[14] Xda-developers, wonderchild kernel.

http://forum.xda-developers.com/
showthread.php?t=2565299.

[15] Xda-developers, decimalman’s kernel playground.

http://forum.xda-developers.com/
showthread.php?t=2226889.

[16] Xda-developers, renderbroken’s custom kernel.

http://forum.xda-developers.com/
showthread.php?t=2724016.

[17] Rodrigo Ceron, Rafael Folco, Breno Leitao, and

Humberto Tsubamoto. Power systems memory

deduplication. IBM Redbooks, 2012.

[18] Diwaker Gupta, Sangmin Lee, Michael Vrable,

Stefan Savage, Alex C Snoeren, George Varghese,

Geoffrey M Voelker, and Amin Vahdat. Differ-

ence engine: Harnessing memory redundancy in

virtual machines. Communications of the ACM,

53(10):85–93, 2010.

[19] Paul Hsieh. The superfasthash function.

http://www.azillionmonkeys.com/
qed/hash.html.

[20] Andrea Arcangeli, Izik Eidus, and Chris Wright.

Increasing memory density by using ksm. In Linux
symposium, pages 19–28, 2009.

[21] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin,

and Anthony Liguori. kvm: the linux virtual

machine monitor. In Linux symposium, volume 1,

pages 225–230, 2007.

[22] Prateek Sharma and Purushottam Kulkarni. Single-

ton: system-wide page deduplication in virtual en-

vironments. In the 21st international symposium on
High-Performance Parallel and Distributed Com-
puting, pages 15–26. ACM, 2012.

[23] Red hat enterprise linux virtualization

administration guidechapter ksm. https://
access.redhat.com/documentation/en-
US/Red Hat Enterprise Linux/6/html/
Virtualization Administration Guide/
chap-KSM.html.

[24] Anshuj Garg, Debadatta Mishra, and Purushottam

Kulkarni. Catalyst: Gpu-assisted rapid memory

deduplication in virtualization environments. In the
13th ACM SIGPLAN/SIGOPS International Con-
ference on Virtual Execution Environments, pages

44–59. ACM, 2017.

338 16th USENIX Conference on File and Storage Technologies USENIX Association

[25] Fan Guo, Yongkun Li, Yinlong Xu, Song Jiang,

and John CS Lui. Smartmd: A high performance

deduplication engine with mixed pages. In USENIX
Annual Technical Conference (ATC), pages 733–

744, 2017.

[26] Konrad Miller, Fabian Franz, Thorsten Groeninger,

Marc Rittinghaus, Marius Hillenbrand, and Frank

Bellosa. Ksm++: Using i/o-based hints to make

memory-deduplication scanners more efficient. In

ASPLOS Workshop on Runtime Environments, Sys-
tems, Layering and Virtualized Environments (RE-
SoLVE), 2012.

[27] Konrad Miller, Fabian Franz, Marc Rittinghaus,

Marius Hillenbrand, and Frank Bellosa. Xlh: More

effective memory deduplication scanners through

cross-layer hints. In USENIX Annual Technical
Conference (ATC), pages 279–290, 2013.

[28] Jui-Hao Chiang, Han-Lin Li, and Tzi-cker Chiue-

h. Introspection-based memory de-duplication and

migration. In ACM SIGPLAN Notices, volume 48,

pages 51–62, 2013.

[29] Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu

Chen, Haiyang Pan, and Yungang Bao. Cmd:

classification-based memory deduplication through

page access characteristics. In ACM SIGPLAN
Notices, volume 49, pages 65–76, 2014.

[30] Yinjin Fu, Hong Jiang, Nong Xiao, Lei Tian, and

Fang Liu. Aa-dedupe: An application-aware source

deduplication approach for cloud backup services

in the personal computing environment. In IEEE
International Conference on Cluster Computing
(CLUSTER), pages 112–120. IEEE, 2011.

[31] Feng Chen, Tian Luo, and Xiaodong Zhang. Caftl:

A content-aware flash translation layer enhancing

the lifespan of flash memory based solid state

drives. In USENIX File and Storage Technologies
(FAST), volume 11, pages 77–90, 2011.

[32] Deepavali Bhagwat, Kave Eshghi, Darrell DE

Long, and Mark Lillibridge. Extreme binning:

Scalable, parallel deduplication for chunk-based

file backup. In IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 1–

9. IEEE, 2009.

[33] Ahmed El-Shimi, Ran Kalach, Ankit Kumar, Adi

Ottean, Jin Li, and Sudipta Sengupta. Primary data

deduplication-large scale study and system design.

In USENIX Annual Technical Conference (ATC),
volume 2012, pages 285–296, 2012.

[34] Mark Lillibridge, Kave Eshghi, Deepavali Bhag-

wat, Vinay Deolalikar, Greg Trezis, and Peter

Camble. Sparse indexing: Large scale, inline

deduplication using sampling and locality. In

USENIX File and Storage Technologies (FAST),
volume 9, pages 111–123, 2009.

