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Abstract
NetApp®WAFL®is a transactional file system that uses
the copy-on-write mechanism to support fast write per-
formance and efficient snapshot creation. However,
copy-on-write increases the demand on the file system
to find free blocks quickly; failure to do so may impede
allocations for incoming writes. Efficiency is also im-
portant, because the task may consume CPU and other
resources. In this paper, we describe the evolution (over
more than a decade) of WAFL’s algorithms and data
structures for reclaiming space with minimal impact on
the overall storage appliance performance.

1 Introduction
A file system controls the storage and retrieval of data
and metadata. It typically carves up its persistent stor-
age into addressable blocks and then allocates and frees
these blocks to process client requests. Efficient free
space management is a crucial element of file system per-
formance. Enterprise-class file systems demand consis-
tently high performance for reads and writes. NetApp,
Inc. is a storage and data management company that of-
fers software, systems, and services to manage and store
data, including its proprietary Data ONTAP® operating
system [12]. Data ONTAP implements a proprietary
file system called Write Anywhere File Layout (WAFL)
[11]. WAFL is a transaction-based file system that em-
ploys copy-on-write (COW) mechanisms to achieve fast
write performance and efficient snapshot creation.

Like other modern file systems such as FFS [16], XFS
[22], ZFS [17], ext3, ext4 [15], and brtfs [19], WAFL
tracks allocated and free space for two basic reasons: to
enable the file system to find and allocate free blocks to
accommodate new writes; and to report space usage to
the system administrator to guide purchasing and provi-
sioning decisions. Unlike ext3 and ext4, which write data
in place, WAFL, ZFS, and btrfs never overwrite a block

containing active data or metadata in place; instead, a
free block is allocated and the modified data or metadata
is written to it. Because the old data is preserved dur-
ing a transaction, the process of creating a snapshot is
simplified. However, each overwrite also obsoletes the
older block (if that block does not belong to any snap-
shot). Such file systems have to track and reclaim these
unneeded blocks at pretty much the same rate as the rate
of incoming writes to ensure sufficient availability of free
space for new allocations.

The metadata that tracks free space can either be per-
sistent or maintained in memory. Storing this metadata
only in memory has the downside that it needs to be re-
built whenever the machine reboots or the file system
is brought online. Therefore, most file systems choose
to persist this metadata. Traditional file systems keep
their free space metadata up to date. Alternatively, a
file system can choose to let its free space metadata go
stale, and periodically scan the entire file system to re-
compute it. Although there is an up-front performance
cost to keeping the metadata up to date, this choice pro-
vides a convenient pay-as-you-go model for free space
reclamation work. An asynchronous recomputation of
free space can avoid the up-front performance cost, but
file system designs need to cope with potentially stale
free space metadata, including how that stale informa-
tion is reported to the administrator. Additionally, scan-
ning the entire file system to recompute free space only
gets more expensive as file system size and activity in-
creases. WAFL has always chosen to keep its free space
metadata up to date, except when it comes to snapshots.
This requires a free space reclamation infrastructure that
can keep up with performance requirements without tak-
ing significant CPU and storage I/O away from servicing
client operations.

In this paper, we present that infrastructure and show
how it satisfies high performance requirements. We de-
scribe how it has evolved to keep up with the increase
in the file system size while accommodating storage effi-
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ciency features like snapshots, clones, deduplication, and
compression. We also explain the exception case; that
is, how free space is reclaimed asynchronously and ef-
ficiently after snapshots are deleted. We do not discuss
how free space is reported to the administrator.

We first present the challenges of free space reclamation
for a modern enterprise file system with diverse require-
ments. We then explore the problems and their corre-
sponding solutions as well as their evolution. We ana-
lyze these solutions by using performance experiments.
Rather than writing a consolidated evaluation section, we
chose to include the relevant evaluation in each section;
we believe that this approach improves the readability
of the paper. Along the way, we present some lessons
learned from building and maintaining a feature-rich file
system that runs on hundreds of thousands of systems
that service a wide range of applications.

2 Background & Motivation
This section presents the challenges of tracking and re-
claiming free space to enterprise-quality file systems,
which are multi-TiB in size and can process gibibytes
per second (GiB/s) worth of operations.

2.1 How Do Blocks Get Freed?

Copy-on-write (COW) file systems never modify data or
metadata in-place. Instead, they write out the the new
version to a free location, leaving the previous version
intact. When combined with a transactional model for
writing out a collection of modifications, the file sys-
tem on the persistent media remains consistent even af-
ter a power loss. A COW model means that an over-
write almost always makes the previous version of the
block unnecessary unless it belongs to a snapshot. Thus,
a 1 GiB/s overwrite workload generates 1 GiB/s worth
of potentially free blocks. This means that a COW file
system has to (1) find and allocate 1 GiB/s worth of free
space for new writes, and (2) modify metadata to record
1 GiB/s worth of freed blocks to keep the file system up
to date. The updates to the metadata also generate new
allocations and potential frees.

When a file is deleted the file system needs to eventu-
ally reclaim all of its blocks. Certain applications create
and delete files in bursts. Reclaiming that space in a pre-
dictable fashion is a significant challenge.

The ability to create and retain snapshots of a file system
is crucial to the life cycle of data management; snapshots
are used for data protection, replication, recovery, and so
on. When snapshots are deleted, all blocks that uniquely
belong to them need to be reclaimed by the file system.

Storage efficiency features like compression and dedu-
plication often run in the background to reduce space
consumption and free blocks.

A file system must choose a rate for reclaiming free
blocks generated from the above activities that satisfies
the customer’s need for accurate reporting (for provision-
ing and purchasing decisions) while minimizing perfor-
mance impact to client operations.

2.2 Lazy Reclamation of Free Space

Traditionally, file systems keep their free space metadata
up to date. For instance, if objects in the file system refer-
ence block b, and if all of these references are dropped in
a transaction to the file system, then the free space meta-
data that is written out by that transaction would indicate
that b is free. In other words, the metadata persisted by a
transaction accurately tracks all the deleted references to
blocks. Thus, the update cost increases directly with the
number of deletes. This provides a pay-as-you-go model
for free space reclamation work.

Alternatively, file systems can choose a consistency
model in which the free space metadata can become stale
but in a conservative fashion. In this model, dropping a
reference becomes very simple; at the end of the transac-
tion from the previous example, the file system metadata
indicates that b is still allocated even though no objects
refer to it. In the background, a periodic scan walks ev-
ery object in the file system to rebuild a map of blocks
referenced by all its objects. This idea has been explored
in a research setting [9] and commercially [24]. Using
standard hard disks with a typical user workload, scan-
ning these metadata blocks can take 2 to 4 seconds per
GiB of user data [9]. Under these assumptions, it would
take more than a day to scan a 50 TiB collection of user
data before any free space could be reclaimed. Modern
storage efficiency techniques like compression, dedupli-
cation, cloning, etc., pack more user data into usable stor-
age, and allow user data blocks to be pointed to by differ-
ent metadata blocks or files. This results in more meta-
data for the same amount of used storage. Thus, even
when hard disks are replaced by faster media like SSDs,
the reclamation scan of a multi-TiB file system would
still take hours to complete. While this may be accept-
able with relatively static datasets, it quickly becomes
untenable under heavy write workloads and with increas-
ing file system sizes. The file system would need to hold
aside a large reserve of free space to hedge against un-
predictable reclamation times. For example, a workload
with an overwrite rate of 200 MiB/s would produce more
than 17.2 TiB of writes over the course of a day. A
file system with 50 TiB of user data would need to keep
around 34% free space just to ensure that overwrites suc-
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ceed, even if the background scanner is running as fast
as possible.

Therefore, WAFL chooses to pay the continual cost of
keeping its metadata up to date in all cases, except for
snapshots. Section 5 describes how space is reclaimed
after snapshot deletion.

2.3 Cost Of Freeing Blocks In WAFL

This section is a brief introduction to WAFL. The Write
Anywhere File Layout (WAFL) is a UNIX style file sys-
tem with a collection of inodes that represent its files
[11, 8]. The file system is written out as a tree of
blocks rooted at a superblock. Every file system object
in WAFL, including metadata, is a file. A file in WAFL is
a symmetric n-ary tree of 4 KiB blocks, where the level
of the tree is dlogn

f ilesize
4KiB e. The leaf node (L0) holds file

data, the next level node (L1) is an indirect block that
refers to L0s, and so on. WAFL is a COW file system,
where every modified block of a file is written to a new
location on storage. Only the file system superblock is
ever written in place. One advantage of this method is
that new allocations can be collected together and writ-
ten out efficiently.

As buffers and inodes are modified (or dirtied) by client
operations, they are batched together for performance
and crash consistency. Every mutable client operation
is also recorded to a log in nonvolatile memory before it
is acknowledged; the operations in the log are replayed
to recover data in the event of a crash. WAFL collects
the resultant dirty buffers and inodes from hundreds of
thousands of logged operations, and uses a checkpoint
mechanism called a consistency point (CP) to flush them
to persistent media as one single and very large trans-
action. Each CP is an atomic transaction that succeeds
only if all of its state is successfully written to persistent
storage. Updates to in-memory data structures are iso-
lated and targeted for a specific CP to ensure that each
CP represents a consistent and complete state of the file
system. Blocks that are allocated and freed for a CP are
also captured as modifications to the allocation metadata
files that are written out in that same CP. Once the entire
set of new blocks that belong to a CP is persisted to stor-
age, a new file system superblock is atomically written
in-place that references this new file system tree [8, 11].

File systems use different data structures like linked-lists,
bitmaps, B(+) trees, etc., to track free space information,
and incorporate the cost of maintaining such structures
in their designs. Their block allocators either use these
structures directly or build secondary structures to help
find space efficiently. WAFL uses bitmap files as the pri-
mary data structure to track the allocated or free state of
a block. For example, the ith block of the file system is

free if the ith bit in the activemap file is 0; the block is
allocated if the bit is 1. WAFL uses a 4 KiB block size,
and therefore, a 1 GiB WAFL file system needs a 32 KiB
activemap file, a 1 TiB WAFL file system needs a 32 MiB
one, and so on. Clearly, the metadata for multi-TiB sized
file systems is too large to fit in memory - the WAFL
buffer cache [7] - and needs to be read on-demand from
persistent media. WAFL uses auxiliary structures based
on the bitmaps to speed up block allocation, but that is
outside the scope of this paper.

WAFL allocates blocks that are colocated in the block
number space, which minimize updates to the activemap.
However, frees may be distributed randomly over the
number space, and all such updates to the activemap
have to be written out in the same transaction. The more
random the updates, the larger the number of dirty ac-
tivemap buffers for that CP to process. This prolongs the
transaction, which negatively affects the write through-
put of the file system.

In the rest of this paper, we discuss the techniques that let
WAFL handle the nondeterministic nature of block free
processing in a way that ensures smooth and determinis-
tic system performance.

2.4 Free Space Defragmentation

Reclaiming free space is not necessarily the same as gen-
erating contiguous free space. As a file system ages, the
free space in that file system gets fragmented as random
blocks are freed while others stay allocated or trapped
in snapshots. Contiguous free space is important for
write performance and subsequent sequential read per-
formance.

Various ways exist to defragment free space. File sys-
tems like LFS [20] use techniques like segment cleaning
to reclaim contiguous free space. Some file systems put
aside a large reserve of free space or recommend hold-
ing the space usage below a certain percentage in or-
der to provide acceptable levels of free space contigu-
ity and performance. Some file systems provide tools to
defragment free space. WAFL implements both back-
ground and inline free space defragmentation. However,
techniques for free space defragmentation are outside the
scope of this paper.

3 Free Space: The Basics
Let us first define the consistency model of the ac-
tivemap. As explained in earlier sections, the superblock
points to a self-consistent tree of blocks that define a
WAFL file system. This means that the metadata in the
tree accurately describes the allocated blocks of the tree.
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Definition 1. Every tree of blocks contains an activemap
of bits; its ith bit (referred to as ai) is set iff the ith block
bi of the file system is in use by that tree.

3.1 Reuse of Freed Blocks

Lemma 1. In a COW file system, a block freed during
transaction CPn can only be allocated for use in a subse-
quent transaction. In other words, it cannot be allocated
to a new block written out by transaction CPn.

Proof. Transaction CPn gets persisted only when its new
superblock is written in-place; a disruption discards all
intermediate state. Recovery is accomplished by start-
ing with the last persistent state, CPn−1, and reapply-
ing changes computed by replaying the operations in the
nonvolatile log. Therefore, CPn−1 must remain intact un-
til the CPn is complete. Any free and reuse of a block by
CPn violates this invariant. �

Thus, when bit ai is cleared in CPn, the WAFL block allo-
cator cannot use bi until the superblock of CPn has been
written out. This is implemented quite simply by creat-
ing a second copy of the corresponding activemap 4 KiB
buffer when the first bit in it is cleared. The two copies
are called safe and current; the block allocator consults
the former and bits are cleared only in the latter. The
block allocator sets bits in both copies when recording
allocations. The current copy is eventually written out by
the CP and the safe copy is discarded when the CP com-
pletes. Therefore, any activemap buffer dirtied due to a
block free needs twice the memory, and this gets expen-
sive if a large number of random blocks get freed in one
CP. Although this state could be maintained in a more
memory-efficient manner, it would result in longer code-
paths for consulting the activemap. Section 4 describes a
more elegant solution to the random update problem.

3.2 A Cyclic Dependency

The activemap file is a flat self-referential file. Like all
files, it is composed of blocks and those blocks are by
definition also tracked by the activemap. An activemap
block written to b j covers activemap block bi if bit ai
resides in b j.

Definition 2. An activemap chain that starts with a spe-
cific activemap block is defined as the longest list of ac-
tivemap blocks where the (i+1)th block in the list covers
the ith block.

By definition, each activemap block can belong to only
one unique activemap chain. Thus, assuming that no
snapshots are present, when an activemap buffer is dirt-
ied and the subsequent CP (allocates a new block and)

frees the old block corresponding to that activemap
block, it must dirty the next element in the chain. If that
buffer is not yet dirty, this step is repeated. This contin-
ues until a previously dirty activemap buffer is encoun-
tered. Thus, when any block is freed and its activemap bit
is cleared, the entire chain for that activemap block gets
updated. In theory, all blocks of the activemap could be-
long to a single chain; in the worst case, a CP might dirty
and write out the entire activemap file! As mentioned
earlier, the activemap of a multi-TiB file system might
not fit into main memory.

It should be noted that long chains are not easily formed
because WAFL often allocates blocks that are colocated
in the activemap; they are only formed by very unlikely
sequences of allocations and frees. Three solutions have
been built in WAFL to solve this problem.

1. Prefetch the entire chain. WAFL prefetches the en-
tire chain when an activemap buffer is dirtied. Ideally,
the prefetches complete by the time the CP starts allocat-
ing new blocks for the activemap file of the file system;
the CP processes metadata towards its end, so this works
in the right circumstances.

2. Preemptively break chains. A background task pre-
emptively finds each moderately long chain and dirties
its first block; the subsequent CP breaks that chain.

3. Postpone the free of the old block. When a CP pro-
cesses a dirty activemap buffer, it simply moves the ref-
erence to the old block to a new metafile called the over-
flow file. The L1s of the overflow file serve as an append-
log for free activemap blocks, and the CP avoids dirtying
the next element of the chain. Once the CP completes,
the blocks in the overflow file are now really freed; their
corresponding activemap bits are cleared. Thus, an ac-
tivemap chain of n elements gets broken down com-
pletely in at most n consecutive CPs. This ensures con-
sistent CP length without violating Definition 1.

Section 3.4 discusses the evolution of these solutions in
WAFL.

3.3 Processing File Deletion

To process a file deletion operation, WAFL moves the
file from the directory namespace into a hidden names-
pace. However, the space used by the hidden file is not
reclaimed; this does not violate Definition 1. Then, po-
tentially across several CPs, the file gradually shrinks as
WAFL frees the blocks of this file incrementally. Even-
tually, the entire tree of blocks is freed and the inode for
the hidden file reclaimed. The updates to the activemap
are more random if the file has been randomly overwrit-
ten, because its tree will refer to random blocks; we call
these aged files.
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3.4 Evaluation and Some History

It should be clear by now that if a very large number of
random blocks are freed in a single CP it will need to
process a lot of dirty activemap buffers. Long activemap
chains can make a bad situation worse.

WAFL was originally designed in 1994 for file sharing
and user directory workloads over NFS [21] and CIFS
[10], which is characterized by the sequential read and
write of many small files. The maximum file system size
was 28 GiB at the time; the activemaps for these file sys-
tems spanned approximately 200 blocks. The problems
described in this section were not applicable for these
particular workloads with such small quantities of meta-
data.

More than two decades later, WAFL hosts a very wide
range of applications, from file-intensive applications to
virtual machine images and databases over both file-
based protocols like NFS/CIFS and block-based SCSI
protocols [18], which do random I/O to fewer large files.
During this timespan, the sizes of individual disks (hard
drive and solid state) and file systems have exploded. The
maximum file system size supported by WAFL has in-
creased from 28 GiB in 1994 to 16 TiB in 2004, and to
400 TiB in 2014. Today, the activemaps for the largest
WAFL file systems span millions of blocks.

As a result, the problem of random updates to metadata
became acute. Larger and larger fractions of the available
CPU cycles and I/O resources were being consumed for
processing frees. Some applications, like the ones used
for electronic design automation, needed to delete large
numbers of files in bursts without compromising the per-
formance of other workloads on the system. Clearly, this
was not ideal. Section 4 describes the solutions to this
problem.

In 2000, WAFL used two mechanisms in tandem –
prefetching the activemap chain and preemptively break-
ing activemap chains – to avoid the cyclic dependency
problem. By 2010, WAFL supported file systems that
were 100 TiB in size. So, these mechanisms were re-
placed by the overflow file, which works well for file
systems of any size. The overflow file mechanism pro-
vided an interesting technique for postponing deletion
without changing the consistency semantics of the ac-
tivemap. Section 4 presents designs that use this tech-
nique to convert many random updates to the activemap
into fewer and predictable bunched updates.

4 Batching Updates to Metadata
As explained earlier, when a large number of random
blocks are freed in a CP, they can generate many meta-

Figure 1: Structure of the TLog.

data updates. If these updates can be accumulated, they
can be sorted into more efficient metadata updates. And,
if this work can be done over the course of multiple CPs,
the cost can be spread out over time in a predictable fash-
ion.

Much like the overflow file, the two structures described
in this section postpone the freeing of blocks by taking
ownership of them; the blocks are referenced by the L1s
of these files, which preserves Definition 1. We call this
delete logging. File system consistency checking treats
these structures like regular files. Sorting occurs by (par-
tially) ordering the references by block number across
the L1s of these files. Once they have been sufficiently
sorted, the references to the blocks are punched out from
the L1s, and the corresponding activemap bits cleared in
a batched fashion.

4.1 The Tree Log

The first manifestation of a delete logging mechanism in
WAFL was the Tree Log (or TLog). As Figure 1 shows,
the L1s (which reference the blocks that the TLog owns)
of the TLog form the nodes of a binary tree, where each
node contains block references lying in a fixed range of
the block number space. A left child covers the left half
of its parent’s range, and a right child covers the right
half.

A delete-logged block is inserted into the root node. If
the root node fills up, its contents are pushed to the chil-
dren nodes based on the range they cover. If either child
fills up, the process cascades down the tree. If a leaf
node of the tree fills up, all the blocks in it are punched
out and the activemap is updated. The size of the TLog
determines the range covered by a leaf node. For ex-
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ample, if a file system has n blocks and each activemap
block covers 32K blocks, a TLog sized to have n/32K
leaf nodes ensures that each leaf node covers a single ac-
tivemap block. In typical deployments, a TLog sized to
approximately 1.5% of the file system size provides sig-
nificant performance improvement; each leaf node cov-
ers 4 to 6 activemap blocks.

The TLog structure had one significant problem: there
was no easy way to tell how many nodes would be up-
dated due to an insertion. That was a function of which
part of the binary tree was affected by an insertion and
the fullness of the nodes in that part of the tree. In ex-
treme cases, a small number of insertions would sud-
denly cause a large number of nodes to be updated,
which would result in the CP needing to process many
more dirty TLog buffers than if the frees had not been
delete-logged. To alleviate these worst-case events, the
infrastructure would prefetch the activemap buffers (as it
would if delete logging were off), and when it detected
one of these bad situations it would stop delete-logging
and free directly instead. In practice, this situation was
very rare and not reliably created in our testing. How-
ever, after it was seen in the field we decided to gradually
move away from the TLog structure to a new Batched
Free Log (or BFLog) solution.

4.2 The Batched Free Log

Instead of embedding a sorting data structure in its L1s,
the BFLog adopts a different approach. It accumulates
delete-logged blocks and, after some threshold, it sorts
and frees them.

This can be achieved in several ways. In WAFL, it is
accomplished by using three files: (a) the active log, (b)
the inactive log, and (c) the sorted log. A block is delete-
logged by appending to an L1 of the active log. Once
the active log fills to a certain threshold, it becomes the
inactive log and it is replaced by an empty active log.
The delete-logged blocks in the inactive log are sorted
across all of its L1s. This is accomplished in two steps:
sorting the blocks within a fixed number of L1s at a time,
followed by a merge-sort, which also moves the blocks to
the sorted log. Once the sorted log is ready, its blocks are
punched out and the activemap is updated in a bunched
fashion. It should be noted that all processing of BFLog
data structures is localized or sequential in nature, which
is important for its performance.

Once the BFLog reaches steady-state, it becomes possi-
ble to pace its operations such that, on the average, each
append of a new block results in one block being sorted
and/or one block being merge-sorted and/or one block
being punched out of the sorted log. This is in stark
contrast to the unpredictability of the TLog, where the

sorting was strictly controlled by the contents of the bi-
nary tree. Rigorous experimentation showed that sizing
the BFLog (all three files together) to 0.5% of the file
system provided sufficient performance boost.

4.3 Logging in a Reference Counted File
System

Several storage efficiency features of WAFL depend on
the property that a block can be shared by multiple files
or within the same file. The extra references to a block
are tracked by a refcount file, which is a flat file of inte-
gers, one per block. When a multiply referenced block
is freed, the refcount file is updated, and because the file
is several times less dense than the activemap, the prob-
lem caused by random frees of blocks increases mani-
fold. The now ubiquitous deduplication feature results
in highly reference counted file systems, which makes
delete-logging even more critical. The delete-logging of
a multiply referenced block is no different from that of a
regular block; when punching out the block the refcount
file is updated for all but the last reference.

4.4 Evaluation

Although we have anecdotal data from a few customer
systems that show the unpredictable behavior of the
TLog, we do not have reproducible experiments to
demonstrate it. Because the TLog has now been replaced
by the BFLog, we present BFLog data only to show the
merits of delete-logging.

We first studied the benefits to random overwrite work-
loads. A set of LUNs [23] was configured and several
clients were used to generate heavy random 8 KiB over-
write traffic to the LUNs; this simulates database/OLTP
writes. Although the benefit of the BFLog was a bit
muted on high-end platforms (we observed a roughly 5%
to 10% improvement in throughput), they were higher on
mid-range platforms. Figure 2 shows results on a mid-
range system with 12 cores (Intel Westmere) and 98 GiB
of DRAM.

Without delete logging, our throughput plateaued at ap-
proximately 60k IOPs, whereas with delete logging we
were able to continue to about 70k IOPs; this repre-
sents approximately a 17% improvement in throughput.
In addition to a throughput improvement, we also ob-
served anywhere from a 34% to 48% improvement in la-
tency across most load points. These improvements were
achieved via a 65% reduction in our metadata overhead,
because the BFLog was able to batch and coalesce a large
number of updates to metadata blocks.

The SPEC SFS [4] is not capable of generating the sort
of file deletion load that some of our customers do. We
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Figure 2: The benefits of delete logging for a random overwrite
workload on a mid-range system.

Figure 3: The benefits of delete logging on a high-end all-SSD
system for the file deletion throughput workload.

fashioned a custom benchmark that measures file dele-
tion throughput as the rate at which an otherwise idle
system reclaims space after a number of large files to-
talling 1 TiB get deleted in short order.

Figure 3 shows the results of the delete throughput test
with and without BFLog on an all-SSD high-end system
with 20 cores (Intel Ivy Bridge) and 128 GiB of DRAM.
This was repeated with files that had been significantly
aged by randomly overwriting them for two hours. The
blocks freed from an aged file are more randomly dis-
tributed over the number space. The baseline runs (with-
out the BFLog) show that 2 hours of aging results in a
40% drop in delete throughput.

Although the BFLog improved delete throughput by a
modest 6% in the unaged data set, it improved delete
throughput by over 60% in the aged one. It shrunk the
difference between the aged and unaged results from
40% to 6%, which shows that it offset the randomness
in the blocks caused by aging. It should be noted that
using solid state undersells the improvement. The ben-
efits are much higher on a system with hard drives, be-
cause random IOs to load the activemap blocks result in
a much bigger difference without delete-logging. Addi-

tionally, if this were a highly deduplicated dataset (which
it wasn’t) the improvement would have been much larger
because the BFLog would batch the updates to the less
dense refcount file. This result shows the primary benefit
of delete logging, i.e., reordering random metadata found
in aged file systems so that it appears to be sequential, as
found in unaged file systems.

Without delete-logging, increasing delete throughput re-
quires forcing deletes to run faster, which in turn results
in more random reads of activemap blocks and more
work for the CP to write them out. This takes valu-
able I/O and CPU resources away from client workloads.
Delete-logging allows us to increase delete throughtput
without hurting client workloads.

5 Snapshots and Free Space
Snapshots are a crucial building block for many data
management features. A file system snapshot is a point-
in-time version of the entire file system. In WAFL, it
is created quite simply by storing an extra copy of a
CP’s superblock. None of the blocks in the snapshot can
be freed until the snapshot is deleted. This section ex-
plains how free space reclamation protects and reclaims
the blocks held in snapshots.

We introduce a new term, volume, which includes the
current file system and all of its snapshots. The current
file system is the active part of the volume that services
all client operations whose modifications are being writ-
ten out by the CP mechanism. Snapshots are denoted by
Si, and we use S0 to denote the current file system.

Clearly, the activemap in S0 cannot really tell us which
blocks are trapped in a given snapshot. Initially the ac-
tivemap of S0 is literally the same tree of blocks as the
activemap of a new snapshot, S1, but it quickly diverges
due to changes in S0. The blocks of S1 are already
recorded in its activemap (called snapmap), which re-
mains unchanged due to the COW nature of the file sys-
tem. Therefore, a block used by S1 can get freed in S0,
and then be marked as free in the activemap.

Lemma 2. The set of blocks pointed to by a volume can
be represented by the bit-OR of its activemap together
with the snapmaps of all its snapshots.

Proof. Since a snapshot is simply a tree of blocks
pointed to by a CP’s superblock, based on Definition 1,
each snapmap accurately captures the set of blocks
pointed to by that tree. Therefore, the bit-OR of the ac-
tivemap with all the snapmaps accurately represents the
set of blocks pointed to by the volume. �
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5.1 The Summary Map

A block in the volume is free iff it is free in the activemap
and in all the snapmaps. The latter condition needs more
IO and CPU to ascertain. There are several options for
solving this problem: a file that stores a bitmask per
block with one bit per snapshot, a B+tree that captures
free/allocated blocks in each snapshot in some search-
able but condensed fashion, etc. WAFL uses a bitmap
file called the summary map, which is a bit-OR of the
snapmaps of all snapshots in the volume. This simple
choice allows for inexpensive space tracking.

Space reclamation after a snapshot deletion happens
lazily but, as this section shows, efficiently. When a
snapshot is deleted, some bits in the summary need to
be cleared, and doing that atomically (as part of a single
CP) is impractical. There are other reasons for the sum-
mary to become instantaneously stale, but in a conserva-
tive way. WAFL supports a feature called volume snapre-
store, in which a volume can jump backwards in time to
an older snapshot, say Si. This is accomplished rather
trivially by taking the superblock of Si and writing it out
as the volume’s superblock in the next CP. The summary
map at the time of Si’s creation had been frozen, and after
the snaprestore, it becomes the summary of S0. However,
this summary can include blocks that belong to snapshots
older than Si that have since been deleted.

5.2 Snapshot Creation

When a snapshot is created, the summary map has not
yet been updated with the new snapshot’s blocks. A
background snap create scan now walks and bit-ORs the
snapmap into the summary. It should be noted that this
scan is idempotent, and so it can safely restart from the
beginning after a reboot.

Theorem 1. Assuming no deleted snapshots, the set of
blocks pointed to by a volume is always guaranteed to be
equal to the bit-OR of the activemap and summary even
while the snap create scan is in progress.

Proof. Although the summary does not necessarily in-
clude the blocks of a newly created snapshot, S1, this
does not violate Lemma 2, because all blocks that belong
to S1 are also recorded in the activemap at the instant of
S1’s creation. To maintain the invariant, if a block is to
be freed in the activemap and if it is also shared by S1, it
must be recorded in the summary. In other words, if the
snap create scan hasn’t gotten to that summary bit yet, it
is done on demand. This stops once the snap create scan
has completed its task. �

There are few more interesting cases here. The newly
created snapshot S1 could get deleted before the scan is

done, but let us delay that discussion till Section 5.4. A
new snapshot S2 could get created before S1’s scan is
complete. In that case, the scan restarts but switches to
bit-OR’ing S2’s snapmap into the summary. There is no
longer a need to process S1’s snapmap because all blocks
that belong to S1 either belong to S2 or were freed before
S2 was created. Section 5.5 shows how this consultation
as well as the entire snap create scan can be eliminated!

5.3 Another Cyclic Dependency

Another cyclic dependency comes into play while the
snap create scan is in progress. Suppose that snapshot
S1 gets created and so the activemap is identical to S1’s
snapmap. Now, bi gets freed and so ai is cleared and
the ith bit in the summary is set by the snap create on-
demand work. This results in a dirty summary buffer,
which means that the old version of that summary block
b j has to be freed. So a j gets cleared, which in turn sets
the jth summary bit, and so on. Thus, although unlikely,
long activemap-summary chains can get created, which
is twice as bad as the activemap chain problem. One cus-
tomer system hit this problem on an aged volume of size
80 TiB. The CP uses the overflow file to postpone the free
of the old summary block and thereby avoids dirtying the
next activemap in the chain.

5.4 Snapshot Deletion

When a snapshot is removed from the namespace its
blocks may or may not be reflected in the summary map.
A background snap delete scan walks the summary to
remove blocks that belong exclusively to that snapshot.
This scan is also idempotent and can be safely restarted
at any time.

Theorem 2. Independent of the status of the snap create
and delete scans, the set of blocks pointed to by a vol-
ume is always equal to or a subset of the bit-OR of the
activemap and summary map.

Proof. Theorem 1 proved that the bit-OR is equal to the
set of blocks pointed to by a volume independent of the
status of the create scan. While the snap delete scan is
in progress, the summary is guaranteed to include all the
bits that are set in the deleting snapshot’s snapmap unless
the snapshot got deleted before its corresponding snap
create scan was able to completely bit-OR its snapmap
into the summary. Then, either the block still lives in S0,
in which case its activemap bit would be set, or it has
since been freed, in which case, there’s no need for the
summary to protect it if it was uniquely owned by the
deleted snapshot. �
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Lemma 3. Let all snapshots in a volume (including S0)
be sorted in temporal order of creation. For any block
bi in the volume, the bit string created by concatenating
the ith bit of all the snapmaps – in the case of S0, the
activemap – in that temporal order will yield a 0∗1∗0∗

pattern. This is called the 010 snapshot property.

Proof. Once allocated in S0, a block can belong to sub-
sequent snapshots until it gets freed in S0. Once freed
in S0, it is unavailable for allocation until the activemap
and all snapmaps say it is free. So, it cannot belong to
subsequent snapshots until all snapshots that it belongs
to have been deleted. Hence, the bit pattern. �

There are two ways for the delete scan to update the sum-
mary, one of which uses the 010 property.

1. Deletion by Subtraction (or dbys). This scan uses
the 010 property to process the deletion of Si. If a block is
used by Si but not by either of its temporal neighbor snap-
shots, then it exclusively belongs to Si. In other words,
the scan clears a summary bit if the bit in Si’s snapmap is
set but the bits in the neighbor snapshots’ snapmaps are
not. The youngest snapshot has no younger neighbor and
the oldest snapshot has no older neighbor in this scheme.
Suppose that a second snapshot S j is deleted while the
dbys scan is in progress. A separate scan can process that
S j, and because the result is idempotent, both scans can
work independently as long as they never concurrently
update the same bit. If S j happens to be Si’s neighbor,
then the same scan replaces S j with the next neighbor
and continues onwards. Now the scan is updating the
summary on behalf of both deletions. When the scan hits
the last bit it completes Si’s deletion, but it wraps around
and continues processing S j’s deletion until it gets back
to where it was when S j was deleted.

2. Deletion by Addition (or dbya). This scan rebuilds
the summary by simply bit-OR’ing the snapmaps of all
remaining snapshots. If a second snapshot gets deleted
while the scan is in progress, the scan can be restarted
for the remaining snapshots. In practice, it is better for
the scan to continue down the bitmap space to leverage
the readaheads of the snapmaps and summary that have
already been issued. When the scan gets to the last bit in
the summary, it then wraps around and continues until it
gets back to where the second deletion occurred.

As mentioned earlier, both modes of the delete scan can
restart after a reboot without affecting correctness. Sec-
tion 5.2 mentioned one interesting case. What happens if
the youngest snapshot S1 is deleted before its snap create
scan is complete? Suppose that S2 is the next youngest
snapshot. It is possible that S1 got created while the cre-
ate scan for S2 was still in progress, in which case, the

scan had switched to using S1’s snapmap. Therefore, af-
ter the deletion of S1, the create scan needs to redo S2.

5.5 Evaluation

The CPU and I/O requirement for all these scans is some-
what straightforward; they need to load the necessary
snapmap and summary blocks, and bit manipulation is
not too expensive. Since the scans walk the block num-
ber space linearly, the necessary blocks can be easily
prefetched in time. In theory, a given scan can be par-
allelized at any granularity because each bit of the sum-
mary is independent of the other. In practice, our MP
programming model [6] allows for ranges of the sum-
mary to be updated concurrently. In most cases, the
delete scans can be throttled to run at slow speeds so
they don’t interfere with client traffic; even on loaded
systems, a scan of a 1 TiB sized volume (with 8K bitmap
blocks) usually completes in a few minutes. In rare cases,
snapshots are deleted to create space in the volume, and
the scans need to run fast. We do not present the infras-
tructure for pacing and throttling scans; that is a larger
topic.

5.5.1 Snapshot Creation

This scan can be completely eliminated thanks to The-
orem 1. As explained earlier, a snapmap block of the
youngest snapshot S1 is the same exact block as the ac-
tivemap block until the activemap diverges from it; and
that happens when it first gets dirtied after the CP in
which S1 was created. Section 5.2 describes how the
scan’s work is done on-demand if an activemap bit is
cleared before the scan gets to it. If this work is done
instead on the first modification of the activemap block
after S1 is created, then the scan is unnecessary. This re-
quires a last-modify timestamp on each activemap block
that can be compared with S1’s creation time. WAFL in-
crements a CP count and stores it in the superblock, and
also stores it as a last-modify timestamp in the header in-
formation of each metadata block. This CP count serves
as the timestamp needed to eliminate the scan.

It should be noted that the on-demand create scan work
cannot be paced or throttled. It is a function of when
and how bits getting cleared in the activemap. Section 4
describes how the BFLog paces the clearing of bits in
the activemap in a batched manner, which indirectly also
paces the on-demand create scan work.

5.5.2 Snapshot Deletion

The performance trade-off between dbys and dbya
modes of snapshot deletion is obvious. The dbys scan
loads and processes blocks from three snapmaps and the
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summary for a deletion. When multiple snapshots are
deleted, their number and temporal pattern defines the
number of neighbor snapmaps loaded by the scan. On
the other hand, the dbya scan loads the snapmaps of all
remaining snapshots. The more efficient mode can be
chosen based on the number of snapmaps needed by the
scan. If more snapshots are deleted while the dbys scan
is in progress, it can be aborted and a dbya scan can be
kicked off. This switch is safe because the scans are
idempotent. It is not possible to switch from dbya to
dbys mode for reasons explained below.

The dbys mode clearly needs the deleted snapshot to be
preserved (in a hidden namespace) to the extent that its
snapmap can be loaded and consulted until the scan is
complete. In constrast, the dbya mode does not need the
deleted snapshots. Usually, a block is considered free if it
is marked free in the activemap and summary. However,
this invariant is violated by the dbys mode. Suppose that
S1 is deleted and the dbys scan clears the ith bit of the
summary block. It is possible that the block bi in the vol-
ume happens to be a snapmap block of S1, or an ancestor
of a snapmap block in S1’s tree of blocks. If the block
allocator assumes bi to be free and writes new content
to it, then the dbys scan may be rendered infeasible, or
worse, corrupt the summary map. Unless the file system
has some convenient way to tell whether any given block
of S1 is needed for the dbys scan, it is easier to protect all
of S1’s blocks until the scan is done. This leads to:

Theorem 3. While a dbys scan is in progress to delete
one or more snapshots, if the ith bit of both the activemap
and summary is 0, then block bi is free iff the ith bit in the
snapmap of those snapshots is also 0.

This also means that the computation for available space
in the volume has to incorporate blocks that belong to
deleting snapshots while the dbys scan is in progress.
This additional complexity requires more persistent data
structures to solve. Therefore, dbya is chosen sometimes
even when the dbys mode looks attractive from the stand
point of performance. One such situation is when the
volume is running low on space. Another is when the
010 snapshot property is not true; for example, WAFL al-
lows for a file (and its blocks) to be directly restored into
S0 from a not-so-recent snapshot. This is done by sim-
ply pointing the file directly to the blocks in the snapshot
instead of copying them, which violates the 010 prop-
erty. Such events are timestamped so that the system can
deduce when the property is restored.

6 FlexVol Virtualization Layer
WAFL uses a virtualization technique that allows hosting
hundreds or more volumes (NetApp FlexVol®) within the

same collection of physical storage media called an ag-
gregate. This has been key to providing several new ca-
pabilities such as FlexVol cloning, replication, thin provi-
sioning, etc. Section 3 of [8] explains this layering: Each
aggregate is a WAFL volume with blocks called physi-
cal volume block numbers (or pvbns) that map directly to
blocks on persistent storage, and each FlexVol is a WAFL
volume with blocks called virtual volume block numbers
(or vvbns) that are actually just blocks in a file in the ag-
gregate WAFL volume; the file is called the container
file for the FlexVol. In other words, the vvbn of a block
in a FlexVol is the same as its block offset in the corre-
sponding container file. The interested reader is strongly
encouraged to read [8] for diagrams and details.

Each layer maintains bitmaps to track its free blocks and
each layer supports snapshots. In other words, a FlexVol
uses its activemap, summary map, BFLog, etc., to track
allocated and free vvbns, and an aggregate uses another
set of this metadata to track pvbns. After a vvbn is com-
pletely freed in the FlexVol, it is necessary to effectively
punch out the physical block at the appropriate L1 off-
set of the container file before the corresponding pvbn
can be marked free in the aggregate’s activemap. It is
crucial to do this soon after the vvbn gets freed, so that
all FlexVols can share the available free space in the ag-
gregate without restriction. However, this means that
freeing a random vvbn requires loading and updating a
random container file L1; this operation is expensive be-
cause the L1 is several times less dense than a bitmap.
This motivated an important performance optimization
in WAFL even before the structures in Section 4 were
implemented. WAFL delays the free from the container
in order to batch them. WAFL maintains a count of the
number of delayed-free blocks in a container file per 32K
consecutive vvbns, which is written to a per FlexVol file
in the aggregate.

There are soft limits on the total number of delayed frees
so that the file system can absorb large bursts of de-
layed frees getting created. Deletion of snapshots that
exclusively own many blocks, a volume snaprestore (de-
scribed in Section 5.1), or other events can generate such
bursts of delayed-frees. When these limits are exceeded,
the system tries to process that backlog with some ur-
gency. Because the BFLog batches frees in the ac-
tivemap, it can choose to do the “container-punch” work
if there are sufficient delayed-frees in that range.

6.1 Evaluation

We first show the importance of the delayed-free op-
timization. A benchmark was built in house with the
read/write mix that models the query and update oper-
ations of an OLTP/benchmark application. It was built
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Figure 4: Benefit of delaying container frees: IOPs (left side
y-axis) and latency (right side y-axis) versus input load with
and without delayed frees (df) using an OLTP/database work-
load on a high-end all-SSD system with 20 cores and 128 GiB
DRAM.

to be very similar to the Storage Performance Council-1
(SPC-1) benchmark [5]. The benchmark was run on a
high-end all-SSD system with 20 Intel Ivy Bridge cores
and 128 GiB of DRAM, with and without the delayed-
free optimization. Figure 4 shows the achieved IOPS (on
the left y-axis) and latency (on the right y-axis). Only
a small range of the input load is shown near the data
points where the achieved load hits saturation and flat-
tens out on the system without the optimization. The
corresponding normalized latencies are 60% lower with
delayed-frees. This shows that random container L1
reads and updates hurt performance even on a high-end
system with SSDs.

The primary source of benefit in the latencies we ob-
served came from the greater than 60% reduction of
metadata overhead with delayed-frees enabled. As a re-
sult, the CPs were able to give up more CPU cycles that
could be used to service user requests at a higher rate.

Next, we study the aforementioned BFLog optimiza-
tion. When the BFLog frees vvbns in the activemap,
it consults the delayed-free count for that range. These
delayed-frees could have accumulated from previously
run BFLog or snap delete scan activity. If the total
count is higher than an empirically derived threshold, the
BFLog does the “container-punch” work, and appends
the corresponding pvbns in the aggregate’s BFLog ac-
tive log. This is an incremental cost to the BFLog since
it already had the FlexVol bitmaps loaded for freeing
vvbns. Without the optimization, a separate background
task searches for and processes these delayed-frees by
loading all the FlexVol and container metadata, and that
is more expensive and intrusive to client workloads.

To measure this, we ran test that randomly overwrote the
data set with 32 KiB sized I/Os while FlexVol snapshots
that exclusively owned a large number of blocks were

Figure 5: Benefit of the BFLog punching out the container
blocks based on delayed-free counts on a low-end system.

deleted. This was done on a low-end system with 4 Intel
Wolfdale cores and 20 GiB DRAM, which is more sus-
ceptible to this problem. Figure 5 shows the results. The
client write load saw a 26% increase in throughput be-
cause, as the right-hand bar graphs show, the BFLog was
able to perform the “container-punch” work much more
efficiently; about 84% of it was done in the optimized
mode.

7 Related Work
Originally FFS [16] started by using a linked list to main-
tain free blocks in the file system, which simplified the
process of freeing blocks. The allocator picked up en-
tries from this free list for allocation. However, once
multiple files were created and removed, this unsorted
free list grew in size, which led to random blocks being
allocated by the allocator. This resulted in slower se-
quential reads. The designers then replaced the free list
with a bitmap that identifies free blocks in a group, which
resulted in better allocation but increased the cost of up-
dating bitmaps for processing random frees. Similarly
ext4 [3] also uses bitmaps for tracking free space. To
make the allocation faster, it builds an in-memory buddy
cache that maintains the status of clusters of 2n blocks as
free or allocated. Thus, ext4 also suffers from the prob-
lem of random frees like FFS.

The XFS [22] file system tracks free space by using two
B+ trees. One B+ tree tracks space by block number
and the second one by the size of the free space block.
This scheme allows XFS to quickly find free space near a
given block and therefore an extent of free blocks. When
searching large regions of free space, a B+ tree performs
better than a linear scan of a bitmap, and the second B+
tree can readily provide that information. Unfortunately,
B+ trees are expensive to maintain in the face of random
frees. Moreover, an insert or delete into a B+ tree can end
up in a split or merge operation, which increases the cost
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of a free operation. Btrfs [19] also maintains a B-tree
in the form of an extent allocation tree to track allocated
and free extents that serves as a persistent free space map
for allocation. This looks similar to what XFS does for
free space management and thus it also suffers when per-
forming random sub-extent sized frees.

ZFS [2] tries to handle the problem of random frees by
maintaining a log of allocations and frees per metaslab
called a Space Map. As the random frees are appended
to the log, it becomes extremely efficient because it is
not necessary to load random portions of the bitmaps for
updates. For allocation, the Space Map is loaded and the
log entries are replayed to build an AVL tree of free space
sorted by offset. ZFS compacts the persistent Space Map
as needed by looking at the in-memory AVL tree. On
a fairly aged file system with very little free space, the
allocator has to load a lot of Space Map metadata to build
this AVL tree. ZFS tries to amortize the cost of frees by
logging them, but this forces the allocator to pay the cost
of constructing the AVL tree.

There is clearly a trade-off that a file system can make in
terms of when and how it processes a free that has been
logged. Additionally, for the purposes of speeding up
block allocation, file systems can choose to build com-
plex data structures for tracking free space. However,
that comes with the cost of maintaining those structures
when blocks are freed, especially when they are random
in their number space. Production-level file systems are
usually built with specific goals in terms of workloads
and features, and design principles are chosen to further
those goals. They typically use a mix of persistent and in-
memory free space tracking data structures that facilitate
fast allocation assuming a certain buffer of free space,
which lets the free space reclamation infrastructure play
catch-up while the allocator looks for free blocks.

The WAFL block reclamation infrastructure stands apart
because it maintains high and consistent performance
while still supporting the various features of WAFL :
snapshots, compression, deduplication (inline and back-
ground), FlexVol cloning, thin provisioning, file cloning,
volume snaprestore, replication, single file restore, sin-
gle file move on demand, etc. Unfortunately, the free
space infrastructure interactions with many of these fea-
tures are too lengthy to be presented here. WAFL has
built-in data integrity mechanisms that protect memory-
resident file system structures against scribbles and logic
bugs [14]. The batching efficiency of the BFLog plays an
important role in ensuring that these mechanisms work
with negligible performance overhead.

The ability to absorb a high rate of reference count in-
crements is critical to features like inline deduplication
and rapid file cloning. One approach to batching ref-

count updates is an increment-decrement log; instead of
just batching refcount decrements due to deletes, this log
also collects increments created by new block sharing.
This approach is especially useful in hierarchically ref-
erence counted file systems [19] since a single overwrite
can generate hundreds or thousands of reference count
updates [9]. This approach was explored in WAFL to
support instantaneous cloning. In a hierarchically refer-
ence counted file system, where reference count updates
are batched by an increment-decrement log, both the cre-
ation of and writes to cloned files can be performed effi-
ciently [13]. By batching these updates, the decrements
to block reference counts from writes can be canceled
out by the increments of a clone create in the increment-
decrement log without ever updating the persistent ref-
count file. However, there is also a need to query the
log for pending increments or decrements to a particular
block. Two implementations of B-trees that satisfy fast
insertions and queries are presented in [1]. The queries
can be satisfied in logarithmic time, and the insertions
can be accomplished with guaranteed amortized updates
to the B-trees.

8 Conclusion
The WAFL file system has evolved over more than
two decades as technology trends have resulted in big-
ger and faster hardware, and larger file systems. It
has also transformed from handling user directory style
NFS/CIFS workloads to servicing a very wide range
of SAN and NAS applications. It has been deployed
to run in different configurations: purpose built plat-
forms with all combinations of hard and solid state disks,
software-defined solutions, and even NetApp Cloud On-
tap®instances on AWS. The free space reclamation in-
frastructure has evolved to work well across all these
permutations, providing a rich set of data management
features and consistently high performance. Even though
the pattern and rate of frees can be very random, we show
that the proposed techniques allow the free space recla-
mation to keep up and behave deterministically without
impacting the rest of the system. We describe elegant and
efficient methods to track the space allocated to snap-
shots. Finally, we show how the infrastructure works
across the extra layer of FlexVol virtualization.
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Abstract

TTFLASH is a “tiny-tail” flash drive (SSD) that elim-

inates GC-induced tail latencies by circumventing GC-

blocked I/Os with four novel strategies: plane-blocking

GC, rotating GC, GC-tolerant read, and GC-tolerant

flush. It is built on three SSD internal advancements:

powerful controllers, parity-based RAIN, and capacitor-

backed RAM, but is dependent on the use of intra-plane

copyback operations. We show that TTFLASH comes sig-

nificantly close to a “no-GC” scenario. Specifically, be-

tween 99–99.99th percentiles, TTFLASH is only 1.0 to

2.6× slower than the no-GC case, while a base approach

suffers from 5–138× GC-induced slowdowns.

1 Introduction

Flash storage has become the mainstream destination

for storage users. The SSD consumer market con-

tinues to grow at a significant rate [8], SSD-backed

cloud-VM instances are becoming the norm [7, 13], and

flash/SSD arrays are a popular solution for high-end stor-

age servers [23, 30, 44]. From the users side, they de-

mand fast and stable latencies [25, 28]. However, SSDs

do not always deliver the performance that users ex-

pect [15]. Some even suggest that flash storage “may

not save the world” (due to the tail latency problem) [5].

Some recent works dissect why it is hard to meet SLAs

with SSDs [36] and reveal high performance variability

in 7 million hours of SSDs deployments [30].

The core problem of flash performance instability is

the well-known and “notorious” garbage collection (GC)

process. A GC operation causes long delays as the SSD

cannot serve (blocks) incoming I/Os. Due to an ongoing

GC, read latency variance can increase by 100× [5, 24].

In the last decade, there is a large body of work that

reduces the number of GC operations with a variety of

novel techniques [29, 35, 36, 37, 39, 43, 48]. However,

we find almost no work in literature that attempts to elim-

inate the blocking nature of GC operations and deliver

steady SSD performance in long runs.

We address this urgent issue with “tiny-tail” flash drive

(TTFLASH), a GC-tolerant SSD that can deliver and

guarantee stable performance. The goal of TTFLASH is

to eliminate GC-induced tail latencies by circumventing

GC-blocked I/Os. That is, ideally there should be no

I/O that will be blocked by a GC operation, thus creat-

ing a flash storage that behaves close to a “no-GC” sce-

nario. The key enabler is that SSD internal technology

has changed in many ways, which we exploit to build

novel GC-tolerant approaches.

Specifically, there are three major SSD technological

advancements that we leverage for building TTFLASH.

First, we leverage the increasing power and speed of to-

day’s flash controllers that enable more complex logic

(e.g., multi-threading, I/O concurrency, fine-grained I/O

management) to be implemented at the controller. Sec-

ond, we exploit the use of Redundant Array of Inde-

pendent NAND (RAIN). Bit error rates of modern SSDs

have increased to the point that ECC is no longer deemed

sufficient [33, 37, 45]. Due to this increasing failure,

modern commercial SSDs employ parity-based redun-

dancies (RAIN) as a standard data protection mecha-

nism [6, 12]. By using RAIN, we can circumvent GC-

blocked read I/Os with parity regeneration. Finally,

modern SSDs come with a large RAM buffer (hundreds

of MBs) backed by “super capacitors” [10, 14], which we

leverage to mask write tail latencies from GC operations.

The timely combination of the technology prac-

tices above enables four new strategies in TTFLASH:

(a) plane-blocking GC, which shifts GC blocking from

coarse granularities (controller/channel) to a finer granu-

larity (plane level), which depends on intra-plane copy-

back operations, (b) GC-tolerant read, which exploits

RAIN parity-based redundancy to proactively generate

contents of read I/Os that are blocked by ongoing GCs,

(c) rotating GC, which schedules GC in a rotating fash-

ion to enforce at most one active GC in every plane

group, hence the guarantee to always cut “one tail” with

one parity, and finally (d) GC-tolerant flush, which evicts

buffered writes from capacitor-backed RAM to flash

pages, free from GC blocking.

One constraint of TTFLASH is its dependency on intra-

plane copybacks where GC-ed pages move within a

plane without the data flowing through the SSD con-

troller, hence skipping ECC checks for garbage collected

pages, which may reduce data reliability. The full extent
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of this effect is not evaluated and left for future work. We

recommend background ECC checks to be performed in

the background to overcome this limitation (§7).

We first implemented TTFLASH in SSDSim [32] in or-

der to simulate accurate latency analysis at the device

level. Next, to run real file systems and applications, we

also port TTFLASH to a newer QEMU/KVM-based plat-

form based on VSSIM [50].

With a thorough evaluation (§6.1), we show that

TTFLASH successfully eliminates GC blocking for a sig-

nificant number of I/Os, reducing GC-blocked I/Os from

2–7% (base case) to only 0.003–0.7%. As a result,

TTFLASH reduces tail latencies dramatically. Specifi-

cally, between the 99–99.99th percentiles, compared to

the perfect no-GC scenario, a base approach suffers from

5.6–138.2× GC-induced slowdowns. TTFLASH on the

other hand is only 1.0 to 2.6× slower than the no-GC

case, which confirms our near-complete elimination of

GC blocking and the resulting tail latencies.

We also show that TTFLASH is more stable than state-

of-the-art approaches that reduce GC impacts such as

preemptive GC [9, 40] (§6.2). Specifically, TTFLASH

continuously delivers stable latencies while preemptive

GC exhibits latency spikes under intensive I/Os. Fur-

thermore, we contrast the fundamental difference of GC-

impact elimination from reduction (§6.3, §8).

In summary, by leveraging modern SSD internal tech-

nologies in a unique way, we have successfully built

novel features that provide a robust solution to the criti-

cal problem of GC-induced tail latencies. In the follow-

ing sections, we present extended motivation (§2), SSD

primer (§3), TTFLASH design (§4), implementation (§5),

evaluation (§6), and limitations (§7), and related and con-

clusion (§7-9).

2 GC-Induced Tail Latency

We present two experiments that show GC cascading im-

pacts, which motivate our work. Each experiment runs

on a late-2014 128GB Samsung SM951, which can sus-

tain 70 “KWPS” (70K of 4KB random writes/sec).

In Figure 1a, we ran a foreground thread that ex-

ecutes 16-KB random reads, concurrently with back-

ground threads that inject 4-KB random-write noises at

1, 2.5, and 5 KWPS (far below the max 70 KWPS) across

three experiments. We measure Li, the latency of ev-

ery 16-KB foreground read. Figure 1a plots the CDF of

Li, clearly showing that more frequent GCs (from more-

intense random writes) block incoming reads and cre-

ate longer tail latencies. To show the tail is induced by

GC, not queueing delays, we ran the same experiments

but now with random-read noises (1, 2.5, and 5 KRPS.

The read-noise results are plotted as the three overlap-

ping thin lines marked “ReadNoise,” which represents a
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Figure 1: GC-Induced Tail Latencies (Section 2).

perfect no-GC scenario. As shown, with 5 KWPS noise,

read operations become 15×, 19×, and 96× slower com-

pared to no-GC scenarios, at 90th, 95th and 99th per-

centiles, respectively.

In Figure 1b, we keep the 5-KWPS noise and now vary

the I/O size of the foreground random reads (8, 16, 32,

64, and 128 KB across five experiments). Supposedly, a

2× larger read should only consume 2× longer latency.

However, the figure shows that GC induces more tail la-

tencies in larger reads. For example, at 85th percentile,

a 64-KB read is 4× slower than a 32-KB read. The core

of the problem is this: if a single page of a large read

is blocked by a GC, the entire read cannot complete; as

read size increases, the probability of one of the pages

being blocked by GC also increases, as we explain later

(§3, §4.1). The pattern is more obvious when compared

to the same experiments but with 5-KRPS noises (the five

thin gray lines marked “ReadNoise”).

For a fairer experiment, because flash read latency is

typically 20× faster than write latency, we also ran read

noises that are 20× more intense and another where read

noises is 20× larger in size. The results are similar.

3 SSD Primer: GC Blocking

Before presenting TTFLASH, we first need to describe

SSD internals that are essential for understanding GC

blocking. This section describes how GC operates from

the view of the physical hardware.

SSD Layout: Figure 2 shows a basic SSD internal

layout. Data and command transfers are sent via par-

allel channels (C1..CN ). A channel connects multiple

flash planes; 1–4 planes can be packaged as a single chip

(dashed box). A plane contains blocks of flash pages.

In every plane, there is a 4-KB register support; all flash

reads/writes must transfer through the plane register. The

controller is connected to a capacitor-backed RAM used

for multiple purposes (e.g., write buffering). For clarity,

we use concrete parameter values shown in Table 1.
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Figure 2: SSD Internals (Section 3).

GC operation (4 main steps): When used-page count

increases above a certain threshold (e.g., 70%), a GC will

start. A possible GC operation reads valid pages from an

old block, writes them to a free block, and erases the old

block, within the same plane. Figure 2 shows two copy-

backs in a GC-ing plane (two valid pages being copied to

a free block). Most importantly, with 4-KB register sup-

port in every plane, page copybacks happen within the

GC-ing plane without using the channel [11, 18].

The controller then performs the following for-loop of

four steps for every page copyback: (1) send a flash-to-

register read command through the channel (only 0.2µs)

to the GC-ing plane, (2) wait until the plane executes

the 1-page read command (40µs without using the chan-

nel), (3) send a register-to-flash write command, and (4)

wait until the plane executes the 1-page write command

(800µs without using the channel). Steps 1–4 are re-

peated until all valid pages are copied and then the old

block is erased. The key point here is that copyback oper-

ations (steps 2 and 4; roughly 840µs) are done internally

within the GC-ing plane without crossing the channel.

GC Blocking: GC blocking occurs when some re-

sources (e.g., controller, channel, planes) are used by a

GC activity, which will delay subsequent requests, sim-

ilar to head-of-line blocking. Blocking designs are used

as they are simple and cheap (small gate counts). But be-

cause GC latencies are long, blocking designs can pro-

duce significant tail latencies.

One simple approach to implement GC is with a

blocking controller. That is, even when only one plane

is performing GC, the controller is busy communicating

with the GC-ing plane and unable to serve outstanding

I/Os that are designated to any other planes. We refer

to this as controller-blocking GC, as illustrated in Fig-

ure 3a. Here, a single GC (the striped plane) blocks the

controller, thus technically all channels and planes are

blocked (the bold lines and dark planes). All outstanding

I/Os cannot be served (represented by the non-colored

I/Os). OpenSSD [4], VSSIM [50], and low-cost systems

such as eMMC devices adopt this implementation.

Another approach is to support multi-threaded/multi-

CPU with channel queueing. Here, while a thread/CPU

is communicating to a GC-ing plane (in a for-loop) and

Outstanding I/Os:

(a) Controller
blocking

GC-ing

Plane

Blocked

Planes &

Channels

(b) Channel
blocking

(c) Plane
blocking

Controller

Figure 3: Various levels of GC blocking. Colored

I/Os in bright planes are servable while non-colored I/Os in

dark planes are blocked. (a) In controller-blocking (§3), a GC

blocks the controller/entire SSD. (b) In channel-blocking (§3),

a GC blocks the channel connected to the GC-ing plane. (c) In

plane-blocking (§4.1), a GC only blocks the GC-ing plane.

blocking the plane’s channel (e.g., bold line in Figure

3b), other threads/CPUs can serve other I/Os designated

to other channels (the colored I/Os in bright planes).

We refer this as channel-blocking GC (i.e., a GC blocks

the channel of the GC-ing plane). SSDSim [32] and

disksim+SSD [18] adopt this implementation. Commod-

ity SSDs do not come with layout specifications, but

from our experiments (§2), we suspect some form of

channel-blocking (at least in client SSDs) exists.

Figure 1 also implicitly shows how blocked I/Os create

cascading queueing delays. Imagine the “Outstanding

I/Os” represents a full device queue (e.g., typically 32

I/Os). When this happens, the host OS cannot submit

more I/Os, hence user I/Os are blocked in the OS queues.

We show this impact in our evaluation.

4 TTFLASH Design

We now present the design of TTFLASH, a new SSD ar-

chitecture that achieves guaranteed performance close to

a no-GC scenario. We are able to remove GC blocking

at all levels with the following four key strategies:

1. Devise a non-blocking controller and channel pro-

tocol, pushing any resource blocking from a GC to

only the affected planes. We call this fine-grained

architecture plane-blocking GC (§4.1).

2. Exploit RAIN parity-based redundancy (§4.2) and

combine it with GC information to proactively re-

generate reads blocked by GC at the plane level,

which we name GC-tolerant read (§4.3).

3. Schedule GC in a rotating fashion to enforce at most

one GC in every plane group, such that no reads will

see more than one GC; one parity can only “cut one

tail.” We name this rotating GC (§4.4).

4. Use capacitor-backed write buffer to deliver fast

durable completion of writes, allowing them to be

evicted to flash pages at a later time in GC-tolerant

manner. We name this GC-tolerant flush (§4.5).
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Sizes Latencies

SSD Capacity 256 GB Page Read 40µs

#Channels 8 (flash-to-register)

#Planes/channel 8 Page Write 800µs

Plane size 4 GB (register-to-flash)

#Planes/chip ** 1 Page data transfer 100µs

#Blocks/plane 4096 (via channel)

#Pages/block 256 Block erase 2 ms

Page size 4 KB

Table 1: SSD Parameters. This paper uses the above

parameters. (**) 1 planes/chip is for simplicity of presentation

and illustration. The latencies are based on average values;

actual latencies can vary due to read retry, different voltages,

etc. Flash reads/writes must use the plane register.

For clarity of description, the following sections will use

concrete parameter values shown in Table 1.

4.1 Plane-Blocking GC (PB)

Controller- and channel-blocking GC are often adopted

due to their simplicity of hardware implementation; a GC

is essentially a for-loop of copyback commands. This

simplicity, however, leads to severe tail latencies as in-

dependent planes are unnecessarily blocked. Channel-

blocking is no better than controller-blocking GC for

large I/Os; as every large I/O is typically striped across

multiple channels, one GC-busy channel still blocks the

entire I/O, negating the benefit of SSD parallelism. Fur-

thermore, as SSD capacity increases, there will be more

planes blocked in the same channel. Worse, GC pe-

riod can be significantly long. A GC that copybacks 64

valid pages (25% valid) will lead to 54 ms (64×840µs)

of blocked channel, which potentially leaves hundreds

of other I/Os unservable. An outstanding read operation

that supposedly only takes less than 100 µs is now de-

layed longer by order(s) of magnitude [5, 24].

To reduce this unnecessary blocking, we introduce

plane-blocking GC, as illustrated in Figure 3c. Here, the

only outstanding I/Os blocked by a GC are the ones that

correspond to the GC-ing plane (# labels). All I/Os to

non-GCing planes (non-# labels) are servable, includ-

ing the ones in the same channel of the GC-ing plane.

As a side note, plane-blocking GC can be interchange-

ably defined as chip-blocking GC; in this paper, we use

1 plane/chip for simplicity of presentation.

To implement this concept, the controller must per-

form a fine-grained I/O management. For illustration,

let us consider the four GC steps (§3). In TTFLASH,

after a controller CPU/thread sends the flash-to-register

read/write command (Steps 1 and 3), it will not be idle

waiting (for 40µs and 800µs, respectively) until the next

step is executable. (Note that in a common implemen-

tation, the controller is idling due to the simple for-loop

and the need to access the channel to check the plane’s

copyback status). With plane-blocking GC, after Steps

1 and 3 (send read/write commands), the controller cre-

ates a future event that marks the completion time. The

controller can reliably predict how long the intra-plane

read/write commands will finish (e.g., 40 and 800 µs

on average, respectively). To summarize, with plane-

blocking GC, TTFLASH overlaps intra-plane copyback

and channel usage for other outstanding I/Os. As shown

in Figure 3c, for the duration of an intra-plane copy-

back (the striped/GC-ing plane), the controller can con-

tinue serving I/Os to other non-GCing planes in the cor-

responding channel (▲ I/Os).

Plane-blocking GC potentially frees up hundreds of

previously blocked I/Os. However, there is an unsolved

GC blocking issue and a new ramification. The unsolved

GC blocking issue is that the I/Os to the GC-ing plane

(# labels in Figure 3c) are still blocked until the GC

completes; in other words, with only plane-blocking, we

cannot entirely remove GC blocking. The new ramifica-

tion of plane-blocking is a potentially prolonged GC op-

eration; when the GC-ing plane is ready to take another

command (end of Steps 2 and 4), the controller/channel

might still be in the middle of serving other I/Os, due to

overlaps. For example, the controller cannot start GC

write (Step 3) exactly 40 µs after GC read completes

(Step 1), and similarly, the next GC read (Step 1) cannot

start exactly 800 µs after the previous GC write. If GC

is prolonged, I/Os to the GC-ing plane will be blocked

longer. Fortunately, the two issues above can be masked

with RAIN and GC-tolerant read.

4.2 RAIN

To prevent blocking of I/Os to GC-ing planes, we lever-

age RAIN, a recently-popular standard for data integrity

[6, 12]. RAIN introduces the notion of parity pages

inside the SSD. Just like the evolution of disk-based

RAIDs, many RAIN layouts have been introduced [33,

37, 41, 42], but they mainly focus on data protection,

write optimization, and wear leveling. On the contrary,

we design a RAIN layout that also targets tail tolerance.

This section briefly describes our basic RAIN layout,

enough for understanding how it enables GC-tolerant

read (§4.3); our more advanced layout will be discussed

later along with wear-leveling issues (§7).

Figure 4 shows our RAIN layout. For simplicity of

illustration, we use 4 channels (C0−C3) and the RAIN

stripe width matches the channel count (N=4). The

planes at the same position in each channel form a plane

group (e.g., G1). A stripe of pages is based on logical

page numbers (LPNs). For every stripe (N−1 consecu-

tive LPNs), we allocate a parity page. For example, for

LPNs 0-2, we allocate a parity page P012.

Regarding the FTL design (LPN-to-PPN mapping),

there are two options: dynamic or static. Dynamic map-
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Figure 4: TTFLASH Architecture. The figure illus-

trates our RAIN layout (§4.2), GC-tolerant read (§4.3), rotating

GC (§4.4), and GC-tolerant flush (§4.5). We use four channels

(C0−C3) for simplicity of illustration. Planes at the same “ver-

tical” position form a plane group (G0, G1, etc.). A RAIN stripe

is based on N−1 LPNs and a parity page (e.g., 012P012).

ping, where an LPN can be mapped to any PPN, is often

used to speed-up writes (flexible destination). However,

in modern SSDs, write latency issues are absorbed by

capacitor-backed RAM (§4.5); thus, writes are spread

across multiple channels. Second, dynamic mapping

works well when individual pages are independent; how-

ever, RAIN pages are stripe dependent. With dynamic

mapping, pages in a stripe can be placed behind one

channel, which will underutilize channel parallelism.

Given the reasons above, we create a page-level hy-

brid static-dynamic mapping. The static allocation poli-

cies are: (a) an LPN is statically mapped to a plane (e.g.,

LPN 0 to plane G0C0 in Figure 4), (b) N−1 consecutive

LPNs and their parity form a stripe (e.g., 012P012), and

(c) the stripe pages are mapped to planes across the chan-

nels within one plane group (e.g., 012P012 in G0). Later,

we will show how all of these are crucial for supporting

GC-tolerant read (§4.3) and rotating GC (§4.4).

The dynamic allocation policy is: inside each

plane/chip, an LPN can be dynamically mapped to any

PPN (hundreds of thousands of choices). An overwrite

to the same LPN will be redirected to a free page in the

same plane (e.g., overwrites to LPN 0 can be directed to

any PPN inside G0C0 plane).

To prevent parity-channel bottleneck (akin to RAID-4

parity-disk bottleneck), we adopt RAID-5 with a slightly

customized layout. First, we treat the set of channels as a

RAID-5 group. For example, in Figure 4, P012 and P345

are in different channels, in a diagonal fashion. Second,

as SSD planes form a 2-dimensional layout (GiCj) with

wearout issues (unlike disk’s “flat” LPNs), we need to

ensure hot parity pages are spread out evenly. To handle

this, we will present dynamic migrations later (§7).

4.3 GC-Tolerant Read (GTR)

With RAIN, we can easily support GC-tolerant read

(GTR). For a full-stripe read (which usesN−1 channels),

GTR is straightforward: if a page cannot be fetched due

to an ongoing GC, the page content is quickly regener-

ated by reading the parity from another plane. In Fig-

ure 4, given a full-stripe read of LPNs 0–2, and if LPN

1 is unavailable temporarily, the content is rapidly regen-

erated by reading the parity (P012). Thus, the full-stripe

read is not affected by the ongoing GC. The resulting la-

tency is order(s) of magnitude faster than waiting for GC

completion; parity computation overhead only takes less

than 3µs for N≤8 and the additional parity read only

takes a minimum of 40+100µs (read+transfer latencies;

Table 1) and does not introduce much contention.

For a partial-stripe read (R pages where R<N−1),

GC-tolerant read will generate in total N−R extra reads;

the worst case is when R=1. These N−R extra parallel

reads will add contention to each of the N−R channels,

which might need to serve other outstanding I/Os. Thus,

we only perform extra reads if TGCtoComplete>B×
(40+100)µs where B is the number of busy channels

in the N−R extra reads (for non-busy channels the extra

reads are free). In our experience, this simple policy cuts

GC tail latencies effectively and fairly without introduc-

ing heavy contention. In the opposing end, a “greedy”

approach that always performs extra reads causes high

channel contention.

We emphasize that unlike tail-tolerant speculative ex-

ecution, often defined as an optimization task that may

not be actually needed, GC-tolerant read is affirmative,

not speculative; the controller knows exactly when and

where GC is happening and how long it will complete.

GTR is effective but has a limitation: it does not work

when multiple planes in a plane group perform GCs si-

multaneously, which we address with rotating GC.

4.4 Rotating GC (RGC)

As RAIN distributes I/Os evenly over all planes, multi-

ple planes can reach the GC threshold and thus perform

GCs simultaneously. For example, in Figure 4, if planes

of LPNs 0 and 1 (G0C0 and G0C1) both perform GC,

reading LPNs 0–2 will be delayed. The core issue is:

one parity can only cut “one tail”. Double-parity RAIN

is not used due to the larger space overhead.

To prevent this, we develop rotating GC (RGC), which

enforces that at most one plane in each plane group can

perform one GC at a time. Concurrent GCs in different

plane groups are still allowed (e.g., one in each Gi as

depicted in Figure 4). Note that rotating GC depends on

our RAIN layout that ensures every stripe to be statically

mapped to a plane group.
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We now emphasize our most important message: there

will be zero GC-blocked I/Os if rotating GC holds true all

the time. The issue here is that our rotating approach can

delay a plane’s GC as long as (N−1)× Tgc (the GC du-

ration). During this period, when all the free pages are

exhausted, multiple GCs in a plane group must execute

concurrently. This could happen depending on the com-

bination of N and the write intensity. Later in Appendix

A, we provide a proof sketch showing that with stripe-

width N≤26, rotating GC can always be enforced under

realistic write-intensive scenarios.

Employing a large stripe width (e.g., N=32) is possi-

ble but can violate rotating GC, implying that GC tail la-

tencies cannot be eliminated all the time. Thus, in many-

channel (e.g., 32) modern SSDs, we can keep N=8 or 16
(e.g., create four 8-plane or two 16-plane groups across

the planes within the same vertical position). Increasing

N is unfavorable not only because of rotating GC vio-

lation, but also due to reduced reliability and the more

extra I/Os generated for small reads by GTR (§4.3). In

our evaluation, we use N=8, considering 1/8 parity over-

head is bearable.

4.5 GC-Tolerant Flush (GTF)

So far, we only address read tails. Writes are more com-

plex (e.g., due to write randomness, read-and-modify

parity update, and the need for durability). To handle

write complexities, we leverage the fact that flash indus-

try heavily employs capacitor-backed RAM as a durable

write buffer (or “cap-backed RAM” for short) [14]. To

prevent data loss, the RAM size is adjusted based on the

capacitor discharge period after power failure; the size

can range from tens to hundreds of MB, backed by “su-

per capacitors” [10].

We adopt cap-backed RAM to absorb all writes

quickly. When the buffer occupancy is above 80%, a

background flush will run to evict some pages. When the

buffer is full (e.g., due to intensive large writes), a fore-

ground flush will run, which will block incoming writes

until some space is freed. The challenge to address here

is that foreground flush can induce write tails when the

evicted pages must be sent to GC-ing planes.

To address this, we introduce GC-tolerant flush

(GTF), which ensures that page eviction is free from GC

blocking, which is possible given rotating GC. For exam-

ple, in Figure 4, pages belonging to 3’, 4’ and P3′4′5′ can

be evicted from RAM to flash while page 5’ eviction is

delayed until the destination plane finishes the GC. With

proven rotating GC, GTF can evict N−1 pages in every

N pages per stripe without being blocked. Thus, the min-

imum RAM space needed for the pages yet to be flushed

is small. Appendix A suggests that modern SSD RAM

size is sufficient to support GTF.

For partial-stripe writes, we perform the usual RAID

read-modify-write eviction, but still without being

blocked by GC. Let us imagine a worst-case scenario of

updates to pages 7’ and 8’ in Figure 4. The new parity

should be P67′8′ , which requires read of page 6 first. De-

spite page 6 being unreachable, it can be regenerated by

reading the old pages P678, 7, and 8, after which pages

7’, 8’, and P67′8′ can be evicted.

We note that such an expensive parity update is rare

as we prioritize the eviction of full-stripe dirty pages

to non-GCing planes first and then full-stripe pages to

mostly non-GCing planes with GTF. Next, we evict

partial-stripe dirty pages to non-GCing planes and fi-

nally partial-stripe pages to mostly non-GCing planes

with GTF. Compared to other eviction algorithms that

focus on reducing write amplification [35], our method

adds GC tail tolerance.

5 Implementation

This section describes our implementations of TTFLASH,

which is available on our website [1].

• ttFlash-Sim (SSDSim): To facilitate accurate la-

tency analysis at the device level, we first implement

TTFLASH in SSDSim [32], a recently-popular simulator

whose accuracy has been validated against a real hard-

ware platform. We use SSDSim due to its clean-slate

design. We implemented all the TTFLASH features by

adding 2482 LOC to SSDSim. This involves a sub-

stantial modification (+36%) to the vanilla version (6844

LOC). The breakdown of our modification is as follow:

plane-blocking (523 LOC), RAIN (582), rotating GC

(254), GC-tolerant read (493) and write (630 lines).

• ttFlash-Emu (“VSSIM++”): To run Linux kernel

and file system benchmarks, we also port TTFLASH

to VSSIM, a QEMU/KVM-based platform that “facil-

itates the implementation of the SSD firmware algo-

rithms” [50]. VSSIM emulates NAND flash latencies on

RAM disk. Unfortunately, VSSIM’s implementation is

based on 5-year old QEMU-v0.11 IDE interface, which

only delivers 10K IOPS. Furthermore, as VSSIM is a

single-threaded design, it essentially mimics a controller-

blocking SSD (1K IOPS under GC).

These limitations led us to make major changes. First,

we migrated VSSIM’s single-threaded logic to a multi-

threaded design within the QEMU AIO module, which

enables us to implement channel-blocking. Second, we

migrated this new design to a recent QEMU release

(v2.6) and connected it to the PCIe/NVMe interface. Our

modification, which we refer as “VSSIM++”, can sus-

tain 50K IOPS. Finally, we port TTFLASH features to

VSSIM++, which we refer as ttFlash-Emu, for a total

of 869 LOC of changes.
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• Other attempts (OpenSSD and LightNVM): We

attempted implementing TTFLASH on real hardware

platforms (2011 Jasmine and 2015 Cosmos OpenSSD

boards [4]). After a few months trying, we hit many lim-

itations of OpenSSD: single threaded (no pthread sup-

port), single logic for all channels (cannot control chan-

nel queues), no accessible commands for data transfer

from flash RAM to host DRAM (preventing parity re-

generation), no support for wall-clock time (preventing

GC time prediction), inaccessible request queues and ab-

sence of GC queues (OpenSSD is whole-blocking). We

would like to reiterate that these are not hardware limi-

tations, but rather, the ramifications of the elegant sim-

plicity of OpenSSD programming model (which is its

main goal). Nevertheless, our conversations with hard-

ware architects suggest that TTFLASH is implementable

on a real firmware (e.g., roughly a 1-year development

and testing project on a FPGA-based platform).

Finally, we also investigated the LightNVM (Open-

Channel SSD) QEMU test platform [16]. LightNVM

[21] is an in-kernel framework that manages OpenChan-

nel SSD (which exposes individual flash channels to the

host, akin to Software-Defined Flash [44]). Currently,

neither OpenChannel SSD nor LightNVM’s QEMU test

platform support intra-SSD copy-page command. With-

out such support and since GC is managed by the host

OS, GC-ed pages must cross back and forth between the

device and the host. This creates heavy background-vs-

foreground I/O transfer contention between GC and user

I/Os. For example, the user’s maximum 50K IOPS can

downgrade to 3K IOPS when GC is happening. We leave

this integration for future work after the intra-SSD copy-

page command is supported.

6 Evaluation

We now present extensive evaluations showing that

TTFLASH significantly eliminates GC blocking (§6.1),

delivers more stable latencies than the state-of-the-art

preemptive GC (§6.2) and other GC optimization tech-

niques (§6.3), and does not significantly increase P/E cy-

cles beyond the RAIN overhead (§6.4).

Workloads: We evaluate two implementations:

ttFlash-Sim (on SSDSim) and ttFlash-Emu (on VS-

SIM++), as described in Section 5. For ttFlash-Sim

evaluation, we use 6 real-world block-level traces from

Microsoft Windows Servers as listed in the figure titles

of Figure 5. Their detailed characteristics are publicly

reported [3, 34]. By default, for each trace, we chose

the busiest hour (except the 6-minute TPCC trace). For

ttFlash-Emu evaluation, we use filebench [2] with six

personalities as listed in the x-axis of Figure 8.

Hardware parameters: For ttFlash-Sim, we use

the same 256-GB parameter values provided in Table 1
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Figure 5: Tail Latencies. The figures show the CDF of

read latencies (x=0–80ms) in different workloads as we add

each TTFLASH strategy: +PB (§4.1), +GTR (§4.3), and +RGC

(§4.4). The y-axis shows 95–100th percentiles.

with 64 MB cap-backed RAM and a typical device queue

size of 32. ttFlash-Emu uses the same parameters but

its SSD capacity is only 48 GB (limited by the machine’s

DRAM). We use a machine with 2.4GHz 8-core Intel

Xeon Processor E5-2630-v3 and 64-GB DRAM. The

simulated and emulated SSD drives are pre-warmed up

with the same workload.

6.1 Main Results

• Tiny tail latencies: Figure 5 shows the CDF of read

latencies from the six trace-driven experiments run on

ttFlash-Sim. Note that we only show read latencies;

write latencies are fast and stable as all writes are ab-

sorbed by cap-backed RAM (§4.5). As shown in Figure

5, the base approach (“Base” = the default SSDSim with

channel-blocking and its most-optimum FTL [32] and

without RAIN) exhibits long tail latencies. In contrast,

as we add each TTFLASH feature one at a time on top of

the other: +PB (§4.1), +GTR (§4.3), and +RGC (§4.4), sig-
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Figure 6: Average Latencies. The figure compares the

average read latencies of Base, TTFLASH, and NoGC scenarios

from the same experiments in Figure 5.

Percentile: D
A

P

D
T

R
S

E
x
ch

L
M

B
E

M
S

N

T
P

C
C

99.99th 1.00x 1.24 1.18 1.96 1.00 2.56

99.9th 1.00x 1.01 1.01 1.02 1.01 1.01

99th 1.00x 1.02 1.10 1.01 1.03 1.02

Table 2: TTFLASH vs. NoGC (almost no tail). The

numbers above represent the slowdown ratio of TTFLASH read

latencies compared to NoGC at high percentiles. For example,

in DTRS, at 99.99th percentile, TTFLASH’s read latency is only

1.24× slower than NoGC’s read latency.

nificant improvements are observed. When all features

are added (RGC+GTR+PB), the tiny tail latencies are close

to those of the no-GC scenario, as we explain later.

Figure 6 plots the average latencies of the same exper-

iments. This graph highlights that although the latencies

of TTFLASH and Base are similar at 90th percentile (Fig-

ure 5), the Base’s long tail latencies severely impact its

average latencies. Compared to Base, TTFLASH’s aver-

age latencies are 2.5–7.8× faster.

• TTFLASH vs. NoGC: To characterize the benefits of

TTFLASH’s tail latencies, we compare TTFLASH to a per-

fect “no-GC” scenario (“NoGC” = TTFLASH without GC

and with RAIN). In NoGC, the same workload runs with-

out any GC work (with a high GC threshold), thus all

I/Os observe raw flash performance.

Table 2 shows the slowdown from NoGC to TTFLASH

at various high percentiles. As shown, TTFLASH sig-

nificantly reduces GC blocking. Specifically, at 99–

99.9th percentiles, TTFLASH’s slowdowns are only 1.00

to 1.02×. Even at 99.99th percentile, TTFLASH’s slow-

downs are only 1.0 to 2.6×. In comparison, Base suffers

from 5.6–138.2× slowdowns between 99–99.99th per-

centiles (as obvious in Figure 5); for readability, NoGC

lines are not plotted in the figure. In terms of average la-

tencies, Figure 6 shows that TTFLASH performs the same

with or without GC.

• GC-blocked I/Os: To show what is happening inside

the SSD behind our speed-ups, we count the percent-

age of read I/Os that are blocked by GC (“%GC-blocked

I/Os”), as plotted in Figure 7. As important, we empha-

size that GC-blocked I/Os fill up the device queue, creat-
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Figure 7: %GC-blocked read I/Os. The figure above

corresponds to the results in Figure 5. The bars represent the

ratio (in percent) of read I/Os that are GC-blocked (bottom bar)

and queue-blocked (top bar) as explained in §6.1. “All” im-

plies PB+GTR+RGC (please see Figure 5’s caption).

ing queueing delays that prevent new host I/Os from en-

tering the device, which we count as “%queue-blocked

I/Os.” Thus, each bar in the figure has two parts: %GC-

blocked (bottom, bold edge) and %queue-blocked I/Os

(top), divided with a small horizontal borderline.

Figure 7 shows that with Base, without GC tolerance,

2–5% of reads are blocked by GC. As they further cause

queueing delays, in total, there are 2–7% of blocked

I/Os that cannot be served. As each TTFLASH feature

is added, more I/Os are unblocked. With all the fea-

tures in place (“All” bars), there are only 0.003–0.05%

of blocked I/Os, with the exception of MSNFS (0.7%).

The only reason why it is not 0% is that for non-full-

stripe reads, TTFLASH will wait for GC completion only

if the remaining time is shorter than the overhead of the

extra reads (as explained in §4.3). We still count these

I/Os as blocked, albeit only momentarily.

We next evaluate ttFlash-Emu with filebench [2].

Figure 8 shows the average latencies of filebench-

level read operations (including kernel, file-system, and

QEMU overheads in addition to device-level latencies)

and the percentage of GC-blocked reads measured inside

ttFlash-Emu. We do not plot latency CDF as filebench

only reports average latencies. Overall, ttFlash-Emu

shows the same behavior as ttFlash-Sim.

6.2 TTFLASH vs. Preemptive GC

As mentioned before, many existing work optimize GC,

but does not eliminate its impact. One industry stan-

dard in eliminating (“postponing”) GC impact is preemp-

tive GC [9]. We implement preemptive GC in SSDSim

based on existing literature [40]. The basic idea is to in-

terleave user I/Os with GC operations. That is, if a user

I/O arrives while a GC is happening, future copybacks

should be postponed.

Figure 9a compares ttFlash-Sim, preemptive, and

NoGC scenarios for the DTRS workload (other work-

loads lead to the same conclusion). As shown, TTFLASH

is closer to NoGC than preemptive GC. The reason is

that preemptive GC must incur a delay from waiting for
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Figure 8: Filebench on ttFlash-Emu. The top and

bottom figures show the average latencies of read operations

and the percentage of GC-blocked reads, respectively, across

six filebench personalities. “Base” represents our VSSIM++

with channel-blocking (§5).

the block erase (up to 2 ms) or the current page copy-

back to finish (up to 800 µs delay), mainly because the

finest-grained preemption unit is a page copyback (§3).

TTFLASH on the other hand can rapidly regenerate the

delayed data.

Most importantly, TTFLASH does not postpone GC in-

definitely. In contrast, preemptive GC piles up GC im-

pact to the future, with the hope that there will be idle

time. However, with a continuous I/O stream, at one

point, the SSD will hit a GC high water mark (not enough

free pages), which is when preemptive GC becomes non-

preemptive [40]. To create this scenario, we run the same

workload but make SSDSim GC threshold hit the high

water mark. Figure 9b shows that as preemptive GC

becomes non-preemptive, it becomes GC-intolerant and

creates long tail latencies.

To be more realistic with the setup, we perform a sim-

ilar experiment as in the Semi-Preemptive GC paper [40,

§IV]. We re-rate DTRS I/Os by 10× and re-size them by

30×, in order to reach the high GC water mark (which

we set to 75% to speed up the experiment). Figure 9c

shows the timeline of observed latencies with TTFLASH

and preemptive GC. We also run a synthetic workload

with continuous I/Os to prevent idle time (Figure 9d); the

workload generates 28-KB I/Os (full-stripe) every 130µs

with 70% read and 30% write). Overall, Figures 9c–d

highlight that preemptive GC creates backlogs of GC ac-

tivities, which will eventually cause SSD “lock-down”

when page occupancy reaches the high watermark. On

the other hand, TTFLASH can provide stable latencies

without postponing GC activities indefinitely.

The last two experiments above create high intensity

of writes, and within the same experiments, our GC-

tolerant flush (GTF; §4.5) provides stable latencies, as

implicitly shown in Figures 9c–d.

.97

.98

.99

1

 0  0.5  1  1.5  2

Latency (ms)

(a) DTRS (Low Watermark)

NoGC
ttFlash

Preempt
.97

.98

.99

1

 0  20  40  60  80

Latency (ms)

(b) DTRS (High Watermark)

NoGC
ttFlash

Preempt

 0

 1

 2

 3

 4

 5

 6

 4386  4420  4454  4488  4522

R
e

a
d

 l
a

te
n

c
y
 (

s
)

Elapsed time (s)

(c) DTRS (Re-rated)

ttFlash
Preempt

 0

 5

 10

 15

 20

 25

 45  54  63  72  81  90

R
e

a
d

 l
a

te
n

c
y
 (

s
)

Elapsed time (s)

(d) Synthetic Workload

ttFlash
Preempt

Figure 9: TTFLASH vs. Preemptive GC. The figures

are explained in Section 6.2.

6.3 TTFLASH vs. GC Optimizations

GC can be optimized and reduced with better FTL man-

agement, special coding, novel write buffer scheme or

SSD-based log-structured file system. For example, in

comparison to base approaches, Value locality reduces

erase count by 65% [29, Section 5], flash-aware RAID

by 40% [33, Figure 20], BPLRU by 41% [35, Section

4 and Figure 7], eSAP by 10-45% [37, Figures 11–12],

F2FS by 10% [39, Section 3], LARS by 50% [41, Figure

4], and FRA by 10% [42, Figure 12], SFS by 7.5× [43,

Section 4], WOM codes by 33% [48, Section 6].

Contrary to these efforts, our approach is fundamen-

tally different. We do not focus in reducing the number

of GCs, but instead, we eliminate the blocking nature of

GC operations. With reduction, even if GC count is re-

duced by multiple times, it only makes GC-induced tail

latencies shorter, but not disappear (e.g., as in Figure 5).

Nevertheless, the techniques above are crucial in extend-

ing SSD lifetime, hence orthogonal to TTFLASH.

6.4 Write (P/E Cycle) Overhead

Figure 10 compares the number of GCs (P/E cycles)

completed by the Base approach and TTFLASH within

the experiments in Figure 5. We make two observations.

First, TTFLASH does not delay GCs; it actively performs

GCs at a similar rate as in the base approach, but yet still

delivers predictable performance. Second, TTFLASH in-

troduces 15–18% of additional P/E cycles (in 4 out of

6 workloads), which mainly comes from RAIN; as we

use N=8, there are roughly 15% (1/7) more writes in
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Figure 10: GC Completions (P/E Cycles). The figure

is explained in Section 6.4.

minimum, from one parity write for every seven (N−1)

consecutive writes. The exceptions are 53% of additional

P/E cycles in MSNFS and TPCC, which happen because

the workloads generate many small random writes, caus-

ing one parity write for almost every write. For this

kind of workload, large buffering does not help. Overall,

higher P/E cycles is a limitation of TTFLASH, but also a

limitation of any scheme that employs RAIN.

6.5 TTFLASH vs. No RAIN

Earlier, in Figure 6, we show that TTFLASH has about

the same average latencies as NoGC (TTFLASH without

GC and with RAIN). In further experiments (not shown

due to space), we also compare TTFLASH to “NoGC!R”

(i.e., Base without GC and without RAIN). We ob-

served TTFLASH’s average latencies are 1.09–1.33× of

NoGC!R’s. The RAIN-less NoGC!R is faster because it can

utilize all channels. This is a limitation of TTFLASH;

that is, as TTFLASH (or any SSD that) employs RAIN,

the channels experience a slight contention. In Figure 4

for example, reading LPNs 0–3 will incur contention on

channel-0 (from LPNs 0 and 3). In a RAIN-less setup,

the same read will utilize all four channels.

6.6 TTFLASH under Write Bursts

TTFLASH can circumvent GC blocking when rotating

GC is enforced (§4.4). A limitation of TTFLASH is that

under heavy write bursts, multiple GCs per plane group

must be allowed to keep the number of free pages sta-

ble. Figure 11a shows the limit of our 256GB drive

setup (Table 1) with N=8. As shown, at 6 DWPD (55

MB/s), there is almost no GC-blocked reads, hence tiny

tail latencies. 1 DWPD (“Drive Writes Per Day”) im-

plies 256GB/8hours (9.1 MB/s) of writes; we generously

use 8 hours to represent a “Day” (Appendix A). How-

ever, at 7 DWPD (64 MB/s), TTFLASH exhibits some

tail latencies, observable at the 90th percentile. We em-

phasize that this is still much better than the Base ap-

proach, where the tail latencies are observed starting at

20th percentile (not shown). We also believe that such

intensive writes are hopefully rare; for 3-5yr lifespans,

modern MLC/TLC drives must conform to 1-5 DWPD

[17]. Figure 11b shows that if we force only one GC
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Figure 11: TTFLASH under Write Bursts. The figure

is explained in Section 6.6.

per plane group all the time (“F-RGC”), at 7 DWPD, the

percentage of free pages (the y-axis) continuously drops

over time (the x-axis). That is, RGC cannot keep up with

the write bursts. Thus, to keep the number of free pages

stable, under write bursts, we must allow multiple GCs

to happen per plane group (the “RGC, 7DWPD” line).

7 Limitations and Discussions

We now summarize the limitations of TTFLASH. First,

TTFLASH depends on RAIN, hence the loss of one chan-

nel per N channels (as evaluated in §6.5). Increasing

N will reduce channel loss but cut less tail latencies un-

der write bursts (Appendix A). Under heavy write bursts,

TTFLASH cannot cut all tails (as evaluated in §6.6 and

discussed in Appendix A). Finally, TTFLASH requires

intra-plane copybacks, skipping ECC checks, which re-

quires future work as we address below.

• ECC checking (with scrubbing): ECC-check is per-

formed when data pass through the ECC engine (part of

the controller). On foreground reads, before data is re-

turned to the host, ECC is always checked (TTFLASH

does not modify this property). Due to increasing bit

errors, it is suggested that ECC checking runs more

frequently, for example, by forcing all background GC

copyback-ed pages read out from the plane and through

the controller, albeit reduced performance.

TTFLASH, however, depends on intra-plane copy-

backs, which implies no ECC checking on copyback-ed

pages, potentially compromising data integrity. A sim-

ple possible solution to compensate this problem is pe-

riodic idle-time scrubbing within the SSD, which will

force flash pages (user and parity) flow through the ECC

engine. This is a reasonable solution for several reasons.

First, SSD scrubbing (unlike disk) is fast given the mas-

sive read bandwidth. For example, a 2 GB/s 512-GB

client SSD can be scrubbed under 5 minutes. Second,

scrubbing can be easily optimized, for example, by only

selecting blocks that are recently GC-ed or have higher

P/E counts and history of bit flips, which by implica-

tion can also reduce read disturbs. Third, periodic back-

ground operations can be scheduled without affecting
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foreground performance (a rich literature in this space

[19]). However, more future work is required to evaluate

the ramifications of background ECC checks.

• Wear leveling (via horizontal shifting and vertical

migration): Our static RAIN layout (§4.2) in gen-

eral does not lead to wear-out imbalance in common

cases. However, rare cases such as random-write trans-

actions (e.g., MSNFS) cause imbalanced wear-outs (at

chip/plane level).

Imbalanced wear-outs can happen due to the two fol-

lowing cases: (1) There is write imbalance within a stripe

(MSNFS exhibits this pattern). In Figure 4 for example,

if in stripe S0 {012P012}, LPN 1 is more frequently up-

dated than the rest, the planes of LPN 1 and P012 will

wear out faster than the other planes in the same group.

(2) There is write imbalance across the stripes. For ex-

ample, if stripes in group G0 (e.g., stripe {012P012})

are more frequently updated than stripes in other groups,

then the planes in G0 will wear out faster.

The two wear-out problems above can be fixed by dy-

namic horizontal shifting and vertical migration, respec-

tively. With horizontal shifting, we can shift the parity lo-

cations of stripes with imbalanced hot pages. For exam-

ple, S0 can be mapped as {12P0120} across the 4 planes

in the same group; LPN 1 and P will now be directed to

colder planes. With vertical migration, hot stripes can be

migrated from one plane group to another (“vertically”),

balancing the wear-out across plane groups.

As a combined result, an LPN is still and always stat-

ically mapped to a stripe number. A stripe, by default, is

statically mapped to a plane group and has a static parity

location (e.g., S0 is in group G0 with P012 behind chan-

nel C3). However, to mark dynamic modification, we can

add a “mapping-modified” bit in the standard FTL table

(LPN-PPN mapping). If the bit is zero, the LPN-PPN

translation performs as usual, as the stripe mapping stays

static (the common case). If the bit is set (the rare case in

rare workloads), the LPN-PPN translation must consult a

new stripe-information table that stores the mapping be-

tween a stripe (Sk) to a group number (Gi) and parity

channel position (Cj).

8 Related Work

We now discuss other works related to TTFLASH.

GC-impact reduction: Our work is about eliminat-

ing GC impacts, while many other existing works are

about reducing GC impacts. There are two main re-

duction approaches: isolation and optimization, both

with drawbacks. First, isolation (e.g., OPS isolation

[36]) only isolates a tenant (e.g., sequential) from an-

other one (e.g., random-write). It does not help a ten-

ant with both random-write and sequential workloads

on the same dataset. OPS isolation must differentiate

users while TTFLASH is user-agnostic. Second, GC op-

timization, which can be achieved by better page lay-

out management (e.g., value locality [29], log-structured

[23, 39, 43]) only helps in reducing GC period but does

not eliminate blocked I/Os.

GC-impact elimination: We are only aware of a

handful of works that attempt to eliminate GC impact,

which fall into two categories: without or with redun-

dancy. Without redundancy, one can eliminate GC im-

pact by preemption [22, 40, 47]. We already discussed

the limitations of preemptive GC (§6.2; Figure 9). With

redundancy, one must depend on RAIN. To the best of

our knowledge, our work is the first one that leverages

SSD internal redundancy to eliminate GC tail latencies.

There are other works that leverage redundancy in flash

array (described later below).

RAIN: SSD’s internal parity-based redundancy

(RAIN) has become a reliability standard. Some compa-

nies reveal such usage but unfortunately without topol-

ogy details [6, 12]. In literature, we are aware of only

four major ones: eSAP [37], PPC[33], FRA [42] and

LARS [41]. These efforts, however, mainly concern

about write optimization and wear leveling in RAIN but

do not leverage RAIN to eliminate GC tail latencies.

Flash array: TTFLASH works within a single SSD.

In the context of SSD array, we are aware of two pub-

lished techniques on GC tolerance: Flash on Rails [46]

and Harmonia [38]. Flash on Rails [46] eliminates read

blocking (read-write contention) with a ring of multiple

drives where 1–2 drives are used for write logging and

the other drives are used for reads. The major drawback

is that read/write I/Os cannot utilize the aggregate band-

width of the array. In Harmonia [38], the host OS con-

trols all the SSDs to perform GC at the same time (i.e., it

is better that all SSDs are “unavailable” at the same time,

but then provide stable performance afterwards), which

requires more complex host-SSD communication.

Storage tail latencies: A growing number of works

recently investigated sources of storage-level tail laten-

cies, including background jobs [19], file system alloca-

tion policies [31], block-level I/O schedulers [49], and

disk/SSD hardware-level defects [26, 27, 30]. An earlier

work addresses load-induced tail latencies with RAID

parity [20]. Our work specifically addresses GC-induced

tail latencies.

9 Conclusion

SSD technologies have changed rapidly in the last few

years; faster and more powerful flash controllers are

cable of executing complex logic; parity-based RAIN

has become a standard means of data protection; and

capacitor-backed RAM is a de-facto solution to address

write inefficiencies. In our work, we leverage a combina-
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tion of these technologies in a way that has not been done

before. This in turn enables us to build novel techniques

such as plane-blocking GC, rotating GC, GC-tolerant

read and flush, which collectively deliver a robust solu-

tion to the critical problem of GC-induced tail latencies.
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A Proof Sketch

Limitation of maximum stripe width (N ): We derive

the maximum stripe width allowable (N ) such that rotat-

ing GC (§4.4) is always enforced. That is, as we can only

cut one tail, there should be at most one GC per plane

group at all time. Thus, a plane might need to postpone

its GC until other planes in the same group complete their

GCs (i.e., delayed by (N−1)× Tgc). We argue that N
should be at least 8 for a reasonable parity space over-

head (12.5%); a lower stripe width will increase space

overhead. Below we show that N=8 is safe even under

intensive write. Table 3 summarizes our proof, which is

based on a per-plane, per-second analysis. We first use

concrete values and later generalize the proof.

• Table 3a: We use typical parameters: 4-KB page

(Spage), 4-KB register size (Sreg), 25% valid pages

(%validPg), 840µs of GC copyback time per page

(Tcopyback), and 900µs of user write latency per page

(TusrWrt). Due to intensive copybacks (tens of ms), the

2ms erase time is set to “0” for proving simplicity.

• Table 3b: Each plane’s bandwidth (BWpl) defines the

maximum write bandwidth, which is 4.5 MB/s, from

the register size (Sreg) divided by the user-write latency

(TusrWrt); all writes must go through the register.

• Table 3c: With the 4.5 MB/s maximum plane

bandwidth, there are 1152 pages written per second

(#Wpg/s), which will eventually be GC-ed.

• Table 3d: Intensive writes imply frequent overwrites;

we assume 25% valid pages (%validPg) to be GC-ed, re-

sulting in 288 pages copybacked per second (#CBpg/s).

The %validPg can vary depending on user workload.

• Table 3e: With 288 page copybacks, the total GC time

per second per plane (Tgc/s) is 242 ms.

• Table 3f: N planes in each group must finish their GCs

in rotating manner. As each plane needs Tgc time every

second, the constraint is: N<1/Tgc. With our concrete

values above, for rotating GC to hold true all the time, N
must be less than 4 (Tgc of 242 ms). Fortunately, N can

a. Spage=4KB; Sreg=4KB; %validPg=25%;

Tprog=800µs; Tread=40µs; Tchannel=100µs;

Tcopyback=Tprog+Tread=840µs; (Terase=”0”);

TusrWrt=Tprog+Tchannel=900µs;

b. BWpl = Sreg/TusrWrt =4.5 MB/s

c. #Wpg/s = BWpl/Spage =1152 pg/s

d. #CBpg/s = %validPg×#Wpg/s =288 pg/s

e. Tgc/s = #CBpg/s× Tcopyback =242 ms

f. N < 1 / Tgc < 4

g. N <
Spage

BWplane×%validPg×Tcopyback

h. DWPD=5; PWPD=5; Spl=4GB; day=8hrs
i. BWpl = Spl×DWPD/day (in practice)

= 4GB × 5 /8hrs =0.7 MB/s

j. Tgc/s = plug (i) to (c,d,e) =38 ms

N < 1 / Tgc < 26

Table 3: Proof Sketch (Appendix A).

be larger in practice (Table 3g-j). To show this, below

we first generalize the proof.

• Table 3g: We combine all the equations above to the

equation in Table 3g, which clearly shows that N goes

down if BWpl or %validPg is high. Fortunately, we find

that the constant 4.5 MB/s throughput (BWpl) in Ta-

ble 3b is unrealistic in practice, primarily due to lim-

ited SSD lifetime. MLC block is only limited to about

5000–10,000 erase cycles and TLC block 3000 erase cy-

cles. To ensure multi-year (3–5) lifespan, users typically

conform to the Drive Writes Per Day (DWPD) constraint

(1–5 DWPD for MLC/TLC drives) [17].

• Table 3h: Let us assume a worst-case scenario of 5

DWPD, which translates to 5 PWPD (planes write per

day) per plane. To make it worse, let us assume a “day”

is 8 hours. We set plane size (Spl) to 4 GB (§3).

• Table 3i: The more realistic parameters above suggest

that a plane only receives 0.7 MB/s (4GB*5/8hrs), which

is 6.5× less intense than the raw bandwidth (3b).

• Table 3j: If we plug in 0.7 MB/s to the equations in

Table 3c-e, the GC time per plane (Tgc) is only 38 ms,

which implies that N can be as large as 26.

In conclusion, N=8 is likely to always satisfy rotating

GC in practice. In 32-channel SSD, N=32 can violate

rotating GC; GC-tolerant read (§4.3) cannot always cut

the tails. Overall, Table 3g defines the general constraint

for N . We believe the most important value is BWpl.

The other parameters relatively stay the same; Spage is

usually 4 KB, %validPg is low with high overwrites, and

Tcopyback can increase by 25% in TLC chips (vs. MLC).

Minimum size of cap-backed RAM: With rotating GC,

the RAM needs to only hold at most 1/N of the pages

whose target planes are GC-ing (§4.5). In general, the

minimum RAM size is 1/N of the SSD maximum write

bandwidth. Even with an extreme write bandwidth of the

latest datacenter SSD (e.g., 2 GB/s) the minimum RAM

size needed is only 256 MB.
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Abstract

Most storage systems that write in a log-structured man-
ner need a mechanism for garbage collection (GC), re-
claiming and consolidating space by identifying unused
areas on disk. In a deduplicating storage system, GC is
complicated by the possibility of numerous references to
the same underlying data. We describe two variants of
garbage collection in a commercial deduplicating storage
system, a logical GC that operates on the files containing
deduplicated data and a physical GC that performs se-
quential I/O on the underlying data. The need for the sec-
ond approach arises from a shift in the underlying work-
loads, in which exceptionally high duplication ratios or
the existence of millions of individual small files result in
unacceptably slow GC using the file-level approach. Un-
der such workloads, determining the liveness of chunks
becomes a slow phase of logical GC. We find that phys-
ical GC decreases the execution time of this phase by up
to two orders of magnitude in the case of extreme work-
loads and improves it by approximately 10–60% in the
common case, but only after additional optimizations to
compensate for its higher initialization overheads.

1 Introduction

Since the advent of log-structured file systems
(LFS) [20], there has been work to optimize the
cost of “cleaning” the file system to consolidate live data
and create large contiguous areas of free space [15].
Most past efforts in this area have been to optimize I/O
costs, as any effort to read and rewrite data reduces the
throughput available for new data. With deduplicating
storage systems [17, 28] there is an additional compli-
cation, that of identifying what data is live in the first
place. As new data are written to a system, duplicate
chunks are replaced with references to previously stored
data, so it is essential to track each reference.

Further, as workloads evolve, some systems experi-
ence very different usage than traditional deduplicating
backup storage systems were intended to support [1].
The Data Domain File System (DDFS) [29] was designed

to handle a relatively low number (thousands) of rela-
tively large files (GBs), namely the full and incremental
backups that have been the mainstay of computer back-
ups for decades [2, 24]. Data in these backups would
be deduplicated, with the remaining content packed into
“compression regions” that would be further reduced via
standard compression such as Lempel-Ziv (LZ). Total
compression (TC) is the product of these two factors;
DDFS was optimized for TC in the 20− 40× range, be-
cause of the number of “full backups” a system would
typically store. This has been changing dramatically in
some environments, with technology trends increasing
the deduplication ratio as well as the numbers of files
represented in storage systems (§2).

DDFS uses a mark-and-sweep [27] algorithm that de-
termines the set of live chunks reachable from the live
files and then frees up unreferenced space. There are al-
ternatives such as reference counting [8], but as we dis-
cuss in §6, complexity and scalability issues have led to
our current approach.

We initially performed garbage collection at the log-
ical level, meaning the system analyzed each live file
to determine the set of live chunks in the storage sys-
tem. The shift to using individual file-level backups,
rather than tar-like aggregates, meant that the number of
files in some systems increased dramatically. This results
in high GC overhead during the mark phase, especially
due to the amount of random I/O required. At the same
time, the high deduplication ratios in some systems cause
the same live chunks to be repeatedly identified, again
greatly increasing GC overhead. The time to complete a
single cycle of GC in such systems could be on the or-
der of several days. Since backing up data concurrently
with GC results in contention for disk I/O and process-
ing, there is a significant performance implication to such
long GC cycles; in addition, a full system might run out
of capacity while awaiting space to be reclaimed.

Therefore, we redesigned GC to work at the physi-
cal level: instead of GC enumerating all live files and
their referenced chunks, entailing random access, GC
performs a series of sequential passes through the stor-
age containers containing numerous chunks [17]. Be-
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cause the I/O pattern is sequential and because it scales
with the physical capacity rather than the deduplication
ratio or the number of files, the overhead is relatively
constant and proportional to the size of the system [11].

This paper describes the two versions of our garbage
collection subsystem, logical and physical GC (respec-
tively LGC and PGC). A detailed description of LGC is
useful both for understanding its shortcomings and be-
cause this was the version used within the commercial
product for many years. We recognize that since LGC
was first implemented, there have been several publica-
tions describing other GC systems in detail [8, 9, 21, 22],
and we view the technical contributions of this paper
to be the insights leading to the new and greatly im-
proved PGC subsystem. PGC has undergone an evolu-
tion, starting with a change to the order of container ac-
cess and then being further optimized to lower memory
usage and avoid the need for multiple passes over the
data. We compare LGC to the earlier implementation of
PGC, which has been deployed at customer sites for an
extended time, and to the newer “phase-optimized physi-
cal GC” (PGC+), incorporating additional optimizations.

In summary, the contributions of this paper include:

• A detailed description of two approaches to garbage
collection in a deduplicating storage system.

• An analysis of the changing workloads that have
caused the previous approach to be replaced by a new
GC algorithm whose enumeration time scales with the
physical capacity of the system rather than the logical
(pre-deduplication) capacity or the number of files.

• A comparison of GC performance on deployed sys-
tems that upgraded from LGC to PGC, demonstrating
up to a 20× improvement in enumeration times.

• A detailed comparison of the performance of the
various GC algorithms in a controlled environment,
demonstrating up to a 99× improvement in enumer-
ation times.
In the remainder of the paper, we provide additional

motivation into the problem of scalable GC (§2) and then
describe the two GC algorithms, logical and physical GC
(§3). §4 describes our evaluation methodology, and §5
analyzes customer systems to compare the techniques in
the field and lab testbeds to compare them in controlled
environments. §6 discusses related work, and we con-
clude with final remarks (§7).

2 Background and Motivation

Freeing unreferenced space is a basic storage system op-
eration. While there are multiple ways space manage-
ment is implemented in traditional storage, when a file is
deleted, blocks referenced from its inodes can be freed
immediately by marking a free bitmap or updating a

free list. For deduplicated storage, determining which
chunks are referenced has added complexity as a chunk
may have numerous references both within a single file
and across many files written at various times. While
some deduplication research assumed a FIFO deletion
pattern [8], file deletion can generally be in any order.

There are a number of properties to consider when de-
signing and evaluating a garbage collection algorithm:

• All referenced chunks must be preserved so user data
can be retrieved.

• Most unreferenced chunks must be removed to free
space.

• The system must support client reads and writes during
garbage collection.

• System overheads should be minimized.

We specifically state that most unreferenced chunks
must be removed instead of all, since it is often more ef-
ficient to focus cleaning on containers that are mostly un-
referenced, rather than relocating numerous live chunks
to reclaim a small amount of space. This is partic-
ularly relevant in log-structured storage systems com-
monly used by deduplicated storage, which tend to ex-
hibit a bimodal distribution of container liveness [19],
where containers tend to be mostly dead or mostly live.
We see similar distributions in our workloads.

2.1 Deletion Algorithms
2.1.1 Reference Counts

An intuitive technique to determine when chunks are ref-
erenced is to maintain a count for each chunk. When
a duplicate chunk is discovered during the write-path, a
counter is incremented, and when a file is deleted, coun-
ters are decremented; at zero, the chunk can be freed.
While this could take place in-line as files are written
and deleted [25], it is more common to implement at
least partially-offline reference counts [8,22]. Strzelczak
et al. [22] implemented an epoch-based deletion system
with counters to support concurrent writes and deletes.
We discuss the drawbacks of reference counts, such as
snapshot overheads, in related work (§6).

2.1.2 Mark-and-Sweep

Another approach is to run an asynchronous algorithm
to determine which chunks are referenced by live files.
Mark-and-sweep proceeds in two phases. The first phase
walks all of the live files and marks them in a data
structure. The second phase scans the containers and
sweeps unreferenced chunks. Guo et al. [9] implemented
a Grouped Mark and Sweep to mark referenced contain-
ers. While the sweep phase is often the slowest phase [5]
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Figure 1: Files in deduplicated storage are often repre-
sented with a tree of fingerprints.

because live chunks are read from disk and written to
new containers, we have found that the mark phase can
be the bottleneck in newer systems because enumerating
live fingerprints involves random disk I/O. There are also
complexities regarding data being deduplicated against
chunks in the process of being garbage collected (§3.5).

2.2 Deduplicated File Representation

Figure 1 shows our use of Merkle trees [16] for dedu-
plicated storage. We refer to chunks directly written by
users as L0, meaning the lowest level of the tree. Con-
secutive L0 chunks are referenced with an array of fin-
gerprints by an L1 chunk, which itself is identified by a
fingerprint. An array of L1 fingerprints is referenced by
an L2 chunk, continuing to the root of the tree; the root
is always labeled L6 for convenience, even if the file is
small enough not to need intermediate nodes such as the
example on the right side of the figure. We refer to the
L1-L6 chunks as Lp chunks, where p is a parameter that
ranges from 1 to 6 and indicates metadata representing
the file. Deduplication takes place because a chunk can
be referenced multiple times. The file system is a forest
of Merkle trees, but these trees are not disjoint, particu-
larly at the lowest level.

Though not shown in the figure, Lp chunks are them-
selves stored on disk in containers, which include a rela-
tively small (hundreds of KB) metadata section with a list
of fingerprints for the chunks within the container. Thus
they may be read more quickly than the full container.

As an example, consider a system with 100TB of
physical capacity, 20× TC, 8KB L0 chunks, and 20-
byte fingerprints. The logical capacity, i.e., the storage
that can be written by applications, is 2PB (20∗100TB).
Since each 8KB logically written by a client requires a

20-byte fingerprint stored in an L1, the L1 chunks are
5TB. The upper levels of the tree (L2–L6) are also stored
in containers but are smaller. This example highlights
that the mark phase cannot be fully performed in mem-
ory, as the L1 references must be read from disk.

Data Domain supports a fastcopy [7] system command
to efficiently copy an existing file using the same under-
lying Merkle tree. It creates the new file with a new
name, and therefore a new L6 root of the tree, but that
tree then references the identical LP chunks. As this op-
eration involves only the root of the tree, it is trivially
fast and does not increase physical space in use beyond
the one chunk containing the L6.

2.3 Performance Issues with Enumeration
The mark phase of mark-and-sweep involves enumerat-
ing all of the live fingerprints referenced from live files
and marking a data structure for each fingerprint. A num-
ber of issues affect performance:

• Deduplication and compression. The enumeration
cost grows with logical space; some datasets have ex-
tremely high TC, making the logical space very large
and unreasonably slow to enumerate. Note that dedu-
plication can vary considerably, while LZ compression
is usually within a small range (2–4).

• Number of files in the system and file size distribu-
tion. Every file has metadata overhead to be processed
when enumerating a file, and for small files, the over-
head may be as large as the enumeration time itself.
Also, if the system issues parallel enumeration threads
at the file level (processing several files at once), then
one extremely large file that cannot be further paral-
lelized might slow overall enumeration, though such
skew would be rare.

• Spatial locality of the Lp tree. Traversing the Lp tree
stops at the L1 level since all L0 references are recorded
in L1 chunks. Fragmentation of Lp chunks on disk in-
creases the amount of random I/O needed for enumer-
ation [12, 13]. While sequentially written files tend to
have high locality of Lp chunks, creating a new file
from incremental changes harms locality as enumera-
tion has to jump among branches of the Lp tree.

2.4 Technology Trends and Enumeration
Two main technology trends increase enumeration
time [1]. First, clients are creating many frequent back-
ups by writing the incremental changes such as the
changed blocks or files since the previous backup. Since
only incremental changes are transferred, backups are
faster. Synthetic full backups are created by copying
a previous full backup and applying the user’s changes
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since it was created, which is an efficient operation with
support within deduplicated storage. A new file is gener-
ated by referencing unmodified portions of the previous
backup, causing deduplication ratios to increase. This
allows a user to view and restore a full backup without
the need to restore an earlier full backup and apply inter-
vening incremental changes: the traditional backup strat-
egy of daily incrementals and weekly full backups. For a
given period of time, this means backup storage systems
may now contain numerous full backups (with the cor-
responding high deduplication ratio) instead of numer-
ous incremental backups (with a lower deduplication ra-
tio). (Unlike fastcopy, synthetic full backups create a full
new LP tree; thus the overhead for storing the metadata
is about 1% of the logical size of the data.)

As the speed of backup completion has increased,
and applications such as databases desire more frequent
point-in-time backups, these backups have become more
frequent (multiple times per day). Similarly, applications
may take frequent snapshots on deduplicated storage that
effectively make a virtual copy of the data [2]. As a result
of these technology trends, some systems see deduplica-
tion ratios as much as 100− 300× or higher (with cor-
respondingly high TC), whereas 10× deduplication was
typical for traditional backup environments [24].

A second technology trend is the increase in the file
count. This arises from shifts in usage as described above
and from the use of deduplication to support backups
of individual files rather than aggregates (similar to tar
files) that represent an entire backup as a single file [24].
It also can arise from users accessing a deduplicating ap-
pliance via another interface like NFS, treating it more
like primary storage than backup.

As TC and number of small files increase, enumera-
tion time becomes a large component of overall garbage
collection. In order to support these new workloads and
continue to scale performance, we developed a new mark
algorithm that replaces logical enumeration in depth-
first order with physical enumeration that proceeds in
breadth-first order with sequential disk scans.

3 Architecture

This section describes the original LGC algorithm and the
changes to enable PGC and then PGC+. One issue com-
mon to both forms of GC is how to deal with online up-
dates to the state of the file system, which we discuss
after the various algorithms (§3.5).

3.1 Logical GC
Data Domain’s original garbage collection technique is
logical, using a mark-and-sweep algorithm. We briefly
give an overview of the algorithm before describing each

Figure 2: Components of LGC and PGC. The red num-
bers correspond to GC phases (1’ applies only to PGC).

phase in more detail. The first step involves walk-
ing through all of the file Lp trees and recording the
chunk fingerprints in a Bloom filter [18] as chunks that
are live. We use a Bloom filter since it reduces mem-
ory requirements compared to an index of fingerprints,
though even the Bloom filter is quite large (§3.1.2). GC
then “sweeps” away any chunks that are unreferenced
by reading in container metadata regions and determin-
ing whether the chunks are recorded in the Bloom filter.
Container metadata regions are shown in Figure 2 and
contain a list of fingerprints for chunks within the multi-
megabyte container. Live chunks are copied forward into
new containers, and old containers are deleted.

A fingerprint match in the Bloom filter could be a false
positive, which results in a dead chunk being misidenti-
fied as live and retained, but such examples would be
rare; these can be bounded by sizing the Bloom filter
to limit its false positive rate. Also, the hash functions
used by the Bloom filter are changed between runs so
that false positives are likely to be removed the next time.
Note that live chunks will never be misidentified as dead.

3.1.1 LGC Steps

LGC proceeds in five phases shown in Figure 2: Merge,
Enumeration, Filter, Select, and Copy. The first four col-
lectively implement mark while the Copy phase is sweep.
A second set of these phases may be necessary (§3.1.2).

1. Merge: This synchronizes recent index updates
from memory to disk so that the next phase can iterate
over the on-disk index. In this phase, we also take a snap-
shot of the file system so we can clean from a consistent
viewpoint, which consists of copying the root directory
of the file system name space.

2. Enumeration: To identify the live chunks, we enu-
merate all of the files referenced from the root. Enumera-
tion proceeds in a depth-first order from the top level (L6)
and progresses down to the bottom interior node (L1).
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Enumeration stops at L1, because it consists of finger-
prints referencing data chunks (L0) that are leaves of the
tree. We record the fingerprints for live files in the Live
Bloom Filter, indicating that the corresponding chunks
should be preserved.

3. Filter: Because the storage system may con-
tain a small1 number of duplicate chunks stored in con-
tainers (i.e., not perfectly deduplicated such as Tf p in
the fingerprint index of Figure 2), we next determine
which instance of the live fingerprints to preserve. The
fingerprint-to-container index has the complete list of
fingerprints in the system; its entries are organized into
buckets of size 512 bytes to 384KB. We then iterate
through the index. While any instance of a duplicate fin-
gerprint could be preserved, our default policy is to pre-
serve the instance in the most recently written container,
which will prioritize read performance for the most re-
cently written data over older backups [12, 13]. We use
the Live Bloom Filter to track the existence of a chunk
in the system and the Live Instance Bloom Filter to track
the most recent instance of each chunk in the presence
of duplicates. Thus, if a fingerprint exists in the Live
Bloom filter, we record the combination of <fingerprint,
container ID> (specifically, the XOR of the two values)
in the Live Instance Bloom Filter.

4. Select: We next estimate the liveness of containers
to focus cleaning on those where the most space can be
reclaimed with the least effort. Since containers tend to
either be mostly live or mostly dead, we can reclaim the
most space by focusing on mostly dead containers [20].
We iterate through the containers reading the metadata
region holding chunk fingerprints. We calculate the <fin-
gerprint, container ID> value and check the Live In-
stance Bloom Filter. The liveness of each container is
calculated as the number of live fingerprints divided by
the total number of fingerprints in the container. We sort
the liveness records in memory and select containers be-
low a liveness threshold set dynamically based on our
target goal for space to reclaim.

5. Copy: New containers are formed from live chunks
copied out of previous containers. When a new container
is full, it is written to disk, and dead containers are freed.

6. Summary (not shown): In systems where a system-
wide Bloom filter is used to avoid wasted index lookups
on disk [29], the Bloom filter is rebuilt to reflect the cur-
rent live chunks. Its time is approximately the same as
the Select phase and is typically dominated by the copy
phase. As the Summary phase is being completely elim-
inated in future versions of DDFS [1], we omit it from
further discussion.

While we have presented this algorithm as linear, there
are opportunities for parallelism within phases such as

1In practice, we find that about 10% of the data removed during GC
is due to duplicates rather than unreferenced chunks.

reading multiple files during enumeration, multiple index
buckets during filtering, and multiple containers during
the Select and Copy phases.

3.1.2 Memory Optimization

As described, this algorithm assumes that there is suffi-
cient memory for the Bloom filters to have a low false
positive rate. Depending on the system configuration,
memory may be limited; a Bloom filter tracking 200B
(billion) entries would be hundreds of GBs in size, de-
pending on the desired false positive rate. For such sys-
tems, we developed a technique to focus the cleaning al-
gorithm on containers with the most dead chunks.

Before running the four phases described previously,
we set a sampling rate based on the memory available
for the Bloom filter and the number of chunks currently
stored in the system. We then run the mark phases
(Enumeration, Filter, and Select) but only consider fin-
gerprints that match the sampling criteria before insert-
ing into the Bloom filters. During the Select phase, we
choose candidate containers that are mostly dead, but we
also limit the total number of containers based on our
memory limitation. We then create a Candidate Bloom
Filter covering those containers by reading the container
metadata regions of the candidate containers and insert-
ing the fingerprints into the Candidate Bloom Filter. The
above steps then are repeated, with the exception of Se-
lect, though limited by the Candidate Bloom Filter.2 As
an example, the Enumeration phase only adds live fin-
gerprints to the Live Bloom Filter if the fingerprint is in
the Candidate Bloom Filter. While this introduces a third
Bloom filter, we only need two simultaneously because
the Candidate Bloom Filter can be freed after the Enu-
meration phase. The result is that we apply cleaning in a
focused manner to the candidate containers.

However, although the sweep phase of actually copy-
ing and cleaning containers usually dominates overhead,
the need for two sets of mark phases adds considerable
processing time. Typically, the more data stored on an
appliance, the more likely the system will need two sets
of mark phases. A system that is largely empty will still
have enough DRAM to support GC on a loaded system,
so the Bloom filters for the mark phase may fit in mem-
ory. Empirically, we find that about half of GC runs re-
quire two phases: typically, systems start less loaded, and
over time they store more data and exceed the threshold.
In a study of EMC Data Domain systems in 2011, Cham-
ness found that half the systems would be expected to
reach full capacity within about six months of the point
studied [6].

2We refer to the first set of phases as pre phases, such as pre-
enumeration.
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Figure 3: LGC enumeration throughput decreases as TC,
bucketed into ranges, increases. Shown for the DD990
on a log-log scale.

3.1.3 The Need for Faster Enumeration

While logical enumeration has been successfully used in
production systems for over a decade, technology trends
discussed in §2 are increasing the total compression ra-
tio and the number of small files. This creates a larger
name space and increases enumeration time. Figure 3
shows the LGC enumeration throughput as a function
of TC for thousands of deployed systems, using one of
our largest available models, the DD9903 (analysis of a
smaller system shows similar results). We define enu-
meration throughput as GB of physical storage used in
the system, divided by GC enumeration time; this nor-
malizes GC performance based on the capacity in use.
We show the enumeration range for a bucket with box-
and-whisker plots: the whiskers show the 90th and 10th
percentile, while the box shows the 75th and 25th, with
the median result drawn as a horizontal line within the
box. Throughput decreases steadily with TC, demon-
strating that LGC enumeration time is related to the log-
ical size of the dataset rather than its physical size. We
show this more explicitly in lab experiments in §5.

In Figure 4, we show enumeration throughput versus
file counts. We select a smaller system, the DD2500,
which is the model4 with the most files; we see that
throughput decreases steadily with higher file counts. We
therefore developed PGC, which replaces random I/O for
logical enumeration with sequential I/O for physical enu-
meration. More details about the dataset used to create
these figures are presented in §4.1.

3.2 Physical GC
PGC differs from LGC in several ways. First, we use per-
fect hashing [3, 14] (PH) as an auxiliary data structure

3Specifications for Data Domain systems appear in §4.
4We do not have a good explanation for why customers would use

this model to store extremely large numbers of files, more so than other
platforms, as no Data Domain system is optimized for that sort of work-
load. However, if systems with many small files do not require large
physical capacities, it would be natural to use lower-end systems.

Figure 4: LGC enumeration throughput decreases with
high file counts as a function of the number of files, buck-
eted into ranges. Shown for the DD2500 on a log-log
scale.

to drive the breadth-first traversal of the forest of live
files. Second, a new method of enumeration identifies
live chunks from the containers rather than by iterating
through each file. The version of GC that is currently
generally in use runs PGC, and as we will describe below,
it improves enumeration overhead for the new usage pat-
terns, high deduplication and large numbers of individ-
ual files. Then, to eliminate some moderate performance
degradation for the traditional use cases, we add addi-
tional optimizations (see §3.4).

3.2.1 Perfect Hashing

Determining whether a fingerprint is referenced by a live
file can be represented as a membership query, and PH
is a data structure to minimize memory requirements.
Briefly, PH consists of a hash function that uniquely maps
from a key to a position in a hash vector, called a Per-
fect Hash Vector (PHV). The hash function is generated
by analyzing the static set of fingerprints under consid-
eration, and the PHV is used to record membership by
setting specific bit(s) assigned to each fingerprint. Previ-
ous work has focused on generating a PH function while
reducing memory/analysis overheads [3,4,14]. Our tech-
nique builds directly from Botelho et al., which used PH
in Data Domain to trade off analysis time and memory
for secure deletion [5].

As shown in Figure 2, we allocate memory for a PH
function and PHV. There is one PH function for a set
of fingerprints; using the function, we get the position
of the bit for a fingerprint in the PHV. We use PHs to
represent the L6 through L1 layers of the file tree during
enumeration for multiple reasons. First, the false positive
rate associated with a Bloom filter would cause the entire
branch of chunks under an incorrectly-labeled Lp chunk
to remain in the system. Second, our PH is more compact
than a Bloom filter, hence it uses less memory for repre-
senting these levels. Third, PH assists in level-by-level
checksum matching to ensure that there is no corruption
(§3.2.2).
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3.2.2 PGC Steps

PGC has a new Analysis phase (labeled phase 1’ in Fig-
ure 2) but otherwise has the same phases as LGC, with
changes to the Enumeration phase. Again, mark is ev-
erything but Copy.

1. Merge: This is the same as LGC.
1’. Analysis: We create the PH function by analyzing

the fingerprints in the on-disk index. The result is the
unique mapping from fingerprint to offset in a PHV. The
PH function and vector, in total, use less than 4 bits per
Lp fingerprint.

2. Enumeration: Unlike LGC, instead of walking the
file tree structure, we perform a series of sequential con-
tainer scans. We first record the live L6 fingerprints in
the PHV based on files referenced in the namespace by
setting a walk bit. Our system has an in-memory struc-
ture that records which Lp types (L6, L5, ... L0) exist
in each container, so we can specifically scan containers
with L6 chunks. If the L6 is marked as walk in the PHV,
we mark the confirm bit, and we then parse the L5 fin-
gerprints stored in the L6 and set the walk bits for those
entries in the PHV. We then repeat these steps scanning
for L5 chunks, L4 chunks, etc. until L1 chunks are read.
When setting the walk bit for any chunk (L6-L1), we also
record the fingerprint in the Live Bloom Filter, as in LGC.

While it is possible for a container to be read multi-
ple times because it holds chunks of multiple types (e.g.
both L6s and L5s), the dominant cost comes from L1 con-
tainers, which are read just once. Thus we can decrease
the random I/O and overall run time compared to logical
enumeration of files, especially with high file counts and
deduplication ratios.

3. Filter, 4. Select, 5. Copy: These follow LGC.
The correctness of a garbage collection algorithm is

critical to prevent data loss. First, GC has to ensure that
no chunks are missed during enumeration. Second, if
there is already a corruption, GC should stop and alert
an administrator to attempt data recovery. The problem
is more severe due to deduplication, as a corrupted Lp
chunk can result in a large number of files being cor-
rupted due to sharing of the Lp trees. To meet these re-
quirements, physical enumeration calculates checksums
per LP level by making use of the PHV. Due to space
considerations we cannot include details, but we briefly
describe the approach.

We use two checksums for each level, one for parent
chunks (P ) and another for child chunks (C ). When pro-
cessing a chunk at level Lk, we XOR its array of refer-
enced hashes for level Lk-1 and add it to child checksum
C of level Lk-1. When processing the chunk at level Lk-1,
we add the chunk’s hash to the P checksum for Lk-1. If
there is no corruption, at the end of the Lk-1 scan, P and C
for Lk-1 should match. The checksums are calculated and

Figure 5: Enumeration example showing the Lp tree for
two files and chunks stored in containers on disk.

matched for all L1-L6 levels, and using the PH function
prevents including a hash value repeatedly. Before cal-
culating an XOR, we check whether a chunk is already
included in the checksum by checking the appropriate bit
in the PHV. We use a PH function that maps from a chunk
hash value to two bits, representing 1) finding a chunk as
a member of its parent’s array of hashes and 2) finding
the chunk itself at the next lower level.

3.3 Enumeration Example
We next present an example of logical and physical enu-
meration shown in Figure 5. The Lp trees for two files are
shown as well as the location of chunks within contain-
ers (C1-C5) on disk. File 2 was created by copying File
1 and inserting new content after chunk T . The Lp trees
are simplified for this example. Starting with logical enu-
meration, we begin with File 1. We first read container
C4 holding the root chunk for the file, L6-1, which also
reads L3-1, L2-1, and L2-2 into memory. Accessing the L1
chunks referenced from L2-1 and L2-2 involves reading
containers C1 and C2. Logically enumerating File 2 fol-
lows similar steps; because L3-2 refers to L2-1, container
C1 is read a second time.

Physical enumeration reads all of the L6 chunks before
the L5 chunks continuing down to the L1 chunks. In this
example, containers C4 and C5 are read to access the L6
chunks. These containers are read again to access the L3
and L2 chunks (depending on whether the containers are
still in the memory cache). Next the L1 chunks are read,
so containers C1, C2, and C3 are read once to access their
L1 chunks.

3.4 Phase-optimized Physical GC (PGC+)
Even though PGC reduces the time taken by LGC for enu-
meration in cases of high deduplication or file counts,
it adds up to 2 extra analysis phases. PGC+ improves
upon PGC in several ways, especially by reducing the
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GC phases. As discussed in §3.1.2, LGC and PGC often
must run focused cleaning because there is not enough
memory for a Bloom filter containing all the fingerprints
in the system. On our systems, GC only has sufficient
memory to store 25–40% of the total fingerprints in the
Bloom filter while keeping a low enough rate of false
positives. PGC+ improves on PGC/LGC by making more
efficient use of memory, virtually eliminating the need
for focused cleaning, using these key ideas:

1. Replace the Live Vector of L0 chunks with a PHV. This
reduces the memory requirement from 6 bits per fin-
gerprint to 2.8 bits per fingerprint (a 2.1× reduction).

2. Remove the Live Instance Vector and eliminate dupli-
cates using a dynamic duplicate removal algorithm in
the copy phase (see §3.4.2). This reduces memory re-
quirements by 2×.

Between these changes, we get a 4.2× reduction in
memory consumption, enough to use PGC+ by default.
However, the system detects whether there is enough
memory to store all the fingerprints; if not, it falls back
automatically to PGC with its multiple passes. We ex-
pect this to happen only in cases with exceptionally
high (Lempel-Ziv) compression, resulting in many more
chunks being stored. An analysis of customer systems
found that only 0.02% of systems exceed the threshold
for unique fingerprints, a value that varies across plat-
forms from 10B at the low end to over 200B for the
largest systems.5

3.4.1 PGC+ Phases

1. Merge: Same as LGC and PGC.
1’. Analysis: Walk the index and create a PH LP vector

and a PH Live Vector. Build a per-container duplicate
counter at the same time. This is a hash table indexed by
container IDs which contains a count of duplicates across
all the other container IDs. This counter is used for the
duplicate count estimation algorithm in the select phase.

2. Filter: This phase is omitted for PGC+ (see §3.4.2).
3. Enumeration: Same as PGC, but for every live L0

chunk, add its fingerprint to the PHV.
4. Select: Iterate through the containers and use the

live PHV and the duplicate counter to estimate the live-
ness of the container.

5. Copy: Copy live chunks forward by iterating con-
tainers backwards and dynamically remove duplicates.
Backward iteration is needed to preserve the latest copy
of a fingerprint.

5The maximum encountered on any system is 170B, which fits on
that system without the need to revert to PGC.

3.4.2 PGC+ Optimizations

Replacing the remaining Bloom filter with a PHV re-
quires optimizations to compensate for extra overheads.
Some, e.g. parallelization, could be applied to LGC as
well.

Parallelization. One problem was an implementation
requirement that entries in the on-disk index be returned
in order. Originally processing the index was single-
threaded, but by dividing the index into distinct parti-
tions, these could be processed by threads in parallel.
This parallelism compensates for the extra work of calcu-
lating PH functions for all the fingerprints in the system.

Memory lookups. PH functions are organized in an
array, so the first step is to find the position in the ar-
ray. The header information at this location refers to the
actual location of the hash function in memory (second
access). Accessing the hash function (third access) pro-
duces the offset of the bit to set/check. The fourth ac-
cess is to the actual bit. In addition, initially these ac-
cesses were not NUMA-aware. Through a combination
of restructuring the memory locations, adding prefetch-
ing, and adding NUMA-awareness, we improved PH la-
tency to be comparable to the original Bloom filters.

Dynamic Duplicate Estimation. Just like with LGC
and PGC, we estimate the liveness of each container in
the PGC+ Select phase to clean the mostly dead con-
tainers. LGC and PGC have a Pre-Filter phase before
the Select phase, so when the <fingerprint XOR con-
tainer ID> lookup is done in the Live Instance Vector,
we know the count of unique live chunks in that con-
tainer. With PGC+, there is no Pre-Filter before the Se-
lect phase. Thus the lookup in the Live Vector indicates
whether chunks are live or dead but for live chunks does
not distinguish among duplicates.

To estimate the unique liveness (which excludes live
duplicates) of a container in PGC+, we first build a du-
plicate counter per container (ANALYSIS DUP CNTR) in
the Analysis phase. This counter tracks the number of
chunks in a container with duplicates in other contain-
ers. Since the Analysis phase is before the Enumeration
phase, this counter includes both live and dead duplicate
chunks. Then in the Select phase, a Bloom filter is cre-
ated to track the dead chunks in the container set. During
the Select phase, we walk the container set in reverse,
from the end to the beginning, to find the latest copy of
any duplicate chunk. For every container, we read the
container metadata to get the fingerprints and look up
these fingerprints in the Live Vector. If the Live Vector
indicates the chunk is dead, we insert the dead chunk
into the Bloom filter. If the Dead Vector already in-
cludes the chunk, we increment a dead duplicate counter
(SELECT DEAD DUP CNTR) for that container.
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Finally, the live duplicate count per container is:

LIV E DUP CNT R =

ANALY SIS DUP CNT R−SELECT DEAD DUP CNT R

Hence the container liveness is given by

CONTAINER LIV ENESS =

LIV E CHUNK COUNT −LIV E DUP CNT R

In general, the number of dead chunks is much lower
than live chunks (a 1

10 ratio). Thus the memory needed
for the Dead Vector is small. By keeping a Dead Vector
to count the dead duplicates, we are able to estimate the
correct liveness of containers in a manner similar to LGC
and PGC.

Dynamic Duplicate Removal. In LGC and PGC, copy
forward works from the lowest to highest container ID
and copies live chunks into new containers. In PGC+, to
delete older duplicates and preserve the latest copy of the
chunk, the copy forward happens in reverse order. Each
time a live chunk is copied forward, subsequent chunks
with the same fingerprint are treated as duplicates. To
mark these duplicates as dead, we clear the correspond-
ing bit in the PHV. The clearing of the liveness bit works
because the PHV maps each fingerprint uniquely to the
vector. While iterating backward, the next time we see
the chunk whose bit is cleared in the PHV, we treat it as
dead. Hence, unlike PGC where the Live Instance Vector
is needed for removing duplicates, duplicate detection in
PGC+ happens in the copy phase. As discussed above,
this uses half the memory and can represent 2× more
fingerprints.

The copy phase only focuses on the set of containers
selected in the select phase, which frees the maximum
space in the allotted GC time. But in order to remove
duplicates, the PGC+ copy phase must flip the PHV bit for
chunks belonging to containers that are not selected for
copy forward. That way, older duplicates corresponding
to those chunks are treated as dead and can be cleaned.
For this, PGC+ must read metadata sections of unselected
containers too, and update the PHV. This involves extra
container metadata reads, thus it slightly increases the
overhead of the copy phase compared to PGC (see §5.2).

3.5 Online GC
It is unreasonable to take the system offline during GC,
so while GC is running, our customers are also do-
ing backups. Because our deduplication process checks
against any chunks in the system, if a client writes a
chunk that is a duplicate of an otherwise unreferenced
(dead) chunk, it switches the unreferenced chunk to a
referenced (live) state, known as a chunk resurrection.
Another point is that open files may not yet be reachable

from the root directory, so we specifically track open files
and enumerate their Lp trees.

We added a process to inform GC of incoming chunks
while GC runs, so chunks can be added to the Live (In-
stance) Vector. When resurrections take place during the
Copy phase, there is a danger that a resurrected chunk
may be in the process of being deleted. We see if the res-
urrection is in the container range currently being pro-
cessed; if so, we write a (potentially) duplicate chunk
for safety, but duplicates written during the Copy phase
can be removed during the next GC run. If the resurrec-
tion takes place outside of the container range, then we
add the <fingerprint, container ID> to the Live Instance
Vector, or the fingerprint to the Live Vector for PGC+.

GC needs not only to support online ingest (adding
new data to the system while GC is running), it must
also support other tasks such as restores and replication.
Thus we have added controls to limit the resource usage
of GC, which are configurable on a per-system basis. We
call this control throttling, but the manner in which GC is
throttled has changed from LGC to PGC. Since PGC lim-
its GC performance in ways LGC does not, direct com-
parisons between the two are problematic.

We take two tacts to address the differences in perfor-
mance. The first is to consider head-to-head comparisons
of LGC and PGC only in the extreme cases that PGC was
intended to address. If PGC gives better performance than
LGC even when PGC is potentially throttling itself more,
we can see that PGC is strictly better than LGC (§5.1).
The second is to run in-lab experiments with throttling
manually disabled for all GC algorithms (§5.2-5.3).

4 Methodology

This section describes our experimental methodology:
we used a combination of telemetry from deployed sys-
tems and controlled experiments.

4.1 Deployed Systems

Like many vendors [2, 10], our products can send op-
tional reports on system behavior [24]. We use these re-
ports to extract the following information from each re-
port: serial number, model, system version, date, logical
and physical capacity in use, file counts, and GC timings.

We exclude any reports showing <1TB physical ca-
pacity in use, <1 hour or >2 weeks of GC execution, or
other outliers.6 This leaves us with one or more reports
per system, which may reflect LGC or PGC taking place.

6The outliers with low usage or unusually fast GC are uninteresting
(for example, a system that is not in active use and has no garbage to
collect). Any rare cases of unusually high times are attributed to bugs
that were subsequently fixed.
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Most of our evaluation focuses on a large set of de-
ployed systems running LGC. We use a second set of de-
ployed systems running PGC (PGC+ not yet being avail-
able) for head-to-head comparisons of the extreme cases
(high deduplication rates or file counts). We looked at
systems that were upgraded from LGC to PGC and did
not change capacity, file counts, or deduplication ratio by
more than 5%. We found that for the more “typical” sys-
tems, there was moderate (and occasionally significant)
degradation when running PGC instead of LGC, but it is
not possible to attribute that effect to the PGC algorithm
versus throttling effects or one-time overheads occurring
in the process of the upgrade. We exclude throttling in
the in-lab experiments reported later. The timings were
collected from Jan-2014 to Sep-2016; both sets (LGC and
PGC) contain thousands of systems.

There are various ways to evaluate GC performance,
and in particular, evaluate the change in the context of a
particular system. Our usual approach to compare simi-
lar systems is to sort them by some metric, such as phys-
ical capacity, and divide them into buckets. Note that
these buckets are marked as ≤ some value, but they re-
flect only those points that are greater than the next lower
bucket (i.e., they are not cumulative across all lower
buckets). In addition we generally find that showing the
buckets on a log scale emphasizes the outliers. Since
PGC+ is only recently available to customers, we cannot
use telemetry to evaluate systems using PGC+.

4.2 Controlled Experiments

To compare LGC, PGC, and PGC+ in a controlled man-
ner, we perform a number of GC experiments in a lab
environment. To ensure that the data is the same across
experiments, we obtain or generate the test dataset, then
reset to the state of the test dataset anytime the system is
modified. For most experiments, we use a load genera-
tor, the same one used to evaluate content sanitization in
DDFS [5]; it is similar to the work of Tarasov, et al. [23].
The tool creates files of a specified size, using a combi-
nation of random and predictable content to get desired
levels of deduplication and compression. Each new file
contains significant content from the previous generation
of the same “lineage,” while some content is deleted as
new content is added. There should not be deduplica-
tion across independent lineages, which can be written
in parallel to achieve a desired throughput.

For some of the experiments, we went through some
extra steps to create what we call our canonical dataset.
As we wrote new data, we ran GC several times to age
the system and degrade locality: for example, ingesting
to 5% of capacity and using GC to reset to 3% of capac-
ity before ingesting to 7% and running GC again. (We
note that the number of unfiltered duplicates removed in

this process is higher than the number of duplicates that
typically appear in the field (10% or less.)) Ingestion was
halted when we reached 10% of the physical capacity of
the largest system, the DD990. The canonical dataset
is 1.1 PiB of logical data deduplicated and compressed
to 30.1 TiB of physical data (36.6× TC). We used this
dataset to compare different appliances and also as the
starting point for evaluating high deduplication rates.

The canonical dataset is about 25% of the capacity
of the DD860, which we used for other experiments.
To evaluate the impact of physical capacity in use, we
wanted to start with a lower capacity, so we ingested 20%
of physical capacity at a time. For this experiment we did
not run destructive GC (physically reorganizing data and
removing extra duplicates) during ingestion. The TC for
that experiment varied from 17.9×–18.3×.

To start with the same predictable content, we use col-
lection replication [7] to make a total copy of the data
on another appliance. To focus on the mark part of GC,
we can identify what data should be reclaimed but termi-
nate GC before initiating sweep and modifying the file
system. Multiple mark runs (of any GC type) can be
measured without modifying the state of the system. If
we include the copy phase, i.e. sweep, we replicate back
from the saved copy to restore the system to the original
state. Each 4MB container, as well as the index, will be
the same, though containers may be stored in different
physical locations on disk. We use replication to eval-
uate high file counts, copying from a quality assurance
system that has been seeded with 900M files.

Since we find that many GC runs require two mark
phases, it is important to evaluate runs with both one
mark pass and two. We do this by collecting timings
of both sets and indicating them separately in the results
via stacked bar graphs. LGC-1 and PGC-1 are the lower
(solid) bars; these may be compared directly with the sin-
gle PGC+ bar, or the higher shaded bars labeled LGC-2
and PGC-2 may be considered. In general, less full sys-
tems need one pass and more full systems need two.

4.2.1 Test Environment

We use a variety of backup appliances for our tests. We
report the time taken for the mark phase for our canonical
dataset on four separate systems. We then use a specific
system to evaluate some aspect of the workload, such as
copy phase variability, capacity in use, high file counts,
or variation in duplication ratios.

Table 1 shows specifications for the systems we used
in our tests. It shows cores, memory, physical capacity
available, and the amount of that capacity used by the
canonical dataset, ranging from 10–25%. After compar-
ing all four systems on one dataset, we use the DD860
for extensive comparisons on different workloads.
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Figure 6: (a) GC duration is a linear function of physical space, but PGC+ is consistently faster than the other algo-
rithms. PGC is consistently slightly slower than LGC. (b) GC duration varies across platforms. PGC+ consistently
outperforms LGC and PGC on all platforms. PGC is consistently slower than LGC when two phases are required, but
the difference is variable for just one phase, with PGC slightly faster in two cases.

Systems DD2500 DD860 DD890 DD990
CPU (cores×GHz) 8×2.20 16×2.53 24×2.80 40×2.40
Mem (GB) 64 70 94 256
Phy. Capacity(TiB) 122 126 167 319
Canonical Dataset util.(%) 25 25 19 10

Table 1: System Specifications.

5 Evaluation

In this section we provide a detailed comparison of LGC,
PGC, and PGC+. §5.1 provides a high-level compari-
son across a set of deployed systems with anomalous
enumeration performance (thus these omit PGC+). §5.2
presents lab-based experiments comparing all three GC
variants on basic datasets (nominal deduplication and file
counts), investigating the penalty from PH analysis when
moving from LGC to PGC and the compensating benefit
from eliminating multi-round marking before the sweep
phase (PGC+). §5.3 then focuses on specific challenges
for LGC, high deduplication ratios and large file counts.

5.1 Deployed Systems

We start by evaluating the change from LGC to PGC in
deployed systems. When comparing an upgraded sys-
tem, we can consider the time it took to run LGC before
the upgrade and the time it took to run PGC after the up-
grade. (Recall that we only consider upgraded systems
that are within 5% of each other in various metrics in
both cases).

Across all systems, we find that 75% of systems suf-
fer some form of performance degradation when moving
from LGC to PGC. As stated before, this is due to various
factors including the change to throttling. As customers
are able to upgrade to PGC+, we focus on emphasizing
the benefits of PGC over LGC in the extreme scenarios,

then discuss lab-based comparisons in the remainder of
this section. We find that PGC improves enumeration per-
formance over LGC by as much as 20× in the case of the
greatest improvement for high deduplication, and by 7×
for the greatest improvement for high file counts.

5.2 Standard Workloads
To start, we explain why we focus on mark performance
rather than sweep (Copy). The copy times are propor-
tional to physical space used, and they are not problem-
atic (the maximum time for any system is always “rea-
sonable” because resources such as cores and memory
scale with disk capacity). Copy for PGC+ is slightly
slower than for PGC or LGC (which use an identical al-
gorithm) due to the PHV overhead, but we measured this
to be only a 2–3% increase. Running Copy on the same
workload three times per algorithm, we found a tiny vari-
ation among multiple runs (a standard deviation less than
0.5%). Thus, for the remainder of the paper, we focus on
mark performance, though we give some examples of the
PGC+ sweep times for comparison.

Within the mark phase, for the canonical dataset, the
analysis portion of PGC+ is 10–20% of total elapsed
time. It is about 20% of elapsed time on the DD990 and
about 10% on the other platforms.

We evaluated performance in a controlled environment
using the load generator described in §4.2. We ingested
data to different fractions7 of the overall capacity of a
specific system (DD860) and measured the time taken
for the mark phases of LGC, PGC and PGC+ to complete.
As we can see in Figure 6(a), there is roughly a linear
relationship between the GC duration and the physical
capacity in use.

7The amount ingested is somewhat approximate, but the trend is
clear.
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Figure 7: (a) As the deduplication ratio increases, LGC duration increases substantially while PGC and PGC+ stay con-
stant. (b) While LGC performance is poor when the number of files is unusually high, PGC and PGC+ are substantially
faster.

As mentioned in §3.1.2, the need for two phases arises
from the number of chunks stored in the system; this is
usually due to higher capacity in use, but higher com-
pression can result in more chunks being stored in the
same physical space. PGC is generally slightly slower
than LGC at lower utilizations and slightly faster at higher
ones; PGC+ consistently completes at least 2× faster than
either LGC or PGC when two phases are required. For
low space utilization PGC+ is slightly faster than LGC
and PGC when a single phase is required; at the highest
level tested, it would be about 20% slower than PGC if
only one phase were required; however, two phases are
needed for this dataset, so PGC+ is uniformly faster.

Figure 6(b) shows the results of mark for different GC
algorithms running with the canonical dataset on the four
platforms. In general, higher-end platforms have bet-
ter GC performance due to more resources (e.g., CPU,
memory, storage bandwidth). There is some variation in
the relative performance of the algorithms across plat-
forms, but in general, PGC+ is close to LGC and PGC for
a single mark phase and much faster for two. DD2500,
the lowest-end platform, shows the greatest degradation
(17%) moving from LGC to PGC+ when just one phase
is needed. To give an idea of the relative performance of
the copy phase, across these platforms the time for copy
is 2.3−2.6× that of the PGC+ mark times.

5.3 Problematic Workloads

The move to PGC was spurred by two types of problem-
atic workloads, high deduplication ratios and high file
counts. These are depicted in Figure 7 using the DD860.
In Figure 7(a), the fastcopy [7] system command is used
to repeatedly double the TC from a moderate 36.6× up
to an extreme 2340×. The enumeration time for LGC in-
creases with deduplication ratio, while the times for PGC
and PGC+ are a function of the physical space, which is

nearly constant. In the worst case, PGC+ is nearly two or-
ders of magnitude faster than LGC, and even if LGC needs
only one mark phase, LGC is 47× slower. Note that the
values for a 36.6× TC are the same as the DD860 in Fig-
ure 6(b); refer there for detail.

Figure 7(b) shows the GC mark times for a system
with over 900M files, for different GC algorithms.8 The
system has a TC of only 2.3×, meaning there is almost
no deduplication. PGC and PGC+ take substantially less
time than LGC because LGC has to traverse the Lp tree
multiple times based on the number of logical files. LGC
also induces substantial random I/Os. In contrast to LGC,
PGC/PGC+ can traverse the Lp tree in a limited sequence
of passes and enumerate files with sequential I/Os. Com-
pared with LGC, PGC+ is 13.8×–27.8× faster for one or
two mark phases, respectively. PGC+ is virtually iden-
tical to a single phase of PGC and twice as fast than the
two-phase run.

6 Related Work

While many deduplicated storage papers mention their
technique to remove unreferenced chunks, only a few
present a detailed implementation. We presented an
overview of the differences between reference counts and
mark-and-sweep algorithms in §2 and now provide more
discussion of related work.

Fu et al. [8] maintained reference counts for con-
tainers as part of a technique to reduce fragmentation
for faster restores. A limitation of their work is that
their garbage collection technique only supports first-
in-first-out deletion, while our system supports an ar-
bitrary deletion pattern. Strzelczak et al. [22] describe

8This is data replicated to a DD860 from an internal Quality Assur-
ance system that was seeded over the period of many months; it takes
too long to write the individual files for us to use other high file counts,
so we demonstrate the savings at the extreme.
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a distributed reference count algorithm for HYDRAstor.
They use an epoch-based approach to allow cleaning to
take place while the system allows new writes. Their
indexing mechanism is not described, but there is an in-
dication that they have sufficient memory to track refer-
ence counts. Our system has smaller chunks (e.g. ~8KB)
and uses compact data structures to reduce memory re-
quirements. Simha et al. [21] describe a technique for
efficiently handling incremental changes, though they do
not generate full backups from incremental writes as our
system supports, so they have a smaller name space to
enumerate than our system. Their reference count tech-
nique leverages known expiration times for snapshots,
while we support any deletion order. Without expiration
times in advance, it would be necessary to walk an entire
tree to update reference counts in the case of a snapshot
or fastcopy [7], and deletions similarly require mass up-
dating. Grouped Mark and Sweep [9] marks referenced
containers. Their file representation has direct references
to physical blocks, so it is unclear how they can copy for-
ward live chunks to consolidate partially dead containers.
In contrast, our file representation uses fingerprints and
we use a fingerprint-to-container index to support con-
tainer cleaning. One might use SSDs to store the refer-
ence counts, but then one must address write amplifica-
tion from these updates. In future years other forms of
memory, nonvolatile or otherwise, may be cost-effective
for systems of this scale. Finally, reference counts are
also difficult to maintain correctly in the presence of
complex error conditions.

The most similar work to our own is the sanitization
technique presented by Botelho et al. [5]. Like us, they
used perfect hashes to compactly represent live refer-
ences in deduplicating storage. A key difference is that
they focused on sanitization rather than garbage collec-
tion. Sanitization is the process of securely deleting data
to prevent the leakage of confidential information, so
sanitization has the requirement of removing all unref-
erenced chunks. This means that they created a PH func-
tion and vector over all chunks (L0-L6) so that any un-
referenced chunk could be removed; they still performed
logical rather than physical enumeration of the file sys-
tem. Our physical enumeration technique could possibly
replace logical enumeration in their algorithm, and our
other optimizations to PH are also applicable.

Techniques that defer cleaning and focus on the most
efficient areas to clean tend to have some basis in early
work on cleaning log structured storage [15, 20]. Other
LFS optimizations such as hole-plugging [26] do not
work well at the granularity of chunks that are packed
and compressed in large units.

While our work focuses on garbage collection, the dif-
ferences between the logical and physical view of a stor-
age system were noted by Hutchinson, et al. [11]. In that

work, the authors found that backing up a system by ac-
cessing its blocks at a physical level provided better per-
formance than accessing blocks one file at a time. Thus
the optimization of PGC to iterate through the physical
locations of system metadata is similar to their optimiza-
tion when copying data in the first place, but deduplica-
tion magnifies the distinction.

7 Conclusion

The shift in workloads has required a new approach to
garbage collection in a deduplicating storage system.
Rather than a depth-first mark-and-sweep GC algorithm,
tracking live data from the perspective of individual files,
we have moved to a breadth-first approach that takes ad-
vantage of the physical layout of the data.

PGC turns large numbers of random I/Os into a set of
sequential scans of the entire storage system. It works
well when deduplication is high (100–1000× rather than
10–20×), and it works well when the storage system is
used for hundreds of millions of relatively small files
rather than thousands of large tar-like backup files.

Because of the other overheads of PGC, including the
analysis necessary to use the space-efficient and accu-
rate perfect hash functions [3, 14], the original PGC ap-
proach is not uniformly faster than the LGC approach it
replaced. The improved PGC algorithm, referred to as
PGC+, uses PH in an additional way to reduce memory
requirements enough to avoid two mark sequences dur-
ing GC. We have demonstrated that it is comparable to
the original LGC on traditional workloads whose finger-
prints fit into memory (requiring a single mark phase),
significantly faster when two passes are required, and or-
ders of magnitude better on problematic workloads.
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Abstract
File systems must allocate space for files without

knowing what will be added or removed in the future.
Over the life of a file system, this may cause subopti-
mal file placement decisions which eventually lead to
slower performance, or aging. Traditional file systems
employ heuristics, such as collocating related files and
data blocks, to avoid aging, and many file system imple-
mentors treat aging as a solved problem.

However, this paper describes realistic as well as syn-
thetic workloads that can cause these heuristics to fail,
inducing large performance declines due to aging. For
example, on ext4 and ZFS, a few hundred git pull op-
erations can reduce read performance by a factor of 2;
performing a thousand pulls can reduce performance by
up to a factor of 30. We further present microbenchmarks
demonstrating that common placement strategies are ex-
tremely sensitive to file-creation order; varying the cre-
ation order of a few thousand small files in a real-world
directory structure can slow down reads by 15− 175×,
depending on the file system.

We argue that these slowdowns are caused by poor lay-
out. We demonstrate a correlation between read perfor-
mance of a directory scan and the locality within a file
system’s access patterns, using a dynamic layout score.

In short, many file systems are exquisitely prone to
read aging for a variety of write workloads. We show,
however, that aging is not inevitable. BetrFS, a file sys-
tem based on write-optimized dictionaries, exhibits al-
most no aging in our experiments. BetrFS typically out-
performs the other file systems in our benchmarks; aged
BetrFS even outperforms the unaged versions of these
file systems, excepting Btrfs. We present a framework
for understanding and predicting aging, and identify the
key features of BetrFS that avoid aging.

1 Introduction
File systems tend to become fragmented, or age, as
files are created, deleted, moved, appended to, and trun-

cated [18, 23].
Fragmentation occurs when logically contiguous file

blocks—either blocks from a large file or small files from
the same directory—become scattered on disk. Read-
ing these files requires additional seeks, and on hard
drives, a few seeks can have an outsized effect on perfor-
mance. For example, if a file system places a 100 MiB
file in 200 disjoint pieces (i.e., 200 seeks) on a disk with
100 MiB/s bandwidth and 5 ms seek time, reading the
data will take twice as long as reading it in an ideal lay-
out. Even on SSDs, which do not perform mechanical
seeks, a decline in logical block locality can harm per-
formance [19].

The state of the art in mitigating aging applies best-
effort heuristics at allocation time to avoid fragmenta-
tion. For example, file systems attempt to place related
files close together on disk, while also leaving empty
space for future files [7,17,18,25]. Some file systems (in-
cluding ext4, XFS, Btrfs, and F2FS among those tested
in this paper) also include defragmentation tools that at-
tempt to reorganize files and file blocks into contiguous
regions to counteract aging.

Over the past two decades, there have been differing
opinions about the significance of aging. The seminal
work of Smith and Seltzer [23] showed that file systems
age under realistic workloads, and this aging affects per-
formance. On the other hand, there is a widely held view
in the developer community that aging is a solved prob-
lem in production file systems. For example, the Linux
System Administrator’s Guide [26] says:

Modern Linux file systems keep fragmentation at a
minimum by keeping all blocks in a file close to-
gether, even if they can’t be stored in consecutive
sectors. Some file systems, like ext3, effectively al-
locate the free block that is nearest to other blocks
in a file. Therefore it is not necessary to worry about
fragmentation in a Linux system.

There have also been changes in storage technology
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and file system design that could substantially affect ag-
ing. For example, a back-of-the-envelope analysis sug-
gests that aging should get worse as rotating disks get
bigger, as seek times have been relatively stable, but
bandwidth grows (approximately) as the square root of
the capacity. Consider the same level of fragmentation
as the above example, but on a new, faster disk with
600MiB/s bandwidth but still a 5ms seek time. Then
the 200 seeks would introduce four-fold slowdown rather
than a two-fold slowdown. Thus, we expect fragmenta-
tion to become an increasingly significant problem as the
gap between random I/O and sequential I/O grows.

As for SSDs, there is a widespread belief that fragmen-
tation is not an issue. For example, PCWorld measured
the performance gains from defragmenting an NTFS file
system on SSDs [1], and concluded that, “From my lim-
ited tests, I’m firmly convinced that the tiny difference
that even the best SSD defragger makes is not worth re-
ducing the life span of your SSD.”

In this paper, we revisit the issue of file system aging
in light of changes in storage hardware, file system de-
sign, and data-structure theory. We make several contri-
butions: (1) We give a simple, fast, and portable method
for aging file systems. (2) We show that fragmentation
over time (i.e., aging) is a first-order performance con-
cern, and that this is true even on modern hardware, such
as SSDs, and on modern file systems. (3) Furthermore,
we show that aging is not inevitable. We present sev-
eral techniques for avoiding aging. We show that Be-
trFS [10–12, 27], a research prototype that includes sev-
eral of these design techniques, is much more resistant
to aging than the other file systems we tested. In fact,
BetrFS essentially did not age in our experiments, estab-
lishing that aging is a solvable problem.

Results. We use realistic application workloads to age
five widely-used file systems—Btrfs [21], ext4 [7,17,25],
F2FS [15], XFS [24] and ZFS [6]—as well as the BetrFS
research file system. One workload ages the file system
by performing successive git checkouts of the Linux ker-
nel source, emulating the aging that a developer might
experience on her workstation. A second workload ages
the file system by running a mail-server benchmark, em-
ulating aging over continued use of the server.

We evaluate the impact of aging as follows. We peri-
odically stop the aging workload and measure the overall
read throughput of the file system—greater fragmenta-
tion will result in slower read throughput. To isolate the
impact of aging, as opposed to performance degradation
due to changes in, say, the distribution of file sizes, we
then copy the file system onto a fresh partition, essen-
tially producing a defragmented or “unaged” version of
the file system, and perform the same measurement. We
treat the differences in read throughput between the aged

and unaged copies as the result of aging.
We find that:

• All the production file systems age on both rotating
disks and SSDs. For example, under our git workload,
we observe over 50× slowdowns on hard disks and
2–5× slowdowns on SSDs. Similarly, our mail-server
slows down 4–30× on HDDs due to aging.

• Aging can happen quickly. For example, ext4 shows
over a 2× slowdown after 100 git pulls; Btrfs and ZFS
slow down similarly after 300 pulls.

• BetrFS exhibits essentially no aging. Other than Btrfs,
BetrFS’s aged performance is better than the other
file systems’ unaged performance on almost all bench-
marks. For instance, on our mail-server workload, un-
aged ext4 is 6× slower than aged BetrFS.

• The costs of aging can be staggering in concrete
terms. For example, at the end of our git workload
on an HDD, all four production file systems took over
8 minutes to grep through 1GiB of data. Two of the
four took over 25 minutes. BetrFS took 10 seconds.

We performed several microbenchmarks to dive into the
causes of aging and found that performance in the pro-
duction file systems was sensitive to numerous factors:
• If only 10% of files are created out of order relative

to the directory structure (and therefore relative to a
depth-first search of the directory tree), Btrfs, ext4,
F2FS, XFS and ZFS cannot achieve a throughput of
5 MiB/s. If the files are copied completely out of
order, then of these only XFS significantly exceeds
1 MiB/s. This need not be the case; BetrFS maintains
a throughput of roughly 50 MiB/s.

• If an application writes to a file in small chunks, then
the file’s blocks can end up scattered on disk, harming
performance when reading the file back. For exam-
ple, in a benchmark that appends 4 KiB chunks to 10
files in a round-robin fashion on a hard drive, Btrfs
and F2FS realize 10 times lower read throughput than
if each file is written completely, one at a time. ext4
and XFS are more stable but eventually age by a fac-
tor of 2. ZFS has relatively low throughout but did not
age. BetrFS throughput is stable, at two thirds of full
disk bandwidth throughout the test.

2 Related Work
Prior work on file system aging falls into three cate-
gories: techniques for artificially inducing aging, for
measuring aging, and for mitigating aging.

2.1 Creating Aged File Systems
The seminal work of Smith and Seltzer [23] created a
methodology for simulating and measuring aging on a
file system—leading to more representative benchmark
results than running on a new, empty file system. The
study is based on data collected from daily snapshots of

46    15th USENIX Conference on File and Storage Technologies USENIX Association



Feature Btrfs ext4 F2FS XFS ZFS BetrFS
Grouped allocation
within directories
Extents
Delayed allocation
Packing small files
and metadata (by OID)
Default Node Size 16 K 4 K 4 K 4 K 8 K 2–4 M
Maximum Node Size 64 K 64 K 4 K 64 K 128 K 2–4 M
Rewriting for locality
Batching writes to re-
duce amplification

Table 1: Principal anti-aging features of the file systems mea-
sured in this paper. The top portion of the table are commonly-
deployed features, and the bottom portion indicates features our
model (§3) indicates are essential; an ideal node size should
match the natural transfer size, which is roughly 4 MiB for
modern HDDs and SSDs. OID in Btrfs is an object identifier,
roughly corresponding to an inode number, which is assigned
at creation time.

over fifty real file systems from five servers over dura-
tions ranging from one to three years. An overarching
goal of Smith and Seltzer’s work was to evaluate file sys-
tems with representative levels of aging.

Other tools have been subsequently developed for syn-
thetically aging a file system. In order to measure NFS
performance, TBBT [28] was designed to synthetically
age a disk to create a initial state for NFS trace replay.

The Impressions framework [2] was designed so that
users can synthetically age a file system by setting a
small number of parameters, such as the organization of
the directory hierarchy. Impressions also lets users spec-
ify a target layout score for the resulting image.

Both TBBT and Impressions create file systems with a
specific level of fragmentation, whereas our study iden-
tifies realistic workloads that induce fragmentation.

2.2 Measuring Aged File Systems
Smith and Seltzer also introduced a layout score for
studying aging, which was used by subsequent stud-
ies [2, 4]. Their layout score is the fraction of file blocks
that are placed in consecutive physical locations on the
disk. We introduce a variation of this measure, the dy-
namic layout score in Section 3.3.

The degree of fragmentation (DoF) is used in the
study of fragmentation in mobile devices [13]. DoF is
the ratio of the actual number of extents, or ranges of
contiguous physical blocks, to the ideal number of ex-
tents. Both the layout score and DoF measure how one
file is fragmented.

Several studies have reported file system statistics
such as number of files, distributions of file sizes and
types, and organization of file system namespaces [3, 9,
22]. These statistics can inform parameter choices in ag-
ing frameworks like TBBT and Impressions [2, 28].

2.3 Existing Strategies to Mitigate Aging
When files are created or extended, blocks must be al-
located to store the new data. Especially when data is
rarely or never relocated, as in an update-in-place file
system like ext4, initial block allocation decisions deter-
mine performance over the life of the file system. Here
we outline a few of the strategies use in modern file sys-
tems to address aging, primarily at allocation-time (also
in the top of Table 1).

Cylinder or Block Groups. FFS [18] introduced the
idea of cylinder groups, which later evolved into block
groups or allocation groups (XFS). Each group maintains
information about its inodes and a bitmap of blocks. A
new directory is placed in the cylinder group that con-
tains more than the average number of free inodes, while
inodes and data blocks of files in one directory are placed
in the same cylinder group when possible.

ZFS [6] is designed to pool storage across multiple
devies [6]. ZFS selects from one of a few hundred
metaslabs on a device, based on a weighted calculation
of several factors including minimizing seek distances.
The metaslab with the highest weight is chosen.

In the case of F2FS [15], a log-structured file sys-
tem, the disk is divided into segments—the granularity at
which the log is garbage collected, or cleaned. The pri-
mary locality-related optimization in F2FS is that writes
are grouped to improve locality, and dirty segments are
filled before finding another segment to write to. In other
words, writes with temporal locality are more likely to
be placed with physical locality.

Groups are a best-effort approach to directory local-
ity: space is reserved for co-locating files in the same
directory, but when space is exhausted, files in the same
directory can be scattered across the disk. Similarly, if a
file is renamed, it is not physically moved to a new group.

Extents. All of the file systems we measure, except F2FS
and BetrFS, allocate space using extents, or runs of phys-
ically contiguous blocks. In ext4 [7,17,25], for example,
an extent can be up to 128 MiB. Extents reduce book-
keeping overheads (storing a range versus an exhaustive
list of blocks). Heuristics to select larger extents can im-
prove locality of large files. For instance, ZFS selects
from available extents in a metaslab using a first-fit pol-
icy.

Delayed Allocation. Most modern file systems, includ-
ing ext4, XFS, Btrfs, and ZFS, implement delayed al-
location, where logical blocks are not allocated until
buffers are written to disk. By delaying allocation when a
file is growing, the file system can allocate a larger extent
for data appended to the same file. However, allocations
can only be delayed so long without violating durabil-
ity and/or consistency requirements; a typical file system
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ensures data is dirty no longer than a few seconds. Thus,
delaying an allocation only improves locality inasmuch
as adjacent data is also written on the same timescale;
delayed allocation alone cannot prevent fragmentation
when data is added or removed over larger timescales.

Application developers may also request a persistent
preallocation of contiguous blocks using fallocate. To
take full advantage of this interface, developers must
know each file’s size in advance. Furthermore, fallocate
can only help intrafile fragmentation; there is currently
not an analogous interface to ensure directory locality.

Packing small files and metadata. For directories with
many small files, an important optimization can be to
pack the file contents, and potentially metadata, into a
small number of blocks or extents. Btrfs [21] stores
metadata of files and directories in copy-on-write B-
trees. Small files are broken into one or more fragments,
which are packed inside the B-trees. For small files, the
fragments are indexed by object identifier (comparable
to inode number); the locality of a directory with multi-
ple small files depends upon the proximity of the object
identifiers.

BetrFS stores metadata and data as key-value pairs in
two Bε -trees. Nodes in a Bε -tree are large (2–4 MiB),
amortizing seek costs. Key/value pairs are packed within
a node by sort-order, and nodes are periodically rewrit-
ten, copy-on-write, as changes are applied in batches.

BetrFS also divides the namespace of the file system
into zones of a desired size (512 KiB by default), in order
to maintain locality within a directory as well as imple-
ment efficient renames. Each zone root is either a single,
large file, or a subdirectory of small files. The key for a
file or directory is its relative path to its zone root. The
key/value pairs in a zone are contiguous, thereby main-
taining locality.

3 A Framework for Aging
3.1 Natural Transfer Size
Our model of aging is based on the observation that
the bandwidth of many types of hardware is maximized
when I/Os are large; that is, sequential I/Os are faster
than random I/Os. We abstract away from the particulars
of the storage hardware by defining the natural transfer
size (NTS) to be the amount of sequential data that must
be transferred per I/O in order to obtain some fixed frac-
tion of maximum throughput, say 50% or 90%. Reads
that involve more than the NTS of a device will run near
bandwidth.

From Figure 1, which plots SSD and HDD bandwidth
as a function of read size, we conclude that a reasonable
NTS for both the SSDs and HDDs we measured is 4MiB.

The cause of the gap between sequential- and random-
I/O speeds differs for different hardware. For HDDs,
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Figure 1: Effective bandwidth vs. read size (higher is
better). Even on SSDs, large I/Os can yield an order of
magnitude more bandwidth than small I/Os.

seek times offer a simple explanation. For SSDs, this
gap is hard to explain conclusively without vendor sup-
port, but common theories include: sequential accesses
are easier to stripe across internal banks, better leverag-
ing parallelism [14]; some FTL translation data struc-
tures have nonuniform search times [16]; and fragmented
SSDs are not able to prefetch data [8] or metadata [13].
Whatever the reason, SSDs show a gap between sequen-
tial and random reads, though not as great as on disks.

In order to avoid aging, file systems should avoid
breaking large files into pieces significantly smaller than
the NTS of the hardware. They should also group small
files that are logically related (close in recursive traversal
order) into clusters of size at least the NTS and store the
clusters near each other on disk. We consider the major
classes of file systems and explore the challenges each
file system type encounters in achieving these two goals.

3.2 Allocation Strategies and Aging
The major file systems currently in use can be roughly
categorized as B-tree-based, such as XFS, ZFS, and
Btrfs, update-in-place, such as ext4, and log-structured,
such as F2FS [15]. The research file system that we con-
sider, BetrFS, is based on Bε -trees. Each of these fun-
damental designs creates different aging considerations,
discussed in turn below. In later sections, we present ex-
perimental validation for the design principles presented
below.

B-trees. The aging profile of a B-tree depends on the leaf
size. If the leaves are much smaller than the NTS, then
the B-tree will age as the leaves are split and merged, and
thus moved around on the storage device.

Making leaves as large as the NTS increases write
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amplification, or the ratio between the amount of data
changed and the amount of data written to storage. In
the extreme case, a single-bit change to a B-tree leaf can
cause the entire leaf to be rewritten. Thus, B-trees are
usually implemented with small leaves. Consequently,
we expect them to age under a wide variety of workloads.

In Section 6, we show that the aging of Btrfs is in-
versely related to the size of the leaves, as predicted.
There are, in theory, ways to mitigate the aging due to
B-tree leaf movements. For example, the leaves could
be stored in a packed memory array [5]. However, such
an arrangement might well incur an unacceptable perfor-
mance overhead to keep the leaves arranged in logical
order, and we know of no examples of B-trees imple-
mented with such leaf-arrangement algorithms.

Write-Once or Update-in-Place Filesystems. When
data is written once and never moved, such as in update-
in-place file systems like ext4, sequential order is very
difficult to maintain: imagine a workload that writes two
files to disk, and then creates files that should logically
occur between them. Without moving one of the origi-
nal files, data cannot be maintained sequentially. Such
pathological cases abound, and the process is quite brit-
tle. As noted above, delayed allocation is an attempt to
mitigate the effects of such cases by batching writes and
updates before committing them to the overall structure.

Bε -trees. Bε -trees batch changes to the file system in
a sequence of cascading logs, one per node of the tree.
Each time a node overflows, it is flushed to the next
node. The seeming disadvantage is that data is writ-
ten many times, thus increasing the write amplification.
However, each time a node is modified, it receives many
changes, as opposed to B-tree, which might receive only
one change. Thus, a Bε -tree has asymptotically lower
write amplification than a B-tree. Consequently, it can
have much larger nodes, and typically does in implemen-
tation. BetrFS uses a Bε -tree with 4MiB nodes.

Since 4MiB is around the NTS for our storage devices,
we expect BetrFS not to age—which we verify below.

Log-structured merge trees (LSMs) [20] and other
write-optimized dictionaries can resist aging, depending
on the implementation. As with Bε -trees, it is essential
that node sizes match the NTS, the schema reflect logi-
cal access order, and enough writes are batched to avoid
heavy write amplification.

3.3 Measuring File System Fragmentation
This section explains the two measures for file system
fragmentation used in our evaluation: recursive scan la-
tency and dynamic layout score, a modified form of
Smith and Seltzer’s layout score [23]. These measures
are designed to capture both intra-file fragmentation and
inter-file fragmentation.

Recursive grep test. One measure we present in the fol-
lowing sections is the wall-clock time required to per-
form a recursive grep in the root directory of the file sys-
tem. This captures the effects of both inter- and intra-file
locality, as it searches both large files and large directo-
ries containing many small files. We report search time
per unit of data, normalizing by using ext4’s du output.
We will refer to this as the grep test.

Dynamic layout score. Smith and Seltzer’s layout
score [23] measures the fraction of blocks in a file or (in
aggregate) a file system that are allocated in a contigu-
ous sequence in the logical block space. We extend this
score to the dynamic I/O patterns of a file system. During
a given workload, we capture the logical block requests
made by the file system, using blktrace, and measure the
fraction that are contiguous. This approach captures the
impact of placement decisions on a file system’s access
patterns, including the impact of metadata accesses or
accesses that span files. A high dynamic layout score in-
dicates good data and metadata locality, and an efficient
on-disk organization for a given workload.

One potential shortcoming of this measure is that it
does not distinguish between small and large disconti-
guities. Small discontiguities on a hard drive should in-
duce fewer expensive mechanical seeks than large dis-
contiguities in general, however factors such as track
length, difference in angular placement and other geo-
metric considerations can complicate this relationship.
A more sophisticated measure of layout might be more
predictive. We leave this for further research. On SSD,
we have found that the length of discontiguities has a
smaller effect. Thus we will show that dynamic layout
score strongly correlates with grep test performance on
SSD and moderately correlates on hard drive.

4 Experimental Setup
Each experiment compares several file systems: BetrFS,
Btrfs, ext4, F2FS, XFS, and ZFS. We use the versions of
XFS, Btrfs, ext4 and F2FS that are part of the 3.11.10
kernel, and ZFS 0.6.5-234 ge0ab3ab, downloaded from
the zfsonlinux repository on www.github.com. We used
BetrFS 0.3 in the experiments1. We use default recom-
mended file system settings unless otherwise noted. Lazy
inode table and journal initialization are turned off on
ext4, pushing more work onto file system creation time
and reducing experimental noise.

All experimental results are collected on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, a 500 GB, 7200 RPM ATA Seagate Barracuda
ST500DM002 disk with a 4096 B block size, and a 240
GB Sandisk Extreme Pro—both disks used SATA 3.0.
Each file system’s block size is set to 4096 B. Unless

1Available at github.com/oscarlab/betrfs
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otherwise noted, all experiments are cold-cache.
The system runs 64-bit Ubuntu 13.10 server with

Linux kernel version 3.11.10 on a bootable USB stick.
All HDD tests are performed on two 20GiB partitions
located at the outermost region of the drive. For the SSD
tests, we additionally partition the remainder of the drive
and fill it with random data, although we have prelimi-
nary data that indicates this does not affect performance.

5 Fragmentation Microbenchmarks
We present several simple microbechmarks, each de-
signed around a write/update pattern for which it is diffi-
cult to ensure both fast writes in the moment and future
locality. These microbenchmarks isolate and highlight
the effects of both intra-file fragmentation and inter-file
fragmentation and show the performance impact aging
can have on read performance in the worst cases.

Intrafile Fragmentation. When a file grows, there may
not be room to store the new blocks with the old blocks
on disk, and a single file’s data may become scattered.

Our benchmark creates 10 files by first creating each
file of an initial size, and then appending between 0 and
100 4KiB chunks of random data in a round-robin fash-
ion until each file is 400KiB. In the first round the initial
size is 400KiB, so each entire file is written sequentially,
one at a time. In subsequent rounds, the initial size be-
comes smaller, so that the number of round-robin chunks
increases until in the last round the data is written en-
tirely with a round-robin of 4KiB chunks. After all the
files are written, the disk cache is flushed by remount-
ing, and we wait for 90 seconds before measuring read
performance. Some file systems appear to perform back-
ground work immediately after mounting that introduced
experimental noise; 90 seconds ensures the file system
has quiesced.

The aging process this microbenchmark emulates is
multiple files growing in length. The file system must
allocate space for these files somewhere, but eventually
the file must either be moved or fragment.

Given that the data set size is small and the test is de-
signed to run in a short time, an fsync is performed after
each file is written in order to defeat deferred allocation.
Similar results are obtained if the test waits for 5 seconds
between each append operation. If fewer fsyncs are per-
formed or less waiting time is used, then the performance
differences are smaller, as the file systems are able to de-
lay allocation, rendering a more contiguous layout.

The performance of these file systems on an HDD and
SSD are summarized in Figures 2. On HDD, the layout
scores generally correlate (−0.93) with the performance
of the file systems. On SSD, the file systems all perform
similarly (note the scale of the y-axis). In some cases,
such as XFS, ext4, and ZFS, there is a correlation, albeit
at a small scale. For Btrfs, ext4, XFS, and F2FS, the

performance is hidden by read-ahead in the OS or in the
case of Btrfs also in the file system itself. If we disable
read-ahead, shown in Figure 2c, the performance is more
clearly correlated (−.67) with layout score. We do note
that this relationship on an SSD is still not precise; SSDs
are sufficiently fast that factors such as CPU time can
also have a significant effect on performance.

Because of the small amount of data and number of
files involved in this microbenchmark, we can visualize
the layout of the various file systems, shown in Figure 3.
Each block of a file is represented by a small vertical
bar, and each bar is colored uniquely to one of the ten
files. Contiguous regions form a colored rectangle. The
visualization suggests, for example, that ext4 both tries
to keep files and eventually larger file fragments sequen-
tial, whereas Btrfs and F2FS interleave the round robin
chunks on the end of the sequential data. This inter-
leaving can help explain why Btrfs and F2FS perform
the way they do: the interleaved sections must be read
through in full each time a file is requested, which by
the end of the test takes roughly 10 times as long. ext4
and XFS manage to keep the files in larger extents, al-
though the extents get smaller as the test progresses, and,
by the end of the benchmark, these file systems also have
chunks of interleaved data; this is why ext4 and XFS’s
dynamic layout scores decline. ZFS keeps the files in
multiple chunks through the test; in doing so it sacrifices
some performance in all states, but does not degrade.

Unfortunately, this sort of visualization doesn’t work
for BetrFS, because this small amount of data fits en-
tirely in a leaf. Thus, BetrFS will read all this data into
memory in one sequential read. This results is some read
amplification, but, on an HDD, only one seek.

Interfile Fragmentation. Many workloads read multi-
ple files with some logical relationship, and frequently
those files are placed in the same directory. Interfile frag-
mentation occurs when files which are related—in this
case being close together in the directory tree—are not
collocated in the LBA space.

We present a microbenchmark to measure the impact
of namespace creation order on interfile locality. It takes
a given “real-life” file structure, in this case the Tensor-
flow repository obtained from github.com, and replaces
each of the files by 4KiB of random data. This gives us
a “natural” directory structure, but isolates the effect of
file ordering without the influence of intrafile layout. The
benchmark creates a sorted list of the files as well as two
random permutations of that list. On each round of the
test, the benchmark copies all of the files, creating direc-
tories as needed with cp --parents. However, on the
nth round, it swaps the order in which the first n% of files
appearing in the random permutations are copied. Thus,
the first round will be an in-order copy, and subsequent
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(a) Recursive grep cost: HDD (lower is better).
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(c) Recursive grep cost: SSD, no readahead (lower is better).
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Figure 2: Intrafile benchmark: 4KiB chunks are appended round-robin to sequential data to create 10 400KiB files.
Dynamic layout scores generally correlate with read performance as measured by the recursive grep test; on an SSD,
this effect is hidden by the readahead buffer.

rounds will be copied in a progressively more random
order until the last round is a fully random-order copy.

The results of this test are shown in Figure 4. On hard
drive, all the file systems except BetrFS and XFS show
a precipitous performance decline even if only a small
percentage of the files are copied out of order. F2FS’s
performance is poor enough to be out of scale for this
figure, but it ends up taking over 4000 seconds per GiB
at round 100; this is not entirely unexpected as it is not
designed to be used on hard drive. XFS is somewhat
more stable, although it is 13-35 times slower than drive
bandwidth throughout the test, even on an in-order copy.
BetrFS consistently performs around 1/3 of bandwidth,
which by the end of the test is 10 times faster than XFS,

and 25 times faster than the other file systems. The dy-
namic layout scores are moderately correlated with this
performance (−0.57).

On SSD, half the file systems perform stably through-
out the test with varying degrees of performance. The
other half have a very sharp slowdown between the in-
order state and the 10% out-of-order state. These two
modes are reflected in their dynamic layout scores as
well. While ext4 and ZFS are stable, their performance
is worse than the best cases of several other file systems.
BetrFS is the only file system with stable fast perfor-
mance; it is faster in every round than any other file sys-
tem even in their best case: the in-order copy. In this
cases the performance strongly correlates with the dy-
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Figure 3: Intrafile benchmark layout visualization. Each
color represents blocks of a file. The x-axis is the logi-
cal block address (LBA) of the file block relative to the
first LBA of any file block, and y-axis is the round of the
experiment. Rectangle sizes indicate contiguous place-
ment, where larger is better. The brown regions with
vertical lines indicate interleaved blocks of all 10 files.
Some blocks are not shown for ext4, XFS and ZFS.

namic layout score (−0.83).

6 Application Level Read-Aging: Git

To measure aging in the “real-world,” we create a work-
load designed to simulate a developer using git to work
on a collaborative project.

Git is a distributed version control system that enables
collaborating developers to synchronize their source
code changes. Git users pull changes from other devel-
opers, which then get merged with their own changes. In
a typical workload, a Git user may perform pulls multi-
ple times per day over several years in a long-running
project. Git can synchronize all types of file system
changes, so performing a Git pull may result in the cre-
ation of new source files, deletion of old files, file re-
names, and file modifications. Git also maintains its own
internal data structures, which it updates during pulls.

BetrFS Btrfs ext4
F2FS XFS ZFS

0 20 40 60 80 100
0

200

400

600

800

1,000

Percentage of files copied out-of-order

G
re

p
co

st
(s

ec
/G

iB
)

(a) Recursive grep cost: HDD (Lower is better).
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(b) Recursive grep cost: SSD (Lower is better).
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Figure 4: Interfile benchmark: The TensorFlow github
repository with all files replaced by 4KiB random data
and copied in varying degrees of order. Dynamic layout
scores again are predictive of recursive grep test perfor-
mance.
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Thus, Git performs many operations which are similar
to those shown in Section 5 that cause file system aging.

We present a git benchmark that performs 10,000 pulls
from the Linux git repository, starting from the initial
commit. After every 100 pulls, the benchmark performs
a recursive grep test and computes the file system’s dy-
namic layout score. This score is compared to the same
contents copied to a freshly formatted partition.

On a hard disk (Figure 5a), there is a clear aging trend
in all file systems except BetrFS. By the end of the ex-
periment, all the file systems except BetrFS show per-
formance drops under aging on the order of at least 3x
and as much as 15x relative to their unaged versions.
All are at least 15x worse than BetrFS. In all of the ex-
periments in this section, F2FS ages considerably more
than all other file systems, commensurate with signifi-
cantly lower layout scores than the other file systems—
indicating less effective locality in data placement. The
overall correlation between grep performance and dy-
namic layout score is moderate, at −0.41.

On an SSD (Figure 5c), Btrfs and XFS show clear
signs of aging, although they converge to a fully aged
configuration after only about 1,000 pulls. While the ef-
fect is not as drastic as on HDD, in all the traditional file
systems we see slowdowns of 2x-4x over BetrFS, which
does not slow down. In fact, aged BetrFS on the HDD
outperforms all the other aged file systems on an SSD,
and is close even when they are unaged. Again, this per-
formance decline is strongly correlated (−0.79) with the
dynamic layout scores.

The aged and unaged performance of ext4 and ZFS
are comparable, and slower than several other file sys-
tems. We believe this is because the average file size de-
creases over the course of the test, and these file systems
are not as well-tuned for small files. To test this hypoth-
esis, we constructed synthetic workloads similar to the
interfile fragmentation microbenchmark (Section 5), but
varied the file size (in the microbenchmark it was uni-
formly 4KB). Figure 6 shows both the measured, average
file size of the git workload (one point is one pull), and
the microbenchmark. Overall, there is a clear relation-
ship between the average file size and grep cost.

The zig-zag pattern in the graphs is created by an au-
tomatic garbage collection process in Git. Once a certain
number of “loose objects” are created (in git terminol-
ogy), many of them are collected and compressed into
a “pack.” At the file system level, this corresponds to
merging numerous small files into a single large file. Ac-
cording to the Git manual, this process is designed to “re-
duce disk space and increase performance,” so this is an
example of an application-level attempt to mitigate file
system aging. If we turn off the git garbage collection, as
show in Figures 5b, 5d and 5f, the effect of aging is even
more pronounced, and the zig-zags essentially disappear.

On both the HDD and SSD, the same patterns emerge
as with garbage collection on, but exacerbated: F2FS
aging is by far the most extreme. ZFS ages consider-
ably on the HDD, but not on the SSD. ZFS on SSD and
ext4 perform worse than the other file systems (except
F2FS aged), but do not age particularly. XFS and Btrfs
both aged significantly, around 2x each, and BetrFS has
strong, level performance in both states. This perfor-
mance correlates with dynamic layout score both on SSD
(−0.78) and moderately so on HDD (−0.54).

We note that this analysis, both of the microbench-
marks and of the git workload, runs counter to the com-
monly held belief that locality is solely a hard drive issue.
While the random read performance of solid state drives
does somewhat mitigate the aging effects, aging clearly
has a major performance impact.

Git Workload with Warm Cache. The tests we have
presented so far have all been performed with a cold
cache, so that they more or less directly test the perfor-
mance of the file systems’ on-disk layout under various
aging conditions. In practice, however, some data will be
in cache, and so it is natural to ask how much the layout
choices that the file system makes will affect the overall
performance with a warm cache.

We evaluate the sensitivity of the git workloads to
varying amounts of system RAM. We use the same pro-
cedure as above, except that we do not flush any caches
or remount the hard drive between iterations. This test
is performed on a hard drive with git garbage collection
off. The size of the data on disk is initially about 280MiB
and grows throughout the test to approximately 1GiB.

The results are summarized in Figure 7. We present
data for ext4 and F2FS; the results for Btrfs, XFS and
ZFS are similar. BetrFS is a research prototype and un-
stable under memory pressure; although we plan to fix
these issues in the future, we omit this comparison.

In general, when the caches are warm and there is suf-
ficient memory to keep all the data in cache, then the read
is very fast. However, as soon as there is no longer suf-
ficient memory, the performance of the aged file system
with a warm cache is generally worse than unaged with
a cold cache. In general, unless all data fits into DRAM,
a good layout matters more than a having a warm cache.

Btrfs Node-Size Trade-Off. Btrfs allows users to spec-
ify the node size of its metadata B-tree at creation time.
Because small files are stored in the metadata B-tree, a
larger node size results in a less fragmented file system,
at a cost of more expensive metadata updates.

We present the git test with a 4KiB node size, the de-
fault setting, as well as 8KiB, 16KiB, 32KiB, and 64KiB
(the maximum). Figure 8a shows similar performance
graphs to Figure 5, one line for each node size. The 4KiB
node size has the worst read performance by the end of
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Figure 5: Git read-aging experimental results: On-disk layout as measured by dynamic layout score generally is
predictive of read performance.
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Figure 6: Average file size versus unaged grep costs
(lower is better) on SSD. Each point in the git line is
the average file size for the git experiment, compared to
a microbenchmark with all files set to a given size.

the test, and the performance consistently improves as
we increase the node size all the way to 64KiB. Figure 8b
plots the number of 4KiB blocks written to disk between
each test (within the 100 pulls). As expected, the 64KiB
node size writes the maximum number of blocks and the
4KiB node writes the least. We thus demonstrate—as
predicted by our model—that aging is reduced by a larger
block size, but at the cost of write-amplification.

7 Application Level Aging: Mail Server
In addition to the git workload, we evaluate aging with
the Dovecot email server. Dovecot is configured with
the Maildir backend, which stores each message in a file,
and each inbox in a directory. We simulate 2 users, each
having 80 mailboxes receiving new email, deleting old
emails, and searching through their mailboxes.

A cycle or “day” for the mailserver comprises of 8,000
operations, where each operation is equally likely to be a
insert or a delete, corresponding to receiving a new email
or deleting an old one. Each email is a string of random
characters, the length of which is uniformly distributed
over the range [1, 32K]. Each mailbox is initialized with
1,000 messages, and, because inserts and deletes are bal-
anced, mailbox size tends to stay around 1,000. We
simulate the mailserver for 100 cycles and after each cy-
cle we perform a recursive grep for a random string. As
in our git benchmarks, we then copy the partition to a
freshly formatted file system, and run a recursive grep.

Figure 9 shows the read costs in seconds per GiB of
the grep test on hard disk. Although the unaged versions
of all file systems show consistent performance over the
life of the benchmark, the aged versions of ext4, Btrfs,
XFS and ZFS all show significant degradation over time.
In particular, aged ext4 performance degrades by 4.4×,
and is 28× slower than aged BetrFS. XFS slows down
by a factor of 7 and Btrfs by a factor of 30. ZFS slows
down drastically, taking about 20 minutes per GiB by
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Figure 7: Grep costs as a function of git pulls with warm
cache and varying system RAM on ext4 (top) and F2FS
(bottom). Lower is better.

cycle 20. However, the aged version of BetrFS does not
slow down. As with the other HDD experiments, dy-
namic layout score is moderately correlated (−0.63) with
grep cost.

8 Conclusion
The experiments above suggest that conventional wis-
dom on fragmentation, aging, allocation and file systems
is inadequate in several ways.

First, while it may seem intuitive to write data as few
times as possible, writing data only once creates a ten-
sion between the logical ordering of the file system’s cur-
rent state and the potential to make modifications with-
out disrupting the future order. Rewriting data multiple
times allows the file system to maintain locality. The
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Figure 8: Aging and write amplification on Btrfs, with
varying node sizes, under the git aging benchmark.

overhead of these multiple writes can be managed by
rewriting data in batches, as is done in write-optimized
dictionaries.

For example, in BetrFS, data might be written as many
as a logarithmic number of times, whereas in ext4, it will
be written once, yet BetrFS in general is able to perform
as well as or better than an unaged ext4 file system and
significantly outperforms aged ext4 file systems.

Second, today’s file system heuristics are not able to
maintain enough locality to enable reads to be performed
at the disks natural transfer size. And since the natural
transfer size on a rotating disk is a function of the seek
time and bandwidth, it will tend to increase with time.
Thus we expect this problem to possibly become worse
with newer hardware, not better.
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Figure 9: Mailserver performance and layout scores.

We experimentally confirmed our expectation that
non-write-optimized file systems would age, but we were
surprised by how quickly and dramatically aging impacts
performance. This rapid aging is important: a user’s ex-
perience with unaged file systems is likely so fleeting that
they do not notice performance degradation. Instead, the
performance costs of aging are built into their expecta-
tions of file system performance.

Finally, because representative aging is a difficult goal,
simulating multi-year workloads, many research papers
benchmark on unaged file systems. Our results indicate
that it is relatively easy to quickly drive a file system into
an aged state—even if this state is not precisely the state
of the file system after, say, three years of typical use—
and this degraded state can be easily measured.
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Abstract
Traditionally, file systems were implemented as part

of OS kernels. However, as complexity of file systems
grew, many new file systems began being developed in
user space. Nowadays, user-space file systems are often
used to prototype and evaluate new approaches to file
system design. Low performance is considered the main
disadvantage of user-space file systems but the extent
of this problem has never been explored systematically.
As a result, the topic of user-space file systems remains
rather controversial: while some consider user-space file
systems a toy not to be used in production, others de-
velop full-fledged production file systems in user space.
In this paper we analyze the design and implementa-
tion of the most widely known user-space file system
framework—FUSE—and characterize its performance
for a wide range of workloads. We instrumented FUSE
to extract useful statistics and traces, which helped us an-
alyze its performance bottlenecks and present our anal-
ysis results. Our experiments indicate that depending on
the workload and hardware used, performance degrada-
tion caused by FUSE can be completely imperceptible
or as high as –83% even when optimized; and relative
CPU utilization can increase by 31%.

1 Introduction
File systems offer a common interface for applications to
access data. Although micro-kernels implement file sys-
tems in user space [1, 16], most file systems are part of
monolithic kernels [6, 22, 34]. Kernel implementations
avoid the high message-passing overheads of micro-
kernels and user-space daemons [7, 14].

In recent years, however, user-space file systems
rose in popularity for four reasons. (1) Several stack-
able file systems add specialized functionality over ex-
isting file systems (e.g., deduplication and compres-
sion [19, 31]). (2) In academia and R&D settings, this
framework enabled quick experimentation and prototyp-
ing of new approaches [3, 9, 15, 21, 40]. (3) Several
existing kernel-level file systems were ported to user
space (e.g., ZFS [45], NTFS [25]). (4) More companies
rely on user-space implementations: IBM’S GPFS [30]
and LTFS [26], Nimble Storage’s CASL [24], Apache’s
HDFS [2], Google File System [13], RedHat’s Glus-
terFS [29], Data Domain’s DDFS [46], etc.

Increased file systems complexity is a contributing
factor to user-space file systems’ growing popularity
(e.g., Btrfs is over 85 KLoC). User space code is eas-
ier to develop, port, and maintain. Kernel bugs can crash

whole systems, whereas user-space bugs’ impact is more
contained. Many libraries and programming languages
are available in user-space in multiple platforms.

Although user-space file systems are not expected
to displace kernel file systems entirely, they undoubt-
edly occupy a growing niche, as some of the more
heated debates between proponents and opponents in-
dicate [20,39,41]. The debates center around two trade-
off factors: (1) how large is the performance overhead
caused by a user-space implementations and (2) how
much easier is it to develop in user space. Ease of de-
velopment is highly subjective, hard to formalize and
therefore evaluate; but performance is easier to evalu-
ate empirically. Oddly, little has been published on the
performance of user-space file system frameworks.

In this paper we use a popular user-space file system
framework, FUSE, and characterize its performance. We
start with a detailed explanation of FUSE’s design and
implementation for four reasons: (1) the architecture is
somewhat complex; (2) little information on internals is
available publicly; (3) FUSE’s source code can be dif-
ficult to analyze, with complex asynchrony and user-
kernel communications; and (4) as FUSE’s popularity
grows, a detailed analysis of its implementation becomes
of high value to many.

We developed a simple pass-through stackable file
system in FUSE and then evaluated its performance
when layered on top of Ext4 compared to native Ext4.
We used a wide variety of micro- and macro-workloads,
and different hardware using basic and optimized config-
urations of FUSE. We found that depending on the work-
load and hardware, FUSE can perform as well as Ext4,
but in the worst cases can be 3× slower. Next, we de-
signed and built a rich instrumentation system for FUSE
to gather detailed performance metrics. The statistics ex-
tracted are applicable to any FUSE-based systems. We
then used this instrumentation to identify bottlenecks in
FUSE, and to explain why, for example, its performance
varied greatly for different workloads.

2 FUSE Design
FUSE—Filesystem in Userspace—is the most widely
used user-space file system framework [35]. According
to the most modest estimates, at least 100 FUSE-based
file systems are readily available on the Web [36]. Al-
though other, specialized implementations of user-space
file systems exist [30,32,42], we selected FUSE for this
study because of its high popularity.

Although many file systems were implemented using
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FUSE—thanks mainly to the simple API it provides—
little work was done on understanding its internal ar-
chitecture, implementation, and performance [27]. For
our evaluation it was essential to understand not only
FUSE’s high-level design but also some details of its im-
plementation. In this section we first describe FUSE’s
basics and then we explain certain important implemen-
tation details. FUSE is available for several OSes: we
selected Linux due to its wide-spread use. We analyzed
the code of and ran experiments on the latest stable ver-
sion of the Linux kernel available at the beginning of the
project—v4.1.13. We also used FUSE library commit
#386b1b; on top of FUSE v2.9.4, this commit contains
several important patches which we did not want exclude
from our evaluation. We manually examined all new
commits up to the time of this writing and confirmed
that no new major features or improvements were added
to FUSE since the release of the selected versions.

2.1 High-Level Architecture

K
e
r
n

e
l

e
u
e

Q

Application
FUSE file−system daemon

U
s
e
r

Kernel−based
file system

VFS
cache

driver

FUSE u

/dev/fuse

FUSE library

Other kernel

subsystems

Figure 1: FUSE high-level architecture.

FUSE consists of a kernel part and a user-level dae-
mon. The kernel part is implemented as a Linux kernel
module that, when loaded, registers a fuse file-system
driver with Linux’s VFS. This Fuse driver acts as a proxy
for various specific file systems implemented by differ-
ent user-level daemons.

In addition to registering a new file system, FUSE’s
kernel module also registers a /dev/fuse block de-
vice. This device serves as an interface between user-
space FUSE daemons and the kernel. In general, dae-
mon reads FUSE requests from /dev/fuse, processes
them, and then writes replies back to /dev/fuse.

Figure 1 shows FUSE’s high-level architecture. When
a user application performs some operation on a
mounted FUSE file system, the VFS routes the operation
to FUSE’s kernel driver. The driver allocates a FUSE
request structure and puts it in a FUSE queue. At this
point, the process that submitted the operation is usu-
ally put in a wait state. FUSE’s user-level daemon then
picks the request from the kernel queue by reading from
/dev/fuse and processes the request. Processing the
request might require re-entering the kernel again: for
example, in case of a stackable FUSE file system, the
daemon submits operations to the underlying file system
(e.g., Ext4); or in case of a block-based FUSE file sys-

tem, the daemon reads or writes from the block device.
When done with processing the request, the FUSE dae-
mon writes the response back to /dev/fuse; FUSE’s
kernel driver then marks the request as completed and
wakes up the original user process.

Some file system operations invoked by an application
can complete without communicating with the user-level
FUSE daemon. For example, reads from a file whose
pages are cached in the kernel page cache, do not need
to be forwarded to the FUSE driver.

2.2 Implementation Details
We now discuss several important FUSE implemen-
tation details: the user-kernel protocol, library and
API levels, in-kernel FUSE queues, splicing, multi-
threading, and write-back cache.

Group (#) Request Types
Special (3) INIT, DESTROY, INTERRUPT
Metadata (14) LOOKUP, FORGET, BATCH FORGET,

CREATE, UNLINK, LINK, RENAME, RE-
NAME2, OPEN, RELEASE, STATFS,
FSYNC, FLUSH, ACCESS

Data (2) READ, WRITE

Attributes (2) GETATTR, SETATTR

Extended SETXATTR, GETXATTR,
Attributes (4) LISTXATTR, REMOVEXATTR

Symlinks (2) SYMLINK, READLINK

Directory (7) MKDIR, RMDIR, OPENDIR, RE-
LEASEDIR, READDIR, READDIRPLUS,
FSYNCDIR

Locking (3) GETLK, SETLK, SETLKW

Misc (6) BMAP, FALLOCATE, MKNOD, IOCTL,
POLL, NOTIFY REPLY

Table 1: FUSE request types, by group (whose size is in paren-
thesis). Requests we discuss in the text are in bold.

User-kernel protocol. When FUSE’s kernel driver
communicates to the user-space daemon, it forms a
FUSE request structure. Requests have different types
depending on the operation they convey. Table 1 lists all
43 FUSE request types, grouped by their semantics. As
seen, most requests have a direct mapping to traditional
VFS operations: we omit discussion of obvious requests
(e.g., READ, CREATE) and instead next focus on those
less intuitive request types (marked bold in Table 1).

The INIT request is produced by the kernel when a
file system is mounted. At this point user space and
kernel negotiate (1) the protocol version they will op-
erate on (7.23 at the time of this writing), (2) the set of
mutually supported capabilities (e.g., READDIRPLUS or
FLOCK support), and (3) various parameter settings (e.g.,
FUSE read-ahead size, time granularity). Conversely,
the DESTROY request is sent by the kernel during the
file system’s unmounting process. When getting a DE-
STROY, the daemon is expected to perform all necessary
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cleanups. No more requests will come from the kernel
for this session and subsequent reads from /dev/fuse
will return 0, causing the daemon to exit gracefully.

The INTERRUPT request is emitted by the kernel if
any previously sent requests are no longer needed (e.g.,
when a user process blocked on a READ is terminated).
Each request has a unique sequence# which INTERRUPT
uses to identify victim requests. Sequence numbers are
assigned by the kernel and are also used to locate com-
pleted requests when the user space replies.

Every request also contains a node ID—an unsigned
64-bit integer identifying the inode both in kernel and
user spaces. The path-to-inode translation is performed
by the LOOKUP request. Every time an existing inode
is looked up (or a new one is created), the kernel keeps
the inode in the inode cache. When removing an in-
ode from the dcache, the kernel passes the FORGET re-
quest to the user-space daemon. At this point the dae-
mon might decide to deallocate any corresponding data
structures. BATCH FORGET allows kernel to forget mul-
tiple inodes with a single request.

An OPEN request is generated, not surprisingly, when
a user application opens a file. When replying to this re-
quest, a FUSE daemon has a chance to optionally assign
a 64-bit file handle to the opened file. This file handle
is then returned by the kernel along with every request
associated with the opened file. The user-space daemon
can use the handle to store per-opened-file information.
E.g., a stackable file system can store the descriptor of
the file opened in the underlying file system as part of
FUSE’s file handle. FLUSH is generated every time an
opened file is closed; and RELEASE is sent when there
are no more references to a previously opened file.

OPENDIR and RELEASEDIR requests have the same
semantics as OPEN and RELEASE, respectively, but for
directories. The READDIRPLUS request returns one or
more directory entries like READDIR, but it also includes
metadata information for each entry. This allows the ker-
nel to pre-fill its inode cache (similar to NFSv3’s READ-
DIRPLUS procedure [4]).

When the kernel evaluates if a user process has per-
missions to access a file, it generates an ACCESS request.
By handling this request, the FUSE daemon can imple-
ment custom permission logic. However, typically users
mount FUSE with the default permissions option that al-
lows kernel to grant or deny access to a file based on
its standard Unix attributes (ownership and permission
bits). In this case no ACCESS requests are generated.
Library and API levels. Conceptually, the FUSE li-
brary consists of two levels. The lower level takes care
of (1) receiving and parsing requests from the kernel,
(2) sending properly formatted replies, (3) facilitating
file system configuration and mounting, and (4) hiding
potential version differences between kernel and user

  

 

Fuse

Kernel

DriverPage

Cache

User

Process

K
E

R
N

E
L

U
S

E
R

Async

sync, interrupts

H

T

H

T

sync

async

FUSE
Daemon

T T T

H H

ForgetsProcessingPendingBackground Interrupts

Forgets

Dentry/Inode

Cache

r
e
p

ly

Forgets

Interrupts

Figure 2: The organization of FUSE queues marked with their
Head and Tail. The processing queue does not have a tail
because the daemon replies in an arbitrary order.

space. This part exports the low-level FUSE API.
The High-level FUSE API builds on top of the low-

level API and allows developers to skip the implemen-
tation of the path-to-inode mapping. Therefore, neither
inodes nor lookup operations exist in the high-level API,
easing the code development. Instead, all high-level API
methods operate directly on file paths. The high-level
API also handles request interrupts and provides other
convenient features: e.g., developers can use the more
common chown(), chmod(), and truncate()
methods, instead of the lower-level setattr(). File
system developers must decide which API to use, by bal-
ancing flexibility vs. development ease.
Queues. In Section 2.1 we mentioned that FUSE’s
kernel has a request queue. FUSE actually maintains
five queues as seen in Figure 2: (1) interrupts, (2) for-
gets, (3) pending, (4) processing, and (5) background. A
request belongs to only one queue at any time. FUSE
puts INTERRUPT requests in the interrupts queue, FOR-
GET requests in the forgets queue, and synchronous re-
quests (e.g., metadata) in the pending queue. When a
file-system daemon reads from /dev/fuse, requests
are transferred to the user daemon as follows: (1) Pri-
ority is given to requests in the interrupts queue; they
are transferred to the user space before any other re-
quest. (2) FORGET and non-FORGET requests are se-
lected fairly: for each 8 non-FORGET requests, 16 FOR-
GET requests are transferred. This reduces the bursti-
ness of FORGET requests, while allowing other requests
to proceed. The oldest request in the pending queue is
transferred to the user space and simultaneously moved
to the processing queue. Thus, processing queue re-
quests are currently processed by the daemon. If the
pending queue is empty then the FUSE daemon is
blocked on the read call. When the daemon replies to
a request (by writing to /dev/fuse), the correspond-
ing request is removed from the processing queue.

The background queue is for staging asynchronous
requests. In a typical setup, only read requests go to
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the background queue; writes go to the background
queue too but only if the writeback cache is enabled. In
such configurations, writes from the user processes are
first accumulated in the page cache and later bdflush
threads wake up to flush dirty pages [8]. While flush-
ing the pages FUSE forms asynchronous write requests
and puts them in the background queue. Requests from
the background queue gradually trickle to the pending
queue. FUSE limits the number of asynchronous re-
quests simultaneously residing in the pending queue to
the configurable max background parameter (12 by
default). When fewer than 12 asynchronous requests
are in the pending queue, requests from the background
queue are moved to the pending queue. The intention is
to limit the delay caused to important synchronous re-
quests by bursts of background requests.

The queues’ lengths are not explicitly limited. How-
ever, when the number of asynchronous requests in the
pending and processing queues reaches the value of the
tunable congestion threshold parameter (75%
of max background, 9 by default), FUSE informs the
Linux VFS that it is congested; the VFS then throttles
the user processes that write to this file system.
Splicing and FUSE buffers. In its basic setup, the
FUSE daemon has to read() requests from and
write() replies to /dev/fuse. Every such call
requires a memory copy between the kernel and user
space. It is especially harmful for WRITE requests and
READ replies because they often process a lot of data.
To alleviate this problem, FUSE can use splicing func-
tionality provided by the Linux kernel [38]. Splicing
allows the user space to transfer data between two in-
kernel memory buffers without copying the data to user
space. This is useful, e.g., for stackable file systems that
pass data directly to the underlying file system.

To seamlessly support splicing, FUSE represents its
buffers in one of two forms: (1) a regular memory re-
gion identified by a pointer in the user daemon’s ad-
dress space, or (2) a kernel-space memory pointed by
a file descriptor. If a user-space file system implements
the write buf() method, then FUSE splices the data
from /dev/fuse and passes the data directly to this
method in a form of the buffer containing a file descrip-
tor. FUSE splices WRITE requests that contain more than
a single page of data. Similar logic applies to replies to
READ requests with more than two pages of data.
Multithreading. FUSE added multithreading support
as parallelism got more popular. In multi-threaded
mode, FUSE’s daemon starts with one thread. If there
are two or more requests available in the pending queue,
FUSE automatically spawns additional threads. Every
thread processes one request at a time. After process-
ing the request, each thread checks if there are more
than 10 threads; if so, that thread exits. There is no

explicit upper limit on the number of threads created
by the FUSE library. An implicit limit exists for two
reasons: (1) by default, only 12 asynchronous requests
(max background parameter) can be in the pend-
ing queue at one time; and (2) the number of syn-
chronous requests in the pending queue depends on the
total amount of I/O activity generated by user processes.
In addition, for every INTERRUPT and FORGET requests,
a new thread is invoked. In a typical system where there
is no interrupts support and few FORGETs are generated,
the total number of FUSE daemon threads is at most
(12 + number of requests in pending queue).

Write back cache and max writes. The basic write
behavior of FUSE is synchronous and only 4KB of data
is sent to the user daemon for writing. This results in per-
formance problems on certain workloads; when copy-
ing a large file into a FUSE file system, /bin/cp indi-
rectly causes every 4KB of data to be sent to userspace
synchronously. The solution FUSE implemented was to
make FUSE’s page cache support a write-back policy
and then make writes asynchronous. With that change,
file data can be pushed to the user daemon in larger
chunks of max write size (limited to 32 pages).

3 Instrumentation
To study FUSE’s performance, we developed a simple
stackable passthrough file system—called Stackfs—and
instrumented FUSE’s kernel module and user-space li-
brary to collect useful statistics and traces. We believe
that the instrumentation presented here is useful for any-
one who develops a FUSE-based file system.

3.1 Stackfs
Stackfs is a file system that passes FUSE requests un-
modified directly to the underlying file system. The rea-
son for Stackfs was twofold. (1) After examining the
code of all publicly available [28, 43] FUSE-based file
systems, we found that most of them are stackable (i.e.,
deployed on top of other, often in-kernel file systems).
(2) We wanted to add as little overhead as possible, to
isolate the overhead of FUSE’s kernel and library.

Complex production file systems often need a high de-
gree of flexibility, and thus use FUSE’s low-level API.
As such file systems are our primary focus, we imple-
mented Stackfs using FUSE’s low-level API. This also
avoided the overheads added by the high-level API. Be-
low we describe several important data structures and
procedures that Stackfs uses.

Inode. Stackfs stores per-file metadata in an inode.
Stackfs’s inode is not persistent and exists in memory
only while the file system is mounted. Apart from book-
keeping information, the inode stores the path to the un-
derlying file, its inode number, and a reference counter.
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The path is used, e.g., to open the underlying file when
an OPEN request for a Stackfs file arrives.
Lookup. During lookup, Stackfs uses stat(2) to
check if the underlying file exists. Every time a file is
found, Stackfs allocates a new inode and returns the re-
quired information to the kernel. Stackfs assigns its in-
ode the number equal to the address of the inode struc-
ture in memory (by typecasting), which is guaranteed to
be unique. This allows Stackfs to quickly find the inode
structure for any operations following the lookup (e.g.,
open or stat). The same inode can be looked up sev-
eral times (e.g., due to hardlinks) and therefore Stackfs
stores inodes in a hash table indexed by the underlying
inode number. When handling LOOKUP, Stackfs checks
the hash table to see whether the inode was previously
allocated and, if found, increases its reference counter
by one. When a FORGET request arrives for an inode,
Stackfs decreases inode’s reference count and deallo-
cates the inode when the count drops to zero.
File create and open. During file creation, Stackfs
adds a new inode to the hash table after the correspond-
ing file was successfully created in the underlying file
system. While processing OPEN requests, Stackfs saves
the file descriptor of the underlying file in the file han-
dle. The file descriptor is then used during read and write
operations and deallocated when the file is closed.

3.2 Performance Statistics and Traces
The existing FUSE instrumentation was insufficient for
in-depth FUSE performance analysis. We therefore in-
strumented FUSE to export important runtime statistics.
Specifically, we were interested in recording the dura-
tion of time that FUSE spends in various stages of re-
quest processing, both in kernel and user space.

We introduced a two-dimensional array where a row
index (0–42) represents the request type and the column
index (0–31) represents the time. Every cell in the array
stores the number of requests of a corresponding type
that were processed within the 2N+1–2N+2 nanosec-
onds where N is the column index. The time dimension
therefore covers the interval of up to 8 seconds which
is enough in typical FUSE setups. (This technique effi-
ciently records a log2 latency histogram [18].) We then
added four such arrays to FUSE: the first three arrays
are in the kernel, capturing the time spent by the re-
quest inside the background, pending, and processing
queues. For the processing queue, the captured time also
includes the time spent by requests in user space. The
fourth array is in user space and tracks the time the dae-
mon needs to process a request. The total memory size
of all four arrays is only 48KiB and only few instructions
are necessary to update values in the array.

FUSE includes a special fusectl file system
to allow users to control several aspects of FUSE’s

behavior. This file system is usually mounted at
/sys/fs/fuse/connections/ and creates a di-
rectory for every mounted FUSE instance. Every direc-
tory contains control files to abort a connection, check
the total number of requests being processed, and adjust
the upper limit and the threshold on the number of back-
ground requests (see Section 2.2). We added 3 new files
to these directories to export statistics from the in-kernel
arrays. To export user-level array we added SIGUSR1
signal handler to the daemon. When triggered, the han-
dler prints the array to a log file specified during the dae-
mon’s start. The statistics captured have no measurable
overhead on FUSE’s performance and are the primary
source of information about FUSE’s performance.
Tracing. To understand FUSE’s behavior in more de-
tail we sometimes needed more information and had to
resort to tracing. FUSE’s library already performs trac-
ing when the daemon runs in debug mode but there is
no tracing support for FUSE’s kernel module. We used
Linux’s static tracepoint mechanism [10] to add over 30
tracepoints mainly to monitor the formation of requests
during the complex writeback logic, reads, and some
metadata operations. Tracing helped us learn how fast
queues grow during our experiments, how much data is
put into a single request, and why.

Both FUSE’s statistics and tracing can be used by any
existing and future FUSE-based file systems. The in-
strumentation is completely transparent and requires no
changes to file-system-specific code.

4 Methodology
FUSE has evolved significantly over the years and added
several useful optimizations: writeback cache, zero-
copy via splicing, and multi-threading. In our per-
sonal experience, some in the storage community tend to
pre-judge FUSE’s performance—assuming it is poor—
mainly due to not having information about the improve-
ments FUSE made over the years. We therefore de-
signed our methodology to evaluate and demonstrate
how FUSE’s performance advanced from its basic con-
figurations to ones that include all of the latest optimiza-
tions. We now detail our methodology, starting from the
description of FUSE configurations, proceed to the list
of workloads, and finally present our testbed.
FUSE configurations. To demonstrate the evolution
of FUSE’s performance, we picked two configurations
on opposite ends of the spectrum: the basic configu-
ration (called StackfsBase) with no major FUSE opti-
mizations and the optimized configuration (called Stack-
fsOpt) that enables all FUSE improvements available
as of this writing. Compared to StackfsBase, the
StackfsOpt configuration adds the following features:
(1) writeback cache is turned on; (2) maximum size
of a single FUSE request is increased from 4KiB to
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128KiB (max write parameter); (3) user daemon runs
in the multi-threaded mode; (4) splicing is activated for
all operations (splice read, splice write, and
splice move parameters). We left all other parame-
ters at their default values in both configurations.
Workloads. To stress different modes of FUSE op-
eration and conduct an thorough performance charac-
terization, we selected a broad set of workloads: mi-
cro and macro, metadata- and data-intensive, and also
experimented with a wide range of I/O sizes and par-
allelism levels. Table 2 describes all workloads that
we employed. To simplify the identification of work-
loads in the text we use the following mnemonics: rnd
stands for random, seq for sequential, rd for reads,
wr for writes, cr for creates, and del for deletes.
The presence of Nth and Mf substrings in a workload
name means that the workload contains N threads and M
files, respectively. We fixed the amount of work (e.g.,
the number of reads in rd workloads) rather than the
amount of time in every experiment. We find it eas-
ier to analyze performance in experiments with a fixed
amount of work. We picked a sufficient amount of
work so that the performance stabilized. Resulting run-
times varied between 8 and 20 minutes across the exper-
iments. Because SSDs are orders of magnitude faster
than HDDs, for some workloads we selected a larger
amount of work for our SSD-based experiments. We
used Filebench [12, 37] to generate all workloads.
Experimental setup. FUSE performance depends
heavily on the speed of the underlying storage: faster de-
vices expose FUSE’s own overheads. We therefore ex-
perimented with two common storage devices of differ-
ent speed: an HDD (Seagate Savvio 15K.2, 15KRPM,
146GB) and an SSD (Intel X25-M SSD, 200GB). Both
devices were installed in three identical Dell PowerEdge
R710 machines with 4-core Intel Xeon E5530 2.40GHz
CPU each. The amount of RAM available to the OS was
set to 4GB to accelerate cache warmup in our experi-
ments. The machines ran CentOS 7 with Linux kernel
upgraded to v4.1.13 and FUSE library commit #386b1b.

We used Ext4 [11] as the underlying file system be-
cause it is common, stable, and has a well documented
design which facilitates performance analysis. Before
every experiment we reformatted the storage devices
with Ext4 and remounted the file systems. To lower
the variability in our experiments we disabled Ext4’s
lazy inode initialization [5]. In either case, standard de-
viations in our experiments were less than 2% for all
workloads except for three: seq-rd-1th-1f (6%),
files-rd-32th (7%), and mail-server (7%).

5 Evaluation
For many, FUSE is just a practical tool to build real prod-
ucts or prototypes, but not a research focus. To present

our results more effectively, we split the evaluation in
two. Section 5.1 overviews our extensive evaluation
results—most useful information for many practitioners.
Detailed performance analysis follows in Section 5.2.

5.1 Performance Overview
To evaluate FUSE’s performance degradation, we first
measured the throughput (in ops/sec) achieved by native
Ext4 and then measured the same for Stackfs deployed
over Ext4. As detailed in Section 4 we used two config-
urations of Stackfs: a basic (StackfsBase) and optimized
(StackfsOpt) one. From here on, we use Stackfs to re-
fer to both of these configurations. We then calculated
the relative performance degradation (or improvement)
of Stackfs vs. Ext4 for each workload. Table 3 shows
absolute throughputs for Ext4 and relative performance
for two Stackfs configurations for both HDD and SSD.

For better clarity we categorized the results by
Stackfs’s performance difference into four classes:
(1) The Green class (marked with +) indicates that the
performance either degraded by less than 5% or actu-
ally improved; (2) The Yellow class (*) includes results
with the performance degradation in the 5–25% range;
(3) The Orange class (#) indicates that the performance
degradation is between 25–50%; And finally, (4) the Red
class (!) is for when performance decreased by more than
50%. Although the ranges for acceptable performance
degradation depend on the specific deployment and the
value of other benefits provided by FUSE, our classifi-
cation gives a broad overview of FUSE’s performance.
Below we list our main observations that characterize
the results. We start from the general trends and move to
more specific results towards the end of the list.

Observation 1. The relative difference varied across
workloads, devices, and FUSE configurations from
–83.1% for files-cr-1th [row #37] to +6.2% for
web-server [row #45].

Observation 2. For many workloads, FUSE’s opti-
mizations improve performance significantly. E.g., for
the web-server workload, StackfsOpt improves per-
formance by 6.2% while StackfsBase degrades it by
more than 50% [row #45].

Observation 3. Although optimizations increase the
performance of some workloads, they can degrade the
performance of others. E.g., StackfsOpt decreases
performance by 35% more than StackfsBase for the
files-rd-1th workload on SSD [row #39].

Observation 4. In the best performing configuration
of Stackfs (among StackfsOpt and StackfsBase) only
two file-create workloads (out of a total 45 workloads)
fell into the red class: files-cr-1th [row #37] and
files-cr-32th [row #38].
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Workload Name Description Results
seq-rd-Nth-1f N threads (1, 32) sequentially read from a single preallocated 60GB file. [rows #1–8]
seq-rd-32th-32f 32 threads sequentially read 32 preallocated 2GB files. Each thread reads its own file. [rows #9–12]
rnd-rd-Nth-1f N threads (1, 32) randomly read from a single preallocated 60GB file. [rows #13–20]
seq-wr-1th-1f Single thread creates and sequentially writes a new 60GB file. [rows #21–24]
seq-wr-32th-32f 32 threads sequentially write 32 new 2GB files. Each thread writes its own file. [rows #25–28]
rnd-wr-Nth-1f N threads (1, 32) randomly write to a single preallocated 60GB file. [rows #29–36]
files-cr-Nth N threads (1, 32) create 4 million 4KB files over many directories. [rows #37–38]
files-rd-Nth N threads (1, 32) read from 1 million preallocated 4KB files over many directories. [rows #39–40]
files-del-Nth N threads (1, 32) delete 4 million of preallocated 4KB files over many directories. [rows #41–42]
file-server File-server workload emulated by Filebench. Scaled up to 200,000 files. [row #43]
mail-server Mail-server workload emulated by Filebench. Scaled up to 1.5 million files. [row #44]
web-server Web-server workload emulated by Filebench. Scaled up to 1.25 million files. [row #45]

Table 2: Description of workloads and their corresponding result rows. For data-intensive workloads, we experimented with 4KB,
32KB, 128KB, and 1MB I/O sizes. We picked dataset sizes so that both cached and non-cached data are exercised. The Results
column correlates these descriptions with results in Table 3.

Observation 5. Stackfs’s performance depends signif-
icantly on the underlying device. E.g., for sequential
read workloads [rows #1–12], Stackfs shows no per-
formance degradation for SSD and a 26–42% degrada-
tion for HDD. The situation is reversed, e.g., when a
mail-server [row #44] workload is used.

Observation 6. At least in one Stackfs configuration,
all write workloads (sequential and random) [rows #21–
36] are within the Green class for both HDD and SSD.

Observation 7. The performance of sequential read
[rows #1–12] are well within the Green class for both
HDD and SSD; however, for the seq-rd-32th-32f
workload [rows #5–8] on HDD, they are in Orange
class. Random read workload results [rows #13–20]
span all four classes. Furthermore, the performance
grows as I/O sizes increase for both HDD and SSD.

Observation 8. In general, Stackfs performs visi-
bly worse for metadata-intensive and macro workloads
[rows #37–45] than for data-intensive workloads [rows
#1–36]. The performance is especially low for SSDs.

Observation 9. The relative CPU utilization of Stackfs
(not shown in the Table) is higher than that of Ext4 and
varies in the range of +0.13% to +31.2%; similarly, CPU
cycles per operation increased by 1.2× to 10× times be-
tween Ext4 and Stackfs (in both configurations). This
behavior is seen in both HDD and SSD.

Observation 10. CPU cycles per operation are
higher for StackfsOpt than for StackfsBase for
the majority of workloads. But for the work-
loads seq-wr-32th-32f [rows #25–28] and
rnd-wr-1th-1f [rows #30–32], StackfsOpt con-
sumes fewer CPU cycles per operation.

5.2 Analysis
We analyzed FUSE performance results and present
main findings here, following the order in Table 3.

5.2.1 Read Workloads
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Figure 3: Different types and number of requests generated by
StackfsBase on SSD during the seq-rd-32th-32f work-
load, from left to right, in their order of generation.

Figure 3 demonstrates the types of requests that were
generated with the seq-rd-32th-32f workload. We
use seq-rd-32th-32f as a reference for the figure
because this workload has more requests per operation
type compared to other workloads. Bars are ordered
from left to right by the appearance of requests in the ex-
periment. The same request types, but in different quan-
tities, were generated by the other read-intensive work-
loads [rows #1–20]. For the single threaded read work-
loads, only one request per LOOKUP, OPEN, FLUSH, and
RELEASE type was generated. The number of READ
requests depended on the I/O size and the amount of
data read; INIT request is produced at mount time so its
count remained the same across all workloads; and fi-
nally GETATTR is invoked before unmount for the root
directory and was the same for all the workloads.

Figure 3 also shows the breakdown of requests by
queues. By default, READ, RELEASE, and INIT are asyn-
chronous; they are added to the background queue first.
All other requests are synchronous and are added to
pending queue directly. In read workloads, only READ
requests are generated in large numbers. Thus, we dis-
cuss in detail only READ requests for these workloads.
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HDD Results SSD Results# Workload I/O Size
(KB) EXT4

(ops/sec)
StackfsBase
(%Diff)

StackfsOpt
(%Diff)

EXT4
(ops/sec)

StackfsBase
(%Diff)

StackfsOpt
(%Diff)

1 4 38382 - 2.45+ + 1.7+ 30694 - 0.5+ - 0.9+

2 32 4805 - 0.2+ - 2.2+ 3811 + 0.8+ + 0.3+

3 128 1199 - 0.86+ - 2.1+ 950 + 0.4+ + 1.7+

4

seq-rd-
1th-1f

1024 150 - 0.9+ - 2.2+ 119 + 0.2+ - 0.3+

5 4 1228400 - 2.4+ - 3.0+ 973450 + 0.02+ + 2.1+

6 32 153480 - 2.4+ - 4.1+ 121410 + 0.7+ + 2.2+

7 128 38443 - 2.6+ - 4.4+ 30338 + 1.5+ + 1.97+

8

seq-rd-
32th-1f

1024 4805 - 2.5+ - 4.0+ 3814.50 - 0.1+ - 0.4+

9 4 11141 - 36.9# - 26.9# 32855 - 0.1+ - 0.16+

10 32 1491 - 41.5# - 30.3# 4202 - 0.1+ - 1.8+

11 128 371 - 41.3# - 29.8# 1051 - 0.1+ - 0.2+

12

seq-rd-
32th-32f

1024 46 - 41.0# - 28.3# 131 - 0.03+ - 2.1+

13 4 243 - 9.96* - 9.95* 4712 - 32.1# - 39.8#

14 32 232 - 7.4* - 7.5* 2032 - 18.8* - 25.2#

15 128 191 - 7.4* - 5.5* 852 - 14.7* - 12.4*

16

rnd-rd-
1th-1f

1024 88 - 9.0* -3.1+ 114 - 15.3* -1.5+

17 4 572 - 60.4! -23.2* 24998 - 82.5! -27.6#

18 32 504 - 56.2! -17.2* 4273 - 55.7! -1.9+

19 128 278 - 34.4# -11.4* 1123 - 29.1# -2.6+

20

rnd-rd-
32th-1f

1024 41 - 37.0# -15.0* 126 - 12.2* -1.9+

21 4 36919 -26.2# - 0.1+ 32959 - 9.0* + 0.1+

22 32 4615 - 17.8* - 0.16+ 4119 - 2.5+ + 0.12+

23 128 1153 - 16.6* - 0.15+ 1030 - 2.1+ + 0.1+

24

seq-wr-
1th-1f

1024 144 - 17.7* -0.31+ 129 - 2.3+ - 0.08+

25 4 34370 - 2.5+ + 0.1+ 32921 + 0.05+ + 0.2+

26 32 4296 - 2.7+ + 0.0+ 4115 + 0.1+ + 0.1+

27 128 1075 - 2.6+ - 0.02+ 1029 - 0.04+ + 0.2+

28

seq-wr-
32th-32f

1024 134 - 2.4+ - 0.18+ 129 - 0.1+ + 0.2+

29 4 1074 - 0.7+ - 1.3+ 16066 + 0.9+ - 27.0#

30 32 708 - 0.1+ - 1.3+ 4102 - 2.2+ - 13.0*

31 128 359 - 0.1+ - 1.3+ 1045 - 1.7+ - 0.7+

32

rnd-wr-
1th-1f

1024 79 - 0.01+ - 0.8+ 129 - 0.02+ - 0.3+

33 4 1073 - 0.9+ - 1.8+ 16213 - 0.7+ - 26.6#

34 32 705 + 0.1+ - 0.7+ 4103 - 2.2+ - 13.0*

35 128 358 + 0.3+ - 1.1+ 1031 - 0.1+ + 0.03+

36

rnd-wr-
32th-1f

1024 79 + 0.1+ - 0.3+ 128 + 0.9+ - 0.3+

37 files-cr-1th 4 30211 - 57! - 81.0! 35361 - 62.2! - 83.3!

38 files-cr-32th 4 36590 - 50.2! - 54.9! 46688 - 57.6! - 62.6!

39 files-rd-1th 4 645 + 0.0+ - 10.6* 8055 - 25.0* - 60.3!

40 files-rd-32th 4 1263 - 50.5! -4.5+ 25341 - 74.1! -33.0#

41 files-del-1th - 1105 - 4.0+ - 10.2* 7391 - 31.6# - 60.7!

42 files-del-32th - 1109 - 2.8+ - 6.9* 8563 - 42.9# - 52.6!

43 file-server - 1705 - 26.3# -1.4+ 5201 - 41.2# -1.5+

44 mail-server - 1547 - 45.0# -4.6+ 11806 - 70.5! -32.5#

45 web-server - 1704 - 51.8! +6.2+ 19437 - 72.9! -17.3*

Table 3: List of workloads and corresponding performance results. Green class (marked with +) indicates that the performance
either degraded by less than 5% or actually improved; Yellow class (*) includes results with the performance degradation in the
5–25% range; Orange class (#) indicates that the performance degradation is between 25–50%; And finally, the Red class (!) is
for when performance decreased by more than 50%.
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Sequential Read using 1 thread on 1 file. The total
number of READ requests that StackfsBase generated
during the whole experiment for different I/O sizes for
HDD and SSD remained approximately the same and
equal to 491K. Our analysis revealed that this happens
because of FUSE’s default 128KB-size readahead which
effectively levels FUSE request sizes no matter what is
the user application I/O size. Thanks to readahead, se-
quential read performance of StackfsBase and Stackf-
sOpt was as good as Ext4 for both HDD and SSD.
Sequential Read using 32 threads on 32 files. Due to
readahead, the total number of READ requests generated
here was also approximately same for different I/O sizes.
At any given time, 32 threads are requesting data and
continuously add requests to queues. StackfsBase and
StackfsOpt show significantly larger performance degra-
dation on HDD compared to SSD. For StackfsBase, the
user daemon is single threaded and the device is slower,
so requests do not move quickly through the queues. On
the faster SSD, however, even though the user daemon
is single threaded, requests move faster in the queues.
Hence performance of StackfsBase is as close to that
of Ext4. With StackfsOpt, the user daemon is multi-
threaded and can fill the HDD’s queue faster so perfor-
mance improved for HDD compared to SSD.

Investigating further, we found that for HDD
and StackfsOpt, FUSE’s daemon was bound by the
max background value (default is 12): at most, only 12
user deamons (threads) were spawned. We increased
that limit to 100 and reran the experiments: now Stackf-
sOpt was within 2% of Ext4’s performance.
Sequential Read using 32 threads on 1 file.
This workload exhibits similar performance trends to
seq-rd-1th-1f. However, because all 32 user
threads read from the same file, they benefit from the
shared page cache. As a result, instead of 32× more
FUSE requests, we saw only up to a 37% increase in
number of requests. This modest increase is because,
in the beginning of the experiment, every thread tries to
read the data separately; but after a certain point in time,
only a single thread’s requests are propagated to the user
daemon while all other threads’ requests are available
in the page cache. Also, having 32 user threads run-
ning left less CPU time available for FUSE’s threads to
execute, thus causing a slight (up to 4.4%) decrease in
performance compared to Ext4.
Random Read using 1 thread on 1 file. Unlike the
case of small sequential reads, small random reads did
not benefit from FUSE’s readahead. Thus, every appli-
cation read call was forwarded to the user daemon which
resulted in an overhead of up to 10% for HDD and 40%
for SSD. The absolute Ext4 throughput is about 20×
higher for SSD than for HDD which explains the higher
penalty on FUSE’s relative performance on SSD.

The smaller the I/O size is, the more READ requests
are generated and the higher FUSE’s overhead tended
to be. This is seen for StackfsOpt where performance
for HDD gradually grows from –10.0% for 4KB to –3%
for 1MB I/O sizes. A similar situation is seen for SSD.
Thanks to splice, StackfsOpt performs better than Stack-
fsBase for large I/O sizes. For 1MB I/O size, the im-
provement is 6% on HDD and 14% on SSD. Interest-
ingly, 4KB I/O sizes have the highest overhead because
FUSE splices requests only if they are larger than 4KB.

Random Read using 32 threads on 1 file. Similar
to the previous experiment (single thread random read),
readahead does not help smaller I/O sizes here: every
user read call is sent to the user daemon and causes
high performance degradation: up to –83% for Stackfs-
Base and –28% for StackfsOpt. The overhead caused by
StackfsBase is high in these experiments (up to –60% for
HDD and –83% for SSD), for both HDD and SSD, and
especially for smaller I/O sizes. This is because when 32
user threads submit a READ request, 31 of those threads
need to wait while the single-threaded user daemon pro-
cesses one request at a time. StackfsOpt reduced perfor-
mance degradation compared to StackfsBase, but not as
much for 4KB I/Os because splice is not used for request
that are smaller or equal to 4KB.

5.2.2 Write Workloads
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Figure 4: Different types of requests that were generated by
StackfsBase on SSD for the seq-wr-32th-32f workload,
from left to right in their order of generation.

We now discuss the behavior of StackfsBase and
StackfsOpt in all write workloads listed in Table 3
[rows #21–36]. Figure 4 shows the different types
of requests that got generated during all write work-
loads, from left to right in their order of generation
(seq-wr-32th-32f is used as a reference). In case
of rnd-wr workloads, CREATE requests are replaced
by OPEN requests, as random writes operate on pre-
allocated files. For all the seq-wr workloads, due to
the creation of files, a GETATTR request was generated to
check permissions of the single directory where the files
were created. Linux VFS caches attributes and therefore
there were fewer than 32 GETATTRs. For single-threaded
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Stages of write() call processing Time
(µs)

Time
(%)

Processing by VFS before passing execu-
tion to FUSE kernel code

1.4 2.4

FUSE request allocation and initialization 3.4 6.0
Waiting in queues and copying to user space 10.7 18.9
Processing by Stackfs daemon, includes
Ext4 execution

24.6 43.4

Processing reply by FUSE kernel code 13.3 23.5
Processing by VFS after FUSE kernel code 3.3 5.8
Total 56.7 100.0

Table 4: Average latencies of a single write request generated
by StackfsBase during seq-wr-4KB-1th-1f workload across
multiple profile points on HDD.

workloads, five operations generated only one request:
LOOKUP, OPEN, CREATE, FLUSH, and RELEASE; how-
ever, the number of WRITE requests was orders of mag-
nitude higher and depended on the amount of data writ-
ten. Therefore, we consider only WRITE requests when
we discuss each workload in detail.

Usually the Linux VFS generates GETXATTR before
every write operation. But in our case StackfsBase
and StackfsOpt did not support extended attributes and
the kernel cached this knowledge after FUSE returned
ENOSUPPORT for the first GETXATTR.

Sequential Write using 1 thread on 1 file. The to-
tal number of WRITE requests that StackfsBase gener-
ated during this experiment was 15.7M for all I/O sizes.
This is because in StackfsBase each user write call is
split into several 4KB-size FUSE requests which are sent
to the user daemon. As a result StackfsBase degraded
performance ranged from –26% to –9%. Compared to
StackfsBase, StackfsOpt generated significantly fewer
FUSE requests: between 500K and 563K depending on
the I/O size. The reason is the writeback cache that al-
lows FUSE’s kernel part to pack several dirty pages (up
to 128KB in total) into a single WRITE request. Ap-
proximately 1

32 of requests were generated in StackfsOpt
compared to StackfsBase. This suggests indeed that
each WRITE request transferred about 128KB of data (or
32× more than 4KB).

Table 4 shows the breakdown of time spent (latencies)
by a single write request across various stages, during
the seq-wr-4KB-1th-1fworkload on HDD. Taking
only major latencies, the write request spends 19% of its
time in request creation and waiting in the kernel queues;
43% of its time in user space, which includes time taken
by the underlying Ext4 to serve the write; and then 23%
of time during copy of the response from user space to
kernel. The relative CPU utilization caused by Stack-
fsBase and StackfsOpt in seq-wr-4KB-1th-1f on
HDD is 6.8% and 11.1% more than native Ext4, re-
spectively; CPU cycles per operation were the same for
StackfsBase and StackfsOpt—4× that of native Ext4.

Sequential Write using 32 threads on 32 files. Per-
formance trends are similar to seq-wr-1th-1f but
even the unoptimized StackfsBase performed much bet-
ter (up to –2.7% and –0.1% degradation for HDD and
SSD, respectively). This is because without the write-
back cache, 32 user threads put more requests into
FUSE’s queues (compared to 1 thread) and therefore
kept the user daemon constantly busy.
Random Write using 1 thread on 1 file. Performance
degradation caused by StackfsBase and StackfsOpt was
low on HDD for all I/O sizes (max –1.3%) because the
random write performance of Ext4 on HDD is low—
between 79 and 1,074 Filebench ops/sec, depending on
the I/O size (compare to over 16,000 ops/sec for SSD).
The performance bottleneck, therefore, was in the HDD
I/O time and FUSE overhead was invisible.

Interestingly, on SSD, StackfsOpt performance degra-
dation was high (–27% for 4KB I/O) and more than the
StackfsBase for 4KB and 32KB I/O sizes. The reason
for this is that currently FUSE’s writeback cache batches
only sequential writes into a single WRITE. Therefore,
in the case of random writes there is no reduction in
the number of WRITE requests compared to StackfsBase.
These numerous requests are processed asynchronously
(i.e., added to the background queue). And because of
FUSE’s congestion threshold on the background queue
the application that is writing the data becomes throttled.

For I/O size of 32KB, StackfsOpt can pack the entire
32KB into a single WRITE request. Compared to Stack-
fsBase, this reduces the number of WRITE requests by
8× and results in 15% better performance.
Random Write using 32 threads on 1 file. This
workload performs similarly to rnd-wr-1th-1f and
the same analysis applies.

5.2.3 Metadata Workloads
We now discuss the behavior of Stackfs in all metadata
micro-workloads as listed in Table 3 [rows #37–42].
File creates. Different types of requests that got gen-
erated during the files-cr-Nth runs are GETATTR,
LOOKUP, CREATE, WRITE, FLUSH, RELEASE, and FOR-
GET. The total number of each request type gener-
ated was exactly 4 million. Many GETATTR requests
were generated due to Filebench calling a fstat on
the file to check whether it exists or not before creat-
ing it. Files-cr-Nth workloads demonstrated the
worst performance among all workloads for both Stack-
fsBase and StackfsOpt and for both HDD and SSD. The
reason is twofold. First, for every single file create, five
operations happened serially: GETATTR, LOOKUP, CRE-
ATE, WRITE, and FLUSH; and as there were many files
accessed, they all could not be cached, so we saw many
FORGET requests to remove cached items—which added
further overhead. Second, file creates are fairly fast in
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Figure 5: Different types of requests that were generated by
StackfsBase on SSD for the files-rd-1th workload, from
left to right in their order of generation.

Ext4 (30–46 thousand creates/sec) because small newly
created inodes can be effectively cached in RAM. Thus,
overheads caused by the FUSE’s user-kernel communi-
cations explain the performance degradation.

File Reads. Figure 5 shows different types of requests
that got generated during the files-rd-1th work-
load. This workload is metadata-intensive because it
contains many small files (one million 4KB files) that are
repeatedly opened and closed. Figure 5 shows that half
of the READ requests went to the background queue and
the rest directly to the pending queue. The reason is that
when reading a whole file, and the application requests
reads beyond the EOF, FUSE generates a synchronous
READ request which goes to the pending queue (not the
background queue). Reads past the EOF also generate a
GETATTR request to confirm the file’s size.

The performance degradation for files-rd-1th
in StackfsBase on HDD is negligible; on SSD, however,
the relative degradation is high (–25%) because the SSD
is 12.5× faster than HDD (see Ext4 absolute through-
put in Table 3). Interestingly, StackfsOpt’s performance
degradation is more than that of StackfsBase (by 10%
and 35% for HDD and SSD, respectively). The rea-
son is that in StackfsOpt, different FUSE threads pro-
cess requests for the same file, which requires additional
synchronization and context switches. Conversely, but
as expected, for files-rd-32th workload, Stack-
fsOpt performed 40–45% better than StackfsBase be-
cause multiple threads are needed to effectively process
parallel READ requests.

File Deletes. The different types of operations that got
generated during the files-del-1th workloads are
LOOKUP, UNLINK, FORGET (exactly 4 million each).
Every UNLINK request is followed by FORGET. There-
fore, for every incoming delete request that the appli-
cation (Filebench) submits, StackfsBase and StackfsOpt
generates three requests (LOOKUP, UNLINK, and FOR-
GET) in series, which depend on each other.

Deletes translate to small random writes at the block
layer and therefore Ext4 benefited from using an SSD

(7–8× higher throughput than the HDD). This neg-
atively impacted Stackfs in terms of relative num-
bers: its performance degradation was 25–50% higher
on SSD than on HDD. In all cases StackfsOpt’s per-
formance degradation is more than StackfsBase’s be-
cause neither splice nor the writeback cache helped
files-del-Nth workloads and only added addi-
tional overhead for managing extra threads.

5.2.4 Macro Server Workloads
We now discuss the behavior of Stackfs for macro-
workloads [rows #43–45].
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Figure 6: Different types of requests that were generated by
StackfsBase on SSD for the file-server workload.

File Server. Figure 6 shows different types of oper-
ations that got generated during the file-server
workload. Macro workloads are expected to have a
more diverse request profile than micro workloads, and
file-server confirms this: many different requests
got generated, with WRITEs being the majority.

The performance improved by 25–40% (depending
on storage device) with StackfsOpt compared to Stack-
fsBase, and got close to Ext4’s native performance for
three reasons: (1) with a writeback cache and 128KB re-
quests, the number of WRITEs decreased by a factor of
17× for both HDD and SSD, (2) with splice, READ and
WRITE requests took advantage of zero copy, and (3) the
user daemon is multi-threaded, as the workload is.
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Figure 7: Different types of requests that were generated by
StackfsBase on SSD for the mail-server workload.

Mail Server. Figure 7 shows different types of op-
erations that got generated during the mail-server
workload. As with the file-server workload, many
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Figure 8: Different types of requests that were generated by
StackfsBase on SSD for the web-server workload.

different requests got generated, with WRITEs being the
majority. Performance trends are also similar between
these two workloads. However, in the SSD setup, even
the optimized StackfsOpt still did not perform close to
Ext4 in this mail-server workload, compared to
file-server. The reason is twofold. First, com-
pared to file server, mail server has almost double the
metadata operations, which increases FUSE overhead.
Second, I/O sizes are smaller in mail-server which im-
proves the underlying Ext4 SSD performance and there-
fore shifts the bottleneck to FUSE.
Web Server. Figure 8 shows different types of re-
quests generated during the web-server workload.
This workload is highly read-intensive as expected from
a Web-server that services static Web-pages. The perfor-
mance degradation caused by StackfsBase falls into the
Red class in both HDD and SSD. The major bottleneck
was due to the FUSE daemon being single-threaded,
while the workload itself contained 100 user threads.
Performance improved with StackfsOpt significantly on
both HDD and SSD, mainly thanks to using multiple
threads. In fact, StackfsOpt performance on HDD is
even 6% higher than of native Ext4. We believe this
minor improvement is caused by the Linux VFS treating
Stackfs and Ext4 as two independent file systems and
allowing them together to cache more data compared to
when Ext4 is used alone, without Stackfs. This does not
help SSD setup as much due to the high speed of SSD.

6 Related Work
Many researchers used FUSE to implement file sys-
tems [3, 9, 15, 40] but little attention was given to under-
standing FUSE’s underlying design and performance.
To the best of our knowledge, only two papers stud-
ied some aspects of FUSE. First, Rajgarhia and Gehani
evaluated FUSE performance with Java bindings [27].
Compared to this work, they focused on evaluating Java
library wrappers, used only three workloads, and ran
experiments with FUSE v2.8.0-pre1 (released in 2008).
The version they used did not support zero-copying
via splice, writeback caching, and other important fea-
tures. The authors also presented only limited informa-

tion about FUSE design at the time.
Second, in a position paper, Tarasov et al. character-

ized FUSE performance for a variety of workloads but
did not analyze the results [36]. Furthermore, they evalu-
ated only default FUSE configuration and discussed only
FUSE’s high-level architecture. In this paper we evalu-
ated and analyzed several FUSE configurations in detail,
and described FUSE’s low-level architecture.

Several researchers designed and implemented use-
ful extensions to FUSE. Re-FUSE automatically restarts
FUSE file systems that crash [33]. To improve FUSE
performance, Narayan et al. proposed to marry in-kernel
stackable file systems [44] with FUSE [23]. Shun et al.
modified FUSE’s kernel module to allow applications
to access storage devices directly [17]. These improve-
ments were in research prototypes and were never in-
cluded in the mainline.

7 Conclusion
User-space file systems are popular for prototyping new
ideas and developing complex production file systems
that are difficult to maintain in kernel. Although many
researchers and companies rely on user-space file sys-
tems, little attention was given to understanding the per-
formance implications of moving file systems to user
space. In this paper we first presented the detailed design
of FUSE, the most popular user-space file system frame-
work. We then conducted a broad performance charac-
terization of FUSE and we present an in-depth analysis
of FUSE performance patterns. We found that for many
workloads, an optimized FUSE can perform within 5%
of native Ext4. However, some workloads are unfriendly
to FUSE and even if optimized, FUSE degrades their
performance by up to 83%. Also, in terms of the CPU
utilization, the relative increase seen is 31%.

All of our code and Filebench workloads files are
available from http://filesystems.org/ fuse/ .
Future work. There is a large room for improvement
in FUSE performance. We plan to add support for com-
pound FUSE requests and investigate the possibility of
shared memory between kernel and user spaces for faster
communications.
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Knockoff: Cheap versions in the cloud
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Abstract
Cloud-based storage provides reliability and ease-of-

management. Unfortunately, it can also incur significant
costs for both storing and communicating data, even after
using techniques such as chunk-based deduplication and
delta compression. The current trend of providing access
to past versions of data exacerbates both costs.

In this paper, we show that deterministic recomputa-
tion of data can substantially reduce the cost of cloud
storage. Borrowing a well-known dualism from the fault-
tolerance community, we note that any data can be equiv-
alently represented by a log of the nondeterministic in-
puts needed to produce that data. We design a file sys-
tem, called Knockoff, that selectively substitutes nonde-
terministic inputs for file data to reduce communication
and storage costs. Knockoff compresses both data and
computation logs: it uses chunk-based deduplication for
file data and delta compression for logs of nondetermin-
ism. In two studies, Knockoff reduces the average cost
of sending files to the cloud without versioning by 21%
and 24%; the relative benefit increases as versions are
retained more frequently.

1 Introduction

Two trends in storage systems are conspiring to increase
the cost of storing and retrieving data. First, due to
compelling ease-of-management, cost-effectiveness, and
reliability benefits, businesses and consumers are stor-
ing more of their data at cloud-based storage providers.
However, writing and reading data from remote sites can
incur significant costs for network communication.

Second, customers are increasingly expecting and de-
pending on the ability to access multiple versions of their
data. Local storage solutions such as Apple’s Time Ma-
chine [3] retain multiple versions of users’ data and make
it easy to access this data. Cloud storage providers have
followed suit; for example, Google Drive [18], Microsoft

OneDrive [25], and DropBox [14] all store and allow
users to access old versions of their files.

Past versions have many uses; e.g., recovery of lost or
overwritten data, reproduction of the process by which
data was created, auditing, and forensic troubleshooting.
The benefit of versioning increases as more versions are
retained. For instance, if versions are retained every time
a file is closed, the user is usually guaranteed a snap-
shot of file data with each save operation or when the
application terminates. However, many applications save
data only on termination; in such cases, all intermedi-
ate data created during application usage are unavailable
for recovery and analysis. Saving data on every file sys-
tem modification produces more frequent checkpoints,
but cannot recover transient state in memory that never
is written to the file system and, importantly, does not
capture modifications to memory-mapped files. In the ex-
treme, a user should be able to reproduce any past state
in the file system or in application memory, a property
we call eidetic versioning.

The cost of versioning also depends on the frequency
at which versions are retained. For instance, retaining a
version on every file modification incurs greater storage
cost than retaining a version on every close, and the client
will consume more bandwidth by sending a greater num-
ber of versions to cloud storage. Versioning policies must
balance these benefits and costs. Many current systems
choose infrequent versioning as a result.

In this paper, we seek to substantially reduce the cost
of communicating file data between clients and servers;
we also seek to reduce the cost of keeping multiple
versions of data. Our work reduces resource usage and
user costs for existing versioning policies. It also enables
finer-grained versioning, e.g. eidetic versioning, that is
infeasible in current distributed storage architectures.

To accomplish these goals, we leverage an unconven-
tional method for communicating and storing file data.
In lieu of the actual file data, we selectively represent
a file as a log of the nondeterminism needed to recom-
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pute the data (e.g., system call results, thread scheduling,
and external data read by a process). With such a log, a
file server can deterministically replay the computation
to recreate the data in the file. Representing state as a log
of nondeterminism is well known in the fault-tolerance
community [16]; however, logs of nondeterminism are
often quite large, and applying this idea requires that the
logs for a computation be smaller than the output files
produced. To address this problem, we apply recent ideas
for reducing the size of individual logs [13], and we also
use delta compression to reduce the collective size of
logs of similar executions.

Representing data as a log of nondeterminism leads to
several benefits in a distributed file system. First, it sub-
stitutes (re-)computation for communication and stor-
age, and this can reduce total cost because computa-
tion in cloud systems is less costly than communication
and storage. Second, it can reduce the number of bytes
sent over the network when the log of nondeterminism is
smaller than the data produced by the recorded compu-
tation. For the same reason, it can reduce the number of
bytes stored by the cloud storage provider. Finally, rep-
resenting data as a log of nondeterminism can support a
wider range of versioning frequencies than prior meth-
ods.

This paper describes the design and implementation
of a distributed file system, Knockoff, that selectively re-
places file data with a log of the nondeterminism needed
to produce that data for both communication with cloud
servers and storage in the cloud. Knockoff supports sev-
eral frequencies of versioning: no versioning at all, ver-
sion on file close, version on every write system call, and
version on every store instruction (for mapped files).

The contributions of this paper are:
• We provide the first general-purpose solution for

operation shipping in a distributed file system by
leveraging deterministic record and replay.

• We show how compression can be applied to com-
putation as well as to storage by using delta com-
pression to reduce the size of the logs of nondeter-
minism that represent such computation.

• We quantify the costs and benefits of general-
purpose operation shipping in a distributed file sys-
tem over actual file system usage.

We evaluate Knockoff by performing a multi-user
study for a software development scenario and a 20-
day, single-user longitudinal study. Without versioning,
Knockoff reduced the average cost of sending files to the
cloud in these studies by 24% and 21%, respectively. The
benefit of using Knockoff increases as versions are re-
tained with greater frequency. The cost of this approach
is the performance overhead of recording executions (7-
8% in our evaluation) and a greater delay in retrieving
past versions (up to 60 seconds for our default settings).

2 Background and related work

Knockoff is based on the principle that one can repre-
sent data generated by computation either by value or by
the log of inputs needed to reproduce the computation.
We call this the principle of equivalence (between values
and computation); it has been observed and used in many
settings; e.g., fault tolerance [16], state machine replica-
tion [37], data center storage management [20], and state
synchronization [19].

The projects most related to ours use the principle of
equivalence for the same purpose, namely to reduce com-
munication overhead between clients and servers in a dis-
tributed file system. Lee et al. first applied this principle
in the Coda File System [22, 23] and coined the term
operation shipping. Clients log and send user operations
(e.g., shell commands) to a server surrogate that replays
the operations to regenerate the data. Chang et al. extend
this idea to log and send user activity, such as keyboard
and mouse inputs [10].

Although the basic idea of operation shipping is pow-
erful, prior system logged and shipped very restricted
types of nondeterminism and thus could not guarantee
that the state received through the log matched the orig-
inal state. Neither a log of shell commands nor a log
of user activity are sufficient to reproduce the compu-
tation of general-purpose programs. Researchers recog-
nized this shortcoming and mitigated it by supplement-
ing the replayed computation with forward error correc-
tion and compensating actions, using hashes to detect re-
maining differences and revert back to value shipping.
Unfortunately, the shift to multiprocessors and multi-
threaded programs means that many programs are non-
deterministic in ways not handled in these prior systems.
Further, because these prior systems handled a very lim-
ited set of nondeterministic inputs, they required iden-
tical environments on the recording and replaying side,
which is unrealistic in many client-server settings.

Knockoff applies the same basic principle of equiva-
lence, but it uses a comprehensive log of nondeterminism
to provide equivalence for all race-free programs (and
many programs with occasional data races). This enables
Knockoff to use operation shipping in more settings, and
it also makes possible the first realistic evaluation of op-
eration shipping for such settings (earlier studies unre-
alistically assumed that programs were deterministic).
Knockoff also applies operation shipping to versioning
file systems. We find that the gains of operation shipping
are larger when multiple versions are saved, and indis-
pensable when versions are saved at eidetic granularity.

Adams et al. identify recomputation as a way to re-
duce storage [1], but do not implement or evaluate any
system based on this observation. Other systems use re-
computation to reduce storage in restricted environments
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Log entry Values
1 open rc=3
2 mmap file=<id,version>
3 pthread lock
4 open rc=4
5 read rc=<size>, file=<id,version>
6 gettimeofday rc=0, time=<timestamp>
7 open rc=5
8 write rc=<size>
9 pthread unlock

Figure 1: Sample log of nondeterminism

in which the computation is guaranteed to be determinis-
tic. Nectar [20] applies this idea to DryadLINQ applica-
tions, which are both deterministic and functional. BAD-
FS [6] uses re-computation in lieu of replicating data;
users must specify explicit dependencies and the compu-
tation must be deterministic to produce the same data.

Besides reproducing data, logging has been used in
file systems to track the provenance of files [29, 41] and
guide when new versions should be saved [28]. More
generally, redo logging [26] provides transactional prop-
erties in the presence of failures.

Many prior systems deduplicate file data to reduce
communication and storage [12, 21, 31, 38, 40, 43].
LBFS [31] uses chunk-based deduplication in which Ra-
bin fingerprinting divides a file into chunks, a hash value
is computed for each chunk, and a client and server use
the hash values to avoid communicating chunks already
seen by the other party. Knockoff uses LBFS-style dedu-
plication when transferring data by value.

Versioning file systems [24, 30, 36, 39, 44] retain past
state at a specific granularity such as on every file close
or on every modification. Cloud storage providers such
as DropBox [14] and Google Drive [18] currently allow
users to retain past versions of file data. Knockoff makes
versioning file systems more efficient by reducing stor-
age and computation costs. It also supports versioning at
finer granularities than these prior systems.

3 Motivating example

We start with a motivating example that illustrates why a
log of nondeterminism for an execution may require sig-
nificantly less storage than the data produced by the exe-
cution. Consider a simple application that reads in a data
file, computes a statistical transformation over that data,
and writes a timestamped summary to an output file. The
output data may be many megabytes in size. However,
the program itself can be reproduced given a small log
of determinism, as shown in Figure 1 (for clarity, the log
has been simplified).

The log records the results of system calls (e.g., open)

and synchronization operation (e.g., pthread lock).
The first entry in Figure 1 records the file descriptor cho-
sen by the operating system during the original execu-
tion. Parameters to the open call do not need to be logged
since they will be reproduced during a deterministic re-
execution. The second entry records the mapping of the
executable; replaying this entry will cause the exact ver-
sion used during recording to be mapped to the same
place in the replaying process address space. Lines 4 and
5 read data from the input file, line 6 records the original
timestamp, and lines 7 and 8 write the transformation to
the output file. Note that data read from the file system is
not in the log since Knockoff can reproduce the desired
version on demand. Also, the data written to the output
file need not be logged since it will be reproduced exactly
as a result of replaying the execution.

With compression, a log for this sample application
can be only a few hundred bytes in size, as contrasted
with the megabytes of data that the execution produces.
The output data is reproduced by starting from the same
initial state, re-executing the computation, and supplying
values from the log for each nondeterministic operation.

4 Design considerations

Recent work on deterministic replay [2, 13, 15, 32, 35,
42] now makes it possible to use operation shipping to
build a general-purpose distributed file system for re-
alistic environments and workloads. Our goals are to
build such a system, identify synergies between opera-
tion shipping and versioning file systems, and demon-
strate how operation shipping can reduce communication
and storage costs for realistic workloads.

4.1 Deterministic record and replay
To use operation shipping for realistic workloads

and environments, we need a general-purpose deter-
ministic record and replay system. The record/replay
system should support unmodified applications and
work for multithreaded programs. To work in realis-
tic client/server configurations, the record/replay system
should allow recorded executions to be replayed in en-
vironments that differ from the one on which they were
recorded. Finally, to enable operation shipping to be used
for some (but not all) processes, the system should record
each application individually and allow each to be re-
played individually on the server.

Knockoff uses the Arnold system [13], which meets
these requirements. Arnold uses a modified Linux ker-
nel to record the execution of Linux processes. It records
all nondeterministic data that enters a process, including
the results of system calls (such as user and network in-
put), the timing of signals, and real-time clock queries.
Because it supplies recorded values on replay rather than
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re-executing system calls that interact with external de-
pendencies, Arnold can trivially record an application on
one computer and replay it on another. The only require-
ments are that both computers run the Arnold kernel and
have the same processor architecture (x86).

Arnold enables deterministic replay of multi-threaded
programs by recording all synchronization operations
(e.g., pthread lock and atomic hardware instructions).
Arnold can detect programs with data races, but it does
not guarantee that the replay of such programs will match
their recorded execution. Arnold does guarantee that a re-
play is always repeatable (i.e., deterministic with respect
to other replays), even for racy programs.

4.2 Files: values or operations?
Knockoff can represent a file in one of two ways: as

normal file data (by value) or as a log of the nondetermin-
ism needed to recreate the file (by operation). Which of
these representations is more cost-effective depends on
the characteristics of the program that generated the file
data, as well as the relative costs of computation, com-
munication, and storage. Files that are large and gen-
erated by programs that are mostly deterministic (e.g.,
photo-editing software) are best represented by opera-
tion. In contrast, files that are small and generated by pro-
grams that use a lot of nondeterministic data (e.g,. cryp-
tographic key generation) are best represented by value.

At any time, Knockoff can use deterministic replay to
convert a file that is represented by operation into a repre-
sentation by value (but not vice versa). To do so, Knock-
off loads and re-executes the original program, then feeds
in the log of nondeterminism that was recorded in the
original execution. Note that file data read by system
calls from Knockoff are not included in the log. In-
stead, these log entries refer to the file and version that
was read, and Arnold’s replay system reads this data
from Knockoff. Usually, application binaries, dynamic
libraries, configuration files, and the like are stored in
Knockoff, so the server replay sees the same application
files as existed on the client during the original record-
ing. If a binary or library is not stored in Knockoff, the
file data are included by value in the log of nondeter-
minism and provided on replay. Replay of previously
recorded applications may require retention of past file
versions. Alternatively, we can regenerate these past ver-
sions through additional recursive replays of the applica-
tions that produced the data.

Whenever Knockoff represents a file by operation, it
must first verify that Arnold’s replay faithfully recon-
structs the file data because Arnold does not guarantee
that programs with data races replay exactly as recorded.
Knockoff uses a SHA-512 hash for each file to verify
that the replay correctly generated the original data. Be-
cause replay in Arnold is repeatable, a run that produces

matching data in the first replay is guaranteed to pro-
duce matching data in all subsequent replays. If the re-
play does not produce matching data, Knockoff switches
to representing the file by value.

Knockoff chooses between these two representations
when it ships files between clients and servers and when
it stores files on the server. To guide its choice, Knockoff
measures the computation time used to create each file
and the size of each file.

5 Implementation

Knockoff is a client-server distributed file system in
which the server is hosted in the cloud. The server stores
the current version of all files, and it optionally stores
past versions of all files according to a user-selected ver-
sioning policy. Knockoff clients have a local disk cache
that stores current and (optionally) past file versions.

Knockoff implements Coda-style weak file consis-
tency [27]. Clients propagate file system updates asyn-
chronously to the server. Clients register a callback with
the server when they cache the current version of a file,
and the server breaks the callback by sending a client a
message when another client modifies the file.

Knockoff associates a version vector [33] with each
file to identify specific versions and detect conflicting up-
dates. Knockoff assigns clients a unique identifier; every
time a client performs a system call that modifies a file
(e.g., write), it increments an integer in the version vec-
tor associated with its identifier. Thus, every past version
of a file has a unique version vector that can be used to
name and retrieve that version. The server detects con-
flicting updates by comparing the version vector for each
update and determining that neither one dominates the
other. If a conflict occurs, the server retains both ver-
sions, and the user manually resolves the conflict.

Knockoff clients record almost all user-level process
executions (excluding some servers such as the X server
and sshd) and the kernel generates a log of nondetermin-
ism for each such execution. Logs of nondeterminism are
stored in a log cache on the client and may also be sent to
the server and stored in a database there. The server has
a replay engine that allows it to regenerate file data from
such logs.

5.1 Versioning
Knockoff supports versioning policies on a per-file-

system basis. Users select one of the following:
• No versioning. Knockoff retains only the current

version of all files. For durability, a client sends a
modified file to the server on close. After the first
close, Knockoff waits up to 10 seconds to send the
file modifications to the server (this delay allows
coalescing of multiple updates that occur closely
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together in time [27]). Upon receiving file modifi-
cations, the server overwrites the previous version
of the file and breaks any callbacks held by other
clients. The server retains multiple versions only in
the case of conflicting updates.

• Version on close. Knockoff retains all past ver-
sions at close granularity; for past versions, Knock-
off may store the actual data or the logs required to
regenerate the data. On receiving a file modifica-
tion, the server retains the previous version instead
of overwriting it. Clients may ask for a version by
specifying its unique version vector.

• Version on write. Knockoff retains all past ver-
sions at write granularity. Every system call that
modifies a file creates a new version, and Knock-
off can reproduce all such versions.

• Eidetic. Knockoff retains all past versions at in-
struction granularity. It can reproduce any compu-
tation or file data and determine the provenance of
data via Arnold. The server stores all application
logs. Clients may ask for a specific version of a file
by specifying a version vector and an instruction
count that specifies when to stop the replay (so as
to recover a specific state for a mapped file).

5.2 Architecture
Figure 2 shows Knockoff’s storage architecture. The

client runs a FUSE[17] user-level file system daemon.

5.2.1 Clients
The Knockoff client stores file system data in four

persistent caches to hide network latency. Whole file ver-
sions are stored in the version cache; this cache may hold
multiple versions of the same file simultaneously. Each
file in Knockoff is given a unique integer fileid, so a par-
ticular version of a file can be retrieved from the cache
by specifying both a fileid and a version vector. The ver-
sion cache tracks which versions it stores are the current
version of a file. It sets callbacks for such entries; if the
server breaks a callback (because another client has up-
dated the file), the version is retained in the cache, but its
designation as the current version is removed.

The chunk cache stores the chunks generated by
chunk-based deduplication for each file in the version
cache; thus the version cache contains only pointers to
chunks in the chunk cache. Knockoff divides each entry
in the database into chunks using the LBFS chunk-based
deduplication algorithm [31] and calculates the SHA-512
hash of each such chunk. The chunk database is indexed
by these hash values.

Directory data is stored in a separate Berkeley DB [7]
directory cache. Knockoff clients implement an in-
memory index over this data to speed up path lookups.
The log cache stores logs of nondeterminism generated

Server

Client
Another
Client

Directory cache

Chunk cacheVersion cache

Log cache

Directory DB

Chunk DBVersion DB

Log DB

Version graph

Callbacks

Figure 2: Architecture overview

by recording application execution.
All client caches are managed via LRU eviction, with

preference given to retaining current versions over past
versions. Chunks are removed from the chunk cache
when they are no longer used by any version in the ver-
sion cache. Modified values are pinned in the caches until
they have been persisted to the server.
5.2.2 Server

The server maintains analogs of these client stores.
The server’s version DB stores the current version of ev-
ery file and, depending on the the versioning policy, past
file versions. The chunk DB stores chunk data for all files
in the version DB, indexed by the chunk SHA-512 hash
values. The directory DB stores all directory information
for Knockoff, and the log DB stores logs of nondetermin-
ism recorded by clients.

If the versioning policy is eidetic, the log DB stores
every application log recorded by any Knockoff client. If
the versioning policy is version on write, every past
file version is either stored in the version DB, or the logs
necessary to reproduce that version are stored in the log
DB. If the versioning policy is version on close, this
invariant holds only for versions that correspond to file
closes. If the versioning policy is no versioning, only
the current versions of file and directory data are stored.

The server also maintains callbacks set by clients for
each file. If a client updates a file, the server uses these
to determine which clients to notify of the update.

Finally, the server maintains the version graph which
relates file versions with the computation that produced
the data. Nodes in the graph are either recorded logs of
nondeterminism (representing a particular execution) or
file versions. Each edge represents a range of file data
that was written by one recording and either read by an-
other recording or part of a file version. An index allows
Knockoff to quickly find a particular file version by fileid
and version vector. If a version is not present in the ver-
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sion DB, the version graph allows Knockoff to determine
which logs need to be replayed to regenerate the data.

5.3 Writing data
Knockoff is designed to reduce cloud storage costs. A

large part of these costs is communication. For example,
AT&T [4] and Comcast [11] currently charge up to $10
for every 50 GB of data communication, whereas Ama-
zon currently charges $0.052 per hour for an instance
with 2 vCPUs and 4 GB of memory [5]. This means that
Knockoff can reduce costs if it can use 1 second of cloud
computation to save 76 KB of communication.

We first describe how Knockoff handles writes for
its no versioning policy, and then generalize to other
policies. Like Arnold, Knockoff records application exe-
cution in a replay group that logs the nondeterminism of
related processes. When an application closes a file, the
Knockoff client checks the file’s version vector to deter-
mine whether it was modified. If so, Knockoff starts a 10-
second timer that allows the application to make further
modifications. When the timer expires, Knockoff starts a
transaction in which all outstanding modifications to any
file by that application are sent to the server. If the appli-
cation terminates, Knockoff starts the transaction imme-
diately.

To propagate modifications to the server, Knockoff
first calculates the cost of sending and replaying the log
of nondeterminism given a pre-defined cost of commu-
nication (costcomm) and computation (costcomp):

costlog = sizelog ∗ costcomm + timereplay ∗ costcomp (1)

sizelog is determined by compressing the log of nonde-
terminism for the application that wrote the file and mea-
suring its size directly. Because Knockoff does not cur-
rently support checkpointing, each log must be replayed
from application start.

To estimate timereplay, Knockoff modifies Arnold to
store the user CPU time consumed so far by the recorded
application with each log entry that modifies file data.
This is a very good estimate for the time needed to re-
play the log on the client [34]. To estimate server replay
time, Arnold multiplies this value by a conversion factor
to reflect the relative CPU speeds of the client and server.

Knockoff calculates the cost of sending file data as:

costdata = sizechunks ∗ costcomm (2)

Knockoff implements the chunk-based deduplication
algorithm used by LBFS to reduce the cost of transmit-
ting file data. It breaks all modified files into chunks,
hashes each chunk, and sends the hashes to the server.
The server responds with the set of hashes it has stored.
sizechunks is the size of any chunks unknown to the server
that would need to be transmitted; Knockoff uses gzip
compression to reduce bytes transmitted for such chunks.

If costlog < costdata, Knockoff sends the log to the
server. The server makes a copy of the modified files and
assigns them new version vectors. It then spawns a replay
process that consumes the log and replays the applica-
tion. When the replay process executes a system call that
modifies a target file, it updates the new version in the
cache directly. Once the replay reaches a file close op-
eration, the new cache version is complete and marked
as available to be read. The server deletes the old ver-
sion for the no versioning policy. The replay process
is paused at this point rather than terminated because the
client may ship more log data to the server to regenerate
additional file modifications made by the same applica-
tion. The server only terminates a replay process when
the client notifies it that the application that is being re-
played has terminated.

In rare cases, more than one application may write to
a file simultaneously. The Knockoff server replays these
logs concurrently and ensures that writes are ordered cor-
rectly according to the version vectors.

Replay is guaranteed to produce the same data if the
application being replayed is free of data races. Data-
race freedom can be guaranteed for some programs (e.g.,
single-threaded ones) but not for complex applications.
Knockoff therefore ships a SHA-512 hash of each mod-
ified file to the server with the log. The Knockoff server
verifies this hash on close. If verification fails, it asks the
client to ship the file data. Note that such races are rare
with Arnold since the replay system itself acts as an effi-
cient data-race detector [13].

If costdata < costlog, then Knockoff could reduce the
cost of the current transaction by sending the unique
chunks to the server. However, for long running appli-
cations, it may be the case that sending and replaying the
log collected so far would help reduce the cost of future
file modifications that have yet to be seen (because the
cost of replaying from this point is less than replaying
from the beginning of the program). Knockoff predicts
this by looking at a history of costdata/costlog ratios for
the application. If sending logs has been historically ben-
eficial and current application behavior is similar (the ra-
tios differ by less than 40%) to past executions, it sends
the log. Otherwise, it sends the unique data chunks.

For long running applications, Knockoff may use
multiple transactions to send modified files to the server.
If the client has previously chosen to ship the log to the
server, sizelog is the portion of the log that excludes what
has already been sent to the server, and timereplay is the
additional user CPU time consumed by the recorded ap-
plication after the log prefix, scaled for the difference in
client and server CPU speed.

Other versioning policies work similarly. For the
version on close policy, Knockoff sends not only the
current version of a modified file but also all versions that
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existed at any file close during the period covered by the
transaction. The cost of sending the log is identical to the
no versioning case, but the previous versions may in-
troduce new data chunks not yet seen by the server and
thereby increase the cost of sending the file data.

For the version on write policy, the transaction
includes all versions created by any system call that mod-
ified a file. Since chunk-based deduplication works better
across larger modification sizes, Knockoff tries to coa-
lesce modifications to the same file within a transaction
as long as one modification does not overwrite data from
a previous one. The transaction metadata describes how
to reconstruct individual versions.

For the eidetic policy, Knockoff always sends the
application log to the server since it is needed to repro-
duce past computations and mapped file state. The server
usually updates the current version of files by replaying
the log. However, if the computation cost of log replay
is greater than the communication cost of fetching the
modified file chunks from the server, the server asks the
client for the file data instead of replaying the log.

5.4 Storing data
Knockoff may store file data on the server either by

value (as normal file data) or by operation (as the log of
nondeterminism required to recompute that data). If the
log of nondeterminism is smaller than the file data it pro-
duces, then storing the file by operation saves space and
money. However, storing files by operation delays future
reads of that data, since Knockoff will need to replay the
original computation that produced the data. In general,
this implies that Knockoff should only store file data by
operation if the data is very cold; i.e., if the probability
of reading the data in the future is low.

Knockoff currently implements a simple policy to de-
cide how to store data at the server. It always stores the
current version of every file by value so that its read per-
formance for current file data is the same as that of a tra-
ditional file system. Knockoff may store past versions by
operation if the storage requirements for storing the data
by log are less than those of storing the data by value.
However, Knockoff also has a configuration parameter
that sets a maximum materialization delay, which is the
time to reconstruct any version stored by operation. The
default materialization delay is 60 seconds.

For the eidetic policy, the materialization delay ap-
plies to all versions created via a file system call such as
write. We could also apply this bound to intermediate
file states for mapped files, but this would require us to
implement checkpoints of application state so as to limit
the time needed to produce intermediate states.

With the eidetic policy, Knockoff retains all logs
of nondeterminism since they are needed to reproduce
past computation and transient process state. This is suf-

ficient to recompute any file version. However, the re-
computation time is unbounded due to recursive depen-
dencies. For instance, producing a past file version may
require replaying a recorded computation. That computa-
tion may have read file data from Knockoff, so Knockoff
must also reproduce those file versions via replay of other
applications. This continues recursively until Knockoff
encounters no more past versions to reproduce.

To limit the time to reproduce past versions, Knockoff
selectively stores some past versions by value. It uses the
server’s version graph to decide which versions to store
by value. The version graph shows the relationships be-
tween file versions and logs of nondeterminism. File ver-
sions and replay logs form the vertexes of the graph.

A version node in the graph contains a list of all the
file byte ranges in that version that were written by dis-
tinct system calls. For each range, the node stores the
log and the specific system call within the log that wrote
the data. Replaying all such logs up to the specified sys-
tem calls would be sufficient to recompute that particu-
lar version. However, recomputation is not necessary for
byte ranges that already exist in the version DB. All byte
ranges are present if the version represented by the node
is itself in the version DB. Otherwise, a particular byte
range may still be in the version DB because another ver-
sion of the same file is stored by value and the range was
not overwritten between the two versions.

Knockoff inserts an edge from a version node to a log
node if the log contains a system call that wrote a byte
range not in the version DB. Each edge has weight equal
to the time to recompute all such byte ranges.

A log node contains similar information for each of its
system calls that read data from a Knockoff file. For each
read, it lists all file byte ranges that were written by dis-
tinct system calls; this contains the log and system call
of the writing application. Replaying these logs would
be sufficient to recompute all file system data read by the
log node in question. Knockoff inserts an edge from one
log node to another if the latter log wrote at least one byte
range read by the former log that is not currently avail-
able in the version DB. As above, the weight of each edge
is the predicted time to recompute all such byte ranges.
If there is a cycle in the graph, two or more logs must be
replayed concurrently to regenerate file data; Knockoff
coalesces these cycles into a single node.

The time to recompute a version is given by the
longest path rooted at the graph node for that version.
Calculating the longest path for each version requires
visiting each node at most once. If any path exceeds
the specified materialization delay, Knockoff replays the
latest log in the path, regenerates its file versions, and
stores them by value. It repeats this process until no paths
exceed the materialization delay. This greedy algorithm
works well in our evaluation; if warranted in the future,
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we could draw on more complex algorithms [8] to min-
imize storage costs while not exceeding the maximum
materialization delay.

Currently, Knockoff recalculates the version graph
and runs the above algorithm nightly. Note that file modi-
fications and queries of past state between batch updates
may have created new versions of past files in the ver-
sion DB. These new versions are temporarily excluded
from the batch computation. If Knockoff determines that
they are not needed, they are removed from the version
DB to save space. Otherwise, they are retained instead of
recomputing them from logs of nondeterminism.

The version on write and version on close

policies store data in similar fashion. The major differ-
ence is that these policies can discard logs to save stor-
age space. Thus, for any log, if the size of the data pro-
duced by that log is less than the size of the log, Knock-
off replays the log (if necessary) to recompute the data,
then deletes the log. Discarded logs are removed from
the version graph and the file versions produced by those
logs are pinned in the version DB (they can never be
deleted without violating the versioning policy since it
is no longer possible to recompute their data).

5.5 Reading data
By default, any application that reads data from

Knockoff receives the current version of the file. The
client first checks its version cache to see if it has stored
the current version of the file locally. If the version
is present, Knockoff reads the requested data from the
cache. It also appends a record to the reading applica-
tion’s log of nondeterminism that specifies the fileid, the
version vector, and the logid and system call of the ap-
plication that wrote the data it just read. The latter two
values are obtained from Arnold’s filemap [13].

If the version is not present, Knockoff fetches it from
the server and caches it. Knockoff caches whole file ver-
sions, and clients fetch versions from the server by value.
A client sends a request that specifies the fileid. The
server responds with the current version vector and a list
of hashes for each chunk comprising the file. The server
also sends the filemap for the version. The client speci-
fies which chunks it does not have cached, and the server
sends that data to the client. The server sets a callback
on the file. The client inserts the version into its version
cache, marks it as the current version, and places the ver-
sion’s chunks into its chunk cache.

Applications may also read past versions of files by
specifying a version vector. If a requested version is in
the server’s version DB, it is shipped by value as above.
If it is not present, it must be recomputed by replaying
one or more logs. We next describe this process.

In its version graph, the server maintains an index
over all versions; this allows it to quickly find the par-

ticular version node being requested. The version node
reveals the distinct byte ranges that were written by dif-
ferent system calls. If a range is in the version DB, it is
used directly. Otherwise, the server must replay the log
of the application that wrote the range to regenerate the
data. For each such log, it determines the longest pre-
fix that has to be replayed; this is the last system call in
the log that wrote any range being read. Knockoff exam-
ines each such log prefix to determine if replaying the
log requires file data that is not in the version cache. If
so, it recursively visits the log(s) that wrote the needed
data. Note that Knockoff’s materialization delay bounds
the amount of computation needed to produce any ver-
sion. Knockoff then replays the visited logs to regenerate
the desired version. It places this version in its version
database and ships it to the client as described above.

5.6 Optimization: Log compression
While implementing Knockoff, we saw the effective-

ness of chunk-based deduplication in reducing commu-
nication and storage costs. This led us to wonder: can we
apply the same compression techniques to logs of non-
determinism that current file systems apply to file data?

Intuitively, log compression should be able to iden-
tify similar regions of nondeterministic data across exe-
cutions of the same application. For example, application
startup regions should be very similar because the appli-
cation will open and load the same libraries, send similar
messages to the X server to initialize windows, open sim-
ilar configuration files, and so on.

We first attempted to apply chunk-based deduplica-
tion directly to log data. This worked reasonably well.
However, after examining the logs we generated in more
detail, we realized that the similarities between logs are
often different from similarities between files. Similar
files tend to have large contiguous chunks that are the
same, whereas similar logs often lack such regions. In-
stead, most of the bytes within two log regions might be
the same, but there exist in each region a smattering of
values such as timestamps that differ. So, even very sim-
ilar log chunks hash to different values.

Therefore, we turned to delta encoding. Knockoff first
identifies a reference log that it expects to be similar
to the current log. It then generates a binary patch via
xdelta [45] that encodes the difference between the cur-
rent log and the reference log. Given both the reference
log and the patch, Knockoff can reconstruct the original
values in the log.

When an application generates a log, the client and
server identify a reference log. The client queries the log
cache to find all prior logs for the same executable that
it has stored locally. For each log, the log cache stores
the arguments to the application, the size of the nondeter-
ministic data, the running time of the application, and the
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user-level CPU time. The client orders the cached logs by
similarity across these metrics; if the application has not
yet completed execution by the time the log is shipped,
only the arguments are used to determine similarity since
the other parameters are not yet known. Arguments are
compared using cosine string similarity.

The client orders logs by similarity and sends the list
to the server. The server responds with the most similar
log that it has stored in its log DB. This step is omitted for
the eidetic policy since the server stores all logs. The
client then generates an xdelta patch and uses its size as
sizelog in the algorithm described in Section 5.3.

When the server receives a compressed log, it stores
it in compressed form in the log DB. It also adds a de-
pendency on the reference log. Before a reference log
can be pruned for the version on close or version
on write policies, the server must first uncompress any
log that depends on that log. The server uses the delta
size when deciding whether to retain the log or the data
in these policies. It currently does not take into account
the cost of uncompressing logs when a reference log is
purged because it assumes that logs can be recompressed
effectively using different reference logs.

6 Evaluation

Our evaluation answers the following questions:
• How much does Knockoff reduce bandwidth usage

compared to current cloud storage solutions?
• How much does Knockoff reduce communication

and storage costs?
• What is Knockoff’s performance overhead?
• How effective is log compression?

6.1 Experimental setup
All experiments for measuring communication and

storage costs were run on two virtual machines (one for
the client and one for the server). Both virtual machines
were hosted on computers with a 4 core Intel i7-3770
CPU, 16GB memory, and two 7200 RPM hard drives.
For accuracy, performance results were measured with a
physical machine as the client with a 4 core Xeon E5620
processor, 6 GB memory, and a 7200 RPM hard drive.
All platforms run the Ubuntu 12.04LTS Linux kernel.

Due to a lack of representative file system benchmarks
that also include the computation to generate the data, we
use two methods to evaluate Knockoff. First, we study
users performing a software development task to mea-
sure how Knockoff benefits different people. Second, we
measure Knockoff while an author of this paper runs the
system on the author’s primary computer for 20 days.
This allows us to study the storage costs of multiple ver-
sions generated over a longer time period.

20-day study User study
Disk read (MB) 5473 2583
Disk write (MB) 6706 4339
File open count 261523 418594

Number of executions 3803 1146
Number of programs 75 63

Table 1: Workload characteristics

During these studies, we use Knockoff’s eidetic

policy, which allows us to regenerate all file system reads
and writes by replaying Arnold logs. We use these logs
to measure the bandwidth and storage costs of running
Knockoff over the same workload with other policies.

We implement two baseline file systems for compari-
son. The first uses the LBFS algorithm for chunk-based
deduplication to implement all versioning policies except
eidetic; this is representative of current cloud storage
solutions such as DropBox. The second uses delta com-
pression to implement no versioning and version

on close; this is representative of git [9] and other
version control systems. Delta compression performed
poorly for version on write because our implemen-
tation did not detect when bytes were inserted in the mid-
dle of a file; we therefore omit these results.

6.2 User study
We recruited 8 graduate students to study Knockoff

for a software development workload. We asked them to
write software to perform several simple tasks, e.g., con-
verting a CSV file to a JSON file; each participant could
spend up to an hour solving the problem. We did not
dictate how the problem should be solved. Participants
used various Linux utilities, text editors, IDEs, and pro-
gramming languages. They used Web browsers to visit
different Web sites such as Google and StackOverflow,
as well as sites unrelated to the assignment (e.g., Face-
book and CNN News). One of the 8 participants was un-
able to complete the programming assignment and quit
right away. We show results for the 7 participants who at-
tempted the tasks; 4 of these finished successfully within
the hour. The second column of Table 1 shows aggregate
characteristics of this recorded workload.

Figure 4 summarizes the results by aggregating the
bytes sent to the server by Knockoff and the baseline
file systems across all 7 users; this represents approx-
imately 7 hours of software development activity. Al-
though we are targeting versioning file systems, Knock-
off is surprisingly effective in reducing bytes sent over
the network for non-versioning file systems. Compared
to chunk-based deduplication, Knockoff reduces com-
munication by 24%. Compared to delta compression, it
reduces communication by 32%. Note that the baselines
are already very effective in reducing bandwidth; without
compression, this workload requires 1.9 GB of commu-
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Figure 3: Bytes sent to the server for each individual user study participant (A-G). We compare Knockoff with two
baselines across all relevant versioning policies.

 0

 100

 200

 300

 400

 500

No
 versioning

Version
 on close

Version
 on write

Eidetic

D
a

ta
 s

e
n

t 
to

 s
e

rv
e

r 
(M

B
)

Delta compression
Chunk-based deduplication

Knockoff

Figure 4: Total bytes sent to the server across all user
study participants. We compare Knockoff with two base-
lines across all relevant versioning policies.

nication, so delta compression is achieving a 86% reduc-
tion in network bandwidth, and chunk-based deduplica-
tion is achieving a 87% reduction.

Results for version on close are similar to no

versioning for two reasons: (1) the 10-second delay
in transmitting data limits the amount of file closes that
can be coalesced, and (2) file closes that occur within
a few seconds of one another often save very simi-
lar data, so deduplication is very effective in reducing
communication for both the baseline and Knockoff. For
the version on write policy, Knockoff reduces bytes
sent by 47% compared to chunk-based deduplication.
Knockoff is very effective in reducing the additional cost
of retaining fine-grained versions in this study; in fact,
version on write with Knockoff use less bandwidth
than no versioning with the baselines.

Figure 3 shows results for each individual study par-
ticipant (labeled A-G in each graph). The most notice-
able result is that the effectiveness of Knockoff varies
tremendously across users. For participant C, Knock-
off achieves a 97% reduction in bandwidth for the
no versioning policy and a 95% reduction for the

version on write policy compared to chunk-based
deduplication. On the other hand, for participant F, the
corresponding reductions are 2% and 17%. Participant C
used more command line tools and repeated tasks than
other participants. Participant F browsed Web sites more
often. Unfortunately, Knockoff mispredicted whether to
ship by log or value for browsing sessions and missed
several opportunities for bandwidth reduction. Running
a longer study might have allowed Knockoff to better
model behavior and make better predictions for this user.

6.3 Bandwidth savings
To assess longer-term impacts of running Knockoff,

one author ran Knockoff on his primary computer for 20
days. The usage was not continuous, as the author was
simultaneously developing the system and fixing bugs.
When in use, all user-level applications were recorded,
and almost all data was stored in Knockoff. There were
a few exceptions that included system directories, main-
tenance operations, and the execution of user-level dae-
mons like the X server. Knockoff was initially populated
by mirroring the current data in the computer’s file sys-
tem at the beginning of the trial; copying this data into
Knockoff is excluded from our results. The first col-
umn of Table 1 shows aggregate characteristics of this
recorded workload.

Figure 6 compares the bytes sent to the server by
Knockoff with those sent by the baseline file systems.
For the no versioning policy, Knockoff reduced bytes
sent by 21% compared to chunk-based deduplication and
by 39% compared to delta compression. Note that these
compression techniques already reduce bytes sent by
84% and 79%, respectively, when compared to using no
compression at all. For the version on write policy,
Knockoff reduced bytes sent by 21% compared to chunk-
based deduplication. In this experiment, Knockoff’s im-
plementation of fine-grained versioning policies is com-
petitive with chunk-based deduplication without version-
ing, sending 21% more bytes to the cloud for version
on write and 96% more for eidetic. This is a very
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Figure 6: Bytes sent to the server for the 20-day study.
We compare Knockoff with two baselines across all rel-
evant versioning policies.

encouraging result as it argues that retention of past state
at fine granularity can be economically feasible.

To further explore these results, we manually classi-
fied the logs collected during the trial by application type.
Figure 5 shows the reduction in bytes sent to the cloud for
each type relative to chunk-based deduplication. Knock-
off helps little for text editing because the log of nonde-
terminism is almost always larger than the data file pro-
duced by the editor. All other application types show ro-
bust reductions in bytes sent, with the savings being the
greatest for Linux command line utilities.

6.4 Storage savings
We next examine how Knockoff impacts storage costs

for the 20-day study. Storage costs typically depend on
the amount of data stored; e.g., AWS currently charges
$0.045 per GB-month [5]. Since Knockoff stores all
current versions by value, we compare and report the
amount of storage consumed by all file systems to store
past versions. The Knockoff materialization delay limit
for past versions is set to its default of 60 seconds.

Figure 7 shows the cost of storing versions of past
state normalized to the chunk-based deduplication base-
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Figure 7: Relative storage costs for different versioning
policies for the 20-day study.

line. Compared to this baseline, Knockoff reduces stor-
age utilization by 19% and 23% for the version on

close and version on write policies, respectively.
Storage utilization increases as the version granular-

ity gets smaller. However, with Knockoff, storing every
write is only 21% more costly than the baseline system
versioning on close, and eidetic storage is only 134%
more costly. Thus, even versioning at eidetic granularity
can be economically feasible if the storage system stores
some past versions by operation rather than by value.

Figure 8 shows how changing the materialization de-
lay impacts the relative storage cost. The values to the
far right represent an infinite materialization delay, and
thus show the minimum cost possible through varying
this parameter.

6.5 Communication cost savings
We next measure the cost savings achieved by Knock-

off. Sending file data to the server by operation reduces
network usage, but it requires server-side computation to
regenerate file data. We assess this tradeoff using cur-
rent rates charged by popular Internet and cloud ser-
vice providers. For network, we use a range of possible
values. Popular broadband ISPs (AT&T [4] and Com-
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Price($ per GB)

Knockoff savings
No version Version on close Version on write

20-day study User study 20-day study User study 20-day study User study
4G network 4.50 21.0% 21.8% 21.2% 21.7% 22.9% 46.3%

Expensive ISP 0.20 20.3% 18.4% 20.5% 18.5% 22.0% 43.3%
Cheap ISP 0.05 18.1% 13.8% 18.2% 14.5% 19.2% 34.9%

Hypothetical ISP 0.005 8.2% 4.9% 8.4% 5.8% 8.2% 11.5%
Table 2: Relative cost savings from using Knockoff for different versioning policies. We show costs for a typical 4G
cellular network, an expensive current ISP, a cheap current ISP, and a hypothetical ISP that is an order of magnitude
cheaper than the cheap current ISP.
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Figure 9: We compare Knockoff’s actual bandwidth sav-
ings with those it could achieve with an oracle that per-
fectly predicts whether to ship by value or by operation.

cast [11]) currently charge a base ($50 per month) and an
incremental charge ($10 for every 50 GB of data beyond
a monthly data cap between 150GB and 1TB). Thus, we
consider 2 price points: $0.05/GB and $0.20/GB. We also
consider a typical 4G network, which has much higher
cost ($4.50/GB or more), and a hypothetical cheap ISP
($0.005/GB) that is an order of magnitude lower than
current providers. Cloud computation cost depends on
the capabilities of the instance. AWS currently charges
$0.052 per hour for an instance with 2 vCPUs and 4 GB

of memory [5]. This is the cheapest instance sufficient to
replay all of our logs, so we use this cost for our study.

Table 2 compares the monetary cost of sending data
to the server for Knockoff and chunk-based deduplica-
tion (the best of the two baselines). For high network
cost (4G), the cost savings of using Knockoff are es-
sentially identical to the bandwidth savings. As network
cost decreases, Knockoff’s cost benefit diminishes. How-
ever, even for the hypothetical cheap ISP, Knockoff still
achieves a healthy 4.9-11.5% reduction in dollar cost.

The reason why monetary cost savings aligns closely
with network bandwidth savings for most network types
is that the current tradeoff between communication and
network costs is very favorable for operation shipping.
Replaying applications is proportional to user-level CPU
time because it eliminates user think-time and most I/O
delays. When applications do not fit this profile, e.g., they
have a lot of computation or large logs of nondetermin-
ism, Knockoff usually ships the data by value.

6.6 Effectiveness of prediction
For long-running programs, Knockoff must predict

whether it will be better to ship the output of that pro-
gram by value or by operation. Mispredictions increase
the bytes sent to the server. To measure this cost, we cal-
culated the bytes that would be sent for our studies if an
oracle were to perfectly predict which method Knockoff
should use. As the results in Figure 9 show, better pre-
dictions could reduce network communication, but the
potential improvement is not especially large.

6.7 Performance
We next examine Knockoff’s performance overhead

as perceived by its user. We measured this overhead
by compiling libelf-0.8.9 with all source files, executa-
bles, and compilation outputs stored in Knockoff. We re-
port the mean time to compile across 8 trials. Note that
Knockoff sends data to the server asynchronously, and
the server also replays logs asynchronously. As a base-
line, we use a FUSE file system that simply forwards all
file system operations to a local ext4 file system.

Figure 10 shows the results of our experiment. The
first bar shows the baseline file system. The next bar
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shows the relative performance when we use Arnold to
record the compilation with data stored in the baseline
file system. This shows that the isolated cost of using de-
terministic record and replay is 2%. We then show rela-
tive performance when using Knockoff with its different
versioning policies. The average performance overhead
for using Knockoff ranges from 7% to 8%; the relative
costs of different policies are equivalent within exper-
imental error as shown by the overlapping 95% confi-
dence intervals.

6.8 Log compression
Finally, we examine the benefit of using delta com-

pression on logs of nondeterminism. Across all logs,
delta compression reduces the bytes needed to store those
logs by 42%. In comparison, chunk-based deduplication
reduces the size of the logs by only 33%.

We find it interesting that chunk-based deduplication
is more effective for compressing file data, whereas delta
compression is more effective for compressing nonde-
terminism in the computation that produced that data.
It is possible that restructuring the logs to make them
more amenable to either delta compression or chunk-
based deduplication could lead to further savings.

7 Conclusion

Operation shipping has long been recognized as a
promising technique for reducing the cost of distributed
storage. However, using operation shipping in practice
has required onerous restrictions about application de-
terminism or standardization of computing platforms,
and these assumptions make operation shipping unsuit-
able for general-purpose file systems. Knockoff lever-
ages recent advances in deterministic record and replay
to lift those restrictions. It can represent, communicate,
and store file data as logs of nondeterminism. This saves
network communication and reduces storage utilization,

leading to cost savings. In the future, we hope to extend
the ideas in Knockoff to other uses; one promising target
is reducing cross-data-center communication.
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Abstract
Recent improvements in both the performance and
scalability of shared-nothing, transactional, in-memory
NewSQL databases have reopened the research question
of whether distributed metadata for hierarchical file sys-
tems can be managed using commodity databases. In this
paper, we introduce HopsFS, a next generation distribu-
tion of the Hadoop Distributed File System (HDFS) that
replaces HDFS’ single node in-memory metadata service,
with a distributed metadata service built on a NewSQL
database. By removing the metadata bottleneck, HopsFS
enables an order of magnitude larger and higher through-
put clusters compared to HDFS. Metadata capacity has
been increased to at least 37 times HDFS’ capacity, and
in experiments based on a workload trace from Spotify,
we show that HopsFS supports 16 to 37 times the through-
put of Apache HDFS. HopsFS also has lower latency for
many concurrent clients, and no downtime during failover.
Finally, as metadata is now stored in a commodity data-
base, it can be safely extended and easily exported to
external systems for online analysis and free-text search.