[35] Bob Jenkins. A hash function for hash table

lookup. http://www.burtleburtle.net/
bob/hash/doobs.html.

[36] Wikipedia - avalanche effect. https:
//en.wikipedia.org/wiki/
Avalanche effect.

[37] Horst Feistel. Cryptography and computer privacy.

Scientific american, 228:15–23, 1973.

[38] Edward Dawson, Helen Gustafson, and Anthony N

Pettitt. Strict key avalanche criterion. Australasian
Journal of Combinatorics, 6:147–153, 1992.

[39] B Jenkins. Spookyhash: a 128-bit non-

cryptographic hash (2010). http://burtleburtle.
net/bob/hash/spooky. html, 2014.

[40] Yann Collet. xxhash-extremeley fast hash algorith-

m, 2016.

[41] Austin Appleby. Murmurhash 2.0, 2008.

[42] Linux kernel intel p-state driver. https:
//www.kernel.org/doc/Documentation/
cpu-freq/intel-pstate.txt.

[43] aufs another unionfs. http://
aufs.sourceforge.net/aufs.html.

USENIX Association 16th USENIX Conference on File and Storage Technologies 339

	Front and Back Covers
	FAST ’18 Sponsors and USENIX Supporters
	Title Page
	Conference Organizers
	External Reviewers
	Message from the FAST ’18 Program Co-Chairs
	Contents
	fast18-gunawi
	fast18-alagappan
	fast18-kesavan
	fast18-tavakkol
	fast18-liu
	fast18-li
	fast18-sun
	fast18-gatla
	fast18-zhan
	Introduction
	Background
	B^e-Tree Overview
	BetrFS Overview

	Overview
	Tree Surgery
	Batched Key Updates
	Implementation Details
	Evaluation
	Non-Rename Microbenchmarks
	Rename Microbenchmarks
	Full-path performance opportunities
	Macrobenchmark performance

	Related Work
	Conclusion

	fast18-vajha
	fast18-xiao
	Introduction
	Delta Sync Support in State-of-the-Art Cloud Storage Services
	WebRsync: The First Endeavor
	Design and Implementation
	Performance Benchmarking
	Measuring Stagnation with StagMeter

	Native Extension, Parallelism, and Client-side Optimization of WebRsync
	WebR2sync+: Web-based Delta Sync Made Practical
	WebR2sync
	Server-side Optimizations
	WebR2sync+: The Final Product

	Evaluation
	Experiment Setup
	Workloads
	Results

	Related Work
	Conclusion and Future Work

	fast18-zuck
	fast18-hwang
	Introduction
	B+-tree for Persistent Memory
	Challenge: clflush and mfence
	Reordering Memory Accesses

	Failure-Atomic ShifT (FAST)
	Shift and Memory Ordering
	Endurable Inconsistency during Shift
	Insertion with FAST for TSO
	FAST for Non-TSO Architectures
	Deletion with FAST

	Failure-Atomic In-place Rebalancing
	FAIR: Node Split
	FAIR: Node Merge

	Lock-Free Search
	Lock-Free Search Consistency Model
	Lazy Recovery for Lock-Free Search

	Experiments
	Experimental Environment
	Linear Search vs. Binary Search
	Range Query
	PM Latency Effect
	Performance on Non-TSO
	TPC-C Benchmark
	Concurrency and Recoverability

	Related Work
	Conclusion

	fast18-yeon
	fast18-won
	Motivation
	Background
	Orders in IO stack
	Transfer-and-Flush
	Analysis: fsync() in EXT4

	Order-Preserving Block Device Layer
	Design
	Barrier Write, the Command
	Order-Preserving Dispatch
	Epoch-Based IO scheduling

	Barrier-Enabled Filesystem
	 Programming Model
	Dual Mode Journaling
	Synchronization Primitives
	Handling Page Conflicts
	Concurrency in Journaling
	Comparison with OptFS

	Applications
	Experiment
	Order-Preserving Block Layer
	Filesystem Journaling
	Server Workload
	Mobile Workload: SQLite
	Crash Consistency

	Related Work
	Conclusion
	Acknowledgement

	fast18-son
	fast18-kannan
	fast18-rho
	fast18-anwar
	Introduction
	Background
	Docker Registry
	IBM Cloud Container Registry

	Tracing Methodology
	Logging Service
	Collected Data
	Trace Replayer

	Workload Characterization
	Request Analysis
	Registry Load and Response Time
	Popularity Analysis
	Request Correlation
	Temporal Properties
	Analysis Summary

	Registry Design Improvements
	Implementation
	Performance Analysis
	Two-level Cache
	Prefetching Layers

	Related Work
	Conclusion

	fast18-zhang
	fast18-glass
	fast18-cao
	fast18-xia
	Blank Page
	Blank Page
	Blank Page