1 Introduction
Distributed file systems are an important infrastructure
component of many large scale data-parallel processing
systems, such as MapReduce [13], Dryad [27], Flink [5]
and Spark [77]. By the end of this decade, data cen-
ters storing multiple exabytes of data will not be uncom-
mon [12, 47]. For large distributed hierarchical file sys-
tems, the metadata management service is the scalability
bottleneck [62]. Many existing distributed file systems
store their metadata on either a single node or a shared-
disk file systems, such as storage-area network (SAN),
both of which have limited scalability. Well known ex-
amples include GFS [17], HDFS [61], QFS [41], Far-
site [3], Ursa Minor [2], GPFS [58], Frangipani [67],
GlobalFS [50], and Panasas [73]. Other systems scale out
their metadata by statically sharding the namespace and
storing the shards on different hosts, such as NFS [44],
AFS [36], MapR [64], Locus [49], Coda [57], Sprite [40]
and XtreemFS [26]. However, statically sharding the
namespace negatively affects file system operations that
cross different shards, in particular move operation. Also,
it complicates the management of the file system, as ad-
ministrators have to map metadata servers to namespace

shards that change in size over time.
Recent improvements in both the performance and

scalability of shared-nothing, transactional, in-memory
NewSQL [42] databases have reopened the possibility of
storing distributed file system metadata in a commodity
database. To date, the conventional wisdom has been that
it is too expensive (in terms of throughput and latency) to
store hierarchical file system metadata fully normalized
in a distributed database [59, 33].

In this paper we show how to build a high throughput
and low operational latency distributed file system using
a NewSQL database. We present HopsFS, a new distribu-
tion of the Hadoop Distributed File System (HDFS) [61],
which decouples file system metadata storage and man-
agement services. HopsFS stores all metadata normalized
in a highly available, in-memory, distributed, relational
database called Network Database (NDB), a NewSQL
storage engine for MySQL Cluster [38, 54]. HopsFS
provides redundant stateless servers (namenodes) that in
parallel, read and update metadata stored in the database.

HopsFS encapsulates file system operations in dis-
tributed transactions. To improve the performance of file
system operations, we leverage both classical database
techniques such as batching (bulk operations) and write-
ahead caches within transactions, as well as distribution
aware techniques commonly found in NewSQL databases.
These distribution aware NewSQL techniques include ap-
plication defined partitioning (we partition the namespace
such that the metadata for all immediate descendants of a
directory (child files/directories) reside on the same data-
base shard for efficient directory listing), and distribution
aware transactions (we start a transaction on the data-
base shard that stores all/most of the metadata required
for the file system operation), and partition pruned index
scans (scan operations are localized to a single database
shard [78]). We also introduce an inode hints cache for
faster resolution of file paths. Cache hits when resolving a
path of depth N can reduce the number of database round
trips from N to 1.

However, some file system operations on large direc-
tory subtrees (such as move, and delete) may be too large
to fit in a single database transaction. For example, delet-
ing a folder containing millions of files cannot be per-
formed using a single database transaction due to the
limitations imposed by the database management system
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on the number of operations that can be included in a
single transaction. For these subtree operations, we in-
troduce a novel protocol that uses an application level
distributed locking mechanism to isolate large subtrees
to perform file system operations. After isolating the
subtrees large file system operations are broken down
into smaller transactions that execute in parallel for per-
formance. The subtree operations protocol ensures that
the consistency of the namespace is not violated if the
namenode executing the operation fails.

HopsFS is a drop-in replacement for HDFS. HopsFS
has been running in production since April 2016, provid-
ing Hadoop-as-a-Service for researchers at a data center
in Luleå, Sweden [63]. In experiments, using a real-world
workload generated by Hadoop/Spark applications from
Spotify, we show that HopsFS delivers 16 times higher
throughput than HDFS, and HopsFS has no downtime
during failover. For a more write-intensive workload,
HopsFS delivers 37 times the throughput of HDFS. To the
best of our knowledge HopsFS is the first open-source dis-
tributed file system that stores fully normalized metadata
in a distributed relational database.

2 Background
This section describes Hadoop Distributed File System
(HDFS) and MySQL Cluster Network Database (NDB)
storage engine.

2.1 Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) [61] is
an open source implementation of the Google File Sys-
tem [17]. HDFS’ metadata is stored on the heap of single
Java process called the Active NameNode (ANN), see
Figure 1. The files are split into small (typically 128 MB)
blocks that are by default triple replicated across the data-
nodes. For high availability of the metadata management
service, the Active namenode logs changes to the meta-
data to journal servers using quorum based replication.
The metadata change log is replicated asynchronously
to a Standby NameNode (SbNN), which also performs
checkpointing functionality. In HDFS, the ZooKeeper co-
ordination service [25] enables both agreement on which
machine is running the active namenode (preventing a
split-brain scenario) as well as coordinating failover from
the active to the standby namenode.

The namenode serves requests from potentially thou-
sands of datanodes and clients, and keeps the metadata
strongly consistent by executing the file system opera-
tions atomically. The namenode implements atomic oper-
ations using a single global lock on the entire file system
metadata, providing single-writer, multiple-readers con-
currency semantics. Some large file system operations
are not atomic, as they would hold the global lock for
too long, starving clients. For example, deleting large
directories is performed in batches, with inodes first be-
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Figure 1: System architecture for HDFS and HopsFS. For high availabil-
ity, HDFS requires an Active NameNode (ANN), at least one Standby
NameNode (SbNN), at least three Journal Nodes for quorum-based
replication of the write ahead log of metadata changes, and at least
three ZooKeeper instances for quorum based coordination. HopsFS
supports multiple stateless namenodes that access the metadata stored
in NDB database nodes.

ing deleted, then the blocks are deleted in later phases.
Moreover, as writing namespace changes to the quorum
of journal nodes can take long time, the global file system
lock is released before the operation is logged to prevent
other clients from starving. Concurrent clients can ac-
quire the file system lock before the previous operations
are logged, preventing starvation, at the cost of inconsis-
tent file system operations during namenode failover. For
example, when the active namenode fails all the changes
that are not logged to the journal nodes will be lost.

The datanodes are connected to both active and standby
namenodes. All the datanodes periodically generate a
block report containing information about its own stored
blocks. The namenode processes the block report to vali-
date the consistency of the namenode’s blocks map with
the blocks actually stored at the datanode.

In HDFS the amount of metadata is quite low relative
to file data. There is approximately 1 gigabyte of meta-
data for every petabyte of file system data [62]. Spotify’s
HDFS cluster has 1600+ nodes, storing 60 petabytes of
data, but its metadata fits in 140 gigabytes Java Virtual
Machine (JVM) heap. The extra heap space is taken by
temporary objects, RPC request queues and secondary
metadata required for the maintenance of the file system.
However, current trends are towards even larger HDFS
clusters (Facebook has HDFS clusters with more than 100
petabytes of data [48]), but current JVM garbage collec-
tion technology does not permit very large heap sizes, as
the application pauses caused by the JVM garbage collec-
tor affects the operations of HDFS [22]. As such, JVM
garbage collection technology and the monolithic archi-
tecture of the HDFS namenode are now the scalability
bottlenecks for Hadoop [62]. Another limitation with this
architecture is that data structures are optimized to reduce
their memory footprint with the result that metadata is
difficult to modify or export to external systems.

2.2 Network Database (NDB)
MySQL Cluster is a shared-nothing, replicated, in-
memory, auto-sharding, consistent, NewSQL relational
database [38]. Network DataBase (NDB) is the storage
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engine for MySQL Cluster. NDB supports both datanode-
level and cluster-level failure recovery. The datanode-
level failure recovery is performed using transaction redo
and undo logs. NDB datanodes also asynchronously snap-
shot their state to disk to bound the size of logs and to
improve datanode recovery time. Cluster-level recovery
is supported using a global checkpointing protocol that
increments a global epoch-ID, by default every 2 sec-
onds. On cluster-level recovery, datanodes recover all
transactions to the latest epoch-ID.

NDB horizontally partitions the tables among storage
nodes called NDB datanodes. NDB also supports applica-
tion defined partitioning (ADP) for the tables. Transaction
coordinators are located at all NDB datanodes, enabling
high performance transactions between data shards, that
is, multi-partition transactions. Distribution aware trans-
actions (DAT) are possible by providing a hint, based
on the application defined partitioning scheme, to start
a transaction on the NDB datanode containing the data
read/updated by the transaction. In particular, single row
read operations and partition pruned index scans (scan
operations in which a single data shard participates) bene-
fit from distribution aware transactions as they can read
all their data locally [78]. Incorrect hints result in addi-
tional network traffic being incurred but otherwise correct
system operation.

2.2.1 NDB Data Replication and Failure Handling
NDB datanodes are organized into node groups, where
the data replication factor, R, determines the number of
datanodes in a node group. Given a cluster size N, there
are N/R node groups. NDB partitions tables (hash parti-
tioning by default) into a fixed set of partitions distributed
across the node groups. New node groups can be added
online, and existing data is automatically rebalanced to
the new node group. A partition is a fragment of data
stored and replicated by a node group. Each datanode
stores a copy (replica) of the partition assigned to its node
group. In NDB, the default replication degree is two,
which means that each node group can tolerate one NDB
datanode failure as the other NDB datanode in the node
group contains a full copy of the data. So, a twelve node
NDB cluster has six node groups can tolerate six NDB
datanode failures as long as there is one surviving NDB
datanode in each of the node groups. To tolerate multiple
failures within a node group, the replication degree can
be increased at the cost of lower throughput.

2.2.2 Transaction Isolation
NDB only supports read-committed transaction isolation,
which guarantees that any data read is committed at the
moment it is read. The read-committed isolation level
does not allow dirty reads but phantom and fuzzy (non-
repeatable) reads can happen in a transaction [7]. How-
ever, NDB supports row level locks, such as, exclusive

(write) locks, shared (read) locks, and read-committed
locks that can be used to isolate conflicting transactions.

3 HopsFS Overview
HopsFS is a fork of HDFS v2.0.4. Unlike HDFS, HopsFS
provides a scale-out metadata layer by decoupling the
metadata storage and manipulation services. HopsFS sup-
ports multiple stateless namenodes, written in Java, to
handle clients’ requests and process the metadata stored
in an external distributed database, see Figure 1. Each
namenode has a Data Access Layer (DAL) driver that,
similar to JDBC, encapsulates all database operations
allowing HopsFS to store the metadata in a variety of
NewSQL databases. The internal management (house-
keeping) operations, such as datanode failure handling,
must be coordinated amongst the namenodes. HopsFS
solves this problem by electing a leader namenode that is
responsible for the housekeeping. HopsFS uses the data-
base as shared memory to implement a leader election
and membership management service. The leader election
protocol assigns a unique ID to each namenode, and the
ID of the namenode changes when the namenode restarts.
The leader election protocol defines an alive namenode as
one that can write to the database in bounded time, details
for which can be found in [56].

Clients can choose between random, round-robin, and
sticky policies for selecting a namenode on which to exe-
cute file system operations. HopsFS clients periodically
refresh the namenode list, enabling new namenodes to
join an operational cluster. HDFS v2.x clients are fully
compatible with HopsFS, although they do not distribute
operations over namenodes, as they assume there is a
single active namenode. Like HDFS, the datanodes are
connected to all the namenodes, however, the datanodes
send the block reports to only one namenode. The leader
namenode load balances block reports over all alive name-
nodes.

In section 4, we discuss how HopsFS’ auto sharding
scheme enables common file system operations to read
metadata using low cost database access queries. Sec-
tion 5 discusses how the consistency of the file system
metadata is maintained by converting file system op-
erations into distributed transactions, and how the la-
tency of the distributed transactions is reduced using
per-transaction and namenode level caches. Then, in
section 6, a protocol is introduced to handle file system
operations that are too large to fit in a single database
transaction.

4 HopsFS Distributed Metadata
Metadata for hierarchical distributed file systems typically
contains information on inodes, blocks, replicas, quotas,
leases and mappings (directories to files, files to blocks,
and blocks to replicas). When metadata is distributed,
an application defined partitioning scheme is needed to
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Op Name Percentage Op Name Percentage
append file 0.0% content summary 0.01%
mkdirs 0.02% set permissions 0.03% [26.3%∗]
set replication 0.14% set owner 0.32 % [100%∗]
delete 0.75% [3.5%∗] create file 1.2%
move 1.3% [0.03%∗] add blocks 1.5%
list (listStatus) 9% [94.5%∗] stat (fileInfo) 17% [23.3%∗]
read (getBlkLoc) 68.73% Total Read Ops 94.74%

Table 1: Relative frequency of file system operations for Spotify’s HDFS
cluster. List, read, and stat operations account for ≈ 95% of the meta-
data operations in the cluster.
∗Of which, the relative percentage is on directories

shard the metadata and a consensus protocol is required to
ensure metadata integrity for operations that cross shards.
Quorum-based consensus protocols, such as Paxos, pro-
vide high performance within a single shard, but are typ-
ically combined with transactions, implemented using
the two-phase commit protocol, for operations that cross
shards, as in Megastore [6] and Spanner [10]. File sys-
tem operations in HopsFS are implemented primarily
using multi-partition transactions and row-level locks in
MySQL Cluster to provide serializability [23] for meta-
data operations.

The choice of partitioning scheme for the hierarchical
namespace is a key design decision for distributed meta-
data architectures. We base our partitioning scheme on
the expected relative frequency of HDFS operations in
production deployments and the cost of different data-
base operations that can be used to implement the file
system operations. Table 1 shows the relative frequency
of selected HDFS operations in a workload generated by
Hadoop applications, such as, Pig, Hive, HBase, MapRe-
duce, Tez, Spark, and Giraph at Spotify. List, stat and file
read operations alone account for ≈ 95% of the opera-
tions in the HDFS cluster. These statistics are similar to
the published workloads for Hadoop clusters at Yahoo [1],
LinkedIn [52], and Facebook [65]. Figure 2a shows the
relative cost of different database operations. We can see
that the cost of a full table scan or an index scan, in which
all database shards participate, is much higher than a par-
tition pruned index scan in which only a single database
shard participates. HopsFS metadata design and meta-
data partitioning enables implementations of common file
system operations using only the low cost database opera-
tions, that is, primary key operations, batched primary key
operations and partition pruned index scans. For example,
the read and directory listing operations, are implemented
using only (batched) primary key lookups and partition
pruned index scans. Index scans and full table scans were
avoided, where possible, as they touch all database shards
and scale poorly.

4.1 Entity Relation Model
In HopsFS, the file system metadata is stored in tables
where a directory inode is represented by a single row in
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Figure 2: (a) Shows the relative cost of different operations in NewSQL
database. (b) HopsFS avoids FTS and IS operations as the cost these
operation is relatively higher than PPIS, B, and PK operations.
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Figure 3: All the inodes in a directory are partitioned using a parent
inode ID, therefore, all the immediate children of /user directory are
stored on NDB-DN-3 for efficient directory listing, for example, ls /user.
The file inode related metadata for /user/foo.txt is stored on NDB-DN-4
for efficient file reading operations, for example, cat /user/foo.txt.

the Inode table. File inodes, however, have more associ-
ated metadata, such as a set of blocks, block locations,
and checksums that are stored in separate tables.

Figure 3 shows the Entity Relational model depicting
key entities in the HopsFS metadata model. Files and di-
rectories are represented by the Inode entity that contains
a reference to its parent inode (parent inode ID) in the file
system hierarchy. We store path individual components,
not full paths, in inode entries. Each file contains multiple
blocks stored in the Block entity. The location of each
block replica is stored in the Replica entity. During its life-
cycle a block goes through various phases. Blocks may
be under-replicated if a datanode fails and such blocks
are stored in the under-replicated blocks table (URB).
The replication manager, located on the leader namenode,
sends commands to datanodes to create more replicas of
under-replicated blocks. Blocks undergoing replication
are stored in the pending replication blocks table (PRB).
Similarly, a replica of a block has various states during
its life-cycle. When a replica gets corrupted, it is moved
to the corrupted replicas (CR) table. Whenever a client
writes to a new block’s replica, this replica is moved to
the replica under construction (RUC) table. If too many
replicas of a block exist (for example, due to recovery of a
datanode that contains blocks that were re-replicated), the
extra copies are stored in the excess replicas (ER) table
and replicas that are scheduled for deletion are stored in
the invalidation (Inv) table. Note that the file inode related
entities also contain the inode’s foreign key (not shown in
Figure 3) that is also the partition key, enabling HopsFS to
read the file inode related metadata using partition pruned
index scans.
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4.2 Metadata Partitioning
With the exception of hotspots (see the following subsec-
tion), HopsFS partitions inodes by their parents’ inode
IDs, resulting in inodes with the same parent inode being
stored on the same database shard. This has the effect of
uniformly partitioning the metadata among all database
shards and it enables the efficient implementation of the
directory listing operation. When listing files in a direc-
tory, we use a hinting mechanism to start the transaction
on a transaction coordinator located on the database shard
that holds the child inodes for that directory. We can
then use a pruned index scan to retrieve the contents of
the directory locally. File inode related metadata, that is,
blocks, replica mappings and checksums, is partitioned
using the file’s inode ID. This results in metadata for a
given file all being stored in a single database shard, again
enabling efficient file operations, see Figure 3.

4.2.1 Hotspots
A hotspot is an inode that receives a high proportion of
file system operations. The maximum number of file
system operations that can be performed on a ’hot’ inode
is limited by the throughput of the database shard that
stores the inode. Currently, HopsFS does not have any
built in mechanisms for identifying hotspots at run time.

All file system operations involve resolving the path
components to check for user permissions and validity of
the path. The root inode is shared among all file system
valid paths. Naturally the root inode is read by all file
system path resolution operations. The database shard
that stores the root inode becomes a bottleneck as all file
system operations will retrieve the root inode from the
same database shard. HopsFS caches the root inode at all
the namenodes. In HopsFS, the root inode is immutable,
that is, we do not allow operations, such as, renaming,
deleting or changing the permissions of the root inode.
Making the root inode immutable prevents any inconsis-
tencies that could result from its caching.

In HopsFS, all path resolution operations start from the
second path component (that is, the top level directories).
For the top-level directories, our partitioning scheme in-
advertently introduced a hotspot – all top-level directories
and files are children of the root directory, and, therefore,
resided on the same database shard. Operations on those
inodes were handled by a single shard in the database. To
overcome this bottleneck, HopsFS uses a configurable di-
rectory partitioning scheme where the immediate children
of the top level directories are pseudo-randomly parti-
tioned by hashing the names of the children. By default,
HopsFS pseudo-randomly partitions only the first two lev-
els of the file system hierarchy, that is, the root directory
and its immediate descendants. However, depending on
the file system workloads it can be configured to pseudo-
randomly partition additional levels at the cost of slowing

down move and ls operations at the top levels of the file
system hierarchy.

5 HopsFS Transactional Operations
Transactional metadata operations in HopsFS belong to
one of the two categories: Inode operations that oper-
ate on single file, directory or block (for example, cre-
ate/read file, mkdir, and block state change operations),
and subtree operations that operate on an unknown num-
ber of inodes, potentially millions, (for example, recursive
delete, move, chmod, and chown on non-empty directo-
ries).

This section describes how HopsFS efficiently encap-
sulates inode operations in transactions in NDB. The
strongest transaction isolation level provided by NDB
is read-committed, which is not strong enough to provide
at least as strong consistency semantics as HDFS which
uses single global lock to serialize all HDFS operations.
To this end, we use row-level locking to serialize con-
flicting inode operations. That is, the operations execute
in parallel as long as they do not take conflicting locks
on the same inodes. However, taking multiple locks in a
transaction could lead to extensive deadlocking and trans-
action timeouts. The reasons are:
Cyclic Deadlocks: In HDFS, not all inode operations fol-
low the same order in locking the metadata which would
lead to cyclic deadlocks in our case. To solve this prob-
lem, we have reimplemented all inode operations so that
they acquire locks on the metadata in the same total order,
traversing the file system tree from the root down to leave
nodes using left-ordered depth-first search.
Lock Upgrades: In HDFS, many inode operations con-
tain read operations followed by write operations on the
same metadata. When translated into database operations
within the same transaction, this results in deadlocking
due to lock upgrades from read to exclusive locks. We
have examined all locks acquired by the inode operations,
and re-implemented them so that all data needed in a trans-
action is read only once at the start of the transaction (see
Lock Phase, section 5.2.1) at the strongest lock level that
could be needed during the transaction, thus preventing
lock upgrades.

5.1 Inode Hint Cache
Resolving paths and checking permissions is by far the
most common operation in most HDFS workloads, see
Table 1. In HDFS, the full path is recursively resolved into
individual components. In HopsFS for a path of depth N,
it would require N roundtrips to the database to retrieve
file path components, resulting in high latency for file
system operations.

Similar to AFS [36] and Sprite [40], we use hints [30]
to speed up the path lookups. Hints are mechanisms to
quickly retrieve file path components in parallel (batched
operations). In our partitioning scheme, inodes have a
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composite primary key consisting of the parent inode’s
ID and the name of the inode (that is, file or directory
name), with the parent inode’s ID acting as the partition
key. Each namenode caches only the primary keys of the
inodes. Given a pathname and a hit for all path compo-
nents directories, we can discover the primary keys for all
the path components which are used to read the path com-
ponents in parallel using a single database batch query
containing only primary key lookups.

5.1.1 Cache Consistency
We use the inode hint cache entries to read the whole
inodes in a single batch query at the start of a transaction
for a file system operation. If a hint entry is invalid, a
primary key read operation fails and path resolution falls
back to recursive method for resolving file path compo-
nents, followed by repairing the cache. Cache entries
infrequently become stale as move operations, that update
the primary key for an inode, are less than 2% of oper-
ations in typical Hadoop workloads, see Table 1. More-
over, typical file access patterns follow a heavy-tailed
distribution (in Yahoo 3% of files account for 80% of ac-
cesses [1]), and using a sticky policy for HopsFS clients
improves temporal locality and cache hit rates.

5.2 Inode Operations
HopsFS implements a pessimistic concurrency model that
supports parallel read and write operations on the names-
pace, serializing conflicting inode and subtree operations.
We chose a pessimistic scheme as, in contrast to opti-
mistic concurrency control, it delivers good performance
for medium to high levels of resource utilization [4], and
many HDFS clusters, such as Spotify’s, run at high load.
Inode operations are encapsulated in a single transaction
that consists of three distinct phases, which are, lock,
execute, and update phases.

5.2.1 Lock Phase
In the lock phase, metadata is locked and read from the
database with the strongest lock that will be required for
the duration of the transaction. Locks are taken in the
total order, defined earlier. Inode operations are path-
based and if they are not read-only operations, they only
modify the last component(s) of the path, for example, rm
/etc/conf and chmod +x /bin/script. Thus, only the last
component(s) of the file paths are locked for file system
operations.

Figure 4 shows a transaction template for HopsFS inode
operations. Using the inode hint cache the primary keys
for the file path components are discovered, line 1. The
transaction is started on the database shard that holds all
or most of the desired data, line 2. A batched operation
reads all the file path components up to the penultimate
path component without locking (read-committed) the
metadata, line 3. For a path of depth N, this removes N-1
round trips to the database. If the inode hints are invalid

1. Get hints from the inodes hint cache
2. Set partition key hint for the transaction
BEGIN TRANSACTION
LOCK PHASE:
3. Using the inode hints, batch read all inodes

up to the penultimate inode in the path
4. If (cache miss || invalid path component) then

recursively resolve the path & update the cache
5. Lock and read the last inode
6. Read Lease, Quota, Blocks, Replica, URB, PRB, RUC,

CR, ER, Inv using partition pruned index scans
EXECUTE PHASE:
7. Process the data stored in the transaction cache
UPDATE PHASE:
8. Transfer the changes to database in batches
COMMIT/ABORT TRANSACTION

Figure 4: Transaction template showing different optimization tech-
niques, for example, setting a partition key hint to start a distribution
aware transaction, inode hints to validate the file path components using
a batch operation, and partition pruned index scans to read all file inode
related metadata.

then the file path is recursively resolved and the inode
hint cache is updated, line 4.

After the path is resolved, either a shared or an exclu-
sive lock is taken on the last inode component in the path,
line 5. Shared locks are taken for read-only inode opera-
tions, while exclusive locks are taken for inode operations
that modify the namespace. Additionally, depending on
the operation type and supplied operation parameters,
inode related data, such as block, replica, and PRB, are
read from the database in a predefined total order using
partition pruned scans operations, line 6.

HopsFS uses hierarchical locking [19] for inode opera-
tions, that is, if data is arranged in tree like hierarchy and
all data manipulation operations traverse the hierarchy
from top to bottom, then taking a lock on the root of the
tree/subtree implicitly locks the children of the tree/sub-
tree. The entity relation diagram for file inode related
data, see Figure 3, shows that the entities are arranged
in a tree with an inode entity at the root. That is, taking
a lock on an inode implicitly locks the tree of file inode
related data. As in all operations, inodes are read first,
followed by its related metadata. For some operations,
such as creating files/directories and listing operations,
the parent directory is also locked to prevent phantom and
fuzzy reads for file system operations.

5.2.2 Per-Transaction Cache
All data that is read from the database is stored in a per-
transaction cache (a snapshot) that withholds the propaga-
tion of the updated cache records to the database until the
end of the transaction. The cache saves many round trips
to the database as the metadata is often read and updated
multiple times within the same transaction. Row-level
locking of the metadata ensures the consistency of the
cache, that is, no other transaction can update the meta-
data. Moreover, when the locks are released upon the
completion of the transaction the cache is cleared.
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5.2.3 Execute and Update Phases
The inode operation is performed by processing the meta-
data in the per-transaction cache. Updated and new meta-
data generated during the second phase is stored in the
cache which is sent to the database in batches in the fi-
nal update phase, after which the transaction is either
committed or rolled back.

6 Handling Large Operations
Recursive operations on large directories, containing mil-
lions of inodes, are too large to fit in a single transaction,
that is, locking millions of rows in a transaction is not sup-
ported in existing online transaction processing systems.
These operations include move, delete, change owner,
change permissions, and set quota operations. Move op-
eration changes the absolute paths of all the descendant
inodes, while delete removes all the descendant inodes,
and the set quota operation affects how all the descendant
inodes consume disk space or how many files/directories
they can create. Similarly changing the permissions or
owner of a directory may invalidate operations executing
at the lower subtrees.

6.1 Subtree Operations Protocol
Our solution is a protocol that implements subtree opera-
tions incrementally in batches of transactions. Instead of
row level database locks, our subtree operations protocol
uses an application-level distributed locking mechanism
to mark and isolate the subtrees. We serialize subtree
operations by ensuring that all ongoing inode and subtree
operations in a subtree complete before a newly requested
subtree operation is executed. We implement this serial-
ization property by enforcing the following invariants: (1)
no new operations access the subtree until the operation
completes, (2) the subtree is quiesced before the subtree
operation starts, (3) no orphaned inodes or inconsistencies
arise if failures occur.

Our subtree operations protocol provides the same con-
sistency semantics as subtree operations in HDFS. For
delete subtree operation HopsFS provides even stronger
consistency semantics. Failed delete operations in HDFS
can result in orphaned blocks that are eventually re-
claimed by the block reporting subsystem (hours later).
HopsFS improves the semantics of delete operation as
failed operations does not cause any metadata inconsis-
tencies, see section 6.2. Subtree operations have the fol-
lowing phases.

Phase 1: In the first phase, an exclusive lock is ac-
quired on the root of the subtree and a subtree lock flag
(which also contains the ID of the namenode that owns
the lock) is set and persisted in the database. The flag is
an indication that all the descendants of the subtree are
locked with exclusive (write) lock.

Before setting the lock it is essential that there are no
other active subtree operations at any lower level of the
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Figure 5: Execution of a delete subtree operation. Parallel transactions
progress down (shown left) the subtree waiting for active operations to
finish by taking and releasing write locks on all the descendant inodes.
In the next phase (shown right), the delete operation is executed in
batches using parallel transactions upwards from the leaf nodes.

subtree. Setting the subtree lock could fail active subtree
operations executing on a subset of the subtree. We store
all active subtree operations in a table and query it to
ensure that no subtree operations are executing at lower
levels of the subtree. In a typical workload, this table
does not grow too large as subtree operations are usually
only a tiny fraction of all file system operations. It is
important to note that during path resolution, inode and
subtree operations that encounter an inode with a subtree
lock turned on voluntarily abort the transaction and wait
until the subtree lock is removed.

Phase 2: To quiesce the subtree we wait for all ongo-
ing inode operations to complete by taking and releasing
database write locks on all inodes in the subtree in the
same total order used to lock inodes. To do this efficiently,
a pool of threads in parallel execute partition pruned in-
dex scans that write-lock child inodes. This is repeated
down the subtree to the leaves, and, a tree data structure
containing the inodes in the subtree is built in memory
at the namenode, see Figure 5. The tree is later used by
some subtree operations, such as, move and delete opera-
tions, to process the inodes. We reduce the overhead of
reading all inodes in the subtree by using projections to
only read the inode IDs. If the subtree operations protocol
fails to quiesce the subtree due to concurrent file system
operations on the subtree, it is retried with exponential
backoff.

Phase 3: In the last phase the file system operation
is broken down into smaller operations that execute in
parallel. For improved performance, large batches of
inodes are manipulated in each transaction.

6.2 Handling Failed Subtree Operations
HopsFS takes lazy approach to cleanup subtree locks left
by the failed namenodes [45]. Each namenode maintains
a list of the active namenodes provided by the leader
election service. If an operation encounters an inode with
a subtree lock set and the namenode ID of the subtree
lock belongs to a dead namenode then the subtree lock is
cleared. However, it is important that when a namenode
that is executing a subtree operation fails then it should not
leave the subtree in an inconsistent state. The in-memory
tree built during the second phase plays an important role
in keeping the namespace consistent if the namenode fails.
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For example, in case of delete operations the subtree is
deleted incrementally in post-order tree traversal manner
using transactions. If half way through the operation
the namenode fails then the inodes that were not deleted
remain connected to the namespace tree. HopsFS clients
will transparently resubmit the file system operation to
another namenode to delete the remainder of the subtree.

Other subtree operations (move, set quota, chmod and
chown) do not cause any inconsistencies as the actual
operation where the metadata is modified is done in the
third phase using a single transaction that only updates
the root inodes of the subtrees and the inner inodes are left
intact. In the case of a failure, the namenode might fail
to unset the subtree lock, however, this is not a problem
as other namenodes can easily remove the subtree lock
when they find out that the subtree lock belongs to a dead
namenode.

6.3 Inode and Subtree Lock Compatibility
Similar to the inode operation’s locking mechanism
(see section 5.2.1), subtree operations also implement
hierarchical locking, that is, setting a subtree flag on a di-
rectory implicitly locks the contents of the directory. Both
inode and subtree locking mechanisms are compatible
with each other, respecting both of their corresponding
locks. That is, a subtree flag cannot be set on a direc-
tory locked by an inode operation and an inode operation
voluntarily aborts the transaction when it encounters a
directory with a subtree lock set.

7 HopsFS Evaluation
As HopsFS addresses how to scale out the metadata layer
of HDFS, all our experiments are designed to compara-
tively test the performance and scalability of the name-
node(s) in HDFS and HopsFS in controlled conditions
that approximate real-life file system load in big produc-
tion clusters.

7.1 Experimental Setup
Benchmark: We have extended the benchmarking setup
used to test the performance of Quantcast File System
(QFS) [41], which is an open source C++ implementation
of Google File System. The benchmarking utility is a dis-
tributed application that spawns tens of thousands of HDF-
S/HopsFS file system clients, distributed across many ma-
chines, which concurrently execute file system (metadata)
operations on the namenode(s). The benchmark utility
can test the performance of both individual file system
operations and file system workloads based on industrial
workload traces. HopsFS and the benchmark utility are
open source and the readers are encouraged to perform
their own experiments to verify our findings [21, 24].

HopsFS Setup: All the experiments were run on
premise using Dell PowerEdge R730xd servers(Intel(R)
Xeon(R) CPU E5-2620 v3 @ 2.40GHz, 256 GB RAM, 4

TB 7200 RPM HDDs) connected using a single 10 GbE
network adapter. Unless stated otherwise, NDB, version
7.5.3, was deployed on 12 nodes configured to run using
22 threads each and the data replication degree was 2.

HDFS Setup: In medium to large Hadoop clusters,
5 to 8 servers are required to provide high availabil-
ity for HDFS metadata service, see Figure 1 and sec-
tion section 2. The 5-server setup includes one active
namenode, one standby namenode, at least three journal
nodes collocated with at least three ZooKeeper nodes. In
the 8-server setup, the ZooKeeper nodes are installed
on separate servers to prevent multiple services from
failing when a server fails. In our experiments Apache
HDFS, version 2.7.2 was deployed on 5 servers. Based
on Spotify’s experience of running HDFS, we configured
the HDFS namenodes with 240 client handler threads
(dfs.namenode.handler.count).

None of the file system clients were co-located with
the namenodes or the database nodes. As we are only
evaluating metadata performance, all the tests created
files of zero length (similar to the NNThroughputBench-
mark [62]). Testing with non-empty files requires an
order of magnitude more HDFS/HopsFS datanodes, and
provides no further insight.

7.2 Industrial Workload Experiments
We benchmarked HopsFS using workloads based on oper-
ational traces from Spotify that operates a Hadoop cluster
consisting of 1600+ nodes containing 60 petabytes of
data. The namespace contains 13 million directories and
218 million files where each file on average contains 1.3
blocks. The Hadoop cluster at Spotify runs on average
forty thousand jobs from different applications, such as,
Pig, Hive, HBase, MapReduce, Tez, Spark, and Giraph
every day. The file system workload generated by these
application is summarized in Table 1, which shows the
relative frequency of HDFS operations. At Spotify the
average file path depth is 7 and average inode name length
is 34 characters. On average each directory contains 16
files and 2 sub-directories. There are 289 million blocks
stored on the datanodes. We use these statistics to gener-
ate file system workloads that approximate HDFS usage
in production at Spotify.

Figure 6 shows that, for our industrial workload, using
60 namenodes and 12 NDB nodes, HopsFS can perform
1.25 million operations per second delivering 16 times
the throughput of HDFS. As discussed before in medium
to large Hadoop clusters 5 to 8 servers are required to
provide high availability for HDFS. With equivalent hard-
ware (2 NDB nodes and 3 namenodes), HopsFS delivers
≈10% higher throughput than HDFS. HopsFS perfor-
mance increases linearly as more namenodes nodes are
added to the system.

Table 2 shows the performance of HopsFS and HDFS
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Figure 6: HopsFS and HDFS throughput for Spotify workload.

for write intensive synthetic workloads. These synthetic
workloads are derived from the previously described
workload, but here we increase the relative percentage
of file create operations and reduce the percentage of file
read operations. In this experiment, HopsFS is using 60
namenodes. As HopsFS only takes locks on inodes and
subtrees, compared to HDFS’ global lock, HopsFS out-
performs HDFS by 37 times for workloads where 20%
of the file system operations are file create operations.

Workloads HopsFS
ops/sec

HDFS
ops/sec

Scaling
Factor

Spotify Workload (2.7% File Writes) 1.25 M 78.9 K 16
Synthetic Workload (5.0% File Writes) 1.19 M 53.6 K 22
Synthetic Workload (10% File Writes) 1.04 M 35.2 K 30
Synthetic Workload (20% File Writes) 0.748 M 19.9 K 37

Table 2: HDFS and HopsFS Scalability for Different Workloads.

7.2.1 Hotspots
It is not uncommon for big data applications to create mil-
lions of files in a single directory [51, 43]. As discussed
in section 4.2.1 the performance of HopsFS is affected if
the file system operations are not uniformly distributed
among all the database shards. In this experiment, all the
file system operation paths share a common ancestor, that
is, /shared-dir/.... All the file system operations manipu-
late files and directories with common ancestor and the
file system operations are generated using the workload
described in the previous section 7.2. The scalability of
this workload is limited by the performance of the data-
base shard that holds the /shared-dir. Despite the fact that
the current version of HopsFS does not yet provide a so-
lution for scaling the performance of hotspots, the current
solution outperforms HDFS by 3 times, see Figure 6. We
did not see any effect on the performance of HDFS in the
presence of hotspots.

7.3 Metadata (Namespace) Scalability
In HDFS, as the entire namespace metadata must fit on
the heap of single JVM, the data structures are highly
optimized to reduce the memory footprint [60]. In HDFS,

a file with two blocks that are replicated three ways re-
quires 448 + L bytes of metadata1 where L represents
the filename length. If the file names are 10 characters
long, then a 1 GB JVM heap can store 2.3 million files.
In reality the JVM heap size has to be significantly larger
to accommodate secondary metadata, thousands of con-
current RPC requests, block reports that can each be tens
of megabytes in size, as well as other temporary objects.

Number of Files
Memory HDFS HopsFS
1 GB 2.3 million 0.69 million
50 GB 115 million 34.5 million
100 GB 230 million 69 million
200 GB 460 million 138 million
500 GB Does Not Scale 346 million
1 TB Does Not Scale 708 million
24 TB Does Not Scale 17 billion

Table 3: HDFS and HopsFS Metadata Scalability.

Migrating the metadata to a database causes an expan-
sion in the amount of memory required to accommodate
indexes, primary/foreign keys and padding. In HopsFS
the same file described above takes 1552 bytes if the meta-
data is replicated twice. For a highly available deployment
with an active and standby namenodes for HDFS, you will
need twice the amount of memory, thus, HopsFS requires
≈ 1.5 times more memory than HDFS to store metadata
that is highly available. Table 3 shows the metadata scala-
bility of HDFS and HopsFS.

NDB supports up to 48 datanodes, which allows it
to scale up to 24 TB of data in a cluster with 512 GB
RAM on each NDB datanode. HopsFS can store up to
17 billion files using 24 TB of metadata, which is (≈37
times) higher than HDFS.

7.4 FS Operations’ Raw Throughput
In this experiment, for each file system operation, the
benchmark utility inundates the namenode(s) with the
same file system operation. This test is particularly help-
ful in determining the maximum throughput and scalabil-
ity of a particular file system operation. In real deploy-
ments, the namenode often receives a deluge of the same
file system operation type, for example, a big job that
reads large amounts of data will generate a huge number
of requests to read files and list directories.

Figure 7 shows our results comparing the throughput
for different file system operations. For each operation,
HopsFS’ results are displayed as a bar chart of stacked
rectangles. Each rectangle represents an increase in the
throughput when five new namenode are added. HopsFS
outperforms HDFS for all file system operations and has
significantly better performance than HDFS for the most
common file system operations.

1These size estimates are for HDFS version 2.0.4 from which
HopsFS was forked. Newer version of HDFS require additional memory
for new features such as snapshots and extended attributes.
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Figure 7: HopsFS and HDFS throughput for different operations. For
HopsFS each shaded box represents an increase in the throughput of
the file system operation when five namenodes are added. For HDFS,
the shaded box represents the maximum throughput achieved using the
5-server HDFS namenode setup.

7.4.1 Subtree Operations
In Table 4, we show the latency for move and delete sub-
tree operations on a directory containing a varying number
of files, ranging from one quarter to one million files. In
this experiment, the tests were performed on HopsFS and
HDFS clusters under 50% load for the Spotify workload
(50 % of the maximum throughput observed in figure 6).

In HopsFS, large amounts of data is read over the net-
work and the operations are executed in many small trans-
action batches. The execution time of the move operation
does not increase as rapidly because it does not update
all the inner nodes or leaves of the subtree. HDFS out-
performs HopsFS as all the data is readily available in
the memory. However, due to the low frequency of such
operations in typical industrial workloads (see Table 1),
we think it is an acceptable trade-off for the higher perfor-
mance of common file system operations in HopsFS.

7.5 Operational Latency
The latency for a single file system operation on an un-
loaded HDFS namenode will always be lower than in
HopsFS, as all the metadata is readily available in main
memory for the HDFS namenode, while it is remote for
the namenodes in HopsFS. Figure 8 shows average file
system operation latency observed by concurrent clients

mv rm -rf
Dir Size HDFS HopsFS HDFS HopsFS
0.25 M 197 ms 1820 ms 256 ms 5027 ms
0.50 M 242 ms 3151 ms 314 ms 8589 ms
1.00 M 357 ms 5870 ms 606 ms 15941 ms

Table 4: Performance of move and delete operations on large directories.

while running the Spotify workload. For such a workload,
HopsFS has lower operation latency than HDFS because
in HDFS file system operations that update the namespace
block all other file system operations. Large HDFS de-
ployments, may have tens of thousands of clients [61] and
the end-to-end latency observed by the clients increases
as the file system operations wait in RPC call queues at
the namenode [55]. In contrast, HopsFS can handle more
concurrent clients while keeping operation latencies low.
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Figure 8: Average operation latency observed by HopsFS and HDFS
for an increasing number of concurrent clients.

Figure 9 shows 99th percentile latencies for different
file system operations in a non-overloaded cluster. In this
experiment, we ran HopsFS and HDFS under 50% load
for the Spotify workload (50 % of the maximum through-
put observed in Figure 6). In HopsFS, 99th-percentiles
for common file system operations such as touch file, read
file, ls dir and stat dir are 100.8 ms, 8.6 ms, 11.4 ms and
8.5 ms, respectively. In a similar experiment for HDFS,
running at 50% load, the 99th-percentile latency for touch
file, read file, ls dir and stat dir are 101.8, 1.5, 0.9, and 1.5
ms respectively.

7.6 Failure Handling
Now we discuss how the performance of the HDFS and
HopsFS is affected when the namenodes, NDB datanodes,
and journal nodes fail.

7.6.1 Namenodes failure
Figure 10 shows how the performance of the file system
metadata service is affected when a namenode fails at
50% of the load of the Spotify workload. The namenodes
failures were simulated by killing and restarting all the
file system processes on a namenode. For HDFS, the ac-
tive namenode was periodically killed while for HopsFS,
the namenodes were periodically killed in a round-robin
manner. In the Figure 10, vertical lines indicate namenode
failures. In HDFS, the standby namenode takes over when
it detects that the active namenode has failed. In our ex-
periments we have observed 8 to 10 seconds of downtime
during failover in HDFS. During this time no file system
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metadata operation can be performed. Our failover tests
were favorable to HDFS, as the amount of metadata stored
by NNs in the experiment is minimal. At Spotify, with
140 gigabytes of metadata and 40 thousand jobs every
day, failover takes at least 5 minutes, and often up to 15
minutes. Although we are unsure of the reason why, it
may be due to the additional checkpointing role played by
the Standby namenode. Moreover, starting a namenode
takes tens of minutes to build the in-memory represen-
tation of the name space from the on disk name space
image and applying outstanding redo logs. In contrast,
in HopsFS when a namenode fails clients transparently
re-execute failed file system operations on one of the re-
maining namenodes in the system. In these experiments
the number of file system clients were fixed and no new
clients were added during the experiment. For HopsFS the
throughput gradually drops as more and more namenodes
are restarted. This is due to the fact that after a namenode
fails the clients switch to remaining namenodes. In the
experiments, HopsFS uses sticky namenode selection pol-
icy and due to the fact that no new clients were started
during the experiments the restarted namenodes do not
receive as many file system operations requests as other
namenodes.
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Figure 10: HopsFS and HDFS namenode failover. Vertical lines repre-
sent namenodes failures.

7.6.2 Failure of NDB Datanodes or Journal Nodes
For a HDFS cluster with N journal nodes, HDFS can
tolerate failure of up to dN/2e − 1 journal nodes. In
our tests with a quorum of three journal nodes, HDFS
can tolerate only one journal node failure. Increasing
the size of the quorum to five enables HDFS to tolerate
two journal nodes failure. We have tested HDFS with
3, 5, and 7 journal nodes, and the performance of the
HDFS namenodes is not affected when the journal nodes
fail provided that the quorum is not lost. When more

journal nodes fail and the quorum is lost then the HDFS
namenodes shutdown.

The number of NDB node failures that HopsFS can
tolerate depends on the number of NDB datanodes and the
replication degree. NDB is designed to provide 99.999%
availability [37]. With a default NDB replication degree
of 2, a 4 node NDB cluster can tolerate up to 2 NDB
datanodes failures and a 12 node NDB cluster can tolerate
up to 6 NDB datanodes failure in disjoint replica groups.
We have tested HopsFS on 2, 4, 8 and 12 node NDB
clusters and the performance of HopsFS is not affected
when a NDB datanode fails as long as there is at least one
remaining NDB datanode alive in each node group. If all
the NDB datanodes in a node group fail, then the HopsFS
namenodes shutdown.

A common complaint against the two-phase commit
protocol is that it is blocking and failure of a transac-
tion coordinator or participant will cause the system to
block. NDB internally implements a transaction coordi-
nator failover protocol that hands over transactions on a
failed coordinator to a different coordinator, (the default
1500 ms heartbeat timeout gives an upper bound of 6
seconds for 3 missed heartbeats). Transaction participant
failures are identified by very low transaction inactive
timeouts, (the default is 1200 ms also used in our exper-
iments and in production). In the event of a transaction
participant failure, failed transactions are automatically
retried by the namenode and will be handled by the sur-
viving datanodes in that replication group.

7.7 Block Report Performance
In HDFS, each datanode periodically sends a block report
to a namenode, containing IDs of all the blocks stored
on the datanode. Block reports serve two purposes: (1)
they help to rebuild the block location map when the
namenode restarts since HDFS does not persist this infor-
mation, (2) they serve as ground truth for available blocks
in the system. We reimplemented the HDFS block re-
porting solution in HopsFS. Although the solution is fully
functional it does not deliver as high throughput because
a large amount of metadata is read over the network from
the database by the namenodes to process a block report.

In an experiment with the same setup, 150 datanodes si-
multaneously submitted block report containing 100,000
blocks. With 30 namenodes, HopsFS manages to pro-
cess 30 block reports per second while HDFS managed
to process 60 block reports per second. However, full
block-reports aren’t needed as frequently in HopsFS as
in HDFS, as we persist the block location mappings in
the database. Even without further optimizations, with a
512 megabyte block size, and datanodes sending block
reports every six hours, HopsFS can scale to handle block
reporting in an exabyte cluster.
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8 Related Work
The InversionFS [39] and Windows Future Storage
(WinFS) [74] were some of the first monolithic file sys-
tems that stored the metadata in a relational database.
Gunawi [20] showed that some file system operations,
such as f sck, can be more efficient when implemented
using a relational database.

Recently, high performance distributed databases such
as HBase [16, 9], Cassandra [29], CalvinDB [69] have
enabled the development of new distributed metadata
management architectures in file systems such as Calv-
inFS [68], CassandraFS [8] and GiraffaFS [18]. All of
these file systems store denormalized metadata, that is,
they store the full file path with each inode which af-
fects the subtree operations. GiraffaFS only supports file
move operation in the same directory. CalvinFS relies on
CalvinDB to perform large transactions. CalvinDB runs
large transactions in two phases. In the first phase the
lock set is identified, and in the second phase all the locks
are acquired and the operation is performed, provided that
the lock set has not changed. However, CalvinFS did not
experimentally show that this is a viable technique for
performing operations on a directory with millions of files.
Production-grade online transaction processing systems
have an upper bound on the number of operations that
can be included in a transaction, where the upper bound
is much lower than tens of millions.

IndexFS [52] and ShardFS [75] are file systems opti-
mized for metadata workloads with a large number of
small files. IndexFS and ShardFS are middleware file
systems, that is, they are built on existing distributed
file systems such as HDFS [61], Lustre [66], PanFS [73]
and PVFS [31]. In IndexFS and ShardFS, the metadata
servers handle metadata as well as user data for small
files stored in local LevelDB [32] instances, and delegate
the management of large files to an underlying distributed
file system. For durability the LevelDB’s SSTables are
stored in the underlying distributed file system. IndexFS
caches inode information at clients, while ShardFS caches
it at metadata servers. Atomic file system operations that
involves both the underlying distributed file system and
IndexFS/ShardFS metadata servers are not supported. For
example, atomically deleting large files whose metadata
is stored in the IndexFS/ShardFS metadata server and
the file data is stored by the underlying distributed file
system is not supported. IndexFS [52] uses a caching
mechanism to improve the performance of hot directo-
ries/files, while HopsFS’ currently only load balances a
user-configurable number of top-level directories. We are
investigating more dynamic approaches for HopsFS.

PVFS2 [31], OrangeFS [76], Farsite [14], Lustre [66],
Vesta [11], InterMezzo [46], zFS [53], and RAMA [35]
shard inodes among multiple metadata servers by either
(1) random partitioning or (2) partition based hashed file

identifiers or hashed full/partial file paths. This partition-
ing scheme is typically combined with the caching of
metadata at clients, which can cause cache invalidation
storms for large subtree operations. Ceph dynamically
partitions the file system tree, where hot-spot directories
are hashed on multiple metadata servers [71, 72].

Finally, our architecture supports a pluggable NewSQL
storage engine. MemSQL and SAP Hana are candidates,
as they support high throughput cross-partition trans-
actions, application defined partitioning, and partition
pruned queries [34]. VoltDB is currently not a candidate
as it serializes cross partition transactions [70].

9 External Metadata Implications
Administrators often resort to writing their own tools to
analyze the HDFS namespace. HopsFS enables online
ad hoc analytics on the metadata. With a NDB backend,
HopsFS metadata can be selectively and asynchronously
replicated to either a backup cluster or a MySQL slave
server, enabling complex analytics without affecting the
performance of the active cluster. HopsFS metadata is
also easy to export to external systems and it is easy to
safely extend the metadata. That is, additional tables can
be created that contain a foreign key to the associated
inode, thus ensuring the integrity of the extended meta-
data. Using this approach, we have already added new fea-
tures to HopsFS, including extended attributes for inodes
and erasure coding. Moreover, following similar ideas
to [28], we developed an eventually consistent replication
protocol that replicates (extended) HopsFS metadata to
Elasticsearch [15] for free-text search. This enables us
to search the entire namespace with sub-second latency.
We believe that distributed metadata in a commodity data-
base is a significant new enabling technology and it can
become a reliable source of ground truth for metadata
applications built on top of distributed file systems.

10 Summary
In this paper, we introduced HopsFS, that is, to the best
of our knowledge, the first production-grade distributed
hierarchical file system that stores its metadata in an exter-
nal NewSQL database. HopsFS is an open-source, highly
available file system that scales out in both capacity and
throughput by adding new namenodes and database nodes.
HopsFS can store 37 times more metadata than HDFS and
for a workload from Spotify, HopsFS scales to handle 16
times the throughput of HDFS. HopsFS also has lower av-
erage latency for large number of concurrent clients, and
no downtime during failover. Our architecture supports
a pluggable database storage engine, and other NewSQL
databases could be used. Finally, HopsFS makes metadata
tinker friendly, opening it up for users and applications to
extend and analyze in new and creative ways.
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Abstract
Drive-Managed SMR (Shingled Magnetic Recording) disks
offer a plug-compatible higher-capacity replacement for
conventional disks. For non-sequential workloads, these
disks show bimodal behavior: After a short period of high
throughput they enter a continuous period of low throughput.

We introduce ext4-lazy1, a small change to the Linux
ext4 file system that significantly improves the throughput
in both modes. We present benchmarks on four different
drive-managed SMR disks from two vendors, showing that
ext4-lazy achieves 1.7-5.4× improvement over ext4 on a
metadata-light file server benchmark. On metadata-heavy
benchmarks it achieves 2-13× improvement over ext4 on
drive-managed SMR disks as well as on conventional disks.

1 Introduction
Over 90% of all data in the world has been generated over the
last two years [14]. To cope with the exponential growth of
data, as well as to stay competitive with NAND flash-based
solid state drives (SSDs), hard disk vendors are researching
capacity-increasing technologies like Shingled Magnetic
Recording (SMR) [20,60], Heat Assisted Magnetic Record-
ing (HAMR) [29], and Bit-Patterned Magnetic Recording
(BPMR) [2, 13]. While HAMR and BPMR are still in the
research stage, SMR allows disk manufacturers to increase
areal density with existing fabrication methods. Unfortu-
nately, this increase in density comes at the cost of increased
complexity, resulting in a disk that has different behavior
than Conventional Magnetic Recording (CMR) disks. Fur-
thermore, since SMR can complement HAMR and BPMR
to provide even higher growth in areal density, it is likely that
all high-capacity disks in the near future will use SMR [42].

The industry has tried to address SMR adoption by
introducing two kinds of SMR disks: Drive-Managed
(DM-SMR) and Host-Managed (HM-SMR). DM-SMR
disks are a drop-in replacement for conventional disks that
offer higher capacity with the traditional block interface,
but can suffer performance degradation when subjected to
non-sequential write traffic. Unlike CMR disks that have
a low but consistent throughput under random writes, DM-
SMR disks offer high throughput for a short period followed
by a precipitous drop, as shown in Figure 1. HM-SMR
disks, on the other hand, offer a backward-incompatible
interface that requires major changes to the I/O stacks to
allow SMR-aware software to optimize their access pattern.

A new HM-SMR disk interface presents an interesting
problem to storage researchers who have already proposed
new file system designs based on it [10, 24, 32]. It also

1The suffix -lazy is short for Lazy Writeback Journaling.
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Figure 1: Throughput of CMR and DM-SMR disks from Table 1 under
4 KiB random write traffic. CMR disk has a stable but low throughput under
random writes. DM-SMR disks, on the other hand, have a short period of
high throughput followed by a continuous period of ultra-low throughput.

Type Vendor Model Capacity Form Factor

DM-SMR Seagate ST8000AS0002 8 TB 3.5 inch
DM-SMR Seagate ST5000AS0011 5 TB 3.5 inch
DM-SMR Seagate ST4000LM016 4 TB 2.5 inch
DM-SMR Western Digital WD40NMZW 4 TB 2.5 inch

CMR Western Digital WD5000YS 500 GB 3.5 inch

Table 1: CMR and DM-SMR disks from two vendors used for evaluation.

presents a challenge to the developers of existing file
systems [12,15,16] who have been optimizing their code for
CMR disks for years. There have been attempts to revamp
mature Linux file systems like ext4 and XFS [11,41,42] to
use the new interface, but these attempts have stalled due to
the large amount of redesign required. The Log-Structured
File System (LFS) [47], on the other hand, has an archi-
tecture that can be most easily adapted to an HM-SMR
disk. However, although LFS has been influential, disk file
systems based on it [28, 49] have not reached production
quality in practice [34,40,48] .

We take an alternative approach to SMR adoption. Instead
of redesigning for the HM-SMR disk interface, we make
an incremental change to a mature, high performance file
system, to optimize its performance on a DM-SMR disk. The
systems community is no stranger to taking a revolutionary
approach when faced with a new technology [5], only to
discover that the existing system can be evolved to take the
advantage of the new technology with a little effort [6]. Fol-
lowing a similar evolutionary approach, we take the first step
to optimize ext4 file system for DM-SMR disks, observing
that random writes are even more expensive on these disks,
and that metadata writeback is a key generator of it.

We introduce ext4-lazy, a small change to ext4 that elimi-
nates most metadata writeback. Like other journaling file sys-
tems [45], ext4 writes metadata twice; as Figure 2 (a) shows,
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Figure 2: (a) Ext4 writes a metadata block to disk twice. It first writes
the metadata block to the journal at some location J and marks it dirty in
memory. Later, the writeback thread writes the same metadata block to its
static location S on disk, resulting in a random write. (b) Ext4-lazy, writes
the metadata block approximately once to the journal and inserts a mapping
(S,J) to an in-memory map so that the file system can find the metadata
block in the journal.

it first writes the metadata block to a temporary location J
in the journal and then marks the block as dirty in memory.
Once it has been in memory for long enough2, the writeback
(or flusher) thread writes the block to its static location S,
resulting in a random write. Although metadata writeback
is typically a small portion of a workload, it results in many
random writes, as Figure 3 shows. Ext4-lazy, on the other
hand, marks the block as clean after writing it to the journal,
to prevent the writeback, and inserts a mapping (S,J) to an
in-memory map allowing the file system to access the block
in the journal, as seen in Figure 2 (b). Ext4-lazy uses a large
journal so that it can continue writing updated blocks while
reclaiming the space from the stale blocks. During mount, it
reconstructs the in-memory map from the journal resulting in
a modest increase in mount time. Our results show that ext4-
lazy significantly improves performance on DM-SMR disks,
as well as on CMR disks for metadata-heavy workloads.

Our key contribution in this paper is the design, implemen-
tation, and evaluation of ext4-lazy on DM-SMR and CMR
disks. Our change is minimally invasive—we modify 80
lines of existing code and introduce the new functionality in
additional files totaling 600 lines of C code. On a metadata-
light (≤ 1% of total writes) file server benchmark, ext4-lazy
increases DM-SMR disk throughput by 1.7-5.4×. For
directory traversal and metadata-heavy workloads it achieves
2-13× improvement on both DM-SMR and CMR disks.

In addition, we make two contributions that are applicable
beyond our proposed approach:
• For purely sequential write workloads, DM-SMR disks
perform at full throughput and do not suffer performance
degradation. We identify the minimal sequential I/O size to
trigger this behavior for a popular DM-SMR disk.
•We show that for physical journaling [45], a small journal
is a bottleneck for metadata-heavy workloads. Based on our

2Controlled by /proc/sys/vm/dirty expire centisecs in Linux.
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Figure 3: Offsets of data and metadata writes obtained with blk-
trace [4], when compiling Linux kernel 4.6 with all of its modules on
a fresh ext4 file system. The workload writes 12 GiB of data, 185 MiB of
journal (omitted from the graph), and only 98 MiB of metadata, making
it 0.77% of total writes.

result, ext4 developers have increased the default journal size
from 128 MiB to 1 GiB for file systems over 128 GiB [54].

In the rest of the paper, we first give background on SMR
technology, describe why random writes are expensive in
DM-SMR disks, and show why metadata writeback in ext4
is causing more random writes (§ 2). Next, we motivate
ext4-lazy and describe its design and implementation (§ 3).
Finally, we evaluate our implementation (§ 4), cover related
work (§ 5) and present our conclusions (§ 6). Source code
and other artifacts to reproduce our results are available
at http://www.pdl.cmu.edu/Publications/
downloads.shtml.

2 Background
We introduce SMR technology in general and describe how
DM-SMR disks work. We then describe how ext4 lays out
data on a disk and how it uses a generic layer in the kernel
to enable journaling.

2.1 DM-SMR Internals
SMR leverages the difference in the width of the disk’s write
head and read head to squeeze more tracks into the same
area than CMR. In CMR, tracks have the width of the write
head even though they are read with a narrow read head, as
seen in Figure 4 (a). In SMR, however, the tracks are written
on top of each other, leaving just enough space for the read
head to distinguish them, increasing track density, as seen
in Figure 4 (b). Unlike CMR, however, overlapping writes
cause the sector updates to corrupt data in adjacent tracks.
Therefore, the surface of an SMR disk is divided into bands
that are collections of narrow tracks divided by wide tracks
called guard regions, as seen in Figure 4 (c). A band in an
SMR disk represents a unit that can be safely overwritten
sequentially, beginning at the first track and ending at the
last. A write to any sector in a band—except to sectors in
the last track of the band—will require read-modify-write
(RMW) of all the tracks forming the band.
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(a) Conventional Magnetic Recording (a) Shingled Magnetic Recording (c) Surface of an SMR disk

Guard Regions

Figure 4: (a) In conventional recording the tracks have the width of the write head. (b) In shingled recording the tracks are laid partially on top of each
other reducing the track width to the read head. This allows for more tracks, however, unlike with conventional recording, overwriting a sector corrupts
other sectors. (c) Therefore, the surface of an SMR disk is divided into bands made up of multiple tracks separated by guard regions. (d) An SMR disk
also contains a persistent cache for absorbing random writes, in addition to a sequence of bands to whom a group of sectors are mapped.

HM-SMR disks provide an interface that exposes the
band information and let the host manage data on disk. One
such interface is going through the standardization [23] and
researchers are coming up with others [17,25,34]. DM-SMR
disks, on the other hand, implement a Shingle Translation
Layer (STL)—similar to the Flash Translation Layer (FTL)
in SSDs—that manages data in firmware while exposing
the block interface to the host.

All STLs proposed in the literature and found in actual
DM-SMR disks to this date [1,9,21,22,56] contain one or
more persistent caches for absorbing random writes, to avoid
expensive RMW operation for each write. Consequently,
when a write operation updates some part of a band, the
STL writes the update to the persistent cache, and the
band becomes dirty. An STL cleans a dirty band in the
background or during idle times, by merging updates for the
band from the persistent cache with unmodified data from
the band, and writing back to the band, freeing space used
by the updates in the persistent cache.

The cost of cleaning a band may vary based on the type
of the block mapping used. With dynamic mapping an STL
can read a band, update it in memory, write the updated
band to a different band, and fix the mapping, resulting in
a read and a write of a band. With static mapping, however,
an STL needs to persist the updated band to a scratch space
first—directly overwriting the band can corrupt it in case of a
power failure—resulting in a read and two writes of a band.

As a concrete example, Figure 4 (d) shows the logical
view of Seagate ST8000AS0002 DM-SMR disk that was
recently studied in detail [1]. With an average band size
of 30 MiB, the disk has over 260,000 bands with sectors
statically mapped to the bands, and a ≈25 GiB persistent
cache that is not visible to the host. The STL in this disk
detects sequential writes and starts streaming them directly
to the bands, bypassing the persistent cache. Random writes,
however, end up in the persistent cache, dirtying bands.
Cleaning a single band typically takes 1-2 seconds, but can

take up to 45 seconds in extreme cases.
STLs also differ in their cleaning strategies. Some STLs

constantly clean in small amounts, while others clean during
idle times. If the persistent cache fills before the workload
completes, the STL is forced to interleave cleaning with
work, reducing throughput. Figure 1 shows the behavior of
DM-SMR disks from two vendors. Seagate disks are known
to clean during idle times and to have static mapping [1].
Therefore, they have high throughput while the persistent
cache is not full, and ultra-low throughput after it fills. The
difference in the time when the throughput drops suggests
that the persistent cache size varies among the disks. Western
Digital disks, on the other hand, are likely to clean constantly
and have dynamic mapping [9]. Therefore, they have lower
throughput than Seagate disks while the persistent cache is
not full, but higher throughput after it fills.

2.2 Ext4 and Journaling
The ext4 file system evolved [30,36] from ext2 [8], which
was influenced by Fast File System (FFS) [37]. Similar to
FFS, ext2 divides the disk into cylinder groups—or as ext2
calls them, block groups—and tries to put all blocks of a
file in the same block group. To further increase locality,
the metadata blocks (inode bitmap, block bitmap, and inode
table) representing the files in a block group are also placed
within the same block group, as Figure 5 (a) shows. Group
descriptor blocks, whose location is fixed within the block
group, identify the location of these metadata blocks that are
typically located in the first megabyte of the block group.

In ext2 the size of a block group was limited to 128 MiB—
the maximum number of 4 KiB data blocks that a 4 KiB
block bitmap can represent. Ext4 introduced flexible block
groups or flex bgs [30], a set of contiguous block groups3

whose metadata is consolidated in the first 16 MiB of the
first block group within the set, as shown in Figure 5 (b).

3We assume the default size of 16 block groups per flex bg.
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(a) ext2 Block Group

Super Block Group Desc Block Bitmap Inode Bitmap Inode Table Data Blocks

Block Group 0 Block Group 1

Data Blocks Data Blocks

Block Group 2

Data Blocks

(b) ext4 flex_bg

Block Group 15

Data Blocks

Metadata for all block groups in a flex_bg ~ 16 MiB

~ 1 MiB ~ 127 MiB

2 GiB

flex_bg 0 flex_bg 1

Band 0 Band 49

flex_bg 3999

Band 266,565 Band 266,566

(c) Disk Layout of ext4 partition on an 8 TB SMR disk

Figure 5: (a) In ext2, the first megabyte of a 128 MiB block group contains the metadata blocks describing the block group, and the rest is data blocks.
(b) In ext4, a single flex bg concatenates multiple (16 in this example) block groups into one giant block group and puts all of the metadata in the first block
group. (c) Modifying data in a flex bg will result in a metadata write that may dirty one or two bands, seen at the boundary of bands 266,565 and 266,566.

Ext4 ensures metadata consistency via journaling, how-
ever, it does not implement journaling itself; rather, it uses a
generic kernel layer called the Journaling Block Device [55]
that runs in a separate kernel thread called jbd2. In response
to file system operations, ext4 reads metadata blocks from
disk, updates them in memory, and exposes them to jbd2 for
journaling. For increased performance, jbd2 batches metadata
updates from multiple file system operations (by default, for
5 seconds) into a transaction buffer and atomically commits
the transaction to the journal—a circular log of transactions
with a head and tail pointer. A transaction may commit early
if the buffer reaches maximum size, or if a synchronous write
is requested. In addition to metadata blocks, a committed
transaction contains descriptor blocks that record the static
locations of the metadata blocks within the transaction. Af-
ter a commit, jbd2 marks the in-memory copies of metadata
blocks as dirty so that the writeback threads would write them
to their static locations. If a file system operation updates an
in-memory metadata block before its dirty timer expires, jbd2
writes the block to the journal as part of a new transaction
and delays the writeback of the block by resetting its timer.

On DM-SMR disks, when the metadata blocks are even-
tually written back, they dirty the bands that are mapped to
the metadata regions in a flex bg, as seen in Figure 5 (c).
Since a metadata region is not aligned with a band, metadata
writes to it may dirty zero, one, or two extra bands, depending
on whether the metadata region spans one or two bands and
whether the data around the metadata region has been written.

3 Design and Implementation of ext4-lazy
We start by motivating ext4-lazy, follow with a high-level
view of our design, and finish with the implementation
details.

3.1 Motivation
The motivation for ext4-lazy comes from two observations:
(1) metadata writeback in ext4 results in random writes that

cause a significant cleaning load on a DM-SMR disk, and
(2) file system metadata comprises a small set of blocks,
and hot (frequently updated) metadata is an even smaller
set. The corollary of the latter observation is that managing
hot metadata in a circular log several times the size of hot
metadata turns random writes into purely sequential writes,
reducing the cleaning load on a DM-SMR disk. We first
give calculated evidence supporting the first observation and
follow with empirical evidence for the second observation.

On an 8 TB partition, there are about 4,000 flex bgs,
the first 16 MiB of each containing the metadata region, as
shown in Figure 5 (c). With a 30 MiB band size, updating
every flex bg would dirty 4,000 bands on average, requiring
cleaning of 120 GiB worth of bands, generating 360 GiB of
disk traffic. A workload touching 1/16 of the whole disk, that
is 500 GiB of files, would dirty at least 250 bands requiring
22.5 GiB of cleaning work. The cleaning load increases
further if we consider floating metadata like extent tree
blocks and directory blocks.

To measure the hot metadata ratio, we emulated the
I/O workload of a build server on ext4, by running 128
parallel Compilebench [35] instances, and categorized all
of the writes completed by disk. Out of 433 GiB total writes,
388 GiB were data writes, 34 GiB were journal writes, and
11 GiB were metadata writes. The total size of unique meta-
data blocks was 3.5 GiB, showing that it was only 0.8% of
total writes, and that 90% of journal writes were overwrites.

3.2 Design
At a high level, ext4-lazy adds the following components
to ext4 and jbd2:
Map: Ext4-lazy tracks the location of metadata blocks in
the journal with jmap—an in-memory map that associates
the static location S of a metadata block with its location J
in the journal. The mapping is updated whenever a metadata
block is written to the journal, as shown in Figure 2 (b).
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Indirection: In ext4-lazy all accesses to metadata blocks go
through jmap. If the most recent version of a block is in the
journal, there will be an entry in jmap pointing to it; if no en-
try is found, then the copy at the static location is up-to-date.
Cleaner: The cleaner in ext4-lazy reclaims space from loca-
tions in the journal which have become stale, that is, invali-
dated by the writes of new copies of the same metadata block.
Map reconstruction on mount: On every mount, ext4-lazy
reads the descriptor blocks from the transactions between the
tail and the head pointer of the journal and populates jmap.

3.3 Implementation
We now detail our implementation of the above components
and the trade-offs we make during the implementation. We
implement jmap as a standard Linux red-black tree [31]
in jbd2. After jbd2 commits a transaction, it updates jmap
with each metadata block in the transaction and marks the
in-memory copies of those blocks as clean so they will not
be written back. We add indirect lookup of metadata blocks
to ext4 by changing the call sites that read metadata blocks
to use a function which looks up the metadata block location
in jmap, as shown in Listing 1, modifying 40 lines of ext4
code in total.

− submit bh (READ | REQ META | REQ PRIO, bh);
+ jbd2 submit bh ( journal , READ | REQ META | REQ PRIO, bh);

Listing 1: Adding indirection to a call site reading a metadata block.

The indirection allows ext4-lazy to be backward-
compatible and gradually move metadata blocks to the
journal. However, the primary reason for indirection is to be
able to migrate cold (not recently updated) metadata back to
its static location during cleaning, leaving only hot metadata
in the journal.

We implement the cleaner in jbd2 in just 400 lines of
C, leveraging the existing functionality. In particular, the
cleaner merely reads live metadata blocks from the tail of
the journal and adds them to the transaction buffer using the
same interface used by ext4. For each transaction it keeps
a doubly-linked list that links jmap entries containing live
blocks of the transaction. Updating a jmap entry invalidates a
block and removes it from the corresponding list. To clean a
transaction, the cleaner identifies the live blocks of a transac-
tion in constant time using the transaction’s list, reads them,
and adds them to the transaction buffer. The beauty of this
cleaner is that it does not “stop-the-world”, but transparently
mixes cleaning with regular file system operations causing
no interruptions to them, as if cleaning was just another
operation. We use a simple cleaning policy—after commit-
ting a fixed number of transactions, clean a fixed number
of transactions—and leave sophisticated policy development,
such as hot and cold separation, for future work.

Map reconstruction is a small change to the recovery code
in jbd2. Stock ext4 resets the journal on a normal shutdown;
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Figure 6: (a) Completion time for a benchmark creating 100,000 files on
ext4-stock (ext4 with 128 MiB journal) and on ext4-baseline (ext4 with
10 GiB journal). (b) The volume of dirty pages during benchmark runs
obtained by sampling /proc/meminfo every second.

finding a non-empty journal on mount is a sign of crash and
triggers the recovery process. With ext4-lazy, the state of the
journal represents the persistent image of jmap, therefore,
ext4-lazy never resets the journal and always “recovers”. In
our prototype, ext4-lazy reconstructs the jmap by reading
descriptor blocks from the transactions between the tail and
head pointer of the journal, which takes 5-6 seconds when
the space between the head and tail pointer is≈1 GiB.

4 Evaluation
We run all experiments on a system with a quad-core Intel i7-
3820 (Sandy Bridge) 3.6 GHz CPU, 16 GB of RAM running
Linux kernel 4.6 on the Ubuntu 14.04 distribution, using
the disks listed in Table 1. To reduce the variance between
runs, we unmount the file system between runs, always start
with the same file system state, disable lazy initialization4

when formatting ext4 partitions, and fix the writeback cache
ratio [62] for our disks to 50% of the total—by default, this
ratio is computed dynamically from the writeback through-
put [53]. We repeat every experiment at least five times and
report the average and standard deviation of the runtime.

4.1 Journal Bottleneck
Since it affects our choice of baseline, we start by showing
that for metadata-heavy workloads, the default 128 MiB
journal of ext4 is a bottleneck. We demonstrate the
bottleneck on the CMR disk WD5000YS from Table 1
by creating 100,000 small files in over 60,000 directories,
using CreateFiles microbenchmark from Filebench [52].
The workload size is≈1 GiB and fits in memory.

Although ext4-lazy uses a large journal by definition,
since enabling a large journal on ext4 is a command-line
option to mkfs, we choose ext4 with a 10 GiB journal5 as
our baseline. In the rest of this paper, we refer to ext4 with
the default journal size of 128 MiB as ext4-stock, and we
refer to ext4 with 10 GiB journal as ext4-baseline.

4mkfs.ext4 -E lazy itable init=0,lazy journal init=0 /dev/<dev>
5Created by passing “-J size=10240” to mkfs.ext4.
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We measure how fast ext4 can create the files in memory
and do not consider the writeback time. Figure 6 (a) shows
that on ext4-stock the benchmark completes in ≈460
seconds, whereas on ext4-baseline it completes 46× faster,
in≈10 seconds. Next we show how a small journal becomes
a bottleneck.

The ext4 journal is a circular log of transactions with a
head and tail pointer (§ 2.2). As the file system performs
operations, jbd2 commits transactions to the journal, moving
the head forward. A committed transaction becomes check-
pointed when every metadata block in it is either written back
to its static location due to a dirty timer expiration, or it is writ-
ten to the journal as part of a newer transaction. To recover
space, at the end of every commit jbd2 checks for transactions
at the tail that have been checkpointed, and when possible
moves the tail forward. On a metadata-light workload with a
small journal and default dirty timer, jbd2 always finds check-
pointed transactions at the tail and recovers the space without
doing work. However, on a metadata-heavy workload, incom-
ing transactions fill the journal before the transactions at the
tail have been checkpointed. This results in a forced check-
point, where jbd2 synchronously writes metadata blocks at
the tail transaction to their static locations and then moves
the tail forward, so that a new transaction can start [55].

We observe the file system behavior while running the
benchmark by enabling tracepoints in the jbd2 code6. On
ext4-stock, the journal fills in 3 seconds, and from then on
until the end of the run, jbd2 moves the tail by performing
forced checkpoints. On ext4-baseline the journal never be-
comes full and no forced checkpoints happen during the run.

Figure 6 (b) shows the volume of dirtied pages during
the benchmark runs. On ext4-baseline, the benchmark
creates over 60,000 directories and 100,000 files, dirtying
about 1 GiB worth of pages in 10 seconds. On ext4-stock,
directories are created in the first 140 seconds. Forced
checkpoints still happen during this period, but they complete
fast, as the small steps in the first 140 seconds show. Once
the benchmark starts filling directories with files, the block
groups fill and writes spread out to a larger number of block
groups across the disk. Therefore, forced checkpoints start
taking as long as 30 seconds, as indicated by the large steps,
during which the file system stalls, no writes to files happen,
and the volume of dirtied pages stays fixed.

This result shows that for disks, a small journal is a bot-
tleneck for metadata-heavy buffered I/O workloads, as the
journal wraps before metadata blocks are written to disk, and
file system operations are stalled until the journal advances
via synchronous writeback of metadata blocks. With a suf-
ficiently large journal, all transactions will be written back
before the journal wraps. For example, for a 190 MiB/s disk
and a 30 second dirty timer, a journal size of 30s× 190 MiB/s
= 5,700 MiB will guarantee that when the journal wraps, the

6/sys/kernel/debug/tracing/events/jbd2/
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Figure 7: Microbenchmark runtimes on ext4-baseline and ext4-lazy.

transactions at the tail will be checkpointed. Having estab-
lished our baseline, we move on to evaluation of ext4-lazy.

4.2 Ext4-lazy on a CMR disk
We first evaluate ext4-lazy on the CMR disk WD5000YS
from Table 1 via a series of microbenchmarks and a file
server macrobenchmark. We show that on a CMR disk,
ext4-lazy provides a significant speedup for metadata-heavy
workloads, and specifically for massive directory traversal
workloads. On metadata-light workloads, however, ext4-lazy
does not have much impact.

4.2.1 Microbenchmarks

We evaluate directory traversal and file/directory create
operations using the following benchmarks. MakeDirs
creates 800,000 directories in a directory tree of depth
10. ListDirs runs ls -lR on the directory tree. TarDirs
creates a tarball of the directory tree, and RemoveDirs
removes the directory tree. CreateFiles creates 600,000
4 KiB files in a directory tree of depth 20. FindFiles runs
find on the directory tree. TarFiles creates a tarball of
the directory tree, and RemoveFiles removes the directory
tree. MakeDirs and CreateFiles—microbenchmarks from
Filebench—run with 8 threads and execute sync at the end.
All benchmarks start with a cold cache7.

Benchmarks that are in the file/directory create category
(MakeDirs, CreateFiles) complete 1.5-2× faster on ext4-lazy
than on ext4-baseline, while the remaining benchmarks
that are in the directory traversal category, except TarFiles,
complete 3-5× faster, as seen in Figure 7. We choose
MakeDirs and RemoveDirs as a representative of each
category and analyze their performance in detail.

MakeDirs on ext4-baseline results in ≈4,735 MiB of
journal writes that are transaction commits containing
metadata blocks, as seen in the first row of Table 2 and at
the center in Figure 8 (a); as the dirty timer on the metadata
blocks expires, they are written to their static locations,
resulting in a similar amount of metadata writeback. The
block allocator is able to allocate large contiguous blocks for

7echo 3 > /proc/sys/vm/drop caches
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Figure 8: Disk offsets of I/O operations during MakeDirs and RemoveDirs microbenchmarks on ext4-baseline and ext4-lazy. Metadata reads and writes
are spread out while journal writes are at the center. The dots have been scaled based on the I/O size. In part (d), journal writes are not visible due to low
resolution. These are pure metadata workloads with no data writes.

Metadata
Reads (MiB)

Metadata
Writes (MiB)

Journal
Writes (MiB)

MakeDirs/ext4-baseline 143.7±2.8 4,631±33.8 4,735±0.1
MakeDirs/ext4-lazy 144±4 0 4,707±1.8
RemoveDirs/ext4-baseline 4,066.4±0.1 322.4±11.9 1,119±88.6
RemoveDirs/ext4-lazy 4,066.4±0.1 0 472±3.9

Table 2: Distribution of the I/O types with MakeDirs and RemoveDirs
benchmarks running on ext4-baseline and ext4-lazy.

the directories, because the file system is fresh. Therefore, in
addition to journal writes, metadata writeback is sequential as
well. The write time dominates the runtime in this workload,
hence, by avoiding metadata writeback and writing only to
the journal, ext4-lazy halves the writes as well as the runtime,
as seen in the second row of Table 2 and Figure 8 (b). On an
aged file system, the metadata writeback is more likely to be
random, resulting in even higher improvement on ext4-lazy.

An interesting observation about Figure 8 (b) is that
although the total volume of metadata reads—shown as
periodic vertical spreads—is ≈140 MiB (3% of total I/O
in the second row of Table 2), they consume over 30% of
runtime due to long seeks across the disk. In this benchmark,
the metadata blocks are read from their static locations
because we run the benchmark on a fresh file system, and
the metadata blocks are still at their static locations. As we
show next, once the metadata blocks migrate to the journal,
reading them is much faster since no long seeks are involved.

In RemoveDirs benchmark, on both ext4-baseline and
ext4-lazy, the disk reads≈4,066 MiB of metadata, as seen in
the last two rows of Table 2. However, on ext4-baseline the
metadata blocks are scattered all over the disk, resulting in
long seeks as indicated by the vertical spread in Figure 8 (c),
while on ext4-lazy they are within the 10 GiB region in the
journal, resulting in only short seeks, as Figure 8 (d) shows.
Ext4-lazy also benefits from skipping metadata writeback,
but most of the improvement comes from eliminating long

seeks for metadata reads. The significant difference in the
volume of journal writes between ext4-baseline and ext4-lazy
seen in Table 2 is caused by metadata write coalescing: since
ext4-lazy completes faster, there are more operations in each
transaction, with many modifying the same metadata blocks,
each of which is only written once to the journal.

The improvement in the remaining benchmarks, are also
due to reducing seeks to a small region and avoiding meta-
data writeback. We do not observe a dramatic improvement
in TarFiles, because unlike the rest of the benchmarks that
read only metadata from the journal, TarFiles also reads data
blocks of files that are scattered across the disk.

Massive directory traversal workloads are a con-
stant source of frustration for users of most file sys-
tems [3, 18, 33, 43, 50]. One of the biggest benefits of
consolidating metadata in a small region is an order of mag-
nitude improvement in such workloads, which to our surprise
was not noticed by previous work [44,46,61]. On the other
hand, the above results are obtainable in the ideal case that all
of the directory blocks are hot and therefore kept in the jour-
nal. If, for example, some part of the directory is cold and the
policy decides to move those blocks to their static locations,
removing such a directory will incur an expensive traversal.

4.2.2 File Server Macrobenchmark

We first show that ext4-lazy slightly improves the throughput
of a metadata-light file server workload. Next we try to
reproduce a result from previous work without success.

To emulate a file server workload, we started with the
Fileserver macrobenchmark from Filebench but encountered
bugs for large configurations. The development on Filebench
has been recently restarted and the recommended version
is still in alpha stage. Therefore, we decided to use
Postmark [27], with some modifications.

Like the Fileserver macrobenchmark from Filebench,
Postmark first creates a working set of files and directories
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Data
Writes (MiB)

Metadata
Writes (MiB)

Journal
Writes (MiB)

ext4-baseline 34,185±10.3 480±0.2 1,890±18.6
ext4-lazy 33,878±9.8 0 1,855±15.4

Table 3: Distribution of write types completed by the disk during Postmark
run on ext4-baseline and ext4-lazy. Metadata writes make 1.3% of total
writes in ext4-baseline, only 1/3 of which is unique.
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Figure 9: The top graph shows the throughput of the disk during a
Postmark run on ext4-baseline and ext4-lazy. The bottom graph shows the
offsets of write types during ext4-baseline run. The graph does not reflect
sizes of the writes, but only their offsets.

and then executes transactions like reading, writing,
appending, deleting, and creating files on the working set.
We modify Postmark to execute sync after creating the
working set, so that the writeback of the working set does
not interfere with transactions. We also modify Postmark
not to delete the working set at the end, but to run sync,
to avoid high variance in runtime due to the race between
deletion and writeback of data.

Our Postmark configuration creates a working set of
10,000 files spread sparsely across 25,000 directories with
file sizes ranging from 512 bytes to 1 MiB, and then executes
100,000 transactions with the I/O size of 1 MiB. During the
run, Postmark writes 37.89 GiB of data and reads 31.54 GiB
of data from user space. Because ext4-lazy reduces the
amount of writes, to measure its effect, we focus on writes.

Table 3 shows the distribution of data writes completed by
the disk while the benchmark is running on ext4-baseline and
on ext4-lazy. On ext4-baseline, metadata writes comprise
1.3% of total writes, all of which ext4-lazy avoids. As a
result, the disk sees 5% increase in throughput on ext4-lazy
from 24.24 MiB/s to 25.47 MiB/s and the benchmark
completes 100 seconds faster on ext4-lazy, as the throughput
graph in Figure 9 shows. The increase in throughput is
modest because the workload spreads out the files across
the disk resulting in traffic that is highly non-sequential,
as data writes in the bottom graph of Figure 9 show.
Therefore, it is not surprising that reducing random writes
of a non-sequential write traffic by 1.3% results in a 5%
throughput improvement. However, the same random writes
result in extra cleaning work for DM-SMR disks (§ 2).
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Figure 10: Disk and CPU utilization sampled from iostat output
every second, while compiling Linux kernel 4.6 including all its modules,
with 16 parallel jobs (make -j16) on a quad-core Intel i7-3820 (Sandy
Bridge) CPU with 8 hardware threads.

Previous work [44] that writes metadata only once reports
performance improvements even in a metadata-light work-
loads, like kernel compile. This has not been our experience.
We compiled Linux kernel 4.6 with all its modules on
ext4-baseline and observed that it generated 12 GiB of data
writes and 185 MiB of journal writes. At 98 MiB, metadata
writes comprised only 0.77% of total writes completed by
the disk. This is expected, since metadata blocks are cached
in memory, and because they are journaled, unlike data pages
their dirty timer is reset whenever they are modified (§ 3),
delaying their writeback. Furthermore, even on a system
with 8 hardware threads running 16 parallel jobs, we found
kernel compile to be CPU-bound rather than disk-bound, as
Figure 10 shows. Given that reducing writes by 1.3% on a
workload that utilized the disk 100% resulted in only 5%
increase in throughput (Figure 9), it is not surprising that
reducing writes by 0.77% on such a low-utilized disk does
not cause improvement.

4.3 Ext4-lazy on DM-SMR disks
We show that unlike CMR disks, where ext4-lazy had
a big impact on just metadata-heavy workloads, on
DM-SMR disks it provides significant improvement on
both, metadata-heavy and metadata-light workloads. We also
identify the minimal sequential I/O size to trigger streaming
writes on a popular DM-SMR disk.

An additional critical factor for file systems when running
on DM-SMR disks is the cleaning time after a workload. A
file system resulting in a short cleaning time gives the disk
a better chance of emptying the persistent cache during idle
times of a bursty I/O workload, and has a higher chance
of continuously performing at the persistent cache speed,
whereas a file system resulting in a long cleaning time is
more likely to force the disk to interleave cleaning with file
system user work.

In the next section we show microbenchmark results on
just one DM-SMR disk—ST8000AS0002 from Table 1.
At the end of every benchmark, we run a vendor provided
script that polls the disk until it has completed background
cleaning and reports the total cleaning time, which we report
in addition to the benchmark runtime. We achieve similar
normalized results for the remaining disks, which we skip
to save space.
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Figure 11: Microbenchmark runtimes and cleaning times on ext4-baseline
and ext4-lazy running on an DM-SMR disk. Cleaning time is the additional
time after the benchmark run that the DM-SMR disk was busy cleaning.

4.3.1 Microbenchmarks

Figure 11 shows results of the microbenchmarks (§ 4.2.1)
repeated on ST8000AS0002 with a 2 TB partition, on ext4-
baseline and ext4-lazy. MakeDirs and CreateFiles do not fill
the persistent cache, therefore, they typically complete 2-3×
faster than on CMR disk. Similar to CMR disk, MakeDirs
and CreateFiles are 1.5-2.5× faster on ext4-lazy. On the
other hand, the remaining directory traversal benchmarks,
ListDir for example, completes 13× faster on ext4-lazy,
compared to being 5× faster on CMR disk.

The cleaning times for ListDirs, FindFiles, TarDirs, and
TarFiles are zero because they do not write to disk8. However,
cleaning time for MakeDirs on ext4-lazy is zero as well, com-
pared to ext4-baseline’s 846 seconds, despite having written
over 4 GB of metadata, as Table 2 shows. Being a pure meta-
data workload, MakeDirs on ext4-lazy consists of journal
writes only, as Figure 8 (b) shows, all of which are streamed,
bypassing the persistent cache and resulting in zero cleaning
time. Similarly, cleaning time for RemoveDirs and Remove-
Files are 10-20 seconds on ext4-lazy compared to 590-366
seconds on ext4-baseline, because these too are pure meta-
data workloads resulting in only journal writes for ext4-lazy.
During deletion, however, some journal writes are small and
end up in persistent cache, resulting in short cleaning times.

We confirmed that the disk was streaming journal
writes in previous benchmarks by repeating the MakeDirs
benchmark on the DM-SMR disk with an observation
window from Skylight [1] and observing the head movement.
We observed that shortly after starting the benchmark, the
head moved to the physical location of the journal on the
platter9 and remained there until the end of the benchmark.
This observation lead to Test 1 for identifying the minimal
sequential write size that triggers streaming. Using this test,
we found that sequential writes of at least 8 MiB in size
are streamed. We also observed that a single 4 KiB random
write in the middle of a sequential write disrupted streaming

8TarDirs and TarFiles write their output to a different disk.
9Identified by observing the head while reading the journal blocks.

 0

 50

 100

 150

 200

 0  200  400  600  800  1000T
h
ro

u
g
h
p
u
t 

(M
iB

/s
)

 

ext4-baseline ext4-lazy

0

200

400

 0  200  400  600  800  1000

D
is

k
 O

ff
se

t 
(G

iB
)

Time (s)

Data Write Metadata Write Journal Write

Figure 12: The top graph shows the throughput of a ST8000AS0002
DM-SMR disk with a 400 GB partition during a Postmark run on
ext4-baseline and ext4-lazy. The bottom graph shows the offsets of write
types during the run on ext4-baseline. The graph does not reflect sizes of
the writes, but only their offsets.

and moved the head to the persistent cache; soon the head
moved back and continued streaming.

Test 1: Identify the minimal sequential write size for streaming

1 Choose identifiable location L on the platter
2 Start with a large sequential write size S
3 do

Write S bytes sequentially at L
S = S - 1 MiB

while Head moves to L and stays there until the end of the write
4 S = S + 1 MiB
5 Minimal sequential write size for streaming is S

4.3.2 File Server Macrobenchmark

We show that on DM-SMR disks the benefit of ext4-lazy
increases with the partition size, and that ext4-lazy achieves
a significant speedup on a variety of DM-SMR disks with
different STLs and persistent cache sizes.

Table 4 shows the distribution of write types completed
by a ST8000AS0002 DM-SMR disk with a 400 GB
partition during the file server macrobenchmark (§ 4.2.2).
On ext4-baseline, metadata writes make up 1.6% of total
writes. Although the unique amount of metadata is only
≈120 MiB, as the storage slows down, metadata writeback
increases slightly, because each operation takes a long time
to complete and the writeback of a metadata block occurs
before the dirty timer is reset.

Unlike the CMR disk, the effect is profound on a
ST8000AS0002 DM-SMR disk. The benchmark completes
more than 2× faster on ext4-lazy, in 461 seconds, as seen
in Figure 12. On ext4-lazy, the disk sustains 140 MiB/s
throughput and fills the persistent cache in 250 seconds, and
then drops to a steady 20 MiB/s until the end of the run. On
ext4-baseline, however, the large number of small metadata
writes reduce throughput to 50 MiB/s taking the disk 450
seconds to fill the persistent cache. Once the persistent cache
fills, the disk interleaves cleaning and file system user work,
and small metadata writes become prohibitively expensive,
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Figure 13: The top graphs show the throughput of four DM-SMR disks on a full disk partition during a Postmark run on ext4-baseline and ext4-lazy.
Ext4-lazy provides a speedup of 5.4× 2×, 2×, 1.7× in parts (a), (b), (c), and (d), respectively. The bottom graphs show the offsets of write types during
ext4-baseline run. The graphs do not reflect sizes of the writes, but only their offsets.
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Figure 14: Postmark reported transaction throughput numbers for ext4-baseline and ext4-lazy running on four DM-SMR disks with on a full disk partition.
Only includes numbers from the transaction phase of the benchmark.
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Data
Writes (MiB)

Metadata
Writes (MiB)

Journal
Writes (MiB)

ext4-baseline 32,917±9.7 563±0.9 1,212±12.6
ext4-lazy 32,847±9.3 0 1,069±11.4

Table 4: Distribution of write types completed by a ST8000AS0002
DM-SMR disk during a Postmark run on ext4-baseline and ext4-lazy.
Metadata writes make up 1.6% of total writes in ext4-baseline, only 1/5 of
which is unique.

as seen, for example, between seconds 450-530. During this
period we do not see any data writes, because the writeback
thread alternates between page cache and buffer cache when
writing dirty blocks, and it is the buffer cache’s turn. We do,
however, see journal writes because jbd2 runs as a separate
thread and continues to commit transactions.

The benchmark completes even slower on a full 8 TB par-
tition, as seen in Figure 13 (a), because ext4 spreads the same
workload over more bands. With a small partition, updates to
different files are likely to update the same metadata region.
Therefore, cleaning a single band frees more space in the per-
sistent cache, allowing it to accept more random writes. With
a full partition, however, updates to different files are likely
to update different metadata regions; now the cleaner has to
clean a whole band to free a space for a single block in the
persistent cache. Hence, after an hour of ultra-low throughput
due to cleaning, it recovers slightly towards the end, and the
benchmark completes 5.4× slower on ext4-baseline.

On the ST4000LM016 DM-SMR disk, the benchmark
completes 2× faster on ext4-lazy, as seen in Figure 13 (b),
because the disk throughput is almost always higher than
on ext4-baseline. With ext4-baseline, the disk enters a long
period of cleaning with ultra-low throughput starting at
second 2000, and recovers around second 4200 completing
the benchmark with higher throughput.

We observe a similar phenomenon on the ST5000AS0011
DM-SMR disk, as shown in Figure 13 (c). Unlike with
ext4-baseline that continues with a low throughput until the
end of the run, with ext4-lazy the cleaning cycle eventually
completes and the workload finishes 2× faster.

The last DM-SMR disk in our list, WD40NMZW model
found in My Passport Ultra from Western Digital [57],
shows a different behavior from previous disks, suggesting
a different STL design. We think it is using an S-blocks-like
architecture [9] with dynamic mapping that enables cheaper
cleaning (§ 2.1). Unlike previous disks that clean only when
idle or when the persistent cache is full, WD40NMZW
seems to regularly mix cleaning with file system user work.
Therefore, its throughput is not as high as the Seagate
disks initially, but after the persistent cache becomes full,
it does not suffer as sharp of a drop, and its steady-state
throughput is higher. Nevertheless, with ext4-lazy the disk
achieves 1.4-2.5× increase in throughput over ext4-baseline,
depending on the state of the persistent cache, and the
benchmark completes 1.7× faster.

Figure 14 shows Postmark transaction throughput
numbers for the runs. All of the disks show a significant
improvement with ext4-lazy. An interesting observation is
that, while with ext4-baseline WD40NMZW is 2× faster
than ST8000AS0002, with ext4-lazy the situation is reversed
and ST8000AS0002 is 2× faster than WD40NMZW, and
fastest overall.

4.4 Performance Overhead
Indirection Overhead: To determine the overhead of in-
memory jmap lookup, we populated jmap with 10,000 map-
pings pointing to random blocks in the journal, and measured
the total time to read all of the blocks in a fixed random order.
We then measured the time to read the same random blocks
directly, skipping the jmap lookup, in the same order. We re-
peated each experiment five times, starting with a cold cache
every time, and found no difference in total time read time—
reading from disk dominated the total time of the operation.
Memory Overhead: A single jmap entry consists of a
red-black tree node (3×8 bytes), a doubly-linked list node
(2×8 bytes), a mapping (12 bytes), and a transaction id (4
bytes), occupying 66 bytes in memory. Hence, for example,
a million-entry jmap that can map 3.8 GiB of hot metadata,
requires 63 MiB of memory. Although this is a modest
overhead for today’s systems, it can further be reduced with
memory-efficient data structures.
Seek Overhead: The rationale for introducing cylinder
groups in FFS, which manifest themselves as block groups
in ext4, was to create clusters of inodes that are spread over
the disk close to the blocks that they reference, to avoid
long seeks between an inode and its associated data [38].
Ext4-lazy, however, puts hot metadata in the journal located
at the center of the disk, requiring a half-seek to read a file
in the worst case. The TarFiles benchmark (§ 4.2.1) shows
that when reading files from a large and deep directory
tree, where directory traversal time dominates, putting the
metadata at the center wins slightly over spreading it out.
To measure the seek overhead on a shallow directory, we
created a directory with 10,000 small files located at the
outer diameter of the disk on ext4-lazy, and starting with a
cold cache creating the tarball of the directory. We observed
that since files were created at the same time, their metadata
was written sequentially to the journal. The code for reading
metadata blocks in ext4 uses readahead since the introduction
of flex bgs. As a result, the metadata of all files was brought
into the buffer cache in just 3 seeks. After five repetitions
of the experiment on ext4-baseline an ext4-lazy, the average
times were 103 seconds and 101 seconds, respectively.
Cleaning Overhead: In our benchmarks, the 10 GiB journal
always contained less than 10% live metadata. Therefore,
most of the time the cleaner reclaimed space simply by ad-
vancing the tail. We kept reducing the journal size and the first
noticeable slowdown occurred with a journal size of 1.4 GiB,
that is, when the live metadata was≈70% of the journal.
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5 Related Work
Researchers have tinkered with the idea of separating
metadata from data and managing it differently in local file
systems before. Like many other good ideas, it may have
been ahead of its time because the technology that would
benefit most from it did not exist yet, preventing adoption.

The Multi-Structured File System [39] (MFS) is the first
file system proposing the separation of data and metadata.
It was motivated by the observation that the file system
I/O is becoming a bottleneck because data and metadata
exert different access patterns on storage, and a single
storage system cannot respond to these demands efficiently.
Therefore, MFS puts data and metadata on isolated disk
arrays, and for each data type it introduces on-disk structures
optimized for the respective access pattern. Ext4-lazy differs
from MFS in two ways: (1) it writes metadata as a log,
whereas MFS overwrites metadata in-place; (2) facilitated by
(1), ext4-lazy does not require a separate device for storing
metadata in order to achieve performance improvements.

DualFS [44] is a file system influenced by MFS—it also
separates data and metadata. Unlike MFS, however, DualFS
uses well known data structures for managing each data type.
Specifically, it combines an FFS-like [37] file system for
managing data, and LFS-like [47] file system for managing
metadata. hFS [61] improves on DualFS by also storing
small files in a log along with metadata, thus exploiting disk
bandwidth for small files. Similar to these file systems ext4-
lazy separates metadata and data, but unlike them it does not
confine metadata to a log—it uses a hybrid design where
metadata can migrate back and forth between file system and
log as needed. However, what really sets ext4-lazy apart is
that it is not a new prototype file system; it is an evolution of a
production file system, showing that a journaling file system
can benefit from the metadata separation idea with a small
set of changes that does not require on-disk format changes.

ESB [26] separates data and metadata on ext2, and
puts them on CMR disk and SSD, respectively, to explore
the effect of speeding up metadata operations on I/O
performance. It is a virtual block device that sits below ext2
and leverages the fixed location of static metadata to forward
metadata block requests to an SSD. The downside of this
approach is that unlike ext4-lazy, it cannot handle floating
metadata, like directory blocks. ESB authors conclude
that for metadata-light workloads speeding up metadata
operations will not improve I/O performance on a CMR
disk, which aligns with our findings (§ 4.2.2).

A separate metadata server is the norm in distributed
object-based file systems like Lustre [7], Panasas [59], and
Ceph [58]. TableFS [46] extends the idea to a local file sys-
tem: it is a FUSE-based [51] file system that stores metadata
in LevelDB [19] and uses ext4 as an object store for large
files. Unlike ext4-lazy, TableFS is disadvantaged by FUSE
overhead, but still it achieves substantial speedup against
production file systems on metadata-heavy workloads.

In conclusion, although it is likely that the above file
systems could have taken a good advantage of DM-SMR
disks, they could not have shown it because all of them
predate the hardware. We reevaluate the metadata separation
idea in the context of a technological change and demonstrate
its amplified advantage.

6 Conclusion
Our work is the first step in adapting a legacy file system to
DM-SMR disks. It shows how effective a well-chosen small
change can be. It also suggests that while three decades
ago it was wise for file systems depending on the block
interface to scatter the metadata across the disk, today, with
large memory sizes that cache metadata and with changing
recording technology, putting metadata at the center of the
disk and managing it as a log looks like a better choice. Our
work also rekindles an interesting question: How far can we
push a legacy file system to be SMR friendly?

We conclude with the following general takeaways:
•We think modern disks are going to practice more exten-
sive “lying” about their geometry and perform deferred clean-
ing when exposed to random writes; therefore, file systems
should work to eliminate structures that induce small isolated
writes, especially if the user workload is not forcing them.
• With modern disks operation costs are asymmetric:
Random writes have a higher ultimate cost than random
reads, and furthermore, not all random writes are equally
costly. When random writes are unavoidable, file systems
can reduce their cost by confining them to the smallest
perimeter possible.
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Abstract
Shingled Magnetic Recording (SMR) is a new technique
for increasing areal data density in hard drives. Drive-
managed SMR (DM-SMR) drives employ a shingled
translation layer to mask internal data management and
support block interface to the host software. Two ma-
jor challenges of designing an efficient shingled trans-
lation layer for DM-SMR drives are metadata overhead
and garbage collection overhead.

In this paper we introduce SMaRT, an approach to
Shingled Magnetic Recording Translation which adapts
its data management scheme as the drive utilization
changes. SMaRT uses a hybrid update strategy which
performs in-place update for the qualified tracks and out-
of-place updates for the unqualified tracks. Background
Garbage Collection (GC) operations and on-demand GC
operations are used when the free space becomes too
fragmented. SMaRT also has a specially crafted space
allocation and track migration scheme that supports au-
tomatic cold data progression to minimize GC overhead
in the long term.

We implement SMaRT and compare it with a reg-
ular Hard Disk Drive (HDD) and a simulated Seagate
DM-SMR drive. The experiments with several block
I/O traces demonstrate that SMaRT performs better than
the Seagate drive and even provides comparable perfor-
mance as regular HDDs when drive space usage is below
a certain threshold.

1 Introduction

Perpendicular magnetic recording technique used by tra-
ditional HDDs is reaching its areal data density limit.
SMR addresses this challenge by overlapping the neigh-
boring tracks. Assuming the write head is two-track wide
in an SMR drive, a write will now impact 2 tracks. That
is, writing to a track may destroy the valid data in its ad-
jacent track. Consequently data is preferred to be written
onto the tracks in a sequential manner. However, random

read is still supported by SMR. In the scope of this pa-
per, for simplicity we assume the write head width is 2
tracks.

Tracks in SMR drives are usually grouped into logi-
cal units called “bands”. Band size depends on specific
designs. There are generally two types of SMR drives:
the drive-managed SMR (DM-SMR) drives and the host-
managed/host-aware SMR (HM-SMR/HA-SMR) drives.
DM-SMR drives, such as the Seagate Archive HDD (8
TB) [4] currently available on the market, maintain a
logical block addresses (LBAs) to physical block ad-
dress (PBAs) mapping layer and therefore provide block
interface to the host software such as file systems and
databases. As a result, they can be used to replace the
traditional HDDs without changes to the upper level ap-
plications. On the other hand, HM-SMR and HA-SMR
drives are simply raw devices and rely on specially de-
signed upper level applications to interact with the PBAs
directly.

Depending on the update strategy, DM-SMR drives
can further be classified into in-place update SMR (I-
SMR) drives and out-of-place update SMR (O-SMR)
drives. To perform an update operation to a previously
written track in an I-SMR drive, data on the following
tracks has to be safely read out first and then written back
to their original positions after the data on the targeted
track has been updated. To minimize this overhead, only
a few tracks (4 or 5) per band are used to avoid long up-
date propagation in some designs. There will be enough
separation between any two adjacent bands called “safety
gap” such that writing to the last track of each band will
not destroy the valid data in the following band. Im-
portantly, static LBA-to-PBA mappings are possible in
I-SMR drives requiring no mapping tables and GC op-
erations. However, a considerable percentage of drive
space may be consumed for safety gaps due to small band
size. For example, at least 20% of the total space is used
as safety gaps if the band size is 4 tracks [10]. Generally,
a bigger band size provides better space gain but worse
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update performance.
O-SMR drives provide much more space gain by us-

ing larger bands or zones. Therefore only a negligible
amount of space is used for safety gaps. To perform an
update operation in O-SMR drives, the updated data will
first be written to a new place and the old data will be in-
validated. Those invalidated data must be reclaimed later
by GC operations for reusing. A mapping table is re-
quired to keep track of these data movements. Therefore,
challenges exist for designing efficient O-SMR drives
which include the metadata overhead and the GC over-
head.

In order for O-SMR drives to be adopted in the cur-
rent storage systems and used for primary workloads (in
addition to cold workloads), metadata overhead and GC
overhead must be minimized. In this paper we propose a
SMaRT scheme, a track-based shingled magnetic trans-
lation layer for DM-SMR drives that supports an address
mapping at the block level. SMaRT is motivated by two
unique properties of SMR. First, an unused/free track can
serve as a safety gap for the preceding track to qualify for
in-place updates. Second, different from an invalidated
page in Solid State Drives, an invalidated track in SMR
drives is essentially a free track and can be immediately
reused as long as its next track is free too. Based on this
property, SMaRT adopts a hybrid track update strategy
which maintains a loop of track invalidating and reusing
that minimizes the need of triggering GC operations. GC
operations are therefore invoked only when the free SMR
drive space becomes too fragmented.

Two major modules are designed in SMaRT in order
to fully exploit these two properties. One is a track level
mapping table and the other is a space management mod-
ule. The former supports LBA-to-PBA mapping or block
interface to the host software and the latter supports free
track allocations and GC operations. During a GC op-
eration, valid tracks are migrated to create bigger con-
tiguous free space. Our design of the space manage-
ment module also enables SMaRT to support an auto-
matic cold data progression feature which can separate
cold data from frequently updated or hot data over time
to minimize GC overhead.

We implement SMaRT and compare it to a regular
HDD and a simulated Seagate DM-SMR drive described
in Skylight [6]. The experiments with several work-
loads demonstrate that SMaRT performs better than this
Seagate DM-SMR drive and nearly as well as a regular
HDD.

The remainder of the paper is organized as follows.
Section 2 discusses the different layouts for I-SMR
drives and O-SMR drives. Some related studies are in-
troduced in Section 3. SMaRT is described in Section 4.
Experiments and evaluations are presented in Section 5
and some conclusion is made in Section 6.

2 SMR Layout

SMR drives generally follow the geometry of regular
HDDs except the tracks are overlapped. Similar to
HDDs, each SMR drive may contain several platters.
Physical data blocks are also addressed by Cylinder-
Head-Sector (CHS). Since outer tracks are larger than
inner tracks, the SMR drive space is divided into mul-
tiple zones. Tracks in the same zone have the same
size. Each zone can be further organized into bands if
needed. A small portion (about 1% to 3%) of the to-
tal space is usually used as unshingled random access
zone (RAZ) or conventional zone for persistent metadata
storage[7, 13, 14].

I-SMR drives and O-SMR drives organize and use
the bulk shingled access zone (SAZ) differently. Drive-
managed I-SMR drives usually organize the tracks into
small bands for a good balance between space gain and
performance as discussed and evaluated in [10]. Most
existing work on O-SMR drives divide the shingled ac-
cess zone into an E-region and an I-region. Sometimes
multiple E-regions and I-regions may be used. E-region
is essentially a persistent cache space organized as a cir-
cular log and used for buffering incoming writes, while
I-region is used for permanent data storage and orga-
nized into big bands. Obviously, writes to E-region and
I-region have to be done in a sequential manner and GC
operations are required for both regions. The E-region
size is suggested to be no more than 3% [7, 8, 9, 14].

3 Related Work

There are a few studies that have been done for I-SMR
drives. Shingled file system [13] is a host-managed de-
sign for I-SMR where the file system directly works on
SMR drive PBAs. The SMR drive space is organized
into bands of 64 MB. Files are written sequentially from
head to tail in a selected band. He et al. proposed sev-
eral static address mapping schemes for drive-managed
I-SMRs [10]. The I-SMR drive space is organized into
small bands of four tracks. By changing the order of uti-
lizing the tracks, the new address mapping schemes can
significantly reduce write amplification overhead com-
pared to the traditional mapping scheme. However, a
non-ignorable percentage of total capacity (about 20%)
has to be used as safety gaps between neighbouring
bands in order to achieve desired performance.

Several studies have also been done for drive-managed
O-SMR drives. For example, Cassuto et al. proposed
two indirection systems in [8]. Both systems use two
types of data regions, one for caching incoming write re-
quests and the other for permanent data storage. They
proposed an S-block concept in their second scheme. S-
blocks have the same size and each S-block consists of a
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pre-defined number of sequential regular blocks/sectors
such as 2000 blocks as used in [8]. GC operations have
to be performed in both data regions in an on-demand
way. Hall et al. proposed a background GC algorithm
[9] to refresh the tracks in the I-region while data is con-
tinuously written into the E-region buffer. The tracks in
the I-region have to be sequentially refreshed at a very
fast rate in order to ensure enough space in the E-region,
which is expensive and creates performance and power
consumption issues.

Host-managed O-SMR is another new design trend.
Jin et al. proposed the HiSMRfs [11] which is a host-
managed solution. HiSMRfs pairs some amount of SSD
with the SMR drive so that file metadata (hot data) can
be stored in the SSD while file data (cold data) can be
stored in the SMR drive. HiSMRfs uses file-based or
band-based GC operations to reclaim the invalid space
created by file deletions and file updates. However, the
details of the GC operations are not discussed. Caveat-
Scriptor [12] is another host-managed design which pro-
tects valid data with a Drive Isolation Distance (DID)
and a Drive Prefix Isolation Distance (DPID). It is imple-
mented as SMRfs which is a simple FUSE-based file sys-
tem. Caveat-Scriptor supports a Free Cleaning scheme
to delay and reduce on-demand GC operations. Differ-
ent from HiSMRfs and Caveat-Scriptor, SMRDB [17]
is a host-managed design for key-value store that is file
system free. SMRDB defines a set of data access oper-
ations including GET/PUT/DELETE/SCAN to comply
with the successful KV data access model used in recent
cloud storage systems.

The disk drive industry has introduced several openly
available SMR drives on the market including the Sea-
gate Archive HDD (8 TB) [4] and the Western Digital Ul-
trastar Archive Ha10 (10 TB) [5]. These drives are spe-
cially designed for cold workloads such as archive sys-
tems and backup systems. Aghayev and Desnoyers con-
ducted a series of microbenchmarks and video recording
through a drilled hole on the drive shell to reverse en-
gineer Seagate SMR drives [6]. Their observations re-
vealed the presence of an on-disk persistent cache with
a lazy write back policy and they further studied other
aspects including the cache size and band size. We use
these information to implement a simulated Seagate DM-
SMR drive in our experiments. Recently, Wu et al. con-
ducted evaluations on special features of real HA-SMR
sample drives such as open zone issue and media cache
cleaning efficiency. They also proposed a host-controlled
indirection buffer to improve I/O performance [18].

4 SMaRT Scheme

In this section, we describe the proposed SMaRT scheme
and discuss its designs and implementations. There are

two major function modules in SMaRT: a track-based
mapping table (Section 4.1) that supports LBA-to-PBA
mapping and a space management module (Section 4.2)
that manages free track allocations and GCs.

4.1 Track Level Mapping Table
The first main function module of SMaRT is a LBA-to-
PBA mapping table at a track level which enables SMR
drives to communicate with the host software using the
block interface. Therefore SMR drives can be used in ex-
isting storage systems in a drop-in manner. The mapping
table is updated when: 1) A used track is updated to a
new location, 2) Used tracks are migrated during GCs or
3) Tracks are allocated for new data.

Given an LBA, SMaRT will first calculate its corre-
sponding logical track number (LTN) and its offset in-
side this track based on the number of zones and the track
size in each zone. It then looks up the mapping table and
translates LTN into physical track number (PTN). The fi-
nal PBA can be easily computed with PTN and the offset
inside the physical track.

Assuming an average track size of 1 MB, an 8 TB
SMR drive requires at most a 64 MB track level mapping
table (assuming 4 bytes for each LTN and PTN). The
mapping table is initially empty and gradually grows as
the space utilization increases. Therefore, the metadata
overhead of the track level mapping table is reasonably
low considering the fact that the standard DRAM size for
large capacity HDDs/SMRs on the market today is 128
MB [4] or 256 MB [5].

As a comparison, the Seagate DM-SMR drive de-
scribed in [6] uses a persistent cache (E-region). When
adopting a block-level mapping scheme, an E-region of
size 80 GB ( = 1% of 8 TB) yields a 160 MB mapping
table based on 4 KB block size or 1280 MB based on
512 B block size. Alternatively, extent mapping [6] can
be used to reduce the mapping table size which however
provides less effective persistent cache size to the host
writes.

4.1.1 Hybrid Track Update

SMaRT uses a hybrid track update strategy that up-
dates qualified tracks in place and updates the unquali-
fied tracks out of place. Track update has been proven
to be beneficial and affordable because it creates a track
invalidating and reusing loop. When a track is invali-
dated, it actually becomes a free track and can be reused
as long as its next track is free or as soon as its next
track becomes free. As a result, track updates in SMaRT
continuously invalidate tracks and turn them into free
tracks without triggering explicit on-demand GC oper-
ations. This greatly reduces the frequency of invoking

USENIX Association 15th USENIX Conference on File and Storage Technologies    123



GCs which compensates for the cost of the track update
operations. Explicit on-demand GC operations are only
invoked when the free SMR space becomes too frag-
mented as discussed in Section 4.2.4.

4.2 Space Management
The second main component of SMaRT is a space man-
agement module which is responsible for free track al-
location and garbage collections. Space management is
done for each zone separately.

Free track allocation means that when a track is up-
dated, SMaRT has to choose a new track position from
the available usable free tracks. The updated track will
be written to the new position and the old track is invali-
dated/freed.

As described previously, usable free tracks and un-
usable free tracks coexist. Garbage collection is essen-
tially a free space consolidation that can turn unusable
free tracks into usable free tracks by migrating the used
tracks.

We now introduce a concept of “space element” and
a “fragmentation ratio” before describing the details of
SMaRT.

4.2.1 Space Elements

There are two types of tracks in an SMR drive: the used
(or valid) tracks and the free tracks. When a used track
is invalidated, it becomes a free track but it is not consid-
ered as a usable free track if its following track is not free.
However, a free but unusable track can at least serve as a
safety gap and allow its preceding track to be updated in
place.

All the used tracks constitute the used space and all
the free tracks constitute the free space. We call a group
of consecutive used tracks or free tracks a space element
which is used to describe the current track usage. For
the example of Figure 1, we say the used space includes
elements {0, 1, 2, 3}, {6}, {10, 11, 12}, {14, 15, 16,
17} and {20, 21} while the free space includes elements
{4, 5}, {7,8,9}, {13}, {18, 19} and {22, 23}. The size
of a particular space element is defined as the number
of tracks in it. The last track in each free space element
is not usable and can not be written because writing to
this last track will destroy the valid data on the follow-
ing track which is a used track. Particularly, a free space
element of size 1 contains no usable free track such as
element {13}. The number of elements and their sizes
continuously change as incoming requests are processed.
A free track that is previously unusable can become us-
able later as soon as its following track becomes free too.
Accordingly the last track in a used space element can be
updated in place because its next track is a free track.

0                            5                          10                         15                        20

Free space: [4, 5], [7,8,9], [13], [18, 19], [23, 24]

Used space: [0, 1, 2, 3], [6], [10, 11, 12], [14, 15, 16, 17], [20, 21]

Fragmentation ratio = 10/5 = 2

Used track Free track

Figure 1: SMR Usage State

4.2.2 Fragmentation Ratio

We define the free space fragmentation ratio to help de-
cide when to invoke on-demand GCs in each zone. As-
suming the total number of free tracks in a selected zone
is F and the total number of free space elements is N, the
free space fragmentation ratio (R) for this zone can be
computed according to Equation 1. In fact, the fragmen-
tation ratio represents the percentage of usable free tracks
in all the free tracks. Fragmentation ratio of 0 means the
free space is too fragmented. In fact, 0 means all free
space elements are of size 1 and thus no track can be
used.

R =
F −N

F
,where 1 ≤ N ≤ F (1)

We conduct a series of permutation tests to study
the impacts of the fragmentation ratio threshold (R) on
SMaRT performance which show that neither a small R
threshold nor a large R threshold produces good perfor-
mance. A small R makes SMaRT adopt a lazy garbage
collection strategy. On-demand GC operations are only
invoked when the free space is extremely fragmented
which requires more victim elements to be migrated in
a single GC operation and causes I/O burstiness. A big R
ratio is not suggested either since frequent unnecessary
GCs will be invoked even though the free space is not
fragmented. A larger ratio also means a smaller N and
thus a smaller number of tracks that support in-place up-
dates. We use 0.5 in our experiments to allow SMaRT to
maintain relatively big contiguous free space and trigger
a GC only if necessary.

4.2.3 Space Allocation

SMaRT always designates the largest free space element
as an “allocation pool” and maintains a dedicated track
pointer called “write cursor” that initially points to the
first track of the allocation pool, as shown in Figure 2a.
The free tracks in this allocation pool are allocated to ac-
commodate updated tracks as well as new write data in a
sequential manner in the shingling direction. A modified
track is always written to the free track pointed by the
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Figure 2: The Process of SMaRT

write cursor which will be incremented accordingly. Af-
ter the write cursor reaches the end of the allocation pool,
SMaRT will select the latest largest free space element as
the new allocation pool and update the write cursor to its
first track.

Specially, SMaRT defines data that is recently updated
as hot. New write (first write) data and data not up-
dated for some time will be treated as cold. For exam-
ple, the least recently updated track is definitely cold and
the most recently updated track is hot. SMaRT will allo-
cate an extra guarding track for a hot data track when the
drive utilization is lower than a certain threshold (such
as 50%) because there are a sufficient amount of free
tracks to be allocated as safety tracks. Therefore these
hot data tracks now support in-place updates which re-
duces unnecessary out-of-place updates. This feature is
disabled once the space utilization goes over a threshold
and will be re-enabled when space utilization falls below
the threshold. The transition is fully transparent.

4.2.4 Space Consolidation

A garbage collection in SMaRT is essentially a free
space consolidation. There are two types of GCs in
SMaRT: background GCs and on-demand GCs. Back-
ground GC operations are only performed during the

drive idle times. When a time period between two writes
is longer than a threshold value, it is considered as an
idle time [6]. Background GC operations keep running
until 1) space fragmentation ratio surpasses its thresh-
old or 2) idle time ends. On the other hand, the frag-
mentation ratio is checked upon each incoming write
request. If it is equal to or smaller than the threshold
value, an on-demand GC operation will be invoked to
migrate used tracks and combine the small free space el-
ements into bigger elements. This will improve I/O per-
formance for big writes and updates, as well as increase
usable free space. An on-demand GC usually immedi-
ately stops after one element has been moved so as to
minimize the overhead of a single GC operation. This
minimizes the performance interference on serving the
incoming requests. The fragmentation ratio sometimes
remains below its threshold after the current GC oper-
ation. The next GC operation in this zone will continue
to improve the fragmentation. Moving multiple elements
happens only when there is not enough usable free tracks
to accommodate the updated track(s) or new tracks.

To perform a GC operation, SMaRT searches for a
victim element starting from the leftmost used space el-
ement of this zone and proceeding in the shingling di-
rection. A victim element has a size of smaller than a
threshold W. W is initialized to be a small value based
on the current SMR drive space usage U . It can be cal-
culated according to Equation 2. In fact, W practically
represents the used space to free space ratio. The the-
ory behind this equation is that the average used space
element size is bigger when the SMR space utilization
is higher. For example, W will be initially set to 2 if
the current SMR drive usage is 60% or 9 if the usage is
90%. If no element is found to be smaller than W, W will
be doubled and SMaRT will redo a search based on the
new W. This will be repeated until a satisfying element
is found.

W =
U

1− U
,where 0 < U < 1 (2)

SMaRT always tries to append a victim element to the
leftmost free space element that fits the victim element1.
If no free space to the left can accommodate the victim
element, SMaRT simply shifts it left (against shingling
direction) and appends it to its left used space element
neighbour. Besides, if the victim element resides in the
allocation pool, it will also be appended to the left neigh-
bour because this victim element contains recently writ-
ten/updated tracks and thus is deemed as possibly hot
which should not be appended to cold data.

In Figure 1, R is 0.5 by Equation 1 and W is 2 by Equa-
tion 2. Assuming an on-demand GC is triggered, SMaRT
will select the used space element {6} as the victim and

1The used space element containing track 0 is a special case.
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append it to element {0, 1, 2, 3}. Consequently, the free
space elements {4, 5} and {7, 8, 9} will be consolidated
into a single bigger element {5, 6, 7, 8, 9}. The resulting
fragmentation ratio R is 0.6. SMaRT will detect upon the
next request that R is above the threshold and thus it will
not invoke another GC operation.

4.2.5 Cold Data Progression

The track-based mapping and data migrations provide
a good opportunity of automatic cold data progression.
This is achieved as part of the free track allocation
and GC operations, requiring no dedicated hot/cold data
identification algorithms. The cold data progression in
SMaRT is illustrated in Figure 2b. The allocation pool
accumulates the recently updated tracks or hot tracks.
Cold data gets migrated against the shingling direction
to the left by GC operations. Eventually the cold data
will mostly stay at the left side of the zones and hot data
gets updated and pushed to the right side of the zones
which reduces unnecessary cold data movements during
GC operations.

The downside of this is that cold data (least recently
updated data) will eventually reside on the outer tracks
which possibly wastes the sequential I/O performance of
the outer tracks. We provide one argument and one so-
lution to this concern. We argue that cold data can be
frequently read by our definition. Least recently updated
data can be most frequently read data and/or most re-
cently read data.

To directly address this concern, we can reverse the
shingling direction by shingling from ID (Inner Diame-
ter) to OD (Outer Diameter) so that writes start with inner
tracks and move toward outer tracks. This way, cold data
will be gradually moved to the inner tracks. Note that
we assume the normal shingling direction in our experi-
ments.

4.3 I/O Processing Summary
The overall I/O procedure for read requests is straightfor-
ward. SMaRT simply reads the data after translating the
LBAs into PBAs. Multiple reads will be issued if read is
fragmented.

On receiving a write request, SMaRT first checks the
fragmentation ratio to decide if a GC operation should
be invoked. After a necessary GC operation completes,
SMaRT checks whether the write request operates on
existing data by consulting the mapping table. For
new data, SMaRT will allocate free tracks and add cor-
responding new mapping entries. For existing data,
SMaRT checks whether a track supports in-place update.
If not, SMaRT allocates new tracks and updates the ex-
isting mapping entries.

During the workload, once an idle time is identified
and meanwhile the free space fragmentation ratio is be-
low the threshold, background GCs will be launched.

4.4 SMaRT for Cold Write Workload
SMaRT performs extremely like a regular HDD for cold
workloads such as backup, archive and RAID rebuild
workloads. Data will be written sequentially into the
allocation pool without extra guarding safety tracks be-
cause new write data is treated as cold. Data can still
be updated based on the hybrid update strategy if ever
needed. No changes to the space management scheme
are needed.

4.5 Reliability
The mapping table of SMaRT is periodically synchro-
nized to a persistent mapping table copy in the random
access zone on disk. However, there is still a risk that a
power failure occurs before the latest mapping table up-
dates are pushed to the disk. This is a common reliability
challenge to flash translation layers (FTLs) and shingled
translation layers (STLs). Here we sketch a low-cost
scheme for SMaRT inspired by a Backpointer-Assisted
Lazy Indexing[15].

Since SMaRT always writes new tracks and updated
tracks to the allocation pool, SMaRT can simply trigger a
synchronization whenever an allocation pool is fully con-
sumed and flush the mapping table updates to the disk.
Upon flush completion, SMaRT records the timestamp
and picks a new allocation pool. Tracks updated after the
latest synchronization are ensured to reside in the latest
allocation pool only. When writing a new track or up-
dating an existing track to a new position, a backpointer
to the logical track number (LTN) along with the cur-
rent timestamp will be stored together with the track such
that each physical track internally has a PTN-to-LTN re-
verse mapping entry. We assume there will be some tiny
spare space associated with each physical track that can
be used to store the LTN and the timestamp. Otherwise,
we can simply reserve a sector or block in each physical
track to be used for storing these extra information.

To recover from a power failure, only the latest al-
location pool needs to be scanned instead of the whole
disk. The synchronization interval can also be the time
to consume a list of most recent allocation pools. In this
case, the manufacturing cost of SMR drives is minimal
because no extra media is introduced. To perform a re-
cover, SMaRT scans the latest allocation pool and iden-
tifies tracks with timestamps newer than that of the lat-
est synchronization. SMaRT then reads their associated
LTNs and PTNs to construct the corresponding LTN-to-
PTN mapping entries which will be merged to the map-

126    15th USENIX Conference on File and Storage Technologies USENIX Association



ping table copy on disk so that the latest LTN-to-PTN
table will be restored.

Alternatively, Non-Volatile Memory and flash media
can be used to persist the mapping table when the cost of
the former and the durability of the latter become accept-
able.

5 Evaluations

In this section, we evaluate the performance of SMaRT
and make comparisons with other schemes.

5.1 Competing Schemes
We compare SMaRT to a regular HDD and a simulated
Seagate DM-SMR drive. Since our objective is to design
SMR drives that can perform well under primary work-
loads in existing storage systems, we choose the regular
HDD as the baseline for comparison. We are hoping the
performance of the new design can be close to that of
HDDs.

We also implement a Seagate DM-SMR drive based
on the configurations and schemes explored and de-
scribed in Skylight [6]. We denote this SMR drive as
Skylight which is configured with a single 2 GB per-
sistent cache at OD, 40 MB band size, static address
mapping for bands and aggressive GC operation with a
1242ms triggering idle window. Incoming writes go to
the cache first. A Skylight background GC would be trig-
gered if there is a 1242ms idle time window in the work-
load since the last request. It keeps running until the next
request comes in. A GC operation scans from the tail
of the circular-log structured persistent cache, reads all
the sibling blocks that belongs to the same band as the
tail block and read-modify-writes the band. In our ex-
periments, we find that on-demand GCs are also needed
when there are not enough idle times in the workloads.
An on-demand GC is triggered when the persistent cache
space is 80% full.

5.2 Implementations
Due to the needs of defining zone sizes and controlling
the starting/ending PBAs of the zones, we have to adopt
simulation instead of using real hard disk drives. We im-
plement these schemes on top of Disksim [2] to simu-
late an SMR drive based on the parameters of a Seagate
Cheetah disk drive [1]. This is the newest and largest
validated disk model that is available to Disksim. It has
a capacity of 146 GB (based on 512 B sector size) 2. We
divide the total capacity into 3 parts: one 2 GB random
access zone, one 2 GB perstistent cache (i.e., E-region)

2The drive capacity is about 1.1 TB based on 4 KB sector size.

Table 1: Trace Statistics

Trace MAX LBA factor Req. Size Write%
mds_0 71,127,264 5 18 88.11%
proj_0 34,057,712 10 76 87.52%
stg_0 22,680,944 12 23 84.81%
rsrch_0 35,423,624 10 17 90.67%

and the rest of the 142 GB for persistent storage space
(i.e., I-region). The random access zone and the E-region
will not be allocated if they are not used in a specific
scheme. Particularly, both the random access zone and
the E-region are not used in HDD. And the E-region is
not used in SMaRT. On receiving disk I/O requests (in
the form of LBAs), these schemes will translate the block
addresses into PBAs based on their own implementation
logic. The translated requests (in the form of PBAs) are
then passed to the Disksim for processing.

5.3 Trace Information
Four write intensive MSR traces [3, 16] are used in our
experiments since other read intensive traces may not
trigger media cache cleaning. The characteristics of the
MSR traces are shown in Table 1 which include the max-
imum LBA, the average request size (R.S.) in blocks and
the write ratio. We scale up the LBAs in the four traces
to make sure the whole 142GB space is covered. Based
on the maximum LBA, a different scale up factor is used
for each trace.

5.4 Experiment Design
We test the schemes at different drive space utilizations
including 30%, 60% and 90% which allow us to under-
stand the impact of space utilizations on the drive perfor-
mance. The drives will be pre-populated with data ac-
cording to the utilization which is done by manipulating
the metadata or mapping table in each scheme. Over-
sized LBAs in the traces will be trimmed with modular
operation to fit in the accessed LBA range.

5.5 Performance Comparison
We use response time, Write Amplification, Read Frag-
mentation and GC Overhead as the main performance
comparison metrics.

5.5.1 Response Time

The response time for each request is calculated by sub-
tracting the queueing time stamp from the request com-
pletion time stamp. The overall average response times
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for different schemes under different workloads at differ-
ent drive space utilizations are shown in Figures 3, 4 and
5. X-axis is the average response time and Y-axis is the
corresponding Cumulative Distribution Function (CDF).

The results show that in general HDD performs best
for all utilizations. SMaRT has better performance than
that of Skylight for the 30% and 60% utilizations and the
two schemes provide a comparable performance for the
90% utilization. The Skylight only shortly crosses over
the HDD and SMaRT in some of the low response time
ranges while lags behind for the majority of the response
times. The cross-overs are mainly contributed by more
physically sequential writes due to the using of persistent
cache.

5.5.2 Read Fragmentation

SMaRT suffers read fragmentation because of track
movements. A read request can span over multiple log-
ically consecutive but physically scattered tracks. Sky-
light incurs read fragmentation because of persistent
cache. Some blocks in a read request may exist and scat-
ter inside the persistent cache while the rest blocks still
reside in the bands. As a result, a single read request
can be fragmented into several smaller requests in both
schemes, although the total number of blocks accessed
remains the same.

We first show the percentages of fragmented reads in
both schemes in Figure 6 and then compare the read frag-
mentation ratio in Figures 7, 8 and 9. We define the read
fragmentation ratio as the number of “smaller read re-
quests” produced by a single fragmented read request.
Theoretically, the ratio is upper-bounded by the number
of tracks accessed by the read request for SMaRT while
bounded by the number of blocks in the request for Sky-
light. This is also the reason why fragmented read per-
centages in SMaRT are less affected by the space utiliza-
tions as seen in the figure.

As expected, the result shows that SMaRT has higher
fragmented read percentages (Figure 6) with lower frag-
mentation ratios (Figures 7, 8 and 9). In general, more
than 95% of the fragmented reads have a fragmentation
ratio of 3 for SMaRT.

5.5.3 Write Amplification

We define amplified write percentage as the percentage
of the write requests that trigger on-demand GCs outside
the idle times. The result is shown in Figure 10.

Note that the amplified write percentages for 30% are
all zero for SMaRT. No GC operation is incurred be-
cause the space allocation scheme in SMaRT will allo-
cate guarding safety tracks when space utilization is less
than 50% which suffices to maintain a good free frag-
mentation ratio so as to avoid triggering on-demand GCs.

Table 2: GC Statistics

Traces SMaRT Skylight
30% GC_F GC_B GC_F GC_B
mds_0 0 0 1588 118417
proj_0 0 0 1861 97314
stg_0 0 0 1823 72229
rsrch_0 0 0 2003 108665
60% GC_F GC_B GC_F GC_B
mds_0 2045 603 1840 118417
proj_0 1560 536 2278 97314
stg_0 2583 1203 2191 72229
rsrch_0 3544 789 3099 108665
90% GC_F GC_B GC_F GC_B
mds_0 18367 5226 1866 118417
proj_0 13040 4595 2646 97314
stg_0 50131 23029 2834 72229
rsrch_0 35416 9722 3921 108665

However, as space utilization increases to 60% and
90%, up to 6% of the write requests will trigger on-
demand GCs compared to 0.5% for Skylight. These per-
centage numbers are low mainly because of the contribu-
tions of background GCs.

5.5.4 GC Overhead

As described previously, there are two types of GC op-
erations in both schemes: on-demand GCs (GC_F) and
background GCs (GC_B). Table 2 shows the average
numbers of on-demand GCs and background GCs in-
curred per 1 millions write requests. The table covers
different traces and space utilizations.

In general, these numbers increase as the space utiliza-
tion climbs. SMaRT triggers more on-demand GCs and
Skylight triggers more background GCs. The fact that
SMaRT relies more on on-demand GCs makes it theoret-
ically more suitable for workloads with less idle times.

Specially, the numbers of both the on-demand GCs
and the background GCs are 0s for the 30% utilization.
SMaRT also uses a 1242ms idle time window as the first
background GC triggering condition and the free space
fragmentation ratio as the second condition. A back-
ground GC would be launched when both conditions are
met and stops when the free space fragmentation ratio
goes above the threshold or when the next write arrives.
As a result, the 0s are simply because the free space frag-
mentation ratio stays high enough that no GC is needed.

Additionally, the numbers of background GCs for
Skylight stay the same across different utilizations be-
cause Skylight starts background GCs when a 1242ms
idle window is detected and stops when the next request
arrives which is not affected by the utilization changes.
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Figure 3: CDF of Response Time at 30% Utilization
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Figure 4: CDF of Response Time at 60% Utilization
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Figure 5: CDF of Response Time at 90% Utilization
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Figure 6: Fragmented Read Percent
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Figure 7: CDF of Read Frag Ratio at 30% Utilization
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Figure 8: CDF of Read Frag Ratio at 60% Utilization
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Figure 9: CDF of Read Frag Ratio at 90% Utilization
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Figure 10: Amplified Write Percent
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Figure 11: CDF of GC Overhead at 30% Utilization
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Figure 12: CDF of GC Overhead at 60% Utilization
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Figure 13: CDF of GC Overhead at 90% Utilization

Table 3: Scheme Comparison Summary

Schemes E-region? Performance Cold Workload Friendly Metadata Overhead Space Gain
HDD no very good yes no 100%
SMaRT no good yes low >95%
Skylight yes fair no high >95%
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Since we have shown the GC counting, we now dis-
cuss the on-demand GC overhead shown in Figures 11,
12 and 13. GC overhead (X-axis) is defined differently
for SMaRT and Skylight because of the different natures
of their GCs, although the two schemes share the X-axis.
It is defined as the number of tracks migrated during a
GC operation for SMaRT while defined as the total num-
ber of I/O requests needed for a single GC operation for
Skylight. So there is no direct performance compari-
son here. Instead, this serves as helping understand the
overhead origination in each GC scheme. About 50% of
SMaRT’s on-demand GCs move a single track and about
99% of the GCs move a single-digit number of tracks.
On the other hand, Skylight’s on-demand GCs have a
wide overhead spectrum. However, about 80% of its on-
demand GCs consists of less than 100 I/O requests.

5.5.5 Comparison Summary

We now summarize the comparison results in Table 3.
The schemes are compared according to different metrics
including performance, cold write workload suitability
and metadata overhead. SMaRT is the preferred design
which achieves a good balance among the listed met-
rics. It produces better performance than that of Skylight
for low-range and mid-range space utilizations. Besides,
SMaRT is more friendly to cold workloads because it
does not stage incoming data in a persistent cache and
destage later as Skylight does. SMaRT also has a lower
metadata overhead because of not using persistent cache.

6 Conclusion and Future Work

In this paper we propose an efficient SMaRT scheme
for drive-managed SMR drives by exploiting two unique
properties in the SMR drives. SMaRT performs copy-
on-write updates only when in-place updates are impos-
sible. The track level mapping, when combined with a
novel space management scheme can automatically fil-
ter the cold data to minimize data migration overhead for
GC operations. The Experiments with real world work-
loads demonstrate that SMaRT can perform as well as
regular HDDs under cold write workloads and even un-
der primary workloads when space usage is in the lower
and middle ranges.

In the future, we plan on designing a request schedul-
ing algorithm that bundles multiple write requests as a
single request if they belong to the same track or adjacent
tracks. This would further reduce the write amplifica-
tion overhead and improve write performance especially
for high disk utilization situations. We also plan to ex-
tract parameters from the latest SMR drives and validate
the resulting drive model for further simulation purposes.

We plan to also investigate the performance of SMaRT
when the write head width is more than 2 tracks.
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Abstract
This paper presents a simple yet effective design solu-

tion to facilitate technology scaling for hard disk drives

(HDDs) being deployed in data centers. Emerging mag-

netic recording technologies improve storage areal densi-

ty mainly through reducing the track pitch, which howev-

er makes HDDs subject to higher read retry rates. More

frequent HDD read retries could cause intolerable tail la-

tency for large-scale systems such as data centers. To

reduce the occurrence of costly read retry, one intuitive

solution is to apply erasure coding locally on each HDD

or JBOD (just a bunch of disks). To be practically viable,

local erasure coding must have very low coding redun-

dancy, which demands very long codeword length (e.g.,

one codeword spans hundreds of 4kB sectors) and hence

large file size. This makes local erasure coding mainly

suitable for data center applications. This paper contends

that local erasure coding should be implemented trans-

parently within filesystems, and accordingly presents a

basic design framework and elaborates on important de-

sign issues. Meanwhile, this paper derives the mathe-

matical formulations for estimating its effect on reducing

HDD read tail latency. Using Reed-Solomon (RS) based

erasure codes as test vehicles, we carried out detailed

analysis and experiments to evaluate its implementation

feasibility and effectiveness. We integrated the develope-

d design solution into ext4 to further demonstrate its fea-

sibility and quantitatively measure its impact on average

speed performance of various big data benchmarks.

1 Introduction

Flash-based solid-state data storage has been rapidly dis-

placing magnetic recording hard disk drives (HDDs) in

traditional market segments, e.g., consumer and person-

al computing, and tier-1 (and even tier-2) enterprise st-

orage. Although this trend will inevitably continue in the

advent of 3D NAND flash memory, it by no means pro-

claims a doomed future for HDD technology. The blos-

soming data center and cloud-based infrastructure pro-

vide a new area with tremendous growth potential for

HDDs. Nevertheless, as pointed out by a well-received

position paper by Google Research [6], such a paradigm

shift demands fundamental re-thinking on the design of

HDDs and system architecture. Authors of [6] shared a

collection view on open research opportunities and chal-

lenges for the new era of data center HDDs.

This paper studies the design of data center HDDs

with the focus on leveraging workload characteristics to

facilitate magnetic recording technology scaling. In par-

ticular, we are interested in how one could alleviate the

HDD areal density vs. read retry rate conflict. As conven-

tional magnetic recording technology approaches its lim-

it at around 1Tb/in2, the industry is now exploring a vari-

ety of new technologies including heat assisted magnetic

recording (HAMR) [23,26], shingled magnetic recording

(SMR) [15, 17], and two-dimensional magnetic record-

ing (TDMR) [13,24,28]. All these new technologies im-

prove bit areal density by shrinking the track pitch (i.e.,

the distance between adjacent tracks). However, due to

the mechanical rotating nature of HDDs, a smaller track

pitch inevitably makes HDDs more sensitive to head off-

set (i.e., the read/write head flies off the center of the

target track). This leads to a higher probability of read

retry. As a result, future magnetic recording technolo-

gies are increasingly subject to the conflict between are-

al density and read retry rate. The long latency penalty

of HDD read retry may cause intolerable tail latency for

data centers [6, 8].

Aiming to alleviate the areal density vs. read retry rate

conflict for data center HDDs, this work is motivated by

a very simple fact: if the data being stored in HDDs have

inherent redundancy for error correction, we may recov-

er the failed sectors through system-level error correction

(at tens or hundreds of μs latency) other than HDD read

retry (at tens or hundreds of ms latency). One may argue

that RAID and distributed erasure coding already conve-
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niently provide such a feature. However, RAID is be-

ing replaced by distributed erasure coding in data cente-

rs, and using distributed erasure coding to mitigate HDD

read retry can cause significant overheads (e.g., network

traffic), in particular under high HDD retry rates (e.g.,

10−4 and above). This work focuses on the scenarios

of storing user data and associated coding redundancy

locally together in one HDD or JBOD (just a bunch of

disks) and recovering failed sectors locally at the serv-

er that directly connects to the HDDs. It is referred to

as local erasure coding in this work. We note that lo-

cal erasure coding only aims to reduce the occurrence of

costly HDD read retry operations and does not provide

any guarantee for tolerating catastrophic HDD failures.

Hence, it is completely orthogonal to distributed erasure

coding, and must have very small coding redundancy.

A soft sector read failure occurs when an HDD fails

to decode one sector during its normal operation. Let ph
denote the soft sector read failure probability, which is

HDD read retry rate in current practice, i.e., the proba-

bility that an HDD switches from the normal operation

mode into a retry mode to repeatedly read the failed sec-

tor by adjusting the read head position. Current HDDs

keep ph relatively low (e.g., 10−6 and below). The prob-

ability that one sector cannot be correctly read even after

the long-latency HDD read retry is called hard sector fail-

ure rate, which must be extremely low (e.g., 10−14 and

below). When using the local erasure coding, HDDs do

not immediately switch to the retry mode upon a soft sec-

tor read failure, instead we first try to fix it through the

local erasure decoding. Only when the erasure decoding

fails, HDDs switch into the read retry mode. Let ps de-

note the probability that the local erasure decoding fails.

We should minimize the coding redundancy and mean-

while ensure ps << ph. In order to minimize the local

erasure coding redundancy, we must use long codeword

length. Therefore, local erasure coding should be applied

to systems with dominantly large flies, e.g., data centers.

In spite of the simple basic idea, its practical realiza-

tion is non-trivial. The first question is whether the local

erasure coding should be implemented at the application

layer, OS layer, or inside HDD. As elaborated later in

Section 2.2, we believe that it should be implemented by

the local filesystem at the OS layer with complete trans-

parency to the upper application layer. Integrating local

erasure coding into filesystem is far beyond merely im-

plementing a high-speed encoding/decoding library, and

one has to modify and enhance the filesystem architec-

ture. This work uses the journaling filesystem ext4 as a

test vehicle to study the integration of local erasure cod-

ing into the filesystem. In particular, we investigate the

separate treatment of data and filesystem metadata, and

develop techniques to handle scenarios when the HDD

write is unaligned with the erasure codeword boundary

and when fine-grained data update occurs. Meanwhile,

we derive mathematical formulations for estimating its

effectiveness on reducing HDD read tail latency.

We carried out a variety of analysis and experiments

to study the effectiveness and feasibility of the proposed

design solution, where we use Reed-Solomon (RS) codes

as local erasure codes. Our analysis results show that RS

codes with the coding redundancy of less than 2% can

reduce the 99-percentile latency by more than 65% when

ph is 1×10−3. Since the local erasure encoding and de-

coding can add noticeable extra latency into the data I/O

path, it will degrade the average system speed perfor-

mance compared with the ideal retry-free scenario. To

evaluate such impact and meanwhile further demonstrate

the practical feasibility of filesystem-level transparent lo-

cal erasure coding, we integrate the proposed design so-

lution into Linux kernel 3.10.102 I/O path (in particu-

lar the VFS and ext4), and carried out experiments using

the big data benchmark suite HiBench 3.0 [1]. Motivat-

ed by the emergence of data center CPUs with built-in

FPGA (e.g., the Xeon CPU with built-in FPGA as late-

ly announced by Intel), we investigated the use of both

software-based and hardware-based RS coding engine.

The measurement results show that, even under ph of

10−3, local erasure coding only incurs (much) less than

3.5% average speed performance degradation. Finally,

we also present results on the storage capacity overhead

under various benchmarks in HiBench 3.0, and the laten-

cy overhead induced by fine-grained update.

2 Background and Rationale

2.1 Magnetic Recording Technologies
To move the storage areal density beyond 1Tb/in2 and to-

wards 10Tb/in2 over the next decade, the HDD industry

is exploring several new technologies including HAM-

R, SMR, and TDMR, all of which improve areal density

through significantly reducing the track pitch. A smaller

track pitch results in a stronger inter-track interference (I-

TI) and hence worse signal-to-noise ratio, which makes

HDDs more sensitive to read head off-set. This can be

illustrated in Fig. 1. The read head off-set is defined

as the distance between the target track center and head

center. The perfect head-track alignment (i.e., zero read

head off-set) corresponds to the minimal ITI and hence

best read channel signal processing performance, lead-

ing to the minimal sector read failure probability. Nev-

ertheless, the mechanical disk rotation inevitably causes

run-time fluctuation of the read head position. As shown

in Fig. 1, the same read head off-set induces stronger ITI

from neighboring track (i.e., track N-1 in the figure) in

HDDs with a smaller track pitch. A stronger ITI directly

results in worse read channel signal processing perfor-
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mance and hence a higher sector read failure probabili-

ty. Therefore, regardless to the specific magnetic record-

ing technology, HDDs are fundamentally subject to areal

density vs. read retry rate conflict.

Figure 1: Illustration of different effect of head off-set

under (a) large track pitch and (b) small track pitch,

where the track-N is the target track being read.

2.2 Local Erasure Coding
Local erasure coding aims to reduce the occurrence of

HDD read retry by storing additional coding redundan-

cy together with the original user data in the same HDD

or JBOD. Fig. 2 illustrates the simple basic concept: In

current practice, once the read channel signal processing

fails during the normal operation (most likely due to run-

time read head off-set), HDDs switch into the read retry

mode to repeatedly read the failed sector by adjusting the

read head position. When using local erasure coding, the

user data and associated coding redundancy are stored

together locally. Upon a soft sector read failure, we first

try to recover the data through the local erasure decod-

ing, and invoke HDD read retry only if the local erasure

decoding fails, as shown in Fig. 2(b).

Along the data storage hierarchy, we could imple-

ment the local erasure coding at either application lay-

er, OS layer, or hardware layer inside HDDs. With the

full knowledge about their own data access character-

istics, applications can best optimize the use of local

erasure coding. Nevertheless, the efforts of integrat-

ing/optimizing the local erasure coding in each appli-

cation may not be justified in practice. Moreover, not

all the data being stored on HDDs are visible to appli-

cations (e.g., filesystem metadata). On the other hand,

although intra-HDD implementation keeps the software

Figure 2: Illustration of (a) current practice handling sec-

tor read failures, and (b) using the local erasure coding to

reduce the occurrence of read retry.

stack completely intact, it has several problems: (1) Be-

cause filesystem metadata have fine-grained access char-

acteristics, we should configure the local erasure coding

differently for metadata and data. However, HDD on its

own cannot distinguish between data and metadata. (2)

HDDs are not aware of the validity of data in each sec-

tor (i.e., whether or not the data are being used by the

filesystem), which could cause a large number of unnec-

essary local erasure encoding operations and disk rota-

tions, especially under long codeword length. (3) Local

erasure coding could leverage data cached in memory to

reduce the disk access. HDDs typically have very sma-

ll internal cache memory, especially compared with the

host DRAM. As a result, intra-HDD realization of local

erasure coding is subject to more disk rotations.

In comparison, OS (in particular filesystem) can the

most appropriate place to implement the local erasure

coding. On one hand, filesystem-based implementation

is completely transparent to the upper application layers,

which lowers the barrier of deploying the local erasure

coding in real systems. On the other hand, with the full

awareness and control of data access/storage on HDDs,

the filesystem can effectively optimize the realization of

local erasure coding. Therefore, this work focuses on

filesystem-level transparent local erasure coding.
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2.3 Choosing the Code
An error correction code (ECC) is characterized by four

parameters {k,m,w,d}, i.e., each codeword protects k us-

er data symbols using m redundant symbols (hence the

codeword length is k+m), each symbol contains w bits,

and the minimum codeword distance is d. For any linear

ECC code, its minimum distance d is subject to the well-

known Singleton bound, i.e., d ≤ m+ 1 [16]. A code

that achieves the equality in the Singleton bound is called

an MDS (maximum distance separable) code, which can

achieve the maximum guaranteed error and erasure cor-

rection strength. As the most well-known MDS code,

RS code [27] has been used in numerous data communi-

cation and storage systems. An ECC with the minimum

distance of d can correct up to � d−1
2 � errors or up to d−1

erasures (note that the term erasure means an error with

the known location). Hence, when being used for era-

sure coding (i.e., the location of all the errors is known

prior decoding), a (k,m) RS code guarantees to correctly

recover up to m erasures within one codeword.

This work uses RS codes to realize the local erasure

coding. RS codes are typically constructed over binary

Galois Field (GF). Given the underlying GF with the or-

der of 2w, the codeword length can be up to 2w − 1 and

2w for cyclic and non-cyclic RS codes, respectively, and

each symbol contains w bits. Non-cyclic RS codes (e.g.,

the widely used Cauchy RS codes [5, 20]) are primarily

used for erasure coding, and their encoding/decoding are

realized through GF matrix-vector multiplication (and

GF matrix inversion for decoding). Cyclic RS codes have

a much richer set of encoding/decoding algorithms and

can more conveniently handle both errors and erasures.

Interested readers are referred to [16, 27] for details.

3 Proposed Design Solution

This section first presents the basic framework on realiz-

ing the filesystem-level transparent local erasure coding,

then mathematically formulates its effect on reducing the

read tail latency, and finally presents solutions to address

two non-trivial issues for its practical implementation.

3.1 Basic Framework
When implementing transparent local erasure coding, it

is important to treat filesystem metadata and user data

differently. Leveraging the large file size and typically

coarse-grained data access patterns in data centers, we

apply long RS codes to user data on the per-file basis, i.e.,

each RS codeword spans over hundreds of 4kB sectors

and all the data within one RS codeword belong to the

same file. This is illustrated in Fig. 3: One (k,m,w) RS

codeword spans over k+m consecutive sectors and each

w-bit symbol comes from one sector. Hence, HDD read

failures on any m sectors could be recovered by RS code

decoding. To simplify the implementation, we use the

same (k,m,w) RS code for all the files. Let N denote

the number of 4kB sectors in one file. The filesystem

partitions all the N sectors into �N
k � groups, and appends

m sectors to each group for the storage of the RS coding

redundancy. The last group may have k′ < k sectors, for

which we use a shortened (k′,m,w) RS code. Note that

the shortened (k′,m,w) RS code shares the same encoder

and decoder as the original (k,m,w) RS code by simply

setting the content of the other k− k′ sectors as zeros.

Figure 3: Illustration of per-file local erasure coding.

Let ph denote the HDD soft sector read failure prob-

ability, and let ps << ph denote the target local erasure

decoding failure probability (i.e., reduce the HDD read

retry rate from ph to ps via the local erasure coding).

Given the value of k, we should search for the minimum

value of m subject to

k+m

∑
i=m+1

(
k+m

i

)
pi

h · (1− ph)
(k+m−i) ≤ ps. (1)

To illustrate the dependence of coding redundancy ra-

tio (defined as m/k) on the codeword length, we set ps
as 10−8 and calculate the required coding redundancy

over different k and ph, as shown in Fig. 4. The results

show that, in order to minimize the coding redundancy,

we must deploy long RS codes.

When the local erasure coding is implemented on the

per-file basis, the average storage capacity overhead can

be calculated as follows. Let g(x) denote the probability

density function (PDF) of the file size, where x denotes

size of one file in terms of the number of 4kB sectors. We
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Figure 4: Calculated coding redundancy under different

values of k and ph, where k is the number of user data

symbols per codeword and ph is the soft sector read fail-

ure probability. The target decoding failure rate is 10−8.

can express the average storage capacity overhead ravg as

ravg =

∫ ∞
0

g(x) · � x
k� ·m dx∫ ∞

0
g(x) · x dx

. (2)

This clearly shows that the space overhead reduces as the

file size increases, and the minimum overhead per file is

m sectors no matter how small the file is. For large files,

the overhead can be approximated as m/k (i.e., m redun-

dant sectors per k user data sectors), e.g., the overhead is

about 0.39% when using a (1019, 4) RS code.

To accommodate the fine access granularity of filesys-

tem metadata, we apply erasure coding to the filesystem

metadata on the per-sector basis, i.e., erasure coding re-

duces to data replication. In particular, to store one sector

of filesystem metadata, we allocate m′ consecutive sec-

tors to store m′ replicas of the same sector content. Given

the soft sector failure probability ph and the target local

erasure decoding failure probability ps << ph, we should

search for the minimum value of m′ subject to

pm′
h ≤ ps. (3)

Since ph should not be too high (e.g., 10−2 and below),

a small value of m′ (e.g., 3 or 4) is sufficient to make

ps small enough. Therefore, the m′ consecutive sectors

most likely reside on the same track, and it does not incur

noticeable HDD access latency overhead. Among all the

m′ replica sectors, we designate the first sector as the lead

sector and the following m′ − 1 sectors as shadow sec-

tors. All the pointers in the filesystem metadata structure

point to the lead sector, and all the shadow sectors are

only used for tolerating HDD sector read failures. Using

ext4 as an example, Fig. 5 illustrates its use in the context

of inode pointer structure. Each sector storing inode or s-

ingly/doubly/triply indirect blocks is replicated m′ times,

Figure 5: Illustration of replica-based protection for in-

ode.

and the pointed data sectors fall into one or multiple local

erasure coding groups within the same file.

In order to practically implement this design strategy,

the host-to-HDD interface protocol and HDD firmware

should be appropriately modified. In particular, the host

should be able to notify the HDD whether the host would

like the HDD to simply return an immediate error mes-

sage, upon a read failure, without internal retry. The HD-

D firmware should support two operational modes: skip

a failed sector without retry, or immediately invoke read

retry upon a read failure.

Although the above basic framework is indeed very

simple and straightforward, its practical implementation

involves the following two issues:

• Unaligned HDD write: Unaligned HDD write oc-

curs when the user data being written to the HDD

do not exactly fill one or multiple coding groups.

Ideally we hope to align HDD write with the lo-

cal erasure coding group boundary, i.e., we can al-

ways first accumulate each group of k consecutive

user data pages in the host memory, then carry out

the local erasure encoding and write the total k+m
pages to the HDD. Unfortunately, this may not be

always possible in practice, e.g., in the case of di-

rect I/O and synchronous I/O. Even in the case of

asynchronous I/O, filesystem must carry out period-

ic flushing, which could make disk write unaligned

with the local erasure coding group boundary.

• Fine-grained data update: Although our interested

data center applications have predominantly coarse-

grained data access, especially data write, it is not

impossible to have fine-grained data update (e.g.,

update of tens of 4kB sectors) in practice. Given

the very long RS codeword length, it is not trivial to

effectively support such fine-grained data update.

In the remainder of this section, we first derive math-

ematical formulations for estimating the effectiveness of

using local erasure coding to reduce HDD read tail laten-
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cy, and then present techniques to address the above two

non-trivial implementation issues.

3.2 Tail Latency Estimation

The objective of local erasure coding is to relax the con-

straint on HDD soft sector read failure probability with-

out sacrificing HDD read tail latency. This subsection de-

rives mathematical formulations for estimating read tail

latency with and without using the local erasure coding.

We consider the scenario of reading N consecutive sec-

tors from an HDD, and let T denote the latency of suc-

cessfully reading all the N sectors. Due to the varying

additional latency caused by read retry and RS coding,

T can be considered as a discrete variable. Therefore, in

order to obtain the tail latency (e.g., 99-percentile laten-

cy), we should derive its discrete probability distribution,

also known as probability mass function (PMF), denoted

as f (T ). Given the target tail percentage Ptail (e.g., 99%

or 99.9%), we can search for the tail latency Ttail subject

to
Ttail

∑
T=0

f (T )≥ Ptail . (4)

Let τretry denote the latency to recover one sector dur-

ing the read retry mode, and τu denote the latency for an

HDD to read one sector during its normal mode. Note

that τretry is approximately the latency of one or more

disk rotations. Since we are interested in comparing the

latency with and without using the local erasure coding,

we omit the HDD seek latency. Recall that ph denote the

soft sector read failure probability. Based on our interac-

tion with HDD vendors, it is reasonable to approximate-

ly model the soft sector read failure as an independent

and identical distributed (i.i.d.) random variable. There-

fore, in this work, we assume there is no correlation in

soft sector errors between contiguous sectors. Recall that

f (T ) denote the probability mass function of the latency

T . Hence, we have the formulations for the case without

using the local erasure coding:⎧⎪⎨
⎪⎩

T = t · τretry + τu ·N

f (T ) =
(

N
t

)
pt

h · (1− ph)
(N−t) (5)

where t ≥ 0 is the number of soft sector read failures.

Next, let us consider the case of using the local erasure

coding. Given the coding parameters k and m, we can

calculate the local erasure decoding failure probability ps
using Eq. (1). Define l = �N/k�, and k′ = N − l · k, i.e.,

there are total l complete (k+m)-sector groups followed

by one shortened (k′+m)-sector group. Since local era-

sure decoding can be carried out concurrently with HDD

sector read, we assume that only the decoding of the last

group contributes additional latency to the overall laten-

cy. The formulations for T and f (T ) are derived for the

following four different cases:

1. Case I: None of the first l groups suffers from local

erasure decoding failure, and none of the last k′ user

data sectors suffers from soft sector read failure:{
T =τu · (N + l ·m)

f (T ) =(1− ps)
l · (1− ph)

k′ (6)

2. Case II: None of the first l groups experiences local

erasure decoding failure, but e0 ≤m sector read fail-

ures occur in the last (k′+m) sectors. Let τdec(e0)
denote the latency to correct e0 sectors, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T =τu ·
(
N +(l +1) ·m)

+ τdec(e0)

f (T ) =(1− ps)
l ·
(

k′+m
e0

)
· pe0

h

· (1− ph)
(k′+m−e0)

(7)

3. Case III: Among the first l groups, j groups ex-

perience local erasure decoding failures due to

e1, e2, · · · ,e j > m sector read failures, and e0 ≤ m
soft sector read failures occur in the last (k′ +m)-
sector group. Let pi denote the probability that ei
soft sector read failures occur within one group,

where pi =
(k+m

ei

) · pei
h · (1− ph)

(k+m−ei), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T =τu ·
(
N +(l +1) ·m)

+ j · τdec(m)

+ τdec(e0)+
j

∑
i=1

τretry · (ei −m)

f (T ) =
( l!
(l − j)!

·
j

∏
i=1

pi

)
· (1− ps)

(l− j)

·
(

k′+m
e0

)
pe0

h · (1− ph)
(k′+m−e0)

(8)

4. Case IV: It only differs from the Case III in that the

last (k′+m)-sector group suffers from local erasure

decoding failure as well (i.e., e0 > m), and we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T =τu ·
(
N +(l +1) ·m)

+( j+1)·

τdec(m)+
j

∑
i=0

τretry · (ei −m)

f (T ) =
( l!
(l − j)!

·
j

∏
i=0

pi

)
· (1− ps)

(l− j)

(9)

When using the Eq. (4) to estimate the tail latency, we

should exhaustively exam all the four cases above to ob-

tain a complete PMF f (T ) of the access latency.

3.3 Addressing Unaligned HDD Write
We can formulate an unaligned HDD write as follows:

A vector d = [d1,d2] contains k user data symbols in one

140    15th USENIX Conference on File and Storage Technologies USENIX Association



codeword, where sub-vectors d1 and d2 contain k1 and k2

user data symbols (k1 + k2 = k). Unaligned HDD write

occurs once the filesystem must write data to HDD when

only d1 is available. The straightforward solution is to

store dynamically shortened RS codewords on HDDs, as

illustrated in Fig. 6(a). This however suffers from two

problems: (1) Filesystem must accordingly record the

length of each shortened codeword in the file metada-

ta, which could noticeably complicate filesystem design.

(2) The average coding redundancy could increase and

hence degrade the effective HDD bit cost.

Therefore, we should still use the same RS code with

the fixed k in the presence of unaligned HDD write.

To achieve this objective, we propose a cache-assisted

progressive encoding strategy. Recall that ECC encod-

ing can be modeled as a matrix-vector multiplication

r = G ·d, where r represents the m redundant symbols to

be computed, d represents the k user data symbols, and

the m×k matrix G is the generator matrix. We define two

length-k vectors d(1) = [d1,O] and d(2) = [O,d2], where

O represents an all-zero vector. Because the RS codes

are constructed over binary GF, we have d = d(1)⊕d(2),

where ⊕ represents bit-wise XOR operation. Therefore,

the encoding procedure can be written as

r = G ·d = G ·d(1)⊕G ·d(2). (10)

Define r(1) = G · d(1) and r(2) = G · d(2), we have that

r = r(1)⊕ r(2). As illustrated in Fig. 6(b), the filesystem

first writes the k1 sectors and associated m sectors storing

r(1) to the HDD, and meanwhile keeps r(1) in OS page

cache. Once the subsequent k2 sectors are ready to be

written to the HDD, the filesystem carries out encoding

to obtain r(2) and then compute the overall redundancy

r = r(1)⊕ r(2). Finally, filesystem appends k2 sectors s-

toring d2 and m sectors storing r after the previous k1

sectors (i.e., overwrites the previously written m sectors

storing r(1)). In this way, we can ensure that the filesys-

tem always uses the same fixed-length RS codewords on

each file (except the last portion of the file). Since m
is typically very small (e.g., 5 or 10) and we only need

to keep one intermediate coding redundancy (i.e., r(1))
for each file, this design strategy will not cause notice-

able cache space overhead. Clearly, this design strategy

can be applied recursively when one group of k sectors is

written to the HDD in more than two batches.

Finally, we note that, if power failure occurs when we

overwrite r(1), the previously written data d1 are not pro-

tected by valid local erasure code and hence are more

subject to read retry. This however will not cause any

storage integrity degradation since we only use local era-

sure coding to mitigate soft sector read failure.

Figure 6: Addressing unaligned HDD write using (a)

straightforward dynamic codeword shortening, and (b)

proposed cached-assisted progressive encoding, where

k1 + k2 = k.

3.4 Addressing Fine-grained Data Update

In the case of fine-grained data update, filesystem must

carry out read-modify-write operations to update the m-

sector coding redundancy. This may lead to noticeable

system performance degradation, especially if the fine-

grained data update is triggered by synchronous writes

and meanwhile the other data in the same coding group

are not present in host memory. We propose a two-phase

write procedure to address this issue. As pointed out

above, since local erasure coding only mitigates soft sec-

tor read failures, it does not degrade data storage integrity

even if some data are temporarily not protected by local

erasure code. In another word, when the m-sector cod-

ing redundancy becomes invalid due to fine-grained data

update, the associated k sectors are simply subject to a

higher risk of HDD read retry without any loss on their

storage integrity. This observation directly suggests the

use of a two-phase write procedure: Upon a fine-grained

data update caused by synchronous writes, the filesystem

first serves the synchronous write request as in current

practice without modifying the m-sector coding redun-

dancy. Then filesystem updates the corresponding m-

sector coding redundancy asynchronously during back-

ground operations. Note that, if the fine-grained data up-

date is not triggered by synchronous writes, the filesys-

tem can merge these two phases together.

The next question is how to update the m-sector coding

redundancy. To simplify the discussion, let us consider

the scenario where we update the k user data symbols

in one RS codeword on HDD from d = [d1,d2] to d′ =
[d′

1,d2], where the unchanged content d2 is not cached in

memory. To accordingly update the coding redundancy

from r = G ·d to r′ = G ·d′, we have the following two

different strategies:

1. We simply update the redundancy in the most s-

traightforward manner, i.e., read the unchanged

content d2 from HDD, then obtain the new redun-

dancy r′ by computing the complete matrix-vector
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multiplication G · d′, and finally write r′ to HDD.

Let k1 denote the length of d1 (i.e., the data being

updated). In order to update the m-sector coding re-

dundancy, we need to read k−k1 sectors from HDD.

2. The second option updates the redundancy through

indirect computation. As discussed above in Sec-

tion 3.3, we define d(1) = [d1,O], d(1)′ = [d′
1,O],

and d(2) = [O,d2]. We define r(1) = G ·d(1), r(1)′ =
G ·d(1)′ , and r(2) = G ·d(2). The original redundan-

cy can be expressed as r = r(1) ⊕ r(2), which can

also be re-written as r⊕ r(1) = r(2). As a result, we

can express the updated redundancy r′ as

r′ = r(1)
′ ⊕ r(2) = r(1)

′ ⊕ r⊕ r(1). (11)

Therefore, we read the original content d1 and o-

riginal redundancy r from HDD, and accordingly

generate the updated redundancy r′ based upon E-

q. (11). Using this strategy, in order to update the

m-sector coding redundancy, we need to read k1+m
sectors from HDD.

These two strategies can be directly generalized for more

complicated fine-grained data update (i.e., multiple sepa-

rate regions within the same k-sector group are updated).

4 Analysis and Experiments

We evaluate the proposed design solution mainly from

two aspects: (1) Improvement on tail latency: This pro-

posed design solution aims to mitigate the impact of HD-

D technology scaling on tail latency. Using the mathe-

matical formulations presented in Section 3.2, we show

analysis results of HDD tail latency with and without

using the proposed design solution under different con-

figurations. (2) Impact on average system speed perfor-

mance: The on-the-fly local erasure encoding and de-

coding can add noticeable extra latency into the data I/O

path, which could degrade the average system speed per-

formance. We use a variety of benchmarks in big data

benchmark suite HiBench 3.0 [1] to evaluate the impact

on average system speed performance. Moreover, we

will present results on the storage capacity overhead un-

der HiBench 3.0 benchmarks, and the latency overhead

induced by fine-grained update.

4.1 Implementation of Coding Engine
We first discuss the construction of the RS codes being

used in this study and their encoder/decoder implemen-

tation. We set the target local erasure code decoding fail-

ure probability ps as 10−6. Recall that ph denotes the soft

sector read failure probability. We consider four different

values of ph, including 1×10−4, 5×10−4, 1×10−3, and

5× 10−3, and set the target codeword length as 255 and

1023. Accordingly, we can calculate the code parame-

ters k and m, which are listed in Table 1. Note that the

number of bits per symbol (i.e., w) is 8 and 16 when the

codeword length is 255 and 1023, respectively.

Table 1: Parameters of RS-based local erasure codes.

ph
m+ k =255 m+ k =1023

m k m k
1×10−4 3 252 4 1019

5×10−4 4 251 7 1016

1×10−3 5 250 9 1014

5×10−3 9 246 19 1004

Based upon the open-source library jerasure [2], we

developed and integrated an RS coding library into ext4
in Linux kernel 3.10.102. Both encoding and decoding

are realized through direct matrix-based computation in-

stead of polynomial-based computation, which can read-

ily leverage the on-chip cache resource in CPUs to max-

imize the throughput. We measured its encoding and de-

coding throughput on a PC with a 3.30GHz CPU and

8GB DRAM, and the results are shown in Fig. 7.
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Figure 7: Measured encoding and decoding throughput

under different value of m or the number of erasures e.

Let e denote the number of erased symbols per code-

word. Given the same codeword length, the encoding

(decoding) throughput reduces as m (e) increases. This

is because the size of the matrices involved in encoding

(decoding) is proportional the value of m (e). The result-

s show that decoding throughput is significantly lower

than encoding throughput under the same m and e. For

example, with the codeword length of 255, the encoding

throughput is about 1.5GB/s at m = 10 while the decod-

ing throughput is only 400MB/s at e = 10. Fortunately,

the probability that one codeword contains e erased sym-

bols exponentially reduces as e increases. For example,

with the codeword length of 255 and ph of 1×10−3, the

probability that one codeword contains 2, 4, and 6 erased

symbols is 2.5×10−2, 1.3×10−4, and 2.8×10−7.

In addition, motivated by the emerging trend of inte-

grating CPU with FPGA in one chip package (e.g., the
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Figure 8: Calculated 99-percentile latency when reading different number of consecutive sectors with (a) ph = 10−4,

(b) ph = 5×10−4, (c) ph = 10−3, and (d) ph = 5×10−3.

Xeon processors with built-in FPGAs announced by In-

tel at Open Compute Project (OCP) Summit 2016), we

also studied the hardware-based implementation of RS

coding engine. With abundant hardware-level parallelis-

m and very high-speed CPU-FPGA interconnect, off-

loading RS encoding and decoding into the built-in hard-

ware accelerator can significantly improve the achiev-

able operational throughput. In this work, we designed

parallel polynomial-based RS encoder, and RS decoder

using the well-known Berlekamp-Massey algorithm and

the parallel architecture presented in [14]. The design

was carried out at the RTL level and Table 2 lists the

synthesis results (in terms of equivalent XOR gate count)

for all the eight RS codes, where all the implementations

have the same throughput of 4GB/s with the clock fre-

quency of 250MHz. The results show that, for the same

RS code, the decoder consumes about 10x more silicon

resource than the encoder at the same 4GB/s throughput.

The decoder gate counts range from 156k to 894k, which

can readily fit into modern FPGA devices.

4.2 HDD Tail Latency

Applying the mathematical formulations presented in

Section 3.2, we computed the 99-percentile tail latency

when reading consecutive N sectors from HDD, where

N ranges from 10k to 150k (i.e., the data volume ranges

from 40MB to 600MB). Recall that τretry represents the

Table 2: Hardware-based RS encoder/decoder imple-

mentation synthesis results.

Code Parameters Equivalent XOR Gate Count

m k Encoder Decoder

3 252 11k 156k

4 251 11k 161k

5 250 17k 185k

9 246 28k 232k

4 1019 16k 634k

7 1016 31k 699k

9 1014 39k 732k

19 1004 78k 894k

latency to recover one sector during the read retry mode,

and τu represents the latency for HDD to read one sector

during its normal mode. Assuming the use of 7200rpm

HDD, we set τu as 33μs. Since read retry latency could

significantly vary in practice, we treat τretry as the aver-

age read retry latency. Based upon our communications

with HDD vendors, we consider two different values of

τretry: 20ms and 40ms. The results are shown in Fig. 8.

The results show the effectiveness of using the local

erasure coding to reduce the HDD read tail latency in

the presence of high soft sector read failure probabilities.

Since we constructed the RS codes with the target de-

coding failure probability of 10−6, different value of per-
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Figure 9: Measured throughput degradation of all the benchmarks when using (a) software-based and (b) hardware-

based RS coding engine implementation. Each code is represented as (k, ph).

sector read retry latency τretry (i.e., 20ms or 40ms in this

study) or different codeword length (i.e., 255 and 1023 in

this study) does not incur noticeable difference in terms

of tail latency, as shown in Fig. 8. The gain of applying

local erasure coding improves as the soft sector read fail-

ure probability increases. In addition, the gain is relative-

ly weakly dependent on the number of sectors being read.

When we read 10k consecutive 4kB sectors, the use of

local erasure coding can reduce the 99-percentile latency

by 50.1% (τretry=20ms) and 67.2% (τretry=40ms) under

the soft sector read failure probability ph is 1 × 10−3.

The gain improves to 78.6% (τretry=20ms) and 88.1%

(τretry=40ms) respectively as we increase ph to 5×10−3.

When we read 100k consecutive 4kB sectors with ph of

5× 10−3, the 99-percentile latency is reduced by 76.2%

(τretry=20ms) and 86.6% (τretry=40ms). It should be

pointed out that the per-sector read retry latency τretry
strongly depends on how aggressively the HDD indus-

try is willing to exploit the use of local erasure coding to

push the magnetic recording technology scaling. Hence

the results above mainly serve as the preliminarily esti-

mation on the potential of applying local erasure coding

to reduce HDD read tail latency.

4.3 Impact on Average Speed Performance
This work measures the impact on average system speed

performance by running the following workloads in

the benchmark suite HiBench 3.0: (1) Job based mi-

cro benchmarks Sort (sort) and WordCount (wordcoun-

t), which sorts and counts input text data generated

by RandomTextWriter; (2) SQL benchmark hivebench
that performs scan, join and aggregate operations, based

upon the workload characteristics presented in [18];

(3) Web search benchmarks PageRank (pagerank and

Nutchindexing (nutch); (4) Machine learning bench-

marks Bayesian Classification (bayes) and K-means

clustering (kmeans); (5) HDFS benchmark enhanced

DFSIO (dfsioe); and (6) terasort a standard benchmark

here sorts 1GB generated by teragen. All the experi-

ments are carried out on one PC with a 3.30GHz CPU,

8GB DRAM, and 500GB 7200rpm HDD.

We integrated the software-based RS coding library

into ext4 in Linux kernel 3.10.102, and accordingly mod-

ified the I/O stack to incorporate the use of local erasure

coding. Fig. 9 shows the measured throughput degrada-

tion of all the benchmarks when using software-based or

hardware-based RS coding engine. Due to the absence

of commercial CPUs with built-in FPGA, we estimated

the results in Fig. 9(b) by adding delay into the I/O s-

tack to mimic the effect of hardware-based RS coding,

where we set the encoding/decoding throughput as 4G-

B/s. When running each benchmark, we randomly set

one sector being read from HDD as a failure with the

probability ph, and accordingly carry out RS code de-

coding and issue additional HDD read if required by the

decoding.

The average speed degradation is mainly due to the

following three factors: (1) RS code encoding latency,
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Figure 10: HDD storage capacity overhead under all the benchmarks when using the eight different RS codes. Each

code is represented as (k, ph).

(2) HDD latency for reading extra data required by de-

coding, and (3) RS code decoding latency. We note that,

whenever RS code decoding is triggered for one group

of k+m sectors, we always first check whether the page

cache contains some sectors in this group and only fetch

un-cached sectors from HDD. Hence, the average speed

performance degradation further depends on the data ac-

cess patterns of each benchmark. Under the same value

of ph, a shorter codeword length (e.g., 255) incurs less

degradation than a longer codeword length (e.g., 1023).

This is because a longer codeword length results in a

longer encoding latency and a higher probability of read-

ing more HDD sectors during decoding. Compared with

the software-based implementation, hardware-based RS

coding implementation can reduce the average speed

degradation by 60.6% on average. Even in the case of

software-based RS coding implementation, the average

speed performance degradation is not significant and can

be (much) less than 10% when ph is 1×10−3.

4.4 Storage Capacity Overhead
Storage capacity overhead induced by the proposed de-

sign solution depends on both the coding parameters

(i.e., k and m) and the file size distribution. We col-

lected the file size distributions when running those Hi-

Bench 3.0 benchmarks, and accordingly estimated the st-

orage capacity overhead as shown in Fig. 10, where each

code is denoted using the parameters (k, m, ph).

The results show that the storage capacity overhead in-

creases as the sector read failure probability ph becomes

worse. This can be intuitively justified since, given the

same target decoding failure probability, a worse ph de-

mands a stronger code with a larger coding redundancy.

With the same code, different benchmarks have different

storage capacity overhead as shown in Fig. 10, which is

due to their different file size characteristics. The bench-

marks (e.g., pagerank, bayes, and nutch), which have a

large number of small files, incur relatively large storage

capacity overhead. For example, in the case of pager-
ank, over 95% of its total storage usage is caused by

small files with the size between 100kB and 1MB, and

another 1.4% is caused by files smaller than 10kB. Be-

cause of the long codeword length (i.e., 255 and 1023

in this study), each small file is entirely protected by one

shortened codeword with coding redundancy much high-

er than m/k. With ph of 1× 10−3 and codeword length

of 1023, the storage capacity overhead is as high as over

12% for pagerank. In contrast, the other benchmarks

(e.g., kmeans and hivebench), which are dominated by

large-size files, have much less storage capacity over-

head. For example, in the case of hivebench, over 99%

of its total storage usage is caused by files larger then

100MB. As a result, with ph of 1× 10−3 and codeword

length of 1023, the overall storage capacity overhead is

only less than 2% for hivebench.

4.5 Impact of Fine-grained Data Update
Although data centers tend to avoid data update on HDD

through the use of immutable data structure, it is still of

practical interest to study the latency overhead incurred

by data update. We note that only fine-grained data up-

date (i.e., only a portion of data within one (k+m)-sector

coding group is updated) is subject to latency penal-

ty. As discussed in Section 3.4, we can use two differ-

ent methods to carry out fine-grained data update. In

order to update the data on HDD from d = [d1,d2] to

d′ = [d′
1,d2], the first method reads d2 from HDD to di-

rectly re-compute the updated coding redundancy, while

the second method reads d1 and old-version redundan-

cy from HDD to in-directly compute the updated coding

redundancy.

We carried the following experiments: With the code-

word length of 255, we first encode and write 10GB data

to a 7200rpm HDD. After clearing the OS page cache, we

update lu consecutive sectors at a random location within

each codeword using either the first or second method.
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We compare the total latency against the baseline with-

out using local erasure coding. We repeat the experi-

ments by setting lu as 50 and 200, and Fig. 11 shows the

measurement results when using different RS codes. The

results show that the second method (i.e., in-direct cod-

ing redundancy re-computation) appears to be the better

choice. In particular, for very fine-grained data update

(i.e., update 50 sectors within 255 sectors), the second

method significantly outperforms the first method.
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Figure 11: Measured fine-grained update latency over-

head.

5 Related Work

Aiming to enhance storage systems by introducing cod-

ing redundancy across multiple sectors, this work shares

the same nature as the widely used RAID and distribut-

ed erasure coding. Both RAID-5/6 and distributed era-

sure coding primarily target at tolerating catastrophic

HDD failures, and typically employ erasure codes with

relatively small codeword length (e.g., 12) and hence

large coding redundancy (e.g., 20% to 50%). Recen-

t work [3, 4, 19] presented specific erasure code con-

struction techniques for RAID applications that can tol-

erate individual sector failures in addition to catastroph-

ic HDD failures. However, RAID is being replaced

by distributed erasure coding in data centers. Exten-

sive research has been carried out on the construction

of distributed erasure codes (e.g., see [9–11, 22]) and

investigating/optimizing the system-level performance

(e.g.,see [7,12,25,29]). Nevertheless, the distributed na-

ture makes it unsuitable for mitigating soft sector read

failures of individual HDDs. Prabhakaran et al. [21] pre-

sented an Internal RObustNess (IRON) filesystem design

framework that includes a variety of HDD failure detec-

tion and recovery techniques. Its transaction checksum

technique inspired the implementation of journal check-

sum in ext4 filesystem. It presented the metadata repli-

cation scheme, which is similar to the one being used in

this work.

Researchers in the magnetic recording industry also

recently investigated how intra-HDD erasure coding can

complement with existing per-sector ECC (e.g., low-

density parity-check (LDPC) codes) to improve the read

channel performance. For example, the authors of [30]

studied the effect of adding one parity check code across

a number of 4kB sector inside one HDD. Nevertheless,

intra-HDD realization of erasure coding is subject to sev-

eral problems as discussed in Section 2.2.

6 Conclusions

This paper carries out an exploratory study on applying

local erasure coding to facilitate technology scaling for

data center HDDs. With finer track pitch, future HDDs

are increasingly subject to areal density vs. read retry rate

conflict. This is particularly serious for data centers that

are very sensitive to bit cost and meanwhile cannot toler-

ate long HDD read tail latency. Aiming to alleviate such

a dilemma, this paper investigates the potential and feasi-

bility of using filesystem-level transparent local erasure

coding to mitigate soft sector read failures. This paper

presents the basic design framework and develops tech-

niques to address two issues including unaligned HDD

write and fine-grained data update. This paper further de-

rives mathematical formulations for estimating the effec-

tiveness on reducing tail latency, which has been quanti-

tatively demonstrated through numerical analysis. To ev-

aluate its impact on average system speed performance

and demonstrate its practical implementation feasibili-

ty, we integrated this design solution into Linux kernel

and carried out experiments using a variety of big data

benchmarks. Its storage capacity overhead is also evalu-

ated over various big data benchmarks. The analysis and

experimental results demonstrate its promising potential

and practical feasibility to address the bit cost vs. tail la-

tency dilemma for future data center HDDs.
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Abstract
We analyze how modern distributed storage systems be-
have in the presence of file-system faults such as data
corruption and read and write errors. We characterize
eight popular distributed storage systems and uncover
numerous bugs related to file-system fault tolerance. We
find that modern distributed systems do not consistently
use redundancy to recover from file-system faults: a
single file-system fault can cause catastrophic outcomes
such as data loss, corruption, and unavailability. Our re-
sults have implications for the design of next generation
fault-tolerant distributed and cloud storage systems.

1 Introduction
Cloud-based applications such as Internet search, photo
and video services [19, 65, 67], social network-
ing [90, 93], transportation services [91, 92], and e-
commerce [52] depend on modern distributed storage
systems to manage their data. This important class of
systems includes key-value stores (e.g., Redis), config-
uration stores (e.g., ZooKeeper), document stores (e.g.,
MongoDB), column stores (e.g., Cassandra), messaging
queues (e.g., Kafka), and databases (e.g., RethinkDB).

Modern distributed storage systems store data in a
replicated fashion for improved reliability. Each replica
works atop a commodity local file system on commod-
ity hardware, to store and manage critical user data. In
most cases, replication can mask failures such as system
crashes, power failures, and disk or network failures [22,
24, 30, 31, 40, 80]. Unfortunately, storage devices such
as disks and flash drives exhibit a more complex failure
model in which certain blocks of data can become inac-
cessible (read and write errors) [7, 9, 48, 54, 79, 81] or
worse, data can be silently corrupted [8, 60, 85]. These
complex failures are known as partial storage faults [63].

Previous studies [10, 63, 98] have shown how partial
storage faults are handled by file systems such as ext3,
NTFS, and ZFS. File systems, in some cases, simply
propagate the faults as-is to applications; for example,
ext4 returns corrupted data as-is to applications if the un-
derlying device block is corrupted. In other cases, file
systems react to the fault and transform it into a different
one before passing onto applications; for example, btrfs
transforms an underlying block corruption into a read er-
ror. In either case, we refer to the faults thrown by the
file system to its applications as file-system faults.

The behavior of modern distributed storage systems in
response to file-system faults is critical and strongly af-
fects cloud-based services. Despite this importance, little
is known about how modern distributed storage systems
react to file-system faults.

A common and widespread expectation is that redun-
dancy in higher layers (i.e., across replicas) enables re-
covery from local file-system faults [12, 22, 35, 41, 81].
For example, an inaccessible block of data in one node
of a distributed storage system would ideally not result in
a user-visible data loss because the same data is redun-
dantly stored on many nodes. Given this expectation, in
this paper, we answer the following questions: How do
modern distributed storage systems behave in the pres-
ence of local file-system faults? Do they use redundancy
to recover from a single file-system fault?

To study how modern distributed storage systems re-
act to local file-system faults, we build a fault injec-
tion framework called CORDS which includes the fol-
lowing key pieces: errfs, a user-level FUSE file sys-
tem that systematically injects file-system faults, and
errbench, a suite of system-specific workloads which
drives systems to interact with their local storage. For
each injected fault, CORDS automatically observes re-
sultant system behavior. We studied eight widely used
systems using CORDS: Redis [66], ZooKeeper [6], Cas-
sandra [4], Kafka [5], RethinkDB [70], MongoDB [51],
LogCabin [45], and CockroachDB [14].

The most important overarching lesson from our study
is this: a single file-system fault can induce catastrophic
outcomes in most modern distributed storage systems.
Despite the presence of checksums, redundancy, and
other resiliency methods prevalent in distributed storage,
a single untimely file-system fault can lead to data loss,
corruption, unavailability, and, in some cases, the spread
of corruption to other intact replicas.

The benefits of our systematic study are twofold. First,
our study has helped us characterize file-system fault
handling behaviors of eight systems and also uncover nu-
merous bugs in these widely used systems. We find that
these systems can silently return corrupted data to users,
lose data, propagate corrupted data to intact replicas,
become unavailable, or return an unexpected error on
queries. For example, a single write error during log ini-
tialization can cause write unavailability in ZooKeeper.
Similarly, corrupted data in one node in Redis and Cas-
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sandra can be propagated to other intact replicas. In
Kafka and RethinkDB, corruption in one node can cause
a user-visible data loss.

Second, our study has enabled us to make several ob-
servations across all systems concerning file-system fault
handling. Specifically, we first have found that systems
employ diverse data-integrity strategies; while some sys-
tems carefully use checksums, others completely trust
lower layers in the stack to detect and handle corruption.
Second, faults are often undetected locally, and even if
detected, crashing is the most common reaction; unde-
tected faults on one node can lead to harmful global ef-
fects such as user-visible data corruption. Third, as men-
tioned above, a single fault can have disastrous cluster-
wide effects. Although distributed storage systems repli-
cate data and functionality across many nodes, a single
file-system fault on a single node can result in harm-
ful cluster-wide effects; surprisingly, many distributed
storage systems do not consistently use redundancy as
a source of recovery. Fourth, crash and corruption han-
dling are entangled; systems often conflate recovering
from a crash with recovering from corruption, acciden-
tally invoking the wrong recovery subsystem to handle
the fault, and ultimately leading to poor outcomes. Fi-
nally, nuances in commonly used distributed protocols
can spread corruption or data loss; for example, we
find that subtleties in the implementation of distributed
protocols such as leader election, read-repair, and re-
synchronization can propagate corruption or data loss.

This paper contains three major contributions. First,
we build a fault injection framework (CORDS) to care-
fully inject file-system faults into applications (§3). Sec-
ond, we present a behavioral study of eight widely used
modern distributed storage systems on how they react
to file-system faults and also uncover numerous bugs in
these storage systems(§4.1). We have contacted develop-
ers of seven systems and five of them have acknowledged
the problems we found. While a few problems can be
tolerated by implementation-level fixes, tolerating many
others require fundamental design changes. Third, we
derive a set of observations across all systems showing
some of the common data integrity and error handling
problems (§4.2). Our testing framework and bugs we re-
ported are publicly available [1]. We hope that our results
will lead to discussions and future research to improve
the resiliency of next generation cloud storage systems.

The rest of the paper is organized as follows. First,
we provide a background on file-system faults and mo-
tivate why file-system faults are important in the context
of modern distributed storage systems (§2). Then, we
describe our fault model and how our framework injects
faults and observes behaviors (§3). Next, we present our
behavior analysis and observations across systems (§4).
Finally, we discuss related work (§5) and conclude (§6).

2 Background and Motivation
We first provide background on why applications run-
ning atop file systems can encounter faults during op-
erations such as read and write. Next, we motivate why
such file-system faults are important in the context of dis-
tributed storage systems and the necessity of end-to-end
data integrity and error handling for these systems.

2.1 File-System Faults
The layers in a storage stack beneath the file system
consist of many complex hardware and software com-
ponents [2]. At the bottom of the stack is the media (a
disk or a flash device). The firmware above the media
controls functionalities of the media. Commands to the
firmware are submitted by the device driver. File systems
can encounter faults for a variety of underlying causes
including media errors, mechanical and electrical prob-
lems in the disk, bugs in firmware, and problems in the
bus controller [8, 9, 48, 54, 63, 79, 81]. Sometimes, cor-
ruptions can arise due to software bugs in other parts of
the operating system [13], device drivers [88], and some-
times even due to bugs in file systems themselves [26].

Due to these reasons, two problems arise for file sys-
tems: block errors, where certain blocks are inaccessible
(also called latent sector errors) and block corruptions,
where certain blocks do not contain the expected data.

File systems can observe block errors when the disk
returns an explicit error upon detecting some problem
with the block being accessed (such as in-disk ECC com-
plaining that the block has a bit rot) [9, 79]. A previous
study [9] of over 1 million disk drives over a period of 32
months has shown that 8.5% of near-line disks and about
1.9% of enterprise class disks developed one or more la-
tent sector errors. More recent results show similar errors
arise in flash-based SSDs [48, 54, 81].

File systems can receive corrupted data due to a mis-
directed or a lost write caused by bugs in drive firmware
[8, 60] or if the in-disk ECC does not detect a bit rot.
Block corruptions are insidious because blocks become
corrupt in a way not detectable by the disk itself. File
systems, in many cases, obliviously access such cor-
rupted blocks and silently return them to applications.
Bairavasundaram et al., in a study of 1.53 million disk
drives over 41 months, showed that more than 400,000
blocks had checksum mismatches [8]. Anecdotal ev-
idence has shown the prevalence of storage errors and
corruptions [18, 37, 75]. Given the frequency of storage
corruptions and errors, there is a non-negligible proba-
bility for file systems to encounter such faults.

In many cases, when the file system encounters a fault
from its underlying layers, it simply passes it as-is onto
the applications [63]. For example, the default Linux file
system, ext4, simply returns errors or corrupted data to
applications when the underlying block is not accessi-
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ble or is corrupted, respectively. In a few other cases,
the file system may transform the underlying fault into a
different one. For example, btrfs and ZFS transform an
underlying corruption into an error – when an underly-
ing corrupted disk block is accessed, the application will
receive an error instead of corrupted data [98]. In either
case, we refer to these faults thrown by the file system to
its applications as file-system faults.

2.2 Why Distributed Storage Systems?
Given that local file systems can return corrupted
data or errors, the responsibility of data integrity and
proper error handling falls to applications, as they care
about safely storing and managing critical user data.
Most single-machine applications such as stand-alone
databases and non-replicated key-value storage systems
solely rely on local file systems to reliably store user
data; they rarely have ways to recover from local file-
system faults. For example, on a read, if the local file
system returns an error or corrupted data, applications
have no way of recovering that piece of data. Their best
possible course of action is to reliably detect such faults
and deliver appropriate error messages to users.

Modern distributed storage systems, much like single-
machine applications, also rely on the local file system to
safely manage critical user data. However, unlike single-
machine applications, distributed storage systems inher-
ently store data in a replicated fashion. A carefully de-
signed distributed storage system can potentially use re-
dundancy to recover from errors and corruptions, irre-
spective of the support provided by its local file system.
Ideally, even if one replica is corrupted, the distributed
storage system as whole should not be affected as other
intact copies of the same data exist on other replicas.
Similarly, errors in one node should not affect the global
availability of the system given that the functionality (ap-
plication code) is also replicated across many nodes.

The case for end-to-end data integrity and error han-
dling can be found in the classical end-to-end arguments
in system design [78]. Ghemawat et al. also describe
the need for such end-to-end checksum-based detection
and recovery in the Google File System as the under-
lying cheap IDE disks would often corrupt data in the
chunk servers [29]. Similarly, lessons from Google [22]
in building large-scale Internet services emphasize how
higher layer software should provide reliability. Given
the possibility of end-to-end data integrity and error han-
dling for distributed systems, we examine if and how
well modern distributed storage systems employ end-to-
end techniques to recover from local file-system faults.

3 Testing Distributed Systems
As we discussed in the previous section, file systems can
throw errors or return corrupted data to applications run-

Type of Fault Op Example Causes

Corruption zeros,
junk Read misdirected and lost writes in ext

and XFS

Error

I/O error
(EIO)

Read latent sector errors in all file sys-
tems, disk corruptions in ZFS, btrfs

Write file system mounted read-only, on-
disk corruptions in btrfs

Space error
(ENOSPC,
EDQUOT)

Write disk full, quota exceeded in all file
systems

Table 1: Possible Faults and Example Causes. The
table shows file-systems faults captured by our model and example root
causes that lead to a particular fault during read and write operations.

ning atop them; robust applications need to be able to
handle such file-system faults. In this section, we first
discuss our file-system fault model. Then, we describe
our methodology to inject faults defined by our model
and observe the effects of the injected faults.

3.1 Fault Model
Our fault model defines what file-system fault conditions
an application can encounter. The goal of our model is
to inject faults that are representative of fault conditions
in current and future file systems and to drive distributed
storage systems into error cases that are rarely tested.

Our fault model has two important characteristics.
First, our model considers injecting exactly a single fault
to a single file-system block in a single node at a time.
While correlated file-system faults [8, 9] are interesting,
we focus on the most basic case of injecting a single fault
in a single node because our fault model intends to give
maximum recovery leeway for applications. Correlated
faults, on the other hand, might preclude such leeway.

Second, our model injects faults only into application-
level on-disk structures and not file-system meta-
data. File systems may be able to guard their own
(meta)data [27]; however, if user data becomes corrupt
or inaccessible, the application will either receive a cor-
rupted block or perhaps receive an error (if the file sys-
tem has checksums for user data). Thus, it is essential
for applications to handle such cases.

Table 1 shows faults that are possible in our model
during read and write operations and some examples of
root causes in most commonly used file systems that can
cause a particular fault. For all further discussion, we use
the term block to mean a file-system block.

It is possible for applications to read a block that is
corrupted (with zeros or junk) if a previous write to that
block was lost or some unrelated write was misdirected
to that block. For example, in the ext family of file sys-
tems and XFS, there are no checksums for user data and
so it is possible for applications to read such corrupted
data, without any errors. Our model captures such cases
by corrupting a block with zeros or junk on reads.

Even on file systems such as btrfs and ZFS where user
data is checksummed, detection of corruption may be
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possible but not recovery (unless mounted with special
options such as copies=2 in ZFS). Although user data
checksums employed by btrfs and ZFS prevent applica-
tions from accessing corrupted data, they return errors
when applications access corrupted blocks. Our model
captures such cases by returning similar errors on reads.
Also, applications can receive EIO on reads when there is
an underlying latent sector error associated with the data
being read. This condition is possible on all commonly
used file systems including ext4, XFS, ZFS, and btrfs.

Applications can receive EIO on writes from the file
system if the underlying disk sector is not writable and
the disk does not remap sectors, if the file system is
mounted in read-only mode, or if the file being written
is already corrupted in btrfs. On writes that require ad-
ditional space (for instance, append of new blocks to a
file), if the underlying disk is full or if the user’s block
quota is exhausted, applications can receive ENOSPC and
EDQUOT, respectively, on any file system.

Our fault model injects faults in what we believe is a
realistic manner. For example, if a block marked for cor-
ruption is written, subsequent reads of that block will see
the last written data instead of corrupted data. Similarly,
when a block is marked for read or write error and if the
file is deleted and recreated (with a possible allocation of
new data blocks), we do not return errors for subsequent
reads or writes of that block. Similarly, when a space
error is returned, all subsequent operations that require
additional space will encounter the same space error.

3.2 Methodology
We now describe our methodology to study how dis-
tributed systems react to local file-system faults. We built
CORDS, a fault injection framework that consists of errfs,
a FUSE [28] file system, and errbench, a set of work-
loads and a behavior-inference script for each system.

3.2.1 System Workloads
To study how a distributed storage system reacts to local
file-system faults, we need to exercise its code paths that
lead to interaction with its local file system. We crafted
a workload suite, errbench, for this purpose; our suite
consists of two workloads per system: read an existing
data item, and insert or update a data item.

3.2.2 Fault Injection
We initialize the system under study to a known state
by inserting a few data items and ensuring that they
are safely replicated and persisted on disk. Our work-
loads either read or update the items inserted as part
of the initialization. Next, we configure the application
to run atop errfs by specifying its mount point as the
data-directory of the application. Thus, all reads
and writes performed by the application flow through

errfs which can then inject faults. We run the applica-
tion workload multiple times, each time injecting a sin-
gle fault for a single file-system block through errfs.

errfs can inject two types of corruptions: corrupted
with zeros or junk. For corruptions, errfs performs the
read and changes the contents of the block that is marked
for corruption, before returning to the application. errfs
can inject three types of errors: EIO on reads (read
errors), EIO on writes (write errors) or ENOSPC and
EDQUOT on writes that require additional space (space
errors). To emulate errors, errfs does not perform the
operation but simply returns an appropriate error code.

3.2.3 Behavior Inference
For each run of the workload where a single fault is in-
jected, we observe how the system behaves. Our system-
specific behavior-inference scripts glean system behav-
ior from the system’s log files and client-visible outputs
such as server status, return codes, errors (stderr), and
output messages (stdout). Once the system behavior
for an injected fault is known, we compare the observed
behavior against expected behaviors. The following are
the expected behaviors we test for:

• Committed data should not be lost
• Queries should not silently return corrupted data
• Cluster should be available for reads and writes
• Queries should not fail after retries

We believe our expectations are reasonable since a sin-
gle fault in a single node of a distributed system should
ideally not result in any undesirable behavior. If we find
that an observed behavior does not match expectations,
we flag that particular run (a combination of the work-
load and the fault injected) as erroneous, analyze relevant
application code, contact developers, and file bugs.
Local Behavior and Global Effect. In a distributed sys-
tem, multiple nodes work with their local file system to
store user data. When a fault is injected in a node, we
need to observe two things: local behavior of the node
where the fault is injected and global effect of the fault.

In most cases, a node locally reacts to an injected fault.
As shown in the legend of Figure 1, a node can crash
or partially crash (only a few threads of the process are
killed) due to an injected fault. In some cases, the node
can fix the problem by retrying any failed operation or
by using internally redundant data (cases where the same
data is redundant across files within a replica). Alterna-
tively, the node can detect and ignore the corrupted data
or just log an error message. Finally, the node may not
even detect or take any measure against a fault.

The global effect of a fault is the result that is exter-
nally visible. The global effect is determined by how
distributed protocols (such as leader election, consensus,
recovery, repair) react in response to the local behavior of
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the faulty node. For example, even though a node can lo-
cally ignore corrupted data and lose it, the global recov-
ery protocol can potentially fix the problem, leading to a
correct externally observable behavior. Sometimes, be-
cause of how distributed protocols react, a global corrup-
tion, data loss, read-unavailability, write-unavailability,
unavailability, or query failure might be possible. When
a node simply crashes as a local reaction, the system runs
with reduced redundancy until manual intervention.

These local behaviors and global effects for a given
workload and a fault might vary depending on the role
played (leader or follower) by the node where the fault
is injected. For simplicity, we uniformly use the terms
leader and follower instead of master and slave.

We note here that our workload suite and model are
not complete. First, our suite consists only of simple read
and write workloads while more complex workloads may
yield additional insights. Second, our model does not in-
ject all possible file-system faults; rather, it injects only
a subset of faults such as corruptions, read, write, and
space errors. However, even our simple workloads and
fault model drive systems into corner cases, leading to
interesting behaviors. Our framework can be extended
to incorporate more complex faults and our workload
suite can be augmented with more complex workloads;
we leave this as an avenue for future work.

4 Results and Observations
We studied eight widely used distributed storage sys-
tems: Redis (v3.0.4), ZooKeeper (v3.4.8), Cassandra
(v3.7), Kafka (v0.9), RethinkDB (v2.3.4), MongoDB
(v3.2.0), LogCabin (v1.0), and CockroachDB (beta-
20160714). We configured all systems to provide the
highest safety guarantees possible; we enabled check-
sums, synchronous replication, and synchronous disk
writes. We configured all systems to form a cluster of
three nodes and set the replication factor as three.

We present our results in four parts. First, we present
our detailed behavioral analysis and a qualitative sum-
mary for each system (§4.1). Second, we derive and
present a set of observations related to data integrity and
error handling across all eight systems (§4.2). Next, we
discuss features of current file systems that can impact
the problems we found (§4.3). Finally, we discuss why
modern distributed storage systems are not tolerant of
single file-system faults and describe our experience in-
teracting with developers (§4.4).

4.1 System Behavior Analysis
Figure 1 shows the behaviors for all systems when faults
are injected into different on-disk structures. The on-
disk structure names shown on the right take the form:
file name.logical entity. We derive the logical entity
name from our understanding of the on-disk format of

the file. If a file can be contained in a single file-system
block, we do not show the logical entity name.
Interpreting Figure 1: We guide the reader to relevant
portions of the figure for a few structures for one system
(Redis). When there are corruptions in metadata struc-
tures in the appendonly file or errors in accessing the
same, the node simply crashes (first row of local behavior
boxes for both workloads in Redis). If the leader crashes,
then the cluster becomes unavailable and if the follow-
ers crash, the cluster runs with reduced redundancy (first
row of global effect for both workloads). Corruptions in
user data in the appendonly file are undetected (second
row of local behavior for both workloads). If the leader
is corrupted, it leads to a global user-visible corruption,
and if the followers are corrupted, there is no harmful
global effect (second row of global effect for read work-
load). In contrast, errors in appendonly file user data
lead to crashes (second row of local behavior for both
workloads); crashes of leader and followers lead to clus-
ter unavailability and reduced redundancy, respectively
(second row of global effect for both workloads).

We next qualitatively summarize the results in Fig-
ure 1 for each system.

4.1.1 Redis
Redis is a popular data structure store, used as database,
cache, and message broker. Redis uses a simple appen-
donly file (aof ) to log user data. Periodic snapshots are
taken from the aof to create a redis database file (rdb).
During startup, the followers re-synchronize the rdb file
from the leader. Redis does not elect a leader automati-
cally when the current leader fails.
Summary and Bugs: Redis does not use checksums
for aof user data; thus, it does not detect corruptions.
Figure 2(a) shows how the re-synchronization protocol
propagates corrupted user data in aof from the leader to
the followers leading to a global user-visible corruption.
If the followers are corrupted, the same protocol uninten-
tionally fixes the corruption by fetching the data from the
leader. Corruptions in metadata structures in aof and er-
rors in aof in leader causes it to crash, making the cluster
unavailable. Since the leader sends the rdb file during re-
synchronization, corruption in the same causes both the
followers to crash. These crashes ultimately make the
cluster unavailable for writes.

4.1.2 ZooKeeper
ZooKeeper is a popular service for storing configuration
information, naming, and distributed synchronization. It
uses log files to append user data; the first block of the
log contains a header, the second contains the transac-
tion body, and the third contains the transaction tail along
with ACLs and other information.
Summary and Bugs: ZooKeeper can detect corruptions
in the log using checksums but reacts by simply crash-
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Figure 1: System Behaviors. The figure shows system behaviors when corruptions (corrupted with either junk or zeros), read errors,
write errors, and space errors are injected in various on-disk logical structures. The leftmost label shows the system name. Within each system
workload (read and update), there are two boxes – first, local behavior of the node where the fault is injected and second, cluster-wide global
effect of the injected fault. The rightmost annotation shows the on-disk logical structure in which the fault is injected. It takes the following form:
file name.logical entity. If a file can be contained in a single file-system block, we do not show the logical entity name. Annotations on the bottom
show where a particular fault is injected (L - leader/master, F - follower/slave). A gray box for a fault and a logical structure combination indicates
that the fault is not applicable for that logical structure. For example, write errors are not applicable for the epoch structure in ZooKeeper as it is
not written and hence shown as a gray box.
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Figure 2: Example Bugs. The figure depicts some of the bugs we discovered in Redis, ZooKeeper, Cassandra, Kafka, and RethinkDB. Time
flows downwards as shown on the left. The black portions denote corruption.

ing. Similarly, it crashes in most error cases, leading to
reduced redundancy. In all crash scenarios, ZooKeeper
can reliably elect a new leader, thus ensuring availabil-
ity. ZooKeeper ignores a transaction locally when its tail
is corrupted; the leader election protocol prevents that
node from becoming the leader, avoiding undesirable be-
haviors. Eventually, the corrupted node repairs its log by
contacting the leader, leading to correct behavior.

Unfortunately, ZooKeeper does not recover from write
errors to the transaction head and log tail (Figure 1 – rows
four and eight in ZooKeeper). Figure 2(b) depicts this
scenario. On write errors during log initialization, the er-
ror handling code tries to gracefully shutdown the node
but kills only the transaction processing threads; the quo-
rum thread remains alive (partial crash). Consequently,
other nodes believe that the leader is healthy and do not
elect a new leader. However, since the leader has par-
tially crashed, it cannot propose any transactions, leading
to an indefinite write unavailability.

4.1.3 Cassandra
Cassandra is a Dynamo-like [23] NoSQL store.
Both user data tables (tablesst) and system schema
(schemasst) are stored using a variation of Log Struc-
tured Merge Trees [59]. Unlike other systems we study,
Cassandra does not have a leader and followers; instead,
the nodes form a ring. Hence, we show its behaviors sep-
arately in Figure 3.
Summary and Bugs: Cassandra enables checksum ver-
ification on user data only as a side effect of enabling
compression. When compression is turned off, corrup-
tions are not detected on user data (tablesst data). On
a read query, a coordinator node collects and compares
digests (hash) of the data from R replicas [20]. If the di-
gests mismatch, conflicts in the values are resolved using
a latest timestamp wins policy. If there is a tie between
timestamps, the lexically greatest value is chosen and in-

stalled on other replicas [38]. As shown in Figure 2(c),
on R = 3, if the corrupted value is lexically greater than
the original value, the corrupted value is returned to the
user and the corruption is propagated to other intact repli-
cas. On the other hand, if the corrupted value is lexically
lesser, it fixes the corrupted node. Reads to a corrupted
node with R = 1 always return corrupted data.

Faults in tablesst index cause query failures. Faults in
schema data and schema index cause the node to crash,
making it unavailable for reads and writes with R= 3 and
W = 3, respectively. Faults in other schema files result in
query failure. In most cases, user-visible problems that
are observed in R = 1 configuration are not fixed even
when run with R = 3.

4.1.4 Kafka
Kafka is a distributed persistent message queue in which
clients can publish and subscribe for messages. It uses
a log to append new messages and each message is
checksummed. It maintains an index file which indexes
messages to byte offsets within the log. The replica-
tion checkpoint and recovery checkpoint indicate how
many messages are replicated to followers so far and how
many messages are flushed to disk so far, respectively.
Summary and Bugs: On read and write errors, Kafka
mostly crashes. Figure 2(d) shows the scenario where
Kafka can lose data and become unavailable for writes.
When a log entry is corrupted on the leader (Figure 1 –
rows one and two in Kafka), it locally ignores that entry
and all subsequent entries in the log. The leader then in-
structs the followers to do the same. On receiving this
instruction, the followers hit a fatal assertion and simply
crash. Once the followers crash, the cluster becomes un-
available for writes and the data is also lost. Corruption
in index is fixed using internal redundancy. Faults in the
replication checkpoint of the leader results in a data loss
as the leader is unable to record the replication offsets
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Figure 3: System Behavior: Cassandra. The figure shows system behaviors when corruptions (corrupted with either junk (cj) or
zeros(cz)), read errors (re), write errors (we), and space errors (se) are injected in various on-disk logical structures for Cassandra. The legend for
local behaviors and global effects is the same as shown in Figure 1.

of the followers. Kafka becomes unavailable when the
leader cannot read or write replication checkpoint and
replication checkpoint tmp, respectively.

4.1.5 RethinkDB
RethinkDB is a distributed database suited for pushing
query results to real-time web applications. It uses a per-
sistent B-tree to store all data. metablocks in the B-tree
point to the data blocks that constitute the current and
the previous version of the database. During an update,
new data blocks are carefully first written and then the
metablock with checksums is updated to point to the new
blocks, thus enabling atomic updates.
Summary and Bugs: On any fault in database header
and internal B-tree nodes, RethinkDB simply crashes. If
the leader crashes, a new leader is automatically elected.
RethinkDB relies on the file system to ensure the in-
tegrity of data blocks; hence, it does not detect corrup-
tions in transaction body and tail (Figure 1 – rows five
and six in RethinkDB). When these blocks of the leader
are corrupted, RethinkDB silently returns corrupted data.

Figure 2(e) depicts how data is silently lost when the
transaction head or the metablock pointing to the trans-
action is corrupted on the leader. Even though there are
intact copies of the same data on the followers, the leader
does not fix its corrupted or lost data, even when we per-
form the reads with majority option. When the followers
are corrupted, they are not fixed by contacting the leader.
Although this does not lead to an immediate user-visible
corruption or loss (because the leader’s data is the one
finally returned), it does so when the corrupted follower
becomes the leader in the future.

4.1.6 MongoDB
MongoDB is a popular replicated document store that
uses WiredTiger [53] underneath for storage. When an
item is inserted or updated, it is added to the journal first;
then, it is checkpointed to the collections file.
Summary and Bugs: MongoDB simply crashes on most
errors, leading to reduced redundancy. A new leader is

automatically elected if the current leader crashes. Mon-
goDB employs checksums for all files; corruption in any
block of any file causes a checksum mismatch and an
eventual crash. One exception to the above is when
blocks other than journal header are corrupted (Figure 1
– the sixth row in MongoDB). In this case, MongoDB
detects and ignores the corrupted blocks; then, the cor-
rupted node truncates its corrupted journal, descends to
become a follower, and finally repairs its journal by con-
tacting the leader. In a corner case where there are space
errors while appending to the journal, queries fail.

4.1.7 LogCabin
LogCabin uses the Raft consensus protocol [56] to pro-
vide a replicated and consistent data store for other
systems to store their core metadata. It implements a
segmented-log [77] and each segment is a file on the file
system. When the current open segment is fully utilized,
it is closed and a new segment is opened. Two pointer
files point to the latest two versions of the log. They are
updated alternately; when a pointer file is partially up-
dated, LogCabin uses the other pointer file that points to
a slightly older but consistent version of the log.
Summary and Bugs: LogCabin crashes on all read,
write, and space errors. Similarly, if an open segment
file header or blocks in a closed segment are corrupted,
LogCabin simply crashes. LogCabin recognizes corrup-
tion in any other blocks in an open segment using check-
sums, and reacts by simply discarding and ignoring the
corrupted entry and all subsequent entries in that segment
(Figure 1 – second row in LogCabin). If a log pointer file
is corrupted, LogCabin ignores that pointer file and uses
the other pointer file.

In the above two scenarios, the leader election proto-
col ensures that the corrupted node does not become the
leader; the corrupted node becomes a follower and fixes
its log by contacting the new leader. This ensures that in
any fault scenario, LogCabin would not globally corrupt
or lose user data.
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Table 2: Data Integrity Strategies. The table shows tech-
niques employed by modern systems to ensure data integrity of user-
level application data.

4.1.8 CockroachDB
CockroachDB is a SQL database built to survive disk,
machine, and data-center failures. It uses a tuned version
of RocksDB underneath for storage; the storage engine
is an LSM tree that appends incoming data to a persistent
log; the in-memory data is then periodically compacted
to create the sst files. The manifest and the current files
point to the current version of the database.
Summary and Bugs: Most of the time, CockroachDB
simply crashes on corruptions and errors on any data
structure, resulting in reduced redundancy. Faults in the
log file on the leader can sometimes lead to total cluster
unavailability as some followers also crash following the
crash of the leader. Corruptions and errors in a few other
log metadata can cause a data loss where CockroachDB
silently returns zero rows. Corruptions in sst files and
few blocks of log metadata cause queries to fail with er-
ror messages such as table does not exist or db does not
exist. Overall, we found that CockroachDB has many
problems in fault handling. However, the reliability may
improve in future since CockroachDB is still under ac-
tive development.

4.2 Observations across Systems
We now present a set of observations with respect to data
integrity and error handling across all eight systems.
#1: Systems employ diverse data integrity strategies.
Table 2 shows different strategies employed by modern
distributed storage systems to ensure data integrity. As
shown, systems employ an array of techniques to de-
tect and recover from corruption. The table also shows
the diversity across systems. On one end of the spec-
trum, there are systems that try to protect against data
corruption in the storage stack by using checksums (e.g.,
ZooKeeper, MongoDB, CockroachDB) while the other
end of spectrum includes systems that completely trust
and rely upon the lower layers in the storage stack to han-
dle data integrity problems (e.g., RethinkDB and Redis).
Despite employing numerous data integrity strategies, all
systems exhibit undesired behaviors.

Sometimes, seemingly unrelated configuration set-
tings affect data integrity. For example, in Cassandra,
checksums are verified only as a side effect of enabling
compression. Due to this behavior, corruptions are not
detected or fixed when compression is turned off, lead-
ing to user-visible silent corruption.

We also find that a few systems use inappropriate
checksum algorithms. For example, ZooKeeper uses
Adler32 which is suited only for error detection after
decompression and can have collisions for very short
strings [47]. In our experiments, we were able to in-
ject corruptions that caused checksum collisions, driving
ZooKeeper to serve corrupted data. We believe that it
is not unusual to expect metadata stores like ZooKeeper
to store small entities such as configuration settings reli-
ably. In general, we believe that more care is needed to
understand the robustness of possible checksum choices.
#2: Local Behavior: Faults are often undetected; even
if detected, crashing is the most common local reaction.
We find that faults are often locally undetected. Some-
times, this leads to an immediate harmful global effect.
For instance, in Redis, corruptions in the appendonly file
of the leader are undetected, leading to global silent cor-
ruption. Also, corruptions in the rdb of the leader are
also undetected and, when sent to followers, causes them
to crash, leading to unavailability. Similarly, in Cas-
sandra, corruption of tablesst data is undetected which
leads to returning corrupted data to users and sometimes
propagating it to intact replicas. Likewise, RethinkDB
does not detect corruptions in the transaction head on the
leader which leads to a global user-visible data loss. Sim-
ilarly, corruption in the transaction body is undetected
leading to global silent corruption. The same faults are
undetected also on the followers; a global data loss or
corruption is possible if a corrupted follower becomes
the leader in future.

While some systems detect and react to faults purpose-
fully, some react to faults only as a side effect. For in-
stance, ZooKeeper, MongoDB, and LogCabin carefully
detect and react to corruptions. On the other hand, Redis,
Kafka, and RethinkDB sometimes react to a corruption
only as a side effect of a failed deserialization.

We observe that crashing is the most common local
reaction to faults. When systems detect corruption or
encounter an error, they simply crash, as is evident from
the abundance of crash symbols in local behaviors of Fig-
ure 1. Although crashing of a single node does not im-
mediately affect cluster availability, total unavailability
becomes imminent as other nodes also can fail subse-
quently. Also, workloads that require writing to or read-
ing from all replicas will not succeed even if one node
crashes. After a crash, simply restarting does not help if
the fault is sticky; the node would repeatedly crash un-
til manual intervention fixes the underlying problem. We
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Structures Fault Injected Scope
Affected

Redis:
appendonlyfile.metadata any All#

appendonlyfile.userdata read, write errors All#

Cassandra:
tablesst data.block 0 corruptions (junk) First Entry$

tablesst index corruptions SSTable#

schemasst compressioninfo corruptions, read error Table#

schemasst filter corruptions, read error Table#

schemasst statistics.0 corruptions, read error Table#

Kafka:
log.header corruptions Entire Log$

log.other corruptions, read error Entire Log$*

replication checkpoint corruptions, read error All$

replication checkpoint tmp write errors All#

RethinkDB:
db.transaction head corruptions Transaction$

db.metablock corruptions Transaction$

$- data loss # -inaccessible *- starting from corrupted entry
Table 3: Scope Affected. The table shows the scope of data (third
column) that becomes lost or inaccessible when only a small portion of
data (first column) is faulty.

also observe that nodes are more prone to crashes on er-
rors than corruptions.

We observe that failed operations are rarely retried.
While retries help in several cases where they are used,
we observe that sometimes indefinitely retrying opera-
tions may lead to more problems. For instance, when
ZooKeeper is unable to write new epoch information (to
epoch tmp) due to space errors, it deletes and creates
a new file keeping the old file descriptor open. Since
ZooKeeper blindly retries this sequence and given that
space errors are sticky, the node soon runs out of descrip-
tors and crashes, reducing availability.
#3: Redundancy is underutilized: A single fault can
have disastrous cluster-wide effects. Contrary to the
widespread expectation that redundancy in distributed
systems can help recover from single faults, we ob-
serve that even a single error or corruption can cause ad-
verse cluster-wide problems such as total unavailability,
silent corruption, and loss or inaccessibility of inordinate
amount of data. Almost all systems in many cases do
not use redundancy as a source of recovery and miss op-
portunities of using other intact replicas for recovering.
Notice that all the bugs and undesirable behaviors that
we discover in our study are due to injecting only a sin-
gle fault in a single node at a time. Given that the data
and functionality are replicated, ideally, none of the un-
desirable behaviors should manifest.

A few systems (MongoDB and LogCabin) automat-
ically recover from some (not all) data corruptions by
utilizing other replicas. This recovery involves synergy
between the local and the distributed recovery actions.
Specifically, on encountering a corrupted entry, these
systems locally ignore faulty data (local recovery pol-
icy). Then, the leader election algorithm ensures that the

node where a data item has been corrupted and hence ig-
nored does not become the leader (global recovery pol-
icy). As a result, the corrupted node eventually recovers
the corrupted data by fetching it from the current leader.
In many situations, even these systems do not automati-
cally recover by utilizing redundancy. For instance, Log-
Cabin and MongoDB simply crash when closed segment
or collections are corrupted, respectively.

We also find that an inordinate amount of data can
be affected when only a small portion of data is faulty.
Table 3 shows different scopes that are affected when a
small portion of the data is faulty. The affected portions
can be silently lost or become inaccessible. For example,
in Redis, all of user data can become inaccessible when
metadata in the appendonly file is faulty or when there
are read and write errors in appendonly file data. Simi-
larly, in Cassandra, an entire table can become inacces-
sible when small portions of data are faulty. Kafka can
sometimes lose an entire log or all entries starting from
the corrupted entry until the end of the log. RethinkDB
loses all the data updated as part of a transaction when
a small portion of it is corrupted or when the metablock
pointing to that transaction is corrupted.

In summary, we find that redundancy is not effectively
used as a source of recovery and the general expectation
that redundancy can help availability of functionality and
data is not a reality.
#4: Crash and corruption handling are entangled. We
find that detection and recovery code of many systems
often inadvertently try to detect and fix two fundamen-
tally distinct problems: crashes and data corruption.

Storage systems implement crash-consistent update
protocols (i.e., even in the presence of crashes during an
update, data should always be recoverable and should not
be corrupt or lost) [7, 61, 62]. To do this, systems care-
fully order writes and use checksums to detect partially
updated data or corruptions that can occur due to crashes.
On detecting a checksum mismatch due to corruption, all
systems invariably run the crash recovery code (even if
the corruption was not actually due to crash but rather
due to a real corruption in the storage stack), ultimately
leading to undesirable effects such as data loss.

One typical example of this problem is RethinkDB.
RethinkDB does not use application-level checksums to
handle corruption. However, it does use checksums for
its metablocks to recover from crashes. Whenever a
metablock is corrupted, RethinkDB detects the mismatch
in metablock checksum and invokes its crash recovery
code. The crash recovery code believes that the sys-
tem crashed when the last transaction was committing.
Consequently, it rolls back the committed and already-
acknowledged transaction, leading to a data loss. Sim-
ilarly, when the log is corrupted in Kafka, the recovery
code treats the corruption as a signal of a crash; hence, it
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truncates and loses all further data in the log instead of
fixing only the corrupted entry. The underlying reason
for this problem is the inability to differentiate corrup-
tions due to crashes from real storage stack corruptions.

LogCabin tries to distinguish crashes from corruption
using the following logic: If a block in a closed segment
(a segment that is full) is corrupted, it correctly flags that
problem as a corruption and reacts by simply crashing.
On the other hand, if a block in an open segment (still
in use to persist transactions) is corrupted, it detects it as
a crash and invokes its usual crash recovery procedure.
MongoDB also differentiates corruptions in collections
from journal corruptions in a similar fashion. Even sys-
tems that attempt to discern crashes from corruption do
not always do so correctly.

There is an important consequence of entanglement of
detection and recovery of crashes and corruptions. Dur-
ing corruption (crash) recovery, some systems fetch in-
ordinate amount of data to fix the problem. For instance,
when a log entry is corrupted in LogCabin and Mon-
goDB, they can fix the corrupted log by contacting other
replicas. Unfortunately, they do so by ignoring the cor-
rupted entry and all subsequent entries until the end of
the log and subsequently fetching all the ignored data, in-
stead of simply fetching only the corrupted entry. Since a
corruption is identified as a crash during the last commit-
ting transaction, these systems assume that the corrupted
entry is the last entry in the log. Similarly, Kafka follow-
ers also fetch additional data from the leader instead of
only the corrupted entry.
#5: Nuances in commonly used distributed proto-
cols can spread corruption or data loss. We find
that subtleties in the implementation of commonly
used distributed protocols such as leader election, read-
repair [23], and re-synchronization can propagate cor-
ruption or data loss.

For instance, in Kafka, a local data loss in one node
can lead to a global data loss due to the subtleties in
its leader election protocol. Kafka maintains a set of in-
sync-replicas (ISR) and any node in this set can become
the leader. When a log entry is corrupted on a Kafka
node, it ignores the current and all subsequent entries in
the log and truncates the log until the last correct entry.
Logically, now this node should not be part of the ISR
as it has lost some log entries. However, this node is
not removed from the ISR and so eventually can still be-
come the leader and silently lose data. This behavior is
in contrast with leader election protocols of ZooKeeper,
MongoDB, and LogCabin where a node that has ignored
log entries do not become the leader.

Read-repair protocols are used in Dynamo-style quo-
rum systems to fix any replica that has stale data. On
a read request, the coordinator collects the digest of the
data being read from a configured number of replicas. If

all digests match, then the local data from the coordinator
is simply returned. If the digests do not match, an inter-
nal conflict resolution policy is applied, and the resolved
value is installed on replicas. In Cassandra, which im-
plements read-repair, the conflict resolution resolves to
the lexically greater value; if the injected corrupted bytes
are lexically greater than the original value, the corrupted
value is propagated to all other intact replicas.

Similarly, in Redis, when a data item is corrupted
on the leader, it is not detected. Subsequently, the re-
synchronization protocol propagates the corrupted data
to the followers from the leader, overriding the correct
version of data present on the followers.

4.3 File System Implications
All the bugs that we find can occur on XFS and all ext
file systems including ext4, the default Linux file sys-
tem. Given that these file systems are commonly used
as local file systems in replicas of large distributed stor-
age deployments and recommended by developers [50,
55, 64, 76], our findings have important implications for
such real-world deployments.

File systems such as btrfs and ZFS employ check-
sums for user data; on detecting a corruption, they re-
turn an error instead of letting applications silently ac-
cess corrupted data. Hence, bugs that occur due to an
injected block corruption will not manifest on these file
systems. We also find that applications that use end-to-
end checksums when deployed on such file systems, sur-
prisingly, lead to poor interactions. Specifically, appli-
cations crash more often due to errors than corruptions.
In the case of corruption, a few applications (e.g., Log-
Cabin, ZooKeeper) can use checksums and redundancy
to recover, leading to a correct behavior; however, when
the corruption is transformed into an error, these applica-
tions crash, resulting in reduced availability.

4.4 Discussion
We now consider why distributed storage systems are not
tolerant of single file-system faults. In a few systems
(e.g., RethinkDB and Redis), we find that the primary
reason is that they expect the underlying storage stack
layers to reliably store data. As more deployments move
to the cloud where reliable storage hardware, firmware,
and software might not be the reality, storage systems
need to start employing end-to-end integrity strategies.

Next, we believe that recovery code in distributed sys-
tems is not rigorously tested, contributing to undesirable
behaviors. Although many systems employ checksums
and other techniques, recovery code that exercises such
machinery is not carefully tested. We advocate future
distributed systems need to rigorously test failure recov-
ery code using fault injection frameworks such as ours.

Third, although a body of research work [25, 79, 83,
84, 94] and enterprise storage systems [49, 57, 58] pro-
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vide software guidelines to tackle partial faults, such wis-
dom has not filtered down to commodity distributed stor-
age systems. Our findings provide motivation for dis-
tributed systems to build on existing research work to
practically tolerate faults other than crashes [17, 44, 97].

Finally, although redundancy is effectively used to
provide improved availability, it remains underutilized
as a source of recovery from file-system and other par-
tial faults. To effectively use redundancy, first, the on-
disk data structures have to be carefully designed so that
corrupted or inaccessible parts of data can be identified.
Next, corruption recovery has to be decoupled from crash
recovery to fix only the corrupted or inaccessible por-
tions of data. Sometimes, recovering the corrupted data
might be impossible if the intact replicas are not reach-
able. In such cases, the outcome should be defined by
design rather than left as an implementation detail.

We contacted developers of the systems regarding
the behaviors we found. RethinkDB and Redis rely
on the underlying storage layers to ensure data in-
tegrity [68, 69]. RethinkDB intends to change the de-
sign to include application-level checksums in the future
and updated the documentation to reflect the bugs we re-
ported [71, 72] until this is fixed. They also confirmed
the entanglement in corruption and crash handling [73].

The write unavailability bug in ZooKeeper discovered
by CORDS was encountered by real-world users and has
been fixed recently [99, 101]. ZooKeeper developers
mentioned that crashing on detecting corruption was not
a conscious design decision [100]. LogCabin developers
also confirmed the entanglement in corruption and crash
handling in open segments; they added that it is hard to
distinguish a partial write from corruption in open seg-
ments [46]. Developers of CockroachDB and Kafka have
also responded to our bug reports [15, 16, 39].

5 Related Work
Our work builds on four bodies of related work.
Corruptions and errors in storage stack: As discussed
in §2, detailed studies on storage errors and corrup-
tions [8, 9, 48, 54, 79, 81] motivated our work.
Fault injection: Our work is related to efforts that in-
ject faults into systems and test their robustness [11, 32,
82, 89]. Several efforts have built generic fault injectors
for distributed systems [21, 36, 86]. A few studies have
shown how file systems [10, 63, 98] and applications
running atop them [87, 97] react specifically to storage
and memory faults. Our work draws from both bodies
of work but is unique in its focus on testing behaviors
of distributed systems to storage faults. We believe our
work is the first to comprehensively examine the effects
of storage faults across many distributed storage systems.
Testing Distributed Systems: Several distributed model
checkers have succeeded in uncovering bugs in dis-

tributed systems [34, 43, 95]. CORDS exposes bugs that
cannot be discovered by model checkers. Model check-
ers typically reorder network messages and inject crashes
to find bugs; they do not inject storage-related faults.
Similar to model checkers, tools such as Jepsen [42] that
test distributed systems under faulty networks are com-
plementary to CORDS. Our previous work [3] studies
how file-system crash behaviors affect distributed sys-
tems. However, these faults occur only on a crash unlike
block corruption and errors introduced by CORDS.
Bug Studies: A few recent bug studies [33, 96] have
given insights into common problems found in dis-
tributed systems. Yuan et al. show that 34% of catas-
trophic failures in their study are due to unanticipated
error conditions. Our results also show that systems do
not handle read and write errors well; this poor error han-
dling leads to harmful global effects in many cases. We
believe that bug studies and fault injection studies are
complementary to each other; while bug studies suggest
constructing test cases by examining sequences of events
that have led to bugs encountered in the wild, fault injec-
tion studies like ours concentrate on injecting one type of
fault and uncovering new bugs and design flaws.

6 Conclusions
We show that tolerance to file-system faults is not in-
grained in modern distributed storage systems. These
systems are not equipped to effectively use redundancy
across replicas to recover from local file-system faults;
user-visible problems such as data loss, corruption, and
unavailability can manifest due to a single local file-
system fault. As distributed storage systems are emerg-
ing as the primary choice for storing critical user data,
carefully testing them for all types of faults is important.
Our study is a step in this direction and we hope our work
will lead to more work on building next generation fault-
resilient distributed systems.
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Abstract

We present Omid – a transaction processing service that
powers web-scale production systems at Yahoo. Omid
provides ACID transaction semantics on top of tradi-
tional key-value storage; its implementation over Apache
HBase is open sourced as part of Apache Incubator.
Omid can serve hundreds of thousands of transactions
per second on standard mid-range hardware, while in-
curring minimal impact on the speed of data access in
the underlying key-value store. Additionally, as expected
from always-on production services, Omid is highly
available.

1 Introduction

In recent years, there is an increased focus on support-
ing large-scale distributed transaction processing; exam-
ples include [6, 7, 11, 17, 18, 20, 28]. Transaction sys-
tems have many industrial applications, and the need for
them is on the rise in the big data world. One prominent
use case is Internet-scale data processing pipelines, for
example, real-time indexing for web search [31]. Such
systems process information in a streamed fashion, and
use shared storage in order to facilitate communication
between processing stages. Quite often, the different
stages process data items in parallel, and their execution
is subject to data races. Overcoming such race conditions
at the application level is notoriously complex; the sys-
tem design is greatly simplified by using the abstraction
of transactions with well-defined atomicity, consistency,
isolation, and durability (ACID) semantics [27].

We present Omid, an ACID transaction processing
system for key-value stores. Omid has replaced an initial
prototype bearing the same name, to which we refer here
as Omid1 [25], as Yahoo’s transaction processing engine;
it has been entirely re-designed for scale and reliability,
thereby bearing little resemblance with the origin (as dis-
cussed in Section 3 below). Omid’s open source version

recently became an Apache Incubator project1.
Internally, Omid powers Sieve2, Yahoo’s web-scale

content management platform for search and personal-
ization products. Sieve employs thousands of tasks to
digest billions of events per day from a variety of feeds
and push them into a real-time index in a matter of sec-
onds. In this use case, tasks need to execute as ACID
transactions at a high throughput [31].

The system design has been driven by several im-
portant business and deployment considerations. First,
guided by the principle of separation of concerns,
Omid was designed to leverage battle-tested key-value
store technology and support transactions over data
stored therein, similar to other industrial efforts [6, 31,
17]. While Omid’s design is compatible with multi-
ple NoSQL key-value stores, the current implementation
works with Apache HBase [1].

A second consideration was simplicity, in order to
make the service easy to deploy, support, maintain, and
monitor in production. This has led to a design based
on a centralized transaction manager (TM)3. While its
clients and data storage nodes are widely-distributed and
fault-prone, Omid’s centralized TM provides a single
source of truth regarding the transaction history, and fa-
cilitates conflict resolution among updating transactions
(read-only transactions never cause aborts).

Within these constraints, it then became necessary
to find novel ways to make the service scalable for
throughput-oriented workloads, and to ensure its con-
tinued availability following failures of clients, storage
nodes, and the TM. Omid’s main contribution is in pro-
viding these features:

Scalability Omid runs hundreds of thousands of trans-
actions per second over multi-petabyte shared stor-

1http://omid.incubator.apache.org
2http://yahoohadoop.tumblr.com/post/129089878751
3The TM is referred to as Transaction Status Oracle (TSO)

in the open source code and documentation.
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age. As in other industrial systems [31, 25, 6], scal-
ability is improved by providing snapshot isolation
(SI) rather than serializability [27] and separating
data management from control. Additionally, Omid
employs a unique combination of design choices in
the control plane: (i) synchronization-free transac-
tion processing by a single TM, (ii) scale-up of the
TM’s in-memory conflict detection (deciding which
transactions may commit) on multi-core hardware,
and (iii) scale-out of metadata (HBase).

High availability The data tier is available by virtue of
HBase’s reliability, and the TM is implemented as
a primary-backup process pair with shared access
to critical metadata. Our solution is unique in tol-
erating a potential overlap period when two pro-
cesses act as primaries, and at the same time avoid-
ing costly synchronization (consensus), as long as a
single primary is active. Note that, being generic,
the data tier is not aware of the choice of primary
and hence serves operations of both TMs in case of
such overlap.

We discuss Omid’s design considerations in Section 2
and related transaction processing systems in Section 3.
We detail the system guarantees in Section 4. Section 5
describes Omid’s transaction protocol, and Section 6 dis-
cusses high-availability. An empirical evaluation is given
in Section 7. We conclude, in Section 8, by discussing
lessons learned from Omid’s production deployment and
our interaction with the open source community, as well
as future developments these lessons point to.

2 Design Principles and Architecture

Omid was incepted with the goal of adding transactional
access on top of HBase, though it can work with any
strongly consistent key-value store that provides multi-
versioning with version manipulation and atomic putI-
fAbsent insertions as we now describe.

The underlying data store offers persistence (using
a write-ahead-log), scalability (via sharding), and high
availability (via replication) of the data plane, reliev-
ing Omid to manage only the transaction control plane.
Omid further relies on the underlying data store for fault-
tolerant and persistent storage of transaction-related
metadata. This metadata includes a dedicated table that
holds a single record per committing transaction, and in
addition, per-row metadata for items accessed transac-
tionally. The Omid architecture is illustrated in Figure 1.

Omid leverages multi-versioning in the underlying
key-value store in order to allow transactions to read con-
sistent snapshots of changing data as needed for snap-
shot isolation. The store’s API allows users to manipu-
late versions explicitly. It supports atomic put(key, val,

Figure 1: Omid architecture. Clients manipulate data
that resides in data tables in the underlying data store (for
example, HBase) and use the TM for conflict detection.
Only the primary TM is active, and the backup is in hot
standby mode. The TM maintains persistent metadata
in the data store as well as separately managed recovery
state (for example, using Zookeeper).

ver) and putIfAbsent(key, val, ver) operations for updat-
ing or inserting a new item with a specific version, and
an atomic get(key, ver) operation for retrieving the item’s
value with highest version not exceeding ver. Specifi-
cally, when the item associated with an existing key is
overwritten, the new version (holding the key, its new
value, and a new version number) is created, while the
previous version persists. An old version might be re-
quired as long as there is some active transaction that
had begun before the transaction that overwrote this ver-
sion has committed. Though this may take a while, over-
written versions eventually become obsolete. A cleaning
process, (in HBase, implemented as a coprocessor [2]),
frees up the disk space taken up by obsolete versions.

The transaction control plane is implemented by a cen-
tralized transaction manager. The TM has three roles: (i)
version (timestamp) allocation; (ii) conflict detection in
order to determine which transactions may commit; and
(iii) persistent logging of the commits. The TM provides
high availability via a primary-backup approach— if the
primary TM becomes unresponsive, then the backup be-
comes the new primary and takes over. This design of-
fers durability and high availability; it further facilitates
scalability of storage and compute resources separately
– metadata storage access scales out on the underlying
distributed data store, whereas conflict management is
done entirely in RAM, and scales up on a shared-memory
multi-core server.

Our high availability solution tolerates “false” fail-
overs, where a new primary replaces one that is simply
slow, (for example, due to a garbage collection stall),
leading to a period with two active primaries. Syn-
chronization between the two is based on shared persis-
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tent metadata storage, and induces overhead only in rare
cases when more than one TM acts as primary. Omid
uses time-based leases in order to minimize potential
overlap among primaries. The implementation employs
Apache Zookeeper [4] for lease management and syn-
chronization between primary and backup.

3 Related Work

Distributed transaction processing has been the focus of
much interest in recent years. Most academic-oriented
papers [7, 8, 11, 18, 20, 32, 36] build full-stack solu-
tions, which include transaction processing as well as a
data tier. Some new protocols exploit advanced hardware
trends like RDMA and HTM [19, 20, 33]. Generally
speaking, these solutions do not attempt to maintain sep-
aration of concerns between different layers of the soft-
ware stack, neither in terms of backward compatibility
nor in terms of development efforts. They mostly pro-
vide strong consistency properties such as serializability.

On the other hand, production systems such as
Google’s Spanner [17], Megastore [9] and Percola-
tor [31], Yahoo’s Omid1 [25], Cask’s Tephra [6], and
more [22, 30, 5], are inclined towards separating the re-
sponsibilities of each layer. These systems, like the cur-
rent work, reuse an existing persistent highly-available
data-tier; for example, Megastore is layered on top of
Bigtable [16], Warp [22] uses HyperDex [21], and Cock-
roachDB [5] uses RocksDB.

Omid most closely resembles Tephra [6] and
Omid1 [25], which also run on top of a distributed key-
value store and leverage a centralized TM (sometimes
called oracle) for timestamp allocation and conflict res-
olution. However, Omid1 and Tephra store all the infor-
mation about committed and aborted transactions in the
TM’s RAM, and proactively duplicate it to every client
that begins a transaction (in order to allow the client
to determine locally which non-committed data should
be excluded from its reads). This approach is not scal-
able, as the information sent to clients can consist of
many megabytes. Omid avoids such bandwidth over-
head by storing pertinent information in a metadata ta-
ble that clients can access as needed. Our performance
measurements in Section 7 below show that Omid signif-
icantly out-performs Omid1, whose design is very close
to Tephra’s. For high availability, Tephra and Omid1
use a write-ahead log, which entails long recovery times
for replaying the log; Omid, instead, reuses the inherent
availability of the underlying key-value store, and hence
recovers quickly from failures.

Percolator also uses a centralized “oracle” for times-
tamp allocation but resolves conflicts via two-phase com-
mit, whereby clients lock database records rendering
them inaccessible to other transactions; the Percolator

paper does not discuss high availability. Other systems
like Spanner and CockroachDB allot globally increas-
ing timestamps using a (somewhat) synchronized clock
service. Spanner also uses two-phase commit whereas
CockroachDB uses distributed conflict resolution where
read-only transactions can cause concurrent update trans-
actions to abort. In contrast, Omid never locks (or pre-
vents access to) a database record, and never aborts due
to conflicts with read-only transactions.

The use cases production systems serve allow them
to provide SI [31, 25, 6, 5], at least for read-only trans-
actions [17]. It is nevertheless straightforward to extend
Omid to provide serializability, similarly to a serializable
extension of Omid1 [35] and Spanner [17]; it is merely
a matter of extending the conflict analysis to cover read-
sets [24, 14], which may degrade performance.

A number of other recent efforts avoid the complexity
of two-phase commit [26] by serializing transactions us-
ing a global serialization service such as highly-available
log [11, 23, 13] or totally-ordered multicast [15]. Omid
is unique in utilizing a single transaction manager to re-
solve conflicts in a scalable way.

4 Service Semantics and Interface

Omid provides transactional access to a large collec-
tion of persistent data items identified by unique keys.
The service is highly available, whereas its clients are
ephemeral, i.e., they are alive only when performing op-
erations and may fail at any time.

Semantics. A transaction is a sequence of put and get
operations on different objects that ensures the so-called
ACID properties: atomicity (all-or-nothing execution),
consistency (preserving each object’s semantics), iso-
lation (in that concurrent transactions do not see each
other’s partial updates), and durability (whereby updates
survive crashes).

Different isolation levels can be considered for the
third property. Omid opts for snapshot isolation [12],
which is provided by popular database technologies such
as Oracle, PostgreSQL, and SQL Server. Note that under
SI, concurrent transactions conflict only if they update
the same item, whereas with serializability, a transac-
tion that updates an item conflicts with transactions that
get that item. Thus, for read-dominated workloads, SI
is amenable to implementations (using multi-versioned
concurrency control) that allow more concurrency than
serializable ones, and hence scale better.

API. Omid’s client API offers abstractions both for
control (begin, commit, and abort) and for data access
(get and put). Following a commit call, the transaction
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may successfully commit, whereby all of its operations
take effect; in case of conflicts, (i.e., when two concur-
rent transactions attempt to update the same item), the
transaction may abort, in which case none of its changes
take effect. An abort may also be initiated by the pro-
grammer.

5 Transaction Processing

We now explain how Omidmanages transactions so as
to guarantee SI semantics. For clarity of the exposition,
we defer discussion of the TM’s reliability to the next
section; for now, let us assume that this component never
fails. We describe Omid’s data model in Section 5.1, then
proceed to describe the client operation in Section 5.2
and the TM’s operation in Section 5.3.

5.1 Data and metadata

Omid employs optimistic concurrency control with
commit-time conflict resolution. Intuitively, with SI, a
transaction’s reads all appear to occur the time when it
begins, while its writes appear to execute when it com-
mits. Omid therefore associates two timestamps with
each transaction: a read timestamp tsr when it begins,
and a commit timestamp tsc upon commit. Both are pro-
vided by the TM using a logical clock it maintains. In ad-
dition, each transaction has a unique transaction id txid,
for which we use the read timestamp; in order to ensure
its uniqueness, the TM increments the clock whenever a
transaction begins.

The data store is multi-versioned. A write operation by
a transaction starting at some time t needs to be associ-
ated with a version number that exceeds all those written
by transactions that committed before time t. However,
the version order among concurrent transactions that at-
tempt to update the same key is immaterial, since at least
one of these transactions is doomed to abort. To ensure
the former, we use the writing transaction’s txid, which
exceeds those of all previously committed transactions,
as the version number.

Since transaction commit needs to be an atomic step,
Omid tracks the list of committed transactions in a per-
sistent Commit Table (CT), as shown in Table 1, which in
our implementation is also stored in HBase. Each entry
in the CT maps a committed transaction’s txid to its re-
spective tsc. To commit a transaction, the TM writes the
(txid, tsc) pair to the CT, which makes the transaction
durable, and is considered its commit point. Gets refer to
the CT using the txid in the data record in order to find
out whether a read value has been committed. In case
it has, they use the commit timestamp to decide whether
the value appears in their snapshot.

Data Table Commit Table
key value version commit txid commit

(txid) (cf) ts
k1 a 5 7 5 7
k1 b 8 nil

Table 1: Omid data and metadata. Data is multi-
versioned, with the txid as the version number. The com-
mit field indicates whether the data is committed, and if
so, its commit timestamp. The commit table (CT) maps
incomplete committed transaction ids to their respective
commit timestamps. Transaction 5 has already commit-
ted and updated cf for k1, but has not yet removed itself
from CT; transaction 8 is still pending.

While checking the CT for every read ensures cor-
rectness, it imposes communication costs and contention
on the CT. To avoid this overhead, Omid augments each
record in the data store with a commit field (cf), indicat-
ing whether the data is committed, and if it is, its commit
timestamp. Initially the commit field is nil, indicating
that the write is tentative, i.e., potentially uncommitted.
Following a commit, the transaction updates the com-
mit fields of its written data items with its tsc, and then
removes itself from the CT. Only then, the transaction
is considered complete. A background cleanup process
helps old (crashed or otherwise slow) committed trans-
actions complete.

Table 1 shows an example of a key k1 with two ver-
sions, the second of which is tentative. A transaction that
encounters a tentative write during a read still refers to
the CT in order to find out whether the value has been
committed. In case it has, it helps complete the transac-
tion that wrote it by copying its tsc to the commit field.
The latter is an optimization that might reduce accesses
to the commit table by ensuing transactions.

5.2 Client-side operation

Transactions proceed optimistically and are validated at
commit time. In the course of a transaction, a client’s
get operations read a snapshot reflecting the data store
state at their read timestamp, while put operations write
tentative values with txid. Since SI needs to detect only
write-write conflicts, only the transaction’s write-set is
tracked. The operations, described in pseudocode in Al-
gorithm 1, execute as follows:

Begin. The client obtains from the TM a read times-
tamp tsr, which also becomes its transaction id (txid).
The TM ensures that this timestamp exceeds all the com-
mit timestamps of committed transactions and precedes
all commit timestamps that will be assigned to commit-
ting transactions in the future.
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Algorithm 1 Omid’s client-side code.
1: local variables txid, write-set
2: procedure BEGIN

3: txid← TM.BEGIN()
4: write-set← /0
5: procedure PUT(key, value)
6: ds.put(key, value, txid, nil)
7: add 64-bit hash of key to write-set
8: procedure GET(key)
9: for rec← ds.get(key, versions down from tsr) do

10: if rec.commit 6=nil then . not tentative
11: if rec.commit < tsr then
12: return rec.value
13: else . tentative
14: value← GETTENTATIVEVALUE(rec, key)
15: if value 6=nil then
16: return value
17: return nil
18: procedure GETTENTATIVEVALUE(rec,key)
19: lookup rec.version in CT
20: if present then . committed
21: update rec.commit . helping
22: if rec.commit < tsr then return rec.value
23: else . re-read version not found in CT
24: rec← ds.get(key, rec.version)
25: if rec.commit6=nil ∧ rec.commit < tsr then
26: return rec.value
27: return nil
28: procedure COMMIT

29: tsc← TM.COMMIT(txid, write-set)
30: for all key in write-set do
31: rec← ds.get(key, txid)
32: if tsc =⊥ then . abort
33: remove rec
34: else
35: rec.cf← tsc

36: remove record with txid from CT

Put(key,val). The client adds the tentative record to
the data store (line 6) and tracks the key in its local write-
set. To reduce memory and communication overheads,
we track 64-bit hashes rather than full keys.

Get(key). A get reads from the data store (via ds.get())
records pertaining to key with versions smaller than tsr,
latest to earliest (line 9), in search of the value written
for this key by the latest transaction whose tsc does not
exceed tsr (i.e., the latest version written by a transaction
that committed before the current transaction began).

If the read value is committed with a commit times-
tamp lower than tsr, it is returned (line 12). Upon en-
countering a tentative record (with cf=nil), the algorithm
calls GETTENTATIVEVALUE (line 18) in order to search
its tsc in the CT. If this txid was not yet written, then
it can safely be ignored, since it did not commit. How-
ever, a subtle race could happen if the transaction has

updated the commit timestamp in the data store and then
removed itself from the CT between the time the record
was read and the time when the CT was checked. In
order to discover this race, a record is re-read after its
version is not found in the CT (line 23). In all cases, the
first value encountered in the backward traversal with a
commit timestamp lower than tsr is returned.

Commit. The client requests commit(txid, write-set)
from the TM. The TM assigns it a commit timestamp tsc
and checks for conflicts. If there are none, it commits the
transaction by writing (txid, tsc) to the CT and returns
a response. Following a successful commit, the client
writes tsc to the commit fields of all the data items it
wrote to (indicating that they are no longer tentative), and
finally deletes its record from the CT. Whether the com-
mit is successful or not a background process helps trans-
actions to complete or cleans their uncommitted records
from the data store, thereby overcoming client failures.

5.3 TM operation

The TM uses an internal (thread-safe) clock to assign
read and commit timestamps. Pseudocode for the TM’s
begin and commit functions is given in Algorithm 2;
both operations increment the clock and return its new
value. Thus, read timestamps are unique and can serve as
transaction ids. Begin returns once all transactions with
smaller commit timestamps are finalized, (i.e., written to
the CT or aborted).

Commit involves compute and I/O aspects for conflict
detection and CT update, resp. The TM uses a pipelined
SEDA architecture [34] that scales each of these stages
separately using multiple threads. Note that the I/O stage
also benefits from such parallelism since the CT can be
sharded across multiple storage nodes and yield higher
throughput when accessed in parallel.

In order to increase throughput, writes to the com-
mit table are batched. Both begin and commit opera-
tions need to wait for batched writes to complete before
they can return – begin waits for all smaller-timestamped
transactions to be persisted, while commit waits for the
committing transaction. Thus, batching introduces a
tradeoff between I/O efficiency, (i.e., throughput), and
begin/commit latency.

The CONFLICTDETECT function checks for conflicts
using a hash table in main memory. (The TM’s com-
pute aspect is scaled by running multiple instances of this
function for different transactions, accessing the same
table in separate threads.) For the sake of conflict de-
tection, every entry in the write-set is considered a key,
(though in practice it is a 64-bit hash of the appropriate
key). Each bucket in the hash table holds an array of
pairs, each consisting of a key hashed to this bucket and
the tsc of the transaction that last wrote to this key.
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CONFLICTDETECT needs to (i) validate that none of
the keys in the write-set have versions larger than txid
in the table, and (ii) if validation is successful, update
the table entries pertaining to the write-set to the trans-
action’s newly assigned tsc. However, this needs to be
done atomically, so two transactions committing in par-
allel won’t miss each other’s updates. Since holding a
lock on the entire table for the duration of the conflict
detection procedure would severely limit concurrency,
we instead limit the granularity of atomicity to a single
bucket: for each key in the write-set, we lock the cor-
responding bucket (line 52), check for conflicts in that
bucket (line 54), and if none are found, optimistically
add the key with the new tsc to the bucket (lines 56–61).
The latter might prove redundant in case the transaction
ends up aborting due to a conflict it discovers later. How-
ever, since our abort rates are low, such spurious addi-
tions rarely induce additional aborts.

Algorithm 2 TM functions.
37: procedure BEGIN

38: txid = Clock.FetchAndIncrement()
39: wait until there are no pending commit operations
40: with tsc < txid
41: return txid

42: procedure COMMIT(txid, write-set)
43: tsc← Clock.FetchAndIncrement()
44: if ConflictDetect(txid, write-set) = COMMIT then
45: UpdateCT(txid, tsc) . proceed to I/O stage
46: return tsc
47: else
48: return ABORT

49: procedure CONFLICTDETECT(txid,write-set)
50: for all key ∈ write-set do
51: b← key’s bucket
52: lock b
53: small← entry with smallest ts in b
54: if ∃ (key, t) ∈ b s.t. t > txid then . conflict
55: unlock b; return ABORT

. no conflict on key found – update hash table
56: if ∃ (key, t) ∈ b s.t. t < txid then
57: overwrite (key, t) with (key, tsc)
58: else if ∃ empty slot s ∈ b then
59: write (key, tsc) to s
60: else if small.t ≤ txid then
61: overwrite small with (key, tsc)
62: else . possible conflict
63: unlock b; return ABORT

64: unlock b
65: return COMMIT

A second challenge is to limit the table size and
garbage-collect information pertaining to old commits.
Since a transaction need only check for conflicts with

transactions whose tsc exceeds its txid, it is safe to re-
move all entries that have smaller commit times than the
txid of the oldest active transaction. Unfortunately, this
observation does not give rise to a feasible garbage col-
lection rule: though transactions usually last few tens of
milliseconds, there is no upper bound on a transaction’s
life span, and no way to know whether a given outstand-
ing transaction will ever attempt to commit or has failed.
Instead, we use the much simpler policy of restricting
the number of entries in a bucket. Each bucket holds a
fixed array of the most recent (key, tsc) pairs. In order
to account for potential conflicts with older transactions,
a transaction also aborts in case the minimal tsc in the
bucket exceeds its txid (line 62). In other words, a trans-
action expects to find, in every bucket it checks, at least
one commit timestamp older than its start time or one
empty slot, and if it does not, it aborts.

The size of the hash table is chosen so as to reduce
the probability for spurious aborts, which is the proba-
bility of all keys in a given bucket being replaced during
a transaction’s life span. If the throughput is T trans-
actional updates per second, a bucket in a table with e
entries will overflow after e/T seconds on average. For
example, if 10 million keys are updated per second, a
bucket in a one-million-entry table will overflow only af-
ter 100ms on average, which is much longer than most
transactions. We further discuss the impact of the table
size in Section 7.

Garbage collection. A dedicated background proce-
dure (co-processor) cleans up old versions. To this end,
the TM maintains a low water mark, which is used in two
ways: (1) the co-processor scans data store entries, and
keeps, for each key, the biggest version that is smaller
than the low water mark along with all later versions.
Lower versions are removed. (2) When a transaction at-
tempts to commit, if its txid is smaller than the low water
mark, it aborts because the co-processor may have re-
moved versions that ought to have been included in its
snapshot. The TM attempts to increase the low water
mark when the probability of such aborts is small.

6 High Availability

Very-high-end Omid-powered applications are expected
to work around the clock, with a mean-time-to-recover
of just a few seconds. Omid therefore needs to provide
high availability (HA). Given that the underlying data
store is already highly available and that client failures
are tolerated by Omid’s basic transaction processing pro-
tocol, Omid’s HA solution only needs to address TM fail-
ures. This is achieved via the primary-backup paradigm:
during normal operation, a single primary TM handles
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client requests, while a backup TM runs in hot standby
mode. Upon detecting the primary’s failure, the backup
performs a failover and becomes the new primary.

The backup TM may falsely suspect that the primary
has failed. The resulting potential simultaneous opera-
tion of more than one TM creates challenges, which we
discuss in Section 6.1. We address these in Section 6.2 by
adding synchronization to the transaction commit step.
While such synchronization ensures correctness, it also
introduces substantial overhead. We then optimize the
solution in Section 6.3 to forgo synchronization during
normal (failure-free) operation.

Our approach thus resembles many popular protocols,
such as Multi-Paxos [29] and its variants, which expe-
dite normal mode operation as long as an agreed leader
remains operational and unsuspected. However, by re-
lying on shared persistent state in the underlying highly
available data store, we obtain a simpler solution, elimi-
nating the need to synchronize with a quorum in normal
mode or to realign state during recovery.

6.1 Failover and concurrent TMs

The backup TM constantly monitors the primary’s live-
ness. Failure detection is timeout-based, namely, if the
primary TM does not re-assert its existence within a con-
figured period, it is deemed failed, and the backup starts
acting as primary. Note that the primary and backup
run independently on different machines, and the time it
takes the primary to inform the backup that it is alive can
be unpredictable due to network failures and processing
delays, (e.g., garbage-collection stalls or long I/O opera-
tions). But in order to provide fast recovery, it is undesir-
able to set the timeout conservatively so as to ensure that
a live primary is never detected as faulty.

We therefore have to account for the case that the
backup performs failover and takes over the service
while the primary is operational. Though such simulta-
neous operation of the two TMs is a necessary evil if one
wants to ensure high availability, our design strives to
reduce such overlap to a minimum. To this end, the pri-
mary TM actively checks if a backup has replaced it, and
if so, “commits suicide”, i.e., halts. However, it is still
possible to have a (short) window between the failover
and the primary’s discovery of the existence of a new
primary when two primary TMs are active.

When a TM fails, all the transactions that began with it
and did not commit (i.e., were not logged in the CT) are
deemed aborted. However, this clear separation is chal-
lenged by the potential simultaneous existence of two
TMs. For example, if the TM fails while a write it is-
sued to the CT is still pending, the new TM may begin
handling new transactions before the pending write takes
effect. Thus, an old transaction may end up committing

Figure 2: The challenge with two concurrent TMs. An
old transaction, tx1, commits while a new one tx2 is pro-
cessed, causing tx2 to see an inconsistent snapshot.

after the new TM has begun handling new ones. Unless
handled carefully, this can cause a new transaction to see
partial updates of old ones, as illustrated in Figure 2. To
avoid this, we must ensure that once a new transaction
obtains a read timestamp, the status of all transactions
with smaller commit timestamps does not change.

A straightforward way to address the above challenge
is via mutual exclusion, i.e., making sure that at most
one TM commits operations at a time. However, this so-
lution would entail synchronization upon each commit,
not only at failover times, which would adversely affect
performance. We therefore forgo this option.

6.2 Basic HA algorithm

Upon failover from T M1 (the old primary) to T M2 (the
new one), we strive to ensure the following properties:

P1 all timestamps assigned by T M2 exceed all those as-
signed by T M1;

P2 after a transaction tx2 with read timestamp ts2r be-
gins, no transaction tx1 that will end up with a com-
mit timestamp ts1c < ts2r can update any additional
data items (though it may still commit); and

P3 when a transaction reads a tentative update, it can de-
termine whether this update will be committed with
a timestamp smaller than its read timestamp or not.

Properties P1–P3 are sufficient for SI: P1 implies that
commit timestamps continue to be totally ordered by
commit time, P2 ensures that a transaction encounters
every update that must be included in its snapshot, and
P3 stipulates that the transaction can determine whether
to return any read value.
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Figure 3: Addressing the challenge of two concurrent
TMs. The old transaction is invalidated by the new one
and therefore cannot commit.

To ensure the first two properties, the TMs publish the
read timestamps they allot as part of initiating a transac-
tion in a persistent shared object, maxTS. Before com-
mitting, the TM checks maxTS. If it finds a timestamp
greater than its last committed one, it deduces that a new
TM is active, aborts the transaction attempting to com-
mit, and halts.

In Figure 2 we saw a scenario where the third prop-
erty, P3, is violated— when tx2 reads key a it cannot tell
that tx1, which wrote it, will end up committing with a
smaller ts1c than ts2r. This leads to an inconsistent snap-
shot at tx2, as it sees the value of key b written by tx1.

To enforce P3, tx2 cannot wait for T M1, because the
latter might have failed. Instead, we have tx2 proactively
abort tx1, as illustrated in Figure 3. More generally, when
a read encounters a tentative update whose txid is not
present in the CT, it forces the transaction that wrote it
to abort. We call this invalidation, and extend the CT’s
schema to include an invalid field to this end. Invalida-
tion is performed via an atomic put-if-absent (supported
by HBase’s checkAndMutate API) to the CT, which adds
a record marking that tx1 has “invalid” status. The use of
an atomic put-if-absent achieves consensus regarding the
state of the transaction.

Commits, in turn, read the CT after adding the commit
record in order to check whether an invalidation record
also exists, and if so, halt without returning a commit re-
sponse to the client. In addition, every read of a tentative
update checks its invalid field in the CT, and ignores the
commit record if the transaction has been invalidated.

While this solution satisfies the three required prop-
erties, it also induces a large number of synchronization
steps: (i) writing allotted read timestamps to maxTS to
ensure P1; (ii) checking maxTS at commit time to ensure
P2; and (iii) checking the CT for invalidation at the end

of every commit to ensure P3. The next section presents
an optimization that reduces the cost of synchronization.

6.3 Synchronization-free normal operation

In order to eliminate the synchronization overhead most
of the time, Omid’s HA solution uses two mechanisms.
First, to reduce the overheads (i) and (ii) associated
with timestamp synchronization, it allocates timestamp
ranges in large chunks, called epochs. That is, instead
of incrementing maxTS by one timestamp at a time, the
TM increments it by a certain range, and is then free to
allot timestamps in this range without further synchro-
nization. Second, to reduce cost (iii) of checking for in-
validations, it uses locally-checkable leases, which are
essentially locks that live for a limited time. As with
locks, at most one TM may hold the lease at a given time
(this requires the TMs’ clocks to advance roughly at the
same rate). Omid manages epochs and leases as shared
objects in Zookeeper, and accesses them infrequently.

Algorithm 3 summarizes the changes to support HA.
On the TM side, CHECKRENEW is called at the start of
every commit and begin. It first renews the lease ev-
ery δ time, for some parameter δ (lines 68–70). This
parameter defines the tradeoff between synchronization
frequency and recovery time: the system can remain un-
available for up to δ time following a TM failure. Since
clocks may be loosely synchronized, Omid defines a
guard period of δ ′< δ , so that the lease must be renewed
at least δ ′ time before it expires. The production default
for δ ′ is δ/4. The primary TM fails itself (halts) if it can-
not renew the lease prior to that time. From the clients’
perspective, this is equivalent to a TM crash (line 70).
Second, CHECKRENEW allocates a new epoch if needed
(lines 71–74).

The backup (not shown in pseudocode) regularly
checks the shared lease, and if it finds that it has expired,
it immediately sets its clock to exceed maxTS, allocates
a new epoch for itself (by increasing maxTS), and be-
gins serving requests, without any special recovery pro-
cedure. Since the epoch claimed by a new TM always
exceeds the one owned by the old one, Property P1 holds.

Property P2 is enforced by having the TM (locally)
check that its lease is valid before committing a transac-
tion (lines 68–70). Since at most one TM can hold the
lease at a given time, and since the commit is initiated
after all writes to items that are part of the transaction
complete, Property P2 holds.

Nevertheless, the lease does not ensure Property P3,
since the lease may expire while the commit record is
in flight, as in the scenario of Figures 2 and 3. To this
end, we use the invalidation mechanism described above.
However, we limit its scope as follows: (1) A commit
needs to check whether the transaction has been invali-
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Algorithm 3 Omid’s HA algorithm.
66: procedure CHECKRENEW

67: . called by the TM at start of BEGIN and COMMIT

68: if lease < now + δ ′ then
69: renew lease for δ time . atomic operation
70: if failed then halt
71: if Clock = epoch then
72: epoch← Clock + range
73: extend maxTS from Clock to epoch
74: if failed then halt

75: procedure TMCHECKINVALIDATE(txid)
76: . called by the TM before COMMIT returns
77: if lease < now + δ ′ then
78: if txid invalid in CT then halt

79: procedure GETTENTATIVEVALUE(REC)
80: . replaces same function from Algorithm 1
81: lookup rec.version in CT
82: if present then
83: if invalidated then return nil
84: update rec.commit . helping
85: if rec.commit < tsr then return rec.value
86: else . new code – check if need to invalidate
87: if rec.version ∈ old epoch by an old TM then
88: invalidate t in CT . try to invalidate
89: if failed then
90: lookup rec.version in CT
91: if invalidated then return nil
92: update rec.commit . helping
93: if rec.commit < tsr then
94: return rec.value
95: else . invalidated
96: return nil
97: else . original code – no invalidation
98: rec← ds.get(key, rec.version)
99: if rec.commit6=nil ∧ rec.commit < tsr then
100: return rec.value
101: return nil

dated only if the TM’s lease has expired. This is done in
the TMCHECKINVALIDATE function. (2) A read needs
to invalidate a transaction only if it pertains to an earlier
epoch of a different TM. We extend client’s GETTEN-
TATIVEVALUE function to perform such invalidation in
Algorithm 3 lines 83, 87–96. Note that a transaction
reading a tentative update still checks its validity status
regardless of the epoch, in order to avoid “helping” in-
validated transactions complete their tentative updates.

Finally ,we note that on TM failover, some clients may
still be communicating with the old TM. While the old
TM may end up committing some of their requests, a
problem arises if the client times out on the old TM be-
fore getting the commit response, since the client might
unnecessarily retry a committed transaction. To avoid
this problem, a client that times out on its TM checks the

CT for the status of its transaction before connecting to
a new TM. If the status is still undetermined, the client
tries to invalidate the CT entry, thus either forcing the
transaction to abort or learning that it was committed (in
case the invalidation fails).

7 Evaluation

Omid’s implementation complements Apache HBase
with transaction processing. It exploits HBase to store
both application data and the CT metadata. HBase, the
TMs, and Zookeeper are all deployed on separate dedi-
cated machines.

In large-scale deployments, HBase tables are sharded
(partitioned) into multiple regions. Each region is man-
aged by a region server; one server may serve multiple
regions. HBase is deployed on top of Hadoop Distributed
Filesystem (HDFS), which provides the basic abstraction
of scalable and reliable storage. HDFS is replicated 3-
fold in all the settings described below.

Section 7.1 presents performance statistics obtained in
Omid’s production deployment, focusing on the end-to-
end application-level overhead introduced by transaction
processing. Section 7.2 further zooms in on the TM scal-
ability under very high loads.

7.1 End-to-end performance in production
We present statistics of Omid’s use in a production de-
ployment of Sieve – Yahoo’s content management sys-
tem. Sieve digests streams of documents from multiple
sources, processes them, and indexes the results for use
in search and personalization applications. Each docu-
ment traverses a pipeline of tasks, either independently
or as part of a mini-batch. A task is an ACID processing
unit, framed as a transaction. It typically reads one or
more data items generated by preceding tasks, performs
some computation, and writes one or more artifacts back.

Sieve scales across task pipelines that serve multiple
products, performing tens of thousands of tasks per sec-
ond on multi-petabyte storage. All are powered by a
single Omid service, with the CT sharded across 10 re-
gions managed by 5 region servers. Sieve is throughput-
oriented, and favors scalability over transaction latency.

Figure 4 presents statistics gathered for five selected
Sieve tasks. For each task, we present its average latency
broken down to components – HBase access (two bottom
components in each bar), compute time, and the TM’s
begin and commit (top two components). In this deploy-
ment, Omid updates the commit fields synchronously
upon commit, that is, commit returns only after the com-
mit fields of the transaction’s write-set have been up-
dated. Note that since a begin request waits for all
transactions with smaller txids to commit, its processing
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Figure 4: Transaction latency breakdown in produc-
tion deployment of Omid in Sieve. The top two com-
ponents represent transaction management overhead.

latency is similar to that of a commit operation, minus
the time commit takes to update the commit fields.

We see that for tasks that perform significant process-
ing and I/O, like document inversion and streaming to in-
dex, Omid’s latency overhead (for processing begin and
commit) is negligible – 2–6% of the total transaction du-
ration. In very short tasks such as duplicate detection and
out-link processing, Omid accounts for up to roughly one
third of the transaction latency.

The transaction abort rates observed in Sieve are neg-
ligible (around 0.002%). They stem from either transient
HBase outages or write-write conflicts, e.g., concurrent
in-link updates of extremely popular web pages.

7.2 TM microbenchmarks
We now focus on TM performance. To this end, our mi-
crobenchmarks invoke only the TM’s begin and commit
APIs, and do not access actual data. We run both the
TM and HBase (holding the CT) on industry-standard 8-
core Intel Xeon E5620 servers with 24GB RAM and 1TB
magnetic drive. The interconnects are 1Gbps Ethernet.

We generate workloads in which transaction write-
set sizes are distributed Zipf, i.e., follow a power-law
(Pr[X ≥ x] = x−α ) with exponent values of α = 1.2,
α = 1.6, and α = 2 (the smaller the heavier-tailed), cut-
off at 256 keys. Each transaction’s latency, (i.e., the time
we wait after invoking its begin and before invoking its
commit), is set to 5ms per write. Note that read-sets are
not sent to the TM and hence their size is immaterial.

We note that key selection affects real conflicts: if the
written keys are drawn from a heavy-tailed distribution,
then two concurrent transactions are likely to update the
same key, necessitating one of them to abort. Since this
is an artifact of the workload, which is unaffected by our
system design, we attempt to minimize this phenomenon

Figure 5: Scalability of Omid’s CT updates with the
number of HBase region servers, and comparison
with Omid1. Non-durable versions do not persist trans-
actions and thus provide upper bounds on throughput un-
der perfect storage scaling.

in our experiments. We therefore uniformly sample 64-
bit integers for the key hashes. Recall that our experience
in production shows that real conflicts are indeed rare.

We begin by evaluating scalability, which is our prin-
cipal design goal. The TM throughput is constrained
by two distinct resources – the storage access required
for persisting commits in the CT, and the compute re-
sources used for conflict detection. These resources scale
independently: the former, evaluated in Section 7.2.1,
scales out across multiple HBase region servers, whereas
the latter scales up on multi-core hardware, and is stud-
ied in Section 7.2.2. Section 7.2.3 then evaluates the
throughput-latency tradeoff that Omid exhibits when us-
ing a single region server. Finally, in Section 7.2.4, we
exercise Omid’s high-availability mechanism.

7.2.1 Commit table scalability

Since the commit records are fixed-length (two 64-bit in-
tegers), the CT performance does not depend on transac-
tion sizes, and so we experiment only with α = 1.6. Re-
call that in order to optimize throughput, the TM batches
writes to the CT and issues multiple batches in paral-
lel. Experimentally, we found that the optimal number of
concurrent CT writer threads is 4, and the batch size that
yields the best throughput is 2K transactions per writer.

Figure 5 depicts Omid’s commit rate as function of
the number of HBase region servers, which scales to al-
most 400K tps. It further compares Omid’s throughput
to that of Omid1 [25], which, similarly to Omid, runs
atop HBase, and uses a centralized TM. It is worth noting
that even in the single-server configuration, Omid outper-
forms Omid1 by more than 25x. This happens because
upon each begin request, Omid1 sends to the client a
large amount of information (equivalent to the combina-
tion of Omid’s CT and the in-memory conflict detection
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table). This saturates the CPU and network resources.
The “non-durable” bars – leftmost and second from

the right – represent experiments where commits are not
persisted to stable storage. In Omid this means forgoing
the write to the CT, whereas in Omid1 it means disabling
the write to BookKeeper in which the system stores its
commit log. These results provide upper bounds on the
throughput that can be obtained with perfect storage scal-
ing in both systems. Omid peaks at 518K transactions
per second, whereas Omid1 peaks at 50K.

7.2.2 Conflict detection scalability

In the experiment reported above, the conflict detection
algorithm is evaluated as part of the system. There, the
commit table I/O is the bottleneck, and the conflict detec-
tion process can keep up with the pace of four I/O threads
even when running sequentially, i.e., in a single thread.

We next focus on scale-up of this component running
by itself using 1 to 8 threads, in order to study its poten-
tial scalability in even larger configurations. The exper-
iment employs a conflict table of 128M 64-bit integers
(1G total size). The bucket size is 32 integers, i.e., the
table is 4M buckets big.

Figure 6(a) illustrates the processing rate. As ex-
pected processing shorter transactions (a bigger α) is
faster. The rate scales to 2.6M transactions per second
for α = 1.2, and to 5M for α = 2. Note that exercis-
ing such high throughput in a complete system would re-
quire an order of magnitude faster network to sustain the
request/response packet rate. Clearly the TM’s compute
aspect is far from being a bottleneck.

Finally, we analyze the false abort rate. (The uniform
sampling of key hashes and relatively short transaction
latencies render real collisions unlikely, hence all aborts
are deemed false). The overall abort rate is negligibly
small. In Figure 6(b) we zoom-in on transactions clus-
tered into three buckets: shorter than 8 writes, 8 to 63
writes, and 64+ writes. The worst abort rate is below
0.01%. It occurs, as expected, for long transactions in
the most heavy-tailed distribution. Further reduction of
the false abort rate would require increasing the table size
or using multiple hashes (similarly to Bloom filters).

7.2.3 Latency-throughput tradeoff

We now examine the impact of load on TM access la-
tency with a single region server managing the CT. We
use here α = 1.6. For every given system load, the batch
size is tuned for optimal latency: under light load, no
batching is employed, (i.e., commits are written one at a
time), whereas under high load, we use batches of 10K.

Figure 7 reports the average client-side latency of
commit operations, broken down to three components:

(1) network round-trip delay and conflict detection,
which are negligible, and do not vary with the load or
batch size; (2) HBase CT write latency, which increases
with the batch size; and (3) queueing delay at the TM,
which increases with the load. Begin latency is similar,
and is therefore omitted. We increase the load up to 70K
transactions per second, after which the latency becomes
excessive; to exceed this throughput, one may use multi-
ple region servers as in the experiment of Section 7.2.1.

Figure 7: Omid throughput vs. latency. Client-
perceived commit latency (average broken down and
90% of total); single region server; power-law transac-
tion sizes with α = 1.6; batch sizes optimized for mini-
mum latency (in square brackets below each bar).

Figure 8: Omid throughput with four failovers; recov-
ery takes around 4 seconds.

7.2.4 High availability

Finally, we exercise the high-availability mechanism. As
long as the primary TM does not fail, HA induces neg-
ligible overhead. We now examine the system’s recov-
ery following a primary TM failure. The failure detec-
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(a) Conflict detection scalability (b) Conflict detection false abort rate

Figure 6: Conflict detection scalability and false abort rate. Transaction write-set sizes are distributed power-law
(Pr[X ≥ x] = x−α ) with exponent values of α = 1.2, α = 1.6, and α = 2 (the smaller the heavier-tailed); the key hashes
are 64-bit integers, uniformly sampled to avoid real conflicts whp; transaction latency is 5ms per write.

tion timeout is δ = 1 sec. Figure 8 depicts the system
throughput over time, where the primary TM is force-
fully shut down after 40 sec, is then allowed to recover,
and the new primary (original backup) is shut down after
120 sec. The primary is shut down two more times at 180
and 220 sec; the failover completes within 4 sec.

8 Lessons Learned and Future Work

Omid was originally designed as a foundational building
block for Sieve – Yahoo’s next-generation content man-
agement platform. The need for transactions emerges
in scenarios similar to Percolator [31]. Analogously to
other data pipelines, Sieve is more throughput-sensitive
than latency-sensitive. This has led to a design that trades
off latency for throughput via batching. The original de-
sign of Omid1 [25] did not employ a CT, but instead
had the TM send clients information about all pending
transactions. This design was abandoned due to limited
scalability in the number of clients, and was replaced by
Omid, which uses the CT to track transaction states. The
CT may be sharded for I/O scalability, but its update rate
is bounded by the resources of the single (albeit multi-
threaded) TM; this is mitigated by batching.

Since becoming an Apache Incubator project, Omid is
witnessing increased interest, in a variety of use cases.
Together with Tephra, it is being considered for use by
Apache Phoenix – an emerging OLTP SQL engine over
HBase storage [3]. In that context, latency has increased
importance. We are therefore developing a low-latency
version of Omid that has clients update the CT instead
of the TM, which eliminates the need for batching and
allows throughput scaling without sacrificing latency.
Similar approaches have been used in Percolator [31],

Corfu [10], and CockroachDB [5]. We note, however,
that such decentralization induces extra synchronization
oerhead at commit time and may increase aborts (in par-
ticular, reads may induce aborts); the original design may
be preferable for throughput-oriented systems.

Another development is using application semantics
to reduce conflict detection. Specifically, some appli-
cations can identify scenarios where conflicts need not
be checked because the use case ensures that they won’t
happen. Consider, e.g., a massive table load, where
records are inserted sequentially, hence no conflicts can
arise. Another example is a secondary index update,
which is guaranteed to induce no conflict given that the
primary table update by the same transaction has been
successful. To reduce overhead in such cases, we plan to
extend the write API to indicate which written keys need
to be tracked for conflict detection.

On the scalability side, faster technologies may be
considered to maintain Omid’s commit metadata. In par-
ticular, since Omid’s commit table is usually written se-
quentially and infrequently read, it might be more effi-
cient to use log-structured storage that is better optimized
for the above scenario.
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Abstract. Recent research has shown that applica-
tions often incorrectly implement crash consistency. We
present ccfs, a file system that improves the correctness
of application-level crash consistency protocols while
maintaining high performance. A key idea in ccfs is the
abstraction of a stream. Within a stream, updates are
committed in program order, thus helping correctness;
across streams, there are no ordering restrictions, thus
enabling scheduling flexibility and high performance.
We empirically demonstrate that applications running
atop ccfs achieve high levels of crash consistency. Fur-
ther, we show that ccfs performance under standard file-
system benchmarks is excellent, in the worst case on par
with the highest performing modes of Linux ext4, and in
some cases notably better. Overall, we demonstrate that
both application correctness and high performance can
be realized in a modern file system.

1 Introduction
“Filesystem people should aim to make ‘badly written’
code ‘just work’” – Linus Torvalds [52]

The constraint of ordering is a common technique
applied throughout all levels of computer systems to
ease the construction of correct programs. For example,
locks and condition variables limit how multi-threaded
programs run, making concurrent programming sim-
pler [2]; memory consistency models with stricter con-
straints (e.g., sequential consistency) generally make rea-
soning about program behavior easier [47]; fsync calls
in data management applications ensure preceding I/O
operations complete before later operations [5, 35].

Unfortunately, constraining ordering imposes a funda-
mental cost: poor performance. Adding synchroniza-
tion primitives to concurrent programs adds overhead
and reduces performance [19, 21]; stronger multiproces-
sor memory models are known to yield lower through-
put [16]; forcing writes to a disk or SSD can radically re-
duce I/O performance [5, 6]. While in rare cases we can
achieve both correctness and performance [39], in most
cases we must make an unsavory choice to sacrifice one.

Within modern storage systems, this same tension
arises. A file system, for example, could commit all up-
dates in order, adding constraints to ease the construction
of applications (and their crash-recovery protocols) atop
them [3, 35]. Many file system developers have deter-

mined that such ordering is performance prohibitive; as a
result, most modern file systems reduce internal ordering
constraints. For example, many file systems (including
ext4, xfs, btrfs, and the 4.4BSD fast file system) re-order
application writes [1], and some file systems commit di-
rectory operations out of order (e.g., btrfs [35]). Lower
levels of the storage stack also re-order aggressively, to
reduce seeks and obtain grouping benefits [22,23,41,43].

However, research has shown that user-level applica-
tions are often incorrect because of re-ordering [35, 56].
Many applications use a specialized write protocol to
maintain crash consistency of their persistent data struc-
tures. The protocols, by design or accident, frequently
require all writes to commit in their issued order [36].

The main hypothesis in this paper is that a carefully
designed and implemented file system can achieve both
ordering and high performance. We explore this hypoth-
esis in the context of the Crash-Consistent File System
(ccfs), a new file system that enables crash-consistent ap-
plications while delivering excellent performance.

The key new abstraction provided by ccfs, which en-
ables the goals of high performance and correctness to
be simultaneously met, is the stream. Each application’s
file-system updates are logically grouped into a stream;
updates within a stream, including file data writes, are
guaranteed to commit to disk in order. Streams thus en-
able an application to ensure that commits are ordered
(making recovery simple); separating updates between
streams prevents false write dependencies and enables
the file system to re-order sufficiently for performance.

Underneath this abstraction, ccfs contains numerous
mechanisms for high performance. Critically, while or-
dering updates would seem to overly restrict file-system
implementations, we show that the journaling machin-
ery found in many modern systems can be adopted to
yield high performance while maintaining order. More
specifically, ccfs uses a novel hybrid-granularity journal-
ing approach that separately preserves the order of each
stream; hybrid-granularity further enables other needed
optimizations, including delta journaling and pointer-less
metadata structures. Ccfs takes enough care to retain op-
timizations in modern file systems (like ext4) that appear
at first to be incompatible with strict ordering, with new
techniques such as order-preserving delayed allocation.

We show that the ordering maintained by ccfs im-
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Figure 1: Journaling Update Protocol. Pseudo-code for
a simple version of write-ahead journaling; each statement is
a system call. The normal text correspond directly to the proto-
col’s logic, while the bold parts are additional measures needed
for portability. Italicized comments show which measures are
needed under the default modes of ext2, ext3, ext4, xfs, and
btrfs, and the writeback mode of ext3/4 (ext3-wb, ext4-wb).
proves correctness by testing five widely-used applica-
tions, including Git and LevelDB (both of which are in-
consistent on many modern file systems [35]). We also
show that most applications and standard benchmarks
perform excellently with only a single stream. Thus, ccfs
makes it straightforward to achieve crash consistency ef-
ficiently in practice without much developer overhead.

The paper is structured as follows. We provide motiva-
tion and background (§2), present ccfs (§3) and evaluate
it (§4). We discuss related work (§5) and conclude (§6).

2 Motivation and Background
In this section, we first explain the extent to which cur-
rent data-intensive applications are vulnerable during a
crash. We then describe why a file system that preserves
the order of application updates will automatically im-
prove the state of application-level crash consistency. Fi-
nally, we discuss the performance overheads of preserv-
ing order, and how the overheads can be addressed.

2.1 State of Crash Consistency
To maintain the consistency of their user-level data struc-
tures in the event of a crash, many applications [20, 24,
32] modify the data they store in the file system via a
carefully implemented update protocol. The update pro-
tocol is a sequence of system calls (such as file writes
and renames) that updates underlying files and directo-
ries in a recoverable way. As an example, consider a sim-
ple DBMS that stores its user data in a single database
file. To maintain transactional atomicity across a sys-
tem crash, the DBMS can use an update protocol called
journaling (or write-ahead logging): before updating the
database file, the DBMS simply records the updates in
a separate journal file. The pseudocode for the update
protocol is shown in Figure 1. If a crash happens, the
DBMS executes a recovery protocol when restarted: if
the database file was only partially updated, the full up-
date from the journal is replayed.

Correctly implementing crash-consistency protocols
has proven to be difficult for a variety of reasons. First,

the correctness inherently depends on the exact seman-
tics of the system calls in the update protocol with respect
to a system crash. Because file systems buffer writes in
memory and send them to disk later, from the perspec-
tive of an application the effects of system calls can get
re-ordered before they are persisted on disk. For exam-
ple, in a naive version of the journaling update protocol,
the unlink of the journal file can be re-ordered before
the update of the database file. In Figure 1, an explicit
fsync system call is used to force the update to disk, be-
fore issuing the unlink. Also, the semantics of system
calls can differ between file systems; for example, the
aforementioned re-ordering occurs in the default config-
urations of ext2, ext4, xfs, and btrfs, but not in ext3.

Second, the recovery protocol must correctly consider
and recover from the multitude of states that are possible
when a crash happens during the update protocol. Appli-
cation developers strive for update protocols to be effi-
cient, since the protocols are invoked during each modi-
fication to the data store; more efficient update protocols
often result in more possible states to be reasoned about
during recovery. For example, the journal protocol in
Figure 1 is often extended to batch multiple transactions
onto the journal before the actual update to the database
file, so as to avoid performance-intensive fsync calls.

Finally, crash-consistency protocols are hard to test,
much like concurrency mechanisms, because the states
that might occur on a crash are non-deterministic. Since
efficient protocol implementations are inherently tied to
the format used by the application’s data structures and
concurrency mechanisms, it is impractical to re-use a sin-
gle, verified implementation across applications.

Unsurprisingly, past research [35, 56, 57] has found
many vulnerabilities in the implementations of crash
consistency protocols in widely used applications written
by experienced developers, such as Google’s LevelDB
and Linus Torvalds’s Git. However, in this paper, we
argue that it is practical to construct a file system that au-
tomatically improves application crash consistency. We
base our arguments on the following hypotheses:
The Ordering Hypothesis: Existing update and recov-
ery protocols (mostly) work correctly on an ordered and
weakly-atomic file system (the exact definition of these
terms is explained subsequently).
The Efficiency Hypothesis: An ordered and weakly-
atomic file system can be as efficient as a file system that
does not provide these properties, with the proper design,
implementation, and realistic application workloads.

2.2 Weak Atomicity and Order
We hypothesize that most vulnerabilities that exist in
application-level update protocols are caused because the
related application code depends on two specific file-
system guarantees. File systems that provide these guar-
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Time (s) Seeks Median seek distance (sectors)
Re-ordered 25.82 23762 120

FIFO 192.56 38201 2002112
Table 1: Seeks and Order. The table shows the number of
disk seeks incurred and the total time taken when 25600 writes
are issued to random positions within a 2GB file in a HDD. Two
different settings are investigated: the writes can be re-ordered
or the order of writes is maintained using the FIFO strategy.
The number of seeks incurred in each setting and the LBA seek
distance shown are determined from a block-level I/O trace.
antees, therefore, automatically mask application vulner-
abilities. The first guarantee, and the major focus of our
work, is that the effect of system calls should be persisted
on disk in the order they were issued by applications; a
system crash should not produce a state where the system
calls appear re-ordered. The second (minor) guarantee is
that, when an application issues certain types of system
calls, the effect of the system call should be atomic across
a system crash. The second guarantee, which we term
weak atomicity, is specifically required for system calls
that perform directory operations (including the creation,
deletion, and renaming of files and hard links). Weak
atomicity also includes stipulations about writes to files,
but only at sector granularity (i.e., there is generally no
need to guarantee that arbitrarily large writes are atomic).
If a system call appends data to the end of a file, both in-
creasing the file size and the writing of data to the newly
appended portion of the file should be atomic together.

The fundamental reason that order simplifies the cre-
ation of update protocols is that it drastically reduces the
number of possible states that can arise in the event of a
crash, i.e., the number of states that the recovery protocol
has to handle. For example, consider an update protocol
that simply overwrites n sectors in a file; if the file sys-
tem maintains order and weak atomicity, only n crash
states are possible, whereas 2n states are possible if the
file system can re-order. Maintaining order makes it eas-
ier to reason about the correctness of recovery for both
humans and automated tools [35].

The effectiveness of maintaining weak atomicity and
order can be understood by considering the application-
level crash-consistency vulnerabilities discovered re-
cently [35]. Among 60 vulnerabilities in the study, the
authors state that 16 are masked by maintaining weak
atomicity alone. They also state that 27 vulnerabilities
are masked by guaranteeing order. Of the remaining
vulnerabilities, 12 are attributed to durability; however,
the authors observe that 8 of these 12 will be masked
if the file system guarantees order. Thus, in all, 50 of
the 60 vulnerabilities are addressed by maintaining order
and weak atomicity; the remaining 10 have minor conse-
quences and are readily masked or fixed [36].

2.3 Order: Bad for Performance
Most real-world deployed file systems (such as btrfs)
already maintain the weak atomicity required to

mask application-level crash-consistency vulnerabilities.
However, all commonly deployed file-system configura-
tions (including ext4 in metadata-journaling mode, btrfs,
and xfs) re-order updates, and the re-ordering only seems
to increase with each new version of a file system (e.g.,
ext4 re-orders more than ext3 [35]; newer versions of
ext4 re-order even more [53], as do newer systems like
btrfs [35]). While maintaining update order is important
for application crash consistency, it has traditionally been
considered bad for performance, as we now discuss.

At low levels in the storage stack, re-ordering is a
fundamental technique that improves performance. To
make this case concrete, we created a workload that is-
sues writes to random locations over a disk. Forcing
these writes to commit in issue order takes roughly eight
times longer than a seek-optimized order (Table 1). Re-
ordering is important for hard drives [43] and SSDs [23];
approaches that constrict write ordering are insufficient.

Higher up the stack, ordering can induce negative (and
sometimes surprising) performance degradations. Con-
sider the following code sequence:
write(f1); write(f2); fsync(f2); truncate(f1);

In this code, without mandated order, the forced writes
to f2 can move ahead of the writes to f1; by doing so,
the truncate obviates the need for any writes to f1 at all.
Similarly, if the user overwrites f1 instead of truncating
it, only the newer data needs to be written to disk.

We call this effect write avoidance: not all user-level
writes need to be sent to the disk, but can instead be ei-
ther forgotten due to future truncates or coalesced due
to future overwrites. Re-ordering allows write avoidance
across fsync calls. Global write ordering, in contrast,
implies that if writes to f2 are being forced to disk, so
must writes to f1. Instead of skipping the writes to f1,
the file system must now both write out its contents (and
related metadata), and then, just moments later, free said
blocks. If the write to f1 is large, this cost can be high.

We call this situation, where fsync calls or cache evic-
tion reduce write avoidance in an ordered file system, a
write dependence. Write dependence is not limited to
writes by a single application; any application that forces
writes to disk could cause large amounts of other (poten-
tially unneeded) I/O to occur. When write dependence
does not improve crash consistency, as when it occurs
between independent applications, we term it a false de-
pendence, an expected high-cost of global order.

Apart from removing the chance for write avoidance,
write dependence also worsens application performance
in surprising ways. For example, the fsync(f2) becomes
a high-latency operation, as it must wait for all previous
writes to commit, not just the writes to f2. The overheads
associated with write dependence can be further exac-
erbated by various optimizations found in modern file
systems. For example, the ext4 file system uses a tech-
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nique known as delayed allocation, wherein it batches
together multiple file writes and then subsequently allo-
cates blocks to files. This important optimization is de-
feated by forced write ordering.

2.4 Order with Good Performance
We believe it is possible to address the overheads associ-
ated with maintaining order in practice. To reduce disk-
level scheduling overheads, a variety of techniques have
been developed that preserve the appearance of ordered
updates in the event of a crash while forcing few con-
straints on disk scheduling.

For example, in ext4 data journaling, all file-system
updates (metadata and data) are first written to a jour-
nal. Once committed there, the writes can be propagated
(checkpointed) to their in-place final locations. Note
that there are no ordering constraints placed upon the
checkpoint writes; they can be re-ordered as necessary
by lower layers in the storage stack to realize the ben-
efits of low-level I/O scheduling. Further, by grouping
all writes into a single, large transaction, writes are ef-
fectively committed in program order: if a write to f1
occurs before a write to f2, they will either be committed
together (in the same transaction), or the write to f2 will
commit later; never will f2 commit before f1. We discuss
ext4 journaling in more detail in the next section.

Unfortunately, total write ordering, as provided with
data journaling, exacts a high performance cost: each
data item must be written twice, thus halving disk band-
width for some workloads. For this reason, most journal-
ing file systems only journal metadata, maintaining file-
system crash consistency but losing ordering among ap-
plication writes. What would be ideal is the performance
of metadata-only journaling combined with the ordering
guarantees provided by full data journaling.

However, even if an efficient journaling mechanism
is used, it does not avoid overheads due to false de-
pendence. To address this problem, we believe a new
abstraction is needed, which enables the file system to
separate update orderings across different applications.
Within an application, we believe that false dependence
is rare and does not typically arise.

Thus, we are left with two open questions. Can a
metadata-only journaling approach be adopted that main-
tains order but with high performance? Second, can a
new abstraction eliminate false dependence? We answer
these questions in the affirmative with the design of ccfs.

3 Crash-Consistent File System
In this section, we describe ccfs, a file system that em-
braces application-level crash consistency. Ccfs has two
goals: preserving the program order of updates and weak
atomicity, and performance similar to widely-used re-
ordering file systems. So as to satisfy these goals, we de-

rive ccfs from the ext4 file system. Ext4 is widely used,
includes many optimizations that allow it to perform ef-
ficiently in real deployments, and includes a journaling
mechanism for internal file-system consistency. In ccfs,
we extend ext4’s journaling to preserve the required or-
der and atomicity in an efficient manner without affecting
the optimizations already present in ext4.

The key idea in ccfs is to separate each application into
a stream, and maintain order only within each stream;
writes from different streams are re-ordered for perfor-
mance. This idea has two challenges: metadata struc-
tures and the journaling mechanism need to be sepa-
rated between streams, and order needs to be maintained
within each stream efficiently. Ccfs should solve both
without affecting existing file-system optimizations. In
this section, we first explain ext4’s journaling mechanism
(§3.1), then the streams abstraction (§3.2), how streams
are separated (§3.3) and how order is maintained within a
stream (§3.4), and our implementation (§3.5). We finally
discuss how applications can practically start using the
streams abstraction (§3.6).

3.1 Journaling in Ext4
To maintain internal file-system metadata consistency,
ext4 requires the atomicity of sets of metadata updates
(e.g., all metadata updates involved in creating a file) and
an order between these sets of updates. Ext4 uses an op-
timized journaling technique for this purpose. Specifi-
cally, the journaling occurs at block granularity, batches
multiple sets of atomic metadata updates (delayed log-
ging [11]), uses a circular journal, and delays forced
checkpointing until necessary. The block-granularity and
circular aspects prove to be a challenge for adoption in
ccfs, while delayed logging and checkpointing are im-
portant optimizations that ccfs needs to retain. We now
briefly explain these techniques of ext4 journaling.

Assume the user performs a metadata operation (such
as creating a file), causing ext4 to modify metadata struc-
tures in the file-system blocks b1, b2, b3. Ext4 associates
b1, b2, b3 with an in-memory data structure called the
running transaction, Ti. Instead of immediately per-
sisting Ti when the metadata operation completes, ext4
waits for the user to perform more operations; when this
happens, the resulting set of block modifications are also
associated with Ti (i.e., delayed logging). Periodically,
ext4 commits the running transaction, i.e., writes the up-
dated contents of all the associated blocks of Ti and some
bookkeeping information to an on-disk journal. When
Ti starts committing, a new running transaction (Ti+1)
is created to deal with future metadata operations. Thus,
ext4 always has one running transaction, and at most one
committing transaction. Once Ti finishes committing, its
blocks can be written to their actual locations on disk in
any order; this is usually done by Linux’s page-flushing
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daemon in an optimized manner.
If a crash happens, after rebooting, ext4 scans each

transaction written in the journal file sequentially. If a
transaction is fully written, the blocks recorded in that
transaction are propagated to their actual locations on
disk; if not, ext4 stops scanning the journal. Thus, the
atomicity of all block updates within each transaction are
maintained. Maintaining atomicity implicitly also main-
tains order within a transaction, while the sequential scan
of the journal maintains order across transactions.

The on-disk journal file is circular: after the file
reaches a maximum size, committed transactions in the
tail of the journal are freed (i.e., checkpointed) and that
space is reused for recording future transactions. Ext4
ensures that before a transaction’s space is reused, the
blocks contained in it are first propagated to their ac-
tual locations (if the page-flushing mechanism had not
yet propagated them). Ext4 employs techniques that co-
alesce such writebacks. For example, consider that a
block recorded in Ti is modified again in Tj ; instead of
writing back the version of the block recorded in Ti and
Tj separately, ext4 simply ensures that Tj is committed
before Ti’s space is reused. Since the more recent version
(in Tj) of the block will be recovered on a crash without
violating atomicity, the earlier version of the block will
not matter. Similar optimizations also handle situations
where committed blocks are later unreferenced, such as
when a directory gets truncated.

For circular journaling to work correctly, ext4 requires
a few invariants. One invariant is of specific interest in
ccfs: the number of blocks that can be associated with a
transaction is limited by a threshold. To enforce the limit,
before modifying each atomic set of metadata structures,
ext4 first verifies that the current running transaction
(say, Ti) has sufficient capacity left; if not, ext4 starts
committing Ti and uses Ti+1 for the modifications.

3.2 Streams
Ccfs introduces a new abstraction called the stream;
each application usually corresponds to a single stream.
Writes from different streams are re-ordered for perfor-
mance, while order is preserved within streams for crash
consistency. We define the stream abstraction such that
it can be easily used in common workflows; as an ex-
ample, consider a text file f1 that is modified by a text
editor while a binary file f2 is downloaded from the net-
work, and they are both later added to a VCS repository.
Initially, the text editor and the downloader must be able
to operate on their own streams (say, A and B, respec-
tively), associating f1 with A and f2 with B. Note that
there can be no constraints on the location of f1 and f2:
the user might place them on the same directory. More-
over, the VCS should then be able to operate on another
stream C, using C for modifying both f1 and f2. In

such a scenario, the stream abstraction should guarantee
the order required for crash consistency, while allowing
enough re-ordering for the best performance possible.

Hence, in ccfs, streams are transient and are not
uniquely associated with specific files or directories: a
file that is modified in one stream might be later modified
in another stream. However, because of such flexibility,
while each stream can be committed independently with-
out being affected by other streams, it is convenient if the
stream abstraction takes special care when two streams
perform operations that affect logically related data. For
example, consider a directory that is created by stream A,
and a file that is created within the directory by stream B;
allowing the file creation to be re-ordered after the direc-
tory creation (and recovering the file in a lost+found di-
rectory on a crash) might not make logical sense from an
application’s perspective. Hence, when multiple streams
perform logically related operations, the file system takes
sufficient care so that the temporal order between those
operations is maintained on a crash.

We loosely define the term related such that related
operations do not commonly occur in separate streams
within a short period of time; if they do, the file system
might perform inefficiently. For example, separate di-
rectory entries in a directory are not considered related
(since it is usual for two applications to create files in the
same directory), but the creation of a file is considered
related to the creation of its parent. Section 3.5 further
describes which operations are considered logically re-
lated and how their temporal order is maintained.

Our stream interface allows all processes and threads
belonging to an application to easily share a single
stream, but also allows a single thread to switch between
different streams if necessary. Specifically, we provide a
setstream(s) call that creates (if not already existing)
and associates the current thread with the stream s. All
future updates in that thread will be assigned to stream
s; when forking (a process or thread), a child will adopt
the stream of its parent. The API is further explained in
Section 3.5 and its usage is discussed in Section 3.6.

3.3 Separating Multiple Streams
In ccfs, the basic idea used to separately preserve the or-
der of each stream is simple: ccfs extends the journaling
technique to maintain multiple in-memory running trans-
actions, one corresponding to each stream. Whenever a
synchronization system call (such as fsync) is issued,
only the corresponding stream’s running transaction is
committed. All modifications in a particular stream are
associated with that stream’s running transaction, thus
maintaining order within the stream (optimizations re-
garding this are discussed in the next section).

Using multiple running transactions poses a challenge:
committing one transaction without committing others
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Figure 2: Hybrid-granularity Journaling. Timeline show-
ing hybrid-granularity journaling in ccfs. Block X initially contains
the value 〈a0, b0〉, TA and TB are the running transactions of streams
A and B; when B commits, X is recorded at the block level on disk .

(i.e., re-ordering between streams) inherently re-orders
the metadata modified across streams. However, inter-
nal file-system consistency relies on maintaining a global
order between metadata operations; indeed, this is the
original purpose of ext4’s journaling mechanism. It is
hence important that metadata modifications in different
streams be logically independent and be separately asso-
ciated with their running transactions. We now describe
the various techniques that ccfs uses to address this chal-
lenge while retaining the existing optimizations in ext4.

3.3.1 Hybrid-granularity Journaling
The journaling mechanism described previously (§3.1)
works at block-granularity: entire blocks are associated
with running transactions, and committing a transaction
records the modified contents of entire blocks. Ccfs
uses hybrid-granularity journaling, where byte-ranges
(instead of entire blocks) are associated with the running
transaction, but transactional commits and checkpointing
still happen at block-granularity.

Ccfs requires byte-granularity journaling because sep-
arate metadata structures modified by different streams
might exist in the same file-system block. For example,
a single block can contain the inode structure for two files
used by different applications; in block-granularity jour-
naling, it is not possible to associate the inodes with the
separate running transactions of two different streams.

Block-granularity journaling allows many optimiza-
tions that are not easily retained in byte-granularity. A
major optimization affected in ext4 is data coalescing
during checkpoints: even if multiple versions of a block
are committed, only the final version is sent to its in-
place location. Since the Linux buffer cache and storage
devices manage data at block granularity, such coalesc-
ing becomes complicated with a byte-granularity journal.

To understand hybrid-granularity journaling, consider
the example illustrated in Figure 2. In this example,
block X initially contains the bytes 〈a0b0〉. Before al-
lowing any writes, ccfs makes an in-memory copy (say,
X0) of the initial version of the block. Let the first byte
of X be modified by stream A into a1; ccfs will associate

the byte range X0−0 with the running transaction TA of
stream A (Xi−j denotes the ith to jth bytes of block X),
thus following byte-granularity. Let stream B then mod-
ify the second byte into b1, associating X1−1 with TB ;
the final in-memory state of X will be 〈a1b1〉. Now,
assume the user calls fsync in stream B, causing TB

to commit (TA is still running). Ccfs converts TB into
block-granularity for the commit, by super-imposing the
contents of TB (i.e., X1−1 with the content b1) on the ini-
tial versions of their blocks (i.e, X0 with content 〈a0b0〉),
and committing the result (i.e., 〈a0b1〉). When TB starts
committing, it updates X0 with the value of X that it is
committing. If the user then calls fsync in A, X0−0 is
super-imposed on X0 (〈a0b1〉), committing 〈a1b1〉.

Thus, hybrid-granularity journaling performs in-
memory logging at byte-granularity, allowing streams
to be separated; the delayed-logging optimization of
ext4 is unaffected. Commits and checkpoints are block-
granular, thus preserving delayed checkpointing.

3.3.2 Delta Journaling
In addition to simply associating byte ranges with run-
ning transactions, ccfs allows associating the exact
changes performed on a specific byte range (i.e., the
deltas). This technique, which we call delta journaling,
is required when metadata structures are actually shared
between different streams (as opposed to independent
structures sharing the same block). For example, con-
sider a metadata tracking the total free space in the file
system: all streams need to update this metadata.

Delta journaling in ccfs works as follows. Assume
that the byte range X1−2 is a shared metadata field stor-
ing an integer, and that stream A adds i to the field and
stream B subtracts j from the field. Ccfs associates the
delta 〈X1−2 : + i〉 to the running transaction TA and the
delta 〈X1−2 : − j〉 to the running TB . When a trans-
action commits, the deltas in the committing transaction
are imposed on the initial values of their corresponding
byte ranges, and then the results are used for performing
the commit. In our example, if X1−2 initially had the
value k, and stream B committed, the value (k − j) will
be recorded for the byte range during the commit; note
that hybrid-granularity journaling is still employed, i.e..,
the commit will happen at block-granularity.

In ext4, shared metadata structures requiring delta
journaling are the free inode count and the free block
count, which concern the global state across the file sys-
tem. Delta journaling is also needed for the nlink and the
modification time fields of directory inodes, since multi-
ple streams can modify the same directory.

3.3.3 Pointer-less Data Structures
Metadata in file systems often use data structures such as
linked lists and trees that contain internal pointers, and
these cause metadata operations in one stream to update
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pointers in structures already associated with another
stream. For example, deleting an entry in a linked list
will require updating the next pointer of the previous en-
try, which might be associated with another stream. Ccfs
eliminates the need to update pointers across streams by
adopting alternative data structures for such metadata.

Ext4 has two metadata structures that are of concern:
directories and the orphan list. Directories in ext4 have
a structure similar to linked lists, where each entry con-
tains the relative byte-offset for the next entry. Usually,
the relative offset recorded in a directory entry is simply
the size of the entry. However, to delete a directory entry
di, ext4 adds the size of di to the offset in the previous
entry (di−1), thus making the previous entry point to the
next entry (di+1) in the list. To make directories pointer-
less, ccfs replaces the offset in each entry with a deleted
bit: deleting an entry sets the bit. The insert and scan
procedures are modified appropriately; for example, the
insert procedure recognizes previously deleted entries in
the directory and uses them for new entries if possible.

The orphan list in ext4 is a standard linked list contain-
ing recently freed inodes and is used for garbage collect-
ing free blocks. The order of entries in the list does not
matter for its purposes in ext4. We convert the orphan
list into a pointer-less structure by substituting it with an
orphan directory, thus reusing the same data structure.

3.3.4 Order-less Space Reuse
Ccfs carefully manages the allocation of space in the
file system such that re-ordering deallocations between
streams does not affect file-system consistency. For ex-
ample, assume stream A deletes a file and frees its inode,
and stream B tries to create a file. The allocation rou-
tines in ext4 might allocate to B the inode that was just
freed by A. However, if B commits before A, and then
a crash occurs, the recovered state of the file system will
contain two unrelated files assigned the same inode.

Ext4 already handles the situation for block alloca-
tion (for reasons of security) by reusing blocks only after
the transaction that frees those blocks has fully commit-
ted. In ccfs, we extend this solution to both inode and
directory-entry reuse. Thus, in our example, B will reuse
A’s freed inode only if A has already been committed.

3.4 Maintaining Order Within Streams
We saw in the previous section how to separate depen-
dencies across independent streams; we now focus on
ordering the updates within the same stream. Ext4 uses
metadata-only journaling: ext4 can re-order file appends
and overwrites. Data journaling, i.e., journaling all up-
dates, preserves application order for both metadata and
file data, but significantly reduces performance because
it often writes data twice. A hybrid approach, selective
data journaling (SDJ) [5], preserves order of both data
and metadata by journaling only overwritten file data; it

Figure 3: Order-preserving Delayed Allocation. Time-
line of allocations performed, corresponding to a system-call sequence.

only journals the block pointers for file appends. Since
modern workloads are mostly composed of appends, SDJ
is significantly more efficient than journaling all updates.

We adopt the hybrid SDJ approach in ccfs. However,
the approach still incurs noticeable overhead compared
to ext4’s default journaling under practical workloads be-
cause it disables a significant optimization, delayed al-
location. In our experiments, the createfiles benchmark
results in 8795 ops/s on ext4 with delayed allocation on
a HDD, and 7730 ops/s without (12% overhead).

Without delayed allocation, whenever an application
appends to files, data blocks are allocated and block
pointers are assigned to the files immediately, as shown
in the second column of Figure 3. With delayed allo-
cation (third column), the file system does not imme-
diately allocate blocks; instead, allocations for multiple
appends are delayed and done together. For order to be
maintained within a stream, block pointers need to be
assigned immediately (for example, with SDJ, only the
order of allocations is preserved across system crashes):
naive delayed allocation inherently violates order.

Ccfs uses a technique that we call order-preserving
delayed allocation to maintain program order while al-
lowing delayed allocations. Whenever a transaction Ti

is about to commit, all allocations (in the current stream)
that have been delayed so far are performed and added
to Ti before the commit; further allocations from future
appends by the application are assigned to Ti+1. Thus,
allocations are delayed until the next transaction commit,
but not across commits. Since order is maintained within
Ti via the atomicity of all operations in Ti, the exact se-
quence in which updates are added to Ti does not matter,
and thus the program order of allocations is preserved.

However, the running transaction’s size threshold
poses a challenge: at commit time, what if we cannot add
all batched allocations to Ti? Ccfs solves this challenge
by reserving the space required for allocations when
the application issues the appends. Order-preserving
delayed allocation thus helps ccfs achieve ext4’s per-
formance while maintaining order. For the createfiles
benchmark, the technique achieves 8717 ops/s in ccfs,
and thus performs similar to the default configuration of
ext4 (8795 ops/s).

3.5 Implementation
Ccfs changes 4,500 lines of source code (ext4 total:
50,000 lines). We now describe our implementation.

USENIX Association 15th USENIX Conference on File and Storage Technologies    187



Stream API. The setstream() call takes a flags pa-
rameter along with the stream. One flag is currently sup-
ported: IGNORE FSYNC (ignore any fsync calls in this
stream). We provide a getstream() call that is used,
for example, to find if the current process is operating
on the init stream (explained in §3.6) or a more specific
stream. A streamsync() call flushes all updates in the
current stream.

Related Operations Across Streams. The current
version of ccfs considers the following operations as log-
ically related: modifying the same regular file, explicitly
modifying the same inode attributes (such as the owner
attribute), updating (creating, deleting, or modifying) di-
rectory entries of the same name within a directory, and
creating a directory and any directory entries within that
directory. To understand how ccfs maintains temporal or-
dering between related operations from different streams,
consider that stream A first performs operation OA at
time t1 and stream B then performs a related operation
OB at t2. If stream A gets committed between t1 and t2
(either due to an fsync or a periodic background flush),
the required temporal order is already maintained, since
OA is already on disk before OB is performed. If not,
ccfs temporarily merges the streams together and treats
them as one, until the merged streams get committed to
disk; the streams are then separated and allowed to pro-
ceed independently.
Maintaining Order Within Streams. An implementa-
tion challenge for order-preserving delayed allocation is
that the allocations need to be performed when a transac-
tion is about to commit, but before the actual committing
starts. We satisfy these requirements without much com-
plexity by performing the allocations in the T LOCKED

state of the transaction, a transient state in the begin-
ning of every commit when all file-system updates are
blocked. A more efficient implementation can carefully
perform these allocations before the T LOCKED state.

To correctly maintain the order of file updates, SDJ
requires careful handling when data is both appended and
overwritten on the same block. For example, consider an
append when Ti was running and an overwrite when Ti

is committing (when Ti+1 is running); to maintain order,
two versions of the block must be created in memory: the
old version (that does not contain the overwrite) must be
used as part of Ti’s commit, and the new version must be
journaled in Ti+1. Ccfs handles these cases correctly.

3.6 Discussion
We now discuss how we expect applications to use
streams. Overall, the abstraction is flexible: while we ex-
pect most applications to use a single stream, if needed,
applications can also use separate streams for individ-
ual tasks, or multiple applications can share a single
stream. In the current version of ccfs, the init process

Application ext4 ccfs
LevelDB 1 0

SQLite-Roll 0 0
Git 2 0

Mercurial 5 2
ZooKeeper 1 0

(a) Vulnerabilities found

Application ext4 ccfs

LevelDB Images 158 / 465 427 / 427
Time (s) 24.31 / 30 30 / 30

Git Images 84 / 112 96 / 96
Time (s) 9.95 / 40 40 / 40

(b) Consistent post-reboot disk states
produced by BoB

Table 2: Consistency Testing. The first table shows the re-
sults of model-based testing using Alice, and the second shows
experimental testing with BoB. Each vulnerability reported in
the first table is a location in the application source code that
has to be fixed. The Images rows of the second table show
the number of disk images reproduced by the BoB tool that
the application correctly recovers from; the Time rows show
the time window during which the application can recover cor-
rectly from a crash (x / y: x time window, y total workload run-
time). For Git, we consider the default configuration instead of
a safer configuration with bad performance (§4.4).
is assigned an init stream; hence, all applications in-
herit this stream by default. We expect most applica-
tions whose write performance are user visible to issue
a single setstream() call in the beginning of the appli-
cation (but to not make any other code changes). Thus,
applications by default will have improved crash consis-
tency, and applications issuing setstream() will have
both improved consistency and high performance. If so
desired, applications can also significantly improve their
performance (while maintaining consistency) by first set-
ting the IGNORE FSYNC flag and removing any O SYNC

flags, and issuing streamsync() calls only when dura-
bility is actually desired.

4 Evaluation
In our evaluation, we answer the following questions:
• Does ccfs improve application crash consistency?
• Does ccfs effectively use streams to eliminate the over-

head of write dependencies?
• How does ccfs perform in standard file system bench-

marks run in a single stream?
• What is the performance effect of maintaining order

on real applications?
We performed a set of experiments to answer these

questions. For the experiments, we use an Intel Core
2 Quad Processor Q9300 with 4 GB of memory run-
ning Linux 3.13, with either an SSD (Samsung 840 EVO
500 GB) or a HDD (Toshiba MK1665GSX 160 GB).

4.1 Reliability
We first examine whether the in-order semantics pro-
vided by ccfs improves application crash consistency
compared to the widely-used ext4 file system (which re-
orders writes). We follow a model-based testing strat-
egy to check application consistency on both file sys-
tems using the Alice tool [35]. The tool records the
system-call trace for a given application workload, and
then uses a file-system model to reproduce the possible
set of file-system states if a system crash occurs. We con-
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figured Alice with the models of ext4 (model provided
with the tool) and ccfs (system calls are weakly atomic
and in-order). We tested five applications previously re-
ported [35] to exhibit crash inconsistencies on ext4: Lev-
elDB, SQLite, Git, Mercurial, and ZooKeeper. We use
workloads similar to the previous study, but newer ver-
sions of the applications; we do not check durability in
Git and Mercurial since they never call fsync.

The results of our testing are shown in Table 2(a).
Ext4 results in multiple inconsistencies: LevelDB fails to
maintain the order in which key-value pairs are inserted,
Git and Mercurial can result in repository corruption, and
ZooKeeper may become unavailable. With ccfs, the only
inconsistencies were with Mercurial. These inconsisten-
cies are exposed on a process crash with any file sys-
tem, and therefore also occur during system crashes in
ccfs; they result only in dirstate corruption, which can
be manually recovered from and is considered to be of
minor consequence [27]. Thus, our model-based test-
ing reveals that applications are significantly more crash
consistent on ccfs than ext4.

We used the BoB tool [35] to test whether our imple-
mentation of ccfs maintains weak atomicity and order-
ing, i.e., whether the implementation reflects the model
used in the previous testing. BoB records the block-level
trace for an application workload running on a file sys-
tem, and reproduces a subset of disk images possible if
a crash occurs. BoB generates disk images by persisting
blocks in and out of order; each image corresponds to a
time window during the runtime where a crash will result
in the image. These windows are used to measure how
much time the application remains consistent.

We used Git and LevelDB to test our implementation
and compare it with ext4; both have crash vulnerabilities
exposed easily on a re-ordering file system. Table 2(b)
shows our results. With ext4, both applications can eas-
ily result in inconsistency. LevelDB on ext4 is consis-
tent only on 158 of the 465 images reproduced; a system
crash can result in being unable to open the datastore af-
ter reboot, or violate the order in which users inserted
key-value pairs. Git will not recover properly on ext4 if
a crash happens during 30.05 seconds of the 40 second
runtime of the workload. With ccfs, we were unable to
reproduce any disk state in which LevelDB or Git are
inconsistent. We conclude that our implementation pro-
vides the desired properties for application consistency.

Thus, our results show that ccfs noticeably improves
the state of application crash consistency. We next eval-
uate whether this is achieved with good performance.

4.2 Multi-stream Benefits
Maintaining order causes write dependence during
fsync calls and imposes additional overheads, since
each fsync call must flush all previous dirty data. In the

Micro- File fsync fsync Total
Benchmark system latency (s) written (MB) written (MB)

ext4 0.08 0.03 100.19
Append ccfs-1 1.28 100.04 100.18

ccfs-2 0.08 0.03 100.20
ext4 0.07 0.03 0.18

Truncate ccfs-1 1.28 100.04 100.21
ccfs-2 0.05 0.03 0.20
ext4 0.08 0.03 100.19

Overwrite ccfs-1 1.27 100.04 300.72
ccfs-2 0.07 0.03 100.20

Table 3: Single-fsync Experiments. fsync latencies in
the first column correspond to the data written by the fsync
shown in the second column on HDD, while the total data
shown in the third column affects the available device band-
width and hence performance in more realistic workloads.
simplest case, this results in additional fsync latency;
it can also prevent writes from being coalesced across
fsync calls when data is overwritten, and prevent writes
from being entirely avoided when the previously writ-
ten data is deleted. We now evaluate if using separate
streams in ccfs prevents these overheads.

We devised three microbenchmarks to study the per-
formance effects of preserving order. The append mi-
crobenchmark appends a large amount of data to file A,
then writes 1 byte to file B and calls fsync on B; this
stresses the fsync call’s latency. The truncate bench-
mark truncates file A after calling fsync while over-
write overwrites A after the fsync; these benchmarks
stress whether or not writes are avoided or coalesced.

We use two versions of each benchmark. In the sim-
pler version, we write 100 MB of data in file A and mea-
sure the latency of the fsync call and the total data sent
to the device. In another version, a foreground thread re-
peatedly writes B and calls fsync every five seconds; a
background thread continuously writes to A at 20 MB/s,
and may truncate A or overwrite A every 100 MB, de-
pending on the benchmark. The purpose of the multi-
fsync version is to understand the distribution of fsync
latencies observed in such a workload.

We ran the benchmarks on three file-system configu-
rations: ext4, which re-orders writes and does not incur
additional overheads, ccfs using a single stream (ccfs-
1), and ccfs with modifications of A and B in separate
streams (ccfs-2). Table 3 and Figure 4 show our results.

For the append benchmark, in ext4, the fsync com-
pletes quickly in 0.08 seconds since it flushes only B’s
data to the device. In ccfs-1, the fsync sends 100 MB
and takes 1.28 seconds, but ccfs-2 behaves like ext4 since
A and B are modified in different streams. Repeated
fsync follows the same trend: most fsync calls are
fast in ext4 and ccfs-2 but often take more than a sec-
ond in ccfs-1. A few fsync calls in ext4 and ccfs-2 are
slow due to interference from background activity by the
page-flushing daemon and the periodic journal commit.

With truncates, ext4 and ccfs-2 never send file A’s data
to disk, but ccfs-1 sends the 100 MB during fsync, re-
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Figure 4: Repeated fsync Experiments Histogram of user-
observed foreground latencies in our multi-fsync experiments. Each
experiment is run for two minutes on a HDD.

sulting in higher latency and more disk writes. Most
repeated fsync calls in ext4 and ccfs-2 are fast, as ex-
pected; they are slow in ccfs-1, but still quicker than the
append benchmark because the background thread would
have just truncated A before some of the fsync.

With overwrites, in both ext4 and ccfs-2, only the final
version of A’s data reaches the disk: in ccfs-2, SDJ con-
siders the second modification of A an append because
the first version of A is not yet on disk (this still main-
tains order). In ccfs-1, the first version is written dur-
ing the fsync, and then the second version (overwrite)
is both written to the journal and propagated to its actual
location, resulting in 300 MB of total disk writes. Re-
peated fsync calls are slow in ccfs-1 but quicker than
previous benchmarks because of fewer disk seeks: with
this version of the benchmark, since A is constantly over-
written, data is only sent to the journal in ccfs-1 and is
never propagated to its actual location.

These results show that ccfs is effective at avoiding
write dependence overheads when multiple streams are
used (in comparison to a file system providing global or-
der). The results also show that, within a stream, write
dependence can cause noticeable overhead. For certain
applications, therefore, it is possible that dividing the ap-
plication into multiple streams is necessary for perfor-
mance. The subsequent sections show that the majority
of the applications do not require such division.

4.3 Single-stream Overheads
The previous experiments show how ccfs avoids the per-
formance overheads across streams; we now focus on
performance within a stream. The performance effects
of maintaining order within a stream are affected by
false dependencies between updates within the stream,
and hence depend significantly on the pattern of writes.
We perform our evaluation using the Filebench [12, 51]
suite that reflects real-world workload patterns and mi-
crobenchmarks, and compare performance between ext4
(false dependencies are not exposed) and ccfs (false
dependencies are exposed because of ordering within
streams). Another source of overhead within streams is
the disk-level mechanism used to maintain order, i.e., the

SDJ technique used in ccfs. Hence, we compare perfor-
mance between ext4 (no order), ccfs (order-preserving
delayed allocation and SDJ), and ext4 in the data=journal
mode (ext4-dj, full data journaling). We compare per-
formance both with a HDD (disk-level overheads domi-
nated by seeks) and an SSD (seeks less pronounced).

The overall results are shown in Figure 5; performance
is most impacted by overwrites and fsync calls. We now
explain the results obtained on each benchmark.

The varmail benchmark emulates a multithreaded mail
server, performing file creates, appends, deletes, reads,
and fsync calls in a single directory. Since each append
is immediately followed by an fsync, there is no addi-
tional write dependence due to ordering. Performance
is dominated by seek latency induced by the frequent
fsync calls, resulting in similar performance across ext4
and ccfs. Ext4-dj issues more writes but incurs less seeks
(since data is written to the journal rather than the in-
place location during each fsync), and performs 20%
better in the HDD and 5% better in the SSD.

Randwrite overwrites random locations in an existing
file and calls fsync every 100 writes. Since the fsync

calls always flush the entire file, there is no additional
write dependence due to ordering. However, the over-
writes cause both ccfs (SDJ) and ext4-dj (full journal-
ing) to write twice as much data as ext4. In the HDD,
all file systems perform similarly since seeks dominate
performance; in the SSD, additional writes cause a 12%
performance decrease for ccfs and ext4-dj.

Createfiles and seqwrite keep appending to files, while
fileserver issues appends and deletes to multiple files;
they do not perform any overwrites or issue any fsync

calls. Since only appends are involved, ccfs writes the
same amount of data as ext4. Under the HDD, simi-
lar performance is observed in ccfs and in ext4. Under
SSDs, createfiles is 4% slower atop ccfs because of de-
layed allocation in the T LOCKED state, which takes a no-
ticeable amount of time (an average of 132 ms during
each commit); this is an implementation artifact, and can
be optimized. For all these benchmarks, ext4-dj writes
data twice, and hence is significantly slower. Webserver
involves mostly reads and a few appends; performance is
dominated by reads, all file systems perform similarly.

Figure 5(c) compares the CPU usage of ccfs and ext4.
For most workloads, our current implementation of ccfs
has moderately higher CPU usage; the significant us-
age for fileserver and seqwrite is because the workloads
are dominated by block allocations and de-allocations,
which is especially CPU intensive for our implementa-
tion. This can be improved by adopting more optimized
structures and lookup tables (§3.5). Thus, while it does
not noticeably impact performance in our experiments,
reducing CPU usage is an important future goal for ccfs.

Overall, our results show that maintaining order does
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varmail 3.42 2.91 2.98 59.9 67.2

randwrite 8.1 4.1 8.1 16.8 24.4
createfiles 12.22 5.53 5.49 89.1 94.4
seqwrite 2.0 1.0 1.0 0.9 2.4
fileserver 1093 321 327 1040 2937
webserver 0.49 0.24 0.15 74.4 75.5

(a) HDD Performance (b) SSD Performance (c) HDD Writes and CPU usage
Figure 5: Imposing Order at Disk-Level: Performance, Data Written, and CPU usage. (a) and (b) show throughput
under standard benchmarks for ccfs, ext4, and ext4 under the data=journal mode (ext4-dj), all normalized to ext4-dj. (c) shows the total writes and
CPU usage with a HDD. Varmail emulates a multithreaded mail server, performing file creates, appends, deletes, reads, and fsync in a single
directory. Randwrite does 200K random writes over a 10 GB file with an fsync every 100 writes. Webserver emulates a multithreaded web server
performing open-read-close on multiple files and a log file append. Createfiles uses 64 threads to create 1M files. Seqwrite writes 32 GB to a new
file (1 KB is considered an op in (c)). Fileserver emulates a file server, using 50 threads to perform creates, deletes, appends, and reads, on 80K
files. The fileserver, varmail, and webserver workloads were run for 300 seconds. The numbers reported are the average over 10 runs.

not incur any inherent performance overhead for stan-
dard workloads when the workload is run in one stream.
False dependencies are rare and have little impact for
common workloads, and the technique used to maintain
order within streams in ccfs is efficient.

4.4 Case Studies
Our evaluation in the previous section shows the perfor-
mance effects of maintaining order for standard bench-
marks. We now consider three real-world applications:
Git, LevelDB, and SQLite with rollback journaling; we
focus on the effort required to maintain crash consistency
with good performance for these applications in ccfs and
the default mode (data=ordered) of ext4. For ext4, we
ensure that the applications remain consistent by either
modifying the application to introduce additional fsync
calls or using safe application configuration options. All
three applications are naturally consistent on ccfs when
run on a single stream.
Single Application Performance. We first ran each ap-
plication in its own stream in the absence of other ap-
plications, to examine if running the application in one
stream is sufficient for good performance (as opposed
to dividing a single application into multiple streams).
Specifically, we try to understand if the applications have
false dependencies. We also consider their performance
when fsync calls are omitted without affecting consis-
tency (including user-visible durability) on ccfs.

The results are shown in Table 4. For Git, we use a
workload that adds and commits the Linux source code
to an empty repository. While Git is naturally consistent
atop ccfs, it requires a special option (fsyncobjectfiles) on
ext4; this option causes Git to issue many fsync calls.
Irrespective of this option, Git always issues 242 MB
of appends and no overwrites. In ccfs, the 242 MB is
sent directly to the device and the workload completes in
28.9 seconds. In ext4, the fsync calls needed for cor-
rectness prevent updates to metadata blocks from being
coalesced; for example, a block bitmap that is repeatedly

updated by the workload needs to be written to the jour-
nal on every fsync. Moreover, each fsync call forces a
separate journal transaction, writing a separate descrip-
tor block and commit block to the disk and causing two
disk cache flushes. Thus, in ext4, the workload results
in 1.4 GB of journal commits and takes 2294 seconds to
complete (80× slower).

For SQLite, we insert 2000 rows of 120 bytes each
into an empty table. SQLite issues fsync calls fre-
quently, and there are no false dependencies in ccfs.
However, SQLite issues file overwrites (31.83 MB dur-
ing this workload), which causes data to be sent to the
journal in ccfs. Sending the overwritten data to the
journal improves the performance of ccfs in comparison
to ext4 (1.28×). Because SQLite frequently issues an
fsync after overwriting a small amount (4 KB) of data,
ext4 incurs a seek during each fsync call, which ccfs
avoids by writing the data to the journal. SQLite can also
be heavily optimized when running atop ccfs by omitting
unnecessary fsync calls; with our workload, this results
in a 685× improvement.

For LevelDB, we use the fillrandom benchmark from
the db bench tool to insert 250K key-value pairs of 1000
bytes each to an empty database. Atop ext4, we needed
to add additional fsync calls to improve the crash con-
sistency of LevelDB. LevelDB on ccfs and the fixed ver-
sion on ext4 have similar write avoidance, as can be seen
from Table 4. Since LevelDB also does few file over-
writes, it performs similarly on ccfs and ext4. With
ccfs, existing fsync calls in LevelDB can be omitted
since ccfs already guarantees ordering, increasing per-
formance 5×.

Thus, the experiments suggest that false-dependency
overheads are minimal within an application. In two of
the applications, the ordering provided by ccfs can be
used to omit fsync calls to improve performance.
Multiple Application Performance. We next test
whether ccfs is effective in separating streams: Figure 6
shows the performance when running Git and SQLite

USENIX Association 15th USENIX Conference on File and Storage Technologies    191



Throu
User-level Metrics Disk-level Metrics
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ccfs+ 1351 0 242 0 10 18 243
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s/
s 6000 31.56 31.83 12000 70 170

ccfs 6.71 6000 31.56 31.83 12000 117 176
ccfs+ 4598 0 0.32 0 0 0 0
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ve

lD
B ext4 5.25

M
B

/s 598 1087 0.01 1196 16.3 1131
ccfs 5.1 523 1087 0 1046 16.2 1062

ccfs+ 25.5 0 199 0 2 0.074 157
Table 4: Case Study: Single Application Performance.
The table shows the performance and observed metrics of Git,
LevelDB, and SQLite-rollback run separately under different
file-system configurations on HDD. Ccfs+ denotes running ccfs
with unnecessary fsync calls omitted; in both ccfs configura-
tions, the application runs in a single stream. The user-level
metrics characterize each workload; “appends” and “over-
writes” show how much appended and overwritten data needs
to be flushed by fsync calls (and also how much remain
buffered when the workload ends). Overhead imposed by main-
taining order will be observed by fsync calls in the ccfs con-
figuration needing to flush more data. The disk-level metrics
relate the characteristics to actual data written to the device.
simultaneously. The situation in current real-world de-
ployments is exemplified by the ext4-bad configuration
in Figure 6: both applications are run on ext4, but Git
runs without the fsyncobjectfiles option (i.e., consistency
is sacrificed). The ccfs-2 configuration is the intended
use case for ccfs: Git and SQLite are in separate streams
on ccfs, achieving consistency while performing similar
to ext4-bad. (SQLite performs better under ccfs-2 be-
cause ccfs sends some data to the journal and reduces
seeks, as explained previously.) Thus, ccfs achieves real-
world performance while improving correctness.

The ccfs-1 configuration demonstrates the overhead
of global order by running Git and SQLite in the same
stream on ccfs; this is not the intended use case of
ccfs. This configuration heavily impacts SQLite’s perfor-
mance because of (false) dependencies introduced from
Git’s writes. Running applications in separate streams
can thus be necessary for acceptable performance.

The ext4 configuration re-iterates previous findings:
it maintains correctness using Git’s fsyncobjectfiles on
ext4, but Git is unacceptably slow due to fsync calls.
The ccfs+ configuration represents a secondary use case
for ccfs: it runs the applications in separate streams on
ccfs with unneeded fsync calls omitted, resulting in bet-
ter SQLite performance (Git is moderately slower since
SQLite uses more disk bandwidth).

Thus, running each application in its stream achieves
correctness with good performance, while global order
achieves correctness but reduces performance.
Developer Overhead. Achieving correctness atop ccfs
(while maintaining performance) required negligible de-
veloper overhead: we added one setstream() call to
the beginning of each application, without examining the
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Figure 6: Case Study: Multiple Application Perfor-
mance. Performance of Git and SQLite-rollback run simultane-
ously under different configurations on HDD, normalized to perfor-
mance under ext4 configuration. Ext4-bad configuration runs the
applications on ext4 with consistency sacrificed in Git. CCFS-2 uses
separate streams for each application on ccfs. Ext4 uses ext4 with
consistent Git. CCFS-1 runs both applications in the same stream on
ccfs. CCFS+ runs applications in separate streams without unnecessary
fsync. Workload: Git adds and commits a repository 25 times the size
of Linux; SQLite repeatedly inserts 120-byte rows until Git completes.

applications any further. To omit unnecessary fsync

calls in ccfs and improve performance (i.e., for the ccfs+
configuration), we used the IGNORE FSYNC flag on the
setstream() calls, and added streamsync() calls to
places in the code where the user is guaranteed durabil-
ity (one location in LevelDB and two in SQLite).

Correctness with ext4 required two additional fsync
calls on LevelDB and the fsyncobjectfiles option on Git.
The changes in ext4 both reduced performance and were
complicated; we carefully used results from the Alice
study to determine the additional fsync calls necessary
for correctness. Note that, while we happened to find
that Git’s fsyncobjectfiles makes it correct on ext4, other
changes are needed for other file systems (e.g., btrfs).

Thus, developer effort required to achieve correctness
atop ccfs while maintaining performance is negligible;
additional effort can improve performance significantly.

5 Related Work
We briefly describe how ccfs differs from previous work:
Atomicity interfaces. Transactional file-system inter-
faces have a long history [44] and allow applications
to delegate most crash-consistency requirements to the
file system. Recent work in this space includes file sys-
tems providing ACID semantics such as Amino [55],
Valor [48], and Windows TxF [28], atomicity-only file
systems as proposed by Vermat et al. [54], Park et
al. [33], and CFS [29], and OS-level transaction sup-
port as advocated by TxOS [37]. Such interfaces allow
adding crash consistency easily to applications which do
not already implement them, and help heavily optimized
applications that trade portability for performance [26].

For applications with existing consistency implemen-
tations, proponents of atomicity interfaces and transac-
tional file systems advocate replacing the existing imple-
mentation with the interface provided by the file system.
This is not trivial to achieve (though perhaps much easier
than writing a new consistency implementation). For in-
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stance, consider the SQLite database, and assume that we
replace its consistency implementation using a straight-
forward begin atomic()–end atomic() interface provided
by the file system. This does not work for two rea-
sons. First, it does not offer SQLite’s ROLLBACK com-
mand [50] (i.e., abort transaction) and the SAVEPOINT
command (which allows an aborted transaction to con-
tinue from a previous point in the transaction). Second,
unless the file system provides isolation (which recent re-
search argues against [29]), it requires re-implementing
isolation and concurrency control, since SQLite’s iso-
lation mechanism is inherently tied to its consistency
mechanism [49]. With applications such as LevelDB,
where the consistency mechanism is tightly coupled to
query-efficient on-disk data structures [24, 32], adopting
alternative consistency mechanisms will also cause un-
necessary performance changes.

To summarize, adopting atomicity interfaces to over-
come vulnerabilities is nonoptimal in applications with
existing consistency implementations. One challenge is
simply the changes required: CFS [29], with arguably the
most user-friendly atomic interface, requires changing
38 lines in SQLite and 240 lines in MariaDB. Another
challenge is portability: until the interfaces are widely
available, the developer must maintain both the existing
consistency protocol and a protocol using the atomic in-
terface; this has deterred such interfaces in Linux [9]. Fi-
nally, the complexity of data structures and concurrency
mechanisms in modern applications (e.g., LSM trees) are
not directly compatible with a generic transactional inter-
face; Windows TxF, a transactional interface to NTFS, is
being considered for deprecation due to this [28]. In con-
strast, streams focus on masking vulnerabilities in exist-
ing application-level consistency implementations. Ccfs
advocates a single change to the beginning of applica-
tions, and running them without more modification on
both stream-enabled and stream-absent file systems.
Ordering interfaces. Fine-grained ordering inter-
faces [4, 5, 13] supplement the existing fsync call, mak-
ing it less costly for applications to easily achieve crash
consistency. They allow better performance, but re-
quire developers to specify the exact ordering required,
and as such are not optimal for fixing existing proto-
col implementations. Ext4’s data-journaled mode and
LinLogFS [10] provide a globally ordered interface,
but incur unacceptable disk-level ordering and false-
dependence overhead. Xsyncfs [31] provides global or-
der and improves performance by buffering user-visible
outputs; this approach is complementary to our approach
of reducing false dependencies. Other proposed ordering
interfaces [8, 34] focus only on NVMs.
Implementation. Ccfs builds upon seminal work in
database systems [17, 30] and file-system crash consis-
tency [7, 11, 14, 15, 18, 40, 42, 45], but is unique in as-

sembling different techniques needed for efficient imple-
ment of the stream API. Specifically, ccfs uses journal-
ing [7, 18] for order within a stream, but applies tech-
niques similar to soft updates [14, 15, 45] for separating
streams. Such design is necessary: using soft updates
directly for a long chain of dependent writes ordered
one after the other (as ccfs promises within a stream)
will result in excessive disk seeks. Block-level guaran-
tees of atomicity and isolation, such as Isotope [46] and
TxFlash [38], can simplify ccfs’ separation of streams;
however, techniques in Section 3 are still necessary.
IceFS [25] extends ext3 to support multiple virtual jour-
nals, but requires data journaling within each journal to
support ordered data writes, and hence cannot be directly
used to improve application consistency without reduc-
ing performance. IceFS also does not use techniques
similar to soft updates to separate the virtual journals,
associating only a static and coarse-grained partition of
the file-system namespace to each journal (compared to
the dynamic and fine-grained stream abstraction).

In principle, one should be able to easily construct a
stream-ordered file system atop a fine-grained ordering
interface. However, the direct implementation of order-
ing in Featherstitch [13] uses the soft-updates approach,
which is incompatible as described. OptFS’ interface [5]
is insufficient for implementing streams. Ccfs uses the
SDJ technique from OptFS but optimizes it; the original
relies on specialized hardware (durability notifications)
and decreased guarantees (no durability) for efficiency.

6 Conclusion
In this paper, we present the stream abstraction as a
practical solution for application-level crash consistency.
We describe the stream API and the ccfs file system,
an efficient implementation of the API. We use real ap-
plications to validate consistency atop the file system
and compare performance with ext4, finding that ccfs
maintains (and sometimes signficantly improves) perfor-
mance while improving correctness. Our results suggest
that developer effort for using the streams API is negli-
gible and practical.
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Abstract
We introduce a low-cost incremental checksum tech-
nique that protects metadata blocks against in-memory
scribbles, and a lightweight digest-based transaction au-
diting mechanism that enforces file system consistency
invariants. Compared with previous work, our tech-
niques reduce performance overhead by an order of mag-
nitude. They also help distinguish scribbles from logic
bugs. We also present a mechanism to pinpoint the cause
of scribbles on production systems. Our techniques have
been productized in the NetApp® WAFL® (Write Any-
where File Layout) file system with negligible perfor-
mance overhead, greatly reducing corruption-related in-
cidents over the past five years, based on millions of run-
time hours.

1 Introduction
Storage systems comprise unreliable hardware compo-
nents such as disks [6, 51, 7], disk shelves, storage inter-
connect fabric, RAM [52], CPU [45, 56] and data trans-
port buses. This hardware is driven by a software stack
or by a dedicated storage operating system that is built
around a file system such as ext3 [60], ext4 [42], ZFS
[13], btrfs [49], or WAFL [32, 24]. The software is built
from heterogeneous components that might also be un-
reliable because of inherent bugs that could affect other
parts of the software ecosystem. Hardware failures and
bugs in software can both corrupt data [5, 58, 61]. The
file system must provide mechanisms to detect, avoid,
and recover from such corruptions [6].

In general, data can be corrupted before it is written to
persistent media, while it is residing on the media, or
in the read path. Data at rest is protected from media
failures by using detection techniques such as checksums
[8, 13, 57] and scrubbing [53], and by using recovery

∗Research performed while working at NetApp

techniques such as redundancy [47]. File system crash
consistency is provided by techniques such as journaling
[30, 59, 40, 50, 12], shadow paging [32, 13, 49], or soft
updates [28]. However, memory scribbles that are caused
by software bugs [3, 1, 2, 15, 62] or by hardware failures
[9, 44, 46, 52, 39, 65], or logic bugs that are in the file
system code can still introduce metadata inconsistencies
in the write path.

The transaction auditing mechanism Recon [27] is a
promising method to improve write integrity. However,
with Recon the original version of metadata blocks must
be cached and later compared with the modified copies
for the audit. In copy-on-write file systems such as
WAFL, this requirement can lead to heavy performance
regression, especially under metadata-heavy workloads.
A highly optimized WAFL implementation that used
Recon-like auditing resulted in an unacceptable 30%
throughput regression for critical workloads. Further-
more, Recon-like auditing cannot distinguish corruptions
that are caused by memory scribbles from those that are
caused by logic bugs. For an industrial-scale deploy-
ment, the ability to distinguish between the two causes
is crucial for fast resolution of corruption bugs.

In this paper, we introduce two novel techniques that in
combination can detect arbitrary inconsistencies more
efficiently than Recon can. They also provide the crucial
ability to distinguish between scribbles and logic bugs.
First, we introduce a single rolling checksum through the
lifetime of each metadata block – whether in-memory
or on persistent media – to protect it against random
scribbles. Next, we introduce a digest-based transaction
auditing system to prevent logic bugs. Unlike Recon,
digest-based auditing does not require caching the origi-
nal versions of metadata blocks, and is therefore realized
with negligible performance overhead. By having sepa-
rate solutions for scribbles and logic bugs, we can prior-
itize implementation of auditing invariants based on the
return on investment, which is invaluable for a large and
complex file system implementation such as WAFL. In
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addition, the file system is doubly protected from scrib-
bles by both techniques. Finally, we also introduce a low-
overhead page protection technique that pin-points the
root cause of software-caused scribbles, thereby provid-
ing quick resolution to corruption bugs.

These solutions have been field-tested across almost a
quarter million NetApp ONTAP® customer systems over
the past five years, and the data shows that we have at-
tained among the highest levels of data integrity. The
overall performance penalty that these data integrity
mechanisms incur is almost unnoticeable. They have led
to a more than three times reduction in inconsistencies
due to software caused corruptions. To the best of our
knowledge, we have not encountered a single corruption
bug, across our entire customer deployment, that man-
aged to get past the mechanisms that we propose in this
paper. Reported corruptions have affected only metadata
that were not protected by these mechanisms in the cor-
responding releases. In addition, by detecting problems
early in the development cycle, the solutions have signif-
icantly improved engineering productivity.

The primary contributions of this paper are: (1) end-to-
end metadata checksums, (2) lightweight digest-based
transaction auditing, and (3) fine-grained page protection
to pin-point the scribbling code-path.

2 Motivation
NetApp is a storage and data management company that
offers software, systems, and services to manage and
store data, including its flagship ONTAP operating sys-
tem [34]. ONTAP implements a proprietary file system
called WAFL (Write Anywhere File Layout) [32]. Nu-
merous ONTAP systems are deployed across the world,
and various hardware and software bugs have been in-
curred by them over the past two decades. Some of these
incidents have resulted in latent file system inconsisten-
cies that were discovered much later.

When these inconsistencies are discovered, the file sys-
tem is marked inconsistent and a file system check is
initiated. WAFL provides both online [35] and offline
[33] file system consistency checks. Offline checking
involves significant downtime, which is proportional to
the dataset size. Online checking causes less downtime
but affects system performance until it has finished. On
many occasions, the checks end up discovering data loss,
identifying damaged files, or even suggesting recovery
from backups.

Although it is extremely rare for a given WAFL file sys-
tem to end up inconsistent, the sheer number of customer
systems that collectively log millions of runtime hours
every day make it a more likely occurrence for NetApp’s

technical support staff. Our main goal was to fortify
WAFL against inconsistencies to reduce both disruption
for our customers and support costs for NetApp.

2.1 Write Path Metadata Corruptions

Two types of problems can cause file system recovery
runs: (1) inconsistencies due to in-memory corruptions
of metadata in the write path, and (2) inconsistencies
due to the loss of metadata because of media failures
that are beyond the redundancy threshold of the under-
lying RAID mechanism. This paper addresses problem
1. Note that persistent block checksums cannot protect
the metadata from in-memory corruptions because the
checksum computation occurs after the block is scrib-
bled [64].

Metadata corruption in the write path can result from
three primary causes: (1) logic bugs in metadata compu-
tation and updates, (2) scribbles of metadata blocks that
are used as input for new metadata computation, and (3)
scribbles of metadata blocks before they are written to
persistent storage.

2.2 Scribbles Versus Logic Bugs

Let us first distinguish between two types of corruption
bugs: scribbles and logic bugs.

A scribble (Heisenbug) [29] overwrites an arbitrary data
element. It usually occurs randomly and is equally likely
to corrupt any data or metadata, producing unpredictable
results. Because of its unpredictable nature, a scribble is
difficult to reproduce with systematic testing. It is diffi-
cult to diagnose because the observed symptoms are far
removed from the original location and time of its occur-
rence. Mistaking a scribble for a logic bug can result in
a futile bug chase, and wastage of engineering resources.
Often, scribbles are the cause of known but unfixed bugs
that adversely affect product quality.

Most hardware scribbles go undetected. ECC memory
[16] can detect failures but with some limitation [25],
and it might not always be used because of its cost
[31, 36]. Software-induced scribbles can be detected us-
ing the processor’s page protection mechanism, but again
with significant costs and limitations.

In contrast, a logic bug (Bohrbug) [29] is inherent to the
metadata computation and update logic. A computation
with a logic bug generates incorrect outcome but stores
it to its own memory location. Therefore, a logic bug is
more predictable and limited in its impact. The observed
symptoms are predictably confined to a particular behav-
ioral aspect, which makes it easier to diagnose.
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2.3 Causes of Corruptions

Scribbles can be caused by software bugs such as buffer
overflow, incorrect pointer computation, and dangling
pointers in a shared address space [11]. In WAFL, the
file system buffer cache memory can be allocated away
for other uses and then be recycled back, which makes
file system buffers, including metadata buffers, likely
victims of software scribbles.

Scribbles are also caused by hardware failures [55] such
as memory errors, DMA errors, or CPU register bit flips
[10] that remain undetected. Scribble bugs are not that
rare [52], and memory scribbles due to hardware failures
are expected to be more common in the future [14, 55]. It
has been shown that scribbles can be induced by external
attacks in a controlled way on a shared infrastructure.
[38, 48].

A scribble of an intermediate result or a key data struc-
ture can also produce a second order corruption. In our
experience, this class of bugs is extremely rare.

Logic bugs are typically found in insufficiently tested
code; mature, field-tested code is less likely to have them.

2.4 WAFL File System Overview

Next, we briefly introduce WAFL before we evaluate an
existing auditing solution for copy-on-write (COW) file
systems. WAFL is a UNIX-style file system with a col-
lection of inodes that represent its files [32]. The file
system is written out as a tree of blocks that are rooted at
a superblock. Every file system object in WAFL, includ-
ing metadata, is a file. WAFL is a COW file system, in
which every modified block is written to a new location
on disk. Only the superblock is ever written in place.

As buffers and inodes are modified (or dirtied) by client
operations, they are written out in batches for perfor-
mance and consistency. Every mutable client operation is
also recorded to a log in nonvolatile memory (NVRAM)
before it is acknowledged; the operations in the log are
replayed to recover data if a crash occurs. WAFL col-
lects the resultant dirty buffers and inodes from hundreds
of thousands of logged operations, and uses a checkpoint
mechanism called a consistency point (CP) to flush them
to persistent media as one large transaction. Each CP is
an atomic transaction that succeeds only if all of its state
is successfully written to persistent storage. Updates to
in-memory data structures are isolated and targeted for a
specific CP so that each CP represents a consistent and
complete state of the file system. When the entire set of
new blocks that belong to a CP is persisted, a new file
system superblock is atomically written in place that ref-
erences this new file system tree [32, 24].

2.5 Recon for COW File Systems

Recon is a transaction auditing mechanism that verifies
all file system consistency invariants before a transaction
is committed. Recon examines physical blocks below the
file system, and infers the types of metadata blocks when
they are read or written. This allows parsing and interpre-
tation of the blocks, similar to semantically smart disks
[54]. However, because of increased metadata overhead
per transaction, metadata caching and comparison in Re-
con’s design becomes unsustainable for COW file sys-
tems such as WAFL.

In WAFL, each write to a user data block causes the file
system to read in the corresponding parent indirect block,
to free the old block pointer to this user data block, and to
allocate a new block pointer. This process recurses up the
tree of blocks that constitute the file system image, all the
way up to the super block. Thus, writing to a single user
data block might require reading and writing more than
one metadata block. Even though WAFL amortizes this
overhead by batching numerous operations in a single
transaction, the overhead for a Recon-like audit is still
significantly high.

Let us analyze the cost of verifying the block accounting
metadata in WAFL. When a block pointer is inserted into
or deleted from an indirect block, WAFL sets or clears
the corresponding bit in its bitmaps. A Recon-like audit
compares the persistent versions of indirect blocks with
the modified versions that are being committed to gen-
erate a list of block pointers that are allocated or freed
in the current transaction. This list is then tallied with
the corresponding changes in bitmap bits, which are ob-
tained by comparing the persistent and modified versions
of the corresponding bitmap blocks. To enable this com-
parison, a copy of the persistent version of each metadata
block is cached in memory before the block is modified.

The cost of a Recon-like audit primarily includes: (1)
making a copy of the indirect block before modification,
(2) making copies of the bitmap blocks to record the
allocated and freed blocks, (3) comparing the unmodi-
fied and modified versions of the indirect blocks and the
bitmap blocks, and (4) verifying that the changes in the
bitmap blocks are consistent with the changes in the in-
direct blocks. This process involves significant CPU cost
and memory bandwidth, and if the metadata blocks are to
be read from persistent media, it also involves significant
I/O cost.

The memory requirement of a Recon-like audit scales up
with the number of modified metadata blocks that are in
the transaction. Caching the pristine versions of modified
metadata blocks becomes impractical. Many of those
blocks might be evicted from the cache and therefore
must be read in from persistent storage just in time for
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the audit, and the additional I/O directly affects the cost
of auditing. Moreover, the increased memory pressure
can force us to trigger transactions early, which results in
smaller batch sizes and increased metadata overhead, in
turn reducing the overall write throughput.

The audit of a consistency invariant cannot begin until
the corresponding metadata are finalized. Self-referential
metadata, such as bitmaps, are not finalized until the very
end of a CP [37], and only then can they be audited. This
serialization reduces the I/O efficiency of the CP, which
in turn negatively affects the achievable write throughput
of the file system.

2.6 Drawbacks of Recon

Performance: The designs presented in this paper were
conceptualized before the publication of Recon, and co-
incidentally, we first tried the same metadata caching ap-
proach. A highly optimized prototype of Recon-style au-
diting for bitmap and indirect block cross consistency
checks showed a performance degradation of approxi-
mately 30% on our internal database/OLTP benchmark;
the benchmark is described in Section 7. The authors of
the original Recon paper observed a similar performance
penalty in their research prototype implementation for
btrfs [22].

Diagnostics: Although transaction auditing detects the
presence of an inconsistency, it cannot distinguish be-
tween a scribble and a logic bug. When the inconsistency
is due to a scribble, the audit cannot identify the affected
metadata block; it can only point to the set of blocks that
were used to verify the invariant that failed its check.

Implementation challenge: Because scribbles can affect
any metadata without bias, a foolproof transaction au-
diting needs consistency invariants that cover the entire
metadata. Building such an exhaustive set of invariants is
quite expensive in terms of both system performance and
engineering resources, and it has a low return on invest-
ment for mature, field-tested code with no logic bugs.

3 Approach
3.1 Goals

For ONTAP, performance and field diagnostics are both
as important as data integrity.

Performance: A 30% throughput regression to protect
against a relatively rare though disruptive event is con-
sidered too high a price by the business. To be competi-
tive, we need a solution with excellent metadata integrity
protection that costs an order of magnitude less in terms
of performance.

Diagnostics: Corruptions in general and scribbles in par-
ticular, are the hardest to diagnose. For faster diagnosis,
we need the ability to distinguish scribbles from logic
bugs. As explained in section 2.2, they are different in
nature and require different techniques to determine the
root cause. The diagnostic capability is even more im-
portant during product development when the likelihood
of scribbles is higher and many person-hours are wasted
on corruption bugs. Worse, the product sometimes ships
with known, but unreproducible bugs that remain undi-
agnosed.

3.2 Solution Overview

In-memory metadata checksums: To distinguish scrib-
bles from logic bugs and to identify the scribbled block,
we use a general checksum protection for in-memory
metadata blocks. Before a block is written to persistent
storage, a checksum verification determines whether the
block was scribbled.

Metadata page protection: Even though checksum veri-
fication prevents scribbles from being persisted, it can-
not implicate the culprit code. We use processor as-
sisted page granular protection to catch the culprit code.
Because this approach has a higher performance tax,
we recommend enabling it on a customer’s system only
when a metadata block checksum failure is reproducible.

Transaction auditing: Consistency invariants are verified
by comparing digests of changes that occurred in a trans-
action. It is very efficient to create and compare digests.
Changes to a metadata block are added to a digest as and
when it is modified. Thus, we do not need cached copies
of the original blocks.

By having a separate solution for scribble detection, we
have the flexibility to prioritize the implementation of au-
diting invariants that yield higher return on investment.
We can start with code-paths that are prone to logic bugs,
such as code-paths with higher complexity or code-paths
that correspond to newer, untested features.

4 Scribble Protection
In this section, we describe a high-performance and
multiprocessor-capable incremental checksum scheme to
protect in-memory metadata against scribbles. We also
present some limitations, after which we present the page
protection mechanism that overcomes the most impor-
tant limitation.

The goal is to detect any unauthorized change to meta-
data blocks that are written out in a transaction. Because
we are trying to protect against scribblers that share the
same address space, we cannot use address space iso-
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lation as a protection technique. The proposed page-
granular protection in Section 4.7 is quite expensive, and
therefore is used only in diagnostic mode. Furthermore,
none of these techniques can detect a corruption that is
caused by hardware problems.

Checksumming is a well-known data integrity protection
mechanism. Block checksums are widely used to protect
the integrity of the blocks of the file system that reside
on persistent storage. Z2FS [63] even proposes using a
single checksum as well as a checksum handover scheme
to protect the data while in transit across heterogeneous
software components.

However, none of the known schemes protect the data
while it resides in memory. In this section, we describe a
scheme that can be used effectively to protect in-memory
metadata on a large scale, and with negligible perfor-
mance overhead.

4.1 End-to-End Checksum

We use a single rolling or incremental checksum [4, 41]
to protect each metadata block through its entire life cy-
cle, whether it is in memory or on persistent storage.
When a block is read in from persistent storage, the
stored checksum of the block is also read and then is ver-
ified by the file system. While in memory, this verified
checksum is used to protect the block and is updated in-
crementally by every legal update of the block.

When a block is written out to persistent storage as part
of a transaction, a fresh checksum is computed by the
file system. This freshly computed checksum is used to
verify the incrementally updated in-memory checksum,
and if the verification fails, we know that the block has
been scribbled. That way, the block remains protected
whether it is in memory or on persistent storage.

Note that the file system already pays for the cost of
checksum computation during each block read and write.
The only additional work that is needed is the incremen-
tal update of that checksum whenever the block is mod-
ified in memory.

4.2 Checksum Initialization

A metadata block that is written out by a transaction is
either newly created or is an existing block that was read
from persistent storage earlier but was modified during
the transaction. We initialize the in-memory checksum
for a block as soon as it comes into existence in memory.
If newly created, the checksum is initialized to a deriv-
able constant value based on the zero-state of the corre-
sponding metadata. If read in from storage, the check-
sum is initialized to the stored and verified checksum.

4.3 Incremental Checksum Updates

Legal modification of a metadata block in memory is typ-
ically accomplished by invoking well-defined APIs in the
file system code. We add a hook in each of these APIs
so that the corresponding block checksum is kept up to
date on modifications. Before a block is modified, the
new checksum is computed incrementally by using the
old checksum, the original data that is being overwrit-
ten, the position of the original data in the block, and the
new data. In the next few paragraphs, we show precisely
how to incrementally recompute an Adler [23] checksum
when a single byte in a block is modified.

In the following equations, “div” and “mod” represent
operators that return a quotient and a remainder, respec-
tively, in an integer division. Assuming that a data block
D is composed of n bytes D1,D2, ...,Dn, the Adler32
checksum of D is computed as follows:

A = (1+D1 +D2 + ...+Dn) mod 65521
B = (n×D1 +(n−1)×D2 + ...+Dn +n) mod 65521
Adler32(D) = A+B×65536

If the original checksum of block D is C, and we replace
byte Di in the block with a new byte D′i, then the new
checksum Adler32Incr can be computed as follows:

A =C mod 65536
B =C div 65536
∆Di = D′i−Di
A′ = (A+∆Di) mod 65521
B′ = (B+(n+1− i)×∆Di) mod 65521
Adler32Incr(C,Di,D′i, i) = A′+B′×65536

Similarly, we can also recompute the new checksum in-
crementally when multiple contiguous bytes are modi-
fied in the block.

If any portion of a block is scribbled, its incremental
checksum becomes inconsistent with respect to its con-
tents, and it remains so even after any number of sub-
sequent legal updates to the block. Thus, when the file
system eventually recomputes the full checksum (before
it writes the block to persistent storage) by using the cur-
rent contents of the block, the full checksum does not
match the incremental checksum.

The incremental checksum update is optimal because it
requires additional memory accesses only to read the
original contents, to read the old checksum, and to up-
date the checksum. In most cases, the file system code
reads the metadata before overwriting it anyway; there-
fore, the original contents are likely to be in the processor
cache. The CPU cost of computing the new checksum is
proportional to the amount of data that is modified. In
terms of the memory overhead, this approach requires an
additional 4 bytes per data block to maintain the rolling
checksum.
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If preferred, a stronger 64-bit checksum can be used.
Because they are amenable to this form of incremen-
tal computation, Adler [23], Fletcher [26], or any other
position-dependent checksum can be used. For better
performance, a chunk size larger than a byte can be used
in the checksum computation. For WAFL, we used a
modified version and a highly optimized implementation
of the simple incremental checksum computation shown
previously.

4.4 Lockless Multiprocessor Updates

WAFL is designed to run simultaneously on several pro-
cessors [21]. Thus, it is quite common for a metadata
block to be modified concurrently by multiple proces-
sors. However, to minimize cache-line thrashing and ex-
pensive lock contention, the WAFL multiprocessor pro-
gramming model [21] avoids using spinlocks as much as
possible.

To avoid lock contention, an incremental checksum for a
block can be split across processors and be updated in a
lockless manner. Each processor computes and accumu-
lates the delta checksums for its own updates to the block
in a per-processor checksum field. The per-processor
deltas are then combined to derive the final incremental
checksum.

Two independent checksum fragments, C1 and C2, can be
combined as follows:

A = (C1 mod 65536+C2 mod 65536) mod 65521
B = (C1 div 65536+C2 div 65536) mod 65521
combine(C1,C2) = A+B×65536

Two processors that modify bytes Di and D j simultane-
ously can maintain their respective per-processor check-
sum fragments, C1 and C2. Each fragment is updated
independently using Adler32Incr from the previous sec-
tion. Before verification, the fragments are combined
with the original checksum of the block, C, to arrive at
the final checksum C′:

C1 =C2 = 0
C′1 = Adler32Incr(C1,Di,D′i, i)
C′2 = Adler32Incr(C2,D j,D′j, j)
C′ = combine(C,combine(C′1,C

′
2))

However, each per-processor checksum fragment re-
quires additional memory (4 bytes) per block. This extra
memory is quite a worthwhile trade-off because it saves
us the cost of acquiring and contending on spinlocks.

4.5 Checksum Verification

When a block is written out to persistent storage as part
of a transaction, we recompute the checksum on the en-
tire block and compare it with the incremental checksum.

If the two checksums do not match, we have detected a
scribble on the block.

This verification can be performed either before or after
the write I/O for the block is issued to storage. In the
former case, checksum computation can be optimized
by combining it with RAID parity computation [17].
However, this approach opens a window for undetectable
scribbles after the checksum computation but before the
write I/O is completed. Verification of the checksum af-
ter the completion of the write I/O closes that window. In
any case, corruptions that are injected by the data transfer
fabric while it services the write I/O cannot be detected
until the block is read again.

Upon detection of a scribble, we abort the ongoing trans-
action commit, preventing the corruption from being per-
sisted. To protect the ONTAP node from any other poten-
tial corruptions from the same bug, we reboot the node
instead of aborting an individual transaction. Because
ONTAP is configured in high-availability pairs, the part-
ner node takes ownership of the rebooted node’s file sys-
tems, and those file systems are all still consistent be-
cause they are defined by their most recently completed
transaction. The partner node then replays the user oper-
ations that are recorded in the NVRAM log, and the prior
and consistent metadata is read from storage, is modified,
and then is committed as part of a brand-new transaction.

4.6 Assumptions and Limitations

Incremental checksumming is robust against bugs in the
checksum update code. If we miss adding the incremen-
tal checksum hook to any of the legal APIs that modify
metadata, then any transaction that includes a call to the
API results in a checksum verification failure, thereby
forcing us to fix the bug.

This mechanism helps distinguish scribbles from logic
bugs, but it does not implicate the culprit code-path that
tampered with the memory of the corrupted block.

The checksum may not be strong enough to detect all
kinds of corruptions. Adler and Fletcher checksums are
known to be stronger against larger errors than against
smaller ones [43]. They work quite well for storage me-
dia failures because the corruption size is usually bigger;
however, some in-memory corruptions can be smaller,
and therefore the chances that they go undetected are
somewhat higher. In the unlikely event that a scribble
remains undetected by the checksum, it will certainly
be detected by the transaction auditing (described in the
next section). However, such a corruption might, unfor-
tunately, be attributed to a logic bug.

If a bug causes an incorrect block pointer to be supplied
as an argument to a legal metadata update API, the API
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will modify the wrong block and its corresponding in-
cremental checksum. This bug will not be detected by
checksum verification, but will be detected by the trans-
action auditing mechanism. We have not come across
this sort of bug in our experience with WAFL. One po-
tential solution is to use different signatures to categorize
the callers of the APIs into different groups; for exam-
ple, each group could rotate its incremental checksum by
a specific number of bits. That way an updater from an
incorrect group would result in an incorrect checksum.

The incremental checksum technique can also be used to
protect other important data structures that participate in
any periodic transactional episode.

4.7 Diagnostics Using Page Protection

A checksum verification failure indicates that the block
has been scribbled, but it does not implicate the culprit
code-path because the scribble might have occurred long
ago. Regular address space-based protection cannot help
if the culprit code-path shares the same address space;
this is true of much of the kernel code in ONTAP.

If a scribble is reproducible, we provide an option to en-
able metadata page protection to directly implicate the
code-path. To provide good performance even under
heavy and frequent modification of metadata, we use
a combination of page-level protection and the Write-
Protect Enable (WP) bit in the x86-64 processors [18].

To protect metadata blocks from scribbles we keep the
individual metadata pages read-only by default. One way
to allow safe updates would be to mark the corresponding
page read-write just before a legal updater modifies the
block. When the requested modification has finished, the
page can be marked read-only again. Thus, an illegal
modification finds the page read-only, generates a page
fault, and yields a stack trace that points to the scribbler.

However, this scheme does not perform well if meta-
data is modified frequently. The frequent switching of
page permissions (read-only to read/write to read-only)
not only causes a flood of TLB flushes, but also creates a
storm of inter-processor TLB invalidation interrupts. Us-
ing this scheme to protect all indirect blocks and bitmap
blocks degraded performance by approximately 70%, in
our experiments, thereby rendering the scheme unusable
even in debug mode.

To reduce the performance impact, we keep the pages
read-only all the time. To enable legal writes, we disable
protection globally (by flipping the WP bit) before mod-
ification and we re-enable it after modification. With this
approach, the performance degradation comes down to
about 20%, which is acceptable for a diagnostic mode.

When write protection is disabled on a CPU core, it can

write to any address. This ability implies two risks: (1)
the metadata modification code itself might scribble, or
(2) interrupt handlers that are serviced by the processor
during that window might scribble otherwise read-only
memory. However, these risks are close to zero because
these code blocks (the metadata update APIs and inter-
rupt handlers) are typically small pieces of code and are
extremely well tested. Furthermore, we perform address
range checks on the target address before we disable pro-
tection.

As Section 7.3 shows, this feature has proved to be in-
valuable for product development and has been used in
the field as well. Moreover, as explained in Section 6, it
has been an invaluable tool for quickly identifying code-
paths that required our incremental checksum hooks

5 Transaction Auditing
In this section, we introduce a digest-based transaction
auditing technique, explain what invariants it checks by
using an example, breakdown its performance, and ana-
lyze its limitations. The audit verifies that the changes
to the file system state being committed in a given trans-
action are self-consistent. There are two categories of
consistency invariants: local and distributed:

Local consistency invariant: A local consistency invari-
ant is confined to a given metadata block. For example,
all block pointers in an indirect block must be within the
file system block number range. Such an invariant is in-
expensive to check because it does not require loading
any other blocks.

Distributed consistency invariant: A distributed invariant
defines a consistency relationship across several blocks
from different metadata. For example, when a block
pointer is cleared from an indirect block, the correspond-
ing bit in the bitmap block must be cleared. A distributed
consistency invariant is expensive to check because it re-
quires identifying the changes to several blocks from dif-
ferent metadata.

In contrast to Recon, we intercept modifications to meta-
data at the file system layer. During a transaction,
changes are accumulated to create digests that are used
later to verify consistency invariants. This design obvi-
ates the need to cache the unmodified metadata blocks.
Unlike Recon, the cost of recording the changes is pro-
portional to the actual changes rather than to the number
of modified blocks.

5.1 Digest-Based Auditing

Digest-based audits help verify distributed consistency
invariants inexpensively. The key idea is to create digests
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of changes and to cross-verify the digests rather than in-
dividual changes. This strategy drastically reduces the
amount of work that is required in verification and still
provides strong enough guarantees to be useful in prac-
tice.

To illustrate the mechanism, let us use cross consistency
between indirect blocks and bitmap blocks as an exam-
ple. We intercept indirect and bitmap block modification
operations by using the aforementioned hook in the mod-
ification APIs, and we create a digest of those modifica-
tions.

Let us say that an indirect block contains 64-bit block
numbers B1,B2, ...,Bn. Suppose block numbers Bi, B j,
and Bk were replaced in a transaction by newly allo-
cated block numbers Ni, N j, and Nk. A hook in the API
that modifies the indirect block updates checksums of the
original block numbers in a free digest and the new block
numbers in an allocated digest; each digest is maintained
per transaction across all updates to the metadata of the
file system:

ΣIndFree = Bi +B j +Bk + ...
ΣIndAlloc = Ni +N j +Nk + ...

Similarly, a hook in the bitmap block modification API
maintains per transaction digests of all block numbers
whose corresponding bits flipped from 0 to 1 (new allo-
cations) and vice-versa (frees):

ΣBitmapFree = Bi +B j +Bk + ...
ΣBitmapAlloc = Ni +N j +Nk + ...

At the end of the transaction, the audit verifies that the
two sets of digests agree with each other:

ΣIndFree == ΣBitmapFree
ΣIndAlloc == ΣBitmapAlloc

Similarly, several other distributed consistency invariants
can be inexpensively verified by using the digest scheme;
Section 5.4 describes them. Audit digest verification fail-
ure is handled in the same way as checksum verification
failure, as explained in Section 4.5.

5.2 Audit Performance

A digest-based audit performs much better than a Recon-
like audit because digests are inexpensive to compute
and metadata blocks need not be cached and compared.
Specifically: (1) the data that we are adding to the di-
gest is readily available in the processor’s cache because
it has just been accessed; (2) digest update involves just
one addition operation and one memory access for each
metadata update; (3) there are no expensive I/O opera-
tions due to buffer cache misses; and (4) the digest is
created incrementally with each metadata update opera-
tion which eliminates the need for an exclusive phase in

which we identify and verify all changes individually.

Note that digest update is performed together with the
block’s incremental checksum update by using the same
hook. Thus, we efficiently use one memory access to do
three things: (1) modify the indirect block, (2) update the
audit digest, and (3) update the incremental checksum.
The final verification is an inexpensive comparison of a
few bytes.

A digest-based audit of bitmap and indirect block
changes drastically reduced the overall cost of transac-
tion auditing from 30% throughput regression to less
than 2% on our database/OLTP benchmark.

5.3 Strengths and Weaknesses

The audit is provably robust with respect to bugs in the
digest update code. If we miss adding the hook to update
the digest in any of the legal APIs that are used to modify
metadata, the corresponding digest verification fails.

A digest is typically a simple sum without any position-
related information because we compare sets and not
sequences. In theory, logic bugs can result in just the
“right” pattern of incorrect updates that a digest-based
verification cannot detect. In the previous example, it is
possible for the two summations to match even if the ac-
tual updates were incorrect. Over the past five years of
this feature’s existence, such a case has never been hit in
internal development or in the field. File systems have
been corrupted only because the audit infrastructure of
the corresponding ONTAP release did not include the in-
variant for a particular consistency property.

5.4 List of Distributed Invariants

In addition to the invariant explained in Section 5.1, we
check many other distributed invariants of the WAFL file
system as part of the audit. Most of them are inexpen-
sive and are enabled by default in production systems. A
few of them are somewhat expensive and might be dis-
abled by default in production on some specific low-end
configurations with insufficient CPU horsepower.

Table 1 shows a subset of the distributed invariants that
we have implemented. We do not present other invariants
that are very specific to the persistent layout of the WAFL
file system, and that require more background to explain.
Note that all invariants were not implemented in one go;
rather, they were implemented in phases across several
releases based on the return on investment.
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Description of Equation

1
Each inode tracks a count of all blocks to which it points. The file system also maintains a total count of all the allocated
blocks. Their deltas much match.

2
The bitmap uses a bit to track the allocated state of each block in the file system [37]. The file system also maintains a
total count of all allocated blocks. The delta of the latter must equal the delta of the number of bits that flipped to 1 (i.e.,
allocated) minus the number of bits that flipped to 0 (i.e., free).

3
The inode metadata tracks the allocation status of each inode. The file system maintains a total count of all allocated inodes.
The delta of the latter must equal the number of inodes that changed state from free to allocated minus the number of inodes
that changed state from allocated to free.

4

The inode metadata tracks deleted inodes that are moved to a hidden namespace awaiting block reclamation [37]. The
current file system maintains a total count of these hidden inodes. The delta of the latter must equal the number of inodes
that were deleted (i.e., moved into the hidden namespace) minus the number of inodes that were removed from the hidden
namespace after all their blocks had been reclaimed.

5
The refcount file maintains an integer count to track all extra references to each block; WAFL uses this file to support
de-duplication. The file system maintains the physical space that is saved by de-duplication as a count of blocks. Their
deltas much match.

6
Each inode tracks a count of physical blocks that are saved by compression. The file system maintains the physical space
that is saved by compression as a count of blocks. Their deltas must match.

Table 1: Some important audit equations implemented in WAFL

6 Implementation

Intercepting modifications: All three features – incre-
mental checksum, page granular protection, and transac-
tion auditing – must intercept all modifications to a pro-
tected metadata block. We inserted a unified hook into
every legal API that is used to update metadata. The API
supplies all the requisite parameters to the hook to update
the incremental checksum, to update the corresponding
digests, and to toggle memory protection.

Almost all modifications to metadata blocks go through
well-known WAFL APIs, so it was easy to insert our
hooks inside those APIs. However, given more than two
decades’ worth of code growth and churn, there were a
few hidden and somewhat obscure places in the code that
updated metadata blocks directly; we used the page pro-
tection feature to find them. All metadata pages are read-
only by default, and the hook is needed to toggle that
mode. When the feature was turned on, any update of
metadata from an obscure code-path immediately gener-
ated a page fault with a useful stack trace, which enabled
us to modularize the code-path and insert the hook.

Special optimizations: Two common modifications to
the metadata of a file system are: (1) the update of block
pointers in an indirect block, and (2) flipping of bits in
the bitmaps to indicate the allocated or freed status of
blocks. We wrote custom, optimized checksum compu-
tation routines for those cases, i.e., the modification of a
fixed-length block pointer (64 bits in the case of WAFL)
and the modification of a single bitmap bit. For other
updates, we created a generalized incremental checksum
computation routine that is based on the offset (in the
block) and on the length of the update so that it can

handle variable length modification. An example use of
such generalized computation is file deletion processing,
which requires bulk updates of metadata blocks.

Complexity: Intercepting each modification to a meta-
data block was a bit intrusive, but it made the code more
modular and fostered better development practices. On
one hand, our implementation is more complex com-
pared with Recon because we intercept each modifica-
tion to a metadata block. But on the other hand it is
simpler because we do not have to implement a cache
and therefore avoid the many problems associated with
caching.

7 Evaluation

In this section, we evaluate the performance and the ben-
efits of the various mechanisms that we presented earlier.

We used an in-house workload generator that emulates
random reads and writes to model the query and update
operations of a database/OLTP application. It was built
to be very similar to the Storage Performance Council
Benchmark-1 (SPC-1) [20]. The Standard Performance
Evaluation Corporation home-directory style benchmark
(SPEC SFS) [19] was also used, but those results are
not presented here because our protection mechanisms
showed negligible overhead. The heavy random over-
writes that the database/OLTP benchmark produces put
a much higher stress on our mechanisms because more
metadata is modified per transaction.
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7.1 Incremental Checksum Performance

As explained earlier in Section 4.3 this mechanism uses
the per-block persistent checksum that is already en-
forced and paid for by the WAFL I/O stack. The only ad-
ditional work required is to compute the checksum incre-
mentally when the metadata is modified in memory. The
raw CPU cycles for computing and updating the check-
sum are negligible and likely are partially absorbed by
idle cycles between processor pipeline stages. The mem-
ory overhead is 4 bytes per-processor (for lockless con-
current updates) for every 4KB metadata block, which is
less than 0.1% of the total buffer cache memory. Fur-
thermore, checksum computation and update does not
directly affect the latency of a user operation because al-
most all metadata updates occur asynchronously after the
user operation has been completed and acknowledged.

Figure 1(a) and Figure 1(b), respectively, show this cost
on: (a) a midrange system with 12 Intel® Westmere
cores, 96GB DRAM and 4GB NVRAM; and (b) a low-
end system with 4 Intel Wolfdale cores, 20GB DRAM,
and 2GB NVRAM. Sufficient numbers of SAS hard
disks were attached to both systems to eliminate any
storage bottleneck. Experiments were run by using our
database/OLTP benchmark with incremental checksums
turned on and turned off, and the observed latency was
plotted against the achieved IOPS throughput with an
increasing input IOPS load. We plotted only the load
points with latencies that were less than or equal to 30ms,
which is the maximum that the SPC-1 benchmark allows.

We see an increase in latency in the range of -0.9ms to
1.7ms and zero to 0.8ms on the midrange and low-end
systems, respectively; these ranges translate to -3.5% to
10.5% and zero to 17%, respectively. Note that at very
low latencies, a small increase in latency translates into
a large percentage of change even though the absolute
change is of little practical consequence. If we look
at the achieved throughput at any given latency on the
midrange system, we see from zero to a maximum of
1% regression. On the low-end system, the throughput
regression varies from 5% (at 5ms) to zero (at 24ms).

File deletion is another workload that generates heavy
metadata updates, and thereby stresses the incremental
checksum mechanism. To process files that are pending
deletion [37], WAFL must asynchronously walk several
indirect blocks, clear block pointers in them, and up-
date the relevant metadata in large quantities. Unfortu-
nately, SPEC SFS generates an insufficient file deletion
load. Similarly, the SCSI UNMAP operation also causes
heavy metadata updates, but is not generated in suffi-
cient numbers by benchmarks such as SPC-1. Hence,
we fashioned a custom benchmark that creates numer-
ous very large files (a few terabytes’ worth of space),

Figure 1: Latency versus throughput with and without incre-
mental checksum protection with a database/OLTP workload
on: (a) a midrange system with 12 cores, 96GB DRAM, and
4GB NVRAM; and (b) a low-end system with 4 cores, 20GB
DRAM, and 2GB NVRAM.

then deletes them all and measures the delete rate that
the system achieves. Although the achievable delete rate
was pretty much the same (and there was no actual client
latency to measure), we computed the overhead of incre-
mental checksum protection as a function of the number
of blocks freed. To compute this overhead, we added up
cycles that were spent by the functions that update these
pointers and the associated metadata. The benchmark
was run on the previously mentioned midrange and low-
end systems. On the midrange system, the WAFL CPU
cost for freeing each block was computed to be around
2.16µs and 2.33µs with incremental checksums turned
off and on, respectively. The corresponding numbers on
the low-end system were 2.26µs and 2.43µs, respectively.
This represents a 7.8% and 7.5% overhead, respectively.
To put things in perspective, the CPU cycles that were
spent across all WAFL code-paths during that interval
were 3µs to 4µs per block freed. Therefore, this overhead
is 2.5% as a fraction of the total WAFL CPU cycles.

7.2 Full Protection Performance

In this section, we measure the performance overhead
of both auditing and incremental checksum working to-
gether. As explained earlier in Section 5.2 the CPU cost
of maintaining audit digests is negligible, and the cost
is minimized further by combining it with incremental
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Figure 2: Latency versus throughput with and without
all protection (audit and incremental checksum) with a
database/OLTP workload on a high-end all-flash system with
20 cores, 128GB DRAM, and 8GB NVRAM.

checksum updates. The memory overhead is tiny as it
requires just a few bytes of digest per auditing invariant.

Figure 2 studies the effect of protection mechanisms with
the database/OLTP benchmark on a high-end all-flash
system with 20 Intel Ivy Bridge cores, and 128GB of
DRAM, and several shelves’ worth of solid-state drives.
Experiments were run with all protection turned off and
on. The protection-on case includes incremental check-
sum and auditing with the 20+ audit equations that we
have implemented till date. The observed latency was
plotted against the achieved IOPS throughput with an in-
creasing input IOPS load. We see that at up to 120,000
IOPS, there is absolutely no impact on latencies. At high
loads of 128,000 IOPS and above, we see a rapid la-
tency increase of about 5.5ms, or about 25%. Note that
most customers choose to run their high-performance
database/OLTP-style loads either at or below the 2ms la-
tency mark, where we see absolutely zero impact on la-
tencies.

We should point out that compared to the midrange
system used in Figure 1 the system used in Figure 2
is a high-end system with CPU cycles to spare, next-
generation Intel chipsets, larger processor caches, more
DRAM, and solid-state drives.

7.3 Scribble Diagnostics

Page protection is turned off by default in the shipped
product; it can be turned on when required for diagnos-
tics. If a corruption bug is repeatedly hit on a system,
the other two protection mechanisms prevent it from be-
ing written to persistent storage. However, the repeated
file system restarts can be disruptive for the customer.
Because the rogue code-path or thread has already run to
completion by the time the scribble is detected, it typi-
cally takes about one person-month of senior developer

time to find the root cause of an average memory scribble
bug. However, if the customer is willing to incur a 20%
performance penalty by turning on page protection, the
root cause presents itself in the resultant core dump that
the page fault generates.

In the past five years, and over millions of hours of to-
tal run-time across hundreds of thousands of deployed
ONTAP systems, page protection has been needed only
once. A customer system hit an incremental checksum
protection panic every few hours, and even though the
root cause had been narrowed down to some suspect
code-paths, it had not been found. The customer turned
on page protection, and the resultant core file helped find
the bug, which was a buffer overflow in a rarely hit code-
path.

During product development, page protection is turned
on by default. It has proved to be invaluable not only
in identifying corruption bugs early, but also in reducing
bugs of unknown origin that might have resurfaced later
in the field. Section 7.5 provides relevant statistics.

7.4 Ability to Detect Bugs

WAFL has a built-in command-line tool that injects cor-
ruptions into in-memory data structures. Scripts invoke
this command with arguments that specify the file sys-
tem ID, inode number, indirect block level, offset, and
length, together with the corruption pattern. The tool
loads the data structure into memory (if it isn’t already
present) and injects the corruption. Several test plans
were built so that injected corruptions would be caught
by the protection mechanisms before the superblock of
the subsequent transaction commit was written out. In
some cases, the corruption pattern flipped specific bits
in the block bitmap such that the resultant checksum re-
mained unchanged and it could slip through the incre-
mental checksum protection. However, those cases were
always caught by the audit.

7.5 Benefits

These mechanisms have proved invaluable in protect-
ing customer systems from becoming corrupted. First,
we looked at corruption bugs that hit customer systems
over a four-year period before the protection mechanisms
were in place. For each bug, we tracked the time from
when the development team started looking at it to when
the root cause was discovered, and we looked at the num-
ber and the expertise of the people involved in fixing the
bugs. On average, it took about one person-month of
very senior developer time to find the root cause of each
bug.
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Figure 3: Number of times that inconsistencies made it to per-
sistent storage on customer systems, normalized to total sys-
tem run-time-hours across four different releases. Repair and
recovery procedures were required. Because this data adds up
different systems hitting the same bug, the number of actual
bugs will be lower.

Since our protection mechanisms have been in place,
most of the corruption bugs in WAFL, ONTAP, and hard-
ware drivers have been caught well before customer de-
ployment. Over a five-year period, a total of 75 mem-
ory scribble bugs have been found by page protection
when testing with debug kernels, 32 memory scribble
bugs were found in non-debug kernels by the incremental
checksum mechanism, and 23 logic bugs were found by
the auditing mechanism. We cannot overstate the value
of these results in terms of organizational productivity.

Of course, as is true with any large system, some corrup-
tion bugs do manage to escape in-house testing. The first
auditing equations shipped with NetApp Data ONTAP®

8.1 in September 2011; incremental checksum, page pro-
tection, and more auditing equations shipped with Data
ONTAP 8.2; and even more equations shipped with Data
ONTAP 8.3. In the past five years, the incremental
checksum mechanism has protected customer systems
from 8 unique memory scribble bugs 33 times, and the
auditing mechanism has protected against 9 unique logic
bugs 50 times. In total, that’s 83 times that a customer
system was saved from running expensive file system re-
covery procedures and from potential data loss.

Figure 3 shows the number of times that inconsisten-
cies have made it to the persistent file system on cus-
tomer systems, normalized to total system run-time-
hours across the past four releases over a one-year pe-
riod. The normalization by run-time-hours was neces-
sary because, during that one-year period, the system
hours that were recorded on Data ONTAP 8.1 and 8.2
were much higher than for the other two releases. Most

systems had upgraded from the older 8.0 release, and not
many systems had upgraded to 8.3 yet. Therefore, the
raw data was biased toward the 8.1 and 8.2 releases. We
see release-to-release improvements of 34%, 21%, and
44%, respectively. The total improvement amounts to a
more than 3 times reduction in the rate of occurrence of
inconsistencies. Some auxiliary WAFL metadata is not
yet covered by the protection mechanisms. Therefore,
we sometimes get benign inconsistencies in the persis-
tent file system (not real data corruptions but inconsis-
tencies nevertheless). We expect to see further reduction
in inconsistencies once we fix these gaps.

8 Conclusion
We introduced two techniques, incremental checksum
and digest-based auditing, that prevent in-memory scrib-
bles and logic bugs from corrupting persistent file sys-
tem metadata. We disproved the commonly held belief
that strong data integrity requires a high performance
penalty; we achieved integrity with a negligible perfor-
mance tax. We distinguished scribbles from logic bugs,
and also provided diagnostic capabilities to pinpoint the
culprit for software scribbles.

These techniques have greatly improved data integrity in
WAFL, resulting in an unprecedented reduction in recov-
ery runs. By catching corruptions early in the develop-
ment cycle, these techniques have enabled our engineers
to innovate rapidly without risking data integrity.

We believe that end-to-end incremental checksumming
can be applied to user data blocks, thereby providing
round-trip application-level protection at a low cost. This
technique can be especially useful in protecting appli-
cations that are hosted on third-party infrastructure, in
which the reliability of hardware cannot be established
or guaranteed. Moreover, continuous checksum protec-
tion can harden applications against induced corruption
attacks on shared cloud infrastructure. Databases and
file systems that are hosted on fabric-attached or cloud
storage are good examples of potential benefiters of such
end-to-end protection.
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Mirador: An Active Control Plane for Datacenter Storage

Jake Wires and Andrew Warfield
Coho Data

Abstract
This paper describes Mirador, a dynamic placement
service implemented as part of an enterprise scale-out
storage product. Mirador is able to encode multi-
dimensional placement goals relating to the perfor-
mance, failure response, and workload adaptation of the
storage system. Using approaches from dynamic con-
straint satisfaction, Mirador migrates both data and client
network connections in order to continuously adapt and
improve the configuration of the storage system.

1 Introduction
In becoming an active resource within the datacenter,
storage is now similar to the compute and network re-
sources to which it attaches. For those resources, recent
years have seen a reorganization of software stacks to
cleanly disentangle the notions of control and data paths.
This thrust toward “software defined” systems aims for
designs in which virtualized resources may be provi-
sioned on demand and in which central control logic al-
lows the programmatic management of resource place-
ment in support of scale, efficiency, and performance.

This paper observes that modern storage systems both
warrant and demand exactly this approach to design.
The emergence of high-performance rack-scale hard-
ware [10,17,40] is amplifying the importance of connec-
tivity between application workloads and their data as a
critical aspect of efficient datacenter design. Fortunately,
the resource programmability introduced by software de-
fined networks and the low cost of data migration on non-
volatile memory means that the dynamic reconfiguration
of a storage system is achievable.

How is dynamic placement useful in the context of stor-
age? First, consider that network topology has become
a very significant factor in distributed storage designs.
Driven by the fact that intra-rack bandwidth continues to
outpace east/west links and that storage device latencies

are approaching that of Ethernet round-trip times, effi-
cient storage placement should ensure that data is placed
in the same rack as the workloads that access it, and that
network load is actively balanced across physical links.

A separate goal of distributing replicas across isolated
failure domains requires a similar understanding of phys-
ical and network topology, but may act in opposition to
the goal of performance and efficiency mentioned above.
While placement goals such as these examples can be
motivated and described in relatively simple terms, the
resulting placement problem is multi-dimensional and
continuously changing, and so very challenging to solve.

Mirador is a dynamic storage placement service that
addresses exactly this problem. Built as a component
within a scale-out enterprise storage product [12], Mi-
rador’s role is to translate configuration intention as spec-
ified by a set of objective functions into appropriate
placement decisions that continuously optimize for per-
formance, efficiency, and safety. The broader storage
system that Mirador controls is capable of dynamically
migrating both the placement of individual chunks of
data and the client network connections that are used to
access them. Mirador borrows techniques from dynamic
constraint satisfaction to allow multi-dimensional goals
to be expressed and satisfied dynamically in response to
evolutions in environment, scale, and workloads.

This paper describes our experience in designing and
building Mirador, which is the second full version of a
placement service we have built. Our contributions are
threefold: We demonstrate that robust placement policies
can be defined as simple declarative objective functions
and that general-purpose solvers can be used to find so-
lutions that apply these constraints to both network traf-
fic and data placement in a production storage system,
advancing the application of optimization techniques to
the storage configuration problem [1, 6–8, 49]. We show
that for performance-dense storage clusters, placement
decisions informed by the relative capabilities of net-
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work and storage tiers can yield improvements over more
static layouts originally developed for large collections
of disks. And finally, we investigate techniques for ex-
ploiting longitudinal workload profiling to craft custom
placement policies that lead to additional improvements
in performance and cost-efficiency.

2 A Control Plane for Datacenter Storage
Mirador implements the control plane of a scale-out en-
terprise storage system which presents network-attached
block devices for use by virtual machines (VMs),
much like Amazon’s Elastic Block Store [11]. A
typical deployment consists of one or more indepen-
dent storage nodes populated with performance-dense
NVMe devices, each capable of sustaining random-
access throughputs of hundreds of thousands of IOPS.
In order to capitalize on the low latency of these de-
vices, storage nodes are commonly embedded horizon-
tally throughout the datacenter alongside the compute
nodes they serve. In this environment, Mirador’s role
is to provide a centralized placement service that contin-
uously monitors the storage system and coordinates the
migration of both data and network connections in re-
sponse to workload and environmental changes.

A guiding design principle of Mirador is that placement
decisions should be dynamic and flexible.

Dynamic placement decisions allow the system to adapt
to environmental change. We regularly observe deploy-
ments of hundreds to thousands of VMs where only a
small number of workloads dominate resource consump-
tion across the cluster at any given time. Moreover, the
membership of this set often changes as VMs are created
and deleted or they transition through different workload
phases. For these reasons, the initial choices made when
placing data in the cluster may not always be the best
ones; significant improvements can often be had by pe-
riodically re-evaluating placement decisions over time in
response to changes in workload behavior.

Flexible placement decisions allow the system to articu-
late complex and multidimensional policy. Rather than
trying to combine diverse and often conflicting goals
in a single monolithic description, Mirador approaches
system configuration as a search problem. Policies are
composed of one or more objective functions, simple
rules that express how resources should be allocated by
computing numerical costs for specific configurations.
A planning engine employs established constraint satis-
faction techniques to efficiently search the configuration
space for a minimal-cost solution.

In our experience, policies expressed as simple indepen-
dent rules are substantially more perspicuous and robust
than their monolithic alternatives. For example, after up-

grading the customized planning engine that shipped in
an early version of the product to a generic constraint
solver, we were able to replace a load balancing policy
originally defined in 2,000 lines of imperative Python
with a similar policy composed of seven simple rules
each expressed in less than thirty lines of code (see
§ 3.2.1 for examples). Much of the complexity of the
original policy came from describing how it should be
realized rather than what it intended to achieve. By dis-
entangling these two questions and answering the former
with a generic search algorithm, we arrived at a policy
description that is equally efficient as the first version,
yet much easier to reason about and maintain.

Mirador implements the configuration changes recom-
mended by the planning engine by coordinating a cluster-
wide schedule of data and network migration tasks, tak-
ing care to minimize the performance impact on client
workloads. It communicates directly with switches and
storage nodes to effect these migrations, continually
monitoring system performance as it does so. In this
way it actively responds to environmental and workload
changes and results in a more responsive, robust system.

3 Mirador
Mirador is a highly-available data placement service that
is part of a commercial scale-out storage product. Fig-
ure 1 presents a typical cluster composed of multiple
storage nodes. Each node is a regular server populated
with one or more directly-attached, non-volatile storage
devices. Nodes implement an object interface on top
of these devices and manage virtual to physical address
translations internally. Objects present sparse 63-bit ad-
dress spaces and are the primary unit of placement. A
virtual block device interface is presented to clients. Vir-
tual devices may be composed of one or more objects
distributed across multiple nodes; by default, they are
striped across 16 objects, resulting in typical object sizes
on the order of tens to hundreds of GiB.

The storage cluster is fronted by a set of Software De-
fined Network (SDN) switches that export the cluster
over a single virtual IP address. Clients connect to the
virtual IP and are directed to storage nodes by a cus-
tom SDN controller. Nodes are connected in a mesh
topology, and any node is capable of servicing requests
from any client, allowing the mapping between clients
and nodes to be modified arbitrarily.

One or more nodes in the cluster participate as a Mi-
rador service provider. Service providers work together
to monitor the state of the cluster and initiate rebalance
jobs in response to topology and load changes. Rebal-
ance jobs are structured as a control pipeline that gen-
erates and executes plans for dynamically reconfiguring
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Figure 1: The storage system architecture (below) and the Mirador rebalance pipeline (above). The figure shows two examples of
the system performing actuations in response to observed state. First, the fourth storage node has become disproportionately full
relative to the other nodes. To balance capacity in the system, the rightmost object on that node is undergoing background migration
to the third node. Second, the physical network link into the left side port of the second storage node has come under pressure from
two high-volume flows from the first two clients. The system will observe this overload, and then chose one of the flows to migrate
to a different physical link.

the placement of data and client connections in order to
optimize for performance, efficiency, and safety. Job
state is periodically checkpointed in a replicated state
machine [28], providing strong resliency against failures.

The rebalance pipeline is composed of three stages:

Observation A system monitor collects resource met-
rics like device and network load along with detailed
workload profiles to construct a model of the cluster.

Optimization A planning engine computes a numer-
ical cost for the current configuration and searches for
alternative configurations that would reduce or eliminate
this cost. If a lower-cost arrangement is identified, a plan
is constructed that yields the desired results.

Actuation A scheduler implements the plan by coor-
dinating the migration of data and client connections.

3.1 Observation
The system monitor maintains a storage system model
that captures all relevant properties of the physical sys-

tem, including static features like cluster topology (e.g.,
the number of devices and nodes, the capacity of their
network links, and user-defined failure domains) and dy-
namic features like the current free space and IO load of
devices and the utilization of network ports.

The monitor also collects highly-compressed sketches of
individual workload behavior [55]. These summaries are
collected by a dedicated workload analysis service, and
they include features such as miss ratio curves and win-
dowed footprints. Unlike hardware utilization levels, this
data cannot be computed from instantaneous measure-
ments, but instead requires detailed profiling of work-
loads over extended periods of time.

The monitor synchronizes the model by polling the clus-
ter; sampling frequencies vary from every few seconds
for metrics like link load to tens of minutes for workload
footprint measurements, while exceptional events such
as device failures are signalled via special alerts.

3.2 Optimization
The planning engine implements the logic responsible
for generating rebalance plans. Placement logic is en-
capsulated in one or more objective functions that specify
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rules for how data and flows should be distributed across
the cluster. The engine invokes a solver to search for new
configurations that reduce placement costs, as defined by
the objective functions.

The planning engine manipulates a copy of the storage
model when considering alternative configurations. For
example, if a decision is made to move an object from
one device to another, the modelled free space and load
of each device is adjusted to reflect the change.

Modelling data migration within the cluster is a challeng-
ing problem. While an object’s size serves as a rough ap-
proximation of the cost of migrating it, the actual time re-
quired to move the data depends on many things, includ-
ing the type and load of the source and destination de-
vices, network contention along the migration path, and
fragmentation of the data being migrated. This is impor-
tant, however, because system resources like free space
and bandwidth may be consumed at both the source and
destination devices during migration, and the solver may
make poor decisions if this usage is modelled incor-
rectly. For this reason, migrations initiated during the op-
timization stage are modelled conservatively by reserv-
ing space on the destination device at the beginning of
operation and only releasing it from the source device
once the migration has completed.

3.2.1 Objective Functions

Data placement is expressed as an optimization problem
by representing objects and flows as variables and de-
vices and links as the values these variables can take, re-
spectively. Within this framework, objective functions
model the cost (or benefit) of assigning a value to a given
variable (e.g., placing a replica on a specific device). 1

Mirador objective functions can assign arbitrary numeri-
cal costs to a given configuration. Hard constraints, im-
plemented by rules imposing an infinite cost, can never
be violated – any configuration with an infinite cost is
rejected outright. Negative costs can also be used to ex-
press affinities for preferred assignments. An optimal
configuration is one that minimizes the cumulative cost
of all assignments; solvers employ various search strate-
gies to find minimal-cost solutions. In the case that no
finite-cost configuration can be found (e.g., due to catas-
trophic hardware failure), Mirador raises an alert that
manual intervention is required.

Objective functions are expressed as simple Python func-
tions operating on the storage system model described
above. Listing 1 shows a rule designed to minimize load
imbalances by stipulating that the spread between the
most- and least-loaded devices falls within a given range.

1For clarity of exposition, we use the terms objective function and
rule interchangably throughout the paper.

(Note that this formulation codifies a system-level no-
tion of balance by assigning costs to all objects located
on overloaded devices; moving just one such object to
a different device may be enough to eliminate the cost
for all the remaining objects.) During the optimization
stage, the planning engine converts the storage model
into an abstract representation of variables, values, and
objectives, and computes the cost of each assignment by
invoking its associated rules (see § 3.2.2).

A special annotation specifies the scope of the rule, indi-
cating which components it affects (e.g., objects, con-
nections, devices, links). Solvers refer to these anno-
tations when determining which rules need to be re-
evaluated during configuration changes. For example,
the load_balanced rule affects devices, and must be
invoked whenever the contents of a device changes.

Mutual objectives can be defined over multiple related
objects. For instance, Listing 2 gives the implementation
of a rule stipulating that no two objects in a replica set
reside on the same device; it could easily be extended to
include broader knowledge of rack and warehouse topol-
ogy as well. Whenever a solver assigns a new value to
a variable affected by a mutual objective, it must also
re-evaluate all related variables (e.g., all other replicas
in the replica set), as their costs may have changed as a
consequence of the reassignment.

Rules can provide hints to the solver to help prune the
search space. Rule implementations accept a domain ar-
gument, which gives a dictionary of the values that can
be assigned to the variable under consideration, and is
initially empty. Rules are free to update this dictionary
with the expected cost that would be incurred by assign-
ing a particular value. For example, the rule in List-
ing 2 populates a given replica’s domain with the pre-
computed cost of moving it onto any device already host-
ing one of its copies, thereby deprioritizing these devices
during the search. The intuition behind this optimization
is that most rules in the system only affect a small sub-
set of the possible values a variable can take, and con-
sequently, a handful of carefully chosen hints can effi-
ciently prune a large portion of the solution space.

A policy consists of one or more rules, which can be
restricted to specific hardware components or object
groups in support of multi-tenant deployments.

3.2.2 Solvers

The planning engine is written in a modular way, mak-
ing it easy to implement multiple solvers with different
search strategies. Solvers accept three arguments: a dic-
tionary of assignments mapping variables to their cur-
rent values, a dictionary of domains mapping variables
to all possible values they can take, and a dictionary of
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@rule(model.Device)
def load_balanced(fs, device, domain):

cost, penalty = 0, DEVICE_BALANCED_COST
# compute load of current device
# for the current sample interval
load = device.load()
# compute load of least-loaded device
minload = fs.mindevice().load()
if load − minload > LOAD_SPREAD:

# if the difference is too large,
# the current device is overloaded
cost = penalty

return cost

Listing 1: Load Balancing Rule

@rule(model.ReplicaSet)
def rplset_devices_unique(fs, replica, domain):

cost, penalty = 0, INFINITY
for rpl in replica.rplset:

if rpl is replica:
# skip current replica
continue

if rpl.device is replica.device:
# two replicas on the same device
# violate redundancy constraint
cost = penalty

# provide a hint to the solver that the
# devices already hosting this replica set
# are poor candidates for this replica.
domain[rpl.device] += penalty

return cost

Listing 2: Hardware Redundancy Rule

objectives mapping variables to the rules they must sat-
isfy. Newly-added variables may have no assignment to
start with, indicating that they have not yet been placed
in the system. Solvers generate a sequence of solutions,
dictionaries mapping variables to their new values. The
planning engine iterates through this sequence of solu-
tions until it finds one with an acceptable cost, or no more
solutions can be found.

Mirador provides a pluggable solver interface that ab-
stracts all knowledge of the storage model described
abover. Solvers implement generic search algorithms
and are free to employ standard optimization tech-
niques like forward checking [24] and constraint propa-
gation [36] to improve performance and solution quality.

We initially experimented with a branch and bound
solver [44] because at first glance it fits well with our
typical use case of soft constraints in a dense solution
space [19]. A key challenge to using backtracking algo-
rithms for data placement, however, is that these algo-
rithms frequently yield solutions that are very different
from their initial assignments. Because reassigning vari-
ables in this context may imply migrating a large amount
of data from one device to another, this property can be
quite onerous in practice. One way to address this is to
add a rule whose cost is proportional to the difference
between the solution and its initial assignment (as mea-

sured, for example, by its Hamming distance) [25]. How-
ever, this technique precludes zero-cost reconfigurations
(since every reassignment incurs a cost) and thus requires
careful tuning when determining whether a solution with
an acceptable cost has been found.

We eventually adopted a simpler greedy algorithm.
While it is not guaranteed to identify optimal solutions
in every case, we find in practice that it yields quality
solutions with fewer reassignments and a much more
predictable run time. In fact, the greedy algorithm has
been shown to be a 2-approximate solution for the re-
lated makespan problem [22], and it is a natural fit for
load rebalancing as well [3].

Listing 3 presents a simplified implementation of the
greedy solver. It maintains a priority queue of variables
that are currently violating rules, ordered by the cost of
the violations, and a priority-ordered domain for each
variable specifying the possible values it can take. A
pluggable module updates domain priorities in response
to variable reassignments, making it possible to model
capacity and load changes as the solver permutes the
system searching for a solution. The current implemen-
tation prioritizes values according to various utilization
metrics, including free space and load.

As described in § 3.2.1, objective functions can pro-
vide hints to the solver about potential assignments. The
greedy algorithm uses these hints to augment the prior-
ity order defined by the storage system model, so that
values that would violate rules are deprioritized. The
search is performed in a single pass over all variables,
starting with the highest-cost variables. First the rules for
the variable are invoked to determine whether any values
in its domain violate the prescribed placement objectives
(or alternatively, satisfy placement affinities). If the rules
identify a zero or negative-cost assignment, this is cho-
sen. Otherwise, the highest-priority unconstrained value
is selected from the variable’s domain. The search yields
its solution once all violations have been resolved or all
variables have been evaluated.

Besides its predictable run time, the greedy algorithm
generally yields low migration overheads, since only
variables that are violating rules are considered for re-
assignment. However, if the initial assignments are poor,
the algorithm can get trapped in local minima and fail
to find a zero-cost solution. In this case, a second pass
clears the assignment of a group of the costliest variables
collectively, providing more freedom for the solver, but
potentially incurring higher migration costs. We find that
this second pass is rarely necessary given the typically
under-constrained policies we use in production and is
limited almost exclusively to unit tests that intentionally
stress the planning engine (see § 5 for more details).
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def greedy(assignments, domains, objectives):
# rank variables according to cost
queue = PriorityQueue(domains)

while queue.cost() > 0:
# select the highest-cost variable
val = None
var = queue.pop()
cur = assignments.get(var)
domain = domains[var]

# retrieve the variable’s current cost
# and any domain hints provided by the
# rules
cost, hints = score(var, cur, objectives)
if cost <= 0:

# current assignment is good
continue

if hints:
# find the lowest-cost hint. NB: we
# assume that typically, most values
# are unconstrained, so this linear
# scan adds a small constant overhead.
try:

val = min(
v for v in hints
if v in domain and v ! = cur

)
except ValueError:
pass

if val is None or hints[val] > 0:
# if we have no hints, or the best
# hints are costly, choose the lowest-
# cost unconstrained value in the domain
val = next(

(
v for v in domain
if v not in hints and v ! = cur

),
val

)

if val is None:
# couldn’t find a value
c = infinity

else:
# compute cost of new value
c, _ = score(var, val, objectives)

if c >= cost:
# no benefit to re-assigning
continue

# found a better assignment
assignments[var] = val

# recompute the cost of any mutually-
# constrained variables that haven’t
# already been evaluated
for v in rulemap(var, objectives):

if v in queue:
queue.reschedule(v)

# we’ve arrived at a solution
return assignments

Listing 3: Greedy Solver

3.3 Actuation
Mirador can migrate both data and client connections.
The scheduler models the cost of data migration conser-
vatively, and attempts to minimize the impact of such mi-
grations on client performance whenever possible. Con-
nection migrations are generally cheaper to perform and
as such occur much more frequently – on the order of
minutes rather than hours.

Optimally scheduling data migration tasks is NP-
hard [31–33]; Mirador implements a simple global
scheduler that parallelizes migrations as much as possi-
ble without overloading individual devices or links.

Data migrations are performed in two steps: first, a back-
ground task copies an object to the destination device,
and then, only after the object is fully replicated at the
destination, it is removed from the source. This ensures
that the durability of the object is never compromised
during migration. Client connections are migrated using
standard SDN routing APIs augmented by custom proto-
col handlers that facilitate session state handover.

3.4 Platform Support
Mirador executes rebalance jobs in batches by (1) se-
lecting a group of objects and/or client connections to
inspect, (2) invoking the planning engine to search for
alternative configurations for these entities, and (3) coor-
dinating the migration tasks required to achieve the new
layout. Batches can overlap, allowing parallelism across
the three stages. Mirador attempts to prioritize the worst
offenders in early batches in order to minimize actuation
costs, but it guarantees that every object is processed at
least once during every job.

Mirador is able to perform its job efficiently thanks to
three unique features provided by the storage platform.
First, the system monitor relies on a notification facil-
ity provided by the cluster metadata service to quickly
identify objects that have been recently created or mod-
ified. This allows nodes in the cluster to make quick,
conservative placement decisions on the data path while
making it easy for Mirador to inspect and modify these
decisions in a timely manner, providing a strong decou-
pling of data and control paths. Second, the planning en-
gine makes use of a prioritization interface implemented
at each node that accepts a metric identifier as an argu-
ment (e.g., network or disk throughput, storage IOPS or
capacity) and returns a list of the busiest workloads cur-
rently being serviced by the node. Mirador can use this
to inspect problematic offenders first when attempting to
minimize specific objective functions (such as load bal-
ancing and capacity constraints) rather than inspecting
objects in arbitrary order. Finally, the actuation sched-
uler implements plans with the help of a migration rou-
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tine that performs optimized background copies of ob-
jects across nodes and supports online reconfiguration of
object metadata. This interface also provides hooks to
the network controller to migrate connections and ses-
sion state across nodes.

4 Evaluation
In this section we explore both the expressive power of
Mirador policies and the impact such policies can have
on real storage workloads. Table 1 lists the rules featured
in this section; some have been used in production de-
ployments for over a year, while others are presented to
demonstrate the breadth and variety of placement strate-
gies enabled by Mirador.

§ 4.1 measures the performance and scalability of the
planning engine, independent of storage hardware. § 4.2
shows how Mirador performs in representative enter-
prise configurations; storage nodes in this section are
equipped with 12 1 TB SSDs, two 10 gigabit Ethernet
ports, 64 GiB of RAM, and 2 Xeon E5-2620 processors
at 2 GHz with 6 cores each and hyperthreading enabled.
§ 4.3 and § 4.4 highlight the flexibility of rule-based
policies, as measured on a smaller development cluster
where 2 800 GB Intel 910 PCIe flash cards replace the
12 SSDs on each node.

Client workloads run in virtual machines hosted on four
Dell PowerEdge r420 boxes running VMware ESXi 6.0,
each with two 10 gigabit Ethernet ports, 64 GiB of RAM,
and 2 Xeon ES-2470 processors at 2.3 GHz with 8 cores
and hyperthreading enabled. Clients connect to stor-
age nodes using NFSv3 via a dedicated 48-port SDN-
controlled Arista 7050Tx switch, and VM disk images
are striped across sixteen objects.

4.1 Optimization
We begin by benchmarking the greedy solver, which is
used in all subsequent experiments. Given rules that run
in constant time, this solver has a computational com-
plexity of O(N logN logM) for a system with N objects
and M devices.

We measure solver runtime when enforcing
a simple load-balancing policy (based on the
device_has_space and load_balanced rules,
with the latter enforcing a LOAD_SPREAD of 20%) in
deployments of various sizes. In each experiment,
a simulated cluster is modelled with fixed-capacity
devices (no more than ten per node) randomly populated
with objects whose sizes and loads are drawn from a
Pareto distribution, scaled such that no single object
exceeds the capacity of a device and the cluster is
roughly 65% full. For each configuration we present
the time required to find a zero-cost solution as well

as the number of reconfigurations required to achieve
the solution, averaged over ten runs. Some experi-
ments require no reconfigurations because their high
object-to-device ratios result in very small objects that
yield well-balanced load distributions under the initial,
uniformly random placement; the runtimes for these
experiments measure only the time required to validate
the initial configuration.

As Table 2 shows, the flexibility provided by Python-
based rules comes with a downside of relatively high
execution times (more than a minute for a system with
100K objects and 1K devices). While we believe there
is ample opportunity to improve our unoptimized imple-
mentation, we have not yet done so, primarily because
rebalance jobs run in overlapping batches, allowing op-
timization and actuation tasks to execute in parallel, and
actuation times typically dominate.

4.2 Actuation
In the following experiment we measure actuation per-
formance by demonstrating how Mirador restores redun-
dancy in the face of hardware failures. We provision four
nodes, each with 12 1 TB SSDs, for a total of 48 devices.
We deploy 1,500 client VMs, each running fio [18]
with a configuration modelled after virtual desktop work-
loads. VMs issue 4 KiB requests against 1 GiB disks.
Requests are drawn from an 80/20 Pareto distribution
with an 80:20 read:write ratio; read and write through-
puts are rate-limited to 192 KiB/sec and 48 KiB/sec, re-
spectively, with a maximum queue depth of 4, generating
an aggregate throughput of roughly 100K IOPS.

Five minutes into the experiment, we take a device offline
and schedule a rebalance job. The rplset_durable
rule assigns infinite cost to objects placed on failed de-
vices, forcing reconfigurations, while load-balancing and
failure-domain rules prioritize the choice of replacement
devices. The job defers actuation until a 15 minute sta-
bilization interval expires so that transient errors do not
trigger unnecessary migrations. During this time it in-
spects more than 118,000 objects, and it eventually re-
builds 3053 in just under 20 minutes, with negligible ef-
fect on client workloads, as seen in Figure 2.

4.3 Resource Objectives
We now shift our attention to the efficacy of specific
placement rules, measuring the degree to which they can
affect client performance in live systems. We first focus
on resource-centric placement rules that leverage knowl-
edge of cluster topology and client configurations to im-
prove performance and simplify lifecycle operations.

USENIX Association 15th USENIX Conference on File and Storage Technologies    219



Name Objective Cost Lines of Code

device_has_space devices are not filled beyond capacity ∞ 4
rplset_durable replica sets are adequately replicated on healthy devices ∞ 4
load_balanced load is balanced across devices 70 13
links_balanced load is balanced across links 20 13
node_local client files are co-located on common nodes 60 30
direct_connect client connections are routed directly to their most-frequently accessed nodes 10 14
wss_best_fit active working set sizes do not exceed flash capacities 40 4
isolated cache-unfriendly workloads are co-located 20 30
co_scheduled competing periodic workloads are isolated 20 35

Table 1: Objective functions used in evaluation section; cost gives the penalty incurred for violating the rule.

Objects Devices Reconfigurations Time (seconds)

1K 10 6.40±2.72 0.40±0.06
1K 100 145.50±33.23 0.83±0.08
1K 1000 220.00±12.53 10.11±0.49

10K 10 0.00±0.00 1.61±0.01
10K 100 55.70±5.46 5.54±0.37
10K 1000 1475.00±69.70 16.71±0.88

100K 10 0.00±0.00 17.10±0.37
100K 100 9.30±4.62 22.37±5.38
100K 1000 573.80±22.44 77.21±2.87

Table 2: Greedy solver runtime for various deployment sizes
with a basic load-balancing policy; reconfigurations gives the
number of changes made to yield a zero-cost solution.

4.3.1 Topology-Aware Placement

In this experiment we measure the value of topology-
aware placement policies in distributed systems. We de-
ploy four storage nodes and four clients, with each client
hosting 8 VMs running a fio workload issuing random
4 KiB reads against dedicated 2 GiB virtual disks at
queue depths ranging between 1 and 32.

Figure 3a presents the application-perceived latency
achieved under three different placement policies when
VMs issue requests at a queue depth of one. The random
policy distributes stripes across backend devices using
a simple consistent hashing scheme and applies a ran-
dom one-to-one mapping from clients to storage nodes.
This results in a configuration where each node serves
requests from exactly one client, and with four nodes,
roughly 75% of reads access remotely-hosted stripes.
This topology-agnostic strategy is simple to implement,
and, assuming workload uniformity, can be expected to
achieve even utilization across the cluster, although it
does require significant backend network communica-
tion. Indeed, as the number of storage nodes in a cluster
increases, the likelihood that any node is able to serve re-
quests locally decreases; in the limit, all requests require
a backend RTT. This behavior is captured by the remote
policy, which places stripes such that no node has a local
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Figure 2: Rebuilding replicas after a device failure.

copy of any of the data belonging to the clients it serves.
The local policy follows the opposite strategy, placing all
stripes for a given VM on a single node and ensuring that
clients connect directly to the nodes hosting their data.
Notably, all three policies are implemented in less than
twenty lines of code, demonstrating the expressiveness
of Mirador’s optimization framework.

By co-locating VM stripes and intelligently routing
client connections, the local policy eliminates additional
backend RTTs and yields appreciable performance im-
provements, with median latencies 18% and 22% lower
than those of the random and remote policies, respec-
tively. Similar reductions are obtained across all mea-
sured queue depths, leading to comparable increases in
throughput, as shown in Figure 3b.

4.3.2 Elastic Scale Out

In addition to improving application-perceived perfor-
mance, minimizing cross-node communication enables
linear scale out across nodes. While a random placement
policy would incur proportionally more network RTTs as
a cluster grows in size (potentially consuming oversub-
scribed cross-rack bandwidth), local placement strate-
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background data copies. At time t85, two of the four client machines are deactivated; the remaining client load is subsequently
redistributed, at which point performance is limited by client resources.

gies can make full use of new hardware with minimal
communication overhead. This is illustrated in Figure 4,
which presents a timeline of aggregate client IOPS as
storage nodes are added to a cluster. At time t0 the clus-
ter is configured with a single storage node serving four
clients, each hosting 16 VMs issuing random 4 KiB reads
at a queue depth of 32; performance is initially bottle-
necked by the limited storage. At time t20, an additional
node is introduced, and the placement service automati-
cally rebalances the data and client connections to make
use of it. It takes just over two minutes to move roughly
half the data in the cluster onto the new node. This mi-
gration is performed as a low-priority background task
to limit interference with client IO. Two additional nodes
are added at twenty minute intervals, and in each case,
after a brief dip in client performance caused by compet-
ing migration traffic, throughput increases linearly.

The performance and scalability benefits of the local pol-
icy are appealing, but to be practical, this approach re-

quires a truly dynamic placement service. While both lo-
cal and random policies are susceptible to utilization im-
balances caused by non-uniform workload patterns (e.g.,
workload ‘hot spots’), the problem is exacerbated in the
local case. For example, if all workloads placed on a spe-
cific node happen to become idle at the same time, that
node will be underutilized. Figure 4 shows exactly this
scenario at time t85, where two clients are deactivated and
the nodes serving them sit idle, halving overall through-
put. After waiting for workload behavior to stabilize, the
placement service responds to this imbalance by migrat-
ing some of the remaining VMs onto the idle storage, at
which point the clients become the bottleneck.

4.4 Workload Objectives
Placement policies informed by resource monitoring can
provide significant improvements in performance and ef-
ficiency, but they are somewhat reactive in the sense that
they must constantly try to ‘catch up’ to changes in work-
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load behavior. In this section we introduce and evaluate
several techniques for improving data placement based
on longitudinal observations of workload behavior.

The following examples are motivated by an analysis
of hundreds of thousands of workload profiles collected
from production deployments over the course of more
than a year. The synthetic workloads evaluated here,
while relatively simple, reflect some of the broad patterns
we observe in these real-world profiles.

For these experiments, we extend the storage configura-
tion described in § 4.3 with a disk-based capacity tier.
The placement service controls how objects are assigned
to flash devices as before; nodes manage the flash cards
as LRU caches and page objects to disk in 512 KiB
blocks. We artificially reduce the capacity of each flash
device to 4 GiB to stress the tiering subsystem. While
our evaluation focuses on conventional tiered storage, we
note that the techniques presented here are applicable to a
wide variety of hierarchical and NUMA architectures in
which expensive, high-performance memories are com-
bined with cheaper, more capacious alternatives, possi-
bly connected by throughput-limited networks.

4.4.1 Footprint-Aware Placement

Many real-world workloads feature working sets
(roughly defined as the set of data that is frequently ac-
cessed over a given period of time) that are much smaller
than their total data sets [13, 56]. Policies that make de-
cisions based only on knowledge of the latter may lead
to suboptimal configurations. We show how augmenting
traditional capacity rules with knowledge of working set
sizes can lead to improved placement decisions.

We begin by deploying eight VMs across two clients
connected to a cluster of two nodes. Each VM disk image
holds 32 GiB, but the VMs are configured to run random
4 KiB read workloads over a fixed subset of the disks,
such that working set sizes range from 500 MiB to 4 GiB.
Given two nodes with 8 GiB of flash each, it is impossi-
ble to store all 256 GiB of VM data in flash; however, the
total workload footprint as measured by the analysis ser-
vice is roughly 17 GiB, and if carefully arranged, it can
fit almost entirely in flash without exceeding the capacity
of any single device by more than 1 GiB.

We measure the application-perceived latency for these
VMs in two configurations. In the first, VMs are parti-
tioned evenly among the two nodes using the local policy
described in § 4.3.1 to avoid network RTTs. In the sec-
ond, the same placement policy is used, but it is extended
with one additional rule that discourages configurations
where combined working set sizes exceed the capacity of
a given flash card. The cost of violating this rule is higher
than the cost of violating the node-local rule, codifying
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Figure 5: Fitting working sets to flash capacities (‘best fit’)
yields a median latency of 997 µsecs, compared to 2088 µsecs
for the ‘local’ policy that eliminates backend network RTTs but
serves more requests from disk.

a preference for remote flash accesses over local disk ac-
cesses. The greedy solver is a good fit for this problem
and arrives at a configuration in which only one flash de-
vice serves a combined working set size larger than its
capacity.

As Figure 5 shows, the best-fit policy results in signifi-
cantly lower latencies, because the cost of additional net-
work hops is dwarfed by the penalty incurred by cache
misses. The purely local policy exhibits less predictable
performance and a long latency tail because of cumula-
tive queuing effects at the disk tier. This is a clear ex-
ample of how combining knowledge of the relative ca-
pabilities of network links and storage tiers with detailed
workload profiling can improve placement decisions.

4.4.2 Noisy Neighbor Isolation

We next introduce four cache-unfriendly workloads each
with 4 GiB disks. The workloads perform linear scans
that, given 4 GiB LRU caches, are always served from
disk and result in substantial cache pollution. These
workloads make it impossible to completely satisfy the
working set size rule of the previous experiment.

We measure the request latency of the original work-
loads as they compete with these new cache-unfriendly
workloads under two policies: a fair share policy that
distributes the cache-unfriendly workloads evenly across
the flash devices, and an isolation policy that attempts to
limit overall cache pollution by introducing a new rule
that encourages co-locating cache-unfriendly workloads
on common nodes, regardless of whether or not they
fit within flash together. As Figure 6 shows, this lat-
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Figure 6: Isolating cache-unfriendly workloads on a single
device yields a median latency of 1036 µsecs, compared to
3220 µsecs for the ‘fair’ policy that distributes these workloads
uniformly across all devices.

ter policy exhibits a bimodal latency distribution, with
nearly 48% of requests enjoying latencies less than one
millisecond while a handful of ‘victim’ workloads ex-
perience higher latencies due to contention with cache-
unfriendly competitors. The fair share policy, on the
other hand, features a more uniform distribution, with all
workloads suffering equally, and a median latency more
than three times higher than that of the isolated policy.

4.4.3 Workload Co-scheduling

Finally, we introduce a technique for leveraging long-
term temporal patterns in workload behavior to improve
data placement. We frequently see storage workloads
with pronounced diurnal patterns of high activity at key
hours of the day followed by longer periods of idleness.
This behavior typically correlates with workday habits
and regularly scheduled maintenance tasks [16, 37, 46].
Similar effects can be seen at much smaller scales in
CPU caches, where the strategy of co-locating applica-
tions to avoid contention is called ‘co-scheduling’ [50].

We present a simple algorithm for reducing cache con-
tention of periodic workloads. The workload analysis
service maintains an extended time series of the footprint
of each workload, where footprint is defined as the num-
ber of unique blocks accessed over some time window; in
this experiment we use a window of ten minutes. Given
a set of workloads, we compute the degree to which they
contend by measuring how much their bursts overlap.
Specifically, we model the cost of co-locating two work-
loads W1 and W2 with corresponding footprint functions
f1(t) and f2(t) as

∫
min( f1(t), f2(t)). We use this metric
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Figure 7: Co-scheduling periodic workloads.

to estimate the cost of placing workloads together on a
given device, and employ a linear first-fit algorithm [14]
to search for an arrangement of workloads across avail-
able devices that minimizes the aggregate cost. Finally,
we introduce the co_scheduled rule which encodes an
affinity for assignments that match this arrangement.

We evaluate this heuristic by deploying 8 VMs with
4 GiB disks across two storage nodes each with two
4 GiB flash devices. The VMs perform IO workloads
featuring periodic hour-long bursts of random reads fol-
lowed by idle intervals of roughly 3 hours, with the peri-
odic phases shifted in some VMs such that not all work-
loads are active at the same time. The combined foot-
print of any two concurrent bursts exceeds the size of any
single flash device, and if co-located, will incur signifi-
cant paging. We measure request latency under a number
of different configurations: random, in which stripes are
randomly distributed across devices, optimal and pessi-
mal, in which VMs are distributed two to a device so as
to minimize and maximize contention, respectively, and
first-fit, as described above.

Figure 7 plots latency CDFs for each of these config-
urations. The penalty of concurrent bursts is evident
from the pronounced disparity between the optimal and
pessimal cases; in the latter configuration, contention
among co-located workloads is high, drastically exceed-
ing the available flash capacity. The first-fit approxima-
tion closely tracks optimal in the first two quartiles but
performs more like random in the last two, suggesting
room for improvement either by developing a more so-
phisticated search algorithm or responding more aggres-
sively to workload changes.

5 Experience
To see how Mirador performs in real-world environ-
ments, we sample logs detailing more than 8,000 rebal-
ance jobs in clusters installed across nearly 50 customer
sites and ranging in size from 8 to 96 devices. Figure 8 il-
lustrates how time spent in the optimization stage scales
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Figure 8: Optimization time vs. objects inspected.
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Figure 9: Violations observed vs. objects inspected (jobs where
no zero-cost solution was found after a single optimization
round are marked with a red x).

in proportion to the number of objects inspected; these
measurements include rate-limiting delays imposed to
prevent Mirador from impacting client workloads when
reading metadata. Figure 9 plots the number of observed
violations against the number of objects inspected per
job, and highlights jobs that fail to find a zero-cost so-
lution after a single optimization pass. This occurs in
only 2.5% of sampled jobs in which objective functions
are violated, and in 71% of these cases, no zero-cost so-
lutions are possible due to environmental circumstances
(some log samples cover periods in which devices were
intentionally taken offline for testing or maintenance).

We have found Mirador’s flexibility and extensibility to
be two of its best attributes. Over the nearly 18 months
in which it has been in production, we have adapted it
to new replication policies and storage architectures sim-
ply by modifying existing rules and adding new ones. It
has also been straightforward to extend Mirador to sup-
port new functionality: in addition to providing capac-
ity balancing across storage devices and network links, it
now plays a central role in cluster expansion, hardware
retirement, failure recovery, health monitoring, and disk
scrubbing features. For example, upon discovering an
invalid data checksum, our disk scrubbing service sim-
ply marks the affected object as corrupt and notifies the
placement service, where a custom rule forces the mi-

gration of marked objects to new locations, effectively
rebuilding them from valid replicas in the process.

Our deployment strategy to date has been conservative:
we ship a fixed set of rules (currently seven) and con-
trol how and when they are used. Assigning appropri-
ate costs to rules requires domain knowledge, since rules
often articulate conflicting objectives and poorly chosen
costs can lead to unintended behavior. As an example,
if solvers fail to identify a zero-cost solution, they yield
the one with the lowest aggregate cost – if multiple rules
conflict for a given assignment, the assignment which
minimizes the overall cost is chosen. It is thus impor-
tant to know which objective functions a replica set may
violate so that high priority rules are assigned costs suf-
ficiently large enough to avoid priority inversion in the
face of violations of multiple lower-priority rules.

While objective functions neatly encapsulate individual
placement goals and are relatively easy to reason about,
comprehensive policies are more complex and must be
carefully vetted. We validate rules, both in isolation and
combination, with hundreds of policy tests. Declarative
test cases specify a cluster configuration and initial data
layout along with an expected optimization plan; the test
harness generates a storage system model from the spec-
ification, invokes the planning engine, and validates the
output. We have also built a fuzz tester that can stress
policies in unanticipated ways. The test induces a se-
quence of random events (such as the addition and re-
moval of nodes, changes in load, etc.) and invokes the
policy validation tool after each step. Any cluster config-
uration that generates a policy violation is automatically
converted into a test case to be added to the regression
suite after the desired behavior is determined by manual
inspection. Validating any non-trivial placement policy
can require a fair amount of experimentation, but in our
experience, the cost-based framework provided by Mi-
rador provides knobs that greatly simplify this task.

In production, rebalance jobs run in two passes: the
first enforces critical rules related to redundancy and
fault tolerance, while the second additionally enforces
rules related to load-balancing and performance. This is
done because the planning engine must inspect objects in
batches (batches are limited to roughly 10,000 objects to
keep memory overheads constant), and we want to avoid
filling a device in an early batch in order to satisfy low-
priority rules when that same device may be necessary to
satisfy higher-priority rules in a later batch.

Early testing revealed the importance of carefully tuning
data migration rates. Our migration service originally
provided two priorities, with the higher of these intended
for failure scenarios in which replicas need to be rebuilt.
In practice, however, we found that such failures place
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additional stress on the system, often driving latencies
up. Introducing high-priority migration traffic in these
situations can lead to timeouts that only make things
worse, especially under load. We have since adopted a
single migration priority based on an adaptive queuing
algorithm that aims to isolate migration traffic as much
as possible while ensuring forward progress is made.

6 Related Work
Researchers have proposed a wide variety of strategies
for addressing the data placement problem, also known
as the file assignment problem [15]. Deterministic ap-
proaches are common in large-scale systems [38, 41, 48,
51, 53] because they are decentralized and impose min-
imal metadata overheads, and they achieve probabilisti-
cally uniform load distribution for large numbers of ob-
jects [43,45]. Consistent hashing [30] provides relatively
stable placement even as storage targets are added and re-
moved [21, 57]. Related schemes offer refinements like
the ability to prioritize storage targets and modify repli-
cation factors [26, 27, 52], but these approaches are in-
trinsically less flexible than dynamic policies.

Non-deterministic strategies maintain explicit metadata
in order to locate data. Some of these systems employ
random or semi-random placement policies for the sake
of simplicity and scalability [34, 39, 42], but others man-
age placement with hard-coded policies [20, 47]. Cus-
tomized policies provide better control over properties
such as locality and fault tolerance, which can be partic-
ularly important as clusters expand across racks [29].

Explicit metadata also make it easier to perform fine-
grain migrations in response to topology and workload
changes, allowing systems to redistribute load and ame-
liorate hot spots [35, 37]. Hierarchical Storage Man-
agement and multi-tier systems dynamically migrate
data between heterogeneous devices, typically employ-
ing policies based on simple heuristics intended to move
infrequently accessed data to cheaper, more capacious
storage or slower, more compact encodings [4, 54].

Mirador has much in common with recent systems de-
signed to optimize specific performance and efficiency
objectives. Guerra et al. [23] describe a tiering system
that makes fine-grain placement decisions to reduce en-
ergy consumption in SANs by distributing workloads
among the most power-efficient devices capable of sat-
isfying measured performance requirements. Janus [5]
is a cloud-scale system that uses an empirical cacheabil-
ity metric to arrange data across heterogeneous media
in a manner that maximizes reads from flash, using lin-
ear programming to compute optimal layouts. Volley [2]
models latency and locality using a weighted spring anal-
ogy and makes placement suggestions for geographically

distributed cloud services. Tuba [9] is a replicated key-
value store designed for wide area networks that allows
applications to specify latency and consistency require-
ments via service level agreements (SLAs). It collects
hit ratios and latency measurements and periodically re-
configures replication and placement settings to maxi-
mize system utility (as defined by SLAs) while honoring
client-provided constraints on properties like durability
and cost. Mirador supports arbitrary cost-function opti-
mizations using a generic framework and supports poli-
cies that control network flows as well as data placement.

Mirador also resembles resource planning systems [6,
8] like Hippodrome [7], which employ a similar ob-
serve/optimize/actuate pipeline to design cost-efficient
storage systems. Given a set of workload descrip-
tions and an inventory of available hardware, these tools
search for low-cost array configurations and data layouts
that satisfy performance and capacity requirements. Like
Mirador, they simplify a computationally challenging
multidimensional bin-packing problem by combining es-
tablished optimization techniques with domain-specific
heuristics. However, while these systems employ cus-
tomized search algorithms with built-in heuristics, Mi-
rador codifies heuristics as rules with varying costs and
relies on generic solvers to search for low-cost solutions,
making it easier to add new heuristics over time.

Ursa Minor [1] is a clustered storage system that sup-
ports dynamically configurable m-of-n erasure codes, ex-
tending the data placement problem along multiple new
dimensions. Strunk et al. [49] describe a provision-
ing tool for this system that searches for code param-
eters and data layouts that maximize user-defined util-
ity for a given set of workloads, where utility quanti-
fies metrics such as availability, reliability, and perfor-
mance. Utility functions and objective functions both
provide flexibility when evaluating potential configura-
tions; however, Mirador’s greedy algorithm and support
for domain-specific hints may be more appropriate for
online rebalancing than the randomized genetic algo-
rithm proposed by Strunk et al.

7 Conclusion
Mirador is a placement service designed for heteroge-
neous distributed storage systems. It leverages the high
throughput of non-volatile memories to actively migrate
data in response to workload and environmental changes.
It supports flexible, robust policies composed of simple
objective functions that specify strategies for both data
and network placement. Combining ideas from con-
straint satisfaction with domain-specific language bind-
ings and APIs, it searches a high-dimension solution
space for configurations that yield performance and ef-
ficiency gains over more static alternatives.
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Abstract

Anomalies in the runtime behavior of software systems,

especially in distributed systems, are inevitable, expen-

sive, and hard to locate. To detect and correct such

anomalies (like instability due to a growing memory

consumption, failure due to load spikes, etc.) one has

to automatically collect, store, and analyze the opera-

tional data of the runtime behavior, often represented as

time series. There are efficient means both to collect and

analyze the runtime behavior. But traditional time se-

ries databases do not yet focus on the specific needs of

anomaly detection (generic data model, specific built-in

functions, storage efficiency, and fast query execution).

The paper presents Chronix, a domain specific time se-

ries database targeted at anomaly detection in operational

data. Chronix uses an ideal compression and chunking of

the time series data, a methodology for commissioning

Chronix’ parameters to a sweet spot, a way of enhanc-

ing the data with attributes, an expandable set of analy-

sis functions, and other techniques to achieve both faster

query times and a significantly smaller memory foot-

print. On benchmarks Chronix saves 20%–68% of the

space that other time series databases need to store the

data and saves 80%–92% of the data retrieval time and

73%–97% of the runtime of analyzing functions.

1 Introduction

Runtime anomalies are hard to locate and their occur-

rence is inevitable, especially in distributed software sys-

tems due to their multiple components, different tech-

nologies, various transport protocols, etc. These anoma-

lies influence a system’s behavior in a bad way. Exam-

ples are an anomalous resource consumption (e.g., high

memory consumption, growing numbers of open files,

low CPU usage), sporadic failures due to synchroniza-

tion problems (e.g., deadlock), or security issues (e.g.,

port scanning activity). Whatever their root causes are,

the resulting behavior is critical and may in general lead

to economic or reputation loss (e.g., loss of sales, produc-

tivity, or data). Almost every software system has hidden

anomalies that occur sooner or later. Hence one needs

to detect them in an automated manner soon after their

occurrence in order to initiate measures.

There are efficient means both to collect and analyze

the runtime behavior. Tools [10, 18, 44] can collect all

kinds of operational data like metrics (e.g., CPU usage),

traces (e.g., method calls), and logs. They represent such

operational data as time series. Analysis tools and re-

search papers [27, 33, 43, 44, 47] focus on the detection

of anomalies in that data. But there is a gap between col-

lection and analysis of operational time series, because

typical time series databases are general-purpose and not

optimized for the domain of this paper. They typically

have a data model that focuses on series of primitive type

values, e.g., numbers, booleans, etc. Their built-in aggre-

gations only support the analysis of these types. Further-

more, they do not support an explorative and correlating

analysis of all the raw operational data in spontaneous

and unanticipated ways. With a domain specific data

model and with domain specific built-in analysis func-

tions we achieve better query analysis times. General-

purpose time series databases already have a good stor-

age efficiency. But we show that by exploiting domain

specific characteristics there is room for improvement.

Chronix, a novel domain specific time series database,

addresses the collection and analysis needs of anomaly

detection in operational data. Its contributions are a

multi-dimensional generic time series data model, built-

in domain specific high-level functions, and a reduced

storage demand with better query times. Section 2 covers

the requirements of such a time series database. Section 3

presents Chronix. Section 4 discusses the commission-

ing of Chronix and describes a methodology that finds

a sweet performance spot. The quantitative evaluation in

Section 5 demonstrates how much better Chronix works

than general-purpose time series databases.
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2 Requirements

Three main requirements span the design space of a time

series database that better suits the needs of an anomaly

detection in operational data: a generic data model for

an explorative analysis of all types of operational data,

analysis support for detecting runtime anomalies, and a

time- and space-efficient lossless storage.

As shown in Table 1, the established general-purpose

time series databases Graphite [12], InfluxDB [24],

KairosDB [25], OpenTSDB [32], and Prometheus [36]

do not or only partially fulfill these requirements.

Generic data model. Software systems are typically

distributed and a multi-dimensional data model allows

to link operational data to its origin (host, process,

or sensor). We argue that a generic multi-dimensional

data model is necessary for an explorative and correlat-

ing analysis to target non-trivial anomalies. Explorative

means that a user can query and analyze the data with-

out any restrictions (as by a set of pre-defined queries)

to verify hypotheses. Correlating means that the user can

combine queries on all different types of operational data

(e.g., traces, metrics, etc.) without any restrictions (as by

pre-defined joins and indexes). Imagine an unanticipated

need to correlate the CPU usage in a distributed system

with the executed methods. Such an analysis first queries

the CPU usage on the hosts (metrics) for a time range.

Second, it queries which methods were executed (traces).

Finally, it correlates the results in a histogram.

The traditional time series databases have a spe-

cific multi-dimensional data model for storing mainly

scalar/numeric values. But in the operational data of a

software system there are also traces, logs, etc. that of-

ten come in (structured) strings. As explicit string en-

codings require implementation work, often only such

raw data is encoded and collected that appears useful

at the time of collection. Other raw data is lost, even

though an explorative analyses may later need it. More-

over, any string encoding loses the semantics that come

with the data type. Therefore, while the traditional time

series databases support explorative and correlating anal-

Table 1: Design space requirements.

Time Series

Database

Generic

data model

Analysis

support

Lossless

long term

storage

Graphite # G# #

InfluxDB G# G#  

OpenTSDB # #  

KairosDB G# G#  

Prometheus # G# G#

Chronix    

# = No, G# = Partly,  = Yes

yses on scalar values, they often fail to do so efficiently

for generic time series data (e.g., logs, traces, etc.). In-

fluxDB also supports strings and booleans. KairosDB is

extensible with custom types. Both lack operators and

functions and hence only partly fulfill the requirements.

Analysis support. Table 2 is an incomplete list of ba-

sic and high-level analysis functions that a storage and

retrieval technology for anomaly detection in operational

data must support in its plain query language. Graphite,

InfluxDB, KairosDB and Prometheus only have a rich set

of basic functions for transforming and aggregating op-

erational data with scalar values. OpenTSDB even sup-

ports only a few of them. But domain specific high-level

functions that other authors [27, 33, 43, 44, 47] success-

fully use for anomaly detection in operational data (lower

part of Table 2) should be built in natively to execute

them as fast as possible, without network transfer costs,

etc. The evaluation in Section 5 shows the runtime bene-

fits of having them built-in instead of emulating them.

As such a set of functions can never be complete its

extensibility is also a requirement.

Efficient lossless long term storage. Complex analy-

Table 2: Common query functions.

Basic G
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distinct × X × × × X

integral X × × × × X

min/max/sum X X X X X X

count × X X X X X

avg/median X X X X X X

bottom/top × X × × X X

first X X × X × X

last X X × X × X

percentile (p) X X X X X X

stddev X X X X X X

derivative X X × X X X

nnderivative X X × × × X

diff × X × X X X

movavg X X × × × X

divide/scale X X × X X X

High-level

sax [33] × × × × × X

fastdtw [38] × × × × × X

outlier × × × × × X

trend × × × × × X

frequency × × × × × X

grpsize × × × × × X

split × × × × × X
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ses to identify and understand runtime anomalies, trends,

and patterns use machine learning, data mining, etc.

They need quick access to the full set of all the raw op-

erational data, including its history. This allows interac-

tive response times that lead to qualitatively better ex-

plorative analysis results [30]. Thus a lossless long term

storage is required that achieves both a small storage de-

mand and good access times. A domain specific storage

should also allow to store additional pre-aggregated or

in other ways pre-processed versions of the data that en-

hance domain specific queries.

The operational characteristics of anomaly detection

tasks are also specific as there are comparatively few

batch writes and frequent reads/analyses, hence the stor-

age should optimized for this.

As Table 1 shows, the traditional time series databases

(except for Graphite due to its round-robin storage, see

Section 6) can be used as long term storage for raw

data. Their efficiency in terms of domain specific stor-

age demands and query runtimes is insufficient as the

evaluation in Section 5 will point out. Prometheus is de-

signed as short-term storage with a default retention of

two weeks. Furthermore it does not scale, there is no API

for storing data, and it uses hashes for time series iden-

tification (the resulting collisions may lead to a seldom

loss of a time series value). It is therefore not included in

the quantitative evaluation.

3 Design and Implementation

Generic data model. Chronix uses a generic data model

that can store all kinds of operational data. The key el-

ement of the data model is called a record. It stores an

ordered chunk of time series data of an arbitrary type

(n pairs of timestamp and value) in a binary large ob-

ject. There is also type information (e.g., metric, trace,

or log) that defines the available type-specific functions

and the ways to store or access the data (e.g., serializa-

tion, compression, etc.). A record stores technical fields

(version and id of the record, as needed by the underly-

ing Apache Solr [5]), two timestamps for start and end

of the time range in the chunk, and a set of user-defined

attributes, for example to describe the origin of the oper-

ational data, e.g., host and process. Thus the data model

is multi-dimensional. It is explorative and correlating as

queries can use any combination of the attributes stored

in a chunk as well as the available fields.

Listing 1 shows a record for a metric (type) time series,

with dimensions for host name, process, group (a logical

group of metrics), and metric. Description and version

are optional attributes.

The syntax of Chronix queries is:

q=<solr-query> [ & cf=<chronix-functions> ]

1 record{
2 //payload

3 data:compressed{<chunk of time series data>}
4

5 //technical fields (storage dependent)

6 id: 3dce1de0−...−93fb2e806d19 //16 bytes

7 version : 1501692859622883300 //8 bytes

8

9 //logical fields

10 start: 1427457011238 //27.3.2015 11:51:00 8 bytes

11 end: 1427471159292 //27.3.2015 15:45:59 8 bytes

12 type: metric //Data types: metric, log, trace etc.

13

14 //optional dimensions

15 host: prodI5

16 process: scheduler

17 group: jmx

18 metric: heapMemory.Usage.Used

19

20 //optional attributes

21 description: Benchmark

22 version: v1.0−RC

23 }

Listing 1: Record with fields, attributes, and dimensions.
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The underlying Solr finds the data according to q. Then

we apply the optional Chronix functions cf before we

ship the result back to the client. Cf is a ;-separated list

of filters, each of the form

<type>’{’<functions>’}’

The ;-separated list of <type>-specific <functions> is

processed as a pipeline. A <function> has the form

<analysis-name>[:<params>]

for analysis names from Table 2. Here is an example

from the evaluation project 4 in Section 5:

q=host:prod* AND type:[lsof OR strace]

& cf=lsof{grpsize:name,pipe};strace{split:2030}

First, q takes all time series from all hosts whose name

starts with prod and that also hold data of the UNIX

commands lsof or strace. Then cf applies two func-

tions. To the lsof data cf applies grpsize to select the

group named name and counts the occurrences of the val-

ue/word pipe in that group. On the strace data cf per-

forms a split-operation on the command-column. For

each of the arguments (here just for the file handle ID

2030) it produces a split of the data that contains "2030".

Analysis support. Chronix offers all the basic and

high-level functions listed in Table 2, e.g., there are de-

tectors for outliers and functions that check for trends,

similarities (fastdtw), and patterns (sax). The plug-in

mechanism of Chronix allows to add functions that run

server-side. They are fast as they operate close to the data
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1 class GroupSize implements ChronixAnalysis<LsofTS>{
2 public GroupSize(String[] args) {
3 field = args[0];filters = args[1];

4 }
5 public void execute(LsofTS ts, Result result) {
6 result.put(this,new Map())

7 for (Group group : ts.groupBy(field)) {
8 if (filters.contains(group.key()))

9 result.get(this).put(group.key(), group.value().size());

10 }
11 }
12 public String getQueryName() {return ”grpsize”;}
13 public String getTimeSeriesType() {return ”lsof”;}
14 }

Listing 2: Plug-in for a function GroupSize.

without shipping (e.g., through HTTP). For security rea-

sons only an administrator is capable (and thus respon-

sible) for installing plug-ins while regular users can only

use them afterwards. The plug-in developer has to imple-

ment an interface called ChronixAnalysis. It defines

three methods: execute holds the code that analyzes

a time series, getQueryName is the function’s name in

Chronix’ Query Language, and getTimeSeriesType

binds the function to a time series type. An additional

Google Guice [19] module is needed before (after a re-

boot of Chronix with the operator code in the classpath)

the newly added function is available. Chronix parses a

given query and delegates the execution to the plugged-

in function. Listing 2 illustrates how to add the grpsize

analysis for the time series type lsof. The function runs

on the server, groups the time series data with respect to

a field (given as its first argument), and returns the sizes

of the groups. The raw time series data is never shipped

to the client. With this function added, regular users just

need to call one function instead of several queries to

emulate the semantics themselves.

Functionally-lossless long term storage. Chronix

optimizes storage demands and query times and is de-

signed for few batch writes and frequent reads. The stor-

age is functionally-lossless and preserves all the data that

can potentially be useful for anomaly detection. We clar-

ify the two situations below when functionally-lossless is

different from lossless.

Chronix’ pipeline architecture has four building

blocks that run multi-threaded: Optional Transforma-

tion, Attributes and Chunks, Compression, and Multi-

Dimensional Storage, see Fig. 1. Not shown is the in-

put buffering (called Chronix Ingester in the distribution)

that batches incoming raw data points.

The Optional Transformation can enhance or extend

what is actually stored in addition to the raw data, or in-

stead of it. The goal of this optional phase is an opti-

Figure 1: Building blocks of Chronix: (1) optional trans-

formation, (2) grouping of time series data into chunks

plus attributes, (3) compression of chunks, (4) storage of

chunks with their attributes. The data flows from left to

right for imports. For queries it is the other way round.

mized format that better supports use-case specific anal-

yses. For example, it is often easier to identify patterns

in time series when a symbolic representation is used to

store the numerical values of a time series [33]. Other

examples are averaging, a Fourier transformation [9],

Wavelets [35], or a Piecewise Aggregate Approxima-

tion [26]. The more is known about future queries and

about the shape or structure of a time series or its pat-

tern of redundancy, the more can a transformation speed

up analyses. In general, this phase can add an additional

representation of the raw data to the record. Storing the

raw data can even be omitted if it can be reconstructed. In

rare situations, an expert user knows for sure that certain

data will never be of interest for any of her/his anomaly

detection tasks. Think of a regular log file that in addi-

tion to the application’s log messages also has entries

that come from the framework hosting the application.

The latter often do not hold anomaly-related informa-

tion. It is such data that the expert user can decide to

drop, keeping everything else and leaving the Chronix

store functionally-lossless. The decision is irreversible –

but this is the same with the other time series databases.

Attributes and Chunks breaks the raw time series (or

the result of the optional transformation) into chunks of n

data points that are serialized into c bytes. Instead of stor-

ing single points, chunking speeds up the access times. It

is known to be faster to read one record that contains

n points instead of reading n single points. A small c

leads to many small records with potentially redundant

user-defined attributes between records. The value of c is

therefore a configuration parameter of the architecture.

This stage of the pipeline also calculates both the

required fields and the user-defined attributes of the

records. The required fields (of the data model) are the

binary data field that holds a chunk of the time series,

and the fields start and end with timestamps of the first

and the last point of the chunk. In addition, a record can

have user-defined attributes to store domain specific in-

formation more efficiently. For instance, information that
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1 public interface RecordConverter<T> {
2 //Convert a record to a specific type.

3 //Use queryStart and queryEnd to filter the record.

4 T from (Record r, long queryStart, long queryEnd);

5 //Convert a specific type to a record.

6 Record to (T tsChunk);

7 }

Listing 3: The time series converter interface.

is known to be repetitive for each point, e.g., the host

name, can be stored in an attribute of the record instead

of encoding it into the chunk of data multiple times.

As it is specific for a time series type which fields are

repetitive Chronix leaves it to an expert user to design

the records and the fields. Redundancy-free data chunks

are a domain specific optimization that general-purpose

time series databases do not offer. To design the records

and fields the expert has two tasks: (1) define the con-

version of a time series chunk to a record (see the ex-

ample RecordConverter interface in Listing 3) and (2)

define the static schema in Apache Solr that lists the field

names, the types of the values, which fields are indexed,

etc. Chronix stores every record that matches the schema.

Compression processes the chunked data. Chronix ex-

ploits domain specific characteristics in three ways.

First, Chronix compresses the operational data signif-

icantly as there are only small changes between subse-

quent data points. The cost of compression is acceptable

as there are only few batch writes. When querying the

data, compression even improves query times as com-

pressed data is transferred to the analysis client faster due

to the reduced amount.

Second, time series for operational data often have pe-

riodic time intervals, as measurements are taken on a reg-

ular basis. The problem in practice is that there is often a

jitter in the timestamps, i.e., the time series only have al-

most-periodic time intervals because of network latency,

I/O latency, etc. Traditional time series databases use op-

timized ways to store periodic time series (run-length en-

coding, delta-encoding, etc.). But in case of jitter they

fall back to storing the full timestamps/deltas. In con-

trast, Chronix’ Date-Delta-Compaction (DDC) exploits

the fact that in its domain the exact timestamps do not

matter that much, at least if the difference between the

expected timestamp and the actual timestamp is not too

large. Here Chronix’ storage is functionally-lossless be-

cause by default it drops timestamps if it can almost ex-

actly reproduce them. If in certain situations an expert

user knows that the exact timestamps do matter, they can

be kept. In contrast to timestamp jitter, Chronix never

drops the exact values of the data points. They always

matter in the domain of anomaly detection. Nevertheless,
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Figure 2: DDC calculates timestamp deltas (0, 10000,

10002, 10004) and compares them (0, 10000, 2, 4). It

removes deltas below a threshold of 4 ( , 10000, , ).

Without additional deltas, the reconstruction would yield

timestamps with increments of 10000. Since the fourth

of them would be too far off from t4 (drift of 6) DDC

stores the correcting delta 10006. With the resulting two

stored deltas ( , 10000, , 10006) the reconstructed time-

stamps are error-free, even for r4.

some parts of the related work are lossy, see Table 1.

The central idea of the DDC is: When storing an

almost-periodic time series, the DDC keeps track of the

expected next timestamp and the actual timestamp. If

the difference is below a threshold, the actual timestamp

is dropped as its reconstructed value is close enough.

The DDC also keeps track of the accumulated drift as

the difference between the expected timestamps and ac-

tual timestamps adds up with the number of data points

stored. As soon as the drift is above the threshold, DDC

stores a correcting delta that brings the reconstruction

back to the actual timestamp. DDC is an important do-

main specific optimization. See Section 4 for the quan-

titative effects. The DDC threshold is another commis-

sioning parameter. Fig. 2 holds an example.

There are related approaches [34] that apply a simi-

lar idea to both the numeric values and the timestamps.

Chronix’ DDC avoids the lossy compression of values

as the details matter for anomaly detection. Chronix also

exploits the fact that deltas are much smaller than full

timestamps and that they can be stored in fewer bits.

Chronix’ serialization uses Protocol Buffers [20].

Third, to further lower the storage demand, Chronix

compresses the records’ binary data fields. The attributes

remain uncompressed for faster access. Chronix uses

one of the established lossless compression techniques

t = bzip2 [39], gzip [14], LZ4 [11], Snappy [21], and

XZ [42] (others can be plugged in). Since they have a

varying effectiveness depending on the size of the data

blocks that are to be compressed, the best choice t is an-

other commissioning parameter.

The Multi-Dimensional Storage handles large records
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of pure data in a compressed binary format. Only the log-

ical fields, attributes, and dimensions that are necessary

to locate the records are explicitly visible to the data stor-

age which uses a configurable set of them for construct-

ing indexes. (Dimensions can later be changed to match

future analysis needs.) Queries can use any combination

of the dimensions to efficiently locate records, i.e., to find

a matching (compressed) chunk of time series data. In-

formation about the data itself is not visible to the storage

and hence it is open to future changes as needed for ex-

plorative and correlating analyses. Chronix is based on

Apache Solr as both the document-oriented storage for-

mat of the underlying reverse-index Apache Lucene [4]

and the query opportunities match Chronix’ require-

ments. Furthermore Lucene applies a lossless compres-

sion (LZ4) to all stored fields in order to reduce the index

size and Chronix inherits the scalability of Solr as it runs

in a distributed mode called SolrCloud that implements

load balancing, data distribution, fault tolerance, etc.

4 Commissioning

Many of the available general-purpose time series data-

bases come with a set of parameters and default values.

It is often unclear how to adjust these values to tune the

database so that it performs well on the use-case at hand.

We now discuss the commissioning that selects val-

ues for Chronix’ three adjustable parameters: d (DDC

threshold), c (chunk size), and t (compression tech-

nique). Commissioning has two purposes: (1) to find de-

fault parameters for the given domain (and to show the

effects of an unfortunate choice) and (2) to describe a

tailoring of Chronix for use-case specific characteristics.

Let us start with a typical domain specific dataset and

query mix (composed from real-world projects). We then

sketch the measurement infrastructure that the evaluation

in Section 5 also uses and discuss the commissioning.

Commissioning Data = Dataset plus Query Mix. To

determine its default parameter configuration, Chronix

relies on three real-world projects that we consider typ-

ical for the domain of anomaly detection in operational

data. From these projects, Chronix uses the time series

data and the queries that analyze the data.

Project 1 is a web application for searching car main-

tenance and repair instructions. In production, 8 servers

run the web application to visualize the results and 20

servers perform the users’ searches. The operational time

series data is analyzed to understand the resource con-

sumption for growing numbers of users and new func-

tions, i.e., to answer questions like: ’How do multi-

ple users and new functions affect the CPU load, mem-

ory consumption, or method runtimes?’, or ’Is the time

needed for a user search still within predefined limits?’

Table 3: Project Statistics.

Project 1 2 3 total

pairs (mio) 2.4 331.4 162.6 496.4

time series 1,080 8,567 4,538 14,185

(a) Pairs and time series per project.

Project 1 2 3 average

Attributes (bytes) 43 47 48 46

(b) Average size of attributes per record.

r 0.5 1 7 14 21 28 56 91

q 15 30 30 10 5 3 1 2

(c) Time ranges (in days) and their occurrence.

Project 2 is a retail application for orders, billing, and

customer relations. The production system has a central

database, plus two servers. From their local machines,

users run the application on the servers via a remote

desktop service. The analysis goals are to investigate the

impact of a new JavaFX-based UI Framework that re-

places a former Swing-based version, and to locate the

causes of various reported problems, e.g., memory leaks,

high CPU load, and long runtimes of use-cases.

Project 3 is a sales application of a car manufacturer.

There are two application servers and a central database

server in the production environment. The analysis goals

are to understand and optimize the batch-import, to iden-

tify the causes of long-running use-cases reported by

users, to improve the database layer, and understand the

impact that several code changes have.

In total, the projects’ operational data have about 500

million pairs of timestamp and (scalar) value in 14,185

time series of diverse time ranges and metrics, see Ta-

ble 3(a). Two projects have an almost-periodic time in-

terval of 30 or 60 seconds. All projects also have event-

driven data, e.g., the duration of method calls. There are

recurring patterns (e.g., heap usage), sequences of con-

stant values (e.g., size of a connection pool), or even er-

ratic values (e.g., CPU load).

All time series of the three projects have the same user-

defined attributes (host, process, group, and metric) that

takes 46 bytes on average, see Table 3(b). The required

fields of the records take 40 bytes, leading to a total of

m = 40 + 46 = 86 uncompressed bytes per record.

The three projects have 96 queries in total. Table 3(c)

shows what time ranges (r) they are asking for and how

often such a time range is needed (q). For example, there

are two queries that request the log data that was accu-

mulated over 3 months (91 days).

Measurement Infrastructure. Measurements were

conducted on a 12-core Intel Xeon CPU E5-2650L

v3@1.80GHz, equipped with 32 GB of RAM and a 380

GB SSD and operating under Ubuntu 16.04.1 x64.
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Figure 3: Impact of different DDC thresholds.

Commissioning of the DDC threshold. The higher

the DDC threshold is, the higher is the deviation between

the actual and the reconstructed timestamp. On the other

hand, higher DDC thresholds result in fewer deltas that

hence need less storage. Since for anomaly detection, ac-

curacy is more important than storage consumption, and

since the acceptable degree of inaccuracy is use-case spe-

cific, the commissioning of the DDC threshold focuses

on accuracy and only takes the threshold’s impact on the

storage efficiency into account if there is a choice.

The commissioning works as follows: For a broad

range of potential thresholds, apply the DDC to the time

series in the dataset. For each timestamp, record whether

the reconstructed value is different from the actual time-

stamp, and if so, how far the reconstructed value is off.

The fraction of the number of inaccurately reconstructed

timestamps to error-free ones is the inaccuracy rate. For

all inaccurately reconstructed timestamps compute their

average deviation. With those two values plotted, the

commissioner selects a threshold that yields the desired

level of accuracy.

Default Values. The commissioning of the DDC

threshold can be done for individual time series or for

all time series in the dataset. For the default value we use

all time series that are not event-driven. For thresholds

from 0 milliseconds up 1 second. Fig. 3. shows that the

inaccuracy rate grows up to 67%; the average deviation

of the reconstructed timestamps grows up to 90 ms.

From the experience gained from anomaly detection

projects (the three above projects are among them) an

average deviation of 30 ms seems to be reasonably small

– recall that the almost-periodic time series in the dataset

have intervals of 30 or 60 seconds. The acceptable jitter

is thus below 0.1% or 0.05%, resp. Therefore we choose

a default DDC threshold of d = 200 ms which implies an

inaccuracy rate of about 50% that we deem acceptable

because of the absolute size of the deviation.

Note that the DDC is effective as the resulting data

only take 27% to 19% of the original space. But for the

dataset the curve of the space reduction is too flat to af-

fect the selection of the DDC threshold.
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Figure 4: Materialized compression rate in the data store.

Commissioning of the compression parameters.

Many of the standard compression techniques achieve

better compression rates on larger buffers of bytes [7].

On the other hand, it takes longer to decompress larger

buffers to get to the individual data point. Because of

the conflicting goals of storage efficiency and query run-

times, Chronix uses a domain specific way to find a sweet

spot. There are three steps.

1. Minimal Chunk Size. First, Chronix finds a minimal

chunk size for its records. Chronix is not interested in the

compression rate in a memory buffer. For anomaly detec-

tion, what matters instead is the total storage demand, in-

cluding the size of the index files (smaller for larger and

fewer records). On the other hand, smaller chunks have

more redundancy in the records’ (potentially) repetitive

uncompressed attributes which makes the compression

techniques work better. We call the quotient of this total

storage demand and the size of the raw time series data

the materialized compression rate.

Finding a minimal chunks size works as follows:

For a range of potential chunk sizes, construct the

records (with their chunks and attributes) from the DDC-

transformed time series data and compress them with

the standard compression techniques. With the materi-

alized compression rate plotted, the commissioner finds

the minimal chunk size where saturation sets in.

Default Values. Fig. 4 shows the materialized com-

pression rates that t= bzip2, gzip, LZ4, Snappy, and

XZ achieve on records with various chunk sizes that are

constructed from the (DDC-transformed) dataset. Satu-

ration sets in around a minimal chunk size of cmin=32

KB. Larger chunks do not improve the compression rate

significantly, regardless of the compression technique.

2. Candidate Compression Techniques. Then Chronix

drops some of the standard compression techniques from

the set of candidates. Papers on compression techniques

usually include benchmarks on decompression times.

But for the domain of anomaly detection, the decompres-

sion of a whole time series that is in a memory buffer is

irrelevant. What matters instead is the total time needed

to find and access an individual record, to then ship the

USENIX Association 15th USENIX Conference on File and Storage Technologies    235



0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200

32 64 128 256 512 1024
Chunk size in kBytes

A
c
c
e

s
s
 t

im
e

 i
n

 m
s

bzip2

gzip

LZ4

Snappy

XZ

Figure 5: Access time for a single chunk (in ms).

compressed record to the client, and to decompress it

there. Note that the per-byte cost of shipping goes down

with growing chunks due to latency effects.

Finding the set of candidate compression techniques

works as follows: For potential chunk sizes above cmin,

find a record, ship it, and reconstruct the raw data. For

meaningful results, process all records, and compute the

average runtime. The commissioner drops those com-

pression techniques that have a slow average access to

single records. The reason is that in anomaly detection

data is read much more often than written.

Default Values. On the compressed dataset, all of the

standard compression techniques take longer to find, ac-

cess, and decompress larger chunks, see Fig. 5. It is ob-

vious that bzip2 and XZ can be dropped from the set

of compression techniques because the remaining ones

clearly outperform them.

3. Best Combination. Now that the range of potential

values for c is reduced and the set of candidates for the

compression technique t is limited, the commissioning

considers all combinations. Since query performance is

more important than storage efficiency for the domain of

anomaly detection, commissioning works with a typical

(or a use-case specific) query mix. The access time to a

single record as considered above can only be an indi-

cator, because real queries request time ranges that are

either part of a single record (a waste of time in shipping

and decompression if the record is large) or that span

multiple records (a waste of time if records are small).

This commissioning step works as follows: Randomly

retrieve q time ranges of size r from the data. The values

of r and q reflect the characteristics of the query mix,

see Table 3(c). Repeat this 20 times to stabilize the re-

sults. For a query of size r the commissioning does not

pick a time series that is shorter than r. From the result-

ing plot, the commissioner then picks the combination of

chunk size c and compression technique t that achieves

the shortest total runtime for the query mix.

Default Values. For chunk sizes c from 32 to 1024

KB and for the remaining three compression techniques

t, Fig. 6 shows the total access time of all the 20 · 96
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Figure 6: Total access times for 20 · 96 queries (in sec.).

= 1920 randomly selected data retrievals that represent

the query mix. There is a bath tub curve for each of the

three compression techniques t, i.e., there is a chunk

size c that results in a minimal total access time. As

t=gzip achieves the absolute minimum with a chunk size

of c=128 KB, Chronix selects this sweet spot, especially

as the other options do not show better materialized com-

pression rates for that chunk size (see Fig. 4). The default

parameters are good-natured, i.e., small variations do not

affect the results much. Fig. 6 also shows the effect of

suboptimal choices for c and t.

Commissioning and re-commissioning for a use-case

specific set of parameters are possible but costly as the

latter affects the whole data. At the end of the next sec-

tion, we discuss the effect of a use-case specific commis-

sioning compared to the default parameter set.

5 Evaluation

We quantitatively compare the memory footprint, the

storage efficiency, and the query performance of Chronix

(without any optional transformation and without any

pre-computed analysis results) to InfluxDB, OpenTSDB,

and KairosDB. After a sketch of the setup, we describe

two case-studies whose operational data serve as bench-

mark. Then we discuss the results and demonstrate that

Chronix’ default parameters are sound.

Setup. For the minimal realistic installation all

databases run on one computer and the Java process

issuing the queries via HTTP runs on a second com-

puter (for hardware details see Section 4). InfluxDB,

OpenTSDB, and KairosDB store time series with differ-

ent underlying storage technologies: InfluxDB (v.1.0.0)

uses a custom storage called time structured merge

tree, OpenTSDB (v.2.2.0) uses the wide-column store

HBase [23] that stores data in the Hadoop Distributed

File System (HDFS) [41], and KairosDB (v.1.1.2) stores

the data in the wide-column store Cassandra [3]. They

also have different strategies for storing the attributes:

InfluxDB stores them once with references to the data

points they belong to. OpenTSDB and KairosDB store
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Table 4: Project Statistics.

Project 4 5 total

time series 500 24,055 24,555

p
ai

rs

(m
io

) metric 3.9 3,762.3 3,766.2

lsof 0.4 0.0 0.4

strace 12.1 0.0 12.1

(a) Pairs and time series per project.

r 0.5 1 7 14 21 28 56 91 180

q 2 11 15 8 12 5 1 2 2 58

b 1 6 5 7 2 4 4 1 2 32

h 2 6 10 8 6 6 3 2 0 43

(b) Time ranges r (days); # of raw data queries (q), of

queries with basic (b) and high-level (h) functions.

them in key-value pairs that are part of the row-key. We

use default configurations for each database. To mea-

sure the query runtimes and the resource consumptions

each database is called separately and runs it in its own

Docker container [16] to ensure non-interference. We

batch-import the data once and run the queries after-

wards. We do not discuss the import times as they are

less important for the analysis.

Case-studies/benchmark. We collected 108 GByte

of operational data from two real-world applications. In

contrast to the dataset used in the commissioning there

are also data of lsof and strace, see Table 4(a).

Project 4 detects anomalies in a service application for

modern cars (such as music streaming). The goal is to

locate the root cause of a file handle leak that forces the

application to nightly rebootings of its two application

servers. The collected operational data covers 3 hours

with an almost-periodic interval of 1 second.

Since we have mentioned an example query of this

project in Section 3 and since we have shown how the

grpsize function (Listing 2) can be plugged-in, let us

give some more details on this project.

The initial situation was that the application kept open-

ing new file handles without closing old ones. After re-

producing the anomaly in a test environment, for the ex-

plorative analysis we employed lsof to show the open

files, and stored this operational data in Chronix. The re-

sults of queries like

q=type:lsof & cf=lsof{grpsize:name,*}

were the key to explain the rise in the number of open

file handles as about 2,000 new file handles were pipes

or anon inodes that are part of the java.nio package.

Hence it was necessary to dig deeper and to link file han-

dles to system calls. To do so, we used strace and also

stored the data in Chronix. By narrowing down the time

series data to individual file handle IDs, with correlat-

ing queries like the one shown in Section 3 we found

1 //End of strace for file handle ID = 2030

2 epoll ctl(2129, EPOLL CTL ADD, 2030,

3 {EPOLLIN, {u32=2030, u64=2030}}) = 0

4 //End of strace for file handle ID = 2032

5 epoll ctl(2032, EPOLL CTL ADD, 1889,

6 {EPOLLIN, {u32=1889, u64=1889}}) = 0

Listing 4: Last strace calls for two file handle IDs.

Table 5: Memory footprint in MBytes.

In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

Initially 33 2,726 8,763 446

Import (max) 10,336 10,111 18,905 7,002

Query (max) 8,269 9,712 11,230 4,792

that epoll ctl was often the last function call before

the anomaly (see Listing 4). By then analyzing which

third party libraries the application uses and by gathering

information on epoll ctl we deduced that the applica-

tion used an old version of Grizzly that leaks selectors [1]

when it tries to write to an already closed channel. The

solution was to upgrade the affected library.

Project 5 detects anomalies in an application that man-

ages the compatibility of software components in a vehi-

cle. The production system has a central database and six

application servers. The operational data is analyzed to

find and understand production anomalies, such as long

running method calls, positive trends of resource con-

sumption, etc. The dataset has an almost-periodic inter-

val of 1 min. and holds seven months of operational data.

Table 4(b) shows the mix of the 133 queries that the

projects needed to achieve their analysis goals. There

are different ranges (r) for the 58 raw data retrievals (q)

that do not have a cf-part and also for the 32 queries

that use basic analysis functions (b-queries) and for the

43 h-queries that use high-level analyses. Table 8 lists

which of the built-in analysis functions from Table 2 the

projects actually use (and how often).

Memory Footprint. Table 5 shows the memory foot-

print of all database processes at different times. This

is relevant as analyses on large amounts of time series

data are often memory intensive. The first line shows the

memory consumption just after a container’s start, when

all components of the time series database are up and

running. The next two lines show the maximal memory

footprints that we encountered while the data of the two

benchmark projects was imported and while the query

mix was executed. All databases stay below the maximal

available memory of 31.42 GB. The import (buffering,

index construction, etc.) needs more memory than the

query mix (reading, decompression, serialization, ship-
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Table 6: Storage demands of the data in GBytes.

Project Raw
data

In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

4 1.2 0.2 0.2 0.3 0.1

5 107.0 10.7 16.9 26.5 8.6

total 108.2 10.9 17.1 26.8 8.7

ping, etc.). OpenTSDB and KairosDB clearly take the

most memory due to their various underlying compo-

nents. InfluxDB is better but still takes 1.5 times more

memory than Chronix. The reasons for Chronix’ lower

memory usage are: (a) it does not hold large amounts

of data in memory at once, (b) it runs as a single pro-

cess with lightweight thread parallelism, and (c) its im-

plementation avoids expensive object allocations.

Storage Efficiency. Table 6 shows the storage de-

mands of the data, including the index files, commit

logs, etc. There are three aspects to note. First, out-of-

the-box none of the general-purpose databases can han-

dle the lsof and strace data. Extra programming was

needed to make these databases utilizable for the case-

studies. (For both OpenTSDB and InfluxDB we had to

encode the non-numeric data in tags or in timestamps

plus strings, including some escape mechanisms for spe-

cial characters. For KairosDB we had to explicitly imple-

ment and add custom types.) Second, both OpenTSDB

and KairosDB cannot handle the nanosecond precision

of the strace data. We chose to let them store imprecise

data instead, because (explicitly) converted timestamps

would have taken even more space. Third, all measure-

ments are done after the optimizations and compactions.

During the import the databases temporarily take more

disk space (e.g., for commit logs etc.).

Chronix only needs 8.7 GBytes to store the 108.2

GBytes of raw time series data. Compared to the general-

purpose time series databases Chronix saves 20%–68%

of the storage demand. This is caused by Chronix’ do-

main specific optimizations and by differences in the un-

derlying storage technologies. By default, OpenTSDB

does not compress data, but for a fair comparison we

used it with gzip. InfluxDB stores rows of single data

points using various serialization techniques, such as

Pelkonen et al. [34] for numeric data. KairosDB uses

LZ4 that has a lower compression rate.

Data Retrieval Performance. The case-studies have

58 raw data queries (q) in their mix, with various time

ranges (r). Table 7 gives the retrieval times. They include

the time to find, load, and ship the data and the time to

deserialize it on the side of client. For the measurements,

the data retrieval mix is again repeated 20 times to stabi-

lize the results, with q randomly picked time ranges r.

Table 7: Data retrieval times for 20 · 58 queries (in s).

r q In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

0.5 2 4.3 2.8 4.4 0.9

1 11 5.2 5.6 6.6 5.3

7 15 34.1 17.4 26.8 7.0

14 8 36.2 14.2 25.5 4.0

21 12 76.5 29.8 55.0 6.0

28 5 7.9 3.9 5.6 0.5

56 1 35.4 12.4 24.1 1.2

91 2 47.5 15.5 33.8 1.1

180 2 96.7 36.7 66.6 1.1

total 343.8 138.3 248.4 27.1

Table 8: Times for 20 · 75 b- and h-queries (in s).

Basic (b) In
fluxDB

Open
TSDB

Kair
osD

B

Chro
nix

4 avg 0.9 6.1 9.8 4.4

5 max 1.3 8.4 9.1 6.0

3 min 0.7 2.7 5.3 2.8

3 stddev. 6.7 16.7 21.1 2.3

5 sum 0.7 6.0 12.0 2.0

4 count 0.8 5.5 10.5 1.0

8 perc. 10.2 25.8 34.5 8.6

High-level (h)

12 outlier 30.7 29,1 117.6 18.9

14 trend 162.7 50.4 100.6 30.2

11 frequency 47.3 23.9 45.7 16.3

3 grpsize 218.9 2927.8 206.3 29.6

3 split 123.1 2893.9 47.9 37.2

75 total 604.0 5996.3 620.4 159.3

InfluxDB is the slowest, followed by KairosDB and

OpenTSDB. Chronix is the fastest and saves 80%–92%

of the time needed for the raw data retrieval. For all

databases the retrieval times grow with larger ranges. But

for Chronix, they grow more slowly. There are several

reasons for this: (a) Chronix uses an index to access the

chunks and hence avoids full scans, (b) its pipeline ar-

chitecture ships the raw chunks to the client that can pro-

cess (decompress, deserialize) them in parallel, and (c)

Chronix selects its chunk size and compression to suit

these queries.

Built-in Function Advantages. In addition to raw

data retrieval, anomaly detection in operational data also

needs analyzing functions, several of which the general-

purpose time series databases do not natively support

(see Table 2) and whose functionality has to be imple-

mented by hand and typically with more than one query.
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Table 8 shows the runtimes (20 repetitions for stabi-

lization) that use basic (b) and high-level (h) functions

and how often the projects use them (first column). In to-

tal, Chronix saves 73%–97% of the time needed by the

general-purpose time series databases. We discuss the

results for queries with basic functions (b-queries) and

with high-level functions (h-queries) in turn.

In total, the 32 b-queries that other time series

databases also natively support account for not more than

about 17% of the total runtime. Thus, speed variations

for b-queries do not matter that much for anomaly de-

tection tasks. Nevertheless, let us delve into the upper

part of Table 8. OpenTSDB and KairosDB are often

slower than InfluxDB or Chronix. Whenever InfluxDB

can use its pre-computed values (for instance for average,

maximum, etc.) it outperforms Chronix. When on-the-

fly computations are needed (deviation and percentile),

Chronix is faster.

The lower part of Table 8 illustrates the runtimes of

the 43 h-queries. They are important for the anomaly de-

tection projects as they are used much more often than

the other functions. Here Chronix has a much more pro-

nounced lead over the general-purpose databases. The

reason is that Chronix offers built-in means to evaluate

these functions server-side, whereas they have to be man-

ually implemented on the side of the client in the other

systems, with additional raw data retrievals.

Let us look closer at the penalties for the lack of such

built-in functions. To implement an outlier detector in the

other systems, one has to calculate the threshold value as

(Q3 - Q1) · 1.5 + Q3 where Q1 is the first and Q3 is the

third quartile of the time series values. With InfluxDB

this needs one extra query. KairosDB needs two extra

queries, one for getting Q1 and one for Q3, plus a client-

side filter. OpenTSDB does neither provide a function for

getting Q1 nor for filtering values. In the other systems

a trend detector (that checks if the slope of a linear re-

gression through the data is above or below a threshold)

has to be built completely on the side of the client. A fre-

quency detector (that splits a time series into windows,

counts the data points, and checks if the delta between

two windows is above a predefined threshold) is more

costly to express and to run in the other systems as well.

InfluxDB needs one extra query and a client-side valida-

tion. OpenTSDB and KairosDB need a query plus code

for an extra function on the side of the client. The grp-

size and the split functions that run through this paper are

crucial for project 4 both have to be implemented on the

side of the client with an extra query for raw values.

Although it was possible to emulate the high-level

functions, we ran into problems that are either caused

by the missing support of nanosecond timestamps

(KairosDB and OpenTSDB) or the string encoding

(lsof/strace) in tags (OpenTSDB). Missing precision

causes the split function to construct wrong results – we

ignored this and measured the times nevertheless. String

decoding and serialization simply took too long, so we

measured the time of the raw data retrieval only.

The online distribution of Chronix holds the code and

also the re-implementation of the queries with other time

series databases.

Extra queries and client-side evaluations cause a sig-

nificant slowdown. This can be seen in the lower part of

Table 8 where Chronix is faster. But this effect is also

visible in the b-queries. For instance, InfluxDB needs

343.8 s / (58 · 20) = 0.3 s on average for a raw data q-

query without evaluating any function at all. Its average

for the 43 · 20 b-queries instead is only 0.03 s because

the function is evaluated server-side and only the result

is shipped. This is similar for the other databases. Built-

in functions are therefore a clear advantage.

Default values of Chronix. All the results show that

even with its default parameters Chronix outperforms the

general-purpose time series databases on anomaly detec-

tion projects. A use-case specific commissioning with

both projects’ datasets as input did not change the values

for c and t and did not buy any extra performance.

For the default DDC threshold of d=200 ms we see

an inaccuracy rate of 20% for both projects. The average

deviations are around 42 ms and 80 ms, resp. From our

experience, this is acceptable. With the DDC threshold

set to the period of the almost-periodic time series, inac-

curacy reaches the worst case as only the first timestamp

is stored. But even then the resulting materialized com-

pression rate would only be 1.1% lower but for the costs

of a high inaccuracy rate.

6 Related Work

We discuss related work along the main requirements of

Sec. 2 and the domain specific design decisions of Sec. 3.

Generic data model. We are not aware of any time

series database that has such a generic data model as

Chronix. Often only scalar values are supported [2, 12,

13, 28, 31, 32, 34, 36]. InfluxDB [24] has also strings

and boolean types. KairosDB [25] is extensible but the

types lack support for custom operators and functions.

As discussed in Section 2, this is too restrictive for the

operational data of software systems.

Analysis support. There are indexing approaches for

an efficient analysis and retrieval of time series data,

e.g., approximation techniques and tree-structured in-

dexes [6, 8, 15, 26]. They optimize an approximate repre-

sentation of the time series with pointers to the files that

contain the raw data for example for a similarity search.

In contrast, Chronix is not tailored to a specific analysis

but it is optimized for explorative and correlating analy-

ses of operational time series data. Note that the Optional
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Transformation stage can add indexing values.

Several researchers presented methods that detect

anomalies in time series [43, 45, 46]. Chronix imple-

ments in its API most of them and also offers plug-ins.

Efficient long term storage. While many time series

databases focus on cloud computing and PBytes of gen-

eral time series data, Chronix is domain specific for the

anomaly detection in operational data. Chronix builds

upon and extends the architectural principles proposed

by Shafer et al. [40] and Dunning et al. [17]. Its strengths

and the reasons for the better performance are its pipeline

architecture with domain specific optimizations and the

commissioning methodology.

Many time series databases are distributed systems

that run in separate processes [24, 25, 28, 32] on multiple

nodes. Some are affected by synchronization costs and

inter-process communication even when configured to

run on a single node [25, 28, 32]. In contrast, on a single

node Chronix uses lightweight thread parallelism within

a process. Moreover, since OpenTSDB and KairosDB

use an external storage technology (HBase [23] and Cas-

sandra [3]) with a built-in compression, they cannot save

time by shipping compressed data to/from the analysis

client [22], whereas Chronix uses the chunk size and the

compression technique that not only achieve the best re-

sults on the data but also cut down on query latency.

OpenTSDB and KairosDB have a large memory foot-

print due to their building blocks.

In-memory databases or databases that keep large

parts of the data in memory, like Gorilla [34] or

BTrDB [2], can quickly answer queries on recent data,

but they need a long term storage like Chronix for the

older data that some anomaly detectors need.

Lossless storage. A few of the related time series

databases are not lossless. RRDtool [31], Ganglia [29]

(that uses RRDtool), and Graphite [12] store data points

in a fixed-size cyclic buffer, called Round Robin Archive

(RRA). If there is more data than fits into the buffer, they

purge old data. This may cause wrong analysis results.

For identification purposes Prometheus [36] uses a 64-bit

fingerprint of the attribute values to find data. Potential

hash collisions of fingerprints may cause missed data.

Focus on Queries. While most of the databases are

optimized for write throughput [2, 12, 13, 25, 31, 32, 34]

and suffer from scan and filter operations when data

is requested, Chronix optimizes the query performance

(mainly by means of a reverse index). This is an advan-

tage for the needs of anomaly detection. Chronix de-

lays costly index reconstructions when a batch import of

many small chunks of data is needed.

Chronix processes raw data for aggregations. To op-

timize such aggregates Chronix can be enriched with

techniques of related time series databases to store pre-

aggregated values [2, 24].

Domain specific compression. Most time series

databases use some form of compression. There are lossy

approaches that do not fit the requirements of anomaly

detection in operational data. (For instance, one idea is

to down-sample and override old data [12, 31].) Many

time series databases [2, 25, 28, 32, 34, 36] use a loss-

less compression. (Tsdb [13] applies QuickLZ [37] and

only achieves a mediocre rate of about 20% [13].) Most

of them also use a value encoding that is similar in spirit

to the DDC. The difference is that Chronix only removes

jitter from the timestamps in almost-periodic intervals as

exact values matter for anomaly detection.

Commissioning. For none of the other time series

databases there is a commissioning methodology to tune

it to the domain specific or even use-case specific needs

of anomaly detection in operational data.

7 Conclusion

The paper illustrates that general-purpose time series

databases impede anomaly detection projects that ana-

lyze operational data. Chronix is a domain specific al-

ternative that exploits the specific characteristics of the

domain in many ways, e.g., with a generic data model,

extensible data types and operators, built-in high-level

functions, a novel encoding of almost-periodic time se-

ries, records with attributes and binary-encoded chunks

of data, domain specific chunk sizes, etc. Since the con-

figuration parameters need to be chosen carefully to

achieve an ideal performance, there is also a commis-

sioning methodology to find values for them.

On real-world operational data from industry and on

queries that analyze these data, Chronix outperforms

general-purpose time series databases by far. With a

smaller memory footprint, it saves 20%–68% of the stor-

age space, and it saves 80%–92% on data retrieval time

and 73%–97% of the runtime of analyzing functions.

Chronix is open source, see www.chronix.io.
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Abstract
Object stores are becoming pervasive due to their

scalability and simplicity. Their broad adoption, how-
ever, contrasts with their rigidity for handling heteroge-
neous workloads and applications with evolving require-
ments, which prevents the adaptation of the system to
such varied needs. In this work, we present Crystal, the
first Software-Defined Storage (SDS) architecture whose
core objective is to efficiently support multi-tenancy in
object stores. Crystal adds a filtering abstraction at the
data plane and exposes it to the control plane to en-
able high-level policies at the tenant, container and ob-
ject granularities. Crystal translates these policies into a
set of distributed controllers that can orchestrate filters at
the data plane based on real-time workload information.
We demonstrate Crystal through two use cases on top of
OpenStack Swift: One that proves its storage automation
capabilities, and another that differentiates IO bandwidth
in a multi-tenant scenario. We show that Crystal is an ex-
tensible platform to deploy new SDS services for object
stores with small overhead.

1 Introduction

Object stores are becoming an increasingly pervasive
storage building block due to their scalability, availabil-
ity and usage simplicity via HTTP RESTful APIs [1, 8].
These desirable features have spurred the adoption of
object stores by many heterogeneous applications and
systems, ranging from Personal Clouds [4, 25], Big
Data companies such as DataBricks [2] and Mirantis [6]
and analytics frameworks [22, 17], and Web applica-
tions [19], to name a few.

Despite their growing popularity, object stores are not
well prepared for heterogeneity. Typically, a deployment
of an object store in the cloud uses a monolithic config-
uration setup, even when the same object store acts as
a substrate for different types of applications with time-
varying requirements [17, 16]. This results in all appli-

cations experiencing the same service level, though the
workloads from different applications can vary dramat-
ically. For example, while a social network application
such as Facebook would have to store a large number of
small-medium sized photos (KB- to MB-sized objects),
a Big Data analytics framework would probably gener-
ate read and write requests for large files. It is clear that
using a static configuration inhibits optimization of the
system to such varying needs.

But not only this; beyond the particular needs of a
type of workload, the requirements of applications can
also vary greatly. For example, an archival application
may require of transparent compression, annotation, and
encryption of the archived data. In contrast, a Big Data
analytics application may benefit from the computational
resources of the object store to eliminate data movement
and enable in-place analytics capabilities [22, 17]. Sup-
porting such a variety of requirements in an object store
is challenging, because in current systems, custom func-
tionality is hard-coded into the system implementation
due to the absence of a true programmable layer, making
it difficult to maintain as the system evolves.

1.1 Scope and Challenges

In this paper, we argue that Software-Defined Storage
(SDS) is a compelling solution to these problems. As in
SDN, the separation of the “data plane” from the “control
plane” is the best-known principle in SDS [41, 34, 39,
23, 38]. Such separation of concerns is the cornerstone
of supporting heterogeneous applications in data centers.
However, the application of SDS fundamentals on cloud
object stores is not trivial. Among other things, it needs
to address two main challenges:

A flexible control plane. The control plane should be
the key enabler that makes it possible to support multiple
applications separately using dynamically configurable
functionalities. Since the de facto way of expressing
management requirements and objectives in SDS is via
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policies, they should also dictate the management rules
for the different tenants in a shared object store. This is
not easy since policies can be very distinct. They can be
as simple as a calculation on an object such as compres-
sion, and as complex as the distributed enforcement of
per-tenant IO bandwidth limits. Further, as a singular at-
tribution of object storage, such policies have to express
objectives and management rules at the tenant, container
and object granularities, which requires of a largely dis-
tinct form of policy translation into the data plane com-
pared with prior work [41, 39, 38]. Identifying the nec-
essary abstractions to concisely define the management
policies is not enough. If the system evolves over time,
the control plane should be flexible enough to properly
describe the new application needs in the policies.

An extensible data plane. Although the controller in
all SDS systems is assumed to be easy to extend [41, 39,
38], data plane extensibility must be significantly richer
for object storage; for instance, it must enable to perform
“on the fly” computations as the objects arrive and depart
from the system to support application-specific functions
like sanitization, Extract-Transform-Load (ETL) opera-
tions, caching, etc. This entails the implementation of a
lightweight, yet versatile computing layer, which do not
exist today in SDS systems. Building up an extensible
data plane is challenging. On the one hand, it requires of
new abstractions that enable policies to be succinctly ex-
pressed. On the other hand, these abstractions need to be
flexible enough to handle heterogeneous requirements,
that is, from resource management to simple automation,
which is not trivial to realize.

1.2 Contributions
To overcome the rigidity of object stores we present
Crystal: The first SDS architecture for object storage to
efficiently support multi-tenancy and heterogeneous ap-
plications with evolving requirements. Crystal achieves
this by separating policies from implementation and uni-
fying an extensible data plane with a logically centralized
controller. As a result, Crystal allows to dynamically
adapt the system to the needs of specific applications,
tenants and workloads.

Of Crystal, we highlight two aspects, though it has
other assets. First, Crystal presents an extensible archi-
tecture that unifies individual models for each type of re-
source and transformation on data. For instance, global
control on a resource such as IO bandwidth can be eas-
ily incorporated as a small piece of code. A dynamic
management policy like this is materialized in form of
a distributed, supervised controller, which is the Crystal
abstraction that enables the addition of new control al-
gorithms (Section 5.2). In particular, these controllers,
which are deployable at runtime, can be fed with plug-
gable per-workflow or resource metrics. Examples of

metrics are the number of IO operations per second and
the bandwidth usage. An interesting property of Crystal
is that it can even use object metadata to better drive the
system towards the specified objectives.

Second, Crystal’s data plane abstracts the complex-
ity of individual models for resources and computations
through the filter abstraction. A filter is a piece of pro-
gramming logic that can be injected into the data plane
to perform custom calculations on object requests. Crys-
tal offers a filter framework that enables the deployment
and execution of general computations on objects and
groups of objects. For instance, it permits the pipelining
of several actions on the same object(s) similar to stream
processing frameworks [30]. Consequently, practitioners
and systems developers only need to focus on the devel-
opment of storage filters, as their deployment and exe-
cution is done transparently by the system (Section 5.1).
To our knowledge, no previous SDS system offers such
a computational layer to act on resources and data.

We evaluate the design principles of Crystal by imple-
menting two use cases on top of OpenStack Swift: One
that demonstrates the automation capabilities of Crystal,
and another that enforces IO bandwidth limits in a multi-
tenant scenario. These uses cases demonstrate the feasi-
bility and extensibility of Crystal’s design. The experi-
ments with real workloads and benchmarks are run on a
13-machine cluster. Our experiments reveal that policies
help to overcome the rigidity of object stores incurring
small overhead. Also, defining the right policies may
report performance and cost benefits to the system.

In summary, our key contributions are:

• Design of Crystal, the first SDS architecture for ob-
ject storage that efficiently supports multi-tenancy
and applications with evolving requirements;

• A control plane for multi-tenant object storage, with
flexible policies and their transparent translation
into the enforcement mechanisms at the data plane;

• An extensible data plane that offers a filter abstrac-
tion, which can encapsulate from arbitrary compu-
tations to resource management functionality, en-
abling concise policies for complex tasks;

• The implementation and deployment of policies for
storage automation and IO bandwidth control that
demonstrate the design principles of Crystal.

2 Crystal Design

Crystal seeks to efficiently handle workload heterogene-
ity and applications with evolving requirements in shared
object storage. To achieve this, Crystal separates high-
level policies from the mechanisms that implement them
at the data plane, to avoid hard-coding the policies in the
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FOR [TARGET] WHEN [TRIGGER CLAUSE] DO [ACTION CLAUSE]

TENANT T1

CONTAINER C1

SET COMPRESSION WITH TYPE=LZ4,

SET CACHING ON PROXY TRANSIENT

OBJECT_TYPE=DOCS

AND OBJECT_SIZE<10M

SET ENCRYPTION

GETS_SEC > 5

TENANT T2 SET BANDWIDTH WITH GET_BW=30MBps

P1

P2

P3

Content management policy Resource management policyData management policy

Storage automation policy Globally coordinated policy

Figure 1: Structure of the Crystal DSL.

system itself. To do so, it uses three abstractions: filter,
metric, and controller, in addition to policies.

2.1 Abstractions in Crystal
Filter. A filter is a piece of code that a system adminis-
trator can inject into the data plane to perform custom
computations on incoming object requests1. In Crys-
tal, this concept is broad enough to include computa-
tions on object contents (e.g., compression, encryption),
data management like caching or pre-fetching, and even
resource management such as bandwidth differentiation
(Fig. 1). A key feature of filters is that the instrumented
system is oblivious to their execution and needs no mod-
ification to its implementation code to support them.

Inspection trigger. This abstraction represents in-
formation accrued from the system to automate the ex-
ecution of filters. There are two types of information
sources. A first type that corresponds to the real-time
metrics got from the running workloads, like the number
of GET operations per second of a data container or the
IO bandwidth allocated to a tenant. As with filters, a
fundamental feature of workload metrics is that they can
be deployed at runtime. A second type of source is the
metadata from the objects themselves. Such metadata
is typically associated with read and write requests and
includes properties like the size or type of objects.

Controller. In Crystal, a controller represents an algo-
rithm that manages the behavior of the data plane based
on monitoring metrics. A controller may contain a sim-
ple rule to automate the execution of a filter, or a com-
plex algorithm requiring global visibility of the cluster
to control a filter’s execution under multi-tenancy. Crys-
tal builds a logically centralized control plane formed by
supervised and distributed controllers. This allows an
administrator to easily deploy new controllers on-the-fly
that cope with the requirements of new applications.

Policy. Our policies should be extensible for really al-
lowing the system to satisfy evolving requirements. This
means that the structure of policies must facilitate the in-
corporation of new filters, triggers and controllers.

To succinctly express policies, Crystal abides by a
structure similar to that of the popular IFTTT (If-This-
Then-That) service [5]. This service allows users to ex-
press small rule-based programs, called “recipes”, using
triggers and actions. For example:

1Filters work in an online fashion. To explore the feasibility of
batch filters on already stored objects is matter of future work.
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Figure 2: High-level overview of Crystal’s architecture
materialized on top of OpenStack Swift.

TRIGGER: compressibility of an object is > 50%
ACTION: compress
RECIPE: IF compressibility is > 50% THEN compress

An IFTTT-like language can reflect the extensibility
capabilities of the SDS system; at the data plane, we can
infer that triggers and actions are translated into our in-
spection triggers and filters, respectively. At the control
plane, a policy is a “recipe” that guides the behavior of
control algorithms. Such apparently simple policy struc-
ture can express different policy types. On the one hand,
Fig. 1 shows storage automation policies that enforce
a filter either statically or dynamically based on simple
rules; for instance, P1 enforces compression and encryp-
tion on document objects of tenant T1, whereas P2 ap-
plies data caching on small objects of container C1 when
the number of GETs/second is > 5. On the other hand,
such policies can also express objectives to be achieved
by controllers requiring global visibility and coordina-
tion capabilities of the data plane. That is, P3 tells a
controller to provide at least 30MBps of aggregated GET
bandwidth to tenant T2 under a multi-tenant workload.

2.2 System Architecture
Fig. 2 presents Crystal’s architecture, which consists of:

Control Plane. Crystal provides administrators with
a system-agnostic DSL (Domain-Specific Language) to
define SDS services via high-level policies. The DSL
“vocabulary” can be extended at runtime with new filters
and inspection triggers. The control plane includes an
API to compile policies and to manage the life-cycle and
metadata of controllers, filters and metrics (see Table 1).

Moreover, the control plane is built upon a distributed
model. Although logically centralized, the controller is,
in practice, split into a set of autonomous micro-services,
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each running a separate control algorithm. Other micro-
services, called workload metric processes, close the
control loop by exposing monitoring information from
the data plane to controllers. The control loop is also ex-
tensible, given that both controllers and workload metric
processes can be deployed at runtime.

Data Plane. Crystal’s data plane has two core exten-
sion points: Inspection triggers and filters. First, a devel-
oper can deploy new workload metrics at the data plane
to feed distributed controllers with new runtime informa-
tion on the system. The metrics framework runs the code
of metrics and publishes monitoring events to the mes-
saging service. Second, data plane programmability and
extensibility is delivered through the filter framework,
which intercepts object flows in a transparent manner and
runs computations on them. A developer integrating a
new filter only needs to contribute the logic; the deploy-
ment and execution of the filter is managed by Crystal.

3 Control Plane

The control plane allows writing policies that adapt the
data plane to manage multi-tenant workloads. It is
formed by the DSL, the API and distributed controllers.

3.1 Crystal DSL
Crystal’s DSL hides the complexity of low-level policy
enforcement, thus achieving simplified storage adminis-
tration (Fig. 1). The structure of our DSL is as follows:

Target: The target of a policy represents the recipi-
ent of a policy’s action (e.g., filter enforcement) and it
is mandatory to specify it on every policy definition. To
meet the specific needs of object storage, targets can be
tenants, containers or even individual data objects. This
enables high management and administration flexibility.

Trigger clause (optional): Dynamic storage automa-
tion policies are characterized by the trigger clause. A
policy may have one or more trigger clauses —separated
by AND/OR operands— that specify the workload-based
situation that will trigger the enforcement of a filter on
the target. Trigger clauses consist of inspection trig-
gers, operands (e.g, >, <, =) and values. The DSL
exposes both types of inspection triggers: workload
metrics (e.g., GETS SEC) and request metadata (e.g.,
OBJECT SIZE<512).

Action clause: The action clause of a policy defines
how a filter should be executed on an object request once
the policy takes place. The action clause may accept pa-
rameters after the WITH keyword in form of key/value
pairs that will be passed as input to customize the filter
execution. Retaking the example of a compression filter,
we may decide to enforce compression using a gzip or
an lz4 engine, and even their compression level.

Crystal Controller Calls Description

add policy
delete policy
list policies

Policy management API calls. For storage automation policies, the add policy
call can either to directly enforce the filter or to deploy a controller to do so. For
globally coordinated policies, the call sets an objective at the metadata layer.

register keyword
delete keyword

Calls that interact with Crystal registry to associate DSL keywords with filters,
inspection triggers or coin new terms to be used as trigger conditions (e.g., DOCS).

deploy controller
kill controller

These calls are used to manage the life-cycle of distributed controllers and work-
load metric processes in the system.

Filter Framework Calls Description

deploy filter
undeploy filter
list filters

Calls for deploying, undeploying and listing filters associated to a target.
deploy/undeploy filter calls interact with the filter framework at the data
plane for enabling/disabling filter binaries to be executed on a specific target.

update slo
list slo
delete slo

Calls to manage “tenant objectives” for coordinated resource management filters.
For instance, bandwidth differentiation controllers take as input this information
in order to provide an aggregated IO bandwidth share at the data plane.

Workload Metric Calls Description

deploy metric
delete metric

Calls for managing workload metrics at the data plane. These calls also manage
workload metric processes to expose data plane metrics to the control plane.

*For the sake of simplicity, we do not include call parameters in this table.

Table 1: Main calls of Crystal controller, filter frame-
work and workload metrics management APIs.

To cope with object stores formed by proxies/storage
nodes (e.g., Swift), our DSL enables to explicitly control
the execution stage of a filter with the ON keyword. Also,
dynamic storage automation policies can be persistent or
transient; a persistent action means that once the policy
is triggered the filter enforcement remains indefinitely
(by default), whereas actions to be executed only during
the period where the condition is satisfied are transient
(keyword TRANSIENT, P2 in Fig. 1).

The vocabulary of our DSL can be extended on-the-fly
to accommodate new filters and inspection triggers. That
is, in Fig. 1 we can use keywords COMPRESSION and
DOCS in P1 once we associate “COMPRESSION” with
a given filter implementation and “DOCS” with some file
extensions, respectively (see Table 1).

The Crystal DSL has other features: i) specialization
of policies based on the target scope, so that if several
policies apply to the same request, only the most specific
one is executed (e.g., container-level policy is more spe-
cific than a tenant-level one), ii) pipelining several filters
on a single request (e.g., compression + encryption) or-
dered as they are defined in the policy, similar to stream
processing frameworks [30], and iii) grouping, which en-
ables to enforce a single policy to a group of targets; that
is, we can create a group like WEB CONTAINERS to rep-
resent all the containers that serve Web pages.

As visible in Table 1, Crystal offers a DSL compilation
service via API calls. Crystal compiles simple automa-
tion policies as target→filter relationships at the meta-
data layer. Next, we show how dynamic policies (i.e.,
with WHEN clause) use controllers to enforce filters.

3.2 Distributed Controllers

Crystal resorts to distributed controllers, in form of su-
pervised micro-services, which can be deployed in the
system at runtime to extend the control plane [15, 18, 40].

We offer two types of controllers: automation and
global controllers. On the one hand, the Crystal DSL
compiles dynamic storage automation policies into au-

246    15th USENIX Conference on File and Storage Technologies USENIX Association



Figure 3: Interactions among automation controllers,
workload metric processes and the filter framework.

tomation controllers (e.g., P2 in Fig. 1). Their life-cycle
consists of consuming the appropriate monitoring met-
rics and interact with the filter framework API to enforce
a filter when the trigger clause is satisfied.

On the other hand, global controllers are not generated
by the DSL; instead, by simply extending a base class
and overriding its computeAssignments method,
developers can deploy controllers that contain complex
algorithms with global visibility and continuous control
of a filter at the data plane (e.g., P3 in Fig. 1). To
this end, the base global controller class encapsulates the
logic i) to ingest monitoring events, ii) to disseminate
the computed assignments across nodes2, and iii) to get
Service-Level Objectives (SLO) to be enforced from the
metadata layer (see Table 1). This allowed us to deploy
distributed IO bandwidth control algorithms (Section 5).

Extensible control loop: To close the control loop,
workload metric processes are micro-services that pro-
vide controllers with monitoring information from the
data plane. While running, a workload metric process
consumes and aggregates events from one workload met-
ric at the data plane. For the sake of simplicity [40], we
advocate to separate workload metrics not only per met-
ric type, but also by target granularity.

Controllers and workload metrics processes interact
in a publish/subscribe fashion [21]. For instance, Fig.
3 shows that, once initialized, an automation controller
subscribes to the appropriate workload metric process,
taking into account the target granularity. The subscrip-
tion request of a controller specifies the target to which
it is interested in, such as tenant T1 or container C1; this
ensures that controllers do not receive unnecessary moni-
toring information from other targets. Once the workload
metric process receives the subscription request, it adds
the controller to its observer list. Periodically, it notifies
the activity of the different targets to the interested con-
trollers that may trigger the execution of filters.

4 Data Plane

At the data plane, we offer two main extension hooks:
Inspection triggers and a filter framework.

2For efficiency reasons, global controllers disseminate assignments
to data plane filters also via the messaging service.

4.1 Inspection Triggers
Inspection triggers enable controllers to dynamically re-
spond to workload changes in real time. Specifically, we
consider two types of introspective information sources:
object metadata and monitoring metrics.

First, some object requests embed semantic informa-
tion related to the object at hand in form of metadata.
Crystal enables administrators to enforce storage filters
based on such metadata. Concretely, our filter framework
middleware (see Section 4.2) is capable of analyzing at
runtime HTTP metadata of object requests to execute fil-
ters based on the object size or file type, among others.

Second, Crystal builds a metrics middleware to add
new workload metrics on the fly. At the data plane, a
workload metric is a piece of code that accounts for a par-
ticular aspect of the system operation and publishes that
information. In our design, a new workload metric can
inject events to the monitoring service without interfer-
ing with existing ones (Table 1). Our metrics framework
allows developers to plug-in metrics that inspect both the
type of requests and their contents (e.g., compressibil-
ity [29]). We provide the logic (i.e., AbstractMetric
class) to abstract developers from the complexity of re-
quest interception and event publishing.

4.2 Filter Framework
The Crystal filter framework enables developers to de-
ploy and run general-purpose code on object requests.
Crystal borrows ideas from active storage literature [36,
35] as a mean of building filters to enforce policies.

Our framework achieves flexible execution of filters.
First, it enables to easily pipeline several filters on a sin-
gle storage request. Currently, the execution order of fil-
ters is set explicitly by the administrator, although filter
metadata can be exploited to avoid conflicting filter or-
dering errors [20]. Second, to deal with object stores
composed by proxies/storage nodes, Crystal allows ad-
ministrators to define the execution point of a filter.

To this end, the Crystal filter framework consists of i)
a filter middleware, and ii) filter execution environments.

Filter middleware: Our filter middleware intercepts
data streams and classifies incoming requests. Upon a
new object request, the middleware at the proxy performs
a single metadata request to infer the filters to be ex-
ecuted on that request depending on the target. If the
target has associated filters, the filter middleware sets the
appropriate metadata headers in the request for triggering
the execution of filters through the read/write path.

Filters that change the content of data objects may re-
ceive a special treatment (e.g., compression, encryption).
To wit, if we create a filter with the reverse flag enabled,
it means that the execution of the filter when the object
was stored should be always undone upon a GET request.
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That is, this yields that we may activate data compression
on certain periods, but tenants will always download de-
compressed objects. To this end, prior to storing an ob-
ject, we tag it with extended metadata that keeps track
of the enforced filters with reverse flag set. Upon a GET
request, the filter middleware fetches such metadata from
the object itself to trigger the reverse transformations on
it prior to the execution of regular filters.

Filter execution environments: Currently, our mid-
dleware can support two filter execution environments:

Isolated filter execution: Crystal provides an isolated
filter execution environment to perform general-purpose
computations on object streams with high security guar-
antees. To this end, we extended the Storlets frame-
work [7] with pipelining and stage execution control
functionalities. Storlets provide Swift with the capabil-
ity to run computations close to the data in a secure and
isolated manner making use of Docker containers [3].
Invoking a Storlet on a data object is done in an isolated
manner so that the data accessible by the computation
is only the object’s data and its user metadata. Also, a
Docker container only runs filters of a single tenant.

Native filter execution: The isolated filter execution
environment trades-off higher security for lower commu-
nication capabilities and interception flexibility. For this
reason, we also contribute an alternative way to intercept
and execute code natively. As with Storlets, a developer
can deploy code modules as native filters at runtime by
following simple implementation guidelines. However,
native filters can i) execute code at all the possible points
of a request’s life-cycle, and ii) communicate with exter-
nal components (e.g, metadata layer), as well as to access
storage devices (e.g., SSD). As Crystal is devised to ex-
ecute trusted code from administrators, this environment
represents a more flexible alternative.

5 Hands On: Extending Crystal

Next, we show the benefits of Crystal’s design by ex-
tending the system with data management filters and dis-
tributed control of IO bandwidth for OpenStack Swift.

5.1 New Storage Automation Policies

Goal: To define policies that enforce filters, like com-
pression, encryption or caching, even dynamically:
P1:FOR TENANT T1 WHEN OBJECT TYPE=DOCS DO SET
COMPRESSION ON PROXY, SET ENCRYPTION ON STORAGE NODE

P2:FOR CONTAINER C1 WHEN GETS SEC > 5 DO SET CACHING

Data plane (Filters): To enable such storage automa-
tion policies, we first need to develop the filters at the
data plane. In Crystal this can be done using either native
or isolated execution environments.

The next code snippet shows how to develop a filter for
our isolated execution environment. A system developer
only needs to create a class that implements an interface
(IStorlet), providing the actual data transformations
on the object request streams (iStream, oStream) in-
side the invoke method. To wit, we implemented the
compression (gzip engine) and encryption (AES-256)
filters using storlets, whereas the caching filter exploits
SSD drives at proxies via our native execution environ-
ment. Then, once these filters were developed, we in-
stalled them via the Crystal filter framework API.

p u b l i c c l a s s S t o r l e t N a m e implemen t s I S t o r l e t {

@Override
p u b l i c vo id i nv oke ( A r r a y L i s t<S t o r l e t I n p u t S t r e a m> iS t r eam ,

A r r a y L i s t<S t o r l e t O u t p u t S t r e a m> oStream ,
Map<S t r i n g , S t r i n g> p a r a m e t e r s , S t o r l e t L o g g e r l o g g e r )
t h ro ws S t o r l e t E x c e p t i o n {

/ / Develop f i l t e r l o g i c h e r e
}

}

Data plane (Monitoring): Via the Crystal API (see Ta-
ble 1), we deployed metrics that capture various work-
load aspects (e.g., PUTs/GETs per second of a tenant)
to satisfy policies like P2. Similarly, we deployed the
corresponding workload metrics processes (one per met-
ric and target granularity) that aggregate such monitoring
information to be published to controllers. Also, our fil-
ter framework middleware is already capable of enforc-
ing filters based on object metadata, such as object size
(OBJECT SIZE) and type (OBJECT TYPE).

Control Plane: Finally, we registered intuitive key-
words for both filters and workload metrics at the meta-
data layer (e.g., CACHING, GET SEC TENANT) using
the Crystal registry API. To achieve P1, we also regis-
tered the keyword DOCS, which contains the file exten-
sions of common documents (e.g, .pdf, .doc). At this
point, we can use such keywords in our DSL to design
new storage policies.

5.2 Global Management of IO Bandwidth

Goal: To provide Crystal with means of defining policies
that enforce a global IO bandwidth SLO on GETs/PUTs:
P3:FOR TENANT T1 DO SET BANDWIDTH WITH GET BW=30MBps

Data plane (Filter). To achieve global bandwidth
SLOs on targets, we first need to locally control the band-
width of object requests. Intuitively, bandwidth control
in Swift may be performed at the proxy or storage node
stages. At the proxy level this task may be simpler, as
fewer nodes should be coordinated. However, this ap-
proach is agnostic to the background tasks (e.g., replica-
tion) executed by storage nodes, which impact on perfor-
mance [33]. We implemented a native bandwidth control
filter that enables the enforcement at both stages.

Our filter dynamically creates threads that serve and
control the bandwidth allocation for individual tenants,
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Algorithm 1 computeAssignments pseudo-code
embedded into a bandwidth differentiation controller

1: function COMPUTEASSIGNMENTS(info):
2: /* Retrieve the defined tenant SLOs from the metadata layer */
3: SLOs← getMetadataStoreSLOs();
4: /* Compute assignments on current tenant transfers to meet SLOs */
5: SLOAssignments← minSLO(info, SLOs);
6: /* Estimate spare bw at proxies/storage nodes based on current usage */
7: spareBw ← min(spareBwProxies(SLOAssignments), spareBwStor-

ageNodes(SLOAssignments));
8: spareBwSLOs← {};
9: /* Distribute spare bandwidth equally across all tenants */

10: for tenant in info do
11: spareBwSLOs[tenant]← spareBW

numTenants(in f o) ;
12: end for
13: /* Calculate assignments to achieve spare bw shares for tenants */
14: spareAssignments← spareSLO(SLOAssignments, spareBwSLOs);
15: /* Combine SLO and spare bw assignments on tenants */
16: return SLOAssignments ∪ spareAssignments;
17: end function

either at proxies or storage nodes. Our filter garbage-
collects control threads that are inactive for a certain
timeout. Moreover, it has a consumer process that re-
ceives bandwidth assignments from a controller to be en-
forced on a tenant’s object streams. Once the consumer
receives a new event, it propagates the assignments to the
filter that immediately take effect on current transfers.

Data plane (Monitoring): For building the control
loop, our bandwidth control service integrates individual
monitoring metrics per type of traffic (i.e., GET, PUT,
REPLICATION); this makes it possible to define poli-
cies for each type of traffic if needed. In essence, moni-
toring events contain a data structure that represents the
bandwidth share that tenants exhibit at proxies or per
storage node disk. We also deployed workload metric
processes to expose these events to controllers.

Control plane. We deployed Algorithm 1 as a global
controller to orchestrate our bandwidth differentiation
filter. Concretely, we aim at satisfying three main re-
quirements: i) A minimum bandwidth share per tenant,
ii) Work-conservation (do not leave idle resources), and
iii) Equal shares of spare bandwidth across tenants. The
challenge is to meet these requirements considering that
we do not control neither the data access of tenants nor
the data layout of Swift [28, 44].

To this end, Algorithm 1 works in three stages. First,
the algorithm tries to ensure the SLO for tenants spec-
ified in the metadata layer by resorting to function
minSLO (requirement 1, line 6). Essentially, minSLO
first assigns a proportional bandwidth share to tenants
with guaranteed bandwidth. Note that such assignment
is done in descending order based on the number of
parallel transfers per tenant, provided that tenants with
fewer transfers have fewer opportunities of meeting their
SLOs. Moreover, minSLO checks whether there ex-
ist overloaded nodes in the system. In the affirmative
case, the algorithm tries to reallocate bandwidth of ten-
ants with multiple transfers from overloaded nodes to

idle ones. In case that no reallocation is possible, the
algorithm reduces the bandwidth share of tenants with
SLOs on overloaded nodes.

In second place, once Algorithm 1 has calculated the
assignments for tenants with SLOs, it estimates the spare
bandwidth available to achieve full utilization of the clus-
ter (requirement 2, line 8). Note that the notion of spare
bandwidth depends on the cluster at hand, as the bottle-
neck may be either at the proxies or storage nodes.

Algorithm 1 builds a new assignment data structure
in which the spare bandwidth is equally assigned to
all tenants. The algorithm proceeds by calling func-
tion spareSLO to calculate the spare bandwidth assign-
ments (requirement 3, line 15). Note that spareSLO re-
ceives the SLOAssignments data structure that keeps
the already reserved node bandwidth according to the
SLO tenant assignments. The algorithm outputs the com-
bination of SLO and spare bandwidth assignments per
tenant. While more complex algorithms can be deployed
in Crystal [27], our goal in Algorithm 1 is to offer an at-
tractive simplicity/effectiveness trade-off, validating our
bandwidth differentiation framework.

6 Prototype Implementation

We tested our prototype in OpenStack Kilo version. The
Crystal API is implemented with the Django framework.
The API manages the system’s metadata from Redis 3.0
in-memory store [10]. We found that co-locating both
Redis and the Swift proxies in the same servers is a suit-
able deployment strategy. As we show next, this is spe-
cially true as only the filter middleware in proxies ac-
cesses the metadata layer (once per request).

We resort to PyActive [46] for building distributed
controllers and workload metric processes that can com-
municate among them (e.g., TCP, message brokers). For
fault tolerance, the PyActive supervisor is aware of all
the instantiated remote micro-services (either at one or
many servers) and can spawn a new process if one dies.

We built our metrics and filter frameworks as stan-
dard WSGI middlewares in Swift. The code of workload
metrics is dynamically deployed on Swift nodes, inter-
cepts the requests and periodically publishes monitoring
information (e.g., 1 second) via RabbitMQ 3.6 message
broker. Similarly, the filter framework middleware inter-
cepts a storage request and redirects it via a pipe either to
the Storlets engine or to a native filter, depending on the
filter pipeline definition. As both filters and metrics can
run on all Swift nodes, in the case of server failures they
can be executed in other servers holding object replicas.

The code of Crystal is publicly available3 and our con-
tributions to the Storlets project are submitted for accep-
tance to the official OpenStack repository.

3https://github.com/Crystal-SDS
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7 Evaluation

Next, we evaluate a prototype of Crystal for OpenStack
Swift in terms of flexibility, performance and overhead.

Objectives: Our evaluation addresses the challenges
of Section 1.1 by showing: i) Crystal can define policies
at multiple granularities, achieving administration flexi-
bility; ii) The enforcement of storage automation filters
can be dynamically triggered based on workload condi-
tions; iii) Crystal achieves accurate distributed enforce-
ment of IO bandwidth SLOs on different tenants; iv) Fi-
nally, Crystal has low execution/monitoring overhead.

Workloads: We resort to well-known benchmarks
and replays of real workload traces. First, we use
ssbench [11] to execute stress-like workloads on
Swift. ssbench provides flexibility regarding the type
(CRUD) and number of operations to be executed, as
well as the size of files generated. All these parameters
can be specified in form of configuration “scenarios”.

To evaluate Crystal under real-world object storage
workloads, we collected the following traces4: ii) The
first trace captures 1.28TB of a write-dominated (79.99%
write bytes) document database workload storing 817K
car testing/standardization files (mean object size is
0.91MB) for 2.6 years at Idiada; an automotive com-
pany. i) The second trace captures 2.97TB of a read-
dominated (99.97% read bytes) Web workload consist-
ing of requests related to 228K small data objects (mean
object size is 0.28MB) from several Web pages hosted at
Arctur datacenter for 1 month. We developed our own
workload generator to replay a part of these traces (12
hours), as well as to perform experiments with control-
lable rates of requests. Our workload generator resorts to
SDGen [24] to create realistic contents for data objects
based on the file types described in the workload traces.

Platform: We ran our experiments in a 13-machine
cluster formed by 9 Dell PowerEdge 320 nodes (Intel
Xeon E5-2403 processors); 2 of them act as Swift proxy
nodes (28GB RAM, 1TB HDD, 500GB SSD) and the
rest are Swift storage nodes (16GB RAM, 2x1TB HDD).
There are 3 Dell PowerEdge 420 (32GB RAM, 1TB
HDD) nodes that were used as compute nodes to exe-
cute workloads. Also, there is 1 large node that runs the
OpenStack services and the Crystal control plane (i.e.,
API, controllers, messaging, metadata store). Nodes in
the cluster are connected via 1 GbE switched links.

7.1 Evaluating Storage Automation
Next, we present a battery of experiments that demon-
strate the feasibility and capabilities of storage automa-
tion with Crystal. To this end, we make use of synthetic
workloads and real trace replays (Idiada, Arctur). These

4Available at http://iostack.eu/datasets-menu.
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Figure 4: Enforcement of compression/encryption filters.

experiments have been executed at the compute nodes
against 1 swift proxy and 6 storage nodes.

Storage management capabilities of Crystal. Fig. 4
shows the execution of several storage automation poli-
cies on a workload related to containers C1 and C2 be-
longing to tenant T1. Specifically, we executed a write-
only synthetic workload (4PUT/second of 1MB objects)
in which data objects stored at C1 consist of random data,
whereas C2 stores highly redundant objects.

Due to the security requirements of T1, the first policy
defined by the administrator is to encrypt his data objects
(P1). Fig. 4 shows that the PUT operations of both con-
tainers exhibit a slight extra overhead due to encryption,
given that the policy has been defined at the tenant scope.
There are two important aspects to note from P1: First,
the execution of encryption on T1’s requests is isolated
from filter executions of other tenants, providing higher
security guarantees [7] (Storlet filter). Second, the ad-
ministrator has the ability to enforce the filter at the stor-
age node in order to do not overload the proxy with the
overhead of encrypting data objects (ON keyword).

After policy P1 was enforced, the administrator de-
cided to optimize the storage space of T1’s objects by
enforcing compression (P2). P2 also enforces compres-
sion at the proxy node to minimize communication be-
tween the proxy and storage node (ON PROXY). Note
that the enforcement of P1 and P2 demonstrates the fil-
ter pipelining capabilities of our filter framework; once
P2 is defined, Crystal enforces compression at the proxy
node and encryption at storage nodes for each object re-
quest. Also, as shown in Section 4, the filter framework
tags objects with extended metadata to trigger the reverse
execution of these filters on GET requests (i.e., decryp-
tion and decompression, in that order).

However, the administrator realized that the compres-
sion filter on C1’s requests exhibited higher latency and
provided no storage space savings (incompressible data).
To overcome this issue, the administrator defined a new
policy P3 that essentially enforces only encryption on
C1’s requests. After defining P3, the performance of
C1’s requests exhibits the same behavior as before the
enforcement of P2. Thus, the administrator is able to
manage storage at different granularities, such as tenant
or container. Furthermore, the last policy also proves the
usefulness of policy specialization; policies P1 and P2
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Figure 5: Dynamic enforcement of caching filter.

apply to C2 at the tenant scope, whereas the system only
executes P3 on C1’s requests, as it is the most special-
ized policy.

Dynamic storage automation. Fig. 5 shows a dy-
namic caching policy (P1) on one tenant. The filter im-
plements LRU eviction and exploits SSD drives at the
proxy to improve object retrievals. We executed a syn-
thetic oscillatory workload of 1MB objects (gray area) to
verify the correct operation of automation controllers.

In Fig. 5, we show the average latency of PUT/GET
requests and the intensity of the workload. As can be ob-
served, the caching filter takes place when the workload
exceeds 5 GETs per second. At this point, the filter starts
caching objects at the proxy SSD on PUTs, as well as
to lookup the SSD to retrieve potentially cached objects
on GETs. First, the filter provides performance benefits
for object retrievals; when the caching filter is activated,
object retrievals are in median 29.7% faster compared to
non-caching periods. Second, we noted that the costs
of executing asynchronous writes on the SSD upon PUT
requests may be amortized by offloading storage nodes;
that is, the average PUT latency is in median 2% lower
when caching is activated. A reason for this may be that
storage nodes are mostly free to execute writes, as a large
fraction of GETs are being served at the proxy’s cache.

In conclusion, Crystal’s control loop enables dynamic
enforcement of storage filters under variable workloads.
Moreover, native filters in Crystal allow developers to
build complex data management filters.

Managing real workloads. Next, we show how Crys-
tal policies can handle real workloads (12 hours). That is,
we compress and encrypt documents (P1 in Fig. 1) on a
replay of the Idiada trace (write-dominated), whereas we
enforce caching of small files (P2 in Fig. 1) on a replay
of Arctur workload (read-dominated).

Fig. 6(a) shows the request bandwidth exhibited dur-
ing the execution of the Idiada trace. Concretely, we exe-
cuted two concurrent workloads, each associated to a dif-
ferent tenant. We enforced compression and encryption
only on tenant T2. Observably, tenant T2’s transfers are
over 13% and 7% slower compared to T1 for GETs and
PUTs, respectively. This is due to the computation over-
head of enforcing filters on T2’s document objects. As a
result, T2’s documents consumed 65% less space com-
pared to T1 with compression and they benefited from
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Figure 6: Policy enforcement on real trace replays.

higher data confidentially thanks to encryption.
Fig. 6(b) shows tenants T1 and T2, both concurrently

running a trace replay of Arctur. By executing a dynamic
caching policy, T2’s GET requests are in median 1.9x
faster compared to T1. That is, as the workload of Arc-
tur is intense and almost read-only, caching was enabled
for tenant T2 for most of the experiment. Moreover,
because the requested files fitted in the cache, the SSD-
based caching filter was very beneficial to tenant T2. The
median write overhead of T2 compared to T1 was 4.2%,
which suggests that our filter efficiently intercepts object
streams for doing parallel writes at the SSD.

Our results with real workloads suggest that Crystal is
practical for managing multi-tenant object stores.

7.2 Achieving Bandwidth SLOs

Next, we evaluate the effectiveness of our bandwidth dif-
ferentiation filter. To this end, we executed a ssbench
workload (10 concurrent threads) in each of the 3 com-
pute nodes in our cluster, one of each representing an
individual tenant. As we study the effects of replication
separately (in Fig. 7(d) we use 3 replicas), the rest of
experiments were performed using one replica rings.

Request types. Fig. 7(a) plots two different SLO en-
forcement experiments on three different tenants for PUT
and GET requests, respectively (enforcement at proxy
node). Appreciably, the execution of Algorithm 1 ex-
hibits a near exact behavior for both PUT and GET re-
quests. Moreover, we observe that tenants obtain their
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Figure 7: Performance of the Crystal bandwidth differentiation service (SLOs per tenant are in MBps).

SLO plus an equal share of spare bandwidth, according
to the expected policy behavior defined by colored areas.
This demonstrates the effectiveness of our bandwidth
control middleware for intercepting and limiting both re-
quests types. We also observe in Fig. 7(a) that PUT band-
width exhibits higher variability than GET bandwidth.
Concretely, after writing 512MB of data, Swift stopped
the transfers of tenants for a short interval; we will look
for the causes of this in our next development steps.

Impact of enforcement stage. An interesting aspect
to study in our framework are the implications of enforc-
ing bandwidth control at either the proxies or storage
nodes. In this sense, Fig. 7(b) shows the enforcement
SLOs on GET requests at both stages. At first glance, we
observe in Fig. 7(b) that our framework makes it possi-
ble to enforce bandwidth limits at both stages. However,
Fig. 7(b) also illustrates that the enforcement on stor-
age nodes presents higher variability compared to proxy
enforcement. This behavior arises from the relationship
between the number of nodes to coordinate and the in-
tensity of the workload at hand. That is, given the same
workload intensity, a fewer number of nodes (e.g., prox-
ies) offers higher bandwidth stability, as a tenant’s re-
quests are virtually a continuous data stream, being eas-
ier to control. Conversely, each storage node receives a
smaller fraction of a tenant’s requests, as normally stor-
age nodes are more numerous than proxies. This yields
that storage nodes have to deal with shorter and discon-
tinuous streams that are harder to control.

But enforcing bandwidth SLOs at storage nodes en-
ables to control background tasks like replication. Thus,
we face a trade-off between accuracy and control that
may be solved with hybrid enforcement schemes.

Mixed tenant activity, variable file sizes. Next, we
execute a mixed read/write workload using files of dif-
ferent sizes; small (8MB to 16MB), medium (32MB to
64MB) and large (128MB to 256MB) files. Besides, to
explore the scalability, in this set of experiments we re-
sort to a cluster configuration that doubles the size of the
previous one (2 proxies and 6 storage nodes).

Appreciably, Fig. 7(c) shows that our enforcement
controller achieves bandwidth SLOs under mixed work-
loads. Moreover, the bandwidth differentiation frame-
work works properly when doubling the storage cluster
size, as the policy provides tenants with the desired SLO
plus a fair share of spare bandwidth, specially for T1
and T2. However, Fig. 7(c) also illustrates that the PUT
bandwidth provided to T1 is significantly more variable
than for other tenants; this is due to various reasons.
First, we already mentioned the increased variability of
PUT requests, apparently due to write buffering. Second,
the bandwidth filter seems to be less precise when limit-
ing streams that require an SLO close to the node/link ca-
pacity. Moreover, small files make the workload harder
to handle by the controller as more node assignments
updates are potentially needed, specially as the cluster
grows. In the future, we plan to continue the exploration
and mitigation of these sources of variability.

Controlling background tasks. An advantage of en-
forcing bandwidth SLOs at storage nodes is that we can
also control the bandwidth of background processes via
policies. To wit, Fig. 7(d) illustrates the impact of repli-
cation tasks on multi-tenant workloads. In Fig. 7(d), we
observe that during the first 60 seconds of this experi-
ment (i.e., no SLOs defined) tenants are far from hav-
ing a sustained GET bandwidth of ≈ 33MBps, meaning
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that they are importantly affected by the replication pro-
cess. The reason is that, internally, storage nodes trigger
hundreds of point-to-point transfers to write copies of al-
ready stored objects to other nodes belonging to the ring.
Note that the aggregated replication bandwidth within
the cluster reached 221MBps. Furthermore, even though
we enforce SLOs from second 60 onwards, the objectives
are not achieved —specially for tenants T2 and T3— un-
til replication bandwidth is under control. As soon as we
deploy a controller that enforces a hard limit of 5MBps
to the aggregated replication bandwidth, the SLOs of ten-
ants are rapidly achieved. We conclude that Crystal has
potential as a framework to define fine-grained policies
for managing bandwidth allocation in object stores.

7.3 Crystal Overhead

Filter framework latency overheads. A relevant ques-
tion to answer is the performance costs that our filter
framework introduces to the regular operation of the sys-
tem. Essentially, the filter framework may introduce
overhead at i) contacting the metadata layer, ii) inter-
cepting the data stream through a filter5 and iii) manag-
ing extended object metadata. We show this in Fig. 8.

Compared to vanilla Swift (SW), Fig. 8 shows that
the metadata access of Crystal incurs a median latency
penalty between 1.5ms and 3ms (MA boxplots). For 1MB
objects, this represents a relative median latency over-
head of 3.9% for both GETs and PUTs. Naturally, this
overhead becomes slightly higher as the object size de-
creases, but is still practical (8% to 13% for 10KB ob-
jects). This confirms that our filter framework minimizes
communication with the metadata layer (i.e., 1 query per
request). Moreover, Fig. 8 shows that an in-memory
store like Redis fits the metadata workload of Crystal,
specially if it is co-located with proxy nodes.

Next, we focus on the isolated interception of object
requests via Storlets, which trades off performance for
higher security guarantees (see Section 4). Fig. 8 illus-
trates that the median isolated interception overhead of
a void filter (NOOP) oscillates between 3ms and 11ms
(e.g., 5.7% and 15.7% median latency penalty for 10MB
and 1MB PUTs, respectively). This cost mainly comes
from injecting the data stream into a Docker container
to achieve isolation. We also may consider filter im-
plementation effects, or even the data at hand. To wit,
columns CZ and CR depict the performance of the com-
pression filter for highly redundant (zeros) and random
data objects. Visibly, the performance of PUT requests
changes significantly (e.g., objects ≥ 1MB) as compres-
sion algorithms exhibit different performance depending
on the data contents [24]. Conversely, decompression in

5We focus on isolated filter execution, as native execution has no
additional interception overhead.
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Figure 8: Performance overhead of filter framework
metadata interactions and isolated filter enforcement.
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GET requests is not significantly affected by data con-
tents. Hence, to improve performance, filters should be
enforced in the right conditions.

Finally, our filter framework enables managing ex-
tended metadata of objects to store a sequence of data
transformations to be undone on retrievals (see Section
4). We measured that reading/writing extended object
metadata takes 0.3ms/2ms, respectively, which consti-
tutes modest overhead.

Filter pipelining throughput. Next, we want to fur-
ther explore the overhead of isolated filter execution.
Specifically, Fig. 9 depicts the latency overhead of pipel-
ing multiple NOOP Storlet filters. As pipelining is a new
feature of Crystal, it required a separate evaluation.

Fig. 9 shows that the latency costs of intercepting a
data stream through a pipeline of isolated filters is ac-
ceptable. To inform this argument, each additional fil-
ter in the pipeline incurs 3ms to 9ms of extra latency in
median. This is slightly lower than passing the stream
through the Docker container for the first time. The
reason is that pipelining tenant filters is done within the
same Docker container, so the costs of injecting the
stream into the container are present only once. There-
fore, our filter framework is a feasible platform to dy-
namically compose and pipeline several isolated filters.

Monitoring overheads. To understand the monitor-
ing costs of Crystal, we provide a measurement-based es-
timation of various configurations of monitoring nodes,
workload metrics and controllers. To wit, the monitor-
ing traffic overhead O related to |W | workload metrics is
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Figure 10: Traffic overhead of Crystal depending on the
number of nodes, controllers and workload metrics.

produced by a set of nodes N . Each node in N peri-
odically sends monitoring events of size s to the MOM
broker, which are consumed by |W | workload metric
processes. Then, each workload metric process aggre-
gates the messages of all nodes in N into a single mon-
itoring message. The aggregated message is then pub-
lished to a set of subscribed controllers C . Therefore,
we can do a worst case estimation of the total gener-
ated traffic per monitoring epoch (e.g., 1 second) as:
O = |W | · [s · (2 · |N |+ |C |)]. We also measured simple
events (e.g., PUT SEC) to be s = 130 bytes in size.

Fig. 10 shows that the estimated monitoring overhead
of a single metric is modest; in the worst case, a single
workload metric generates less than 40KBps in a 100-
machine cluster with |C | = 100 subscribed controllers.
Clearly, the dominant factor of traffic generation is the
number of workload metrics. However, even for a large
number of workload metrics (|W | = 20), the monitor-
ing requirements in a 50-machine cluster do not exceed
520KBps. These overheads seem lower than existing
SDS systems with advanced monitoring [33].

8 Related Work

SDS Systems. IOFlow [41], now extended as
sRoute [38], was the first complete SDS architecture.
IOFlow enables end-to-end (e2e) policies to specify the
treatment of IO flows from VMs to shared storage. This
was achieved by introducing a queuing abstraction at the
data plane and translating high-level policies into queu-
ing rules. The original focus of IOFlow was to enforce
e2e bandwidth targets, which was later augmented with
caching and tail latency control in [38, 39].

Crystal, however, targets a different scenario. Simply
put, it pursues the configuration and optimization of ob-
ject stores to the evolving needs of tenants/applications,
for it needs a richer data plane and a different suite of
management abstractions and enforcement mechanisms.
For example, tenants require mechanisms to inject cus-
tom logic to specify not only system activities but also
application-specific transformations on objects.

Retro [33] is a framework for implementing resource
management policies in multi-tenant distributed systems.
It can be viewed as an incarnation of SDS, because as

IOFlow and Crystal, it separates the controller from the
mechanisms needed to implement it. A major contribu-
tion of Retro is the development of abstractions to enable
policies that are system- and resource-agnostic. Crys-
tal shares the same spirit of requiring low develop effort.
However, its abstractions are different. Crystal must ab-
stract not only resource management; it must enable the
concise definition of policies that enable high levels of
programmability to suit application needs. Retro is only
extensible to handle custom resources.

IO bandwidth differentiation. Enforcing bandwidth
SLOs in shared storage has been a subject of intensive
research over the past 10 years, specially in block storage
[26, 27, 43, 45, 32, 41, 33]. For instance, mClock [27]
achieves IO resource allocation for multiple VMs at the
hypervisor level, even in distributed storage environ-
ments (dmClock). However, object stores have received
much less attention in this regard; vanilla Swift only pro-
vides a non-automated mechanism for limiting the “num-
ber of requests” [12] per tenant, instead of IO bandwidth.
In fact, this problem resembles the one stated by Wang et
al. [44] where multiple clients access a distributed stor-
age system with different data layout and access patterns,
yet the performance guarantees required are global. To
our knowledge, Wu et al. [45] is the only work address-
ing this issue in object storage. It provides SLOs in Ceph
by orchestrating local rate limiters offered by a modified
version of the underlying file system (EBOFS). How-
ever, this approach is intrusive and restricted to work
with EBOFS. In contrast, Crystal transparently intercepts
and limits requests streams, enabling developers to de-
sign new algorithms that provide distributed bandwidth
enforcement [37, 28].

Active storage. The early concept of active disk [36,
14, 31, 42], i.e., a HDD with computational capacity, was
borrowed by distributed file system designers in HPC en-
vironments two decades ago to give birth to active stor-
age. The goal was to diminish the amount of data move-
ment between storage and compute nodes [13, 9]. Pier-
nas et al. [35] presented an active storage implementation
integrated in the Lustre file system that provides flexible
execution of code near to data in the user space. Crystal
goes beyond active storage. It exposes through the fil-
ter abstraction a way to inject custom logic into the data
plane and manage it via policies. This requires filters to
be deployable at runtime, support sandbox execution [7],
and be part of complex workflows.

9 Conclusions

Crystal is a SDS architecture that pursues an efficient use
of multi-tenant object stores. Crystal addresses unique
challenges for providing the necessary abstractions to
add new functionalities at the data plane that can be im-
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mediately managed at the control plane. For instance,
it adds a filtering abstraction to separate control policies
from the execution of computations and resource man-
agement mechanisms at the data plane. Also, extend-
ing Crystal requires low development effort. We demon-
strate the feasibility of Crystal on top of OpenStack Swift
through two use cases that target automation and band-
width differentiation. Our results show that Crystal is
practical enough to be run in a shared cloud object store.

Acknowledgments

We thank our shepherd Ajay Gulati and the anonymous
reviewers. This work has been partly funded by the EU
project H2020 “IOStack: Software-Defined Storage for
Big Data” (644182) and Spanish research project “Cloud
Services and Community Clouds” (TIN2013-47245-C2-
2-R) funded by the Ministry of Science and Innovation.

References

[1] Amazon s3. https://aws.amazon.com/en/s3.

[2] Databricks. https://databricks.com.

[3] Docker. https://www.docker.com.

[4] Dropbox. https://www.dropbox.com.

[5] Ifttt. https://ifttt.com.

[6] Mirantis. https://www.mirantis.com.

[7] OpenStack Storlets.
https://github.com/openstack/storlets.

[8] Openstack swift. http://docs.openstack.org/ devel-
oper/swift.

[9] PVFS Project. http://www.pvfs.org/.

[10] Redis. https://www.redis.io.

[11] Ssbench. https://github.com/swiftstack/ssbench.

[12] Swift performance tunning.
https://swiftstack.com/docs/admin/middleware/
ratelimit.html.

[13] The Panasas activescale file system (PanFS).
http://www.panasas.com/products/panfs.

[14] A. Acharya, M. Uysal, and J. Saltz. Active disks:
Programming model, algorithms and evaluation.
ACM SIGPLAN Notices, 33(11):81–91, 1998.

[15] G. A. Agha. Actors: A model of concurrent com-
putation in distributed systems. Technical report,
The MIT Press, 1985.

[16] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt.
Taming the cloud object storage with mos. In Pro-
ceedings of the 10th Parallel Data Storage Work-
shop, pages 7–12, 2015.

[17] A. Anwar, Y. Cheng, A. Gupta, and A. R. Butt.
Mos: Workload-aware elasticity for cloud object
stores. In ACM HPDC’16, pages 177–188, 2016.

[18] J. Armstrong. Programming Erlang: software for
a concurrent world. Pragmatic Bookshelf, 2007.

[19] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Va-
jgel. Finding a needle in haystack: Facebook’s
photo storage. In USENIX OSDI’10, pages 1–8,
2010.

[20] G. Cugola and A. Margara. Processing flows of
information: From data stream to complex event
processing. ACM Computing Surveys (CSUR),
44(3):15, 2012.

[21] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys (CSUR), 35(2):114–131,
2003.

[22] M. Factor, G. Vernik, and R. Xin. The
perfect match: Apache spark meets swift.
https://www.openstack.org/summit/openstack-
paris-summit-2014/session-
videos/presentation/the-perfect-match-apache-
spark-meets-swift, November 2014.

[23] R. Gracia-Tinedo, P. Garcı́a-López, M. Sanchez-
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Abstract

Recent interest in persistent memory (PM) has stirred de-
velopment of index structures that are efficient in PM.
Recent such developments have all focused on variations
of the B-tree. In this paper, we show that the radix tree,
which is another less popular indexing structure, can be
more appropriate as an efficient PM indexing structure.
This is because the radix tree structure is determined by
the prefix of the inserted keys and also does not require
tree rebalancing operations and node granularity updates.
However, the radix tree as-is cannot be used in PM. As
another contribution, we present three radix tree variants,
namely, WORT (Write Optimal Radix Tree), WOART
(Write Optimal Adaptive Radix Tree), and ART+CoW.
Of these, the first two are optimal for PM in the sense that
they only use one 8-byte failure-atomic write per update
to guarantee the consistency of the structure and do not
require any duplicate copies for logging or CoW. Exten-
sive performance studies show that our proposed radix
tree variants perform considerable better than recently
proposed B-tree variants for PM such NVTree, wB+Tree,
and FPTree for synthetic workloads as well as in imple-
mentations within Memcached.

1 Introduction

Previous studies on indexing structures for persistent
memory (PM) have concentrated on B-tree variants. In
this paper, we advocate that the radix tree can be better
suited for PM indexing than B-tree variants. We present
radix tree variant indexing structures that are optimal for
PM in that consistency is always guaranteed by a single
8-byte failure-atomic write without any additional copies
for logging or CoW.

Emerging persistent memory technologies such as
phase-change memory, spin-transfer torque MRAM, and
3D Xpoint are expected to radically change the land-
scape of various memory and storage systems [4, 5, 7,

9, 10, 14]. In the traditional block-based storage de-
vice, the failure atomicity unit, which is the update unit
where consistent state is guaranteed upon any system
failure, has been the disk block size. However, as persis-
tent memory, which is byte-addressable and non-volatile,
will be accessible though the memory bus rather than via
the PCI interface, the failure atomicity unit for persistent
memory is generally expected to be 8 bytes or no larger
than a cache line [5, 6, 12, 13, 15, 19].

The smaller failure atomicity unit, however, appears
to be a double-edged sword in the sense that though this
allows for reduction of data written to persistent store,
it can lead to high overhead to enforce consistency. This
is because in modern processors, memory write opera-
tions are often arbitrarily reordered in cache line granu-
larity and to enforce the ordering of memory write op-
erations, we need to employ memory fence and cache
line flush instructions [21]. These instructions have been
pointed out as a major cause of performance degrada-
tion [3, 9, 15, 20]. Furthermore, if data to be written is
larger than the failure-atomic write unit, then expensive
mechanisms such as logging or copy-on-write (CoW)
must be employed to maintain consistency.

Recently, several persistent B-tree based indexing
structures such as NVTree [20], wB+Tree [3], and FP-
Tree [15] have been proposed. These structures focus on
reducing the number of calls to the expensive memory
fence and cache line flush instructions by employing an
append-only update strategy. Such a strategy has been
shown to significantly reduce duplicate copies needed
for schemes such as logging resulting in improved per-
formance. However, this strategy does not allow these
structures to retain one of the key features of B-trees,
that is, having the keys sorted in the nodes. Moreover,
this strategy is insufficient in handling node overflows as
node splits involve multiple node changes, making log-
ging necessary.

While B-tree based structures have been popular in-
memory index structures, there is another such structure,
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namely, the radix tree, that has been less so. The first
contribution of this paper is showing the appropriateness
and the limitation of the radix tree for PM storage. That
is, since the radix tree structure is determined by the pre-
fix of the inserted keys, the radix tree does not require
key comparisons. Furthermore, tree rebalancing opera-
tions and updates in node granularity units are also not
necessary. Instead, insertion or deletion of a key results in
a single 8-byte update operation, which is perfect for PM.
However, the original radix tree is known to poorly uti-
lize memory and cache space. In order to overcome this
limitation, the radix tree employs a path compression op-
timization, which combines multiple tree nodes that form
a unique search path into a single node. Although path
compression significantly improves the performance of
the radix tree, it involves node split and merge opera-
tions, which is detrimental for PM.

The limitation of the radix tree leads us to the sec-
ond contribution of this paper. That is, we present three
radix tree variants for PM. For the first of these struc-
tures, which we refer to as Write Optimal Radix Tree
for PM (WORTPM, or simply WORT), we develop a
failure-atomic path compression scheme for the radix
tree such that it can guarantee failure atomicity with the
same memory saving effect as the existing path compres-
sion scheme. For the node split and merge operations in
WORT, we add memory barriers and persist operations
such that the number of writes, memory fence, and cache
line flush instructions in enforcing failure atomicity is
minimized. WORT is optimal for PM, as is the second
variant that we propose, in the sense that they require
only one 8-byte failure-atomic write per update to guar-
antee the consistency of the structure without any dupli-
cate copies.

The second and third structures that we propose are
both based on the Adaptive Radix Tree (ART) that was
proposed by Leis et al. [11]. ART resolves the trade-off
between search performance and node utilization by em-
ploying an adaptive node type conversion scheme that
dynamically changes the size of a tree node based on
node utilization. This requires additional metadata and
more memory operations than the traditional radix trees,
but has been shown to still outperform other cache con-
scious in-memory indexing structures. However, ART in
its present form does not guarantee failure atomicity. For
the second radix tree variant, we present Write Optimal
Adaptive Radix Tree (WOART), which is a PM exten-
sion of ART. WOART redesigns the adaptive node types
of ART and carefully supplements memory barriers and
cache line flush instructions to prevent processors from
reordering memory writes and violating failure atomic-
ity. Finally, as the third variant, we present ART+CoW,
which is another extension of ART that makes use of
CoW to maintain consistency. Unlike B-tree variants

where CoW can be expensive, with the radix tree, we
show that CoW incurs considerably less overhead.

Through an extensive performance study using syn-
thetic workloads, we show that for insertion and search,
the radix tree variants that we propose perform better
than recent B-tree based persistent indexes such as the
NVTree, wB+Tree, and FPTree [3, 15, 20]. We also im-
plement the indexing structure within Memcached and
show that similarly to the synthetic workloads, our pro-
posed radix tree variants perform substantially better
than the B-tree variants. However, performance evalua-
tions show that our proposed index structures are less ef-
fective for range queries compared to the B-tree variants.

The rest of the paper is organized as follows. In Sec-
tion 2, we present the background on consistency issues
with PM and PM targeted B-tree variant indexing struc-
tures. In Section 3, we first review the radix tree to help
understand the main contributions of our work. Then, we
present the three radix tree variants that we propose. We
discuss the experimental environment in Section 4 and
then present the experimental results in Section 5. Fi-
nally, we conclude with a summary in Section 6.

2 Background and Motivation

In this section, we review background work that we
deem most relevant to our work and also necessary to
understand our study. First, we review the consistency
issue of indexing structures in persistent memory. Then,
we present variants of B-trees for PM. As the contribu-
tion of our work starts with the radix tree, we review the
radix tree in Section 3.

2.1 Consistency in Persistent Memory
Ensuring recovery correctness in persistent indexing
structures requires additional memory write ordering
constraints. In disk-based indexing, arbitrary changes to
a volatile copy of a tree node in DRAM can be made
without considering memory write ordering because it is
a volatile copy and its persistent copy always exists in
disk storage and is updated in disk block units. However,
with failure-atomic write granularity of 8 bytes in PM,
changes to an existing tree node must be carefully or-
dered to enforce consistency and recoverability. For ex-
ample, the number of entries in a tree node must be in-
creased after a new entry is stored. If the system fails af-
ter we increase the number of entries but before the new
entry is stored in its corresponding space, the garbage en-
try previously stored in that space will be mistaken as a
valid entry resulting in inconsistency.

In order to guarantee consistency between volatile
CPU caches and non-volatile memory, we have to ensure
the ordering of memory writes via memory fence and
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cache line flush instructions. In the Intel x86 architecture,
the CLFLUSH instruction is used to flush a dirty cache line
back to memory and MFENCE is the load and store fence
instruction that prevents the reordering of memory access
instructions across the fence. Since CLFLUSH is ordered
only with respect to MFENCE, CLFLUSH needs to be used
along with MFENCE to prevent reordering of CLFLUSH in-
structions [21]. These memory fence and cache line flush
instructions are known to be expensive [3, 20].

Another important aspect of maintaining consistency
is the write size. In legacy B-tree variants, insertion or
deletion of a node entry results in modification of a large
portion of the node because the entries remain sorted.
This is because insertion or deletion of an entry can result
in shifts of data within the node. Such shifts are likely to
be larger than the failure atomicity unit.

To resolve this problem, legacy systems generally rely
on techniques such as logging or CoW. Logs can be used
to undo or redo activities such that the system remains
in a consistency state. CoW creates a copy and makes
updates to the copy. This allows for atomic validation of
the copy by overwriting the pointer with an atomic 8-byte
store operation. Although logging and CoW guarantee
consistency in the presence of failure, they hurt update
performance especially when the updated data is large as
they both need to duplicate the write operations.

2.2 Persistent B+-Trees

In recent years, several indexing trees for PM such as
CDDS B-tree [17], NVTree [20], wB+Tree [3], and FP-
Tree [15] have been proposed. To the best of our knowl-
edge, all previously proposed persistent indexes are vari-
ants of the B-tree, which has been widely used in various
domains including storage systems. We review each of
these trees in detail below.

CDDS B-Tree: CDDS (Consistent and Durable Data
Structure) B-tree is a multi-version B-tree (MVBT) for
PM [17]. When a tree node is updated in the CDDS B-
tree, it creates a copy of the updated entry with its version
information instead of overwriting the entry, which guar-
antees recoverability and consistency. However, CDDS
B-tree suffers from numerous dead entries and dead
nodes. Also, it calls the expensive MFENCE and CLFLUSH

instructions as many times as the number of entries in a
tree node to sort the entries. Hence, CDDS B-tree is far
from satisfactory in terms of both insertion and search
performance.

NVTree: NVTree proposed by Yang et al. [20] re-
duces the number of expensive memory fence and cache
line flush instructions by employing an append-only up-
date strategy. Due to this strategy and the fact that only
the leaf nodes are kept in PM, NVTree requires only
two cache line flushes, one for the entry and the other

for the entry count, resulting in improved performance.
This results in two consequences; first, the leaf node re-
mains unsorted and second, the internal nodes may be
lost upon system failure though the internal nodes can
trivially be reconstructed using the leaf nodes in PM.
However, NVTree requires all internal nodes to be stored
in consecutive memory blocks to exploit cache locality,
and within the large memory block, internal nodes are
located by offsets instead of pointers. However, because
NVTree requires internal nodes to be stored in consec-
utive blocks, every split of the parent of the leaf node
results in the reconstruction of the entire internal nodes.
We show in our experiments that due to this reconstruc-
tion overhead, NVTree does not perform well for appli-
cations that insert data on the fly.

FPTree: FPTree is another persistent index that keeps
internal nodes in volatile memory while leaf nodes are
kept in PM [15]. By storing the internal nodes in volatile
memory, FPTree exploits hardware transactional mem-
ory to efficiently handle concurrency of internal node ac-
cesses. FPTree also proposes to reduce the cache miss
ratio via fingerprinting. Fingerprints are one-byte hashes
for keys in each leaf node. By scanning the fingerprints
first before a query searches keys, FPTree reduces the
number of key accesses and consequently, the cache miss
ratio. Although FPTree shows superior performance to
NVTree, FPTree also requires reconstruction of internal
nodes when a system crashes.

wB+Tree: wB+Tree proposed by Chen and Jin also
adopts an append-only update strategy, but unlike
NVTree and FPTree, wB+Tree stores both internal and
leaf nodes in PM [3]. Since the entries in internal nodes
must be sorted, wB+Tree proposes to sort the entries via
the slot array, which adds a level of indirection to the ac-
tual keys and pointers. That is, the slot array stores the
index of keys in sorted order. Since the index is much
smaller than the actual key and pointer, seven key indexes
can be atomically updated via the 8-byte atomic write op-
eration. wB+Tree also proposes to use an 8-byte bitmap
to increase node capacity. When the bitmap is used,
wB+Tree requires at least four cache line flushes. If only
the slot array is used, the number of cache line flushes
decreases to two. Although the number of cache line
flushes is dramatically reduced compared to CDDS B-
tree, wB+Tree carries the overhead of indirection. Also,
wB+Tree still requires expensive logging or CoW for a
node split.

3 Radix Trees for PM
In this section, we present the basics of the radix tree. We
also discuss the three radix tree variants that we propose,
namely, WORTPM (Write Optimal Radix Tree for PM)
or simply, WORT (Write Optimal Radix Tree), WOART
(Write Optimal Adaptive Radix Tree), and ART+CoW.
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n = 4, L = 16

Figure 1: An example radix tree

3.1 Radix Tree
Traditionally, radix trees come in two versions; one in
basic form, which we refer to as the original radix tree,
and the other that uses path compression to save mem-
ory [2, 26, 27, 28]. For ease of presentation, we first dis-
cuss the original version and defer the discussion on the
path compressed version to Section 3.3.

The radix tree does not explicitly store keys in its tree
nodes. Instead, a node consists of an array of child point-
ers, each of which is represented by a chunk of bits of a
search key as in a hash-based index. Taking the radix tree
example in Figure 1, each key is composed of 16 bits,
with a chunk of 4 bits in length. Starting from the root
node, the most significant leftmost 4 bits of each key is
used to determine the subscript within the pointer array.
Taking the key=527 case as a walking example, the left
4 bits, 0000, determines that the leftmost pointer points
to the child node. In the next level, the next chunk of bits
in the search key are used as the subscript of the child
pointer array. This would be 0010 for key=527, meaning
that the pointer in element 2 points to the next child. In
this manner, in the walking example, we see that the next
chunk of 4 bits, 0000, determines the next level child and
that the least significant bits of the search key, 1111, are
used in the leaf node.

There are two key characteristics of the radix tree that
are different from B-tree variants. The first is that the
height of the radix tree is determined and fixed by the
length of the index key and the chunk size. For a maxi-
mum key length of L bits and the chunk, which represents
the index to the child pointer, of n bits, which allows for a
maximum 2n child node pointers, the search path length
is dL/ne. An often mentioned weakness of the radix tree
is that its height (dL/ne) is, in general, taller than that of
the B+-tree, which is logBN, where N is the number of
keys and B is the node degree [11]. This may result in

deeper traversals of the tree.
The second characteristic is that the tree structure is

independent of the insertion order but dependent on the
distribution of keys. Whereas the B-tree variants main-
tain a balanced tree growing and shrinking according to
the number of data, a radix tree has a fixed number of
nodes determined by the maximum key range. How these
nodes are used determines its effectiveness in terms of
memory usage. For example, when the keys are sparsely
distributed, the radix tree makes inefficient use of mem-
ory in contrast to when it is dense or skewed.

Due to these limitations and despite proposals to over-
come such limitations [2], the radix tree has not been a
popular indexing data structure. However, we find that
the radix tree possesses features that may be exploited
for efficient use with PM. First, with the radix tree, it is
possible to traverse the tree structure without perform-
ing any key comparison because the positions of the
child pointers are static and fixed according to its or-
der. For example, if 527 is indexed as shown in Figure 1,
527 can be easily found by using each 4 bits as a sub-
script of the index without any comparison operation,
i.e., radix index[0][2][0][15], as 527 is 0000 0010
0000 1111 in binary. In contrast, the B+-tree would re-
quire comparing the search key with other keys for each
visited node. Such difference in activity can affect cache
performance resulting in performance differences.

Also for insertion, the radix tree does not modify any
existing entries for the same reason. That is, the number
of child pointers in a radix tree node is fixed to 2n, and it
never overflows. Since the radix tree does not store keys,
sorting, by nature, is not necessary. This is in contrast to
B-tree variants that need to keep the keys sorted and also
require expensive split or merge operations accompanied
by logging to guarantee consistency.

3.2 Failure Atomic Write in Radix Tree
In this section, we describe the small changes that we
made to make radix tree PM efficient. With the changes
that we propose, the radix tree will remain consistent
upon system failure without requiring any kind of log-
ging or replication mechanism as long as the 8-byte fail-
ure atomicity assumption is satisfied. Essentially, there
are just two simple changes that need to be made, which
we describe in the following.

The first modification is making sure that a write to
change a pointer is done in a particular order. Let us
elaborate using an example of inserting key=3,884 (0000
1111 0010 1100 in binary) into the radix tree shown in
Figure 1. With a given key, we traverse down the path
using the partial keys until we find a pointer value that is
NULL. For 3,884, as the first partial key is 0000, we fol-
low the leftmost child pointer from the root node. At this
level (depth 1), we find that the next partial key 1111 and
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struct Header 

Figure 2: Compression header

that its pointer is NULL. Once we find the child pointer
to be NULL, we create a new node and continue doing
this until the leaf node is created. For the 3,884 exam-
ple, we create a new node in depth 2 and a leaf node in
depth 3. Finally, we replace the NULL pointers with the
addresses of the new nodes.

The first modification that we propose is that the oper-
ation to replace the very first NULL pointer (if we have
a sequence of nodes created) with the address of the next
level node be the last operation. This ensures that the en-
tire operation is failure-atomic. Since the pointer assign-
ment statement is an 8-byte atomic write operation, no
form of logging is necessary in the radix tree. However,
we do need to call a few memory access serialization in-
structions to enforce failure atomicity. For example, if
8,209 is indexed as shown in Figure 1, first, we must
call memory fence and cache line flush instructions to
make sure all nodes leading to the leaf node, including
the leaf node, is written to PM. Only then, should we
change the very first NULL pointer in the root, that is,
element 2 in node A1 to point to node E1. This change
is then persisted with the memory fence and cache line
flush instructions.

3.3 Radix Tree Path Compression
Thus far, we have described the original radix tree with-
out path compression optimization. In this section, we
describe the workings of path compression as our second
proposed change is related to this matter.

Although the deterministic structure of the radix tree
is the source of its good performance, it is also the weak-
est point as the key distribution has a high impact on the
tree structure and memory utilization. If the distribution
of the keys is sparse, the implicit key representation of
the radix tree can waste excessive memory space. For ex-
ample, suppose a string key is stored in a radix tree and
there is no other key that shares the prefix with the key.
If the number of child pointers in a node is 28, each node
can implicitly index an 8-bit character but requires an 8-
byte pointer per each child. That is, the tree node will
use 8× 256 bytes for each letter in the key. In order to
mitigate this memory space utilization problem, we can
consider reducing the number of child pointers in a node.
However, this could result in a longer search path, possi-
bly degrading search performance. The path compressed
radix tree can save space by removing the internal nodes

n = 4, L = 16

Figure 3: Path compression collapses radix tree nodes

that have only one child per node.
If a node in the radix tree has a single child such as

key 8,209 in Figure 1, the node does not have to exist in
order to distinguish it from other search paths. Hence,
the node can be safely removed and created in a lazy
manner until it becomes shared with another child node
without hurting correctness. Path compression optimiza-
tion in the radix tree truncates unique paths in the tree
structure. Path compression is known to improve mem-
ory utilization especially when the key distribution is
sparse. Moreover, path compression helps improve in-
dexing performance by shortening the search path. There
are three ways of implementing path compression in the
radix tree, that is, the pessimistic, optimistic, and hybrid
methods [11].

The pessimistic method explicitly saves the collapsed
unique search path as the prefix array in the child node.
The pessimistic method requires more memory space in
the compressed nodes, but it can prune out unmatching
keys instantly. On the other hand, the optimistic method
stores the length of the collapsed prefix in the child node,
instead of the collapsed prefix itself. Hence, the opti-
mistic method cannot compare the collapsed prefix in the
compressed node. Instead, it postpones the comparison
of the collapsed keys until we reach a leaf node. The hy-
brid method combines the two by using the pessimistic
method when the collapsed prefix is smaller than a spe-
cific length, and the optimistic method, otherwise.

Figure 2 illustrates the structure of a radix tree node
header and Figure 3, which is a hybrid compressed ver-
sion of Figure 1 as it simultaneously stores the length and
the collapsed search path, shows how it is used to com-
bine the inner nodes that share the common prefix. Prefix
length specifies how many inner nodes are collapsed. In
the example shown in Figure 3, 512, 514, and 527 share
the second and third partial keys (2 and 0). Hence, the
leaf node stores 2 as a prefix length. The prefix array is
the collapsed common prefix. In the example, the prefix
array stores the common prefix 2 (0010 in binary) and 0
(0000 in binary). Note that we always make use of an 8-
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Figure 4: Path compression split

byte compression header. This is to maintain consistency
with 8-byte atomic writes, which we elaborate on later.

3.4 WORT: Write Optimal Radix Tree
While it is trivial to make the radix tree that is not path
compression optimized be failure-atomic as was shown
in Section 3.2, doing so with the path compression opti-
mized radix tree is more complicated as nodes are split
and merged dynamically. The second modification that
we propose makes the path compression optimized radix
tree failure-atomic. (Hereafter, the radix tree we refer to
are path compression optimized unless otherwise stated.)
Note that even though the structure of the radix tree is no
longer static, it is nevertheless still deterministic.

The second modification to the radix tree that we pro-
pose is the addition of the node depth information to each
compression header, which was not needed in the legacy
radix tree. Note that in our design, this requires one byte,
which should be sufficient even in general deployment,
and does not compromise the memory saving effect of
the legacy path compression scheme. We now show how
the node depth is used to guarantee failure atomicity dur-
ing insertions. Let us again make use of an example.

Figure 4 is a depiction of how a compressed internal
node (B3 in Figure 3) splits when the prefix of the key to
insert does not match the prefix array, while Algorithm 1
describes the algorithm involved. Let us now go through
the process step by step. Assume key=546 (0000 0010
0010 0010 in binary) is being inserted to the radix tree in
Figure 3. Since 546 shares only the first partial key (4-bit
prefix) with the prefix array of node B3, we need to split
and create a parent node for the smaller common prefix.
This new node is depicted as C4 in Figure 4. Once the
new node C4 stores child pointers to node B4 and key
546, node B3 (in Figure 3) needs to delete the two par-
tial keys in the prefix array (lines 5-12 in Algorithm 1).
Also, node A3 (in Figure 3) needs to replace the child
pointer to B3 to point to C4 (lines 12-17) as shown in
node A4, and this must be done atomically. Otherwise,
failure atomicity is not guaranteed and the tree may end
up in an inconsistent state. For example, say the system

Algorithm 1 SplitCmp(node,key,value,depth,diffPrfxIdx)
1: /*N=node,K=key,V=value,D=depth*/
2: Allocate newParent and newLeaf(K,V)
3: Move a part of header of N to header of newParent
4: Insert newLeaf and N into newParent as children
5: Allocate tmpHdr
6: Record header of N to be updated into tmpHdr
7: *((uint64*)&N.Hdr) = *((uint64*)&tmpHdr;
8: mfence();
9: clflush(&newLeaf);

10: clflush(&newParent);
11: clflush(&N.Hdr);
12: mfence();
13: /*Update old parent pointer*/
14: oldParent.children[]=newParent;
15: mfence();
16: clflush(&oldParent.children[]);
17: mfence();

crashes as B3 is changed to B4, but A3 is still unchanged.
Since multiple tree nodes cannot be updated atom-

ically, persistent structures such as the B-tree variants
employ expensive logging methods. However, we find
that the radix tree can tolerate this temporary inconsis-
tent state by storing the depth in each node and skipping
the comparison of the partial key that is currently being
expanded to a new parent node. That is, if the node that
expands can atomically update its depth, prefix length,
and prefix array altogether, then the radix tree can return
to its consistent state without relying on logging.

Consider the example of Figure 4 once again. Before
node B3 is expanded, the depth of node B3 is 1 (start-
ing from 0 at root node) and the prefix length is 2, which
indicates that node B3 indexes the second and third pre-
fixes. After creating node C4, the depth and the prefix
length need to be updated to 3 and 0, respectively. As-
sume the system crashes after we update the prefix length
and depth, but before we update the child pointer of node
A3. If we only had the prefix length as in the tradition
radix tree, there is no way to detect node B4 is in an in-
consistent state. However, if the depth is atomically up-
dated along with the prefix length, which is possible with
the 8-byte failure atomic write assumption, we can eas-
ily detect that there is a missing node between A3 and B4.
Once we detect the inconsistency, the inconsistent node
can reconstruct its previous depth, prefix length, and pre-
fix array by selecting two leaf nodes from two arbitrary
search paths (lines 3-4 of Algorithm 2) and recomputing
the common prefix (lines 5-12 of Algorithm 2). Note that
path compression guarantees the existence of at least two
leaf nodes in any internal node and that the prefix array
has the largest common prefix of every key in a node.
In the example of Figure 4, suppose node B4 selects
key=512 (0000 0010 0000 0000 in binary) and key=527
(0000 0010 0000 1111 in binary) as the two arbitrary
leaf nodes. The largest common prefix of those two keys
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Algorithm 2 RecoverHeader(node,depth)
1: /*N=node,D=depth*/
2: /*Select two different arbitrary leaves of N*/
3: L1 = SelectArbitraryLeaf(N);
4: L2 = SelectArbitraryLeaf(N);
5: safeHdr = AllocHeader();
6: safeHdr.depth=D;
7: Compute the largest common prefix of L1 and L2
8: Record it into prfxLen and prfxArr of safeHdr
9: *((uint64*)&N.Hdr) = *((uint64*)&safeHdr);

10: mfence();
11: clflush(&N.Hdr);
12: mfence();

is 0000 0010 0000 in binary. The first prefix 0000 is ig-
nored because we reconstruct the node in depth 1.

We name the radix tree that incorporates the two mod-
ifications that we mentioned, one in Section 3.2 and one
in this section, WORTPM for Write Optimal Radix Tree
for PM, or just WORT. WORT is optimal in that con-
sistency is accomplished by using only 8-byte failure-
atomic writes for every operation without requiring any
logging or duplication of data under any circumstance.

3.5 Write Optimal Adaptive Radix Tree
Even with path compression, with the radix tree, there

is a well known trade-off between tree traversal perfor-
mance and memory consumption, i.e., if we increase
the number of child pointers in a node, the tree height
decreases but node utilization is sacrificed. Poor node
utilization and high memory consumption have been
pointed out as the major disadvantages of the radix
tree. In order to resolve these problems, studies such
as Generalized Prefix Tree [2] and Adaptive Radix Tree
(ART) [11] have been conducted. In this section, we dis-
cuss ART and how we adapt ART for PM.

ART is a space efficient radix tree that adaptively
changes its node size according to node utilization. In
order to reduce the tree height, ART sets the number
of child pointers in a node to 28 and uses one-byte
sized partial keys per node. In parallel, ART reduces
memory space consumption by using one of four differ-
ent node types, namely, NODE4, NODE16, NODE48,
and NODE256, according to node utilization. Starting
with NODE4, ART adaptively converts nodes into larger
or smaller types as the the number of entries exceeds
or falls behind the capacity of a node type. Although
ART has been shown to outperform other state-of-the-art
cache conscious in-memory indexing structures includ-
ing FAST [11], ART in its current form does not guar-
antee failure atomicity in PM. Hence, we redesign the
node structure of ART, without compromising its mem-
ory saving effect, to enforce failure atomicity in PM,
which we refer to as Write Optimal Adaptive Radix Tree
(WOART). In particular, we find that for PM, NODE4
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Figure 5: Node structures in WOART

and NODE16 have to be redesigned, NODE48 slightly
modified, and NODE256 left unchanged from the origi-
nal design.

NODE4: In order to reduce the node size when node
utilization is low, ART utilizes the node type NODE4,
a node that has no more than 4 entries. Since implicit
key representation in NODE4 wastes memory space and
is not helpful in distinguishing index keys, NODE4 ex-
plicitly stores partial keys. Hence, in the original ART
scheme, four pairs of partial keys and pointers are kept.
The partial keys and pointers are stored at the same in-
dex position in parallel arrays and sorted together by the
partial key values. With sorting employed, some form of
logging becomes a requirement to ensure consistency.

In WOART, we make the following changes to en-
sure consistency with a single 8-byte atomic write. First,
pointers are updated in append-only manner only when
an empty entry is available. Then, we add a level of in-
direction by having a separate slot array that serves as an
index to the position of the pointer corresponding to the
partial key as shown in NODE4 of Figure 5. Finally, we
make use of the fact that the partial key size in the radix
tree node is just one byte and that NODE4 only stores
four keys per node, plus the fact that the entire slot ar-
ray size is also only four bytes. Hence, the partial keys
and the slot array in NODE4 altogether can be written
in a single 8-byte atomic write operation. By performing
this operation as the last update, consistency of the tree
is guaranteed.

Algorithm 3 shows the details of the insertion algo-
rithm for NODE4. Deletion is omitted as it is analogous
to insertion. First, we look for an empty pointer in the
slot array (line 1). If there is one (idx is returned), we
first make a copy of the 8-byte partial keys and slot array
and insert the partial key value and the idx value into the
copy (lines 3 and 4). Then, we store the child address in
the pointer array entry indexed by idx, and call mfence
and clflush (lines 5-8). Finally, we atomically update
the partial keys and slot array by atomically overwriting
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Algorithm 3 AddChild4(node4,PartialKey,child)
1: if node4 is not full then
2: idx = getEmptyIdx(node4.slot);
3: CopySlot(tmpSlot,node4.slot);
4: InsertKeytoSlot(tmpSlot,PartialKey,idx);
5: node4.ptrArr[idx]=child;
6: mfence();
7: clflush(&node4.ptrArr[idx]);
8: mfence();
9: *((uint64*)node4.slot)=*((uint64*)&tmpSlot);

10: mfence();
11: clflush(node4.slot);
12: mfence();
13: else
14: Copy and Exchange node4 to node16

the original with the copy of the 8-byte partial keys and
slot array and call mfence and clflush (lines 9-12).

If a node needs more than 4 entries, we expand the
node into a NODE16 type through memory allocation
and multiple write operations. Note, however, that con-
sistency is always guaranteed during this expansion as
the final change to the parent of the new NODE16 is al-
ways done with a single 8-byte atomic write.

NODE16: A NODE4 type node becomes a NODE16
type when the number of child pointers grows past four
and can have as many as 16 child pointers. Similarly to
NODE4, the original NODE16 node keeps the partial
keys sorted. However, as previously mentioned, this is
an expensive task with PM.

In WOART, with NODE16, we take a similar ap-
proach as with NODE4 as we explicitly store keys
in append-only manner. However, unlike NODE4,
NODE16 does not sort partial keys nor use a slot array to
store the indexes to child pointers. Instead, partial keys
and pointers are stored as parallel arrays, denoted as par-
tial key array and pointer array, respectively, in Figure 5.
Note that there is also a 16-bit bitmap that distinguishes
the valid and invalid key and pointer values. The atomic
write of this bitmap ensures the consistency of the tree.

Specifically, and in relation to Algorithm 4, we refer
to the bitmap (line 2) to find an empty entry to insert
the partial key. Then, the partial key and pointer values
are placed in the empty entry position of the parallel ar-
rays (lines 3-8). Finally, the bitmap position of the empty
entry is set to 1 with an atomic write (lines 9-12). This
guarantees consistency of the radix tree.

Note that for deletion, we need to manipulate the
bitmap to indicate the invalidness of partial keys and
pointers. This is also an atomic write operation, hence,
consistency is maintained. Also note that although the
partial keys are not sorted, this does not hurt search per-
formance as NODE16 has no more than 16 partial keys.
Comparing a given search key with 16 partial keys that fit
in a single cache line can be performed very efficiently in
modern processors. As this is not true when the number

Algorithm 4 AddChild16(node16,PartialKey,child)
1: if node16 is not full then
2: idx=getEmptyIdx(node16.bitmap);
3: node16.partialkeys[idx]=PartialKey;
4: node16.ptrArr[idx]=child;
5: mfence();
6: clflush(&node16.partialkeys[idx]);
7: clflush(&node16.ptrArr[idx]);
8: mfence();
9: node16.bitmap+= (0x1UL << idx);

10: mfence();
11: clflush(&node16.bitmap);
12: mfence();
13: else
14: Copy and Exchange node16 to node48

of keys becomes large, WOART explicitly stores partial
keys only for NODE4 and NODE16 types.

NODE48 and NODE256: Let us now go over the
NODE48 and NODE256 type nodes in WOART. As
shown in Figure 5, a NODE256 type node is exactly the
same as a node in the original radix tree (see Figure 1).
Hence, for NODE256, we simply make use of WORT
and do not discuss NODE256 any further.

For NODE48, the details are referred to the original
ART [11] as it is essentially what is used. We make use
of the open source code provided by Leis et al. [24] but
do make slight code changes to make it consistent in PM.
However, the essence is the same. Specifically, NODE48
keeps two separate arrays, one that has 256 entries in-
dexed by the partial key and one that has 48 entries, each
of which will hold one of the child pointers, respectively
denoted child index array and pointer array in Figure 5.
Consistency is ensured by making writes to the pointer
array first, and then atomically writing the pointer array
index value to the child index array, the index of which is
determined by the partial key. Note that we search for an
available entry in the pointer array by checking the child
index array. If we instead search for an available entry
by checking for a NULL pointer in the pointer array, as
was implemented by Leis et al. [24], system failure may
result in leaving non-reusable invalid pointers.

3.6 ART with Copy-on-Write
The third radix tree variant that we consider in this study
is one that makes use of copy-on-write (CoW). CoW in
the radix tree is much simpler than that with B-tree vari-
ants as CoW occurs for only one node upon an update
as only the updated node itself is affected upon an up-
date. That is, for any update one can simply create a copy
of the node and maintain consistency by replacing the
pointer in its parent node with the address of the copy
at the final moment. This is in contrast to B-tree variants
where node changes can cascade to other nodes, for ex-
ample, due to splits forcing parent nodes to also split.

In this study, we consider ART with CoW, which we
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Figure 6: Workloads

refer to as ART+CoW. ART+CoW combines the features
of WORT, WOART, and CoW. First, for NODE256, we
incorporate the first modification of WORT discussed
in Section 3.4. However, for path compression, instead
of adding the node depth, we use CoW for both split
and merge. Second, for NODE48, we make use of the
same mechanism as in WOART. Finally, for NODE16
and NODE4, we simply employ CoW. That is, we make
a copy of the node, make changes to it, then change the
parent pointer value with the 8-byte failure-atomic write.

4 Experimental Environment

To test the effectiveness of the proposed radix trees, we
implement them and compare their performance with
state-of-the-art PM indexing structures. The experiments
are run on a workstation with an Intel Xeon E5-2620
v3 2.40GHz X 2, 15MB LLC (Last Level Cache), and
256GB DRAM running the Linux kernel version 4.7.0.
We compile all implementations using GCC-4.4.7 with
the -O3 option.

To observe the effect of PM latency on the perfor-
mance of the data structure, we emulate PM latency us-
ing Quartz [1, 18], a DRAM-based PM performance em-
ulator. Quartz emulates PM latency by injecting software
delays per each epoch and throttling the bandwidth of re-
mote DRAM using thermal control registers. We emulate
read latency of PM using Quartz while disabling its band-
width emulation. Since write memory latency emulation
is not yet supported in the publicly available Quartz im-
plementation [1], we emulate PM write latency by in-
troducing an additional delay after each clflush and
mfence instructions, as in previous studies [7, 9, 19]. No
delays are added for the store instruction as the CPU
cache hides such delays [25].

For comparison, we implement wB+Tree, NVTree and
FPTree [3, 15, 20]. For wB+Tree, we implement both
the slot-only and bitmap+slot schemes, but we present
the performance of only the bitmap+slot scheme denoted
as wB+Tree because we observe that the bitmap+slot
scheme has lower node split overhead and search perfor-
mance is better due to the large node degree. Note that
the internal nodes of NVTree and FPTree are designed to
be volatile and does not guarantee failure atomicity. As
we consider PM latency in our experiments, for NVTree

Figure 7: Insertion performance in DRAM latency

and FPTree, we distinguish latency for internal nodes in
DRAM and leaf nodes in PM.

For the workloads, we make use of three synthetically
generated distributions of 8-byte integers. Unlike B-tree
based indexes, the radix tree is sensitive to the key distri-
bution due to its deterministic nature. To see how the in-
dexes react to extreme cases, we consider three distribu-
tions as shown in Figure 6. In Dense key distribution, we
generate sequential numbers from 1 to 128M, so that all
keys share a common prefix. This workload is the ideal
case for the radix tree since overall node utilization is
100%. In Sparse key distribution, keys are uniformly dis-
tributed, thus they share a common prefix only in the up-
per level of the tree structure. For the lower level nodes,
the radix tree relies on path compression optimization to
improve node utilization. In Clustered key distribution,
we merge Dense and Sparse key distributions to model a
more realistic workload. Specifically, we generate 2 mil-
lion small dense distributions, each consisting of 64 se-
quential keys. In Clustered key distribution, the middle
level nodes share common prefixes. For all three distri-
butions, the keys are inserted in random order and exper-
imental results are presented by using a single thread.

5 Performance Evaluation

In this section, we evaluate the three proposed radix tree
variants against the state-of-the-art persistent indexing
structures, namely, wB+Tree, NVTree, and FPTree.

5.1 Insertion Performance
Figure 7 shows the average insertion time for insert-
ing 128 million keys for the three different distributions
when the entire memory space is of DRAM latency. We
set the number of child pointers of WORT to 24 so that
each node indexes 4-bit partial keys for a maximum of
16 child pointers. We see from the results that in general
the radix based trees perform considerably better than
NVTree and wB+Tree. The range of benefits and the best
radix tree variant depends on the workload.

For NVTree, performance suffers because it requires
internal nodes to be pre-allocated in consecutive mem-
ory space and a node split results in reconstruction of all
the internal nodes. FPTree performs the best among the
B-tree variants and, in some cases, better than the radix
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Figure 8: Insertion Performance Comparison

Table 1: Average LLC Miss and CLFLUSH per Insertion, LLC Miss
per Search, and Leaf Node Depth for Various PM Indexing Structures

D (Dense) (a) Average number of (b) Average number of (c) Average number of (d) Average leaf
S (Sparse) LLC miss per insertion CLFLUSH per insertion LLC miss per search node depth
C (Clustered) D S C D S C D S C D S C
WORT 6.3 7.2 17.0 2.2 2.4 2.3 6.5 7.6 11.5 7.0 7.0 8.2
WOART 5.7 7.9 11.2 2.4 3.5 3.7 4.8 7.9 8.9 4.0 4.0 4.2
ART+CoW 5.0 12.7 12.9 2.4 3.8 3.9 3.8 6.2 8.8 4.0 4.0 4.2
FPTree 6.8 6.8 6.8 4.8 4.8 4.8 13.9 14.1 14.1 3.0 3.0 3.0
NVTree 35.0 35.6 33.6 3.3 3.3 3.3 33.5 33.5 33.3 3.0 3.0 3.0
wB+Tree 22.3 22.4 22.4 6.0 6.0 6.0 22.9 22.8 23.3 4.0 4.0 4.0

tree variants. However, this comparison must be made
with caution as FPTree assumes that the internal nodes
are in DRAM. This has the drawback that when the sys-
tem recovers from failure or rebooted the internal nodes
must be reconstructed incurring considerable overhead.

Considering only the radix trees for the distributions in
Figure 7, we see that for Clustered distribution, insertion
time is roughly 1.5× higher than for the other two. As
shown in column (a) in Table 1, this is due to the higher
number of LLC misses incurred as the common prefix of
the Clustered distribution is much more fragmented due
to the scattered tree nodes than the other two distribu-
tions.

Figure 8 shows the insertion results as the latency for
reads and writes are changed. The numbers on the x-axis
represent the latency values in nanoseconds. The default
latency, that is of DRAM as reported by Quartz, is 100ns.
As PM read and write latency is generally expected to
be comparable or slightly worse than those of DRAM,
we set the latency to various values as shown in the fig-
ure. For these experiments, the internal nodes of NVTree
and FPTree are considered to be in DRAM, hence not af-
fected by the latency increase of PM. This should result
in more favorable performance for these two trees.

Throughout the results, whether read or write latency
is increased, we see that the radix tree variants consis-
tently outperform the B-tree variants, except for FPTree.
However, as latency increases, wB+Tree and the radix
tree variants that store every node in PM suffer more.

We also see that the B-tree variants are, in general,

more sensitive to write latency increases. Column (b) in
Table 1, which is the measured average number of cache
line flushes per insertion, shows the reason behind this.
We see that B-tree variants incur more cache flush in-
structions than the radix tree variants.

5.2 Search Performance
Figure 9 shows the average search time for searching 128
million keys for the three different distributions. Since
search performance is not affected by the write latency
of PM, we vary only the read latency using Quartz.

First, observe the left part of each graph, where both
read and write latencies of PM are the same as DRAM.
We see that the radix tree variants always perform better
than the B-tree variants. In particular, ART+CoW per-
forms the best for all cases. Since ART+CoW uses copy-
on-write to ensure consistency, there is no additional
indirection caused by the append-only strategy and the
alignment of partial keys can be maintained. Therefore,
ART+CoW is advantageous in tree searching compared
to WOART where additional indirection and unsorted
keys are employed to support the append-only strategy.

The reason that the radix tree variants perform bet-
ter can be found in columns (c) and (d) in Table 1 that
shows the average number of LLC misses and the aver-
age leaf node depth, respectively. We see that the overall
performance is inversely proportional to the number of
LLC misses and the depth of the tree. Notice that the
depth of the tree is slightly higher for the radix tree vari-
ants. However, the number of LLC misses is substan-
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Figure 9: Search Performance Comparison

tially smaller, which compensates for the higher depth.
The reason there are fewer LLC misses is because the
radix tree can traverse the tree structure without perform-
ing any key comparisons, which incurs less pollution of
the cache. Recall that, in contrast, B-tree variants must
compare the keys to traverse the tree and that the keys
may even be scattered across the entire node due to the
append-only strategy. Hence, the B-tree variants more
frequently access the entire range of the node causing
more LLC misses.

Now, consider the right part of each graph, which is
when read latency is increased to 300, in comparison
with the left part. We see that WORT stands out in la-
tency increase especially for Dense and Clustered work-
loads. This is due to the depth of the tree as WORT
has the highest depth. Other than WORT, we see that
WOART and ART+CoW perform better than the B-tree
variants even with the increased read latency even though
the internal nodes of FPTree and NVTree are still seeing
DRAM latency.

5.3 Range Query Performance
Traditionally, B+-trees have an edge over radix trees on
range queries as keys are sorted within the nodes and the
leaf nodes are linked with sibling pointers. In contrast,
in the radix tree, no sibling pointers exist, but the leaf
nodes essentially contain keys that are implicitly sorted.
Hence, in the radix tree, one may have to traverse up the
descendant node(s) in order to find the next leaf node.

Our proposed radix tree variants are no different from
traditional radix trees and do not do well for range
queries. However, we note that the B-tree variants for PM
also do not keep the keys sorted to reduce the overhead
for ensuring consistency, which harms one of the key fea-
tures of B+-trees. To see the effect of such changes we
perform experiments for range queries.

Figure 10 shows the range query performance when
keys in the range consisting of 0.001% and 0.01% of the
128M keys are queried. Here, we also present the per-
formance of the original B+-tree for reference. We ob-
serve that the average time per operation of the three
radix tree variants is over 5.8× and 6.4× than B+-tree for

the 0.001% and 0.01% range, respectively. However, the
performance gap declines for PM indexes. With respect
to FPTree, NVTree, and wB+Tree, the average time per
operation of the three radix variants is 3.0× and 2.8×,
1.8× and 1.8×, and 4.8× and 5.3× higher for 0.001%
and 0.01% range queries, respectively. The reduction in
difference is because B-tree variants need to rearrange
the keys when servicing range queries.

5.4 Experiments with Memcached
In order to observe the performance of our proposed
index structures for real life workloads, we imple-
ment all the tree structures used in the previous ex-
periments within Memcached. Memcached is an in-
memory caching system for key-value based database
systems [22]. We remove the hash function and table of
Memcached and embed the indexing structures. We also
replace the bucket locking mechanism of the hash table
with the global tree locking mechanism. The global tree
locking mechanism locks the root of the tree in order to
prevent conflicts between threads whenever an insertion
operation is executed. We run mc-benchmark, which per-
forms a series of insert queries (SET) followed by a se-
ries of search queries (GET) [23]. The key distribution
is uniform, which randomly chooses a key from a set of
string keys.

For these experiments, we use two connected ma-
chines with a 10Gbps Ethernet switch, one for Mem-
cached and the other for running the mc-benchmark. We
execute 128 million SET and GET queries with 4 threads
and 50 threads, respectively. The machine used for Mem-
cached is the same as described in Section 4 and the
machine that runs the mc-benchmark is an Intel i7-4790
3.60GHz, 32GB DRAM and with Linux version 4.7.0.

For these experiments, all indexing structures are as-
sumed to run entirely on PM even for the internal nodes
of FPTree. This is because to consider the hybrid con-
figuration, considerable changes must be made to Mem-
cached, which we wanted to avoid as such changes may
affect the outcome of the results. To support variable-
sized string keys, wB+Tree and FPTree replace the keys
in nodes with 8-byte pointers to the keys stored in a sep-
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Figure 10: Range query over 128M

arate location [3, 15]. We follow this design in our ex-
periments. For NVTree, as there is no mention on how
to handle variable-sized keys, we omit its evaluation for
Memcached [20].

The left part of Figure 11 shows the results for SET op-
erations. We observe that the radix tree variants perform
considerable better than the B-tree variants by roughly
50%. Other than the difference in structure, there are a
couple of other factors that influences the difference. One
is that there is the additional indirection and large key-
comparing overhead, which was also observed by Chen
and Jin [3]. Note that for radix tree variants, the over-
head for key comparison is minimal. The other is the
additional cache line flush required to store the keys in
a separate PM area in the case of B-tree variants. This
overhead does not exist for radix tree as variable-sized
strings can be handled in essentially the same manner as
integers. We also see that the effect of increased PM la-
tency is also more profound for the B-tree variants.

The right part of Figure 11 shows the results for GET
queries. Similarly to the SET query, the radix tree vari-
ants perform better than the B-tree variants. However,
we also notice that the radix tree variants’ results are the
same for both 100 and 300 read latencies. We conjecture
that this actually represents the network communication
bottleneck. In spite of this, however, we see that the radix
tree variants reduce wB+Tree latency by 41% and 60%
and FPTree latency by 31% and 51% for 100 and 300
read latencies, respectively.

6 Summary and Conclusion

With the advent of persistent memory (PM), sev-
eral persistent B-tree based indexing structures such as
NVTree [20], wB+Tree [3], and FPTree [15] have re-
cently been proposed. While B-tree based structures have
been popular in-memory index structures, there is an-
other such structure, namely, the radix tree, that has been
less popular. In this paper, as our first contribution, we
showed that the radix tree can be more appropriate as an
indexing structure for PM. This is because its structure
is determined by the prefix of the inserted keys dismiss-
ing the need for key comparisons and tree rebalancing.

Figure 11: Memcached mc-benchmark performance

However, we also show that the radix tree as-is cannot
be used in PM.

As our second contribution, we presented three radix
tree variants adapted for PM. WORT (Write Optimal
Radix Tree), which is the first variant that we proposed,
employs a failure-atomic path compression scheme that
we develop. WORT is optimal for PM, as is WOART, in
the sense that they only require one 8-byte failure-atomic
write per update to guarantee the consistency of the struc-
ture totally eliminating the need to make duplicates typ-
ically done via logging or copy-on-write (CoW) in tra-
ditional structures. WOART (Write Optimal Adaptive
Radix Tree) and ART+CoW, the second and third vari-
ants, are both based on the Adaptive Radix Tree (ART)
that was proposed by Leis et al. [11]. ART resolves the
trade-off between search performance and node utiliza-
tion found in traditional radix trees by employing an
adaptive node type conversion scheme that dynamically
changes the size of a tree node based on node utilization.
However, ART in its present form does not guarantee
failure atomicity. WOART redesigns the adaptive node
types of ART and supplements memory barriers and
cache line flush instructions to prevent processors from
reordering memory writes and violating failure atomic-
ity. ART+CoW, the third variant, extends ART to make
use of CoW to maintain consistency.

Extensive performance studies showed that our pro-
posed radix tree variants perform considerable better
than recently proposed B-tree variants for PM such as
NVTree, wB+Tree, and FPTree for synthetic workloads
as well as in implementations within Memcached.
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Abstract
Recent advances in flash memory technology have re-
duced the cost-per-bit of flash storage devices such as
solid-state drives (SSDs), thereby enabling the develop-
ment of large-capacity SSDs for enterprise-scale storage.
However, two major concerns arise in designing SSDs.
The first concern is the poor performance of random
writes in an SSD. Server workloads such as databases
generate many random writes; therefore, this problem
must be resolved to enable the usage of SSDs in enter-
prise systems. The second concern is that the size of
the internal DRAM of an SSD is proportional to the ca-
pacity of the SSD. The peculiarities of flash memory re-
quire an address translation layer called flash translation
layer (FTL) to be implemented within an SSD. The FTL
must maintain the address mapping table in the inter-
nal DRAM. Although the previously proposed demand
map loading technique can reduce the required DRAM
size, the technique aggravates the poor random perfor-
mance. We propose a novel address reshaping technique
called sequentializing in host and randomizing in device
(SHRD), which transforms random write requests into
sequential write requests in the block device driver by
assigning the address space of the reserved log area in
the SSD. Unlike previous approaches, SHRD can restore
the sequentially written data to the original location with-
out requiring explicit copy operations by utilizing the ad-
dress mapping scheme of the FTL. We implement SHRD
in a real SSD device and demonstrate the improved per-
formance resulting from SHRD for various workloads.

1 Introduction

In recent times, the proliferation of flash-memory-based
storage such as solid-state drives (SSDs) and embedded
multimedia cards (eMMCs) has been one of the most sig-
nificant changes in computing systems. The cost-per-bit
of flash memory has continued to fall owing to semicon-
ductor technology scaling and 3-D vertical NAND flash

technology [32]. As a result, SSD vendors currently pro-
vide up to 16 TB of capacity.

Flash memory has several characteristics that must
be carefully handled. In particular, its “erase-before-
write” constraint does not permit in-place update. In or-
der to handle the peculiarities of flash memory, special
software–called a flash translation layer (FTL) [14, 20]–
is embedded within flash storage systems. When a page
of data must be updated, the FTL writes the new data to a
clean physical page and invalidates the old page because
in-place overwrite is prohibited in flash memory. There-
fore, the logical address and physical address of a flash
page will be different. The FTL maintains a mapping ta-
ble for the logical-to-physical (L2P) address translation.
When the SSD has an insufficient number of clean pages,
garbage collection (GC) is triggered to reclaim invalid
pages. GC selects victim blocks to be recycled, copies all
the valid pages in the recycling blocks to another block,
and erases the recycling blocks.

Recent flash storage devices adopt page-level address
mappings instead of block-level schemes in order to pro-
vide higher performance. Page-level mappings permit
requests to be serviced from any physical page on flash
memory, whereas block-level mappings restrict the phys-
ical page location of a request based on its logical ad-
dress. However, the finer-grained mapping scheme re-
quires a large L2P mapping table. Typically, the size of a
page-level mapping table is 0.1% of the total storage ca-
pacity because the length of the address translation data
for a 4 KB page is 4 bytes.

The mapping table is accessed by every I/O request;
therefore, in order to achieve high performance, the en-
tire table must be loaded into an internal DRAM of the
SSD. Thus, as an example, 8 TB of SSD requires 8 GB
of DRAM for the mapping table. More than 4 GB of
DRAM requires a 64-bit processor, which is hardly ac-
ceptable to embedded systems. In addition, a larger ca-
pacity of DRAM system composed of multiple DRAM
modules requires DRAM controller to handle more ad-
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dress lines, which will increase the controller cost and
DRAM access latency. Furthermore, a large DRAM-
equipped SSD will have a high power consumption and
product cost. Therefore, the large mapping table is the
most critical hurdle in increasing the capacity of SSDs.

In order to resolve this problem, on-demand map load-
ing schemes such as DFTL [14] were proposed. In-
stead of maintaining all the address translation entries
in DRAM, DFTL dynamically loads/unloads the page-
level mapping entries to/from a small DRAM according
to the workload access patterns. The entire image of
the page-level mapping table is stored in reserved flash
memory blocks called map blocks. If storage workloads
exhibit significant temporal locality, the performance of
the demand-loading approach will be similar to the per-
formance of the traditional page-level mapping scheme
that loads all the mapping entries in DRAM. In addition,
DFTL can utilize spatial locality by loading multiple log-
ically contiguous mapping entries at the miss of a map-
ping entry. However, real scenarios have many random
workloads with low localities. DFTL is vulnerable to
these workloads; this limitation is a critical drawback of
DFTL in real computing systems.

In this paper, we focus on random write rather than
read because writes occupy about 70% at server storage
workloads as observed in [28]. In addition, whereas read
requests are controllable by several optimization tech-
niques such as page caching or prefetching, the imme-
diate handling of write requests are unavoidable in many
cases because they are generated for data durability.

One possible solution for random write workloads is to
use log-structured file systems (LFSs) (e.g., NILFS [21]
and F2FS [22]) or copy-on-write file systems (e.g.,
btrfs [33]) because they generate sequential write re-
quests using an out-of-place update scheme. The key-
value stores based on LSM-Trees (e.g., LevelDB [7] and
RocksDB [9]) and log-structured databases (e.g., Re-
thinkDB [8]) also remove random writes. However, such
log-structured file systems or applications suffer from
garbage collection or compaction overhead and require
many metadata block updates owing to their out-of-place
update scheme. Moreover, file system and SSD perform
duplicated garbage collections [35].

Another solution is to translate random write requests
into sequential write requests in the block device driver.
ReSSD [26] and LSDM [37] sequentialize random write
requests by providing an additional address translation
layer in the storage device driver and temporarily writ-
ing the sequentialized data to a reserved area in the stor-
age device. We call this operation sequentializing. How-
ever, when the reserved area becomes full, the temporar-
ily written data must be moved to the original location;
this operation is called randomizing (restoring). The ran-
domizing operation results in additional storage traffic.

Further, it eventually sends random writes to storage.
In this paper, we propose a novel scheme, called se-

quentializing in host and randomizing in device (SHRD),
to reshape the storage access pattern. In order to reduce
the map-handling overhead in a DFTL-based SSD, the
proposed scheme sequentializes random write requests
into sequential requests at the block device driver by
redirecting random write requests to the reserved storage
area. Therefore, it is analogous to the previous device-
driver-level sequentializing approach. However, in the
previous schemes, randomizing is achieved by perform-
ing explicit move operations in the host system; thus,
they use the “sequentializing in host and randomizing in
host (SHRH)” approach. Our scheme conducts the ran-
domizing in storage device by changing only the logical
addresses of the sequentialized data.

SHRD has several advantages. It can improve ran-
dom write performance by reducing map-loading or
command-handling overheads and by increasing the uti-
lization of parallel units in an SSD. It can also improve
the lifetime of an SSD. The reduction in the number of
map update operations results in a reduction in the num-
ber of program and erase operations on flash memory
blocks, thus minimizing the write amplification ratio.

This study makes the following specific contributions.
(1) We propose and design a novel request reshaping
scheme called SHRD, which includes a storage device
driver and the FTL of an SSD. The idea of SHRD is to
improve the spatial locality for FTL mapping table ac-
cesses by logging random requests in the storage and re-
ordering these requests. (2) We implement the proposed
SHRD scheme by modifying the firmware of an SSD
device and the Linux SCSI device driver. Unlike many
other studies based on SSD simulators and I/O traces, our
scheme is demonstrated and verified by using a real SSD
device. (3) We use several enterprise-scale workloads
to demonstrate the improved performance achieved by
SHRD. We observe that in comparison with DFTL, the
performance of SHRD is 18 times better for a random-
write dominant I/O workload and 3.5 times better for a
TPC-C workload.

The remainder of this paper is organized as follows:
In Section 2, the FTL schemes are introduced; in Section
3, the motivation and main idea are presented; in Section
4, the proposed SHRD scheme is described in detail; the
experimental results are presented in Section 5; previous
studies on improving random write performance are pre-
sented in Section 6; and the conclusion of this study is
described in Section 7.

2 Backgrounds

Generally, the page-level mapping FTL maintains the
entire L2P mapping table in the internal DRAM of an
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SSD. In order to service incoming write requests, FTL
allocates active flash blocks, writes incoming data se-
quentially in the physical pages of the active blocks, and
updates the L2P mapping table in DRAM. If the active
blocks are full with user data, the FTL flushes dirty map-
ping entries into the reserved area of flash memory called
map blocks and then allocates new active blocks. If a
sudden power-off occurs before the map flush operation,
the power-off recovery (POR) operation of an SSD scans
only the active blocks and rebuilds the L2P mapping ta-
ble with the logical page numbers (LPNs) stored in the
out-of-bound (OOB) area of flash pages; this OOB area
is a hidden space reserved for FTL-managed metadata.

In order to reduce the mapping table size, several
solutions have been proposed such as hybrid mapping
schemes [20, 25] and extent mapping schemes [27, 16,
31]. Although these solutions can reduce the mapping ta-
ble size significantly, they are vulnerable to random write
workloads. Hybrid mapping scheme shows considerable
performance degradation when the log blocks and nor-
mal data blocks are merged. Extent mapping scheme
must split a large extent into multiple smaller extents
when the random updates are requested.

Rather than reducing the size of the mapping table,
we can use an on-demand map loading scheme such as
DFTL [14]. This scheme uses a small amount of DRAM
for the cached mapping table (CMT), which has only
a subset of the entire page-level mapping table that is
maintained in the map blocks of flash chips, as shown
in Figure 1. For each I/O request, DFTL determines
the physical page number (PPN) to be accessed based
on the mapping entries in the CMT. The map blocks
must be read and written as page units; therefore, mul-
tiple contiguous mapping entries constitute a map page,
and DFTL loads/unloads mapping entries in map page
units. For example, if each mapping entry has a size
of 4 bytes, 4 KB of map page can contain 1024 logi-
cally contiguous mapping entries. Owing to the page-
level loading scheme, DFTL requires spatial locality as
well as temporal locality in the storage access workload.
In order to handle a map miss, one victim map page
must be written in the map block if the map page is
dirty and one demanded map page must be read from the
map block. Therefore, the demand map loading scheme
demonstrates poor performance for a random workload
due to additional storage traffic.

The map-miss handling in DFTL decreases the utiliza-
tion of the parallel units of SSD. In order to provide high
I/O bandwidth, multiple flash chips in SSD should be
accessed simultaneously via parallel channels and chip
interleaving. However, if several requests generate map
misses simultaneously and the missed map entries must
be read from a same chip, the handling of the requests
must be serialized and thus several flash chips will be

Cached Mapping Table

Solid-State Drive

PPN

DRAM

data blocks

Flash Chips Data OOB

map blocks

...
LPN 0 1023

map page 0
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4096 5119

map page 4
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map page 7
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map page 9

map 

pages

unloading (flushing)loading

Figure 1: Demand map loading.

idle during the map-miss handling.

3 Main Idea
The poor random write performance of SSD can be
attributed to various reasons. The first reason is the
mapping-table handling overhead. If the SSD uses a de-
mand map loading scheme such as DFTL, random re-
quests will result in frequent CMT misses, as explained
in Section 2. Even if the SSD can load all the mapping
entries into the DRAM, the random writes will generate
many dirty map pages in the DRAM. When the SSD pe-
riodically flushes dirty map pages, many pages will be
updated in the map blocks.

The second reason is the request-handling overhead.
The occurrence of many small requests increases the re-
quest traffic between the host computer and the SSD
and increases the interrupt-handling overhead of the host
computer. In order to solve this problem, eMMC adopts
the packed command from the version 4.5 standard; thus,
multiple requests can be merged into one packed com-
mand [1]. However, the current SATA/SAS protocol
does not support the request merging.

The final reason is the cost of GC. GC selects a vic-
tim flash block having a small number of valid pages
in order to reduce page-copy operations. While a se-
quential write workload generates many completely in-
valid blocks, a random write workload distributes invalid
pages among several flash blocks, thus making it diffi-
cult to find a low-cost GC victim block. The overhead
of GC can be mitigated by using hot and cold separation
algorithms [10, 24].

From among the several reasons for poor random per-
formance of flash storage, we focus on the mapping-table
handling overhead and the request-handling overhead be-
cause they are the major causes and do not have any so-
lutions currently. SHRD can reduce the mapping-table
handling overhead by improving the spatial locality of a
workload, and can reduce the request-handling overhead
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Figure 2: Effect of request reordering.

by packing multiple requests into one large request.
Even if a workload has low spatial locality within a

short time interval, it can have high spatial locality within
a long time interval. If a memory space is available for
request buffering, the map miss ratio can be reduced by
reordering requests in the order of LPN to improve spa-
tial locality. Figure 2 shows the simulation results for
the map miss ratio of DFTL and the utilization of par-
allel flash chips in an SSD. The MSR-Cambridge server
workloads [4] are used for input traces. We assume that
the CMT size of DFTL is 128 KB and a maximum of 64
flash pages can be accessed in parallel via multi-channel,
multi-bank, and multi-plane mechanisms. The x-axis
shows the reordering buffer size. In each experiment, all
the I/O requests are partitioned into several groups in the
order of request arrival time such that the total request
size of each group is equal to the reordering buffer size.
Then, the requests within a group are sorted in the order
of LPN. Such transformed input traces are provided to
an SSD simulator, which uses the DFTL algorithm. In
comparison with the original trace, the map miss ratios
significantly decrease as the size of the reordering buffer
increases because the spatial locality improves. The uti-
lization of the parallel units of the SSD also improves.

In order to support such a request reordering, we
must allocate the reordering buffer in either host system
or SSD. The host-level buffering has several problems.
First, a large memory space is required for data buffering.
Second, applications may invoke synchronous operations
such as fsync() in order to ensure instant data durability.
Most database systems rely on the fsync system call to
be assured of immediate data durability. Therefore, host-
level data buffering is impractical. The large memory
allocation within SSD also does not correspond with our
motivation.

Our idea is to buffer only mapping entries instead of
request data. The mapping entries are buffered in a small
size of host memory, and the data are directly written
at SSD without buffering. To obtain the same effect of
request reordering, SHRD writes random write requests

in a reserved space in the SSD called random write log
buffer (RWLB). This step is sequentializing. The RWLB
is a logical address space; therefore, an SSD can allocate
any physical flash blocks for the RWLB. SHRD assigns
a temporary logical page number (tLPN) sequentially
for each original logical page number (oLPN). tLPNs
are allocated from the RWLB address space. The write
operations to the RWLB can be performed with large
and sequential write requests that invoke little mapping-
table handling overhead because the original addresses
are sequentially mapped to the addresses of the RWLB.
The storage device driver in host computer maintains the
mapping information between oLPN and tLPN in order
to redirect read requests, and thus SHRD does not require
any change on host file systems.

When the logical address space of the RWLB is ex-
hausted, the buffered mapping entries in host system are
sent to SSD after being reordered based on their oLPNs.
SSD restores the sequentialized data into the original ad-
dresses with the mapping entries. This step is random-
izing (restoring), which modifies only the L2P mapping
table of the SSD instead of moving the sequentialized
data. Although the randomizing operation updates many
L2P mapping entries, the map-loading overhead is min-
imized because the randomizing operations of sequen-
tialized pages are performed in the order of oLPN, thus
improving the spatial locality during map update opera-
tions.

4 SHRD Scheme

4.1 Overall Architecture
The SHRD architecture consists of an SHRD device
driver (D/D) in the host system and SHRD-supporting
firmware in the SSD, as shown in Figure 3. The file
system sends a write request, which consists of the tar-
get logical page number (oLPN), the size, and the mem-
ory pointer to user data. The SHRD D/D receives the
write request and checks whether sequentializing is re-
quired based on the write request size. The sequen-
tializing and randomizing involve special operations;
therefore, they result in some overhead. Considering
the trade-off between performance gain and the over-
head caused by SHRD, only small and random requests
must be sequentialized. If the request size does not ex-
ceed a predefined threshold value called RW threshold,
the sequentializer assigns sequential temporary ad-
dresses (tLPNs) to the request.

The sequentialized write requests are sent to the
SHRD-supporting SSD via a special command, called
twrite, which sends both the oLPN and the as-
signed tLPN. The SSD writes the sequentialized
data into the blocks assigned to the RWLB. The
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sequentializer also inserts the mapping information
into the redirection table; read requests use this ta-
ble to redirect the original address to the sequentialized
temporary address.

If the logical address space of the RWLB is ex-
hausted, the randomizer restores the original logical
addresses of the sequentialized data via the remap com-
mand. When the SSD receives the remap command,
it changes only the internal L2P mapping table without
changing the physical location of the data.

The SHRD-supporting FTL is similar to DFTL, but
it can handle SHRD-supporting special commands such
as twrite and remap. It also manages several different
types of flash memory blocks such as data block, active
block, RWLB block, and map block. Figure 4 shows the
life cycle of a flash memory block. The FTL allocates
active blocks and RWLB blocks for the normal data re-
gion and RWLB, respectively. The mapping entries of
the pages in these regions are updated only in the CMT;
therefore, the POR operation must scan the OOB area of
these blocks to rebuild the mapping information. When
the mapping entries of an active block are flushed into
the map blocks, the active block is changed to a data
block and it can be a victim of GC. If all the pages in
an RWLB block are remapped to its original logical ad-
dress, the block is changed to a data block. An RWLB
block cannot be a victim for garbage collection because
the mapping entries of its pages are not fixed yet.
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Figure 5: RWLB address management.

4.2 Sequentializing in Host
In order to manage the address space of the RWLB,
which is hidden from the file system, SHRD maintains
two address pointers to the RWLB address space, as
shown in Figure 5. The RWLB is managed in a circu-
lar manner. seq ptr is the start location for sequential
address allocation, and it is incremented by sequential-
izing. rand ptr is the start location of sequentialized
pages that must be randomized, and it is incremented by
randomizing. Therefore, the redirection table in the host
has the mapping information of the pages that are written
to the address range from rand ptr to seq ptr.

The sequentialized write requests are not immediately
sent to the SSD. In order to minimize the command-
handling overhead, multiple sequentialized write re-
quests are packed into one write request, as shown in the
example in Figure 6. The request packing can also re-
duce the interrupt handling overhead. The sequentialized
write requests have contiguous address values; therefore,
the packed write request has only one start address value.
The block layer of the Linux operating system supports
a maximum of 512 KB of write requests; therefore, the
requests can be packed until the total packed request size
does not exceed 512 KB. If no request is present in the
I/O scheduler queue, the sequentializer sends the packed
requests to the storage device immediately instead of
waiting for more requests even though the size of packed
requests is less than 512 KB. The request packing also
halts if a higher priority request such as flush arrives.
During the random write packing operation, if an exam-
ined request is not sequentialized (e.g., a read or large
write request), SHRD sends first the normal request to
storage and then the packing operation for random write
requests continues. As more requests are packed into a
single request, the command-handling overhead will be
reduced. However, the request packing does not affect
the map-handling overhead in SSD because subsequent
twrite requests will be assigned with sequential tLPNs.

SHRD-supporting SSD must handle the sequential-
ized and packed requests differently from normal write
requests; therefore, we need to implement twrite as a
special command. The SATA storage interface provides
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Figure 6: Example of SHRD operations.

vendor commands to support the extension of its com-
mand set. However, a vendor command cannot be used
in the command queueing mode, and thus, the perfor-
mance can degrade significantly. In order to overcome
such a problem, we implemented several special com-
mands of SHRD operations by utilizing the legacy write
command. The SHRD-supporting special commands are
exactly same as the normal write command except that
their target address values are beyond the logical address
space of storage device. Depending on the address value
of write command, SSD firmware interprets it as a par-
ticular special command. The information of the special
command (e.g., oLPN and tLPN) is transferred via data
blocks of the write command. Therefore, no hardware
or software changes are required in the SATA interface
protocol.

Two SHRD commands (i.e., twrite header and
twrite data) are used to write the sequentialized data to
the RWLB of the SSD. twrite header contains the ad-
dress mapping information in its 4 KB of data, i.e., start
tLPN, page count, and array of oLPNs, as shown in Fig-
ure 6. The sequentializing information of a maximum of
128 pages can be transferred via 4 KB of data.

After a twrite header command is sent, the corre-
sponding twrite data command is sent in order to trans-
fer the packed user data (maximum of 512 KB), which
will be written to the RWLB blocks. The twrite data
command contains the target logical address value of
tLPN, which is assigned by the sequentializer. The SSD
firmware determines a PPN for each tLPN and inserts the
mapping entry (tLPN, PPN) into the L2P mapping table.
Each oLPN value transferred by the twrite header com-
mand is written into the OOB area of the corresponding
flash page. The oLPN will be used for POR when the
page is in the RWLB block, and it will be used by GC

after its block is changed to a data block.
After the completion of the twrite command, the se-

quentializer inserts the address translation entry between
oLPN and tLPN into the redirection table. Because the
remap entry will be used by subsequent read requests and
remap operations, the redirection table maintains both
the oLPN-to-tLPN and tLPN-to-oLPN map entries. If
an old mapping entry for the same oLPN exists, the redi-
rection table is updated and a trim command for the pre-
vious tLPN can be optionally sent to the SSD in order
to inform it about the invalidation of the data at the ad-
dress of the tLPN. The size of the redirection table is
determined by the size of the RWLB. For example, in
our implementation, when the RWLB size is 64 MB, the
size of the redirection table is 256 KB and the table can
contain 16K mapping entries.

During the handling of twrite commands, normal read
or write commands can be transferred to SSD if their tar-
get addresses are not related with a pending twrite com-
mand. However, any dependent read request must wait
for the completion of the related twrite command. In
addition, any dependent write request can be processed
only after the redirection map table is updated by twrite.

4.3 Read Redirection
For a read request from the file system, the SHRD D/D
searches for the target logical page numbers, oLPNs, in
the redirection table. If the oLPNs are found, the sequen-
tializer redirects the read request to the RWLB by chang-
ing the target address to the corresponding tLPNs. Other-
wise, the original addresses are used. The search time in
the redirection table can increase read request latencies.
In order to minimize the search time, the oLPN-to-tLPN
mapping entries in the redirection table are maintained
with a red-black (RB) tree; thus, the search time grows
at the rate of O(log n). A complex case of read handling
is the scenario in which the target logical address range
has been partially sequentialized. In this case, the read
request must be split into multiple sub-read requests, and
only the sub-reads for sequentialized data must be sent
to the RWLB. After the completion of all the sub-read
requests, the original read request will be completed.

4.4 Randomizing in Device
When the RWLB address space is exhausted by sequen-
tializing operations, the SHRD D/D performs the ran-
domizing operation to reclaim the allocated addresses of
the RWLB by sending a special command called remap,
which restores the oLPNs of sequentialized pages. First,
the randomizer selects the address range to be reclaimed;
this address range starts from the rand start pointer of
the RWLB. Then, the randomizer searches the redirec-
tion table for the mapping entries whose tLPN values are
included in the randomizing address range and creates
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the remapping entries for randomizing. The search oper-
ation accesses the tLPN-to-oLPN mapping entries in the
redirection table. The generated remapping entries, each
of which is represented by (tLPN, oLPN), are sorted. By
sending the oLPN-sorted remapping entries to the SSD,
the spatial locality of CMT access is improved and the
CMT miss ratio can be reduced.

The remapping entries are sent as a 4 KB of data in the
remap command. The size of one remapping entry is 8
bytes, and one remap command can transfer a maximum
of 511 remapping entries. The remaining space is used
to store the number of remapping entries. Therefore, the
SHRD D/D sends multiple remap commands incremen-
tally during randomizing, and other irrelevant read/write
requests can be sent to the SSD between remap com-
mands. However, normal requests can be delayed within
the SSD if there are many pending remap requests, be-
cause each remap command modifies a large number of
address mapping entries of the SSD and normal requests
cannot be handled simultaneously with the remap com-
mand. To solve this problem, two optimization tech-
niques are used. First, we can reduce the maximum
number of remapping entries for a single remap com-
mand. Second, the maximum number of remap com-
mands which are pending in the SSD can be limited.
In our implementation, these two numbers are limited
to 128 and 1, respectively. Using these techniques, the
delay of normal request can be limited. If a normal re-
quest is relevant to a remap command, it must wait for
the completion of the remap command.

When the SSD receives a remap command, for each
remapping entry (tLPN, oLPN), it inserts the mapping
entry (oLPN, PPN) into the L2P mapping table. The
PPN is the physical location of the data to be random-
ized, and it can be obtained by reading the mapping en-
try (tLPN, PPN) from the L2P mapping table. Therefore,
two map pages must be accessed for randomizing one
physical page–the map page that contains (tLPN, PPN)
and the map page that contains (oLPN, PPN). However,
the sorted remapping entries in a remap command will
modify only a small number of map pages because it
is quite probable that consecutive remapping entries will
access a same map page. After all the pages in an RWLB
block are randomized, the block is changed to a normal
data block. In order to change the block information,
dirty mapping entries of the CMT must be flushed into
the map blocks, and then, the block change information
must be written to the map blocks. After the comple-
tion of the remap command, the randomizer removes the
mapping entry (oLPN, tLPN) from the redirection table.
Optionally, host can send a trim command for tLPN.

The special commands of SHRD have ordering
constraints. The twrite data(tLPN) command must
be sent after the corresponding twrite header(oLPN,

tLPN) command is completed. The remap(oLPN,
tLPN) command must be sent after the corresponding
twrite data(tLPN) command is completed. If the SHRD
D/D issues a command before its dependent command
is completed, these commands can be reordered by the
command queueing scheme of the storage interface, thus
potentially violating the consistency of the SSD data.
Owing to the ordering constraints, SHRD operations re-
sult in a small amount of performance overhead in our
current implementation. If the SSD firmware can guaran-
tee the ordering between dependent commands, the over-
head can be reduced. We will consider this requirement
in future work.

4.5 Power-Off-Recovery and Garbage Col-
lection

The redirection table is maintained in the host DRAM;
therefore, a sudden power-off can result in a loss of all
the sequentializing mapping information. In order to ad-
dress this issue, we use the autoremap technique dur-
ing POR. As shown in Figure 6, each flash page of se-
quentialized data contains the oLPN in its OOB area.
Therefore, the mapping between PPN and oLPN can
be obtained. The POR operation scans all the RWLB
blocks and performs the randomizing operation by us-
ing the PPN-to-oLPN mappings. The autoremap oper-
ation is similar to the randomizing by the SHRD D/D,
except that autoremap is invoked internally by the SSD
POR firmware. Therefore, only the SSD mapping table
is modified without changing the physical locations. The
POR operation must scan all the RWLB blocks; there-
fore, the RWLB size influences the POR time. However,
the increased POR time is not critical because sudden-
power-offs are rare and the POR is performed at the de-
vice booting time. In addition, in our implementation,
the RWLB block scan time is less than 0.7 seconds for 64
MB of RWLB. After the autoremap operation, the blocks
in the RWLB are changed to normal data blocks and they
can be victims for GC.

For each valid page in a GC victim block, GC must
copy the pages to a free block and modify the corre-
sponding mapping entry in the L2P mapping table. GC
uses the oLPN in the OOB area in order to access the
L2P mapping entry of the copied page. If a selected GC
victim block was initially allocated as a RWLB block,
there can be many map misses in the CMT during GC,
because the valid pages of the victim block were writ-
ten by random write requests. To handle the map misses
during GC, we use a map logging technique. If the map-
ping entry of a copied page is missed from the CMT,
the proposed map logging technique does not load the
corresponding map page from a map block immediately.
Instead, the new mapping entry is written in the map log
table (MLT) in DRAM. For the purpose, a small amount
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of memory space is reserved in DRAM. After several GC
victim blocks are reclaimed, the MLT will have many
mapping entries to be written to the map pages. If the
MLT is full, GC sorts the mapping entries based on the
LPN value to improve the spatial locality when access-
ing map pages, and flushes all the mapping entries of the
MLT into the map pages.

The idea of map-logging technique is similar to that
of SHRD technique. Therefore, the map logging may
be also applied to normal write request handling. How-
ever, SSD must reserve a large amount of memory space
for the MLT to support normal write requests. In ad-
dition, the map logging technique cannot reduce the re-
quest handling overhead. Therefore, it is better to use
SHRD technique for normal requests.

5 Experiments

5.1 Experimental Setup
We implemented an SHRD-supporting SSD by modify-
ing the firmware of the Samsung SM843 SSD, which
is designed for data center storage. For our exper-
iments, the parallel units in the SSD were partially
enabled–4 channels, 4 banks/channel, and 4 planes/bank.
We implemented two 4-KB-page-level mapping FTLs,
demand-loading FTL (DFTL) and SHRD-supporting
FTL (SHRD-FTL). They use the CMT scheme with a
DRAM whose size is less than that of the entire mapping
table. Although the total storage capacity is 120 GB, the
device provides only 110 GB of address space to the host
system. The remaining over-provisioning space is used
for GC and for the RWLB. The host computer system
used a Linux 3.17.4 kernel and was equipped with In-
tel Core i7-2600 3.4 GHz CPU and 8 GB DRAM. The
SHRD device driver was implemented by modifying the
SCSI device driver of the Linux kernel. For the simplic-
ity of the system, the trim/discard commands are not en-
abled.

In order to demonstrate the performance improve-
ment achieved by the SHRD scheme, several server
benchmarks were used: fio [3], tpcc [6], YCSB [13],
postmark [19], and fileserver/varmail workloads of
filebench [2]. In the case of the fio random write work-
load, four concurrent threads were generated and each
thread wrote 8 GB of data with 4 KB of random write re-
quests in 32 GB of address space. The tpcc workload was
generated by percona’s tpcc-mysql. The DB page size
was configured to 4 KB, the number of warehouses was
120, and the number of connections was 20. In the case
of the YCSB workload, MySQL system and the update-
heavy workload (i.e., Workload A), which has 20% reads
and 80% updates, were used. The number of transactions
of postmark workload was 100,000. In the cases of the
fileserver and varmail workloads, the number of files was

Table 1: Workload Characteristics
logical avg. write write writes btwn

benchmark space (GB) size (KB) portion flushes
fio(RW) 32 4.8 100% 61.6
tpcc 16 14.8 60% 18.9
YCSB 24 24.1 63% 5.7
postmark 20 72.0 90% 2743.7
fileserver 24 65.6 65% 2668.0
varmail 10 12.8 44% 1.0

Table 2: Statistics on SHRD Operations
small req. requests pages updated map pages

benchmark portion /twrite /twrite /remap
fio(RW) 100% 30.3 31.42 5.74
tpcc 58% 3.95 6.76 5.33
YCSB 57% 2.45 9.71 9.76
postmark 88% 11.54 57.38 1.34
fileserver 33% 9.33 57.3 1.66
varmail 97% 1.19 3.25 1.24

configured as 200,000. Other parameters used the default
options. The benchmarks were run at EXT4 filesystem
by default. Table 1 presents the characteristics of each
workload, which includes the logical address space, the
average size of write requests, the portion of write re-
quests, and the frequency of flush command generated
by fsync calls (the average number of write requests be-
tween two flush commands).

For all the following experiments, the default sizes of
RWLB, RW threshold, and CMT are 64 MB, 128 KB,
and 1 MB, respectively, unless they are specified.

5.2 Experimental Results
Performance improvement with SHRD Table 2
shows several statistics on SHRD operations for each
workload, i.e., the portion of sequentialized small write
requests, the average number of packed requests/pages
per single twrite command, and the average number of
updated map pages per single remap command. Al-
though each remap command contains a maximum of
128 remapping entries, it updated less than 10 map pages
at all workloads due to the oLPN-sorted map access.
Table 3 shows the portions of three reasons for request
packing interruption during sequentializing, and the por-
tion of small twrite requests that have less than 32 KB of
packed requests.

Figure 7(a) compares the performance of fio random
write benchmark under the SHRD and DFTL schemes
for different values of the CMT size. Because the logi-
cal address space of fio benchmark is 32 GB, if the CMT
size is 32 MB, all the mapping entries of the workloads
can be fully loaded into the CMT; thus, there is no map-
miss handling overhead. If CMT size is less than 32 MB,
the CMT can cache the mapping entries for 32 GB of
address space partially. For example, 1 MB of CMT
can contain only 3.1% of the entire mapping entries of
the workload. Figure 7(b) shows the average number of
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Table 3: Reasons for packing interruption
reasons small twrites

benchmark no req flush full (< 32 KB)
fio(RW) 66% 31% 4% 6%
tpcc 50% 50% 0% 53%
YCSB 56% 39% 5% 86%
postmark 81% 0% 19% 1%
fileserver 51% 0% 49% 1%
varmail 21% 79% 0% 83%
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Figure 7: Fio random write workload results.

map page misses per write operation. A value of 1 in-
dicates that every write operation triggers one additional
map page load operation. As the CMT size decreases,
DFTL shows worse performance because the number of
map page loads increases. However, the performance of
SHRD is similar to the performance when map pages are
fully loaded into DRAM, irrespective of the CMT size.
Even when the mapping table is fully loaded, SHRD
shows a better performance than DFTL owing to the re-
duction on request handling overhead.

Figure 8(a) compares the performance of the SHRD
and DFTL schemes for several real workloads under a
fixed size of CMT (i.e., 1 MB). For all benchmark work-
loads, SHRD improved the I/O performance in com-
parison with DFTL. For the database workloads (i.e.,
tpcc and YCSB), SHRD demonstrated significantly bet-
ter performance than DFTL because they are write-
dominant workloads. In addition, the average size of
write requests is small at these workloads; thus many
write requests were sequentialized as shown in Table 2.
However, DB workloads generate fsync calls frequently;
therefore, the request packing at sequentializing was fre-
quently interrupted by the flush command, as shown in
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Figure 8: Real workload results.

Table 3, and a smaller number of requests were packed
for the DB workloads in comparison with other work-
loads.

The postmark workload is more write-dominant than
the DB workloads, and many requests were sequential-
ized. However, the performance gain was similar to that
of YCSB workload because its average write request size
is larger. The fileserver workload generates many large
requests; therefore, DFTL also show good performance.
In addition, the fileserver workload includes many read
requests. Because SHRD cannot directly improve read
performance, the performance gain was small. The var-
mail workload generates fsync frequently; therefore, a
smaller number of requests were packed by the sequen-
tializer as shown in Table 2. Then, many special com-
mands of SHRD must be transferred, thus degrading the
performance owing to the ordering constraints explained
in Section 4.4. In addition, the varmail workload is read-
dominant, thus its performance improvement was small.
We used the varmail workload as an adverse workload to
check the SHRD overhead. Nevertheless, SHRD showed
a better performance than DFTL even for the workload.

Figure 9 shows the map entries accessed by SHRD-
FTL during the execution of postmark benchmark. Al-
though the original postmark workload has many small
and random write requests, SHRD changed them to se-
quential write requests to the RWLB address region (blue
dots). Therefore, only a small number of accesses oc-
curred on the normal address region by large sequential
requests (black dots). During the periodic randomizing
operations, the original addresses and the temporary ad-
dresses were accessed (read dots). The map entry ac-

USENIX Association 15th USENIX Conference on File and Storage Technologies    279



Figure 9: Map entry access pattern (postmark).
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Figure 10: Effect of map logging at GC.

cess pattern during randomizing is sequential owing to
the LPN-sorted accesses.
Map logging GC In order to examine the effect of map
logging technique explained in Section 4.5, we initial-
ized the SSD with an aging operation. First, 60% of
the logical area of SSD was filled with sequential writes.
Then, 80% of the sequentially-written data were over-
written with random writes. Finally, we ran the fio work-
load. The MLT size is 96 KB. Because the aging oper-
ation consumes all the physical blocks of SSD, the GC
was triggered at the start of the fio test. As shown in
Figure 10(a), the performance was further improved by
using the map logging technique in addition to SHRD.
As shown in Figure 10(b), SHRD can reduce only the
number of map misses by normal IO requests. When the
map logging technique is used additionally, the number
of map misses by GC decreases.
SHRD overhead In the SHRD scheme, the redirection
table must be searched for each read request. We mea-
sured the read performance degradation due to the redi-
rection table searching overhead. First, we wrote two 4
GB files, one using 4 KB of random write requests and
the other using 512 KB of sequential write requests, re-
spectively. Then, the sequentially-written file was read
with 4 KB of random read requests. The RWLB size is
64 MB; hence, the redirection table was filled with the
mapping entries of the randomly-written file. Although,
for each random read request to the sequentially-written
file, its mapping entries cannot be found from the redi-
rection table, the read requests must traverse the RB tree
of the redirection table until the searching reaches the

leaf nodes. In the worst-case scenario, we observed that
the read performance degradation is less than 2%.

In the case of real workloads, read and write requests
are mixed, where SHRD may show a worse read per-
formance due to the sequentializing and randomizing
operations on write requests. In particular, the remap
command can delay the handling of read request, as ex-
plained in Section 4.4. Figure 11 compares the read per-
formance of DFTL and SHRD. The fio mixed workload
was used, which has four threads generating 4 KB of
random read and write requests. The ratio of write re-
quests is 80%; hence, it is a write-dominant workload.
SHRD improved the write performance and thus the read
performance was also improved by minimizing the wait-
ing time for write request, as shown in Figures 11(a) and
12(b). SHRD showed long read latencies when SSD han-
dles remap commands. However, the read latencies de-
layed by remap commands are similar to those delayed
by map misses at DFTL, as shown in Figure 11(c).

Performance improvement at EXT4 and F2FS In
order to compare the performance gains at different file
systems, EXT4 and F2FS were used. F2FS is a log-
structured file system, and it supports the slack space
recycling (SSR) which permits overwrite operations for
invalid blocks [22]. Compared to the garbage collection
of LFS, the SSR operation can prevent significant per-
formance degradation when the file system utilization is
high. Figure 12(a) shows the performance improvement
by SHRD for a random workload under the EXT4 and
F2FS file systems. The file system utilizations were ini-
tialized to 75% by creating 1,024 files with sequential
requests and updating 20% of the data with 4 KB of ran-
dom write requests. Then, the fio random write workload
was run. EXT4 showed a significant performance degra-
dation for the random workload when DFTL was used.
SHRD improved the performance of EXT4 significantly
by reducing the map handling overhead. For F2FS, many
free segments were generated by a background garbage
collection before running the fio workload. Therefore,
F2FS showed significantly better performance than the
original EXT4 file system until 40 seconds elapsed be-
cause F2FS generated sequential write requests to the
free segments. However, the free segments were ex-
hausted and SSR operations were triggered starting from
40 seconds. The SSR operations generated small ran-
dom write requests to utilize invalid blocks; thus, the
performance of F2FS plummeted. However, by adopt-
ing the SHRD scheme, the performance of F2FS was im-
proved even when the SSR operation was triggered. Con-
sequently, EXT4 and F2FS showed similar performance
when they adopted the SHRD scheme. As shown in Fig-
ure 12(b), F2FS showed worse sequential read/write per-
formance than EXT4 at an aged condition. Although
EXT4 showed worse random write performance than
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Figure 12: Effect of SHRD at EXT4 and F2FS.

F2FS under the DFTL scheme, SHRD removed the ran-
dom write performance gap between EXT4 and F2FS.
Therefore, the combination of EXT4 and SHRD can pro-
vide better performance for all types of workloads.
RWLB size and RW threshold When the SHRD
scheme is implemented, several factors must be deter-
mined by considering the tradeoffs. As a larger size of
RWLB is used, more number of remapping entries can
share each map page, thus improving the spatial locality
on accessing the map pages. In addition, the overwrite
operations can invalidate more number of sequentialized
pages in RWLB before they are randomized. However, a
large RWLB requires a large redirection table and a large
amount of table searching overhead. Figure 13 shows the
performance changes for various sizes of the RWLB. A
large RWLB provides better performance; however, the
performance reaches a saturation point. Therefore, the
RWLB size must be selected considering the drawbacks
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Figure 14: Effect of RW threshold.

of a large RWLB.
The RW threshold determines the amount of data to be

sequentialized by SHRD. As we increase the threshold,
the performance can be improved by reducing the map
handling overhead in the SSD as shown in Figure 14.
However, a too large threshold can degrade performance
by increasing the overhead of SHRD operations.

6 Related Work
Several studies have investigated approaches to handle
the performance gap between sequential writes and ran-
dom writes at flash storage. LFSs can eliminate random
writes at the file system layer; SFS [29] and F2FS [22]
are examples of such LFSs. SFS separates hot and cold
data into different segments to reduce the cleaning over-
head of a traditional LFS. F2FS arranges the on-disk lay-
out from the perspective of the FTL on the SSDs and
adopts adaptive logging to limit the maximum latency of
segment cleaning. However, despite all the efforts, these
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flash-based LFSs continue to suffer from write amplifica-
tion in the segment cleaning phase. Further, LFSs show
poor read performance as shown in Figure 12(b).

DFS [17], open-channel SSD [5], and application-
managed flash [23] elevate the flash storage software into
the OS layer and directly manage flash block allocation
according to the flash address space. Therefore, the ad-
dress mapping table is managed by host computer, and
SSD will receive only sequential write requests. How-
ever, they can be used only for a specific SSD design and
burdens the OS with excessive flash management over-
head such as wear-leveling and GC.

Nameless Write [36] permits the storage device to
choose the location of a write and inform the OS about
the chosen address. Therefore, Nameless Write could
eliminate the need for address indirection in SSDs. How-
ever, this scheme requires burdensome callback func-
tions to communicate the chosen address to the host OS
and necessitates significant changes to the conventional
storage interface.

ReSSD [26] and LSDM [37] log random writes se-
quentially in a pre-reserved storage area and maintain the
redirection map table in host memory. However, similar
to the previous LFSs, these schemes must copy the data
when the log space is reclaimed, thus causing write am-
plification. Further, they do not consider the POR issue;
therefore, when a sudden power-off occurs, the logged
data can be lost because the host memory is volatile.

The NVMe standard has a new interface called host
memory buffer (HMB) [11], which permits NVMe SSD
to utilize the DRAM of the host system via PCIe inter-
face; thus, the vendor can build DRAM-less SSDs by
maintaining the entire mapping table in the host DRAM.
However, the latency of the host DRAM will be greater
than the latency of the internal DRAM for SSD con-
troller. In addition, the volatile mapping table must be
flushed periodically to the SSD. On the contrary, SHRD
minimizes the flushing overhead of the mapping table
and requires only a small size of host memory.

Meanwhile, several studies adopt the FTL-level remap
concept, in a manner similar to SHRD. JFTL [12] remaps
the addresses of journal data to the addresses of home
locations, thus eliminating redundant writes to flash stor-
age. X-FTL [18] supports transactional flash storage for
databases by leveraging the address mapping scheme of
FTL. ANViL [34] proposes a storage virtualization inter-
face based on FTL-level address remapping by permit-
ting the host system to manipulate the address map using
three operations-clone, move, and delete. SHARE [30]
also utilizes the address remapping to enable host-side
database engines to achieve write atomicity without
causing write amplification. Ji et al. [15] proposed to
use the remap operation for file system defragmentation.

Although the concept of address remapping was intro-

duced by the mentioned studies, it is not trivial to imple-
ment the remap operation. SSD maintains two directions
of address mappings, i.e., L2P mapping and its reverse
P2L mapping. The P2L mapping is used by GC to iden-
tify the LPN of a physical page. The remap operation
must change both the mappings, and the changed map-
ping information must be stored in flash memory blocks
in order to ensure the durability. The P2L map of each
physical page is generally stored in the OOB area of flash
page, and thus it cannot be modified without copying the
remapped physical page into another flash page. Other-
wise, SSD must maintain a separate P2L mapping table.
This problem is not easy, and any solution can involve
P2L map handling overhead exceeding the benefits of
remap operation. In the case of SHRD, we require a
“restore” operation to the predetermined address rather
than a remap operation to any address because we know
the original logical address of a sequentialized page. We
can easily implement the restore operation by storing the
original logical address in the OOB area at sequentializ-
ing without modifying the P2L mapping.

7 Conclusion
We proposed a novel address reshaping technique,
SHRD, in order to reduce the performance gap be-
tween random writes and sequential writes for SSDs with
DRAM resource constraints. The sequentializer of the
SHRD technique transforms random write requests into
sequential write requests in the block device driver by
assigning the address space of a reserved log area in the
SSD. Read requests can access the sequentialized data by
using a redirection table in the host DRAM. Unlike the
previous techniques, SHRD can restore the original log-
ical addresses of the sequentialized data without requir-
ing copy operations, by utilizing the address indirection
characteristic of the FTL. We also resolved the POR issue
of the redirection table on the host DRAM. We developed
a prototype of an SHRD-supporting SSD and a Linux
kernel device driver to verify the actual performance ben-
efit from SHRD, and demonstrated the remarkable per-
formance gain. SHRD will be an effective solution for
DRAM size reduction in large-capacity enterprise-class
SSDs.
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Abstract
As graphs continue to grow, external memory graph pro-
cessing systems serve as a promising alternative to in-
memory solutions for low cost and high scalability. Un-
fortunately, not only does this approach require consider-
able efforts in programming and IO management, but its
performance also lags behind, in some cases by an order
of magnitude. In this work, we strive to achieve an ambi-
tious goal of achieving ease of programming and high IO
performance (as in-memory processing) while maintain-
ing graph data on disks (as external memory processing).
To this end, we have designed and developed Graphene
that consists of four new techniques: an IO request cen-
tric programming model, bitmap based asynchronous IO,
direct hugepage support, and data and workload balanc-
ing. The evaluation shows that Graphene can not only
run several times faster than several external-memory
processing systems, but also performs comparably with
in-memory processing on large graphs.

1 Introduction
Graphs are powerful data structures that have been used
broadly to represent the relationships among various en-
tities (e.g., people, computers, and neurons). Analyzing
massive graph data and extracting valuable information
is of paramount value in social, biological, healthcare, in-
formation and cyber-physical systems [14,15,17,24,29].

Generally speaking, graph algorithms include read-
ing the graph data that consists of a list of neighbors
or edges, performing calculations on vertices and edges,
and updating the graph (algorithmic) metadata that rep-
resents the states of vertices and/or edges during graph
processing. For example, breadth-first search (BFS)
needs to access the adjacency lists (data) of the vertices
that have just been visited at the prior level, and mark the
statuses (metadata) of previously unvisited neighbors as
visited. Accesses of graph data and metadata come hand-
in-hand in many algorithms, that is, reading one vertex or

edge will be accompanied with access to the correspond-
ing metadata. It is important to note that in this paper
we use the term metadata to refer to the key data struc-
tures in graph computing (e.g., the statuses in BFS and
the ranks in PageRank).

To tackle the IO challenge in graph analytics, prior
research utilizes in-memory processing that stores the
whole graph data and metadata in DRAM to shorten
the latency of random accesses [20, 35, 40, 44, 47]. In-
memory processing brings a number of benefits includ-
ing easy programming and high-performance IOs. How-
ever, this approach is costly and difficult to scale, as big
graphs continue to grow drastically in size. On the other
hand, the alternative approach of external memory graph
processing focuses on accelerating data access on storage
devices. However, this approach suffers not only from
complexity in programming and IO management but also
slow IO and overall system performance [40, 62].

To close the gap between in-memory and exter-
nal memory graph processing, we design and develop
Graphene, a new semi-external memory processing sys-
tem that efficiently reads the graph data on SSDs while
managing the metadata in DRAM. Simply put, Graphene
incorporates graph data awareness in IO management be-
hind an IO centric programming model, and performs
fine-grained IOs on flash-based storage devices. This
is different from current practice of issuing large IOs
and relying on operating system (OS) for optimiza-
tion [40, 47, 62]. Figure 1 presents the system architec-
ture. The main contributions of Graphene are four-fold:
IO (request) centric graph processing. Graphene ad-
vocates a new paradigm where each step of graph pro-
cessing works on the data returned from an IO request.
This approach is unique from four types of existing
graph processing systems: (1) vertex-centric program-
ming model, e.g., Pregel [36], GraphLab [35], Power-
Graph [20], and Ligra [47]; (2) edge-centric, e.g., X-
stream [44] and Chaos [43]; (3) embedding-centric, e.g.,
Arabesque [50]; and (4) domain-specific language, e.g.,
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Galois [40], Green-Marl [27] and Trinity [46]. All
these models are designed to address the complexity
of the computation, including multi-threaded process-
ing [27, 40], workload balancing [10, 20], inter-thread
(node) communication [38] and synchronization [36].
However, in order to achieve good IO performance, these
models require a user to explicitly manage the IOs, which
is a challenging job by itself. For example, FlashGraph
needs user input to sort, merge, submit and poll IO re-
quests [62].

In Graphene, IO request centric processing (or IO cen-
tric for short) aims to simplify not only graph program-
ming but also the task of IO management. To this end,
we design a new IoIterator API that consists of a number
of system and user-defined functions. As a result, vari-
ous graph algorithms can be written in about 200 lines
of code. Behind the scenes, Graphene translates high-
level data accesses to fine-grained IO requests for better
optimization. In short, IO centric processing is able to
retain the benefit of easy programming while delivering
high-performance IO.
Bitmap based, asynchronous IO. Prior research aims
to read a large amount of graph data as quickly as pos-
sible, even when only a portion of it is needed. This
design is justified because small random accesses in
graph algorithms are not the strong suit of rotational hard
drives. Notable examples include GraphChi [32] and X-
stream [44], which read the entire graph data sequentially
from the beginning to the end during each iteration of
the graph calculation. In this case, the pursuit of high IO
bandwidth overshadows the usefulness of data accesses.
Besides this full IO model, the IO on-demand approach
loads only the required data in memory, but again re-
quires significant programming effort [25, 56, 62].

With the help of IO centric processing, Graphene
pushes the envelope of the IO on-demand approach.
Specifically, Graphene views graph data files as an ar-
ray of 512-byte blocks, a finer granularity than more
commonly used 4KB, and uses a Bitmap-based approach
to quickly reorder, deduplicate, and merge the requests.
While it incurs 3.4% overhead, the Bitmap approach im-
proves the IO utility by as much as 50%, and as a result
runs more than four times faster than a typical list based

IO. In this work, IO utility is defined as the ratio between
the amount of data that is loaded and useful for graph
computation, and that of all the data loaded from disk.
Furthermore, Graphene exploits Asynchronous IO (AIO)
to submit as many IO requests as possible to saturate the
IO bandwidth of flash devices.
Direct hugepage support. Instead of using 4KB mem-
ory pages, Graphene leverages the support of Direct
HugePage (DHP), which preallocates the (2MB and
1GB) hugepages at boot time and uses them for both
graph data and metadata structures, e.g., IO buffer and
Bitmap. For example, Graphene designs a hugepage
based memory buffer which enables multiple IO requests
to share one hugepage. This technique eliminates the
runtime uncertainty and high overhead in the transpar-
ent hugepage (THP) method [39], and significantly low-
ers the TLB miss ratio by 177×, leading to, on aver-
age, 12% performance improvement across different al-
gorithms and graph datasets.
Balanced data and workload partition. Compared to
existing 2D partitioning methods which divide vertices
into equal ranges, Graphene introduces a row-column
balanced 2D partitioning where each partition contains
an equal number of edges. This ensures that each SSD
holds a balanced data partition, especially in the cases of
highly skewed degree distribution in real-world graphs.
However, a balanced data partition does not guarantee
that the workload from graph processing is balanced. In
fact, the computation performed on each partition can
vary drastically depending on the specific algorithm. To
address this problem, Graphene utilizes dedicated IO and
computing threads per SSD and applies a work stealing
technique to mitigate the imbalance within the system.

We have implemented Graphene with different graph
algorithms and evaluated its performance on a number of
real world and synthetic graphs on up to 16 SSDs. Our
experiments show that Graphene outperforms several ex-
ternal memory graph systems by 4.3 to 20×. Further-
more, Graphene is able to achieve similar performance
to in-memory processing with the exception of BFS.

This paper is organized as follows: Section 2 presents
the IO centric programming model. Section 3 discusses
bitmap-based, asynchronous IO and Section 4 presents
data and workload balancing techniques, and Section 5
describes hugepage support. Section 6 describes a num-
ber of graph algorithms used in this work. Section 7
presents the experimental setup and results. Section 8
discusses the related work and Section 9 concludes.

2 IO Request Centric Graph Processing
Graphene allows the system to focus on the data, be it a
vertex, edge or subgraph, returned from an IO request at
a time. This new IO (request) centric processing aims to
provide the illusion that all graph data resides in mem-
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Table 1: IoIterator API
Type Name Return Value Description
System provided Iterator->Next() io block t Get the next in-memory data block

Iterator->HasMore() bool Check if there are more vertices available from IO
Iterator->Current() vertex Get the next available vertex v
Iterator->GetNeighbors(vertex v) vertex array Get the neighbors for the vertex v

User defined IsActive(vertex v) bool Check if the vertex v is active
Compute(vertex v) Perform algorithm specific computation

while true do
foreach vertex v do

if IsActive(v) then
handle = IO Submit(v);
IO Poll(handle);
Compute(the neighbors of v);

end
end
level++;

end
Algorithm 1: BFS with user-managed IO.

while true do
block = IoIterator→Next();
while block→HasMore() do

vertex v = block→Current();
if IsActive(v) then

Compute(block→GetNeighbors(v));
end

end
level++;

end
Algorithm 2: IoIterator-based BFS.

ory, and delivers high IO performance through applying
various techniques behind the scenes which will be de-
scribed in next three sections.

To this end, Graphene develops an IoIterator frame-
work, where a user only needs to call a simple Next()
function to retrieve the needed graph data for process-
ing. This allows the programmers to focus on graph al-
gorithms without worrying about the IO complexity in
semi-external graph processing. At the same time, by
taking care of graph IOs, the IoIterator framework al-
lows Graphene to perform disk IOs more efficiently in
the background and make them more cache friendly. It
is worth noting that the IO centric model can be eas-
ily integrated with other graph processing paradigms in-
cluding vertex or edge centric processing. For exam-
ple, Graphene has a user-defined Compute function that
works on vertices.

IoIteratorGraph
Processing

IO		Requests

Graph	Data
Physical

IO

Active	Vertices

GetNeighbors()

Figure 2: IoIterator programming model.

At a high level shown in Figure 2, we insert a new
IoIterator layer between the algorithm and physical IO.
In this architecture, the processing layer is responsible
for the control flow, e.g., computing what vertices of the
graph should be active, and working on the neighbors
of those active vertices. The IO layer is responsible for
serving the IO requests from storage devices. Graph pro-
cessing can start as soon as the IOs for the adjacency lists
of the active vertices are complete, i.e., when the data for
the neighbors become available. The new abstraction of
IoIterator is responsible for translating the requests for
the adjacency lists into the IO requests for data blocks.

Internally, Graphene applied a number of IO opti-

mizations behind the IoIterator, including utilizing a
Bitmap per device for sorting and merging, submit-
ting large amounts of non-blocking requests via asyn-
chronous IO, using hugepages to store graph data and
metadata, and resolving the mismatch between IO and
processing across devices.

The IoIterator layer consists of a set of APIs listed in
Table 1. There are four system-defined functions for the
IoIterator, Next, HasMore, Current, and GetNeighbors,
which work on the list of the vertices returned from the
underlying IO layer. In addition, two functions IsActive
and Compute should be defined by the users. For ex-
ample, in BFS, the IsActive function should return true
for any frontier if a vertex v has been visited in the pre-
ceding iteration, and Compute should check the status of
each neighbor of v, and mark any unvisited neighbors as
frontiers for the next iteration. Detailed description of
BFS and other algorithms can be found in Section 6.

An example of BFS pseudocode written with the cur-
rent approach of user-managed selective IO vs. the IoI-
terator API can be found in Algorithms 1 and 2. In the
first approach, the users are required to be familiar with
the Linux IO stack and explicitly manage the IO requests
such as IO submission, polling, and exception handling.
The main advantage of the IoIterator is that it completely
removes such a need. On the other hand, in both ap-
proaches, the users need to provide two similar functions,
IsActive and Compute.

It is important to note that the pseudocode will largely
stay the same for other algorithms, but with different Is-
Active and Compute. For example, in PageRank, IsAc-
tive returns true for vertices that have delta updates, and
Compute accumulates the updates from different source
vertices to the same destination vertex. Here, Compute
may be written in vertex or edge centric model.
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3 Bitmap Based, Asynchronous IO
Graphene achieves high-performance IO for graph pro-
cessing through a combination of techniques including
fine-grained IO blocks, bitmap, and asynchronous IO.
Specifically, Graphene favors small, 512-byte IO blocks
to minimize the alignment cost and improve the IO util-
ity, and utilizes a fast bitmap-based method to reorder
and produce larger IO requests, which will be submitted
to devices asynchronously. As a result, the performance
of graph processing improves as a higher fraction of use-
ful data are delivered to CPUs at high speed.

In Graphene, graph data are stored on SSDs in Com-
pressed Sparse Row (CSR) format which consists of two
data structures: the adjacency list array that stores the
IDs of the destination vertices of all the edges ordered by
the IDs of the source vertices, and the beginning position
array that maintains the index of the first edge for each
vertex.

3.1 Block Size
One trend in modern operating systems is to issue IOs in
larger sizes, e.g., 4KB by default in some Linux distribu-
tions [8]. While this approach is used to achieve high se-
quential bandwidth from underlying storage devices like
hard drives, doing so as in prior work [62] would lead to
low IO utility because graph algorithms inherently issue
small data requests. In this work, we have studied the
IO request size when running graph algorithms on Twit-
ter [2] and Friendster [1]. Various graph datasets that are
used in this paper is summarized in Section 7. One can
see that most (99%) of IO requests are much smaller than
4KB as shown in Figure 3. Thus, issuing 4KB IOs would
waste a significant amount of IO bandwidth.
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Figure 3: Distribution of IO sizes.

In Graphene, we choose to use a small IO size of 512
bytes as the basic block for graph data IOs. Fortunately,
new SSDs are capable of delivering good IOPS for 512-
byte read requests for both random and sequential IOs.
For example, Samsung 850 SSD [49], which we use in
the experiments, can achieve more than 20,000 IOPS for
512-byte random read.

Another benefit of using 512-byte blocks is to lower
the cost of the alignment for multiple requests. Larger
block size like 4KB means the offset and size of each
IO request should be a multiple of 4KB. In the exam-
ple presented in Figure 4, requesting the same amount of

Adjacency	list

4KB

Page	0: Page	2:

Page	1:

HugePage enabled	I/O	buffer:

Adjacency	list

(a)	4KB	block	size

(b)	512-byte	block	size
Figure 4: IO alignment cost: 4KB vs. 512-byte blocks, where
one dotted box represents one 512-byte block.

data will lead to the different numbers of IOs when us-
ing 4KB (top) and 512-byte (bottom) block sizes. One
can see that the former will load 2.2× more data, i.e.,
12KB vs. 5KB in this case. In addition, combined with
hugepage support that will be presented shortly, 512-byte
block IO will need only one hugepage-based IO buffer,
compared to three 4KB pages required in the top case.

3.2 Bitmap-Based IO Management
At each iteration of graph processing, graph algorithms
compute and generate the requests for the adjacency lists
(i.e., the neighboring vertices) of all active vertices for
the following iteration. In particular, Graphene trans-
lates such requests into a number of 512-byte aligned
IO blocks, which are quickly identified in a new Bitmap
data structure. In other words, Graphene maintains a
Bitmap per SSD, one bit for each 512-byte block on the
disk. For each request, Graphene marks the bits for the
corresponding blocks, that is, should a block need to
be loaded, its bit is marked as “1”, and “0” otherwise.
Clearly, the Bitmap offers a global view of IO operations
and enables optimization opportunities which would not
otherwise be possible.

For a 500GB SSD as we have used in this work,
the size of the bitmap is merely around 128MB, which
we can easily cache in CPUs and store in DRAM with
a number of hugegages. Because Graphene combines
Bitmap-based management with asynchronous IO, it is
also able to utilize one IO thread per SSD. Therefore,
since there is only one thread managing the Bitmap for
each SSD, no lock is required on the Bitmap structures.
Issues with local IO optimization. Traditionally, the OS
takes a local view of the IO requests by immediately is-
suing the requests for the neighbors of one or a group of
active vertices. In addition, the OS performs several im-
portant tasks such as IO batching, reordering and merg-
ing at the block layer. Unfortunately, these techniques
have been applied only to IO requests that have been
buffered in certain data structures. For instance, Linux
exploits a linked list called pluglist to batch and submit
the IO requests [8], in particular, the most recent Linux
kernel 4.4.0 supports 16 requests in a batch.
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Figure 5: Pluglist vs. bitmap IO management, (a) Pluglist where sorting and merging are limited to IO requests in the pluglist. (b)
Bitmap where sorting and merging are applied to all IO requests.

Figure 5(a) presents the limitations of the pluglist
based approach. In this example, vertices {v5, v8, v1, v7,
v3} are all active and the algorithm needs to load their
neighbors from the adjacency list file. With a fixed-size
pluglist, some of the requests will be batched and en-
queued first, e.g., the requests for the first three vertices
{v5, v8, v1}. In the second step, sorting is applied across
the IO requests in the pluglist. Since the requests are al-
ready grouped, sorting happens within the boundary of
each group. In this case, the requests for the first three
vertices are reordered from {b7, b15, b16, b1, b2} to {b1,
b2, b7, b15, b16}. In the third step, if some IO blocks
present good spatial locality, merging will be applied to
form a larger IO request, e.g., blocks {b1, b2, b7} are
merged into one IO transaction. And later, a similar pro-
cess happens for the IOs on the rest of vertices {v7, v3}.

In this case, there are four independent IO requests to
the disk, (a) blocks b1 - b7, (b) blocks b15 - b16, (c) block
b5, and (d) blocks b13 - b15. The first request loads seven
sequential blocks in one batch, which takes advantage of
prefetching and caching and is preferred by the disks and
OS. As a result, the third request for block b5 will likely
hit in the cache. On the other hand, although the second
and fourth requests have overlapping blocks, they will be
handled as two separate IO requests.
Bitmap and global IO optimization. Graphene chooses
to carry out IO management optimizations, including IO
deduplication, sorting and merging, on a global scale.
This is motivated by the observation that although graph
algorithms tend to present little or no locality in a short
time period, there still exists a good amount of locality
within the entire processing window. Bitmap-based IO
management is shown in Figure 5(b). Upon receiving
the requests for all active vertices, Graphene will convert
the needed adjacency lists into the block addresses and
mark those blocks in the Bitmap.
Sorting. The process of marking active blocks in the
corresponding locations in the Bitmap naturally sorts the
requests in the order of physical addresses on disks. In
other words, the order of the requests is simply that of
the marked bits in the Bitmap.
IO deduplication is also easily achieved in the process.
Bitmap-based IO ensures that only one IO request will
be sent even when the data block is requested multiple

times, achieving the effect of IO deduplication. This is
common in graph computation. For example, in the sin-
gle source shortest path algorithm, one vertex may have
many neighboring vertices, and if more than one neigh-
bors need to update the distance of this vertex, it will
need to be enqueued multiple times for the next itera-
tion. In addition, different parts of the same IO block
may need to be loaded at the same time. In the prior
example, as the block b15 is shared by the requests from
vertices v7 and v8, it will be marked and loaded once. Our
study shows that the deduplication enabled from Bitmap
can save up to 3× IO requests for BFS, compared to a
pluglist based method.
IO merging. Bitmap is very easy to use for merging the
requests in the vicinity of each other into a larger request,
which reduces the total number of IO requests submitted
to disks. For example, as shown in Figure 5(b), IO re-
quests for vertices v1, v3, v5 (and similarly for vertices
v7 and v8) are merged into one. As a result, there are
only two non-overlapping requests instead of four as in
the pluglist case.

How to merge IO requests is guided by a num-
ber of rules. It is straightforward that consecutive re-
quests should be merged. When there are multiple
non-consecutive requests, we can merge them when the
blocks to be loaded are within a pre-defined maximum
gap, which determines the largest distance between two
requests. Note that this rule directly evaluates the Bitmap
by bytes to determine whether eight consecutive blocks
are needed to be merged.

This approach favors larger IO sizes and has proven to
be effective in achieving high IO performance. Figure 6
shows the performance when running BFS on the Twitter
and UK graphs. Interestingly, the performance peaks for
both graphs when the maximum gap is set to 16 blocks
(i.e., 8KB). Graphene also imposes an upper bound for
IO size, so that the benefit of IO merging would not be
dwarfed by handling of large IO requests. We will dis-
cuss this upper bound shortly.

In conclusion, Bitmap provides a very efficient
method to manage IO requests for graph processing. We
will show later that while the OS already provides sim-
ilar functionality, this approach is more beneficial for
dealing with random IOs to a large amount of data.
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Besides Bitmap-based IO, we have also implemented a
Pluglist based approach that extends the pluglist to sup-
port sorting, deduplication and merging in a global scale.
As shown in Section 7, compared to a list, the Bitmap
approach incurs smaller overhead and runs four times
faster. It is important to note that although we focus on
using Bitmap for graph processing in this work, it can
also be applied to other applications. We will demon-
strate this potential in Section 7.

3.3 Asynchronous IO
Asynchronous IO (AIO) is often used to enable a user-
mode thread to read or write a file, while simultane-
ously carrying out the computation [8]. The initial design
goal is to overlap the computation with non-blocking IO
calls. However, because graph processing is IO bound,
Graphene exploits AIO for a different goal of submitting
as many IO requests as possible to saturate the IO band-
width of flash devices.

There are two popular AIO implementations, i.e.,
user-level POSIX AIO and kernel-level Linux AIO. We
prefer the latter in this work, because POSIX AIO forks
child threads to submit and wait for the IO completion,
which in turn has scalability issues while submitting too
many IO requests [8]. In addition, Graphene leverages
direct IO to avoid the OS-level page cache during AIO,
and the possible blocks introduced by the kernel [19].
Upper bound for IO request. Although disks favor
large IO sizes in tens or hundreds of MBs, it is not always
advantageous to do so, especially for AIO. Typically, an
AIO consists of two steps, submitting the IO request to
an IO context and polling the context for completion.
If IO request sizes are too big, the time for IO submis-
sion would take longer than polling, at which point AIO
would essentially become blocking IO. Figure 7(a) stud-
ies the AIO submission and polling time. As the size
goes beyond 1MB, submission time increases quickly.
And once it reaches 128MB, it becomes blocked IO as
submission time eventually becomes longer then polling
time. In this work, we find that a modest IO size, such as
8, 16, and 32 KB, is able to deliver good performance for
various graph algorithms. Therefore, we set the default
upper bound of IO merging as 16KB.
IO context. In AIO, each IO context loads the IO re-
quests sequentially. Graphene uses multiple contexts to
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Figure 7: AIO performance w.r.t. IO size and IO context

handle the concurrent requests and overlap the IO with
the computation. For example, while a thread is work-
ing on the request returned from one IO context, another
IO context can be used to serve other requests from the
same SSD. Given its intensive IO demand, graph compu-
tation would normally need to create a large number of
IO contexts. However, without any constraints, too many
IO contexts would hurt the performance because every
context needs to register in the kernel and may lead to
excessive overhead from polling and management.

Figure 7(b) evaluates the disk throughput with respect
to the number of total IO contexts. As one can see that
each SSD could achieve the peak performance with 16
contexts but the performance drops once the total IO con-
text goes beyond 1,024 contexts. In this work, depend-
ing on the number of available SSDs, we utilize different
numbers of IO contexts, by default using 512 contexts
for 16 SSDs.

3.4 Conclusion
In summary, combining 512-byte block and Bitmap-
based IO management allows Graphene to load a smaller
amount of data from SSDs, about 21% less than the tra-
ditional approach. Together with AIO, Graphene is able
to achieve high IO throughput of upto 5GB/s for different
algorithms on an array of SSDs.

4 Balancing Data and Workload
Taking care of graph data IO only solves half of the prob-
lem. In this section, we present data partitioning and
workload balancing in Graphene.

4.1 Row-Column Balanced 2D Partition

Given highly skewed degree distribution in power-
law graphs, existing graph systems, such as Grid-
Graph [63], TurboGraph [25], FlashGraph [62], and
PowerGraph [20], typically apply a simple 2D parti-
tioning method [9] to split the neighbors of each vertex
across multiple partitions. The method is presented in
Figure 8(a), where each partition accounts for an equal
range of vertices, P number of vertices in this case, on
both row and column-wise. This approach needs to scan
the graph data once to generate the partitions. The main
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drawback of this approach is that an equal range of ver-
tices in each data partition do not necessarily lead to an
equal amount of edges, which can result in workload im-
balance for many systems.

To this end, Graphene introduces a row-column bal-
anced 2D partitioning method, as shown in Figure 8(b-c),
which ensures each partition contains an equal number
of edges. In this case, each partition may have different
numbers of rows and columns. This is achieved through
three steps: (1) the graph is divided by the row major into
R number of partitions, each of which has the same num-
bers of edges with potentially different number of rows;
(2) Each row-wise partition is further divided by the col-
umn major into C number of (smaller) partitions, each
of which again has the equal amount of edges. As a re-
sult, each partition may contain different number of rows
and columns. Although it needs to read the graph one
more time, it produces “perfect” partitions with the equal
amount of graph data, which can be easily distributed to
a number of SSDs.

Figure 9 presents the benefits of row-column balanced
2D partition for two social graphs, Twitter and Friend-
ster. On average, the improvements are 2.7× and 50%
on Twitter and Friendster, respectively. The maximum
and minimum benefits for Twitter are achieved on SpMV
for 5× and k-Core 12%. The speedups are similar for
Friendster. While each SSD holds a balanced data par-
tition, the workload from graph processing is not guar-
anteed to be balanced. Rather, the computation per-
formed on each partition can vary drastically depending
on the specific algorithm. In the following, we present
the workflow of Graphene and how it balances the IO
and processing.
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4.2 Balancing IO and Processing
Although AIO, to some extent, enables the overlapping
between IO and computation, we have observed that a
single thread doing both tasks would fail to fully saturate
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Figure 10: Graphene scheduling management.

the bandwidth of an SSD. To address this problem, one
can assign multiple threads to work on a single SSD in
parallel. However, if each thread would need to juggle IO
and processing, this can lead to contention in the block
layer, resulting in a lower performance.

In Graphene, we assign two threads to collaboratively
handle the IO and computation on each SSD. Figure 10
presents an overview of the workflow. Initially upon re-
ceiving updates to the Bitmap, a dedicated IO thread for-
mulates and submits IO requests to the SSD. Once the
data is loaded in memory, the computing thread retrieves
the data from the IO buffer and works on the correspond-
ing metadata. Using PageRank as an example, for cur-
rently active vertices, the IO thread would load their in-
neighbors (i.e., the vertices with a directed edge to active
vertices) in the IO buffer, further store them in the ring
buffer. Subsequently, the computing thread uses the rank
values of those in-neighbors to update the ranks of active
vertices. The metadata of interest here is the rank array.

Graphene pins IO and computing threads to the CPU
socket that is close to the SSD they are working on. This
NUMA-aware arrangement reduces the communication
overhead between IO thread and SSD, as well as IO and
computing threads. Our test shows that this can improve
the performance by 5% for various graphs.

Graphene utilizes a work stealing technique to miti-
gate computational imbalance issue. As shown in Fig-
ure 10, each computing thread first works on the data in
its own IO buffer ring. Once it finishes processing its
own data, this thread will check the IO buffer of other
computing threads. As long as other computing threads
have unprocessed data in IO buffers, this thread is al-
lowed to help process them. This procedure repeats until
all data have been consumed.

Figure 11 presents the performance benefit from work
stealing. On average, PageRank, SpMV, WCC and APSP
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Figure 11: Benefit of workload stealing.
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achieve various speedup of 20%, 11%, 8% and 4%, re-
spectively, compared to the baseline of not using work-
load stealing. On the other hand, BFS and k-Core suffer
slowdown of 1% and 3%. This is mostly because the first
four applications are more computation intensive while
BFS and k-Core are not. One drawback of workload
stealing is lock contention at the IO buffer ring, which
can potentially lead to performance degradation, e.g., 8%
for APSP on Friendster and k-Core on Twitter.

5 HugePage Support
Graphene leverages the support of Direct HugePages
(DHP), which preallocates hugepages at boot time, to
store and manage graph data and metadata structures,
e.g., IO buffer and Bitmap, shown as blue boxes in Fig-
ure 10. This is motivated by our observation of high TLB
misses, as the number of memory pages continues to
grow for large-scale graph processing. Because a TLB
miss typically requires hundreds of CPU cycles for the
OS to go through the page table to figure out the physical
address of the page, this would greatly lower the graph
algorithm performance.

In Graphene, the OS creates and maintains a pool of
hugepages at machine boot time when memory fragmen-
tation is at the minimum. This is because any memory
fragmentation would break physical space into pieces
and disrupt the allocation of hugepages. We choose this
approach over transparent hugepage (THP) in Linux [39]
for a couple of reasons. First, we find that THP intro-
duces undesirable uncertainty at runtime, because such
a hugepage could be swapped out from memory [42].
Second, THP does not always guarantee successful al-
location and may incur high CPU overhead. For exam-
ple, when there were a shortage, the OS would need to
aggressively compress the memory in order to provide
more hugepages [54].
Data IO. Clearly, if each IO request were to consume
one hugepage, a large portion of memory space would be
wasted, because Graphene, even with IO merging, rarely
issues large (2MB) IO requests. Alternatively, Graphene
allows multiple IO requests to share hugepages. This
consolidation is done through IO buffers in the IO Ring
Buffer. Given a batch of IO requests, Graphene first
claims a buffer that contains a varied number of contin-
uous 2MB hugepages. As the IO thread works exclu-
sively with a buffer, all IO requests can in turn use any
portion of it to store the data. Also, consecutive IO re-
quests will use continuous memory space in the IO buffer
so that there is no fragmentation. Note that the system
needs to record the begin position and length of each re-
quest within the memory buffer, which is later parsed and
shared with the user-defined Compute function in the IoI-
terator. In addition, direct IO is utilized for loading disk
blocks directly into hugepages. Comparing to buffered

 0
 70

 140
 210
 280
 350

APSP BFS k-Core PR SpMV WCC

TL
B 

m
is

s 
re

du
ct

io
n 

(x
)

TLB

Figure 12: TLB misses reduced by hugepage-enabled buffer.

IO, this method skips the step of copying data to system
pagecache and further to user buffer, i.e., double copy.
Metadata has been the focus of several prior works [9,
12, 59] to improve the cache performance of various
graph algorithms. As a first attempt, we have inves-
tigated the use of page coloring [16, 60] to resolve
cache contention, that is, to avoid multiple vertices be-
ing mapped to the same cache line. With 4KB pages,
we are able to achieve around 5% improvement across
various graphs. However, this approach becomes incom-
patible when we use 2MB hugepages for metadata, as the
number of colors is determined by the LLC size (15MB),
associativity (20) and page size.

To address this challenge, we decide to use hugepages
for the metadata whose size is at the order of O(|V |). In
this work, we use 1GB hugepages, e.g., for PageRank, a
graph with one billion vertices will need 4GB memory
for metadata, that is, four 1GB hugepages.

This approach brings several benefits. Figure 12 illus-
trates the reduction in TLB miss introduced by this tech-
nique when running on a Kronecker graph. Across six
algorithms, we observe an average 177× improvement
with the maximum of 309× for PageRank. In addition,
as prefetching is constrained by the page size, hugepages
also enables more aggressive hardware prefetching in
LLC, now that the pages are orders of magnitude bigger
(1GB vs. 4KB). The test shows that this technique pro-
vides around 10% speedup for these graph algorithms.

6 Graph Algorithms
Graphene implements a variety of graph algorithms to
understand different graph data and metadata, and their
IO patterns. For all the algorithms, the sizes of data and
metadata are O(|E|) (total count of edges) and O(|V |)
(total count of vertices), respectively.
Breadth First Search (BFS) [4, 33] performs random
reads of the graph data, determined by the set of most
recently visited vertices in the preceding level. The sta-
tuses (visited or unvisited) of the vertices are maintained
in the status array, a key metadata in BFS. It is worthy to
note that status array may experience more random IOs,
because the neighbors for a vertex tend to have different
IDs, some of which are far apart.
PageRank (PR) [26,41] can calculate the popularity of a
vertex by either pulling the updates from its in neighbors
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or pushing its rank to out neighbors. The former per-
forms random IO on the rank array (metadata), whereas
the latter requires sequential IO for graph data but needs
locks while updating the metadata. In this work, we
adapt delta-step PageRank [61], where only vertices with
updated ranks should push their delta values to the neigh-
bors, yet again requiring random IOs.
Weakly Connected Component (WCC) is a special
type of subgraph whose vertices are connected to each
other. For directed graphs, a strongly connected com-
ponent exists if a directed path can be found between all
pairs of vertices in the subgraph [28]. In contrast, a WCC
exists if such a path can be found regardless of the edge
direction. We implement the hybrid WCC detection al-
gorithm presented in [48], that is, it uses BFS to detect
the largest WCC then uses label propagation to compute
remaining smaller WCCs. In this algorithm, the label ar-
ray serves as the metadata.
k-Core (KC) [37, 45] is another type of subgraph where
each vertex has the degree of at least k. Iteratively, a k-
Core subgraph is found by removing the vertices from
the graph whose degree is less than k. As the vertices are
removed, their neighbors are affected, where the meta-
data – degree array – will need to be updated. Similar to
aforementioned algorithms, since the degree array is in-
dexed by the vertex IDs, the metadata IO in k-Core also
tends to be random. k-Core is chosen in this work as it
presents alternating graph data IO patterns across differ-
ent iterations. Specifically, in the initial iterations, lots
of vertices would be affected when a vertex is removed,
thus the graph data is retrieved likely in the sequential
order. However at the later iterations, fewer vertices will
be affected, resulting in random graph data access.
All Pairs Shortest Path (APSP) calculates the shortest
paths from all the vertices in the graph. With APSP, one
can further compute Closeness Centrality and Reachabil-
ity problems. Graphene combines multi-source traver-
sals together, to reduce the total number of IOs needed
during processing and the randomness exposed during
the metadata access [34, 51]. Similar to FlashGraph, we
randomly select 32 source vertices for evaluation to re-
duce APSP execution time on large graphs.
Sparse Matrix Vector (SpMV) multiplication exhibits
sequential access when loading the matrix data, and ran-
dom access for the vector. In this algorithm, the matrix
and vector serve the role as graph data and metadata, re-
spectively. As a comparison to BFS, SpMV is more IO
friendly but equally challenging on cache efficiency.

7 Evaluations
We have implemented a prototype of Graphene in 3,300
lines of C++ code, where the IoIterator accounts for
1,300 lines and IO functions 800 lines. Six graph algo-

Table 2: Graph Datasets.
Name # Vertices # Edges Size Preprocess (seconds)
Clueweb 978M 42.6B 336GB 334
EU 1071M 92B 683GB 691
Friendster 68M 2.6B 20GB 3
Gsh 988M 33.8B 252GB 146
Twitter 53M 2.0B 15GB 2
UK 788M 48B 270GB 240
Kron30 1B 32B 256GB 141
Kron31 2B 1T 8TB 916

rithms are implemented with average 200 lines of code.
We perform our experiments on a server with a dual-
socket Intel Xeon E5-2620 processor (total 12 cores and
24 threads with hyperthreading), 128GB memory, 16
500GB Samsung 850 SSDs connected with two LSI SAS
9300-8i host bus adapters, and Linux kernel 4.4.0.

Table 2 lists all the graphs used in this paper. Specif-
ically, Twitter [2] and Friendster [1] are real-world so-
cial graphs. In particular, Twitter contains 52,579,682
vertices and 1,963,263,821 edges, and Friendster is
an online gaming network with 68,349,466 vertices
and 2,586,147,869 edges. In addition, Clueweb [13],
EU [18], Gsh [23] and UK [55] are webpage based
graphs provided by webgraph [5–7]. Among them, EU is
the largest with over one billion of vertices and 90 billion
of edges. On the other hand, two Kronecker graphs are
generated with the Graph500 generator [22] with scale
30 and 31, which represent the number of vertices as 1
billion (230) and 2 billion (231), with number of edges
of 32 billion and 1 trillion. This paper, by default uses
8 bytes to represent a vertex ID unless explicitly noted.
We run the tests five times and report the average values.

In addition, Table 2 presents the time consumption of
the preprocessing step of the row-column balanced 2D
partition. On average, our partition method takes 50%
longer time than the conventional 2D partition method,
e.g., preprocessing the largest Kron31 graph takes 916
seconds. Note that except X-Stream, many graph sys-
tems, including FlashGraph, GridGraph, PowerGraph,
Galois and Ligra, also require similar or longer prepro-
cessing to prepare the datasets. In the following, we re-
port the runtime of graph algorithms, excluding the pre-
processing time for all graph systems.

7.1 Comparison with the State of the Art
We compare Graphene against FlashGraph (semi-
external memory), X-Stream (external memory), Grid-
Graph (external memory), PowerGraph (in-memory),
Galois (in-memory), and Ligra (in-memory) when run-
ning various algorithms. Figure 13 reports the speedup of
Graphene over different systems for all five algorithms.
SpMV is currently not supported in other systems ex-
cept our Graphene, and k-Core is only provided by Flash-
Graph, PowerGraph and Graphene. In the figure the label
“NA” indicates lack of support in the system. In this test,
we choose one real graph (Gsh) and one synthetic graph
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Figure 13: Graphene vs. state-of-the-art.
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(b) HugePage vs. 4K Page
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(c) Dedicated IO and computing threads

Figure 14: Overall performance benefits of IO techniques.

(Kron30). Note that Gsh is the largest graph that is sup-
ported by in-memory systems. We have observed similar
performance on other graphs.

In general, Graphene outperforms external memory
systems FlashGraph, GridGraph and X-Stream by 4.3×,
7.8× and 20×, respectively. Compared to in-memory
systems PowerGraph, Galois and Ligra where all graph
data are stored in DRAM, Graphene keeps the data on
SSDs and reads on-demand, outperforming PowerGraph
by 21× and achieving a comparable performance with
the other two (90% for Galois and 1.1× for Ligra). Ex-
cluding BFS which is the most IO intensive and fa-
vors in-memory data, Graphene outperforms Galois and
Ligra by 10% and 45%, respectively. We also compare
Graphene with an emerging Differential Dataflow sys-
tem [53] and Graphene is able to deliver an order of mag-
nitude speedup on BFS, PageRank and WCC.

For the Gsh graph, as shown in Figure 13, Graphene
achieves better performance than other graph systems
for different algorithms with exceptions for BFS and
WCC. For example, for APSP, Graphene outperforms
PowerGraph by 29×, Galois by 35%, Ligra by 50%,
FlashGraph by 7.2× and X-Stream by 14×. For BFS
and WCC, Graphene runs faster than GridGraph, Power-
Graph, FlashGraph and X-Stream, but is slower than the
two in-memory systems, mostly due to relatively long ac-
cess latency on SSDs compared to DRAM. Similar per-
formance benefits can also be observed on the syntheic
Kron30 graph.

Table 3: Graphene runtime on Kron31 (seconds).
Name APSP BFS k-Core PageRank WCC SpMV

Kron31 7,233 2,630 318 25,023 3,023 5,706

Trillion-edge graph. We further evaluate the perfor-
mance of Graphene on Kron31 as presented in Table 3.

On average, all algorithms take around one hour to finish,
with the maximum from PageRank of 6.9 hours while k-
Core can be completed in 5.3 minutes. To the best of
our knowledge, this is among the first attempts to evalu-
ate trillion-edge graphs on a external-memory graph pro-
cessing system.

7.2 Benefits of IO Techniques
This section examines the impacts on the overall sys-
tem performance brought by different techniques inde-
pendently, including Bitmap, hugepage, and dedicated
IO and computing threads. We run all six algorithms on
all six real-world graphs.

The Bitmap provides an average 27% improvement
over using the pluglist as presented in Figure 14(a).
Clearly, Bitmap favors the algorithms with massive ran-
dom IOs such as WCC and BFS and low diameter graphs
such as Gsh, EU, and Friendster. For example, Bitmap
achieves about 70% speedup on Gsh on both BFS and
WCC, and 30% for other algorithms.

Figure 14(b) compares the performance of hugepages
and 4KB pages. Hugepages provides average 12% im-
provement and the speedup varies from 17% for WCC
to 6% for k-Core. Again, two largest improvements are
achieved on the (largest) Gsh graph for SpMV and WCC.

The benefit introduced by dedicated IO and computing
threads is presented in Figure 14(c), where the baseline is
using one thread for both IO and computing. In this case,
Graphene achieves an average speedup of 54%. Particu-
larly, PageRank and SpMV enjoy significant higher im-
provement (about 2×) than the other algorithms.

7.3 Analysis of Bitmap-based IO
We study how Bitmap-based IO affects the IO and com-
puting ratio of different algorithms in Figure 15. Without
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Figure 15: Runtime breakdown of IO and computing with
Bitmap-based IO.

bitmap, all four algorithms spend about 60% on IO and
40% on computation. In comparison, the distribution of
runtime reverses with bitmap, where computation takes
average 60% of the time and IO 40%. Because the IO
time is significantly reduced, faster IO as a result accel-
erates the execution of the algorithms. In particular, the
biggest change comes from k-Core where IO accounts
for 87% and 34% before and after bitmap.

As shown in Figure 16, when compared to a pluglist-
based approach, the Bitmap-based IO runs 5.5×, 2.6×,
5.6×, 5.7× and 2.5× faster on APSP, BFS, k-Core,
PageRank, and WCC, respectively. Note that here we
only evaluate the time consumption of preparing the
bitmap and pluglist, which is different from overall sys-
tem performance presented in Figure 14. On the other
hand, in most cases, adding Bitmap incurs a small in-
crease of about 3.4% of total IO time. However, for a
few cases with relatively high overhead, it is most likely
caused by the small size of the graph data (e.g., Friend-
ster and Twitter), as well as random IOs of the algorithms
(e.g., BFS). The time spent on Bitmap varies from about
60 milliseconds for PR and SpMV (less than 1% of total
IO time), to 100 seconds for APSP (2.3% of IO time).
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Figure 16: Bitmap performance and overhead.

Bitmap-based IO can be applied to other applications
beyond graph processing. Figure 17 examines the time
consumption differences between Bitmap based IO and
Linux IO. Here we replay the reads in five IO traces
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Figure 17: Bitmap-based IO performance on traces.

as quickly as possible, namely Financial 1-2 and Web-
Search 1-3 from UMass Trace Repository [3]. On av-
erage, the Bitmap is 38× faster than Linux IO, with the
maximum speedup of 74× obtained on Financial2 (from
94.2 to 1.26 seconds). The improvement comes mostly
from more (9.3×) deduplicated IOs and more aggressive
IO merging.

Figure 18 further studies the impacts of bitmap based
IO on hard disk (HDD), NVMe and Ramdisk. In this
test, we use five Seagate 7200RPM SATA III hard drives
in a Raid-0 configuration, and one Samsung 950 Pro
NVMe device. One can see that compared to the pluglist
based method, although bitmap improves hard disk per-
formance only marginally (1% on average), faster stor-
age devices such as NVMe and Ramdisk are able to
achieve about 70% improvement in IO performance.
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Figure 18: Bitmap performance on HDD, NVMe and Ramdisk.

7.4 Scalability, Utility, and Throughput
This section studies the scalability of Graphene with re-
spect to the number of SSDs. Recall that Graphene uses
two threads per SSD, one IO and another compute. Using
a single thread would fail to fully utilize the bandwidth
of an SSD. As shown in Figure 19, Graphene achieves an
average 3.3× speedup on the Kron30 graph when scal-
ing from a single SSD (two threads) to eight SSDs (16
threads). Across different applications, SpMV enjoys the
biggest 3.7× speedup and PageRank the smallest 2.6×.
The small performance gain from 8 to 16 SSDs is due to
the shift of the bottleneck from IO to CPU.
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Figure 19: Graphene scalability on the Kron30 graph.

Recall that IO utility is defined as the ratio of use-
ful data and total data loaded, we evaluate the IO utility
when using 512-byte IO vs. 4KB IO on various algo-
rithms and graph datasets. As presented in Figure 20,
Graphene achieves 20% improvement on average. For
APSP and BFS, one can see about 30% improvement
with the best benefit of 50% on UK. Similar speedups
can also be observed for K-Core and WCC. In contrast,
PageRank and SpMV present minimal benefit because
the majority of their iterations load the whole graph.
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Figure 20: Utility of 512-byte vs. 4KB IO.

To demonstrate the IO loads of different disks in
Graphene, we further examine the throughput of 16
SSDs for two applications, BFS and PageRank. Fig-
ure 21 show the throughput for the fastest (max) and
slowest (min) SSDs, as well as the median throughput.
Clearly, the 16 SSDs are able to deliver similar IO per-
formance for most of run, with an average difference of
6 to 15 MB/s (5-7% for PageRank and BFS). For both
algorithms, the slowest disk does require extra time to
complete the processing, which we leave for future re-
search to close the gap.

8 Related Work
Recent years have seen incredible advances in graph
computation, to name a few, in-memory systems [27,40,
47], distributed systems [10, 11, 20, 38, 46, 61], external-
memory processing [21, 25, 31, 32, 35, 36, 43, 44, 57, 62,
63], and accelerator-based systems [30, 33, 58]. In this
section, we compare Graphene with existing projects
from three aspects: programming, IO, and partitioning.

Programming. Prior projects, regardless of Think like
a vertex [10, 32, 36, 58], Think like an edge [31, 43, 44],
Think like an embedding [50], or Think like a graph [52],
center around simplifying computation related program-
ming efforts. In comparison, Graphene aims for ease of
IO management with the new IO iterator API.

IO optimization is the main challenge for external
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Figure 21: Throughputs of the fastest (max) and slowest (min)
SSDs, and median throughput out of 16 SSDs.

memory graph engines, for which Graphene develops
a set of fine-grained IO management techniques, in-
cluding using 512-byte IO block and bitmap-based se-
lective IO. Our approach achieves high efficiency com-
pared to full IO [32, 36, 43, 44]. Compared to Grid-
Graph [63] and FlashGraph [62], Graphene introduces
a finer grained method that supports global range IO ad-
justment and reduces IO requests by 3×. Also, Graphene
shows that asynchronous IOs, when carefully man-
aged, are very beneficial for external memory systems.
While hugepages are not new to graph systems [40, 62],
Graphene addresses the issue of potentially low memory
utilization by constructing IO buffers to share hugepages.

Partition optimization. A variety of existing
projects [12,20,62,63] rely on conventional 2D partition-
ing [9] to balance the workload. In contrast, Graphene
advocates that it is the amount of edges, rather than ver-
tices, in a partition that determines the workload. The
new row-column balanced partition can help achieve up
to 2.7× speedup on a number of graph algorithms.

9 Conclusion and Future work
In this paper, we have designed and developed Graphene
that consists of a number of novel techniques including
IO centric processing, Bitmap-based asynchronous IO,
hugepage support, data and workload balancing. It al-
lows the users to treat the data as in-memory, while deliv-
ering high-performance on SSDs. The experiments show
that Graphene is able to perform comparably against
in-memory processing systems on large-scale graphs,
and also runs several times faster than existing external-
memory processing systems.
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Abstract
Modern systems use networks extensively, accessing

both services and storage across local and remote net-
works. Latency is a key performance challenge, and
packing multiple small operations into fewer large ones
is an effective way to amortize that cost, especially af-
ter years of significant improvement in bandwidth but
not latency. To this end, the NFSv4 protocol supports
a compounding feature to combine multiple operations.
Yet compounding has been underused since its concep-
tion because the synchronous POSIX file-system API is-
sues only one (small) request at a time.

We propose vNFS, an NFSv4.1-compliant client that
exposes a vectorized high-level API and leverages NFS
compound procedures to maximize performance. We
designed and implemented vNFS as a user-space RPC
library that supports an assortment of bulk operations on
multiple files and directories. We found it easy to modify
several UNIX utilities, an HTTP/2 server, and Filebench
to use vNFS. We evaluated vNFS under a wide range of
workloads and network latency conditions, showing that
vNFS improves performance even for low-latency net-
works. On high-latency networks, vNFS can improve
performance by as much as two orders of magnitude.

1 Introduction and Background
Modern computer hardware supports high parallelism:
a smartphone can have eight cores and a NIC can have
256 queues. Although parallelism can improve through-
put, many standard software protocols and interfaces are
unable to leverage it and are becoming bottlenecks due
to serialization of calls [8, 16]. Two notable examples
are HTTP/1.x and the POSIX file-system API, both of
which support only one synchronous request at a time
(per TCP connection or per call). As Moore’s Law
fades [44], it is increasingly important to make these pro-
tocols and interfaces parallelism-friendly. For example,
HTTP/2 [5] added support for sending multiple requests
per connection. However, to the best of our knowledge
little progress has been made on the file-system API.

In this paper we similarly propose to batch multi-
ple file-system operations. We focus particularly on the
Network File System (NFS), and study how much per-
formance can be improved by using a file-system API
friendly to NFSv4 [34, 35]; this latest version of NFS
supports compound procedures that pack multiple oper-
ations into a single RPC so that only one round trip is
needed to process them. Unfortunately, although NFS

PUTROOTFH; LOOKUP "home"; GETFH; GETATTR.

NFS Client NFS Server

1

FH (fh1) and attributes of "/home"

PUTFH fh1; LOOKUP "Bob"; GETFH; GETATTR.2

FH (fh2) and attributes of "/home/Bob"

PUTFH fh2; OPEN ".bashrc"; GETFH; GETATTR.3

FH (fh3) and attributes of "~/.bashrc"

PUTFH fh3; READ 0 4096.4

Data of "~/.bashrc"

PUTFH fh3; CLOSE; GETATTR.5

Attributes of "~/.bashrc"

Figure 1: NFS compounds used by the in-kernel NFS client to
read a small file. Each numbered request is one compound,
with its operations separated by semicolons. The operations
use an NFSv4 server-side state, the current filehandle (CFH).
PUTROOTFH sets the CFH to the FH of the root directory;
PUTFH and GETFH set or retrieve the CFH; LOOKUP and
OPEN assume that the CFH is a directory, find or open the
specified name inside, and set it as the CFH; GETATTR, READ,
and CLOSE all operate on the file indicated by the CFH.

compounds have been designed, standardized, and im-
plemented in most NFS clients and servers, they are
underused—mainly because of the limitations of the
low-level POSIX file-system interface [8].

To explain the operations and premise of NFS4’s com-
pound procedures, we discuss them using several in-
structive figures. We start with Figure 1, which shows
how reading a small file is limited by the POSIX API.
This simple task involves four syscalls (stat, open,
read, and close) that generate five compounds, each
incurring a round trip to the server. Because compounds
are initiated by low-level POSIX calls, each compound
contains only one significant operation (in bold blue),
with the rest being trivial operations such as PUTFH and
GETFH. Compounds reduced the number of round trips
slightly by combining the syscall operations (LOOKUP,
OPEN, READ) with NFSv4 state-management operations
(PUTFH, GETFH) and attribute retrieval (GETATTR), but
the syscall operations themselves could not be combined
due to the serialized nature of the POSIX API.

Ideally, a small file should be read using only one
NFS compound (and one round trip), as shown in Fig-
ure 2. This would reduce the read latency by 80% (by
removing four of the five round trips). We can even read
multiple files using a single compound, as shown in Fig-
ure 3. All these examples use the standard (unmodified)
NFSv4 protocol. SAVEFH and RESTOREFH operate on
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PUTROOTFH; LOOKUP "home"; GETFH; GETATTR;

LOOKUP "Bob"; GETFH; GETATTR;

OPEN ".bashrc"; READ 0 4096; CLOSE; 

GETFH; GETATTR.

NFS Client NFS Server

1

FH and attributes of "/home", "/home/Bob",

and "/home/Bob/.bashrc", as well as data

of "/home/Bob/.bashrc".

Figure 2: Reading /home/Bob/.bashrc using only one
compound. This single compound is functionally the same as
the five in Figure 1, but uses only one network round trip.

PUTROOTFH; LOOKUP "home"; GETFH; GETATTR;

LOOKUP "Bob"; GETFH; GETATTR; SAVEFH;

OPEN ".bashrc"; READ 0 4096; CLOSE; 

GETFH; GETATTR; RESTOREFH;

OPEN ".bash_profile"; READ 0 4096; CLOSE; 

GETFH; GETATTR; RESTOREFH;

OPEN ".bash_login"; READ 0 4096; CLOSE; 

GETFH; GETATTR.

NFS Client NFS Server

1

a

b

c

d

Figure 3: One NFS compound that reads three files. The op-
erations can be divided into four groups: (a) sets the current
and saved filehandle to /home/Bob; (b), (c), and (d) read
the files .bashrc, .bash profile, and .bash login,
respectively. SAVEFH and RESTOREFH (in red) ensure that the
CFH is /home/Bob when opening files. The reply is omitted.

the saved filehandle (SFH), an NFSv4 state similar to the
current filehandle (CFH). SAVEFH copies the CFH to the
SFH; RESTOREFH restores the CFH from the SFH.

For compounds to reach their full potential, we need
a file-system API that can convey high-level semantics
and batch multiple operations. We designed and devel-
oped vNFS, an NFSv4 client that exposes a high-level
vectorized API. vNFS complies with the NFSv4.1 stan-
dard, requiring no changes to NFS servers. Its API is
easy to use and flexible enough to serve as a building
block for new higher-level functions. vNFS is imple-
mented entirely in user space, and thus easy to extend.

vNFS is especially efficient and convenient for ap-
plications that manipulate large amounts of metadata or
do small I/Os. For example, vNFS lets tar read many
small files using a single RPC instead of using multiple
RPCs for each; it also lets untar set the attributes of
many extracted files at once instead of making separate
system calls for each attribute type (owner, time, etc.).

We implemented vNFS using the standard NFSv4.1
protocol, and added two small protocol extensions
to support file appending and copying. We ported
GNU’s Coreutils package (ls, cp, and rm), bsdtar,
nghttp2 (an HTTP/2 server), and Filebench [15, 40]
to vNFS. In general, we found it easy to modify ap-
plications to use vNFS. We ran a range of micro- and
macro-benchmarks on networks with varying latencies,
showing that vNFS can speed such applications by 3–
133× with small network latencies (≤5.2ms), and by up
to 263× with a 30.2ms latency.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes vNFS’s design. Section 3 details the
vectorized high-level API. Section 4 describes the im-
plementation of our prototype. Section 5 evaluates the
performance and usability of vNFS by benchmarking
applications we ported. Section 6 discusses related work
and Section 7 concludes.

2 Design Overview
In this section we summarize vNFS’s design, including
our goals, choices we made, and the architecture.

2.1 Design Goals
Our design has four goals, in order of importance:

• High performance: vNFS should considerably
outperform existing NFS clients and improve both
latency and throughput, especially for workloads
that emphasize metadata and small I/Os. Perfor-
mance for other workloads should be comparable.
• Standards compliance: vNFS should be fully

compliant with the NFSv4.1 protocol so that it can
be used with any compliant NFS server.
• Easy adoption: vNFS should provide a general

API that is easy for programmers to use. It should
be familiar to developers of POSIX-compliant code
to enable smooth and incremental adoption.
• Extensibility: vNFS should make it easy to add

functions to support new features and performance
improvements. For example, it should be simple
to add support for Server Side Copy (a feature
in the current NFSv4.2 draft [17]) or create new
application-specific high-level APIs.

2.2 Design Choices
The core idea of vNFS is to improve performance by us-
ing the compounding feature of standard NFS. We dis-
cuss the choices we faced and justify those we selected
to meet the goals listed in Section 2.1.
Overt vs. covert coalescing. To leverage NFS com-
pounds, vNFS uses a high-level API to overtly express
the intention of compound operations. An alternative
would be to covertly coalesce operations under the hood
while still using the POSIX API. Covert coalescing is a
common technique in storage and networking; for exam-
ple, disk I/O schedulers combine many small requests
into a few larger ones to minimize seeks [3]; and Na-
gle’s TCP algorithm coalesces small outbound packets
to amortize overhead for better network utilization [21].

Although overt compounding changes the API, we
feel it is superior to covert coalescing in four important
respects: (1) By using a high-level API, overt com-
pounding can batch dependent operations, which are im-
possible to coalesce covertly. For example, using the
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POSIX API, we cannot issue a read until we receive the
reply from the preceding open. (2) Overt compounding
can use a new API to express high-level semantics that
cannot be efficiently conveyed in low-level primitives.
NFSv4.2’s Server Side Copy is one such example [17].
(3) Overt compounding improves both throughput and
latency, whereas covert coalescing improves throughput
at the cost of latency, since accumulating calls to batch
together inherently requires waiting. Covert coalescing
is thus detrimental to metadata operations and small I/Os
that are limited by latency. This is important in modern
systems with faster SSDs and 40GbE NICs, where la-
tency has been improving much slower than raw network
and storage bandwidth [33]. (4) Overt compounding al-
lows implementations to use all possible information to
maximize performance; covert coalescing depends on
heuristics, such as timing and I/O sizes, that can be sub-
optimal or wrong. For example, Nagle’s algorithm can
interact badly with Delayed ACK [10].
Vectorized vs. start/end-based API. Two types of
APIs can express overt compounding: a vectorized one
that compounds many desired low-level NFS operations
into a single high-level call, or an API that uses calls
like start compound and end compound to com-
bine all low-level calls in between [32]. We chose the
vectorized API for two reasons: (1) A vectorized API
is easier to implement than a start/end-based one. Users
of a start/end-based API might mix I/Os with other code
(such as looping and testing of file-system states), which
NFS compounds cannot support. (2) A vectorized API
logically resides at a high level and is more convenient
to use, whereas using a low-level start/end-based API is
more tedious for high-level tasks (similar to C++ pro-
gramming vs. assembly).
User-space vs. in-kernel implementation. A kernel-
space implementation of vNFS would allow it to take
advantage of the kernel’s page and metadata caches and
use the existing NFS code base. However, we chose to
design and implement vNFS in user space for two rea-
sons: (1) Adding a user-space API is much easier than
adding system calls to the kernel and simplifies future
extensions; and (2) User-space development and debug-
ging is faster and easier. Although an in-kernel imple-
mentation might be faster, prior work indicates that the
performance impact can be minimal [39], and the results
in this paper demonstrate substantial performance im-
provements even with our user-space approach.

2.3 Architecture
Figure 4 shows the architecture of vNFS, which consists
of a library and a client. Instead of using the POSIX API,
applications call the high-level vectorized API provided
by the vNFS library, which talks directly to the vNFS
client. The vNFS library facilitates application adoption,

NFS Server

SUNRPC

User

Kernel

NFS Client

EXT4 NFS Client

Networking

(TCP/IP)
Network

Applications

VFS
Page
Cache

vNFS Client

TI−RPC

vNFS Lib

vNFS

POSIX

API

API

socket

Figure 4: vNFS Architecture. The blue arrows show vNFS’s
data path, and the dashed red arrows show the in-kernel NFS
client’s data path. The vNFS library and client (blue shaded
boxes) are new components we added; the rest already existed.

since most modern applications are developed using li-
braries and frameworks instead of OS system calls [2].
To provide generic support and encourage incremental
adoption, the library detects when compound operations
are unsupported, and in that case converts vNFS oper-
ations into standard POSIX primitives. Thus, the vNFS
library can also be used with file systems that do not sup-
port compounding, e.g., as a utility library for batching
file-system operations.

The vNFS client accepts vectorized operations from
the library, puts as many of them into each compound as
possible, sends them to the NFS server using Transport-
Independent RPC (TI-RPC), and finally processes the
reply. Note that existing NFSv4 servers already support
compounds and can be used with vNFS without change.
TI-RPC is a generic RPC library without the limitations
of Linux’s in-kernel SUNRPC (e.g., supporting only a
single data buffer per call); TI-RPC can also run on top
of TCP, UDP, and RDMA. Like the in-kernel NFS client,
the vNFS client also manages NFSv4’s client-side states
such as sessions, etc.

3 vNFS API
This section details vNFS’s vectorized API (listed in Ta-
ble 1). Each API function expands its POSIX counter-
parts to operate on a vector of file-system objects (e.g.,
files, directories, symbolic links). vNFS functions han-
dle errors in a standard manner: return results for suc-
cessful operations, report the index of the first failed op-
eration in a compound (if any), and ignore any remaining
operations that were not executed by the server. Figure 5
demonstrates the use of vNFS API to read three small
files in one NFS compound. To simplify programming,
vNFS also provides utility functions for common tasks
such as recursively removing a whole directory, etc.
vread/vwrite. These functions can read or write
multiple files using a single compound, with automatic
on-demand file opening and closing. These calls boost
throughput, reduce latency, and simplify programming.
Both accept a vector of I/O structures, each containing
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Function Description
vopen Open/close many files.
vclose
vread Read/write/create/append files with
vwrite automatic file opening and closing.
vgetattrs Get/set multiple attributes of

file-system objects.vsetattrs
vsscopy Copy files in whole or in part
vcopy with/out Server Side Copy.
vmkdir Create directories.
vlistdir List (recursively) objects and their

attributes in directories.
vsymlink Create many symbolic links.
vreadlink Read many symbolic links.
vhardlink Create many hard links.
vremove Remove many objects.
vrename Rename many objects.

Table 1: vNFS vectorized API functions. Each function has two
return values: an error code and a count of successful oper-
ations. NFS servers stop processing the remaining operations
in a compound once any operation inside failed. To facilitate
gradual adoption, vNFS also provides POSIX-like scalar API
functions, omitted here for brevity. Each vNFS function has a
version that does not follow symbolic links, also omitted.

a vfile structure (Figure 5), offset, length, buffer, and
flags. Our vectorized operations are more flexible than
the readv and writev system calls, and can operate
at many (discontinuous) offsets of multiple files in one
call. When generating compound requests, vNFS adds
OPENs and CLOSEs for files represented by paths; files
represented by descriptors do not need that since they are
already open. OPENs and CLOSEs are coalesced when
possible, e.g. when reading twice from one file.

The length field in the I/O structure also serves as
an output, returning the number of bytes read or writ-
ten. The structure has several flags that map to NFS’s
internal Boolean arguments and replies. For exam-
ple, the flag is creation corresponds to the NFS
OPEN4 CREATE flag, telling vwrite to create the tar-
get file if necessary. is write stable corresponds
to NFS’s WRITE DATA SYNC4 flag, causing the server
to save the data to stable storage, avoiding a separate
NFS COMMIT. Thus, a single vwrite can achieve the
effect of multiple writes and a following fsync, which
is a common I/O pattern (e.g., in logging or journaling).

� State management NFSv4 is stateful, and OPEN
is a state-mutating operation. The NFSv4 protocol re-
quires a client to open a file before reading or writing it.
Moreover, READ and WRITE must provide the stateid
(an ID uniquely identifying a server’s state [34]) re-
turned by the preceding OPEN. Thus, state management
is a key challenge when vread or vwrite adds OPEN
and READ/WRITE calls into a single compound. vNFS
solves this by using the NFS current stateid, which is

struct vfile {
enum VFILETYPE type; // PATH or DESCRIPTOR
union {
const char *path; // When "type" is PATH,
int fd; // or (vNFS file) DESCRIPTOR.

};
};
// The "vio" I/O structure contains a vfile.
struct vio ios[3] = {
{ .vfile = { .type = PATH,

.path = "/home/Bob/.bashrc" },
.offset = 0,
.length = 64 * 1024,
.data = buf1, // pre-allocated 64KB buffer
.flags = 0, // contains an output EOF bit

}, ... // two other I/O structures omitted
};
struct vres r = vread(ios, 3); // read 3 files

Figure 5: A simplified C code sample of reading three files at
once using the vectorized API.

a server-side state similar to the current filehandle. To
ensure that the NFS server always uses the correct state,
vread and vwrite take advantage of NFSv4’s special
support for using the current stateid [34, Section 8.2.3].

� Appending vwrite also adds an optional small
extension to the NFSv4.1 protocol to better support
appends. As noted in the Linux manual page for
open(2) [28], “O APPEND may lead to corrupted
files on NFS filesystems if more than one process ap-
pends data to a file at once.” The base NFSv4 pro-
tocol does not support appending, so the kernel NFS
client appends by writing to an offset equal to the current
known file size. This behavior is inefficient as the file
size must first be read separately, and it is vulnerable to
TOCTTOU (time-of-check-to-time-of-use) attacks. Our
extension uses a special offset value (UINT64 MAX) in
the I/O structure to indicate appending, making append-
ing reliable with a tiny (5 LoC) change to the NFS server.

vopen/vclose. Using vread and vwrite, ap-
plications can access files without explicit opens and
closes. Our API still supports vopen and vclose op-
erations, which add efficiency for large files that are read
or written many times. vopen and vclose are also im-
portant for maintaining NFS’s close-to-open cache con-
sistency [25]. vopen opens multiple files (specified by
paths) in one RPC, including LOOKUPs needed to locate
their parent directories, as shown in Figure 3. Each file
has its own open flags (read, write, create, etc.), which is
useful when reading and writing are intermixed, such as
external merge sorting. We also offer vopen simple,
which uses a common set of flags and mode (in case of
creation) for all files. Once opened, a file is represented
by a file descriptor, which is an integer index into an in-
ternal table that keeps states (file cursor, NFSv4 stateid
and sequenceid [34], etc.) of open files. vclose closes
multiple opened files and releases their resources.
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vgetattrs/vsetattrs. These two functions ma-
nipulate several attributes of many files at once, combin-
ing multiple system calls (chmod, chown, utimes,
and truncate, etc.) into a single compound, which
is especially useful for tools like tar and rsync.
The aging POSIX API is the only restriction on setting
many attributes at once: the Linux kernel VFS already
supports multi-attribute operations using the setattr
method of inode operations, and the NFSv4 pro-
tocol has similar SETATTRs support. vgetattrs and
vsetattrs use an array of attribute structures as both
inputs and outputs. Each structure contains a vfile
structure, all attributes (mode, size, etc.), and a bitmap
showing which attributes are in use.
vsscopy/vcopy. File copying is so common that
Linux has added the sendfile and splice system
calls to support it. Unfortunately, NFS does not yet sup-
port copying and clients must use READs and WRITEs
instead, wasting time and bandwidth because data has to
be read over the network and immediately written back.
It is more efficient to ask the NFS server to copy the files
directly on its side. This Server Side Copy (SSC) has
already been proposed for the upcoming NFSv4.2 [17].
Being forward-looking, we included vsscopy in vNFS
to copy many files (in whole or in part) using SSC; how-
ever, SSC requires server enhancements.
vsscopy accepts an array of copy structures, each

containing the source file and offset, the destination file
and offset, and the length. The destination files are
created by vsscopy if necessary. The length can be
UINT64 MAX, in which case the effective length is the
distance between the source offset and the end of the
source file. vsscopy can use a single RPC to copy
many files in their entirety. The copy structures return
the number of copied bytes in the length fields.
vcopy has the same effect but does not use SSC.

vcopy is useful when the NFS server does not support
SSC; vcopy can copy N small files using three RPCs
(a compound for each of vgetattrs, vread, and
vwrite) instead of 7×N RPCs (2 OPENs, 2 CLOSEs, 1
GETATTR, 1 READ, and 1 WRITE for each file). A future
API could provide only vcopy and silently switch to
vsscopywhen SSC is available; we include vsscopy
separately in this paper for comparison with vcopy.
vmkdir. vNFS provides vmkdir to create multiple
directories at once (such as directory trees), which is
common in tools such as untar, cmake, and recur-
sive cp. vNFS’s utility function ensure directory
uses vmkdir to ensure a deep directory and all its
ancestors exist. Consider "/a/b/c/d" for example:
the utility function first uses vgetattrs with argu-
ments ["/a"; "/a/b"; . . .] to find out which an-
cestors exist and then creates the missing directories us-
ing vmkdir. Note that simply calling vmkdir with

vector arguments ["/a"; "/a/b"; . . .] does not
work: the NFS server will fail (with EEXIST) when try-
ing to recreate the first existing ancestor and stop pro-
cessing all remaining operations.
vlistdir. This function speeds up directory listing
with four improvements to readdir: (1) vlistdir
lists multiple directories at once; (2) a prior opendir
is not necessary for listing; (3) vlistdir retrieves at-
tributes along with directory entries, saving subsequent
stats; (4) vlistdir can work recursively. It can be
viewed as a fast vectorized ftw(3) that reads NFS di-
rectory contents using as few RPCs as possible.
vlistdir takes five arguments: an array of directo-

ries to list, a bitmap indicating desired attributes, a flag
to select recursive listing, a user-defined callback func-
tion (similar to ftw’s second argument [27]), and a user-
provided opaque pointer that is passed to the callback.
vlistdir processes directories in the order given; re-
cursion is breadth-first. However, directories at the same
level in the tree are listed in an arbitrary order.
vsymlink/vreadlink/vhardlink. These three
vNFS operations allow many links to be created or read
at once. Together with vlistdir, vsymlink can op-
timize operations like "cp -sr" and "lndir". All
three functions accept a vector of paths and a vector of
buffers containing the target paths.
vremove. vremove removes multiple files and di-
rectories at once. Although vremove does not sup-
port recursive removal, a program can achieve this ef-
fect with a recursive vlistdir followed by properly
ordered vremoves; vNFS provides a utility function
rm recursive for this purpose.
vrename. Renaming many files and directories is
common, for example when organizing media collec-
tions. Many tools [1, 22, 24, 45] have been developed
just for this purpose. vNFS provides vrename to facil-
itate and speed up bulk renaming. vrename renames a
vector of source paths to a vector of destination paths.

4 Implementation
We have implemented a prototype of vNFS in C/C++ on
Linux. As shown in Figure 4, vNFS has a library and
a client, both running in user space. The vNFS library
implements the vNFS API. Applications use the library
by including the API header file and linking to it. For
NFS files, the library redirects API function calls to the
vNFS client, which builds large compound requests and
sends them to the server via the TI-RPC library. For
non-NFS files, the library translates the API functions
into POSIX calls, and therefore can also be used as a
utility library. (Our current prototype considers a file to
be on NFS if it is under any exported directory specified
in vNFS’s configuration file.) The vNFS client builds on
NFS-Ganesha [12, 30], an open-source user-space NFS
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server. NFS-Ganesha can export files stored in many
backends, such as XFS and GPFS. Our vNFS prototype
uses an NFS-Ganesha backend called PROXY, which
exports files from another NFS server and can be repur-
posed as a user-space NFS client. The original PROXY
backend used NFSv4.0; we added NFSv4.1 support in-
cluding session management [34]. Our prototype imple-
mentation added 10,632 lines of C/C++ code and deleted
1,407. vNFS is thread-safe; we have tested it thoroughly.
RPC size limit. The vNFS API functions (shown in
Table 1) do not impose a limit on the number of oper-
ations per call. However, each RPC has a configurable
memory size limit, defaulting to 1MB. We ensure that
vNFS does not generate RPC requests larger than that
limit no matter how many operations an API call con-
tains. Therefore, we split long arguments into chunks
and send one compound request for each chunk. We also
merge RPC replies upon return, to hide any splitting.

Our splitting avoids generating small compounds. For
data operations (vread and vwrite), we can easily es-
timate the sizes of requests and replies based on buffer
lengths, so we split a compound only when its size be-
comes close to 1MB. (The in-kernel NFS client simi-
larly splits large READs and WRITEs according to the
rsize and wsize mount options, which also default
to 1MB.) For metadata operations, it is more difficult
to estimate the reply sizes, especially for READDIR and
GETATTR. We chose to be conservative and simply split
a compound of metadata operations whenever it contains
more than k NFS operations. We chose a default of 256
for k, which enables efficient concurrent processing by
the NFS server, and yet is unlikely to exceed the size
limit. For example, when listing the Linux source tree,
the average reply size of READDIR—the largest meta-
data operation—is around 3,800 bytes. If k is still too
large (e.g., when listing large directories), the server will
return partial results and use cookies to indicate where to
resume the call for follow-up requests.
Protocol extensions. vNFS contains two extensions to
the NFSv4.1 protocol to support file appending (see Sec-
tion 3 [¶vread/vwrite]) and Server Side Copy (see
Section 3 [¶vsscopy/vcopy]). Both extensions re-
quire changes to the protocol and the NFS server. We
have implemented these changes in our server, which is
based on NFS-Ganesha [11, 12, 30]. The file-appending
extension was easy to implement, adding only an if
statement with 5 lines of C code. In the NFS server,
we only need to use the file size as the effective offset
whenever the write offset is UINT64 MAX.

Our implementation of Server Side Copy follows the
design proposed in the NFSv4.2 draft [17]. We added
the new COPY operation to our vNFS client and the NFS-
Ganesha server. On the server side, we copy data using
splice(2), which avoids unnecessarily moving data

across the kernel/user boundary. This extension added
944 lines of C code to the NFS-Ganesha server.
Path compression. We created an optimization that
reduces the number of LOOKUPs when a compound’s
file paths have locality. The idea is to shorten paths
that have redundancy by making them relative to pre-
ceding ones in the same compound. For example,
when listing the directories "/1/2/3/4/5/6/7/a"
and "/1/2/3/4/5/6/7/b", a naı̈ve implementation
would generate eight LOOKUPs per directory (one per
component). In such cases, we replace the path of
the second directory with "../b" and use only one
LOOKUPP and one LOOKUP; LOOKUPP sets the current
filehandle to its parent directory. This simple technique
saves as many as six NFS operations for this example.

Note that LOOKUPP produces an error if the current
filehandle is not a directory, because most file systems
have metadata recording parents of directories, but not
parents of files. In that case, we use SAVEFH to remem-
ber the deepest common ancestor in the file-system tree
(i.e., "/1/2/3/4/5/6/7" in the above example) of
two adjacent files, and then generate a RESTOREFH and
LOOKUPs. (However, this approach cannot be used for
LINK, RENAME, and COPY, which already use the saved
filehandle for other purposes.) We use this optimiza-
tion only when it saves NFS operations: for example,
using "../../c/d" does not save anything for paths
"/1/a/b" and "/1/c/d".
Client-side caching. Our vNFS prototype does not yet
have a client-side cache, which would be useful for re-
reading recent data and metadata, streaming reads, and
asynchronous writes. We plan to add it in the future.
Compared to traditional NFS clients, vNFS does not
complicate failure handling in the presence of a dirty
client-side cache: cached dirty pages (not backed by per-
sistent storage) are simply dropped upon a client crash;
dirty data in a persistent cache (e.g., FS-Cache [19]),
which may be used by a client holding write delega-
tions, can be written to the server even faster during
client crash recovery. Note that a client-side cache does
not hold dirty metadata because all metadata changes are
performed synchronously in NFS (except with directory
delegations, which Linux has not yet implemented).

5 Evaluation
To evaluate vNFS, we ran micro-benchmarks and also
ported applications to use it. We now discuss our porting
experience and evaluate the resulting performance.

5.1 Experimental Testbed Setup
Our testbed consists of two identical Dell PowerEdge
R710 machines running CentOS 7.0 with a 3.14 Linux
kernel. Each machine has a six-core Intel Xeon X5650
CPU, 64GB of RAM, and an Intel 10GbE NIC. One ma-
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(a) Reading whole files
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(b) Writing whole files

Figure 6: vNFS’s speedup ratio (the vertical Z-axis, in logarithmic scale) relative to the baseline when reading and writing 1,000
equally-sized files, whose sizes (the X-axis) varied from 1KB to 16MB. vNFS is faster than (blue), equal to (white), or slower than
(red) the baseline when the speedup ratio is larger than, equal to, or smaller than 1.0, respectively. The network latency (Y-axis)
starts from 0.2ms (instead of zero) because that is the measured base latency of our testbed (see Section 5.1).

chine acts as the NFS server and runs NFS-Ganesha with
our file-appending and Server Side Copy extensions; the
other machine acts as a client and runs vNFS. The NFS
server exports to the client an Ext4 file system, stored
on an Intel DC S3700 200GB SSD. The two machines
are directly connected to a Dell PowerConnect 8024F
10GbE switch, and we measured an average RTT of
0.2ms between them. To emulate different LAN and
WAN conditions, we injected delays of 1–30ms into the
outbound link of the server using netem.

To evaluate vNFS’s performance, we compared it with
the in-kernel NFSv4.1 client (called baseline), which
mounts the exported directory using the default options:
the attribute cache (ac option) is enabled and the max-
imum read/write size (rsize/wsize options) is 1MB.
Our vNFS prototype does not use mount, but instead
reads the exported directory from a configuration file.
We ran each experiment at least three times and plotted
the average value. We show the standard deviation as
error bars, which are invisible in most figures because of
their tiny values. Before each run, we flushed the page
and dentry caches of the in-kernel client by unmounting
and re-mounting the NFS directory. vNFS has no cache.
The NFS-Ganesha server uses an internal cache, plus the
OS’s page and dentry caches. To quantify the effort of
porting applications, we report the LoC change for each
application including the error-handling code.

5.2 Micro-workloads
Small vs. big files. vNFS’s goal is to improve perfor-
mance for workloads with many small NFS operations,
while staying competitive for data-intensive workloads.
To test this, we compared the time used by vNFS and
the baseline to read and write 1,000 equally-sized files
in their entirety while varying the file size from 1KB
to 16MB. We repeated the experiment in networks with
0.2ms to 5.2ms latencies, and packed as many operations
as possible into each vNFS compound. The results are
shown (in logarithmic scale) in Figure 6, where speedup
ratio is the ratio of the baseline’s completion time to

vNFS’s completion time. Speedup ratios greater than
one mean that vNFS performed better than the baseline;
ratios less than one mean vNFS performed worse.

Because vNFS combined many small read and write
operations into large compounds, it performed much
better than the baseline when the file size was small.
With a 1KB file size and 0.2ms network latency, vNFS is
19× faster than the baseline when reading (Figure 6(a)),
and 5× faster when writing (Figure 6(b)). As the net-
work latency increased to 5.2ms, vNFS’s speedup ratio
improved further to 103× for reading and 40× for writ-
ing. vNFS’s speedup ratio was higher for reading than
for writing because once vNFS was able to eliminate
most network round trips, the NFS server’s own storage
became the next dominant bottleneck.

As the file size (the X-axis in Figure 6) was increased
to 1MB and beyond, vNFS’s compounding effect faded,
and the performance of vNFS and the baseline became
closer. However, in networks with 1.2–5.2ms latency,
vNFS was still 1.1–1.7× faster than the baseline: al-
though data operations were too large to be combined to-
gether, vNFS could still combine them with small meta-
data operations such as OPEN, CLOSE, and GETATTR.
Combining metadata and data operations requires vNFS
to split I/Os below 1MB due to the 1MB RPC size limit
(see Section 4). When a large I/O is split into pieces,
the last one may be small; this phenomenon made vNFS
around 10% slower when reading 4MB and 8MB files in
the 0.2ms-latency network. However, this is not a prob-
lem in most cases because that last small piece is likely
to be combined into later compounds. This is why vNFS
performed the same as the baseline with even larger file
sizes (e.g., 16MB) in the 0.2ms-latency network. This
negative effect of vNFS’s splitting was unnoticeable for
writing because writing was bottlenecked by the NFS
server’s storage. Note that the baseline (the in-kernel
NFS client) splits I/Os strictly at the 1MB size, although
it also adds a few trivial NFS operations such as PUTFH
(see Figure 1) in its compounds, meaning that the base-
line’s RPC size is actually larger than 1MB.
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issued iteratively. The speedup ratio of Read4KDirect goes up
to 46 at 256 operations per call; its curve is cut off here.

Compounding degree. The degree of compounding
(i.e., the number of non-trivial NFS operations per com-
pound) is a key factor determining how much vNFS can
boost performance. The ideal is to perform a large num-
ber of file system operations at once, which is not al-
ways possible because applications may have critical
paths that depend on only a single file. To study how
the degree of compounding affects vNFS’s performance,
we compared vNFS with the baseline when calling the
vNFS API functions with different numbers of opera-
tions in their vector arguments.

Figure 7 shows the speedup ratio of vNFS relative to
the baseline as the number of operations per API call was
increased from 1 to 256 in the 0.2ms-latency network.
Even with one operation per call, vNFS outperformed
the baseline for all API functions except two, because
vNFS could still save round trips for single-file calls. For
example, the baseline used three RPCs to rename a file:
one LOOKUP for the source directory, another LOOKUP
for the destination directory, and one RENAME; vNFS,
however, used only one compound RPC combining all
three operations. Getattrs and Setattr1 are the
two exceptions where vNFS performed slightly worse
(17% and 14% respectively) than the baseline. This is
because each of these two calls needs only a single NFS
operation; so vNFS could not combine anything yet in-
curred the overhead of performing RPCs in user space.

When there was more than one operation per API call,
compounding became effective and vNFS significantly
outperformed the baseline for all calls; note that the Y
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Figure 8: The speedup ratio of vNFS over the baseline (in log-
arithmic scale) when repeatedly opening, reading, and clos-
ing a single file, whose size is shown on the X-axis. vNFS
is faster than (blue), equal to (white), and slower than (red)
the baseline when the speedup ratio is larger than, equal to,
and smaller than 1, respectively. Our vNFS prototype does not
have a cache yet, whereas the baseline does. The Z-axis is in
logarithmic scale; the higher the better.

axis of Figure 7 is in logarithmic scale. All calls ex-
cept Write4KSync (bottlenecked by the server’s stor-
age stack) were more than 4× faster than the base-
line when multiple operations were compounded. Note
that vsetattrs can set multiple attributes at once,
whereas the baseline sets one attribute at a time. We ob-
serve in Figure 7 that the speedup ratio of setting more
attributes (e.g., Setattr4) at once was always higher
than that of setting fewer (e.g., Setattr3).

In our experiments with slower networks (omitted for
brevity), vNFS’s speedups relative to the baseline were
even higher than in the 0.2ms-latency network: up to two
orders of magnitude faster.
Caching. Our vNFS prototype does not yet support
caching. In contrast, the baseline (in-kernel NFS client)
caches both metadata and data. To study the cache’s per-
formance impact, we compared vNFS and the baseline
when repeatedly opening, reading, and closing a sin-
gle file whose size varied from 1KB to 16MB. Figure 8
shows the results, where a speedup ratio larger than one
means vNFS outperformed the baseline; and a speedup
ratio less than one means vNFS performed worse.

The baseline served all reads except the first from
its cache, but it was slower than vNFS (which did not
cache) when the file size was 256KB or smaller. This is
because three RPCs per read are still required to main-
tain close-to-open semantics: an OPEN, a GETATTR (for
cache revalidation), and a CLOSE. In comparison, vNFS
used only one compound RPC, combining the OPEN,
READ (uncached), and CLOSE. The savings from com-
pounding more than compensated for vNFS’s lack of a
cache. For a 512KB file size, vNFS was still faster than
the baseline except in the 0.2ms-latency network. For
1MB and larger files, vNFS was worse than the baseline
because read operations dominated: the baseline served
all reads from its client-side cache whereas vNFS sent
all reads to the server without the benefit of caching.
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5.3 Macro-workloads
To evaluate vNFS using realistic applications, we modi-
fied cp, ls, and rm from GNU Coreutils, Filebench [15,
40], and nghttp2 [31] to use the vNFS API; we also im-
plemented an equivalent of GNU tar using vNFS.

GNU Coreutils. Porting cp and rm to vNFS was easy.
For cp, we added 170 lines of code and deleted 16; for
rm, we added 21 and deleted 1. Copying files can be
trivially achieved using vsscopy, vgetattrs, and
vsetattrs. Recursively copying directories requires
calling vlistdir on the directories and then invoking
vsscopy for plain files, vmkdir for directories, and
vsymlink for symbolic links—all of which is done in
vlistdir’s callback function. We tested our modified
cp with diff -qr to ensure that the copied files and
directories were exactly the same as the source. Remov-
ing files and directories recursively in rm was similar,
except that we used vremove instead of vsscopy.

Porting ls was more complex because batching is
difficult when listing directories recursively in a partic-
ular order (e.g., by file size). We could not use the re-
cursive mode of vlistdir because the NFS READDIR
operation does not follow any specific order when read-
ing directory entries, and the whole directory tree may
be too large to fit in memory. Instead, vNFS maintains a
list of all directories to read in the proper order as speci-
fied by the ls options, and repeatedly calls vlistdir
(not recursively) on directories at the head of the list un-
til it is empty. Note that (1) a directory is removed from
the list only after all its children have been read; and (2)
sub-directories should be sorted and then inserted imme-
diately after their parent to maintain the proper order in
the list. We added 392 lines of code and deleted 203 to
port ls to vNFS. We verified that our port is correct by
comparing the outputs of our lswith the vanilla version.

We used the ported Coreutils programs to copy, list,
and remove an entire Linux-4.6.3 source tree: it con-
tains 53,640 files with an average size of 11.6KB, 3,604
directories with average 17 children per directory, and
23 symbolic links. The large number of files and direc-
tories thoroughly exercises vNFS and demonstrates the
performance impact of compounding.

Figure 9 shows the results of copying the entire Linux
source tree; vNFS outperformed the baseline in all cases.
vNFS uses either vsscopy or vcopy depending on
whether Server Side Copy (SSC) is enabled. However,
the baseline cannot use SSC because it is not yet sup-
ported by the in-kernel NFS client. For the same work-
load of copying the Linux source tree, vNFS used merely
4,447 compounding RPCs whereas the baseline used as
many as 506,697: two OPENs, two CLOSEs, one READ,
one WRITE, and one SETATTR for each of the 53,640
files; 60,873 ACCESSes; 62,327 GETATTRs; and 8,017
other operations such as READDIR and CREATE. vNFS-
NOSSC saved more than 99% of RPCs compared to the
baseline, with each vNFS compounding RPC containing
an average of 250 operations. Therefore, even with only
a 0.2ms network latency, vNFS-NOSSC is still more
than 4× faster than the baseline. The speedup ratio in-
creases to 30× with a 5.2ms network latency.

When Server Side Copy (SSC) was enabled, vNFS
ran even faster, and vNFS-SSC reduced the running time
of vNFS-NOSSC by half. The further speedup of SSC
is only moderate because the files are small and our net-
work bandwidth (10GbE) is large. The speedup ratio of
vNFS-SSC to the baseline is 8–60× in networks with
0.2–5.2ms latency. Even when the baseline adds SSC
support in the future, vNFS would still outperform it be-
cause this workload’s bottleneck is the large number of
small metadata operations, not data-copying operations.
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Figure 10: vNFS’s speedup relative to the baseline when sym-
bolically copying (cp -Rs), listing (ls -Rl), and removing
(rm -Rf) the Linux source tree. The Y-axis is logarithmic.

With the -Rs options, cp copies an entire directory
tree by creating symbolic links to the source directory.
Figure 10 shows speedups for symlinking, recursively
listing (ls -Rl), and removing (rm -Rf) the Linux
source tree. When recursively listing the Linux tree, ls-
baseline used 10,849 RPCs including 3,678 READDIRs,
3,570 ACCESSes, and 3,570 GETATTRs. Note that the
in-kernel NFS client did not issue a separate GETATTR
for each directory entry although the vanilla ls pro-
gram called stat for each entry listed. This is because
the in-kernel NFS client pre-fetches the attributes using
readdirs and serves the stat calls from the local
client’s dentry metadata cache. This optimization en-
ables ls-baseline to finish the benchmark in just 5 sec-
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onds in the 0.2ms-latency network. However, with our
vectorized API, ls-vNFS did even better and finished
in 2 seconds, using only 856 RPCs. Moreover, vNFS
scales much better than the baseline. When the latency
increased from 0.2 to 30.2ms, vNFS’s running time rose
to only 28 seconds whereas the baseline increased to 336
seconds. ls-vNFS is 10× faster than ls-baseline in
high-latency (>5.2ms) networks.

For symbolic copying and removing (Figure 10),
vNFS was 7× and 18× faster than the baseline in the
0.2ms-latency network, respectively. This is because the
baseline always operated on one file at a time, whereas
vNFS could copy or remove more than 200 files at once.
Compared to the baseline, vNFS improved cp by 52×
and rm by 133× in the 5.2ms-latency network; with
30.2ms latency the speedup ratios became 106× for cp,
and 263× for rm. For both removing and symbolic
copying, vNFS ran faster in the 30.2ms-latency network
(25 and 15 seconds, respectively) than the baseline did
with 0.2ms latency (38s and 55s, respectively), showing
that compounds can indeed help NFSv4 realize its de-
sign goal of being WAN-friendly [29].

tar. Because the I/O code in GNU tar is closely
coupled to other code, we implemented a vNFS equiv-
alent using libarchive, in which the I/O code is
clearly separated. The libarchive library supports
many archiving and compression algorithms; it is also
used by FreeBSD bsdtar. Our implementation needed
only 248 lines of C++ code for tar and 210 for untar,
both including error-handling code.

When archiving a directory, we use the vlistdir
API to traverse the tree and add sub-directories into
the archive. We gather the listed files and symlinks
into arrays, then read their contents using vread and
vreadlink, and finally compress and write the con-
tents into the archive. During extraction, we read the
archive in 1MB (RPC size limit) chunks and then use
libarchive to extract and decompress objects and
their contents, which are then passed in batches to
vmkdir, vwrite, or vsymlink. We always create
parent directories before their children. We ensured that
our implementation is correct by feeding our tar’s out-
put into our untar and comparing the extracted files
with the original input files. We also tested for cross-
compatibility with other tar implementations including
bsdtar and GNU tar.

We used our tar to archive and untar to ex-
tract a Linux 4.6.3 source tree. Archiving read 53,640
small files and wrote a large archive: 636MB un-
compressed, and 86MB with the xz option (default
compression used by kernel.org). Extracting re-
versed the process. There were also metadata opera-
tions on 23 symbolic links and 3,604 directories. Fig-
ure 11 shows the tar/untar results, compared to
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Figure 11: Speedup ratios of vNFS relative to the base-
line (bsdtar) when archiving and extracting the Linux-4.6.3
source tree, with and without xz compression.

bsdtar (running on the in-kernel client) as the base-
line. For tar-nocompress in the 0.2ms-latency net-
work, vNFS was more than 5× faster than the baseline
because the baseline used 446,965 RPCs whereas vNFS
used only 2,144 due to compounding. This large reduc-
tion made vNFS 37× faster when the network latency
increased to 5.2ms. In terms of running time, vNFS used
69 seconds to archive the entire Linux source tree in the
5.2ms-latency network, whereas the baseline, even in the
faster 0.2ms-latency network, still used as much as 192
seconds. For untar-nodecompress, vNFS is also
5–36× faster, depending on the network latency.

Figure 11 also includes the results when xz compres-
sion was enabled. Although compression reduced the
size of the archive file by 86% (from 636MB to 86MB)
and thus saved 86% of the I/Os to the archive file, it
had a negligible performance impact (less than 0.5%)
because the most time-consuming operations were for
small I/Os, not large ones. This test shows that work-
loads with mixed I/O sizes are slow if there are many
small I/Os, each incurring a network round trip; vNFS
can significantly improve such workloads by compound-
ing those small I/Os.
Filebench. We have ported Filebench to vNFS and
added vectorized flowops to the Filebench workload
modeling language (WML) [46]. We added 759 lines
of C code to Filebench, and removed 37. We converted
Filebench’s File-Server, NFS-Server, and Varmail work-
loads to equivalent versions using the new flowops: for
example, we replaced N adjacent sets of openfile,
readwholefile, and closefile (i.e., 3 × N old
flowops) with a single vreadfile (one new flowop),
which internally uses our vread API that can open,
read, and close N files in one call.

The Filebench NFS-Server workload emulates the
SPEC SFS benchmark [36]. It contains one thread per-
forming four sets of operations: (1) open, entirely read,
and close three files; (2) read a file, create a file, and
delete a file; (3) append to an existing file; and (4) read
a file’s attributes. The File-Server workload emulates
50 users accessing their home directories and spawns
one thread per user to perform operations similar to the
NFS-Server workload. The Varmail workload mimics
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Figure 12: vNFS’s speedup ratios for Filebench workloads.

a UNIX-style email server operating on a /var/mail
directory, saving each message as a file; it has 16 threads,
each performing create-append-sync, read-append-sync,
read, and delete operations on 10,000 16KB files.

Figure 12 shows the results of the Filebench work-
loads, comparing vNFS to the baseline. For the NFS-
Server workload, vNFS was 5× faster than the base-
line in the 0.2ms-latency network because vNFS com-
bined multiple small reads and their enclosing opens and
closes into a single compound. vNFS was also more ef-
ficient (and more reliable) when appending files since
it does not need a separate GETATTR to read the file
size (see Section 3 [¶vread/vwrite]). This single-
threaded NFS-Server workload is light, and its only
bottleneck is the delay of network round trips. With
compounding, vNFS can save network round trips; the
amount of savings depends on the compounding de-
gree (the number of non-trivial NFS operations per com-
pound). This workload has a compounding degree of
around 5, and thus we observed a consistent 5× speedup
regardless of the network latency.

As shown in Figure 12, vNFS’s speedup ratio in the
File-Server workload is about the same as the NFS-
Server one, except in the 0.2ms-latency network. This
is because these two workloads have similar file-system
operations and thus similar compounding degrees. How-
ever, in the 0.2ms-latency network, vNFS was 13%
slower (i.e., a speedup ratio of 0.87) than the baseline.
This is caused by two factors: (1) the File-Server work-
load has as many as 50 threads and generates a heavy
I/O load to the NFS server’s storage stack, which be-
came the bottleneck; (2) without a cache, vNFS sent all
read requests to the overloaded server whereas the in-
kernel client’s cache absorbed more than 99% of reads.
As the network latency increased, the load on the NFS
server became lighter and vNFS became faster thanks to
saving round trips, which more than compensated for the
lack of caching in our current prototype.

Because the Varmail workload is also multi-threaded,
its speedup ratio curve in Figure 12 has a trend similar
to that of the File-Server workload. However, vNFS’s
speedup ratio in the Varmail workload plateaued at the
higher value of 14× because its compounding degree is
higher than the File-Server workload.

Network Latency (ms) 0.2 1.2 2.2 3.2 4.2 5.2
Speedup Ratio 3.5 6.5 7.1 8.7 9.8 9.9

Table 2: vNFS speedup ratio relative to the baseline when re-
questing a set of objects with PUSH enabled in nghttp2.

HTTP/2 server. Similar to the concept of NFSv4 com-
pounds, HTTP/2 improves on HTTP/1.x by transferring
multiple objects in one TCP connection. HTTP/2 also
added a PUSH feature that allows an HTTP/2 server to
proactively push related Web objects to clients [5, Sec-
tion 8.2]. For example, upon receiving an HTTP/2 re-
quest for index.html, the server can proactively send
the client other Web objects (such as Javascript, CSS,
and image files) embedded inside that index.html
file, instead of waiting for it to request them later. PUSH
can reduce a Web site’s loading time for end users. It
also allows Web servers to read many related files to-
gether, enabling efficient processing by vNFS.

We ported nghttp2 [31], an HTTP/2 library and tool-
set containing an HTTP/2 server and client, to vNFS.
Our port added 543 lines of C++ code and deleted 108.

The HTTP Archive [20] shows that, on average, an
HTTP URL is 2,480KB and contains ten 5.5KB HTML
files, 23 20KB Javascript files, seven 7.5KB CSS files,
and 56 28KB image files. We created a set of files
with those characteristics, hosted them with our mod-
ified nghttp2 server, and measured the time needed to
process a PUSH-enabled request to read the file set. Ta-
ble 2 shows the speedup ratio of vNFS relative to the
baseline, which runs vanilla nghttp2 and the in-kernel
NFS client. vNFS needed only four NFS compounds for
all 96 files: one vgetattrs call and three vreads.
In contrast, the baseline used 309 RPCs including one
OPEN, READ, and CLOSE for each file. The reduced net-
work round trips made vNFS 3.5× faster in the 0.2ms-
latency network and 9.9× faster with the 5.2ms latency.

6 Related Work
Improving NFS performance. NFS is more than 30
years old, and has continuously evolved to improve per-
formance. Following the initial NFSv2 [38], NFSv3
added asynchronous COMMITs to improve write perfor-
mance, and READDIRPLUS to speed up directory list-
ing [7]. NFSv4.0 [35] added more performance fea-
tures including compounding procedures that batch mul-
tiple operations in one RPC, and delegations that en-
able the client cache to be used without lengthy reval-
idation. To improve performance further with more par-
allelism, NFSv4.1 [34] added pNFS [18] to separate data
and meta-data servers so that the different request types
can be served in parallel. The upcoming NFSv4.2 has
yet more performance improvements such as I/O hints,
Application Data Blocks, and Server Side Copy [17].

In addition to improvements in the protocols, other re-
searchers also improved NFS’s performance: Duchamp
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found it inefficient to look up NFSv2 paths one com-
ponent at a time, and reduced client latency and server
load by optimistically looking up whole paths in a sin-
gle RPC [13]. Juszczak improved the write performance
of an NFS server by gathering many small writes into
fewer larger ones [23]. Ellard and Seltzer improved
read performance with read-ahead and stride-read al-
gorithms [14]. Batsakis et al. [4] developed a holistic
framework that adaptively schedules asynchronous op-
erations to improve NFS’s performance as perceived by
applications. Our vNFS uses a different approach, im-
proving performance by making NFSv4’s compounding
procedures easily accessible to programmers.
I/O compounding. Compounding, also called batch-
ing and coalescing, is a popular technique to improve
throughput and amortize cost by combining many small
I/Os into fewer larger ones. Disk I/O schedulers coalesce
adjacent I/Os to reduce disk seeks [3] and boost through-
put. Purohit et al. [32] proposed Compound System
Calls (Cosy) to amortize the cost of context switches and
to reduce data movement across the user-kernel bound-
ary. These compounding techniques are all hidden be-
hind the POSIX file-system API, which cannot convey
the required high-level semantics [8]. The Batch-Aware
Distributed File System (BAD-FS) [6] demonstrated the
benefits of using high-level semantics to explicitly con-
trol the batching of I/O-intensive scientific workloads.
Dynamic sets [37] took advantage of the fact that files
can be processed in any order in many bulk file-system
operations (e.g., grep foo *.c). Using a set-based
API, distributed file system clients can pre-fetch a set of
files in the optimal order and pace so that computation
and I/O are overlapped and the overall latency is mini-
mized. However, dynamic sets did not reduce the num-
ber of network round trips. SeMiNAS [9] uses NFSv4
compounds (only) in its security middleware to reduce
the security overhead. To the best of our knowledge,
vNFS is the first attempt to use an overt-compounding
API to leverage NFSv4’s compounding procedures.
Vectorized APIs. To achieve high throughput, Vilaya-
nur et al. [43] proposed readx and writex to oper-
ate at a vector of offsets so that the I/Os could be pro-
cessed in parallel. However, these operations were lim-
ited to a single file, helping only large files, whereas our
vread/vwrite can access many files at once, helping
with both large and small files.

Vasudevan et al. [41] envisioned the Vector OS
(VOS), which offered several vectorized system calls,
such as vec open(), vec read(), etc. While VOS
is promising, it has not yet been fully implemented. In
their prototype, they succeeded in delivering millions of
IOPS in a distributed key-value (KV) store backed by
fast NVM [42]. However, they implemented a key-value
API, not a file-system API, and their vectorized KV store

focuses on serving parallel I/Os on NVM, whereas vNFS
focuses on saving network round trips by using NFSv4
compound procedures. The vectorized key-value store
and vNFS are different but complementary.

Our vNFS API is also different from other vectorized
APIs [41,43] in three aspects: (1) vread/vwrite sup-
ports automatic file opening and closing; (2) vsscopy
takes advantage of the NFS-specific Server Side Copy
feature; and (3) to remain NFSv4-compliant, vNFS’s
vectorized operations are executed in order, in contrast
to the out-of-order execution of lio listio(3) [26],
vec read() [41], and readx [43].

7 Conclusions
We designed and implemented vNFS, a file-system li-
brary that maximizes NFS performance. vNFS uses a
vectorized high-level API to leverage standard NFSv4
compounds, which have the potential to reduce network
round trips but were underused due to the low-level and
serialized nature of the POSIX API. vNFS makes maxi-
mal use of compounds by enabling applications to oper-
ate on many file-system objects in a single RPC. vNFS
complies with the NFSv4.1 protocol and has standard
failure semantics. To help port applications to the vec-
torized API, vNFS provides a superset of POSIX file-
system operations, and its library can be used for non-
NFS file systems as well. We found it generally easy to
port applications including cp, ls and rm from GNU
Coreutils; bsdtar; Filebench; and nghttp2.

Micro-benchmarks demonstrated that—compared to
the in-kernel NFS client—vNFS significantly helps
workloads with many small I/Os and metadata opera-
tions even in fast networks, and performs comparably
for large I/Os or with low compounding degrees. Macro-
benchmarks show that vNFS sped up the ported applica-
tions by up to two orders of magnitude. Our source code
is available at https://github.com/sbu-fsl/ txn-compound .

Limitations and future work. Currently vNFS does
not include a cache; an implementation is underway. To
simplify error handling, we plan to support optionally
executing a compound as an atomic transaction. Finally,
compounded operations are processed sequentially by
current NFS servers; we plan to execute them in parallel
with careful interoperation with transactional semantics.
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Abstract

We introduce a replay tool that can be used to replay cap-
tured I/O workloads for performance evaluation of high-
performance storage systems. We study several sources
in the stock operating system that introduce the uncer-
tainty of replaying a workload. Based on the remedies of
these findings, we design and develop a new replay tool
called hfplayer that can more accurately replay intensive
block I/O workloads in a similar unscaled environment.
However, to replay a given workload trace in a scaled
environment, the dependency between I/O requests be-
comes crucial. Therefore, we propose a heuristic way of
speculating I/O dependencies in a block I/O trace. Using
the generated dependency graph, hfplayer is capable of
replaying the I/O workload in a scaled environment. We
evaluate hfplayer with a wide range of workloads using
several accuracy metrics and find that it produces better
accuracy when compared with two exiting available re-
play tools.

1. Introduction
Performance evaluation of a storage system with realis-

tic workloads has always been a desire of storage systems
developers. Trace-driven evaluation is a well-known prac-
tice to accomplish this goal. It does not require installation
of a real system to run applications and does not expose a
production systems to potential downtime risk caused by
performance evaluation experiments. However, the lack
of an accurate trace replay tool makes it less appealing
and draws some skepticism of using trace-driven methods
for performance evaluation of block storage devices and
systems [19, 23].

An I/O trace typically includes the timestamps of when
each I/O request is issued and completed. These times-
tamps can be used to replay the workload on a similar un-
scaled environment. However, the block I/O trace does not
usually include any information about the dependencies
between I/O requests. Therefore, these timestamps can-
not be directly used in a workload replay on a scaled
environment where the issue time of a latter I/O request
may be determined by the completion time of a former re-
quest in a dependency chain. However, a latter I/O request
may be issued earlier before the completion time of a for-
mer I/O request if there is no dependency between the
two. Some examples of a scaled environment can mean

a server speed is increased, the number of disk drives is
doubled, or a faster type of drives is considered.

The I/O dependency information is available only in
the file system or application layers. However, the intrin-
sic software overhead and high degree of parallelism that
embedded in these layers reduce the capability of the
workload replay to stress-test a modern block storage sys-
tem when replaying I/O traces at file system or application
layer. For example, Weiss et al. [24] demonstrates Can
a scalable file system replay tool that can barely hit 140
IOPS, while modern storage systems are capable of driv-
ing intensive I/O workloads with hundreds of thousands
of IOPS and a few milliseconds response-time [4].

Typical block I/O replay tools ignore I/O dependencies
between I/O requests and replay them as fast as possi-
ble (AFAP) [15]. The AFAP approach cannot accurately
replay a workload since it overlooks the intrinsic compu-
tation and wait time in the original application. Therefore,
the characteristics of replayed workload may be different
from that of an original application in terms of throughput,
response-time and request ordering.

We believe a more accurate replay tool for scaled en-
vironments should try to mimic the behavior of the real
application on the scaled environments and respect the
existing dependencies in the I/O trace. This is possible by
speculating the dependencies of I/O requests and trying to
propagate I/O-related performance gains along the depen-
dency chains. However, it is challenging to discover I/O
dependencies simply based on a given block I/O workload
trace without accessing the application source code.

In this work, we propose hfplayer, a replay tool that
tries to infer potential I/O dependencies from the block
I/O traces and replay I/O intensive workloads with more
accuracy in both scaled and unscaled replay modes. In the
scaled mode, the arrival of new requests depends on the
completion of the previous requests, while in the unscaled
mode each request is issued independently at a scheduled
time [14].

The goal of this replay tool is to ensure that replayed
I/O requests arrive the storage device (e.g., SAN con-
troller) at the right time and order. We develop methods
to ensure that the right number of I/O requests being is-
sued from the user level and these requests traverse all
the OS layers (the entire path from user space to device
controller) with minimal interference on the workload
throughput, I/O response time and ordering.
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The intended use of hfplayer is for performance eval-
uation, debugging and validating different block storage
devices and systems with realistic workloads. For the set
of our experiments, it replays realistic I/O workload on
both scaled and unscaled storage systems with less than
10% average error.

Our main contributions in the paper are summarized as
follows: 1) Uncover and propose remedies to Linux I/O
stack limitations and its non-deterministic I/O behaviors
which are sources of measurement uncertainty. 2) Design
and implement a workload replay engine which can more
accurately replay a block I/O workload that has been cap-
tured in a similar unscaled environment. 3) Design and
implement a scalable workload replay engine which can
speculate I/O request dependencies and replay a realis-
tic workload in a scaled environment. Our workload re-
play tool is open-source and available for download at:
https://github.com/umn-cris/hfplayer.

The rest of this paper is structured as follows. In
the next section, we describe several sources of non-
deterministic behaviors for block I/O workload replay
in the stock operating system. We also describe our ap-
proaches to remedy or work around these limitations. In
Section 3 we discuss the I/O request dependencies and
how we construct a dependency graph for a given work-
load by speculating I/O request dependencies. We also
describe our approach of replaying the I/O workload con-
sidering the influences of the target storage in a scaled
environment using the scalable replay engine of hfplayer.
Then we evaluate the replay accuracy of hfplayer on both
unscaled and scaled storages and compare the results with
existing tools in Section 5. We refer and describe the rel-
evant literature of this paper in Section 6. Finally, we
summarize and offer some conclusions in Section 7.

2. Sources of Workload Replay Uncertainty
In this section, we introduce several key limitations to

faithfully replaying a block I/O workload in the Linux
I/O stack. One solution to potentially limiting OS im-
pacts the workload replay accuracy is to embed the I/O
engine of the workload replay tool in the kernel space [5].
This would reduce forced preemption of replay engine
threads and eliminates the cost of user to kernel space
context switch in replaying an I/O request. However, this
approach limits the portability of the developed engine to
a single OS platform and even to a specific kernel version.
Therefore, we focus on developing a replay tool with a
user space engine which is capable of working with the
standard system calls on most OS platforms. In this work,
we focus on Linux and propose a method to significantly
reduce the context switch overhead. We will introduce
the integration with IBM’s AIX OS in the future work.
Moreover, we believe user space I/O engine development
is aligned with the emerging efforts in the industry to

develop user space APIs like Intel SPDK for ultra high-
speed storage devices [2].

User-space replay threads can submit I/O requests us-
ing synchronous or asynchronous system calls. Replay
tools that are implemented with the synchronous method
like Buttress [6] and blkreplay [15] need a large number of
worker threads running in parallel to achieve a high replay
throughput. Therefore, they may expose more inter-thread
coordination overheads compared with the asynchronous
method. These overheads are known as a major source of
uncertainty in the workload replay [13]. As we show in
Section 5, these limitations severely impact the accuracy
of replaying I/O intensive workloads. Therefore, hfplayer
replay engine is based on the asynchronous method and
exclusively uses libaio which is Linux kernel support for
asynchronous I/O operations as well as NO-OP scheduler
without its merge functionality. We have identified that
Linux kernel is not able to fully disable the I/O merge
functionality in certain situations. We have proposed a
patch to fix this bug and the patch has been merged into
the mainstream branch since the kernel v3.13 [3].

Accurate I/O replay timing is another challenging issue
which heavily depends on the timing predictability of the
I/O stack. In an ideal situation, it should cost each I/O
request a fixed amount of time to travel from the replay
engine to the storage device. Therefore, if there is an inter-
arrival gap of n milliseconds between two consecutive I/O
requests in the given workload trace, the replay thread
just needs to wait n milliseconds after issuing the first
I/O request to issue the second request and expects both
requests to arrive at the device with an accurate time in-
terval of n milliseconds. However, our experiments show
that the I/O stack travel time is quite unpredictable and
thus such a timing accuracy is impossible if we do not
carefully tune and watch the I/O queuing mechanism in
the kernel. In order to work around these limitations, we
have practiced the following four techniques to improve
the workload replay accuracy.

2.1. I/O Stack Queue Sizing
In general there are two queuing layers in the asyn-

chronous I/O submission path of Linux kernel. The
io submit system call first pushes a block I/O request (or
bio) into the tail of the block layer queue, then it pulls
another bio from the head of the queue, transforms it into
a SCSI command and pushes it into the SCSI layer queue.
Finally, it returns the success code to the user space, while
the SCSI Initiator processes the commands in the SCSI
layer queue using a kernel worker thread. These two
queues usually do not have enough room for all new re-
quests when the I/O stack is overloaded. In this case, the
execution time of the system call becomes unpredictable.

While the block layer request queue size is tunable, the
SCSI layer queue size is limited to the maximum sup-
ported TCQ tags by the SCSI layer. Usually a system call
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puts the bio request into a waiting list if it cannot find an
empty queue tag and schedules a kernel worker thread
to push it later. This schedule is expensive and signifi-
cantly increases I/O submission unpredictability. More-
over, it changes the delivery order of I/O requests in the
kernel space even if the replay tool thread submits these
requests in order. Therefore, internal I/O queues in the
kernel should be sized according to the HBA capability to
reduce queue insertion failures. In our test environment,
while our HBA can handle 2048 in-flight requests, the
default block layer queue size is set to 128 and the default
SCSI layer queue size is 32.

Obviously, adjusting the I/O stack queue sizes below
the HBA capability reduces the potential I/O through-
put and impacts the replay accuracy to reproduce high-
throughput workload. On the other hand, enlarging the
queue sizes more than HBA capability without any con-
trol on the number of in-flight requests overloads the HBA
and results in multiple retries to sink I/O requests from the
block layer queue into the SCSI command queue. There-
fore, we set the internal queue size to the maximum size
supported by HBA hardware and dynamically monitor
in-flight requests in the replay engine to make sure it does
not overload the internal queues.

2.2. System-Call Isolation
We have identified that forced preemption is another

factor making the execution time of I/O submission sys-
tem call unpredictable. The system call execution thread
can be preempted by other kernel processes with higher
priorities like interrupt service routines. Consequently, it
will impact the timing and ordering accuracy of a typical
multi-threaded I/O workload replay tool. While it is pos-
sible to isolate regular interrupt handlers from system call
threads using IRQ and CPU affinities, it is hard to avoid
collisions of the system call threads with non-maskable
timer interrupts. Moreover, scheduling replay tool threads
with real-time scheduling priority is not a viable option
since it has been discovered as another source of uncer-
tainty for the workload replay [13]. Therefore, our best
effort is to pin the replay tool threads to a CPU set and
exclude all maskable interrupts from execution on that
CPU set.

2.3. In-Flight I/O Control
After making an I/O submission system call more pre-

dictable with the aforementioned techniques, we need to
work around potential scenarios that the I/O path unex-
pectedly takes more time to submit asynchronous I/O
requests. When the submissions of a few I/O requests
get delayed in a worker thread, it prevents the following
I/O requests from being submitted on time. For example,
assuming three consecutive I/O requests are scheduled
to issue at time t, t + 10µs and t + 20µs by a worker
thread. If the submission of the first request unexpectedly

Figure 1: Response-Time Trashing

takes 30µs, there is no need to wait any longer to issue
the following two I/O requests since the scheduled issue
times of these two requests are passed. In such a scenario,
the replay tool issues several I/O requests in a very short
amount of time and this burst of I/O requests forces the
I/O stack to operate in a state that we call Response-Time
Trashing state. In this state, an artificially large number of
I/O requests are pushed into the I/O stack queues which
severely impacts I/O response-time accuracy.

Figure 1 illustrates the Response-Time Trashing which
occurs when the number of in-flight I/O requests is ar-
tificially high. For example, assuming we are planning
to replay an I/O workload with a throughput of α and
response-time of t. An accurate replay should reproduce
the workload with the same throughput and response-
time by keeping n I/O requests in-flight. However, un-
predictable delays in the path cause a burst submission of
an unexpectedly large number of I/O requests since their
scheduled issue times have already passed. Therefore, in
this example 2n requests are being queued in the stack
instead of n requests. The throughput of I/O becomes
saturated after a threshold number of queued requests is
reached. Pushing more I/O requests to the internal queues
only exponentially increases the response-time without
any throughput improvement. Without an in-flight I/O
control mechanism, the workload is being replayed with
response-time of 4t instead of t since an artificially high
number of requests are queued in the stack. Moreover,
there is no reason to slow down or flush the queues since
the workload is being replayed with the expected through-
put of α . Note that some I/O workloads do not experience
the dropping tail of I/O throughput by increasing the num-
ber of in-flight requests. These workloads usually saturate
physical hardware resources of the SAN controller.

Limiting internal queue sizes is a conservative default
approach to prevent I/O stack operating in the trashing
state. This conservative approach bounds the maximum
throughput intentionally to prevent typical applications
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without in-flight I/O control from creating a burst submis-
sions of I/O request and forcing the I/O stack to operate
in the trashing state. Therefore, we need to keep the in-
ternal kernel queues open and meanwhile dynamically
monitor and control the number of in-flight I/Os in the
replay engine.

Depending on the information included in the workload
trace, it is possible to estimate the number of in-flight I/O
requests required to replay the workload. The number of
in-flight I/O requests at time t can be calculated by count-
ing the number of I/O requests with issue times smaller
than t and completion times larger than t. Assume that n
requests are counted as the number of in-flight requests at
time t for a given trace file. During the replay process, we
can throttle the I/O injection rate if more than n requests
have been issued but not yet completed. This throttling
creates a small pause and helps the I/O stack to reduce
the artificially high number of in-flight requests. This ap-
proach dynamically controls the number of the in-flight
I/O requests and protects them from going beyond a pre-
determined limit before replaying each I/O request.

Note that we round up the dynamic limit of in-flight
requests to the next power of two number. If we limit the
worker thread to keep at most n requests in-flight, it can
replay I/O requests at the same pace as they were cap-
tured, but cannot speed up even when some I/O requests
fall behind the replay schedule due to unexpected latency
of system calls. Therefore, it will negatively impact the
timing accuracy of the replay process. On the other hand,
if we do not put any limitation on the in-flight I/O count,
the replay thread tries to catch up as fast as possible and
issues too many I/O requests in a short period of time
which resulting in Response-Time Trashing. Therefore,
we round up the predetermined limit of in-flight requests
to the next power of two number and let the replay threads
speed up slowly to catch up with the schedule if needed.

2.4. I/O Request Bundling
If the inter-arrival time between two consecutive I/O

requests is shorter than the average latency of an I/O sub-
mission system call, it is impossible for a single worker
thread to submit both requests one after another on time
with separate I/O submission system calls. On the other
hand, if we deploy two worker threads, it is possible to
submit both I/O requests on time, but they may arrive out-
of-order to the SAN controller due to the variations of
system call latency and device driver queue processing.
Therefore, the high-fidelity replay engine of hfplayer bun-
dles these consecutive requests into one group and lets the
libaio unroll it on a single worker thread context within
the kernel space. As a result, not only the I/O requests
arrive at the SAN controller in order but there is less over-
head of kernel to user-space context switch involved in the
I/O submissions of multiple I/O requests. We recommend
bundling multiple I/O requests before the submission if

the inter-arrival time between consecutive I/O requests
is less than a certain threshold. This inter-arrival time
threshold is proportional to the system performance to
execute I/O submission system calls. We will discuss this
threshold value in Section 5.1.5.

3. Dependency and Scalable Replay
In most applications, there are dependencies that exist

between I/O operations. A simple case would be an ap-
plication that reads an input file, manipulates the data in
some manner and writes the result to an output file. In this
case, there is a dependency that exists between the read
and the write since the write cannot occur until the read
and the data manipulation have completed. Therefore, the
actual issue time of an I/O request in the application is
relative to the latency of its dependent I/Os as well as the
data manipulation time.

The I/O latency is determined by the storage device per-
formance and I/O queue depth. On the other hand, the data
manipulation time is determined by the computing power
of the server. If we replay a captured I/O trace in an envi-
ronment similar to the one where the application was run
initially (i.e., an unscaled environment), both I/O latency
and data manipulation time would be the same as the
original environment (with a reasonable pre-conditioning
step). Therefore, I/O dependencies are maintained by sim-
ply replaying the I/O requests in the sequence that they
were originally captured.

However, if we want to scale the workload replay to
emulate running the application on a faster storage sys-
tem or host (i.e., a scaled environment), the I/O latency
or data manipulation time would be different from those
in the original environment. Therefore, simply replaying
the I/O requests in the captured order and time does not
necessarily maintain real application I/O behavior. The
application might issue I/O requests with a different order
and perhaps shorter inter-arrival time in a scaled envi-
ronment. The sequence between dependent I/O requests
is actually maintained by the application and should be
respected during replay. Therefore, an accurate scalable
workload replay tool should be able to estimate these
I/O dependencies from a captured trace and issue an I/O
request after the completion time of its dependent I/O
requests plus a data manipulation time.

Unlike traditional data dependency analysis in the
compiler theory, it is not possible to precisely declare
dependencies based on block I/O trace information with-
out accessing application source code. Moreover, the file
system semantics are not available in a block I/O request
and it is not practical to derive dependencies similar to
ARTC and TBBT replay approaches [24, 25] based on
the file system level operations. Moreover, a set of I/O
requests considered as independent from the point of view
of either application or file system might become depen-
dent with each other in the block layer since they are

318    15th USENIX Conference on File and Storage Technologies USENIX Association



pushed into the same I/O queues and processed in or-
der by the same I/O logic. Therefore, our best effort is
to take a heuristic method and speculate potential I/O
dependencies from a given trace and propagating I/O-
related performance gains along the dependency chains
during a workload replay on a faster (scaled) storage de-
vice. Finally in Section 5.2 we demonstrate the accuracy
of our heuristic method by comparing the performance
characteristics of the replayed workloads to real work-
loads generated by the applications on the scaled environ-
ment.

3.1. Inferring Dependency from Block I/O Trace
A block I/O trace usually includes information about

the read and write request types, logical block address,
transfer size and timestamps of issuing and completing
I/O requests. Unfortunately, this information of the I/O
operations itself does not help inferring the dependencies.
We try to infer request dependencies using the timing
relationships between these operations in the workload
trace.

Inferring potential I/O dependency might create both
false positives and false negatives. A false positive is to
mistakenly identify two requests as dependent with each
other, whereas they are independent. Therefore, they are
replayed from a single dependency chain while they orig-
inated from separate chains in the application. A false
negative is the prediction that mistakenly considers two
dependent requests as independent. Therefore, they are
replayed from separate dependency chains, while their
relative order and timing are ignored. Consequently, the
performance gains originated from the scaled system are
not properly distributed among these requests.

False negative dependencies are more destructive for
the workload replay accuracy on a scaled system because
falsely identified independent requests can take advan-
tage of any performance gains and replay as fast as pos-
sible with an arbitrary order that is not reproducible by
the original application. On the other hand, false positive
dependencies are more conservative since they are only
allowed to take advantage of performance gain in a single
dependency chain, while they could issue independently
and perhaps even faster by the original application.

Moreover, some of these false positive dependencies
may actually help improve the workload replay accuracy.
For example, consecutive dependent I/O requests with a
very long inter-arrival time are probably independent from
the application point of view. They may be generated by
independent threads at different times or the same thread
with a long idle time. However, hfplayer still considers
these consecutive requests as dependent to preserve the
long idle time during the workload replay task. Otherwise,
such a long think time will be dismissed if these requests
are being considered as independent and will be replayed
around the same time from separate dependency chains.

Figure 2: Example of Block I/O Dependency Graph

Therefore, it can be beneficial for a workload replay to
maintain some of these false positive dependencies.

hfplayer takes the following conservative approach to
infer I/O dependencies with a minimum false negative
prediction rate. First it assumes all consecutive pairs of
requests are dependent, meaning that the second request
depends on the outcome of the first request. Since no inde-
pendent requests are detected initially, the false negative
prediction rate would be zero. However, the false positive
rate is at a maximum value. Second, it scans the I/O trace
and tries to reduce the false positive rate by excluding
those requests that are impossible to be dependent with
each other. Finally, it searches the remaining list of depen-
dent I/O requests and removes redundant dependencies to
simplify the dependency graph.

Requests that are impossible to be dependent on each
other are identified solely by their timing information in
the trace file. Each block I/O operation in the request trace
has a start time and a completion time. Start time is the
time-stamp indicating when a request arrives at the trace
capture point and the completion time is the time-stamp
indicating when a request completion signal is returned
back to the trace capture point in the I/O stack. Figure
2-a illustrates a sample request trace where the start and
completion times of a request create a time interval rep-
resented as a line segment capped by two dots. Figure
2-b illustrates the dependency graph that is constructed
based on these time intervals. We use traditional directed
acyclic graph to visualize I/O dependencies in the trace
file. During workload replay, the graph dependency edges
implies that child request will be issued after the com-
pletion of the parent request plus a manipulation time
associated with the parent. hfplayer distinguishes inde-
pendent requests without introducing false negative in the
following scenarios:

Overlapping Requests: A pair of I/O operations are
identified as independent if they have overlapping time
intervals since the first request finishes after the start time
of the second request. Therefore, it is impossible for the
second request to depend on the outcome of the first re-
quest. For example, Requests A and B in Figure 2 are
independent since they are identified as overlapping re-
quests.

Short Think Time: Think time is defined as the time
duration starting from the completion of the first oper-
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ation and ending at the start of the second operation. A
pair of I/O operations with a very short think time are also
identified as an independent pair. The threshold value of
this short think time varies depending on the processing
power of the application server and represents the time
it takes to push up the completion signal of the first re-
quest from the capture point to the file system layer plus
the time to issue the second operation from the file sys-
tem. Therefore, it is impossible for the second request to
depend on the outcome of the first request with a very
short think time. Although an artificially large threshold
value for the think time helps reduce the false positive
rate, it may also introduce a false negative since a pair
of dependent I/O requests is falsely marked as indepen-
dent. Therefore, we take a conservative approach and just
assign the smallest possible threshold of think time for a
consecutive pair of I/O requests. This would help to keep
the minimum false negative rate. This threshold time is
around 10µs in our test environment where the trace cap-
ture point is located in the SAN controller. For example,
the think time between Requests B and C in Figure 2 is
too short such that they are considered as independent
requests.

After excluding independent requests based on their
timing positions, hfplayer scans the remaining list of de-
pendent I/O requests, constructs a dependency graph and
removes redundant dependencies. A pair of I/O opera-
tions has a redundant dependency in the graph if there is
an indirect path from the first to the second operation in
the graph. Therefore, removing redundant dependencies
does not affect semantic information of the graph. For
example, the dependency between Requests A and E in
Figure 2 is maintained implicitly since Request E waits
for the completion of Request D and Request D starts after
completion of Request A. Therefore, there is no need to
add another dependency edge from Request A to Request
E.

3.2. Scalable Replay According to I/O Dependency
A scaled server may be capable of running the appli-

cation at a faster pace and pushing more I/O requests
into the I/O stack with less think time. On the other hand,
a scaled storage device may pull more I/O requests out
of the stack and process the requests faster with shorter
response-time (I/O latency). An accurate I/O replay on a
scaled system not only requires I/O dependency predic-
tion, but also requires differentiation between server and
storage scale factors.

Figure 3 illustrates the way that block I/O replay tools
issue Requests A and B on a scaled storage device where
Request B is dependent to the outcome of Request A.
We assume that the workload is replayed from a server
with the performance characteristics similar to that of the
original application server. Therefore, it is expected to
see the same think time and reduced I/O latency for both

Figure 3: Replay methods on the Scaled Storage

Requests A and B. Typical workload replay tools either
ignore the I/O latency reduction (i.e., issue I/O requests
based on their original scheduled time: regular replay), or
ignore the scheduled time (i.e., issue I/O requests As Fast
As Possible: AFAP replay). We believe neither one of
these approaches is accurate. The regular replay approach
issues the requests at the same speed as they were cap-
tured on the unscaled storage device. The AFAP replay
approach issues I/O requests too fast which can violate
the I/O request dependencies and accumulates a large
number of in-flight I/O requests that severely impacts the
response-time and throughput accuracy of the reproduced
workload.

hfplayer emulates the execution of the original applica-
tion on a scaled storage device by preserving the original
think times and dynamically adjusting the issue times
of I/O operations according to their dependent parent’s
completion time. If the completion signal of Request A
(parent) arrives at tc, the issue time of Request B (child)
will be set to tc +(t3 −T2) during the replay process.

Note that only a few I/O requests in the beginning of
the workload trace that are in-flight at the same time do
not have parents. Therefore, almost all I/O requests in the
workload trace have at least one dependent parent that
form multiple dependency chains. The total number of
parallel dependency chains at any point of the time ob-
viously cannot exceed the maximum number of in-flight
I/O requests recorded in the workload trace file.

4. hfplayer Architecture
The main components of hfplayer are illustrated in

Figure 4. The dependency analyzer module is used only
during the scaled replay mode. It takes the trace file with
a short inter-arrival time threshold from the inputs, identi-
fies I/O request dependencies and creates a dependency
graph based on the method as we have described in Sec-
tion 3. Finally, this module annotates the original trace
file and creates a new intermediate trace file with a list of
dependent parents for each I/O request.

We have deployed four types of threads for a replay ses-
sion, the worker threads, a harvest thread, a timer thread
and the main application thread. The main application
thread is responsible for initializing and preparing the re-
quired data structures for other threads. These data struc-
tures include individual I/O request data structure with
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optional request bundling and dependency information
as well as internal I/O queues dedicated to each worker
thread. We have carefully aligned these data structures
to the processor cache line size to avoid multiple cache
misses when hfplayer touches these data structures.

In the unscaled replay mode, each worker thread picks
an I/O request from its request queue and issues the re-
quest according to the scheduled issue time recorded in
the I/O data structure. It also makes sure that the I/O stack
is not operating in the response time trashing mode by
keeping track of the total number of I/O requests issued
and completed as we discussed in Section 2.3.

Figure 4: hfplayer Components on Linux I/O Stack
In the scaled replay mode, a worker thread issue an in-

dividual I/O request after it receives the completion signal
of all of its parents plus their corresponding think times.
After a worker thread successfully issues an I/O request
to the storage controller, its I/O completion signal will
be picked up by the harvester thread. Then, the harvester
thread decrements the number of in-flight parents counter
in its children’s data structure. This process eventually
reduces individual children’s counter to zero and then let
other worker threads to issue its children requests in a
dependency chain.

Finally, a timer thread is used to share a read-only timer
variable to all worker threads with nanoseconds accuracy.
Worker threads in the unscaled replay mode compare this
shared timer value with the scheduled issue time of the
current request to make sure I/O requests are submitted
on time. We add a fixed offset to the timer value to make
sure all worker threads have enough time to start and wait
for the submission of the very first I/O request.

5. Evaluation
We evaluate the replay accuracy of the hfplayer in

the following two scenarios. First, we evaluate its high-
fidelity unscaled replay engine in a unscaled environ-
ment and compare it with existing replay tools in Sec-
tion 5.1. Then, we evaluate its scalable replay engine on
scaled storage devices in Section 5.2. These experiments
are done with Linux 3.13 kernel running on a 2x6-Core

Xeon X5675 server with 64GB memory and 8Gbps Fiber
Channel connection to a NetApp E-Series SAN controller.

We have created three SAN volumes for these ex-
periments with RAID-0 configuration. The first volume
is composed of four enterprise SAS solid-state drives
(4xSSD volume). The second volume is composed of nine
enterprise SSDs (9xSSD volume) and the last SAN vol-
ume is composed of two 15K RPM SAS hard disk drives
(2xHDD volume). We have disabled the read and write
cache since warming up the SAN controller caches is out
of the scope of this work. Note that the performance num-
bers presented in this section do not represent the actual
capability of the products used in these experiments.

5.1. Workload Replay on the Unscaled Storage
In this experiment, we collect 12 I/O workload traces,

then replay them with multiple replay tools and quan-
tify the unscaled workload replay accuracy. At first, we
compare the hfplayer replay accuracy with other exist-
ing block I/O replay tools. Next, we evaluate its multi-
threading and bundling features.

5.1.1. Workload Types: An accurate replay tool should
be able to faithfully replay any workloads in a wide in-
tensity spectrum from low to high throughputs. However,
as we mentioned earlier it is a challenge to maintain the
replay accuracy for intensive and high throughput work-
loads. Therefore, we need a tunable synthetic I/O work-
load to demonstrate when the accuracy of existing replay
tools drops as we increase the I/O throughput in this exper-
iment. Although it is more appealing to replay the work-
load trace of a realistic application, we use synthetic work-
loads in this experiment since most of the open-source en-
terprise and HPC applications does not use a raw volume
without a file system. Therefore it require a large cluster of
servers and huge parallelism to overcome the application
and file system layer overheads and stress the storage con-
troller with an intensive I/O workload. For example, a re-
cent study reported that 168 Lustre nodes (OSS and OST)
are required to create a storage space with 100K IOPS
[7]. Obviously, producing such a workload is a challenge
not only for us with limited hardware/software resources
but also for the research community to reproduce and val-
idate our research results. Therefore, we have selected
synthetic workloads that can stress the SAN controller
up to 200K IOPS and then demonstrate how hfplayer
can replay these workloads with high-fidelity on a similar
storage device.

We have used FIO and its libaio engine to generate 11
synthetic I/O workloads that cover low to high throughput
intensity spectrum on the raw 4xSSD volume. We have
also selected Sequential Write and Random Read/Write
with a default 50/50 split for the I/O patterns. These two
patterns then are used to generate 10 workloads with the
incremental throughput tuned by iodepth values of 16, 32,
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64, 128 and 512. Finally, we generated another workload
with the I/O pattern of Sequential Read and iodepth of
512 to create a very high-throughput workload for eval-
uation of multi-threading and request bundling features
of hfplayer. All of these workloads are generated for the
duration of 60 seconds. The traces of block I/O requests
that have been generated by these workloads are collected
from the SAN controller SCSI Target layer. These trace
files are then used in our replay experiments. hfplayer
input trace file format is compatible with SNIA draft of
block-trace common semantics [17] and does not include
proprietary fields.
5.1.2. Replay Tools: We compare the workload replay
accuracy of hfplayer with two publicly available block
I/O replay tools. First, we use blkreplay [15] which is
developed by a large web hosting company for the per-
formance validation of block storage devices used in its
data centers. blkreplay is built with a synchronous multi-
threaded I/O engine as we mentioned in Section 2 and
suffers from inter-thread coordination overhead. We con-
figure it with no-overhead and with-conflicts to disable its
write-verify and write-protection mode in order to make
an apples to apples comparison with other tools. More-
over, we set the maximum thread count to 512 since some
of our workloads carry-on such a high number of in-flight
I/O requests.

Second, we use btreplay [8] which is developed origi-
nally to replay workloads that are captured with the blk-
trace tool on Linux. It uses libaio with an asynchronous
I/O engine like hfplayer and has a similar feature to com-
bine the I/O requests into a bundle if they fit in a fixed time
window with a fixed request count per bundle. The bundle
time window and the maximum request count are stati-
cally set in the command line and are not dynamically set
according to the workload intensity. However, as we men-
tioned in Section 2.4, hfplayer can dynamically adjust the
bundle size since it bundles requests together if their issue
time is very close to each other. Moreover, we just use a
single worker thread in the btreplay since it cannot replay
a single trace file using multiple worker threads. We con-
figure hfplayer to work with a single worker thread for a
fair comparison as well and evaluate its multi-threading
and bundling features separately in Section 5.1.5. We do
not use FIO replay engine since it is similar to btreplay
and uses asynchronous I/O engine. Moreover, it has been
reported in the open-source community that FIO is not as
accurate as btreplay [1].
5.1.3. Accuracy Metrics: An accurate unscaled work-
load replay should maintain both temporal and spatial
characteristics of the original trace workload. Temporal
characteristics of an I/O workload are usually quantified
by I/O throughput and response-time. We use relative er-
ror percent of average response-time to demonstrate the
response-time accuracy of the workload replay. Moreover,

Figure 5: Replay Accuracy for the Sequential Write Workloads

determining factor of I/O throughput is the total execution
time since the number of replayed requests is the same
in each replay experiment. Therefore, we use relative er-
ror percentage of execution time to demonstrate the I/O
throughput accuracy of the workload replay. The spatial
characteristics of the workload replay remain the same
if all I/O requests arrive in the storage device(s) with the
same order that is presented in the original trace. There-
fore, we have used the Type-P-Reordered metric [12] to
measure the number of requests that are reordered in the
replayed workload.

5.1.4. Workload Replay Accuracy Comparisons: Fig-
ure 5 demonstrates the accuracy of the three replay tools
that we have tested using five sequential write work-
loads. The shared horizontal axis represents the demand-
ing throughput of the captured workload in IOPS. The
vertical axes A, B and D represent three accuracy metrics
discussed earlier. First, axis A shows the relative execu-
tion error of the replayed workload. While all three replay
tools can reproduce low throughput workloads with neg-
ligible timing errors, btreplay and blkreplay cannot keep
up when throughput demand increases from 92K to 104K
IOPS and cannot finish the replay task on time.

Second, axis B shows the relative error of average I/O
response-time during the workload replay compared with
the original workload. Once again all three tools have a
negligible response-time error to replay the low through-
put workload (40K IOPS). However, both btreplay and
blkreplay fail to replay with accurate response-time for
higher throughput demanding I/O workloads. Starting
with 68K IOPS workload, these tools build an artificially
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high number of in-flight I/Os in the I/O path as we show
in axis C which results in Response-Time Trashing. The
I/O response-time error of the replay task for the most
demanding I/O workload (104K) is negligible because
the I/O path is already overloaded and achieving its max-
imum response-time at this throughput rate. Therefore,
the internal overhead of btreplay and blkreplay prevents
them from achieving the target throughput and causes
them to finish the replay task with 14% and 16% relative
execution time error respectively.

Finally, axis D shows the ordering accuracy of the re-
played workload. blkreplay is based on a multi-threaded
synchronous I/O engine. Therefore, it is expected to see
it reorders most of I/O requests in the workload. We be-
lieve reordering can significantly change the workload
characteristics. In this case, it converts a sequential write
workload into a half sequential, half random workload.
btreplay and hfplayer both use the single threaded async
I/O engine and can submit all I/O requests in order but a
negligible number of these requests are reordered in the
I/O stack by the SCSI Initiator since it operates in the
Simple TCQ mode which is inevitable.

Figure 6 shows the replay accuracy for mixed random
read/write workloads. First, axis A shows all three re-
play tools are capable of replaying mixed workloads with
a negligible error. That is because the overhead of the
I/O stack is lower for read/write workload compared with
previous write-only workload. Typically write requests
are more resource consuming since writes carry a pay-
load that requires extra protection for data consistency
and durability both in the Kernel and SAN controller I/O
stacks. Second, axis D shows both blkreplay and btreplay
fail to replay the workload with accurate response-time
which is directly impacted by the number of in-flight I/O
requests shown by axis C. Note that the only workload
that hfplayer does not provide the best response-time accu-
racy is on the 99K IOPS workload, where its relative error
rate is 52%, whereas blkreplay error rate is 16%. That is
because blkreplay managed to replay the workload with
a lower number of in-flight I/O requests. However, blkre-
play cannot maintain a low request ordering accuracy at
the same time. As we show in axis D, about 34% of re-
quests that are issued with this tool at 99K IOPS workload
arrived in the controller out of order.

Note that the number of reordered requests in the mixed
read/write workload is significantly more than sequential
write workload for btreplay and hfplayer (comparing axis
D in Figures 6 and 5). These requests are submitted in
order with a single worker thread in both replay tools.
However, they are reordered in the SCSI initiator layer
since read and write requests have different service time.
Usually read requests are serviced faster since the read
I/O path is faster on a SAN controller without a caching
layer. Therefore, the queue tags that are allocated for the

Figure 6: Replay Accuracy for the Random R/W Workload

read requests in the SCSI initiator layer are deallocated
faster than the tags allocated for writes requests. How-
ever, in the write-only workload, all the tags are allocated
and deallocated with the same rate and the SCSI initiator
queue will operate similar to a FIFO queue.

5.1.5. Multi-threading and Request Bundling: We did
not evaluate these two features of the hfplayer in the previ-
ous experiments to make an apples to apples comparison
with other replay tools. However, these two features are
useful during the replay of very high throughput work-
loads where the other replay tools are incapable of main-
taining replay accuracy as we elaborated in the previous
subsection. In this experiment, we go extreme and replay
a very high throughput sequential read workload with
232K IOPS. This workload is captured and replayed on
a 9xSSD volume, while the previous experiments were
done on a 4xSSD volume.

Figure 7 shows the replay accuracy of hfplayer where
multi-threaded and bundling features are used. The hor-
izontal axis shows the maximum inter-arrival time be-
tween two requests to fit into a bundle. Obviously,
hfplayer forms larger bundles with a larger maximum
inter-arrival time value. We have replayed the workload
with one to eight threads for each time to evaluate the
multi-threading feature as well. On the vertical axes, we
just show the relative execution time error (or throughput
accuracy) and reordered I/O ratio. We do not show the av-
erage response-time accuracy since the I/O path in all of
these experiments is fully loaded. Therefore, I/O response-
times are all saturated and close to expectation. We have
described a similar behavior in Figure 5-B that happens
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for all replay tools during replay of a high-throughput
104K IOPS workload. Figure 7 shows that hfplayer can-
not finish replaying the 232K IOPS workload on time
when the bundling feature is disabled. Enabling the multi-
threaded feature helps to reduce the relative execution
time error from 28% to 27% and 21% with two and four
worker threads respectively. The improvement is minimal
and the resulting error rate is still high. Moreover, using
eight worker threads does not improve the replay accu-
racy further due to extra threading overhead to acquire
block layer queue lock. On the other hand, adding more
worker threads significantly increases the reordered I/O
rate.

In contrast, when request bundling is enabled (for exam-
ple, set bundling threshold to 20µs), the ordering errors
are reduced to around 30% in multiple worker threads
mode. Moreover, multiple worker threads help hfplayer
submit all I/O requests on time and reduce the execution
time error rate. As we increase the bundling threshold,
we see a negligible change in the accuracy metrics. That
is because hfplayer can fit up to 256 requests in a bun-
dle and increasing the bundle threshold cannot create a
larger bundle when almost all bundles are full. The maxi-
mum bundle size limit is an implementation trade-off that
forces the bundle data structure to fit in a CPU cache line.
Therefore, the replay task does not suffer from multiple
cache line misses when it sends a bundle to the kernel.

Finally, Figure 7 shows a significant amount of I/O re-
quests are reordered in the single threaded mode when
bundling is enabled. For example, 29.3% of requests ar-
riving in the SAN controller are out of order when we
set the bundling threshold to 30µs. All of these requests
are inserted into the SCSI initiator queue in order using
a single thread that mostly lives in the kernel space. In
other words, the io submit system call unrolls a bundle
and issues individual I/O requests from the kernel space
and does not context switch to the user space frequently.
Therefore, the tag allocation in the SCSI initiator queue
takes place at a faster pace compared with deallocation.
As a result, the SCSI driver cannot allocate in order tags
when a burst of tag allocation requests arrive during the
unrolling of a bundle in the kernel space.
5.2. Evaluate Scalable Workload Replay

In this subsection, we evaluate the scalability feature
of the hfplayer and its scaled replay engine. The ulti-
mate goal of this experiment is to evaluate how accurate
hfplayer can replay a workload on a faster storage device,
given a workload trace file that is captured from a slower
storage device. First, we will describe the workloads that
we have used for this experiment. Then we describe the
evaluation methodology and finally we present the evalu-
ation results.
5.2.1. Workload Types: As we described in Section 3,
the dependency replay engine of hfplayer tries to em-

Figure 7: Multi-threading and Request Bundling Evaluation

ulate the application behavior by speculating the I/O
dependencies from a given trace file and replay I/O re-
quests according to their dependencies. Therefore, we
could not use synthetic workloads for this experiment
since they do not contain realistic dependency informa-
tion that can be emulated. Therefore, we have tried to
use realistic applications on top of a file system for this
purpose. Instead of using a commercial I/O intensive ap-
plication (like an Oracle Database) or making our own
I/O intensive application (like copying large ISO files),
we have used Filebench [21] and mkfs to generate the
workloads for this experiment. These applications are
available in the public domain and can be used by others
to reproduce the results.

The key features of the selected I/O intensive applica-
tions are a) they perform direct I/O instead of buffered
I/O which eliminates the ext4 buffer cache impact on the
I/O performance, b) they perform a meaningful task from
the application layer and their durations depend only on
the performance of the storage device, and c) the task ex-
ecution time is fixed and reproducible on a single storage
device.

According to these criteria, we have selected Copyfiles
and Createfiles benchmarks from the Filebench suite. The
first benchmark is configured to copy 100K files with 256
threads. The second benchmark is configured to create
50K files with mean directory width of 100 and mean
file size of 16K using 16 threads and a 1MB request size.
Both benchmarks are set to do direct I/O and the other
configuration parameters are set to default. These two
benchmarks run a meaningful I/O intensive task on the
SAN volumes mounted with the ext4 file system.

The mkfs application creates another I/O intensive
workload during the file system initialization phase. We
have created fixed size partitions on all SAN volumes
and used mkfs.ext4 utility without the lazy inode table
and journal initialization to create a file system image.
This forces mkfs to create all inode tree and journal data
structures on the disk in the foreground.
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Figure 8: Replay Workloads Captured from 2xHDD on 4xSSD

5.2.2. Evaluation Methodology: We will describe our
evaluation methodology with a simple example. Let us as-
sume an I/O intensive application that executes on storage
device A for 10 minutes. However, it takes just 5 minutes
to run the same application on a faster storage device B.
A scalable replay tool should be able to take the trace file
of the I/O workload from storage device A (which lasts
for 10 minutes) and replay it on device B in 5 minutes.
In other words, storage device B takes almost the same
workload during the replay as it received when the real
application was running. In this example, storage device
A is the Source and B is the Target storage device.

In practice, the source is the slower storage device that
is installed in the production site and the target is a faster
storage device that is under development or validation
test. The workload is captured from the source (on the
production site) and replayed on the target storage (in the
lab). The expectation is that the replay tool will generate
the same workload that the production application would
have generated on the target storage and quantifies how
much it can improve application performance.

Our methodology to quantify how hfplayer can meet
such an expectation is as follows. First, we execute the
I/O intensive applications on 2xHDD, 4xSSD and 9xSSD
volumes for multiple times, capture their I/O workloads
from the SAN controller and make sure the execution time
of captured workloads are repeatable. We have validated
that these applications are repeatable with less than 2.7%
relative standard deviation. Then we consider the 2xHDD
volume as a source and 4xSSD volume as the target for
the replay. This means that the trace files captured on
2xHDD volume are replayed on 4xSSD volume. Finally,
we compare the execution time and I/O response-time
with the original application trace files that were captured
from 4xSSD in the first step. We do the same steps to take
4xSSD volume as a source and 9xSSD as a target.

We use hfplayer to replay the captured workload from
the source on the target storage in the following four re-
play modes to make our evaluation more comprehensive.
First, we replay with the HF or high-fidelity replay engine.

Figure 9: Replay Workloads Captured from 4xSSD on 9xSSD

Note that this is the same replay mode that we have used
in Section 5.1. Second, we replay with the AFAP replay
mode which ignores the scheduled timing and tries to
replay I/O requests on the target storage device as fast
as possible. Note that other block I/O replay tools like
blkreplay recommend this replay mode to replay a work-
load on a scaled storage [15]. Third, we replay with the
Load replay mode which is similar to AFAP, but it only
tries to dynamically match the number of in-flight I/O
requests as described in a previous work [16]. Finally, we
replay with the Dep replay mode which is based on the
dependency replay engine of the hfplayer. It estimates
I/O dependencies and replays requests according to those
dependencies as we described in Section 3.

5.2.3. Result Discussion: Figure 8 shows the results of
taking the captured workload from the 2xHDD volume
(source) and replaying it on the 4xSSD volume (target).
In this figure, the horizontal axis is the workload type.
The top vertical axis is the workload IOPS normalized
to original application IOPS running on the target stor-
age device. The bottom vertical axis shows the average
response-time again normalized with what is expected
to see on the target storage device. An accurate replay
should have a patterned bar that is very close to the solid
black bar. The numbers on the patterned and gray bars
show the error values or how far each bar is from the solid
black bar.

This figure shows that the dependency replay mode can
accurately replay captured workload from the 2xHDD
volume on the 4xSSD volume in terms of both IOPS and
average response-time. The IOPS generated with high-
fidelity replay mode matches with the low throughput of
the source volume (gray bar) and its its response-time is
significantly lower than the original application response-
time on the target storage (black bar). AFAP and Load
replay mode both replay the workload on the target vol-
ume with a significantly higher throughput. As a result,
they queue more requests than expected in the I/O path
and inflate the response-time. Even the in-flight I/O rate
control mechanism that is embedded in the Load replay
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mode does not help to slow down the workload replay and
match with the original program I/O performance running
on the target volume.

Finally, Figure 9 shows the results of taking a captured
workload from the 4xSSD volume and replaying it on
the 9xSSD volume. This figure shows that dependency
replay mode of hfplayer can accurately replay a work-
load on a scaled storage even if the performance variation
between the source and target is not significant. For ex-
ample, mkfs is a single threaded application that typically
does synchronous I/O with one in-flight request at a time.
Therefore, as we see in this figure, both the source and
target storage devices have the same IOPS value (solid
black and solid gray bars). That is because only one SSD
produces the throughput at any point in time with one
in-flight I/O request. This is the worst case for hfplayer
with dependency replay with an IOPS error rate less than
30%, compared to less than 10% IOPS error rates in all
other cases.

6. Related Work
Various trace replay tools have been developed at file

system level. For example, Joukov et al. developed Re-
playfs [9], a tool that can replay file system I/O traces
that were captured at the VFS level. Zhu et al. proposed
TBBT [25], an NFS trace replay tool that automatically
detects and recovers missing file system I/O operations
in the trace. Mesnier et al. proposed //TRACE [11] for re-
playing traces of parallel applications. It achieves a high
accuracy in terms of inter-node data dependencies and
inter-I/O compute times for individual nodes by utiliz-
ing a throttling technique. More recently, Weiss et al. de-
signed ARTC [24], a new method of replaying system call
traces of multi-threaded applications which can explore
some non-deterministic properties of the target applica-
tion. However, as we mentioned in Section 1 none of these
replay tools are capable to reproduce high-throughput
workload due to intrinsic file system overhead. More
recently, Pereria et al. compares the replay accuracy of
ARTC with TBBT [13].

There are several other block I/O replay tools. Liu et al.
designed TRACER [10], a replay tool used for evaluating
storage system energy efficiency. It can selectively replay
a certain percentage of a real world block I/O trace to
reach different levels of workload intensity by filtering
trace entries uniformly. Anderson et al. proposed But-
tress [6] as a toolkit to replay block traces with a loose
timing accuracy of 100µs more than 10 years ago. This
tool uses synchronous I/O and thus requires instantiat-
ing a great number of threads in order to achieve a high
number of outstanding I/O requests on the target storage
system. Therefore, its replay performance and scalability
are limited by the threading overhead and cannot keep
up with the capabilities of modern SAN storage systems.
Sivathanu et al. proposed a load-aware trace replay [16]

that aims to preserve the same I/O load pattern of the orig-
inal application traces irrespective of the performance of
the target storage system. However, we have evaluated
this technique in Section 5.2 and demonstrated that it
cannot replay a workload on the scaled target storage ac-
curately.

More recently, Tarihi et al. proposed DiskAccel [22], a
sampling methodology to accelerate trace replay on con-
ventional disk drives. DiskAccel uses a weighted variant
of the K-Means clustering algorithm to select represen-
tative intervals of the I/O trace file. These I/O intervals
instead of the whole trace are then replayed on the target
disk drive. Therefore, a week long captured I/O trace file
can be replayed in about an hour, while maintaining the
same average I/O response-time. Moreover, Tarasov et
al. proposed a flexible workload modeling technique that
extract a mathematical model from the block trace [20].
This model is then used as an input for a benchmark tool
to reproduce the workload. These trace reduction and
modeling methodologies are complementary to our work
and can be used to shrink the trace size and I/O work-
load duration with hfplayer as well. DiskAccel also im-
plements a method to enforce I/O requests dependency
during the replay job. However, due to the lack of block
I/O dependency information, it assumes all reads requests
are dependent and all write requests are independent. In
contrast, hfplayer infers dependency information without
such an unrealistic assumption.

Finally, Tarasov mentioned a few limitations of the
workload replay on a scaled storage [18]. He described
the dependency replay as a viable approach but claimed
that approximation of I/O dependencies from the block
layer can add extra dependencies that does not exist in the
original workload. Therefore, the workload replay effort
might not be as accurate as workload modeling effort. In
this work, we have demonstrated a method to make an
approximation of the I/O dependencies and found that
the dependency workload replay can reproduce original
application workload on a scaled storage device.

7. Conclusions and Future Work
In this paper, we have introduced new methods to re-

play intensive block I/O trace in a scaled or unscaled envi-
ronments with more accuracy. First, we have proposed a
detailed analysis of various points preventing an accurate
replay in Linux I/O stack. Second, we have considered
the notion of dependency between block I/O requests and
then described how the hfplayer infers and replays events
in a dependency aware fashion on a scaled system, effi-
ciently propagating I/O-related performance gains along
dependency chains. Finally, we have provided a careful
evaluation of the hfplayer in both scaled and unscaled
environments. In the future, we seek to port our replay
tool to IBM’s AIX operating system.
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Abstract
Ensuring stable performance for storage stacks is im-

portant, especially with the growth in popularity of
hosted services where customers expect QoS guaran-
tees. The same requirement arises from benchmarking
settings as well. One would expect that repeated, care-
fully controlled experiments might yield nearly identi-
cal performance results—but we found otherwise. We
therefore undertook a study to characterize the amount
of variability in benchmarking modern storage stacks. In
this paper we report on the techniques used and the re-
sults of this study. We conducted many experiments us-
ing several popular workloads, file systems, and storage
devices—and varied many parameters across the entire
storage stack. In over 25% of the sampled configura-
tions, we uncovered variations higher than 10% in stor-
age performance between runs. We analyzed these vari-
ations and found that there was no single root cause: it
often changed with the workload, hardware, or software
configuration in the storage stack. In several of those
cases we were able to fix the cause of variation and re-
duce it to acceptable levels. We believe our observations
in benchmarking will also shed some light on addressing
stability issues in production systems.

1 Introduction
Predictable performance is critical in many modern
computer environments. For instance, to achieve good
user experience, interactive Web services require stable
response time [9, 20, 22]. In cloud environments users
pay for computational resources. Therefore, achieving
predictable system performance, or at least establish-
ing the limits of performance variation, is of utmost
importance for the clients’ satisfaction [37, 48]. In a
broader sense, humans generally expect repetitive ac-
tions to yield the same results and take the same amount
of time to complete; conversely, the lack of performance
stability, is fairly unsatisfactory to humans.

Performance variation is a complex issue and can
arise from nearly every layer in a computer system.
At the hardware level, CPU, main memory, buses, and
secondary storage can all contribute to overall perfor-
mance variation [9,22]. At the OS and middleware level,
when background daemons and maintenance activities
are scheduled, they impact the performance of deployed
applications. More performance disruptions come into
play when considering distributed systems, as applica-
tions on different machines have to compete for heavily
shared resources, such as network switches [9].

In this paper we focus on characterizing and analyz-
ing performance variations arising from benchmarking
a typical modern storage stack that consists of a file
system, a block layer, and storage hardware. Storage
stacks have been proven to be a critical contributor to
performance variation [18, 33, 40]. Furthermore, among
all system components, the storage stack is the corner-
stone of data-intensive applications, which become in-
creasingly more important in the big data era [8, 21].
Although our main focus here is reporting and analyz-
ing the variations in benchmarking processes, we believe
that our observations pave the way for understanding sta-
bility issues in production systems.

Historically, many experienced researchers no-
ticed how workloads, software, hardware, and the
environment—even if reportedly “identical”—exhibit
different degrees of performance variations in repeated,
controlled experiments [7, 9, 11, 22, 23]. We first en-
countered such variations in experiments using Ext4:
multiple runs of the same workload in a carefully con-
trolled environment produced widely different perfor-
mance results. Over a period of two years of collect-
ing performance data, we later found that such high per-
formance variations were not confined to Ext4. Over
18% of 24,888 different storage stack configurations that
we tried exhibited a standard deviation of performance
larger than 5% of the mean, and a range value (maxi-
mum minus minimum performance, divided by the av-
erage) exceeding 9%. In a few extreme cases, standard
deviation exceeded 40% even with numerous repeated
experiments. The observation that some configurations
are more stable than others motivated us to conduct a
more detailed study of storage stack performance varia-
tion and seek its root causes.

To the best of our knowledge there are no systematic
studies of performance variation in storage stacks. Thus,
our first goal was to characterize performance variation
in different storage stack configurations. However, mea-
suring this for even a single storage stack configuration
is time consuming; and measuring all possible stack con-
figurations is time-prohibitive. Even with a small frac-
tion of selected parameters, it could take more than 1.5
years of evaluation time (see Table 1). Therefore, in this
study we combined two approaches to reduce the con-
figuration space and therefore the amount of time to run
the experiments: (1) we used domain expertise to select
the most relevant parameters, and (2) we applied a Latin
Hypercube Sampling (LHS) to the configuration space.
Even for the reduced space, it took us over 33 clock days
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to complete these experiments alone.
We focused on three local file systems (Ext4, XFS,

and Btrfs) which are used in many modern local and dis-
tributed environments. Using our expertise, we picked
several widely used parameters for these file systems
(e.g., block size, inode size, journal options). We also
varied the Linux I/O scheduler and storage devices, as
they can have significant impact on performance. We
benchmarked over 100 configurations using different
workloads and repeated each experiment 10 times to bal-
ance the accuracy of variation measurement with the
total time taken to complete these experiments. We
then characterized performance variation from several
angles: throughput, latency, temporally, spatially, and
more. We found that performance variation depends
heavily on the specific configuration of the stack. We
then further dove into the details, analyzed and explained
certain performance variations. For example: we found
that unpredictable layouts in Ext4 could cause over 16–
19% of performance variation in some cases. We discov-
ered that the magnitude of variation also depends on the
observation window size: in one workload, 40% of XFS
configurations exhibited higher than 20% variation with
a window size of 60s, but almost all of them stabilized
when the window size grew to 400s. Finally, we ana-
lyzed latency variations from various aspects, and pro-
posed a novel approach for quantifying the impacts of
each operation type on overall performance variation.

Our paper has three key contributions: � (1) To the
best of our knowledge, we are the first to provide a de-
tailed characterization of performance variation occur-
ring in benchmarking a typical modern storage stack.
We believe our study paves the way towards the bet-
ter understanding of complex storage stack performance
variations, in both experimental and production settings.
� (2) We conducted a comprehensive study of stor-
age stack performance variation. Our analysis includes
throughput and latency, and both spatial and temporal
variations. � (3) We offer insights into the root causes
of some performance variations, which could help any-
one who seeks stable results from benchmarking storage
systems, and encourage more follow-up work in under-
standing variations in production systems.

The rest of the paper is organized as follows. §2 ex-
plains background knowledge. §3 describes our experi-
mental methodology. We list our experimental settings
in §4. §5 evaluates performance variations from multiple
dimensions. §6 covers related work. We conclude and
discuss future directions in §7.

2 Background
The storage stack is an essential part of modern com-
puter systems, and critical to the performance of data-
intensive applications. Often, the storage stack is the

slowest component in a system and thus is one of the
main contributors to the overall variability in a system’s
performance. Characterizing this variation in storage-
stack performance is therefore essential for understand-
ing overall system-performance variation.

We first define common performance metrics and no-
tations used in this paper. Throughput is defined as the
average number of I/O operations completed per second.
Here we use a “Throughput-N” notation to represent the
throughput within the last N seconds of an observation.
There are two types of throughput that are used most fre-
quently in our analysis. One is cumulative throughput,
defined as the throughout from the beginning to the end
of the experiment. In this paper, cumulative throughput
is the same as Throughput-800 or Throughput-2000, be-
cause the complete runtime of a single experiment was
either 800 or 2,000 seconds, depending on the workload.
The other type is called instantaneous throughput, which
we denote as Throughput-10. Ten seconds is the small-
est time unit we collected performance for, in order to
avoid too much overhead (explained further in § 4).

Since our goal is to characterize and analyze collected
experimental data, we mainly use concepts from de-
scriptive statistics. Statistical variation is closely related
to central tendency, which is an estimate of the center of
a set of values. Variation (also called dispersion or vari-
ability), refers to the spread of the values around the cen-
tral tendency. We considered the most commonly used
measure for central tendency—the mean: x̄ =

∑N
i=1 xi.

In descriptive statistics, a measure of variation is usu-
ally a non-negative real number that is zero if all read-
ings are the same and increases as the measurements be-
come more dispersed. To reasonably compare variations
across datasets with different mean values, it is common
to normalize the variation by dividing any absolute met-
ric of variation by the mean value. There are several
different metrics for variation. In this paper we initially
considered two that are most commonly used in descrip-
tive statistical analysis:

• Relative Standard Deviation (RSD): the RSD, (or
Coefficient of Variation (CV)) is

RSD =

√
1

N−1

∑N
i=1(xi − x̄)2

x̄
(1)

• Relative Range: this is defined as the difference be-
tween the smallest and largest values:

RelativeRange =
max(X)−min(X)

x̄
(2)

Because a range uses maximum and minimum values in
its calculation, it is more sensitive to outliers. We did
not want to exclude or otherwise diminish the signifi-
cance of performance outliers. We found that even a few
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long-running I/O operations can substantially worsen
actual user experience due to outliers (which are re-
producible). Such outliers have real-world impact, es-
pecially as more services are offloaded to the cloud, and
customers demand QoS guarantees through SLAs. That
is one reason why researchers recently have begun to fo-
cus on tail latencies [9, 17, 18]. In considering the two
metrics above, we felt that the RSD hides some of the
magnitudes of these variations—because using square
root tends to “compress” the outliers’ values. We there-
fore decided to use the Relative Range as our main met-
ric of variation in this work and the rest of this paper.

3 Methodology
Although we encountered storage stack performance
variations in past projects, we were especially struck
by this issue in our recent experiments on automated
recognition of optimal storage configurations. We found
that multiple runs of the same workload in a carefully
controlled environment could sometimes produce quite
unstable results. We later observed that performance
variations and their magnitude depend heavily on the
specific configuration of the storage stack. Over 18%
of 24,888 different storage stack configurations that we
evaluated (repeatedly over several workloads) exhibited
results with a relative range higher than 9% and relative
standard deviation higher than 5%.

Workloads also impact the degree of performance
variation significantly. For the same storage stack con-
figuration, experiments with different workloads could
produce different magnitudes of variation. For exam-
ple, we found one Btrfs configuration produces variation
with over 40% relative range value on one workload but
only 6% for another. All these findings led us to study
the characteristics and analyze performance variations in
benchmarking various storage stack configurations un-
der multiple workloads. Due to the high complexity of
storage stacks, we have to apply certain methodologies
in designing and conducting our experiments.

Reducing the parameter space. In this work we
focus on evaluating local storage stacks (e.g., Ext4,
Linux block layer, SSD). This is a useful basis for
studying more complex distributed storage systems
(e.g., Ceph [46], Lustre [27], GPFS [34], OpenStack
Swift [30]). Even a small variation in local storage sys-
tem performance can result in significant performance
fluctuations in large-scale distributed system that builds
on it [9, 25, 28].

Despite its simple architecture, the local storage stack
has a large number of parameters at every layer, result-
ing in a vast number of possible configurations. For in-
stance, common parameters for a typical local file sys-
tem include block size, inode size, journal options, and
many more. It is prohibitively time consuming and im-

Parameter Space #Unique
Params.

#Unique
Configs.

Time
(years)

Ext4 59 2.7× 1037 7.8× 1033

XFS 37 1.4× 1019 4.1× 1015

Btrfs 54 8.8× 1026 2.5× 1023

Expert Space 10 1,782 1.52
Sample Space 10 107 33.4 days

Table 1: Comparison for Parameter Spaces. Time is computed
by assuming 15 minutes per experimental run, 10 runs per con-
figuration and 3 workloads in total.

practical to evaluate every possible configuration ex-
haustively. As shown in Table 1, Ext4 has 59 unique
parameters that can have anywhere from 2 to numerous
allowed values each. If one experiment runs for 15 min-
utes and we conduct 10 runs for each configuration, it
will take us 7.8×1033 years of clock time to finish eval-
uating all Ext4 configurations.

Therefore, our first task was to reduce the parameter
space for our experiments by carefully selecting the most
relevant storage stack parameters. This selection was
done in close collaboration with several storage experts
that have either contributed to storage stack designs or
have spent years tuning storage systems in the field. We
experimented with three popular file systems that span
a range of designs and features. � (1) Ext4 [12] is a
popular file system that inherits a lot of internal struc-
tures from Ext3 [6] and FFS [26]) but enhances perfor-
mance and scalability using extents and delayed alloca-
tion. � (2) XFS [35,38] was initially designed for SGI’s
IRIX OS [38] and was later ported to Linux. It has at-
tracted users’ attention since the 90s thanks to its high
performance on new storage devices and its high scal-
ability regarding large files, large numbers of files, and
large directories. XFS uses B+ trees for tracking free
extents, indexing directory entries, and keeping track of
dynamically allocated inodes. � (3) Btrfs [5, 31] is a
complex file system that has seen extensive development
since 2007 [31]. It uses copy-on-write (CoW), allowing
efficient snapshots and clones. It has its own LVM and
uses B-trees as its main on-disk data structure. These
unique features are garnering attention and we expect
Btrfs to gain even greater popularity in the future.

For the three file systems above we experimented with
the following nine parameters. � (1) Block size. This
is a group of contiguous sectors and is the basic unit of
space allocation in a file system. Improper block size
selection can reduce file system performance by orders
of magnitude [18]. � (2) Inode size. This is one of
the most basic on-disk structures of a file system [3]. It
stores the metadata of a given file, such as its size, per-
missions, and the location of its data blocks. The inode
is involved in nearly every I/O operation and thus plays
a crucial role for performance, especially for metadata-
intensive workloads. � (3) Journal mode. Journaling is
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the write-ahead logging implemented by file systems for
recovery purposes in case of power losses and crashes.
In Ext4, three types of journaling modes are supported:
writeback, ordered, and journal [13]. The writeback
mode journals only metadata whereas the journal mode
provides full data and metadata journaling. In ordered
mode, Ext4 journals metadata only, but all data is forced
directly out to the disk prior to its metadata being com-
mitted to the journal. There is a trade-off between file
system consistency and performance, as journaling gen-
erally adds I/O overhead. In comparison, XFS imple-
ments metadata journaling, which is similar to Ext4’s
writeback mode, and there is no need for journaling
in Btrfs because of its CoW nature. � (4) Allocation
Group (AG) count. This parameter is specific to XFS
which partitions its space into regions called Alloca-
tion Groups [38]. Each AG has its own data structures
for managing free space and inodes within its bound-
aries. � (5) Nodatacow is a Btrfs mount-time option
that turns the CoW feature on or off for data blocks.
When data CoW is enabled, Btrfs creates a new version
of an extent or a page at a newly allocated space [31].
This allows Btrfs to avoid any partial updates in case
of a power failure. When data CoW is disabled, par-
tially written blocks are possible on system failures. In
Btrfs, nodatacow implies nodatasum and compression
disabled. � (6) Nodatasum is a Btrfs mount-time option
and when specified, it disables checksums for newly cre-
ated files. Checksums are the primary mechanism used
by modern storage systems to preserve data integrity [3],
computed using hash functions such as SHA-1 or MD5.
� (7) atime Options. These refer to mount options that
control the inode access time. We experimented with
noatime and relatime values. The noatime option tells
the file system not to update the inode access time when
a file data read is made. When relatime is set, atime
will only be updated when the file’s modification time is
newer than the access time or atime is older than a de-
fined interval (one day by default). � (8) I/O scheduler.
The I/O Scheduler manages the submission of block I/O
operations to storage devices. The choice of I/O sched-
uler can have a significant impact on the I/O stack perfor-
mance [4]. We used the noop, deadline, and Completely
Fair Queuing (CFQ) I/O schedulers. Briefly explained,
the noop scheduler inserts all incoming I/O requests into
a simple FIFO queue in order of arrival; the deadline
scheduler associates a deadline with all I/O operations
to prevent starvation of requests; and the CFQ scheduler
try to provide a fair allocation of disk I/O bandwidth for
all processes that requests I/O operations. � (9) Storage
device. The underlying storage device plays an impor-
tant role in nearly every I/O operation. We ran our ex-
periments on three types of devices: two HDDs (SATA
vs. SAS) and one (SATA) SSD.

File System Parameter Value Range

Ext4 Block Size 1024, 2048, 4096
Inode Size 128, 512, 2048, 8192

Journal Mode
data=journal, ordered,

writeback

XFS Block Size 1024, 2048, 4096
Inode Size 256, 512, 1024, 2048
AG Count 8, 32, 128, 512

Btrfs Node Size 4096, 16384, 65536

Special Options
nodatacow, nodatasum,

default

All atime Options relatime, noatime
I/O Scheduler noop, deadline, cfq

Storage Devices
HDD (SAS, SATA), SSD

(SATA)
Table 2: List of parameters and value ranges.

Table 2 summarizes all parameters and the values
used in our experiments.

Latin Hypercube Sampling. Reducing the parameter
space to the most relevant parameters based on expert
knowledge resulted in 1,782 unique configurations (“Ex-
pert Space” in Table 1). However, it would still take
more than 1.5 years to complete the evaluation of ev-
ery configuration in that space. To reduce the space
further, we intelligently sampled it using Latin Hyper-
cube Sampling (LHS), a method often used to construct
computer experiments in multi-dimensional parameter
spaces [19,24]. LHS can help explore a search space and
discover unexpected behavior among combinations of
parameter values; this suited our needs here. In statistics,
a Latin Square is defined as a two-dimensional square
grid where each row and column have only one sam-
ple; Latin Hypercube generalizes this to multiple dimen-
sions and ensures that each sample is the only one in the
axis-aligned hyper-plane containing it [24]. Using LHS,
we were able to sample 107 representative configura-
tions from the Expert Space and complete the evaluation
within 34 days of clock time (excluding lengthy analy-
sis time). We believe this approach is a good starting
point for a detailed characterization and understanding
of performance variation in storage stacks.

4 Experimental Setup and Workloads
This section details our experimental setup, which used
a variety of storage devices and workloads.

Hardware. Our experiments were conducted on four
identical Dell PowerEdge R710 servers equipped with
Intel Xeon quad-core 2.4GHz CPUs. To maintain re-
alistically high ratio of the dataset size to the RAM
size and ensure that our experiments produce enough
I/O, we limited the RAM size on all machines to
4GB. Each server has three types of storage devices in-
stalled: (1) 250GB Fujitsu SATA HDD with 5,400 RPM,
(2) 147GB Seagate SAS HDD with 15,000 RPM, and
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Workload Average # Files Time(s) I/O Size Num. of R/W
File Size Default Actual Default Actual Read Write Append Threads Ratio

Webserver 16KB 1,000 640,000 60 800 WF - 16KB 100 10:1
Fileserver 128KB 10,000 80,000 60 800 WF WF 16KB 50 1:2
Mailserver 16KB 1,000 640,000 60 2,000 WF - 16KB 16 1:1

Table 3: Filebench workload characteristics used in our experiments. WF stands for Whole-File read or write.

(3) 200GB Intel SATA SSD (MLC). This allowed us to
evaluate the impact of devices on storage stack perfor-
mance variation. On each device, we created a full-disk
partition. The machines ran an Ubuntu 14.04.1 LTS sys-
tem, with the kernel upgraded to version 4.4.12. We
also updated e2fsprogs, xfsprogs, and btrfs-progs to lat-
est version as of May, 2016.

Workloads. We used Filebench [14, 41] v1.5 to
generate various workloads in our experiments. In
each experiment, if not stated otherwise, we format-
ted and mounted the storage devices with a file sys-
tem and then ran Filebench. We used the follow-
ing three pre-configured Filebench macro-workloads:
� (1) Mailserver emulates the I/O workload of a multi-
threaded email server. It generates sequences of I/O
operations that mimic the behavior of reading emails
(open, read the whole file, and close), composing emails
(open/create, append, close, and fsync) and deleting
emails. It uses a flat directory structure with all the
files in one single directory, and thus exercises the abil-
ity of file systems to support large directories and fast
lookups. � (2) Fileserver emulates the I/O workload of
a server that hosts users’ home directories. Here, each
thread represents a user, which performs create, delete,
append, read, write, and stat operations on a unique set
of files. It exercises both the metadata and data paths of
the targeted file system. � (3) Webserver emulates the
I/O workload of a typical static Web server with a high
percentage of reads. Files (Web pages) are read sequen-
tially by multiple threads (users); each thread appends to
a common log file (Web log). This workload exercises
fast lookups, sequential reads of small files and concur-
rent data and metadata management.

Table 3 shows the detailed settings of these work-
loads. All are set to Filebench default values, except
for the number of files and the running time. As the
average file size is an inherent property of a workload
and should not be changed [41], the dataset size is deter-
mined by the number of files. We increased the number
of files such that the dataset size is 10GB—2.5× the ma-
chine RAM size. By fixing the dataset size, we normal-
ized the experiments’ set-size and run-time, and ensured
that the experiments run long enough to produce enough
I/O. With these settings, our experiments exercise both
in-memory cache and persistent storage devices [42].

We did not perform a separate cache warm-up phase
in our experiments because in this study we were inter-

ested in performance variation that occurred both with
cold and warm caches [42]. The default running time
for Filebench is set to 60 seconds, which is too short to
warm the cache up. We therefore conducted a “calibra-
tion” phase to pick a running time that was long enough
for the cumulative throughput to stabilize. We ran each
workload for up to 2 hours for testing purposes, and fi-
nally picked the running time as shown in Table 3. We
also let Filebench output the throughput (and other per-
formance metrics) every 10 seconds, to capture and ana-
lyze performance variation from a short-term view.

5 Evaluation
In this work we are characterizing and analyzing storage
performance variation from a variety of angles. These
experiments represent a large amount of data, and there-
fore, we first present the information with brief expla-
nations, and in subsequent subsections we dive into de-
tailed explanations. §5.1 gives an overview of perfor-
mance variations found in various storage stack configu-
rations and workloads. §5.2 describes a case study by us-
ing Ext4-HDD configurations with the Fileserver work-
load. §5.3 presents temporal variation results. Here,
temporal variations consist of two parts: changes of
throughput over time and latency variation.

5.1 Variation at a Glance
We first overview storage stack performance variation
and how configurations and workloads impact its mag-
nitude. We designed our experiments by applying the
methodology described in §3. We benchmarked config-
urations from the Sample Space (see Table 1) under three
representative workloads from Filebench. The workload
characteristics are shown in Table 3. We repeated each
experiment 10 times in a carefully-controlled environ-
ment in order to get unperturbed measurements.

Figure 1 shows the results as scatter plots broken
into the three workloads: Mailserver (Figure 1(a)), File-
server (Figure 1(b)), and Webserver (1(c)). Each sym-
bol represents one storage stack configuration. We use
squares for Ext4, circles for XFS, and triangles for
Btrfs. Hollow symbols are SSD configurations, while
filled symbols are for HDD. We collected the cumula-
tive throughput for each run. As described in §2, we
define the cumulative throughput as the average num-
ber of I/O operations completed per second through-
out each experiment run. This can also be represented
as Throughput-800 for Fileserver and Webserver, and
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Figure 1: Overview of performance and its variation with different storage stack configurations under three workloads: (a)
Maileserver, (b) Fileserver, and (c) Webserver. The X axis represents the mean of throughput over 10 runs; the Y axis shows
the relative range of cumulative throughput. Ext4 configurations are represented with squares, XFS with circles, and Btrfs with
triangles. HDD configurations are shown with filled symbols, and SSDs with hollow ones.

Throughput-2000 for Mailserver, as per our notation. In
each subfigure, the Y axis represents the relative range
of cumulative throughputs across the 10 runs. As ex-
plained in §2, here we use the relative range as the mea-
sure of variation. A higher relative range value indicates
higher degree of variation. The X axis shows the mean
cumulative throughput across the runs; higher values in-
dicate better performance. Since performance for SSD
configurations is usually much better than HDD config-
urations, we present the X axis in log10 scale.

Figure 1 shows that HDD configurations are generally
slower in terms of throughput but show a higher varia-
tion, compared with SSDs. For HDDs, throughput varies
from 200 to around 2,000 IOPS, and the relative range
varies from less than 2% to as high as 42%. Conversely,
SSD configurations usually have much higher through-
put than HDDs, ranging from 2,000 to 20,000 IOPS de-
pending on the workload. However, most of them ex-
hibit variation less than 5%. The highest range for any
SSD configurations we evaluated was 11%.

Ext4 generally exhibited the highest performance
variation among the three evaluated file systems. For the
Mailserver workload, most Ext4-HDD configurations
had a relative range higher than 12%, with the highest
one being 42%. The Fileserver workload was slightly
better, with the highest relative range being 31%. Half
of the Ext4-HDD configurations show variation higher
than 15% and the rest between 5–10%. For Webserver,
the Ext4-HDD configuration varies between 6–34%. All
Ext4-SSD configurations are quite stable in terms of per-
formance variation, with less than 5% relative range.

Btrfs configurations show a moderate level of varia-
tion in our evaluation results. For Mailserver, two Btrfs-
HDD configurations exhibited 40% and 28% ranges of
throughput, and all others remained under 15%. Btrfs
was quite stable under the Fileserver workload, with
the highest variation being 8%. The highest relative
range value we found for Btrfs-HDD configurations un-
der Webserver is 24%, but most of them were below
10%. Similar to Ext4, Btrfs-SSD configurations were
also quite stable, with a maximum variation of 7%.

XFS had the least amount of variation among the three
file systems, and is fairly stable in most cases, as oth-
ers have reported before, albeit with respect to tail laten-
cies [18]. For Mailserver, the highest variation we found
for XFS-HDD configurations was 25%. In comparison,
Ext4 was 42% and Btrfs was 40%. Most XFS-HDD con-
figurations show variation smaller than 5% under File-
server and Webserver workloads, except for one with
11% for Fileserver and three between 12–23% for Web-
server. Interestingly, however, across all experiments for
all three workloads conducted on SSD configurations,
the highest variation was observed on one XFS configu-
ration using the Webserver workload, which had a rela-
tive range value of 11%.

Next, we decided to investigate the effect of work-
loads on performance variation in storage stacks. Fig-
ure 2 compares the results of the same storage stack con-
figurations under three workloads. These results were
extracted from the same experiments shown in Figure 1.
Although we show here only all Ext4-HDD configura-
tions, we have similar conclusions for other file systems
and for SSDs. The bars represent the relative range of 10
repeated runs, and correspond to the left Y1 axis. The
average throughput of 10 runs for each configuration is
shown as symbols, and corresponds to the right Y2 axis.
The X axis consists of configuration details, and is for-
matted as the six-part tuple 〈block size - inode size -
journal option - atime option - I/O scheduler - device〉.
We can see that some configurations remain unstable in
all workloads. For example, the configuration 2K-128-
writeback-relatime-deadline-SATA exhibited high per-
formance variation (around 30%) under all three work-
loads. However, for some configurations, the actual
workload played an important role in the magnitude of
variation. For example, in the configuration 2K-2K-
writeback-noatime-noop-SATA, the Mailserver work-
load varies the most; but in the configuration 4K-512-
ordered-relatime-noop-SATA, the highest range of per-
formance was seen on Fileserver. Finally, configura-
tions with SAS HDD drives tended to have a much
lower range variation but higher average throughput than
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Figure 2: Storage stack performance variation with 20 sampled Ext4-HDD configurations under three workloads. The range is
computed among 10 experiment runs, and is represented as bars corresponding to the Y1 (left) axis. The mean of throughput
among the 10 runs is shown with symbols (squares, circles, and triangles), and corresponds to the Y2 (right) axis. The X axis
represents configurations formatted by 〈block size - inode size - journal - atime - I/O scheduler - device〉.

SATA drives.

5.2 Case Study: Ext4
Identifying root causes for performance variation in the
storage stack is a challenging task, even in experimental
settings. Many components in a modern computer sys-
tem are not isolated, with complex interactions among
components. CPU, main memory, and secondary stor-
age could all contribute to storage variation. Our goal
was not to solve the variation problem completely, but
to report and explain this problem as thoroughly as we
could. We leave to future work to address these root
causes from the source code level [44]. At this stage,
we concentrated our efforts solely on benchmarking lo-
cal storage stacks, and tried to reduce the variation to an
acceptable level. In this section we describe a case study
using four Ext4 configurations as examples. We focused
on Ext4-HDD (SATA) here, as this combination of file
systems and device types produced the highest variations
in our experiments (see Figures 1 and 2).

Figure 3 shows results as two boxplots for the File-
server workload, where each box plots the distribution
of throughputs across the 10 runs, with the relative range
shown below. The top border represents the 1st quartile,
the bottom border the 3rd quartile, and the line in the
middle is the median value. Whiskers show the maxi-
mum and minimum throughputs. We also plotted one
dot for the throughput of each run, overlapping with the
boxes but shifted to the right for easier viewing. The
X axis represents the relative improvements that we ap-
plied based on our successive investigations and uncov-
ering of root causes of performance variation, while the
Y axis shows the cumulative throughput for each exper-
iment run. Note that the improvement label is prefixed
with a “+” sign, meaning that an additional feature was
added to the previous configuration, cumulatively. For
example, +umount actually indicates baseline + no lazy
+ umount. We also added labels on the bottom of each
subfigure showing the configuration details, formatted as
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Figure 3: Performance variation for 2 Ext4-HDD configura-
tions with several diagnoses. Each experiment is shown as
one box, representing a throughput distribution for 10 identical
runs. The top border line of each box marks the 1st quartile;
the bottom border marks the 3rd quartile; the line in the mid-
dle is the median throughput; and the whiskers mark maximum
and minimum values. The dots to the right of each box show
the exact throughputs of all 10 runs. The percentage numbers
below each box are the relative range values. The bottom label
shows configuration details for each figure.

〈block size - inode size - journal option - atime option -
I/O scheduler - device〉.

After addressing all causes we found, we were able to
reduce the relative range of throughput in these config-
urations from as high as 47% to around 2%. In the rest
of this section, we detail each root cause and how we
addressed it.

Baseline. The first box for each subfigure in Figure 3
represents our original experiment setting, labeled base-
line. In this setting, before each experimental run,
we format and mount the file system with the targeted
configuration. Filebench then creates the dataset on
the mounted file system. After the dataset is created,
Filebench issues the sync command to flush all dirty
data and metadata to the underlying device (here, SATA
HDD); Filebench then issues an echo 3 > /proc/sys/vm/-
drop caches command, to evict non-dirty data and meta-
data from the page cache. Then, Filebench runs the File-
server workload for a pre-defined amount of time (see
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Table 3). For this baseline setting, both Ext4-HDD con-
figurations show high variation in terms of throughput,
with range values of 47% (left) and 24% (right).
Lazy initialization. The first contributor to perfor-
mance variation that we identified in Ext4-HDD config-
urations is related to the lazy initialization mechanism in
Ext4. By default, Ext4 does not immediately initialize
the complete inode table. Instead, it gradually initializes
it in the background when the created file system is first
mounted, using a kernel thread called ext4lazyinit. After
the initialization is done, the thread is destroyed. This
feature speeds up the formatting process significantly,
but also causes interference with the running workload.
By disabling it during format time, we reduced the range
of throughput from 47% to 22% for Configuration 2048-
2048-writeback-noatime-noop-SATA. This improvement
is labelled +no lazy in Figure 3.
Sync then umount. In Linux, when sync is called, it
only guarantees to schedule the dirty blocks for writ-
ing: there is often a delay until all blocks are actually
written to stable media [29, 39]. Therefore, instead of
calling sync, we umount the file system each time af-
ter finishing creating the dataset and then mount it back,
which is labelled as +umount in Figure 3. After apply-
ing this, both Ext4-HDD configurations exhibited even
lower variation than the previous setting (disabling lazy
initialization only).
Block allocation and layout. After applying the
above improvements, both configurations still exhibited
higher than 16% variations, which could be unaccept-
able in settings that require more predictable perfor-
mance. This inspired us to try an even more strictly-
controlled set of experiments. In the baseline exper-
iments, by default we re-created the file system be-
fore each run and then Filebench created the dataset.
We assumed that this approach would result in iden-
tical datasets among different experiment runs. How-
ever, block allocation is not a deterministic procedure in
Ext4 [18]. Even given the same distribution of file sizes
and directory width, and also the same number of files
as defined by Filebench, multiple trials of dataset cre-
ation on a freshly formatted, clean file system did not
guarantee to allocate blocks from the same or even near
physical locations on the hard disk. To verify this, in-
stead of re-creating the file system before each run, we
first created the file system and the desired dataset on
it. We then dumped out the entire partition image using
dd. Then, before each run of Filebench, we used dd to
restore the partition using the image, and mounted the
file system back. This approach guaranteed an identical
block layout for each run.

Figure 3 shows these results using +alloc. We can see
that for both Ext4-HDD configurations, we were able
to achieve around 2% of variation, which verified our
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hypothesis that block allocation and layout play an im-
portant role in the performance variation for Ext4-HDD
configurations.

Storing the images of file systems using the dd com-
mand, however, could be too costly in practice, taking
hours of clock time. We found a faster method to gener-
ate reproducible Ext4 layouts by setting the s hash seed
field in Ext4’s superblock to null before mounting. Fig-
ure 4 shows the distribution of physical blocks for allo-
cated files in two sets of Fileserver experiments on Ext4.
This workload consists of only small files, resulting in
exactly one extent for each file in Ext4, so we used the
starting block number (X axis) to represent the corre-
sponding file. The Y axis shows the final cumulative
throughput for each experiment run. Here the lines start-
ing and ending with solid circles are 10 runs from the
experiment with the full-disk partition. The lines with
triangles represent the same experiments, but here we set
the s hash seed field in Ext4’s superblock to null. We
can see that files in each experiment run are allocated
into one cluster within a small range of physical block
numbers. In most cases, experimental runs with their
dataset allocated near the outer tracks of disks, which
correspond to smaller block numbers, tend to produce
higher throughput. As shown in Figure 4, with the de-
fault setting, datasets of 10 runs clustered in 10 differ-
ent regions of the disk, causing high throughput varia-
tion across the runs. By setting the Ext4 superblock pa-
rameter s hash seed to null, we can eliminate the non-
determinism in block allocation. This parameter deter-
mines the group number of top-level directories. By
default, s hash seed is randomly generated during for-
mat time, resulting in distributing top-level directories
all across the LBA space. Setting it to null forces Ext4 to
use the hard-coded default values, and thus the top-level
directory in our dataset is allocated on the same position
among different experiment runs. As we can see from
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Figure 4, for the second set of experiments, the ranges of
allocated block numbers in all 10 experiment runs were
exactly the same. When we set the s hash seed parame-
ter to null, the relative range of throughput dropped from
and 16.6% to 1.1%. Therefore, setting this parameter
could be useful when users want stable benchmarking
results from Ext4.

In addition to the case study we conducted on Ext4-
HDD configurations, we also observed similar results
for Ext4 on other workloads, as well as for Btrfs. For
two of the Btrfs-HDD configurations, we were able to
reduce the variation to around 1.2%, by using dd to store
the partition image. We did not try to apply any improve-
ments on XFS, since most of its configurations were al-
ready quite stable (in terms of cumulative throughput)
even with the baseline setting, as shown in Figure 1.

5.3 Temporal Variation
In Sections 5.1 and 5.2, we mainly presented and an-
alyzed performance variation among repeated runs of
the same experiment, and only in terms of through-
put. Variation can actually manifest itself in many other
ways. We now focus our attention on temporal varia-
tions in storage stack performance—the variation related
to time. §5.3.1 discusses temporal throughput variations
and §5.3.2 focuses on latency variations.

5.3.1 Throughput over Time
After finding variations in cumulative throughputs, we
set out to investigate whether the performance variation
changes over time within single experiment run.

To characterize this, we calculated the throughput
within a small time window. As defined in §2, we
denote throughput with window size of N seconds as
Throughput-N. Figure 5 shows the Throughput-120
value (Y axis) over time (X axis) for Btrfs-HDD, XFS-
HDD, and Ext4-HDD configurations using the File-
server workload.

Here we use a window size of 120 seconds, mean-
ing that each throughput value is defined as the average
number of I/O operations completed per second with the
latest 120 seconds. We also investigated other window
sizes, which we discuss later. The three configurations
shown here exhibited high variations in the experiments
discussed in §5.1. Also, to show the temporal aspect of
throughput better, we extended the running time of this
experiment set to 2 hours, and we repeated each exper-
iment 10 times. Two lines are plotted connecting the
maximum and minimum throughput values among 10
runs. We fill in colors between two lines, this producing
a color band: green for Btrfs, red for Ext4, and blue for
XFS. The line in the middle of each band is plotted by
connecting the average Throughput-120 value among 10
runs. We observed in Figure 1(b) that for the Fileserver
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Figure 5: Throughput-120 over time for Btrfs, XFS, and Ext4
HDD configurations under the Fileserver workload. Each con-
figuration was evaluated for 10 runs. Two lines were plotted
connecting maximum and minimum throughput values among
10 runs. We fill in colors between two lines, green for Btrfs,
red for Ext4, and blue for XFS. We also plotted the average
Throughput-120 among 10 runs as a line running through the
band. The maximum relative range values of Throughput-120
for Ext4, Btrfs, and XFS are 43%, 23%, and 65%, while the
minimum values are 14%, 2%, and 7%, respectively.

workload, Ext4-HDD configurations generally exhibited
higher variations than XFS-HDD or Btrfs-HDD config-
urations in terms of final cumulative throughput. How-
ever, when it comes to Throughput-120 values, Figure 5
leads to some different conclusions. The Ext4-HDD
configuration still exhibited high variation in terms of
short-term throughout across the 2 hours of experiment
time, while the Btrfs-HDD configuration is much more
stable. Surprisingly, the XFS-HDD configuration has
higher than 30% relative range of Throughput-120 val-
ues for most of the experiment time, while its range for
cumulative throughput is around 2%. This suggests that
XFS-HDD configurations might exhibit high variations
with shorter time windows, but produces more stable re-
sults in longer windows. It also indicates that the choice
of window sizes matters when discussing performance
variations.

We can see from the three average lines in Figure 5
that performance variation exists even within one single
run—the short-term throughput varies as the experiment
proceeds. For most experiments, no matter what the file
system type is, performance starts slow and climbs up
quickly in the beginning phase of experiments. This is
because initially the application is reading cold data and
metadata from physical devices into the caches; once
cached, performance improves. Also, for some period of
time, dirty data is kept in the cache and not yet flushed to
stable media, delaying any impending slow writes. Af-
ter an initial peak, performance begins to drop rapidly
and then declines steadily. This is because the read per-
formance already reached its peak and cached dirty data
begins to be flushed out to slower media. Around sev-
eral minutes in, performance begins to stabilize, as we
see the throughput lines flatten.

The unexpected difference in variations for short-term
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Figure 6: CDFs for relative range of throughput under Fileserver workload with different window sizes. For window size N,
we calculated the relative range values of throughput for all configurations within each file system type, and then plotted the
corresponding CDF.

and cumulative throughput of XFS-HDD configurations
lead us to investigate the effects of the time window size
on performance variations. We calculated the relative
range of throughput with different window sizes for all
configurations within each file system type. We present
the CDFs of these range values in Figure 6. For example,
we conducted experiments on 39 Btrfs configurations.
With a window size of 60 seconds and total running
time of 800 seconds, the corresponding CDF for Btrfs is
based on 39× 800

60 = 507 relative range values. We can
see that Ext4’s unstable configurations are largely unaf-
fected by the window size. Even with Throughput-400,
around 20% of Ext4 configurations produce higher than
20% variation in terms of throughput. Conversely, the
range values for Btrfs and XFS are more sensitive to the
choice of window size. For XFS, around 40% of the
relative range values for Throughput-60 are higher than
20%, whereas for Throughput-400, nearly all XFS val-
ues fall below 20%. This aligns with our early conclu-
sions in §5.1 that XFS configurations are relatively stable
in terms of cumulative throughput, which is indeed cal-
culated based on a window size of 800 seconds; whereas
XFS showed the worst relative range for Throughput-60,
it stabilized quickly with widening window sizes, even-
tually beating Ext4 and Btrfs.

All the above observations are based on the through-
put within a certain window size. Another approach is
to characterize the instant throughput within an even
shorter period of time. Figure 7 shows the instanta-
neous throughput over time for various configurations
under the Fileserver workload. We collected and cal-
culated the throughput every 10 seconds. Therefore we
define instantaneous throughput as the average number
of I/O operations completed in the past 10 seconds. This
is actually Throughput-10 in our notation. We normal-
ize this by dividing each value by the maximum instan-
taneous throughput value for each run, to compare the
variation across multiple experimental runs. The X axis
still shows the running time.

We picked one illustrative experiment run for each
configuration (Ext4-HDD, XFS-HDD, Btrfs-HDD, and
Ext4-SSD). We can see from Figure 7 that for all con-
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Figure 7: Normalized instantaneous throughput
(Throughput-10) over time for experiments with various
workloads, file systems, and devices. The Y axis shows the
normalized values divided by the maximum instantaneous
throughput through the experiment. Only the first 500s are
presented for brevity.

figurations, instantaneous performance fluctuated a lot
throughout the experiment. For all three HDD configu-
rations, the variation is even higher than 80% in the first
100 seconds. The magnitude for variation reduces later
in the experiments, but stays around 50%.

The throughput spikes occur nearly every 30 seconds,
which could be an indicator that the performance varia-
tion in storage stacks is affected by some cyclic activity
(e.g., kernel flusher thread frequency). For SSD config-
urations, the same up-and-down pattern exists, although
its magnitude is much smaller than for HDD configura-
tions, at only around 10%. This also confirms our find-
ings from §5.1 that SSDs generally exhibit more stable
behavior than HDDs.

5.3.2 Latency Variation
Another aspect of performance variation is latency, de-
fined as the time taken for each I/O request to complete.
Much work has been done in analyzing and taming
long-tail latency in networked systems [20, 22] (where
99.9th percentile latency is orders of magnitude worse
than the median), and also in local storage systems [18].
Throughout our experiments, we found out that long-tail
latency is not the only form of latency variation; there
are other factors that can impact the latency distribution
for I/O operations.
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Figure 8: Latency CDF of one Ext4-HDD configuration under Fileserver workload.

A Cumulative Distribution Function (CDF) is a com-
mon approach to present latency distribution. Fig-
ure 8(a) shows the latency CDFs for 6 I/O operations of
one Ext4-HDD configuration under the Fileserver work-
load. The X axis represents the latency in log10 scale,
while the Y axis is the cumulative percentage. We can
see that for any one experimental run, operations can
have quite different latency distribution. The latencies
for read, write, and create form two clusters. For exam-
ple, about 20% of the read operation has less than 0.1ms
latency while the other 80% falls between 100ms and 4s.
Conversely, the majority of stat, open, and delete opera-
tions have latencies less than 0.1ms.

The I/O operation type is not the only factor that im-
pacts the latency distribution. Figure 8(b) presents 10
CDFs for create from 10 repeated runs of the same ex-
periment. We can see for the 60th percentile, the latency
can vary from less than 0.1ms to over 100ms.

Different I/O operations and their latencies impact the
overall workload throughput to a different extent. With
the empirical data that we collected—per-operation la-
tency distributions and throughput—we were able to dis-
cover correlations between the speed of individual op-
erations and the throughput. We first defined a metric
to quantify the difference between two latency distribu-
tions. We chose to use the Kolmogorov-Smirnov test
(K-S test), which is commonly used in statistics to de-
termine if two datasets differ significantly [43]. For two
distributions (or discrete dataset), the K-S test uses the
maximum vertical deviation between them as the dis-
tance. We further define the range for a set of latency
distributions as the maximum distance between any two
latency CDFs. This approach allows us to use only
one number to represent the latency variation, as with
throughput. For each operation type, we calculated its
range of latency variation for each configuration under
all three workloads. We then computed the Pearson Cor-
relation Coefficient (PCC) between the relative range of
throughput and the range of latency variation.

Figure 9 shows our correlation results. The PCC value
for any two datasets is always between [-1,+1], where
+1 means total positive correlation, 0 indicates no corre-
lation, and –1 means total negative correlation. Gener-
ally, any two datasets with PCC values higher than 0.7
are considered to have a strong positive correlation [32],

which we show in Figure 9 with a horizontal dashed red
line. The Y axis represents the PCC value while the X
axis is the label for each operation. We separate work-
loads with vertical solid lines. As most SSD configura-
tions are quite stable in terms of performance, we only
considered HDD configurations here. For Ext4 configu-
rations, open and read have the highest PCC values on
both Mailserver and Webserver workloads; however, on
Fileserver, open and stat have the strongest correlation.
These operations could possibly be the main contribu-
tors to performance variation on Ext4-HDD configura-
tions under each workload; such operations would rep-
resent the first ones one might tackle in the future to help
stabilize Ext4’s performance on HDD. In comparison,
write has a PCC value of only around 0.2, which indi-
cates that it may not contribute much to the performance
variation. Most operations show PCC values larger than
0.4, which suggest weak correlation. This is possibly
because I/O operations are not completely independent
with each other in storage systems.

For the same workload, different file systems exhibit
different correlations. For example, under the Webserver
workload, Ext4 show strong correlation on both read
and open; but for XFS, read shows a stronger correla-
tion than open and write. For Btrfs, no operation had
a strong correlation with the range of throughput, with
only read showing a moderate level of correlation.

Although such correlations do not always imply direct
causality, we still feel that this correlation analysis sheds
light on how each operation type might contribute to the
overall performance variation in storage stacks.

6 Related Work
To the best of our knowledge, there are no system-
atic studies of performance variation of storage stacks.
Most previous work focuses on long-tail I/O latencies.
Tarasov et al. [40] observed that file system performance
could be sensitive to even small changes in running
workloads. Arpaci-Dusseau [2] proposed an I/O pro-
gramming environment to cope with performance vari-
ations in clustered platforms. Worn-out SSDs exhibit
high latency variations [10]. Hao et al. [16] studied
device-level performance stability, for HDDs and SSDs.

For long-tail latencies of file systems, He et al. [18]
developed Chopper, a tool to explore a large input space
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Figure 9: Pearson Correlation Coefficient (PCC) between throughput range and operation types, for three workloads and three
file systems. The horizontal dashed red line at Y=0.7 marks the point above which a strong correlation is often considered to exist.

of file system parameters and find behaviors that lead
to performance problems; they analyzed long-tail laten-
cies relating to block allocation in Ext4. In comparison,
our paper’s goal is broader: a detailed characterization
and analysis of several aspects of storage stack perfor-
mance variation, including devices, block layer, and the
file systems. We studied the variation in terms of both
throughput and latency, and both spatially and tempo-
rally. Tail latencies are common in network or cloud
services [9, 22]: several tried to characterize and miti-
gate their effects [17, 20, 37, 48], as well as exploit them
to save data center energy [45]. Li et al. [22] character-
ized tail latencies for networked services from the hard-
ware, OS, and application-level sources. Dean and Bar-
roso [9] pointed out that small performance variations
could affect a significant fraction of requests in large-
scale distributed systems, and can arise from various
sources; they suggested that eliminating all of them in
large-scale systems is impractical. We believe there are
possibly many sources of performance variation in stor-
age systems, and we hope this work paves the way for
discovering and addressing their impacts.

7 Conclusion
In this work we provided the first systematic study on
performance variation in benchmarking a modern stor-
age stack. We showed that variation is common in stor-
age stacks, although its magnitude depends heavily on
specific configurations and workloads. Our analysis re-
vealed that block allocation is a major cause of perfor-
mance variation in Ext4-HDD configurations. From the
temporal view, the magnitude of throughput variation
also depends on the window size and changes over time.
Latency distribution for the same operation type could
also vary even over repeated runs of the same exper-
iment. We quantified the correlation between perfor-
mance and latency variations using a novel approach.
Although most of our observations are made in exper-
imental settings, we believe they are a useful step to-
wards a thorough understanding of stability issues in
storage stacks of production systems. In conclusion, we
list three best practices for people either benchmarking
storage systems or dealing with performance variations
in real systems. The goal here is not to “teach,” but

rather provide some guidelines to the best of our knowl-
edge. � (1) Performance variation is a complex issue,
and could be caused and affected by various factors:
the file system, configurations of the storage system, the
running workload, or even the time window for quanti-
fying the performance. � (2) Non-linearity is inherent
in complex storage systems. It could lead to large dif-
ferences in results, even in well-controlled experiments;
conclusions drawn from these could be misleading or
even wrong. � (3) Disable all lazy initialization and any
background activities, if any, while formatting, mount-
ing, and experimenting on file systems.
Future Work. We believe that more work still needs
to be done to more fully understand the causes of dif-
ferent types of variation and especially to address them.
All experiments in this paper were conducted on freshly-
formatted file systems, and thus we only focused on per-
formance variations in such systems. We did not ana-
lyze aged file systems, a subject of our future work. We
plan to expand our parameter search space (e.g., com-
pression options in Btrfs [31]). Alas, Filebench currently
creates files by filling them with 0s, so first we have to
make Filebench output data with controlled compression
ratios. We plan to use other benchmarking tools such
as SPEC SFS 2014 [36] which comes with several pre-
configured and realistic workloads. We plan to expand
the study to new types of devices such as PCM [15, 47]
and SMRs [1], which have their own complex behavior
such as worse tail latencies due to internal garbage col-
lection [9, 10]. In the meanwhile, we will tackle other
storage layers (LVM, RAID) and networked/distributed
file systems. Finally, We plan to make all of our datasets
and sources public. This includes not only the data from
this work, but also a much larger dataset we continue to
collect (now over two years).
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Abstract

In data-intensive applications, such as databases and key-

value stores, reducing the request handling latency is im-

portant for providing better data services. In such appli-

cations, I/O-intensive background tasks, such as check-

pointing, are the major culprit in worsening the latency

due to the contention in shared I/O stack and storage.

To minimize the contention, properly prioritizing I/Os

is crucial but the effectiveness of existing approaches is

limited for two reasons. First, statically deciding the pri-

ority of an I/O is insufficient since high-priority tasks

can wait for low-priority I/Os due to I/O priority inver-

sion. Second, multiple independent layers in modern

storage stacks are not holistically considered by exist-

ing approaches which thereby fail to effectively prioritize

I/Os throughout the I/O path.

In this paper, we propose a request-centric I/O priori-

tization that dynamically detects and prioritizes I/Os de-

laying request handling at all layers in the I/O path. The

proposed scheme is implemented on Linux and is eval-

uated with three applications, PostgreSQL, MongoDB,

and Redis. The evaluation results show that our scheme

achieves up to 53% better request throughput and 42×
better 99th percentile request latency (84 ms vs. 3581

ms), compared to the default configuration in Linux.

1 Introduction

In data-intensive applications, such as databases and

key-value stores, the response time of a client’s re-

quest (e.g., key-value PUT/GET) determines the level

of application performance a client perceives. In this

regard, many applications are structured to have two

types of tasks: foreground tasks, which perform essen-

tial work for handling requests, and background tasks,

which conduct I/O-intensive internal activities, such as

checkpointing [31, 14, 3], backup [11, 9, 24, 18], com-

paction [21, 34, 38, 13], and contents filling [36]. The

∗Currently at Dell EMC

main reason for this form of structuring is to reduce re-

quest handling latency by taking off the internal activ-

ities from the critical path of request execution. How-

ever, background tasks are still interfering foreground

tasks since they inherently share the I/O path in a stor-

age stack. For example, background checkpointing in

relational database has known to hinder delivering low

and predictable transaction latency, but the database and

operating system (OS) communities have no reasonable

solution despite their collaborative efforts [12].

The best direction to resolve this problem in OS is to

provide an interface to specify I/O priority for a differen-

tiated storage I/O service. Based on this form of OS sup-

port, two important issues should be addressed: 1) decid-

ing which I/O should be given high priority, and 2) effec-

tively prioritizing high priority I/Os along the I/O path.

The conventional approaches for classifying I/O priori-

ties are I/O-centric and task-centric. These approaches

statically assign high priority to a specific type of I/O

(e.g., synchronous I/O [30, 2, 32]) and to I/Os issued by

a specific task (e.g., interactive task [42]). This I/O pri-

ority is typically enforced at the block-level scheduler or

at several layers [42, 43].

The previous approaches, however, have limitations in

achieving high and consistent application performance.

First, they do not holistically consider multiple indepen-

dent layers including caching, file system, block, and de-

vice layers in modern storage stacks. Missing I/O pri-

oritization in any of the layers can degrade application

performance due to delayed I/O processing in such lay-

ers (Section 2.1). Second, they do not address the I/O

priority inversion problem caused by runtime dependen-

cies among concurrent tasks and I/Os. Similar to the

priority inversion problem in CPU scheduling [35], low-

priority I/Os (e.g., asynchronous I/Os and background

I/Os) sometimes can significantly delay the progress of a

high-priority foreground task, thereby inverting I/O pri-

ority (Section 2.2). More seriously, I/O priority inver-

sions can occur across different layers in a storage stack.
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Due to these limitations, existing approaches are limited

in effectively prioritizing I/Os and result in suboptimal

performance.

In this paper, we introduce a request-centric I/O pri-

oritization (or RCP for short) that holistically prioritizes

critical I/Os (i.e., performance-critical I/Os) over non-

critical ones along the I/O path; we define a critical I/O

as an I/O in the critical path of request handling regard-

less of its I/O type and submitting task. Specifically,

our scheme identifies foreground tasks by exposing an

API and gives critical I/O priority to the foreground tasks

(Section 4.1). To handle I/O priority inversions, critical

I/O priority is dynamically assigned to a task or an out-

standing I/O on which a foreground task depends to make

progress (Section 4.2). Then, each layer in the I/O path

is adapted to prioritize the critical I/Os and to support

I/O priority inheritance (Section 4.3). We also resolve an

I/O priority inversion caused by a transitive dependency,

which is a chain of dependencies involving multiple tasks

(Section 4.4).

As a prototype implementation, we enlightened the

I/O path of the Linux kernel. Specifically, in order to

accurately identify I/O criticality, we implemented the

I/O priority inheritance to blocking-based synchroniza-

tion methods (e.g., mutex) in the Linux kernel. Based

on the identified I/O criticality, we made the Linux

caching layer, ext4 file system, and the block layer un-

derstand and enforce I/O criticality. Based on the proto-

type, we evaluated our scheme using PostgreSQL [10],

MongoDB [8], and Redis [22] with TPC-C [17] and

YCSB [25] benchmarks. The evaluation results have

shown that our scheme effectively improves request

throughput and tail latency (99.9th percentile latency) by

about 7–53% and 4.4–20×, respectively, without penal-

izing background tasks, compared to the default config-

uration in Linux.

2 Motivation and Related Work

Background I/O-intensive tasks, such as checkpointing

and compaction, are problematic for achieving the high

degree of application performance. We illustrate this

problem by running the YCSB [25] benchmark against

MongoDB [8] document store on a Linux platform with

two HDDs each of which is allocated for data and jour-

nal, respectively; see Section 7 for the details. As shown

in Figure 1, application performance represented as op-

erations per second is highly fluctuated with the CFQ [2],

the default I/O scheduler in Linux, mainly due to the con-

tention incurred by periodic checkpointing (60 seconds

by default) 1. Assigning low priority (idle-priority [7] in

CFQ) to the checkpoint task using the existing interface,

1The interference is not exactly periodic because the checkpointing

occurs 60 seconds after the completion of the previous checkpointing.
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Figure 1: Limitation of existing approaches. Update-

heavy workload in YCSB is executed against MongoDB.

denoted as CFQ-IDLE, is also ineffective in alleviat-

ing the performance interference. Moreover, Split-AFQ

(SPLIT-A) and Split-Deadline (SPLIT-D), the state-of-

the-art cross-layer I/O schedulers [43], also cannot pro-

vide consistent application performance even though the

checkpoint thread is given lower priority than foreground

ones; adjusting the parameters in the SPLIT-A/D (e.g.,

fsync() deadline) did not show any noticeable im-

provement. Likewise, QASIO [32], which tries to elimi-

nate I/O priority inversions, also shows frequent drops in

application performance.

The root causes of this undesirable result in the ex-

isting I/O prioritization schemes are twofold. First, the

existing schemes do not fully consider multiple indepen-

dent layers including caching, file system, and block lay-

ers in modern storage stacks. Prioritizing I/Os only in

one or two layers of the I/O path cannot achieve proper

I/O prioritization for foreground tasks. Second and more

importantly, the existing schemes do not address the I/O

priority inversion problem caused by runtime dependen-

cies among concurrent tasks and I/Os. I/O priority in-

versions can occur across different I/O stages in multi-

ple layers due to transitive dependencies. As shown by

RCP in Figure 1, the cliffs in application throughput can

be significantly mitigated if the two challenges are ad-

dressed. In the rest of this section, we detail the two chal-

lenges from the perspective of application performance

and discuss existing approaches.

2.1 Multiple Independent Layers

In modern OSes, a storage I/O stack is comprised of

multiple and independent layers (Figure 2). A caching

layer first serves reads if it has the requested block and

it buffers writes until they are issued to a lower layer. If

a read miss occurs or a writeback of buffered writes is

required, a file system generates block I/O requests and

passes them to a block layer. Then, the block layer ad-

mits an I/O request into a block-level queue and sched-

ules a queued I/O request to dispatch to a storage de-

vice. Finally, a storage device admits an I/O command

received from a host into a device-internal queue and
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Figure 2: Challenges in modern storage stacks. FG in a circle and a box means a foreground task and an I/O,

respectively. Likewise, BG in a circle and a box indicates a background task and an I/O each.

schedules a queued command to an internal device con-

troller. Though this form of layering with abstraction is

an essential part in computer systems for interoperability

and independent innovations across the layers, it makes

effective I/O prioritization strenuous because each layer

has independent policy with limited information.

In the caching layer, priority-agnostic admission con-

trol can harm the application performance. Modern

OSes, such as Linux [26] and Windows [40], control the

admission of buffered writes based on the dirty ratio of

available memory for ensuring system stability. How-

ever, since a single system-wide dirty ratio is applied to

all tasks, a foreground task can be blocked even if most

dirty pages are made by background tasks. Giving higher

I/O priority to the foreground task is ineffective unless

I/O priority is applied to the dirty throttling.

A file system forces specific ordering of writes for

consistent updates [39, 41, 19], thereby complicating ef-

fective I/O prioritization. For example, ext4 file system,

which is the default for most Linux distributions, en-

tangles buffered writes into a single, global, compound

transaction that needs to be durable atomically. Since a

file system transaction contains dirty pages from any file

written by any task, a foreground task calling fsync()

should wait for the completion of I/Os issued not only by

itself, but also by a background task.

In the block layer, many modern block I/O schedulers

already reflect the priority of I/Os in their scheduling.

However, priority-agnostic admission control can also

degrade the application performance. Typically, the size

of a block-level queue is limited to restrict memory usage

and to control disk congestion [42]. In this case, a burst

of background I/Os can significantly delay the process-

ing of a foreground I/O by quickly filling the available

slots in a block-level queue. The existing priority sched-

ulers cannot help to mitigate this problem because they

have no control of submitted I/Os that are not yet entered

the block-level queues.

Even after a foreground I/O becomes ready to dispatch

to a storage device, the processing of the foreground I/O

can be further prolonged. This is because the size of a

device-internal queue (e.g., NCQ [16]) is also limited

and a device firmware reorders I/O commands based on

the internal geometry of storage media for improving de-

vice throughput [44, 20]. Hence, a foreground I/O can be

staged because the queue slots are busy handling back-

ground I/Os. Furthermore, even if a foreground I/O can

be dispatched to the device, the device-internal schedul-

ing can delay the processing of the I/O because of its

internal scheduling policy.

2.2 I/O Priority Inversion

The most straightforward way of improving application

performance in the existence of background tasks would

be to prioritize foreground I/Os over background ones

and all I/O layers respect their priorities. However, this

simple prioritization is insufficient since I/O priority in-

versions caused by runtime dependencies can delays the

execution of a foreground task (Figure 2). Similar to

the priority inversion problem in CPU scheduling [35],

I/O priority inversions are problematic because the pro-

cessing of a background I/O on which a foreground task

depend can be arbitrarily delayed by other background

I/Os.

Two types of dependencies cause I/O priority inver-

sions: a task dependency and an I/O dependency. The

task dependency occurs when two tasks interact with

each other via synchronization primitives, such as a lock

and a condition variable. The dependency caused by a

lock complicates effective I/O prioritization because a

background task can be blocked waiting for an I/O within

a critical section that a foreground task needs to enter.

For instance, a foreground task attempting to write a file

can be blocked on an inode mutex if the mutex is al-

ready held by a background task concurrently writing

to the different part of that file. Likewise, the depen-
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dency caused by a condition variable also cause a sim-

ilar problem. A foreground task should indirectly wait

for the I/Os awaited by a background task that is go-

ing to signal the foreground task. For example in Linux

ext4, when a foreground task calls fsync(), it waits on

a specific condition variable which is signaled by jbd2

kernel thread, which could be busy completing journal

transactions for background tasks.

Meanwhile, the I/O dependency occurs between a task

and an outstanding I/O. Basically, the I/O dependency is

generated when a task needs to directly wait for the com-

pletion of an ongoing I/O in order to ensure correctness

and/or durability. For example, when a foreground task

calls fsync(), it blocks on the completion of a write

I/O that is asynchronously issued by a kernel thread (e.g.,

pdflush in Linux) for cleaning buffer cache. Once the

task and the I/O dependency-induced priority inversions

occur, the foreground task should wait for a long time

because each layer in the I/O path can arbitrarily prolong

the processing of low-priority background I/Os.

Unfortunately, resolving I/O priority inversions is

challenging for the following reasons. Firstly, depen-

dency relationships cannot be statically determined since

they depend on various runtime conditions, such as ex-

ecution timing, resource constraint, and client require-

ment. For example, a foreground task does not always

depend on the progress of a kernel thread handling file

system transaction since the kernel thread periodically

writes out transactions in background [4]. Secondly, de-

pendency occurs in a transitive manner involving mul-

tiple concurrent tasks blocked at either synchronization

primitives or various I/O stages in multiple layers. We

empirically found that a dependency sometimes cas-

caded in four steps due to the complex interaction be-

tween delayed allocation and crash-consistency mecha-

nism in a file system (Section 4.4). Finally, a dependency

relationship might not be visible at the kernel-level be-

cause of the extensive use of user-level synchronizations

(e.g., shared memory mutex) based on kernel-level sup-

ports (e.g., Futex [6]) in modern applications.

2.3 Related Work

Table 1 summarizes how the illustrated challenges are

addressed (or not) by the existing prioritization schemes.

CFQ [2] is a block-level I/O scheduler that supports mul-

tiple priority classes (real-time, best-effort, and idle) and

priority levels (0 to 7) [7]. However, CFQ prioritizes I/Os

only at the block-level queue. It does not consider the I/O

priority inversion problem as well as the prioritization at

the block queue admission stage.

Redline [42] adapts all I/O layers to limit the interfer-

ence from background tasks (e.g., virus scanner) for im-

proving responsiveness of interactive applications (e.g.,

web browser). Redline, however, lacks resolving I/O pri-

Scheme

Multiple I/O Priority

Independent Layers Inversion

Cache Filesystem Block Kernel User

CFQ [2] No No Yes No No

Redline [42] Yes Yes Yes No No

Split [43] Yes Yes Yes No No

QASIO [32] No No Yes Yes No

sCache [33] No No No Yes No

RCP Yes Yes Yes Yes Yes

Table 1: I/O prioritization challenges. This table shows

whether a specific challenge for effective I/O prioritiza-

tion is addressed or not in each previous work.

ority inversions that occur between foreground and back-

ground tasks in typical data-intensive applications.

Recently, Split [43], a cross-layer I/O scheduling

framework, is introduced to address the limitation of a

single-level I/O schedulers. Basically, Split provides ad-

ditional hooks to several layers for supporting correct

cause mapping, cost estimation, and reordering, in the

existence of the file system challenges like delayed allo-

cation and journaling [43]. Based on the proposed frame-

work, Split-AFQ and Split-Deadline have been imple-

mented to prove its effectiveness. Split-AFQ, a priority-

based scheduler using the Split framework, schedules

write I/Os including write() and fsync() at the

system-call layer to avoid the runtime dependencies

caused by file system journaling. Different from conven-

tional deadline schedulers, Split-Deadline provide dead-

line scheduling of fsync() calls. In addition, it aggres-

sively writes-back dirty data in background to make the

latency of fsync() more deterministic by minimizing

the file system transaction entanglement. Though Split

itself is a generic I/O scheduling framework, its repre-

sentative schedulers do not specifically consider the I/O

priority inversion problem despite its significance.

On the other side, QASIO [32] considers I/O pri-

ority inversions for improving system responsiveness.

However, QASIO solely focuses on the kernel-level de-

pendencies to asynchronous writes based on the analy-

sis of the several mobile app scenarios. Furthermore,

sCache [33] fully considers I/O priority inversions at the

kernel-level in order to effectively utilize non-volatile

write caches. Both QASIO and sCache, however, do not

consider I/O priority inversions at the user-level. More-

over, they do not address the challenges in the I/O path

for effective I/O prioritization.

Though several challenges have been separately ad-

dressed in the previous work, we argue that only a holis-

tic approach can deliver consistently high application

performance as in Figure 1. This is because the I/O pri-

ority inversion problem can be worsened when combined

with multiple layers as a dependency transitively occurs

across layers. Our scheme (RCP) addresses all the chal-

lenges in Table 1 by enlightening the I/O path and resolv-

ing the kernel- and user-level I/O priority inversions.
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3 Our Approach

In this work, we classify I/Os into two priority levels:

(performance) critical and non-critical I/Os. In particu-

lar, we define a critical I/O as an I/O in the critical path

of request handling since the response time of a request

determines the level of application performance.

The proposed classification is distinguished from con-

ventional I/O classification schemes: I/O-centric and

task-centric classifications (Figure 3). The I/O-centric

classification differentiates the priority of each I/O based

on its operation type (e.g., synchronous I/Os over asyn-

chronous ones [30, 2, 32]). On the other side, the

task-centric classification distinguishes the I/Os based

on issuing tasks (e.g., foreground I/Os over background

ones [42]). These static classification schemes, however,

are inadequate for identifying the (performance) criti-

cality of I/Os. In our request-centric viewpoint, syn-

chronous I/Os (e.g., checkpoint writes) and foreground

I/Os (e.g., buffered writes) can be non-critical whereas

asynchronous I/Os and background I/Os can sometimes

be critical due to the runtime dependencies.

Based on the I/O criticality classification, we intro-

duce a request-centric I/O prioritization (or RCP) that

identifies critical I/Os and prioritizes them over non-

critical ones along the I/O path. This form of two-level

I/O prioritization is effective for many cases since back-

ground tasks are ubiquitous in practice. For example, ac-

cording to a Facebook developer: “... There are always

cleaners and compaction threads that need to do I/O, but

shouldn’t hold off the higher-priority ”foreground” I/O.

... Facebook really only needs two (or few) priority lev-

els: low and high.” [5].

Our goals for realizing RCP are twofold: 1) min-

imizing application modification for detecting critical

I/Os, and 2) processing background tasks in a best-

effort manner while minimizing the interference to fore-

ground tasks. The following section describes our design

for effectively identifying and enforcing I/O criticality

throughout the I/O path.

4 I/O Path Enlightenment

4.1 Enlightenment API

The first step to identifying critical I/Os is to track a set

of tasks (i.e., foreground tasks) involved in request han-

dling and this can be done in two ways: system-level and

application-guided approaches. A system-level approach

infers foreground tasks by using information available

in the kernel. Though this approach has the benefit of

avoiding application modification, it may induce runtime

overhead for the inference and the possibility of misiden-

tification. In contrast, an application-guided approach

can accurately identify foreground tasks without runtime

overheads at the expense of application modification.

Figure 3: Comparison with conventional approaches.

We chose the application-guided approach for accu-

rate detection of foreground tasks without burdening the

OS kernel. In particular, we provide an enlightenment in-

terface to user-level so that an application developer (or

an administrator if possible) can dynamically set/clear

a foreground task based on application-level semantics.

The foreground task can be from a short code section to

an entire life of a thread depending on where set/clear

APIs are called. The simplicity of using APIs makes

developers easily prioritize critical I/Os in their appli-

cations. We believe the modification cost is also low

in practice because typical data-intensive applications

already distinguish foreground tasks from background

tasks; see Section 6 for the details.

Since the API is solely used for deciding I/O critical-

ity in the OS kernel, a wrong API call does not affect

the correct execution of an application. However, API

abuse by a malicious or a thoughtless application/tenant

may compromise performance isolation among multiple

applications/tenants sharing a storage stack. This prob-

lem can be solved by integrating RCP to a group-based

resource management (e.g., cgroup in Linux [37]). Ad-

dressing this issue is out of scope of this paper.

4.2 I/O Priority Inheritance

Based on the enlightenment API, we basically regard a

synchronous I/O issued by a foreground task as a critical

I/O. This obvious identification, however, is insufficient

for detecting all critical I/Os because runtime dependen-

cies cause background I/Os to be awaited by foreground

tasks indirectly (Section 2.2). Hence, the next step for

critical I/O detection is to handle I/O priority inversions

caused by runtime dependencies. To this end, we intro-

duce I/O priority inheritance that temporarily gives crit-

ical I/O priority to a background task (Section 4.2.1) or

a background I/O (Section 4.2.2) on which a foreground

task depends to make progress.

4.2.1 Handling Task Dependency

Kernel-level dependency. Resolving the lock-induced

dependency has been well-studied in the context of CPU

scheduling [35]. Inspired by the previous work, we re-

solve the lock-induced dependency by inheriting critical

I/O priority to a background task when it blocks a fore-

ground task until it leaves a critical section. Specifically,

we record an owner task into each lock object (e.g., mu-

tex). When a task is blocked to acquire a lock, the lock
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owner inherits I/O priority of the waiting task. The in-

herited priority is revoked when the owner task exits the

critical section. This inheritance procedure is repeated

until the foreground task acquires the lock. Note that we

consider only blocking-based locks since spinning-based

locks are not involved with I/O waiting.

Unlike the case of locks, there is no distinct owner in a

condition variable at the time of dependency occurs. To

deal with the condition varible-induced dependency, we

borrow a solution in previous work [27]. In particular,

a task is registered as a helper task [27] into the corre-

sponding object of a condition variable when the task is

going to signal the condition variable. Later, the helper

task inherits I/O priority of a task blocked to wait for

the condition become true. The inherited I/O priority is

revoked when the helper task finally signals the waiting

task. In the kernel-level, this approach is viable because

only a few condition variables and threads cause the run-

time dependencies.

User-level dependency. The key challenge in han-

dling the user-level dependency is that the OS kernel can-

not clearly identify a dependency relationship resulted

from user-level synchronizations. For user locks, the ker-

nel cannot determine the owner because a user lock vari-

able is located in a shared memory region and modified

through atomic operations (e.g., cmpxchg in x86) to in-

dicate the lock status. This is an intrinsic optimization

to eliminate unnecessary kernel interventions in the un-

contended cases. The kernel is involved only when to

block or to wake up lock waiters via a system call (e.g.,

sys futex()). As a consequence, the OS kernel can

see only the waiters failed to acquire a user-level lock.

To detect the owner of a user lock, we adjust a user

lock primitive (e.g., pthread mutex lock()) to ad-

ditionally pass down the information of the owner when

a task should block in the kernel due to lock contention.

In practice, this can be readily done without modifying

existing interfaces; see Section 5 for our implementation.

Based on the delivered information, the kernel can prop-

erly inherit the I/O priority of a waiting task to a lock-

holder task. Note that this modification does not entail

the kernel intervention in uncontended cases.

Unlike the condition variable-induced dependency in

kernel-level, handling such dependency in user-level is

difficult because it is hard to pinpoint helper tasks for

condition variables. Modern applications extensively use

user-level condition variables for various purposes. For

instance, we found over a hundred of user-level condi-

tion variables in the source code of MongoDB. There-

fore, properly identifying all helper tasks is not trivial

even for an application developer.

We adopt an inference technique that identifies a

helper task based on usage history of each user-level con-

dition variable. Typically, a background task is dedicated

to a specific activity like logging, checkpointing, com-

paction, and buffer cleaning. Hence, a task signaling

a condition is highly likely signal the condition again.

Based on this observation, a background task is regis-

tered as a helper task when it signals a user-level condi-

tion variable. Then, the helper task inherits critical I/O

priority of a foreground task when the foreground task

needs to block on the user-level condition variable. The

helper task is unregistered when it does not signal again

for a specific time window.

4.2.2 Handling I/O Dependency

Properly resolving a dependency to an outstanding I/O

is complicated because the dependent I/O can be in any

stage in the block layer at the time of the dependency

occurs. For example, an outstanding I/O can be in ad-

mission control stage waiting for the available slots of a

block-level queue. Hence, we need to track the status of

an ongoing non-critical I/O and appropriately reprioritize

it according to the current location when required.

For tracking outstanding non-critical I/Os, we add an

ncio data structure that stores an I/O descriptor, cur-

rent location, and the descriptor of a requesting task. An

ncio object is allocated when an incoming I/O is clas-

sified as non-critical at the entrance of the block layer,

and inserted to a per-device list indexed by starting sec-

tor number. The fields including I/O descriptor and cur-

rent location in the ncio object are properly updated as

the corresponding I/O flows along the I/O path. The allo-

cated ncio object is freed when the corresponding I/O

is reclassified or dispatched to a device.

When a dependency to an ongoing non-critical I/O oc-

curs, the per-device ncio list is searched to find the cor-

responding ncio object. Then, the non-critical I/O is

reclassified as critical I/O based on the information in

the I/O descriptor stored in an ncio object if the cor-

responding ncio object is found. In this case, we may

need to conduct additional chores according to the cur-

rent location of the dependent I/O; we present the details

in the following subsection.

The runtime overhead for maintaining the ncio struc-

ture is fairly small. In our implementation, we used a

red-black tree for fast lookup. The memory cost is also

limited because the number of outstanding non-critical

I/Os is limited (128 by default) by the admission control

mechanism at the block layer.

4.3 Criticality-Aware I/O Prioritization

As we discussed in Section 2.1, prioritizing critical I/Os

only within a single layer (e.g., scheduling in a block-

level queue) is ineffective for improving application per-

formance. Hence, we adapt each layer in the I/O path to

make it understand and enforce the I/O criticality.
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In the caching layer, similar to the approach in [42],

we apply separate dirty ratios to tasks issuing critical

and non-critical writes, respectively. For tasks issuing

non-critical writes, the applied dirty ratio is low (1% by

default) to mitigate the interference to foreground tasks.

With the lowered limit, a background task writing a large

amount of data to buffer cache cannot fill all the available

space since it should block until the current dirty ratio

drops below the configured ratio. As a consequence, a

foreground task is not blocked by a burst of background

writes. Moreover, a foreground task calling fsync()

does not need to depend on a large amount of dirty data

generated by background tasks resulting from the file

system ordering requirement [42, 43].

In the admission control stage at the block layer, we

separately allocate the block queue slots for critical and

non-critical I/Os, respectively, so that the admission con-

trol is isolated between critical and non-critical I/Os. To

resolve the dependency to the I/O blocked at this stage,

we transiently give critical I/O priority to the request-

ing task recorded in the corresponding ncio object and

wake up the task to make it retry allocation of available

slot with critical I/O priority. By doing so, the criticality-

inherited I/O can avoid the unnecessary congestion with

other non-critical I/Os during the admission.

We also designed a simple priority-based I/O sched-

uler at the block layer. In particular, our scheduler main-

tains two FIFO queues that are dedicated for critical

and non-critical I/Os each. Then, all I/Os in the criti-

cal queue is dispatched first before any I/O in the non-

critical queue. To prevent starvation, we use a timer

to monitor the non-critical queue and guarantee that at

least one non-critical I/O is processed per unit of time

(10 ms by default). Furthermore, we added queue pro-

motion support into our scheduler for properly handling

a dependency to a non-critical I/O staged at the block-

level queue. In order to minimize the interference at the

device-level, we conservatively limit the number of non-

critical I/Os dispatched to a storage device; this number

is configurable and we use one by default. This form of

limiting is common in practice for improving responsive-

ness [2, 36]. Our scheme can be integrated with an exist-

ing feature-rich scheduler like Linux CFQ at the expense

of additional work to support the I/O priority inheritance.

4.4 Handling Transitive Dependency

Transitive dependencies make effective I/O prioritization

more challenging. Consider a dependency chain of tasks

(τ1,τ2, ...,τn) where each task τi(1≤ i≤ n−1) is blocked

due to a task dependency to τi+1. The last task τn can be

in one of the three states: runnable, blocked due to I/O

dependency, and blocked at the admission control stages.

If τn is runnable or blocked due to the I/O dependency,

the transitive dependency can be resolved by inheriting

the critical I/O priority through the dependency chain.

However, if τn is blocked at one of the admission

stages, inheriting the critical I/O priority is insufficient

because the cause of the blocking should also be re-

solved. To handle this case, the applied dirty ratio at

the caching layer is transiently changed to that of criti-

cal I/Os and the blocked task is woken up. At the block

layer, similar to the I/O dependency resolution, the crit-

ical I/O priority is transiently inherited by the blocked

task and the task is woken up. Then, the awakened task

retries the admission with the changed I/O priority.

In order to resolve the transitive dependencies, we

record a blocking status into the descriptor of a task when

the task is about to be blocked. A blocking status con-

sists of blocking cause and an object to resolve the cause.

Blocking cause can be one of task dependency, I/O de-

pendency, and blocking at admission control stage. For

the task dependency cause, a corresponding object of

lock or condition vatiable is recorded. For the I/O depen-

dency cause, an I/O descriptor (i.e., block device identi-

fier and sector number) is recorded. No additional object

is recorded for the blocking at admission control stage.

Based on the recorded blocking status, a foreground task

can effectively track and resolve the blocking causes in

the transitive dependencies.

In our experiments, at most four steps of transitive de-

pendency has occurred. In particular, a foreground task

is blocked on an inode mutex for file writes. The mutex

is held by a background task and the task is also blocked

waiting for the signal by a journaling daemon since the

task tries to open a new file system transaction. The jour-

naling daemon is also waiting for the completion of up-

dating journal handle by another background task. The

last background task is blocked on the admission control

stage of the block layer because the task is issuing a burst

of writeback for carrying out delayed allocation.

5 Implementation on Linux

We implemented our schemes in Linux 3.13 including

around 3100 lines of additional code. A task descriptor

has a field indicating whether this task is a foreground

task or not. The field is set/cleared by using an existing

setpriority() system call interface; unused values

are used. To denote I/O crticality, a bi rw field in bio

and cmd flags field in request data structures are

given an extra flag. These flags are used for the admis-

sion control and I/O scheduling at the block layer.

We implemented the I/O priority inheritance to

mutex, rw semaphore, and semaphore. In ad-

dition, we resolved the condition variable-induced task

dependency in Linux journaling layer (i.e., jbd2). We

registered jbd2 kernel thread as a helper task for the

condition variables j wait trasnaction locked

and j wait done commit. For the condition vari-
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able j wait updates, a helper task is dynamically

assigned and removed since a helper task can be any

task having a user context. The three condition vari-

ables are specific to ext4, which can hinder the adop-

tion of our scheme to other file systems. A good start-

ing point for identifying condition variables causing run-

time dependencies is to inspect the wait queues (i.e.,

wait queue head t) defined in a file system. For ex-

ample, only nine and three wait queues need to be in-

spected for integrating with xfs and f2fs, respectively.

The I/O priority inheritance for resolving the user-

level dependency is implemented in Futex [6] and Sys-

tem V Semaphore [15] (SysV sem for short). The

priority inheritance in Futex (FUTEX LOCK PI) is ex-

ploited and a similar method is implemented in SysV

sem with an additional owner field to sembuf. A

lock owner is recorded at user-level when acquiring a

lock and is passed down to the kernel when a waiter

is blocked. For the I/O dependencies, we implemented

the I/O priority inheritance to wait on bit() and

wait on bit lock() methods that are used to syn-

chronize with buffer pages. We attempt I/O prioriti-

zation at these methods when a task waits until a spe-

cific bit (PG locked, PG writeback, BH Lock, and

BH Shadow) is cleared. Note that BH Shadow is used

to protect a buffer page that are under journaling I/O for

guaranteeing file system consistency.

6 Application Studies

To validate the effectiveness of our scheme, we chose

three widely deployed data-intensive applications: Post-

greSQL [10] relational database v9.5, MongoDB [8]

document store v3.2, and Redis [22] key-value store

v3.0. For tagging foreground tasks, we inserted 15, 14,

and 2 lines of code to PostgreSQL, MongoDB, and Re-

dis, respectively. This result indicates that adopting the

enlightenment API is not complicating for typical data-

intensive applications.

PostgreSQL relational database. In PostgreSQL,

backend is dedicated to client for serving requests

while other processes, such as checkpointer, background

writer, log writer, and autovacuum worker, carry out

I/O jobs in background. The checkpointer periodically

flushes all dirty data buffers to disk and writes a spe-

cial checkpoint record to the log file, in order to truncate

transaction logs reflected to database, thereby bounding

storage space and crash recovery time. The background

writer periodically writes some dirty buffers to disk to

keep regular backend processes from having to write out

dirty buffers. Similarly, the log writer periodically writes

out the log buffer to disk in order to reduce the amount of

synchronous writes backend processes should perform at

commit time. The autovacuum worker reclaims storage

occupied by dead tuples since tuples deleted or obsoleted

by an update are not physically removed from their table.

We classified the backend processes as foreground

tasks. In addition, since PostgreSQL utilizes SysV sem

to implement LWLocks, which is a user-level mutex, we

modified LWLocks to pass down lock owner information

to the kernel. Note that the information is passed only

when a waiter is blocked.

MongoDB document store. In WiredTiger, which is

the default storage engine since MongoDB 3.2, back-

ground threads, such as log threads, eviction threads, and

a checkpoint thread, conduct internal activities, such as

logging and checkpointing, while client threads handle

external requests in foreground. The log threads period-

ically flush log buffers to an on-disk journal file. Like-

wise, the eviction threads write dirty pages in the inter-

nal cache to OS buffer cache for making free pages. The

checkpoint thread periodically flushes all dirty pages in

the internal cache to disk for consistency.

We classified the client threads as foreground

tasks. MongoDB extensively uses Pthread mutex

and condition variable. To handle user-level depen-

dency, we modified the protocol of Pthread mutex to

PTHREAD PRIO INHERIT to distinguish Pthread mu-

tex and condition variable at the kernel-level and to uti-

lize the priority inheritance implemented in Futex.

Redis key-value store. Redis has two options to pro-

vide durability: snapshotting and command logging. The

snapshotting periodically produces point-in-time snap-

shots of the dataset but does not provide complete dura-

bility since up to a few minutes of data can be lost.

Meanwhile, the command logging guarantees the com-

plete durability by synchronously writing an update log

to an append-only file before responding back to the

command. In the command logging, log rewriting is pe-

riodically conducted to constrain the size of the log file.

Similar to the other applications, the snapshotting and

log rewriting are conducted by child processes in back-

ground while a main server process serves all requests

sequentially. Hence, we classified the main server pro-

cess as a foreground task.

7 Evaluation

7.1 Experimental Setup

The evaluation system is a Dell PowerEdge R530 server

that is equipped with two Intel Xeon E5-2620 proces-

sors and 64 GB RAM. The CPU frequency is set to the

highest level and hyper-threading is enabled. A single 1

TB Micron MX200 SSD is used to store data sets for the

evaluation workloads. We used Ubuntu 14.04 with the

modified Linux kernel version 3.13 as an OS and ext4

file system mounted with the default options.

We used CFQ as the baseline for our experiments. In

addition, we used CFQ-IDLE to prioritize foreground
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Figure 4: PotsgreSQL request throughput.

tasks by putting background tasks (e.g., checkpointer)

to idle-priority [7]. We also used the split-level sched-

ulers [43], including Split-AFQ (SPLIT-A) and Split-

Deadline (SPLIT-D), and QASIO [32] for comparison.

For RCP, we configured 1% dirty ratio for non-critical

writes and 20% dirty ratio (the default ratio in Linux) for

critical writes. We separately allocated 128 slots for each

critical and non-critical block-level queues. The number

of non-critical I/Os outstanding to a storage device is lim-

ited to one, and the timeout for non-critical I/Os is set to

10 ms to prevent starvation at the block-level queue.

7.2 PostgreSQL Relational Database

We used the OLTP-Bench [28] to generate a TPC-C [17]

workload for PostgreSQL. We simulated 50 clients run-

ning on a separate machine for 30 minutes. PostgreSQL

was configured to have 40% buffer pool of the size of the

initial database and to checkpoint every 30 seconds. For

CFQ-IDLE and QASIO, we put the checkpointer to the

idle-priority. For SPLIT-A, we set the highest and the

lowest I/O priorities to backends and the checkpointer,

respectively. For SPLIT-D, we set 5 ms and 200 ms

fsync() deadlines to backends and the checkpointer,

respectively; the configurations are dictated from those

in [43]. We report transactions per second and transac-

tion latency as the performance metrics.

Request throughput. Figure 4 shows transaction

throughput averaged over three runs on an SSD with

100, 600, and 2000 TPC-C scale factors, which corre-

spond to about 10 GB, 60 GB, and 200 GB of initial

databases, respectively. We used unlimited request rate

(i.e., zero idle/think time) for this experiment. CFQ-

IDLE does not help to improve application throughput

though we put the major background task (i.e., check-

pointer) to idle-class priority because CFQ-IDLE prior-

itizes high-priority (foreground) I/Os only at the block-

level scheduler. SPLIT-A improves transaction through-

put only when read I/Os are dominant as scale factor in-

creases. This is because SPLIT-A does not consider the

I/O priority inversion problem and hinders foreground

tasks from fully utilizing the OS buffer cache by schedul-

ing writes at the system-call layer. As presented in [43],

SPLIT-D is effective in improving the PostgreSQL’s per-

formance mainly because it procrastinates the check-
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pointing task. Though QASIO addresses I/O priority

inversions induced by kernel-level dependencies, QA-

SIO does not show any noticeable improvement due to

the unresolved dependencies and the inability existed in

the block-level scheduler as in CFQ-IDLE. RCP outper-

forms the existing schemes by about 15%–37%, 8%–

28%, and 6%–31% for 100, 600, and 2000 scale factors,

respectively.

Impact on background task. To analyze the im-

pact of each scheme on the background task (i.e., check-

pointer), we measured the size of transaction logs during

the workload execution in the case of 100 scale factor. As

shown in Figure 5, CFQ, CFQ-IDLE, and QASIO com-

plete checkpointing task regularly as intended, thereby

bounding the size of transaction logs to 8GB in total.

SPLIT-A increases the size of transaction logs to 12GB.

On the other hand, SPLIT-D increases the size of transac-

tion logs by 3.6× over CFQ since it penalizes the regular

checkpoint by delaying every fsync() calls made by

the checkpointer until the dirty data of the requested file

drops to 100 pages. As a result, SPLIT-D leads to using

more storage space and possibly taking longer recovery

time, which are undesirable in practice [12]. RCP com-

pletes the checkpointing task as frequent as CFQ while

improving request throughput. Note that the log sizes

with the other scale factors show similar trend.

Request latency. In order to show the effectiveness of

RCP in terms of request latency, we ran rate-controlled

TPC-C workload (i.e., fixed number of transactions) with

100 scale factor. Figure 6 demonstrates a complemen-

tary cumulative distribution function (CCDF), and so the

point (x,y) indicates that y is the fraction of requests

that experience a latency of at least x ms. This form

of representation helps visualizing latency tails, as y-

axis labels correspond to the 0th, 90th, 99th (and so on)

percentile latencies. Though CFQ-IDLE, SPLIT-D, and

QASIO achieves better latency than CFQ, all the exist-

ing schemes induce several seconds request latency af-

ter 99th percentile. This is because the critical path of

request execution is arbitrarily prolonged at the various

stages in the I/O path. On the other hand, RCP bounds

request latency up to around 300 ms. We omit the la-

tency results with 600 and 2000 scale factors because it
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Latency (ms) CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

semtimedop 1351.8 (3.9) 3723.0 (4.2) 3504.4 (3.4) 1951.1 (3.4) 2241.7 (2.7) 247.8 (1.0)

j wait done commit 1282.9 (55.9) 1450.1 (66.0) 342.4 (6.4) 1886.1 (10.6) 198.0 (3.8) 23.9 (2.5)

PG writeback 490.2 (0.2) 1677.6 (0.1) 454 (0.2) 458.0 (0.2) 454.7 (0.1) 243.2 (0.1)

get request 481.8 (3.0) 3722.8 (22.0) 405.2 (1.3) 240.1 (2.8) 2241.1 (3.7) 1.3 (0.1)

j wait transaction locked 306.5 (68.8) 229.4 (53.2) 0.4 (0.1) 2.4 (0.2) 0.3 (0.1) 0.2 (0.1)

BH Lock 201.3 (40.3) 1339.7 (356.7) 1.1 (0.1) 53.9 (11.1) 0.0 (0.0) 1.7 (0.5)

rwsem down 92.4 (8.9) 357.1 (179.7) 0.8 (0.1) 33.4 (1.4) 0.0 (0.0) 2.3 (0.2)

BH Shadow 46.5 (2.9) 15.9 (2.9) 208.9 (3.8) 236.1 (14.1) 1294.0 (36.9) 2.4 (0.2)

mutex lock 32.7 (7.0) 16.3 (3.1) 18.6 (2.5) 944.3 (53.3) 53.3 (3.1) 0.4 (0.1)

write entry N/A N/A 1703.2 (1.8) 0.0 (0.0) N/A N/A

fsync entry N/A N/A 1084.4 (0.5) 0.0 (0.0) N/A N/A

Table 2: PostgreSQL system latency breakdown. This table shows the maximum latency incurred at each kernel

method in milliseconds; the corresponding average latency is presented in parenthesis.
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Figure 6: PostgreSQL request latency.

is similar to that with 100 scale factor.

To analyze the reason behind the performance differ-

ences, we measured the maximum and average wait time

of foreground tasks (i.e., PostgreSQL backends) in ker-

nel functions using LatencyTOP [29]. As shown in Ta-

ble 2, CFQ incurs tens to a thousand milliseconds la-

tency at various synchronization methods. In particular,

foreground tasks suffer from excessive latency at SysV

sem (semtimedop) and j wait done commit con-

dition variable. CFQ-IDLE additionally causes sev-

eral seconds latency waiting for the allocation of a

block-level queue slot (get request), the writeback

of cache pages (PG writeback), and the acquisition

of a buffer lock (BH Lock). SPLIT-A and -D are

effective in resolving the file system-induced depen-

dencies by scheduling writes at the system-call layer.

However, SPLIT-A causes over one second latency at

write entry and fsync entry because it prevents

foreground tasks from fully utilizing the OS buffer cache.

SPLIT-D also causes about one second latency at in-

ode mutex (mutex lock) due to the I/O priority in-

version. Though QASIO resolves some dependency-

induced latencies ocurred in CFQ-IDLE, it still incurs

excessive latencies at semtimedop, get request,

and BH Shadow. On the contrary, RCP bounds all the

latencies below 250 ms.

7.3 MongoDB Document Store

For MongoDB, we used the update-heavy workload

(Workload A) in the YCSB [25] benchmark suite. We

simulated 150 clients running on a separate machine for
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Figure 7: MongoDB request throughput.

30 minutes. MongoDB was configured to have internal

cache of size 40% of the initial data set. We applied the

identical configuration to client threads and checkpoint

thread as the PostgreSQL case for CFQ-IDLE, SPLIT-A,

SPLIT-D, and QASIO. We report operations per second

and operation latency as the performance metrics.

Request throughput. Figure 7 plots request through-

put averaged over three runs with 10, 60, and 200 million

objects, which correspond to about 10 GB, 60 GB, and

200 GB of initial data sets, respectively. As in the Post-

greSQL case, CFQ-IDLE and QASIO do not help to mit-

igate the interference from background tasks. Unlike the

case of PostgreSQL, SPLIT-D degrades request through-

put rather than improving due to the different application

design. MongoDB stores a collection of documents into

a single file whereas PostgreSQL splits a database into

multiple 1 GB-sized files. Hence, the checkpoint thread

in MongoDB writes whole data set to the collection file

and then calls fsync() to the file. In this case, SPLIT-

D cannot help to prevent write entanglement since it does

not schedule writes at the system-call layer. Meanwhile,

scheduling writes at the system-call layer (SPLIT-A) is

not also effective because buffered writes are handled

slowly as in the PostgreSQL case. On the other hand,

RCP improves request throughput by about 53%–152%,

12%–136%, and 12%–201% for 10, 60, and 200 million

objects, respectively, compared to the existing schemes.

Request latency. Figure 8 shows CCDF of re-

quest latency measured during the execution of the rate-

controlled YCSB workload (i.e., fixed number of oper-

ations) with 10 million objects. CFQ and CFQ-IDLE
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Latency (ms) CFQ CFQ-IDLE SPLIT-A SPLIT-D QASIO RCP

futex lock pi 6092.6 (3.3) 11849.3 (3.4) 8300.6 (3.6) 12292.6 (3.7) 3717.4 (3.1) 305.6 (3.2)

j wait done commit 6067.3 (2.3) 11846.2 (2.4) 4066.9 (2.4) 10598.4 (2.6) 3652.1 (2.0) 246.5 (2.0)

pg writeback 239.5 (0.1) 240.1 (0.1) 426.2 (0.2) 241.0 (0.2) 241.8 (0.2) 64.2 (0.1)

get request 35.0 (18.4) 48636 (26.6) 17.3 (5.5) 0.0 (0.0) 852.5 (6.8) 0.0 (0.0)

j wait transaction locked 2.2 (1.0) 1790.3 (44.1) 1.4 (0.1) 0.0 (0.0) 1942.6 (24.0) 2.0 (0.9)

mutex lock 0.0 (0.0) 3296.6 (544.2) 0 (0.0) 1.2 (0.1) 992.0 (77.2) 0.0 (0.0)

write entry N/A N/A 7884.9 (27.4) 0.0 (0.0) N/A N/A

fsync entry N/A N/A 8273.1 (26.2) 0.0 (0.0) N/A N/A

Table 3: MongoDB system latency breakdown. This table shows the maximum latency incurred at each kernel

method in milliseconds; the corresponding average latency is presented in parenthesis.
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Figure 8: MongoDB request latency.

significantly increase latency tail especially after 99th

percentile. SPLIT-A and SPLIT-D also cannot help to

bound latency; about five seconds latency at 99.99th per-

centile. Though QASIO improves request latency com-

pared to the other existing schemes, it still incurs about

four seconds latency at 99.999th percentile. On the con-

trary, RCP completes all the requests within 310 ms by

carefully handling the critical path of request execution.

Note that the latency results with 60 and 200 million ob-

jects is similar to that of 10 million objects.

Table 3 shows the maximum and average system la-

tencies in foreground tasks. All the existing schemes

induce excessive latencies at various synchronization

methods, such as Pthread mutex (futex lock pi) and

j wait done commit condition variable. Unlike the

case of PostgreSQL, CFQ-IDLE and QASIO cause over

a second latency at j wait transaction locked

condition variable, which is a barrier for starting a

new file system transaction. RCP largely reduces

dependency-induced system latencies .

7.4 Redis Key-Value Store

For Redis, we used the same workload as the Mon-

goDB’s except that we concurrently ran ten YCSB

benchmarks against ten Redis instances to utilize our

multicore testbed due to the single threaded design of

Redis [23]. We enabled both snapshotting and command

logging for data safety [24]. We report operations per

second and operation latency as the performance metrics.

Figure 9 plots operation throughput averaged over

three runs and 99.9th percentile operation latency. CFQ-

IDLE and QASIO slightly improves application per-

formance by putting the background tasks including
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Figure 9: Redis performance.

the snapshotting and log rewriting to idle-class prior-

ity. SPLIT-A and SPLIT-D deteriorate application per-

formance because SPLIT-A does not fully utilize write

buffer in the caching layer and SPLIT-D does not protect

non-critical writes from file system-level entanglement.

By handling the limitations in the existing prioritization

schemes in terms of application performance, RCP im-

proves request throughput by about 7%–49% compared

to the existing schemes. In addition, RCP shows 78 ms

request latency at 99.9th percentile, thereby achieving

2×–20× improvement over the existing schemes.

7.5 Need for Holistic Approach

In order to show why a holistic approach is crucial for

application performance, we selectively disabled one of

the components in our scheme, the caching layer, the

block layer, the kernel-level dependency handling, the

user-level dependency handling, and the transitive de-

pendency handling. Figure 10 shows average request

throughput normalized to that of all the components are

enabled in the 10 GB data set configurations. Disabling

any one of the component degrades application through-

put by about 7–33% and 6–45% for PostgreSQL and

MongoDB each. This result justifies our claim that only

a holistic approach can guarantee high degree of applica-

tion performance.

7.6 Impact of Limiting I/Os

Due to hidden and unpredictable I/O scheduling inside

storage, we limited the number of sojourn non-critical

I/Os to one. This may lead to low utilization of storage

devices when there is low foreground activity. To quan-

tify the impact on system throughput, we concurrently
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Figure 10: Normalized request throughput with turn-

ing off one of the components in RCP.

ran a sequential write workload with 5 ms thinktime as a

lightly-loaded foreground task and a random write work-

load without thinktime as a I/O-intensive background

task. As shown in Figure 11, the system-wide through-

put increases from 223 MB/sec to 345 MB/sec (55% im-

provement) while relaxing the limitation on non-critical

I/Os. However, the improvement in system throughput

comes with the degraded latency of foreground I/O. In

particular, the average latency of foreground I/O gradu-

ally increases from 110 us to 1771 us (over 16× slow-

down). If storage devices implement priority-based

scheduling feature in storage interface standards (e.g.,

SCSI, ATA, and NVMe), this tradeoff would be mini-

mized by exploiting the priority feature.

8 Discussion

Penalizing background tasks. Whether a foreground

task really does not rely on the progress of background

tasks depends on the semantic of an application. For ex-

ample in MySQL, when the size of transaction logs is

below a preconfigured maximum size, a foreground task

does not wait for a checkpointer. However, the fore-

ground task stops accepting updates when the log size

exceeds the threshold. One workaround is to provide

another threshold which is a point to give the critical

I/O priority to the checkpointer. This sort of applica-

tion modification requires understanding of application

semantic. We believe application developers are likely

willing to conduct such modifications since our scheme

brings superior performance with a simple API.

User-level threading library. An application may use

a user-level threading library, such as Fiber [1], though it

is uncommon for data-intensive applications we targeted.

In this case, our scheme cannot detect the user-level de-

pendency. If using a user-level threading library is preva-

lent, implementing the I/O priority inheritance to the li-

brary based on the enlightenment API may be necessary.

User-level condition variable. Our scheme uses

a simple history-based inference technique to track a

helper task of a user-level condition variable. In the

tested applications, this method was sufficient since ob-

served helpers were mostly static. However, if an ap-

plication has a complex relationship between condition
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foreground latency.

variables and helpers, a more sophisticated inference

technique is desired, which is our future work.

Implementation practicality. Our prototype imple-

mentation involves modifications to all the layers and the

synchronization methods in the I/O path, thereby hinder-

ing our scheme from wide adoption. The most promis-

ing direction to be practically viable is exploiting the

Split framework [43]. It provides a collection of han-

dlers for an I/O scheduler to operate across all layers in

the I/O path. We believe our scheme can be cleanly im-

plemented based on the framework by controlling non-

critical writes at the system-call level, before the caching

and file system layer generates complex dependencies,

and non-critical reads at the block-level.

9 Concluding Remarks

In this paper, we have shown that all the layers in the

storage I/O path should be considered as a whole with

I/O priority inversion in mind for effective I/O prioriti-

zation. Our experiments demonstrate that the proposed

scheme can provide low and predictable request latency

while minimally penalizing background tasks. We be-

lieve that our scheme can contribute to reducing total cost

of ownership by alleviating the contention introduced by

a burst of background I/Os and thereby relaxing the need

for over-provisioning storage resources.

To handle the fairness issue which results from sharing

a storage stack among multiple applications/tenants, we

plan to explore integrating our scheme with an existing

group-based I/O scheduler (e.g, CFQ). We also plan to

investigate request handling in a distributed system with

replicated data stores.
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Abstract

As Solid-State Drives (SSDs) become commonplace in
data-centers and storage arrays, there is a growing de-
mand for predictable latency. Traditional SSDs, serv-
ing block I/Os, fail to meet this demand. They offer a
high-level of abstraction at the cost of unpredictable per-
formance and suboptimal resource utilization. We pro-
pose that SSD management trade-offs should be handled
through Open-Channel SSDs, a new class of SSDs, that
give hosts control over their internals. We present our
experience building LightNVM, the Linux Open-Channel
SSD subsystem. We introduce a new Physical Page Ad-
dress I/O interface that exposes SSD parallelism and stor-
age media characteristics. LightNVM integrates into tra-
ditional storage stacks, while also enabling storage en-
gines to take advantage of the new I/O interface. Our ex-
perimental results demonstrate that LightNVM has mod-
est host overhead, that it can be tuned to limit read la-
tency variability and that it can be customized to achieve
predictable I/O latencies.

1 Introduction

Solid-State Drives (SSDs) are projected to become the
dominant form of secondary storage in the coming
years [18, 19, 31]. Despite their success due to superior
performance, SSDs suffer well-documented shortcom-
ings: log-on-log [37,57], large tail-latencies [15,23], un-
predictable I/O latency [12, 28, 30], and resource under-
utilization [1, 11]. These shortcomings are not due to
hardware limitations: the non-volatile memory chips at
the core of SSDs provide predictable high-performance
at the cost of constrained operations and limited en-
durance/reliability. It is how tens of non-volatile memory
chips are managed within an SSD, providing the same
block I/O interface as a magnetic disk, which causes
these shortcomings [5, 52].

A new class of SSDs, branded as Open-Channel SSDs,

is emerging on the market. They are an excellent plat-
form for addressing SSD shortcomings and managing
trade-offs related to throughput, latency, power con-
sumption, and capacity. Indeed, open-channel SSDs ex-
pose their internals and enable a host to control data
placement and physical I/O scheduling. With open-
channel SSDs, the responsibility of SSD management is
shared between host and SSD. Open-channel SSDs have
been used by Tier 1 cloud providers for some time. For
example, Baidu used open-channel SSDs to streamline
the storage stack for a key-value store [55]. Also, Fusion-
IO [27] and Violin Memory [54] each implement a host-
side storage stack to manage NAND media and provide
a block I/O interface. However, in all these cases the
integration of open-channel SSDs into the storage infras-
tructure has been limited to a single point in the design
space, with a fixed collection of trade-offs.

Managing SSD design trade-offs could allow users
to reconfigure their storage software stack so that it
is tuned for applications that expect a block I/O inter-
face (e.g., relational database systems, file systems) or
customized for applications that directly leverage open-
channel SSDs [55]. There are two concerns here: (1) a
block device abstraction implemented on top of open-
channel SSDs should provide high performance, and
(2) design choices and trade-off opportunities should be
clearly identified. These are the issues that we address
in this paper. Note that demonstrating the advantages
of application-specific SSD management is beyond the
scope of this paper.

We describe our experience building LightNVM, the
Open-Channel SSD subsystem in the Linux kernel.
LightNVM is the first open, generic subsystem for Open-
Channel SSDs and host-based SSD management. We
make four contributions. First, we describe the character-
istics of open-channel SSD management. We identify the
constraints linked to exposing SSD internals, discuss the
associated trade-offs and lessons learned from the stor-
age industry.
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Second, we introduce the Physical Page Address
(PPA) I/O interface, an interface for Open-Channel
SSDs, that defines a hierarchical address space together
with control and vectored data commands.

Third, we present LightNVM, the Linux subsystem
that we designed and implemented for open-channel
SSD management. It provides an interface where
application-specific abstractions, denoted as targets, can
be implemented. We provide a host-based Flash Transla-
tion Layer, called pblk, that exposes open-channel SSDs
as traditional block I/O devices.

Finally, we demonstrate the effectiveness of Light-
NVM on top of a first generation open-channel SSD.
Our results are the first measurements of an open-channel
SSD that exposes the physical page address I/O interface.
We compare against state-of-the-art block I/O SSD and
evaluate performance overheads when running synthetic,
file system, and database system-based workloads. Our
results show that LightNVM achieves high performance
and can be tuned to control I/O latency variability.

2 Open-Channel SSD Management

SSDs are composed of tens of storage chips wired in
parallel to a controller via so-called channels. With
open-channel SSDs, channels and storage chips are ex-
posed to the host. The host is responsible for utilizing
SSD resources in time (I/O scheduling) and space (data
placement). In this section, we focus on NAND flash-
based open-channel SSDs because managing NAND is
both relevant and challenging today. We review the con-
straints imposed by NAND flash, introduce the result-
ing key challenges for SSD management, discuss the
lessons we learned from early adopters of our system,
and present different open-channel SSD architectures.

2.1 NAND Flash Characteristics

NAND flash relies on arrays of floating-gate transistors,
so-called cells, to store bits. Shrinking transistor size has
enabled increased flash capacity. SLC flash stores one
bit per cell. MLC and TLC flash store 2 or 3 bits per
cell, respectively, and there are four bits per cell in QLC
flash. For 3D NAND, increased capacity is no longer tied
to shrinking cell size but to flash arrays layering.

Media Architecture. NAND flash provides a read-
/write/erase interface. Within a NAND package, storage
media is organized into a hierarchy of die, plane, block,
and page. A die allows a single I/O command to be exe-
cuted at a time. There may be one or several dies within
a single physical package. A plane allows similar flash
commands to be executed in parallel within a die.

Within each plane, NAND is organized in blocks and
pages. Each plane contains the same number of blocks,
and each block contains the same number of pages.
Pages are the minimal units of read and write, while the
unit of erase is a block. Each page is further decom-
posed into fixed-size sectors with an additional out-of-
bound area, e.g., a 16KB page contains four sectors of
4KB plus an out-of-bound area frequently used for ECC
and user-specific data.

Regarding internal timings, NAND flash memories ex-
hibit an order of magnitude difference between read and
write/erase latency. Reads typically take sub-hundred
microseconds, while write and erase actions take a few
milliseconds. However, read latency spikes if a read is
scheduled directly behind a write or an erase operation,
leading to orders of magnitude increase in latency.

Write Constraints. There are three fundamental pro-
gramming constraints that apply to NAND [41]: (i) a
write command must always contain enough data to
program one (or several) full flash page(s), (ii) writes
must be sequential within a block, and (iii) an erase
must be performed before a page within a block can be
(re)written. The number of program/erase (PE) cycles is
limited. The limit depends on the type of flash: 102 for
TLC/QLC flash, 103 for MLC, or 105 for SLC.

Additional constraints must be considered for different
types of NAND flash. For example, in multi-level cell
memories, the bits stored in the same cell belong to dif-
ferent write pages, referred to as lower/upper pages. The
upper page must be written before the lower page can be
read successfully. The lower and upper page are often
not sequential, and any pages in between must be written
to prevent write neighbor disturbance [10]. Also, NAND
vendors might introduce any type of idiosyncratic con-
straints, which are not publicly disclosed. This is a clear
challenge for the design of cross-vendor, host-based SSD
management.

Failure Modes. NAND Flash might fail in various
ways [7, 40, 42, 49]:

• Bit Errors. The downside of shrinking cell size is
an increase in errors when storing bits. While error
rates of 2 bits per KB were common for SLC, this
rate has increased four to eight times for MLC.

• Read and Write Disturb. The media is prone to leak
currents to nearby cells as bits are written or read.
This causes some of the write constraints described
above.

• Data Retention. As cells wear out, data retention
capability decreases. To persist over time, data must
be rewritten multiple times.
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• Write/Erase Error. During write or erase, a failure
can occur due to an unrecoverable error at the block
level. In that case, the block should be retired and
data already written should be rewritten to another
block.

• Die Failure. A logical unit of storage, i.e., a die on
a NAND chip, may cease to function over time due
to a defect. In that case, all its data will be lost.

2.2 Managing NAND
Managing the constraints imposed by NAND is a core re-
quirement for any flash-based SSD. With open-channel
SSDs, this responsibility is shared between software
components running on the host (in our case a Linux de-
vice driver and layers built on top of it) and on the device
controller. In this section we present two key challenges
associated with NAND management: write buffering and
error handling.

Write Buffering. Write buffering is necessary when
the size of the sector, defined on the host side (in the
Linux device driver), is smaller than the NAND flash
page size, e.g., a 4KB sector size defined on top of a
16KB flash page. To deal with such a mismatch, the clas-
sical solution is to use a cache: sector writes are buffered
until enough data is gathered to fill a flash page. If data
must be persisted before the cache is filled, e.g., due to an
application flush, then padding is added to fill the flash
page. Reads are directed to the cache until data is per-
sisted to the media. If the cache resides on the host, then
the two advantages are that (1) writes are all generated
by the host, thus avoiding interference between the host
and devices, and that (2) writes are acknowledged as they
hit the cache. The disadvantage is that the contents of the
cache might be lost in case of a power failure.

The write cache may also be placed on the device side.
Either the host writes sectors to the device and lets the
device manage writes to the media (when enough data
has been accumulated to fill a flash page), or the host ex-
plicitly controls writes to the media and lets the device
maintain durability. With the former approach, the de-
vice controller might introduce unpredictability into the
workload, as it might issue writes that interfere with host-
issued reads. With the latter approach, the host has full
access to the device-side cache. In NVMe, this can be
done through a Controller Memory Buffer (CMB) [43].
The host can thus decouple (i) the staging of data on
the device-side cache from (ii) the writing to the me-
dia through an explicit flush command. This approach
avoids controller-generated writes and leaves the host in
full control of media operations. Both approaches re-
quire that the device firmware has power-fail techniques
to store the write buffer onto media in case of a power

loss. The size of the cache is then limited by the power-
capacitors available on the SSD.

Error Handling. Error handling concerns reads,
writes, and erases. A read fails when all methods to
recover data at sector level have been exhausted: ECC,
threshold tuning, and possibly parity-based protection
mechanisms (RAID/RAIN) [13, 20].

To compensate for bit errors, it is necessary to intro-
duce Error Correcting Codes (ECC), e.g., BCH [53] or
LDPC [16]. Typically, the unit of ECC encoding is a
sector, which is usually smaller than a page. ECC pari-
ties are generally handled as metadata associated with a
page and stored within the page’s out-of-band area.

The bit error rate (BER) can be estimated for each
block. To maintain BER below a given threshold, some
vendors make it possible to tune NAND threshold volt-
age [7, 8]. Blocks which are write-cold and read-hot, for
which BER is higher than a given threshold, should be
rewritten [47]. It might also be necessary to perform read
scrubbing, i.e., schedule read operations for the sole pur-
pose of estimating BER for blocks which are write-cold
and read-cold [9].

Given that manual threshold tuning causes several
reads to be executed on a page, it may be beneficial to
add RAID techniques to recover data faster, while also
enable SSD to recover from die failures.

Note that different workloads might require different
RAID configurations. Typically, high read workloads re-
quire less redundancy, because they issue fewer PE cy-
cles. This is an argument for host-based RAID imple-
mentation. Conversely, for high write workloads, RAID
is a source of overhead that might be compensated by
hardware acceleration (i.e., a hardware-based XOR en-
gine [14, 48]).

In the case of write failures, due to overcharging or
inherent failures [51], recovery is necessary at the block
level. When a write fails, part of a block might already
have been written and should be read to perform recov-
ery. Early NAND flash chips allow reads on partially
written blocks, but multi-level NAND [10] requires that
a set of pages (lower/upper) be written before data can
be read, thus preventing reads of partially written blocks
in the general case. Here, enough buffer space should
be available to restore the contents of partially written
blocks.

If a failure occurs on erase, there is no retry or recov-
ery. The block is simply marked bad.

2.3 Lessons Learned
Open-channel SSDs open up a large design space for
SSD management. Here are some restrictions on that de-
sign space based on industry trends and feedback from
early LightNVM adopters.

USENIX Association 15th USENIX Conference on File and Storage Technologies    361



1. Provide device warranty with physical access.
Warranty to end-users is important in high-volume mar-
kets. A traditional SSD is often warrantied for either
three or five years of operation. In its lifetime, enough
good flash media must be available to perform writes.
Contrary to spinning hard-drives, the lifetime for NAND
media heavily depends on the number of writes to the
media. Therefore, there is typically two types of guar-
antees for flash-based SSDs: Year warranty and Drive
Writes Per Day (DWPD) warranty. DWPD guarantees
that the drive can sustain X drive writes per day. Provid-
ing low thousands of PE cycles to NAND flash media,
the number of writes per day is often limited to less than
ten and is lower in consumer drives.

If PE cycles are managed on the host, then no war-
ranty can be given for open-channel SSDs. Indeed, SSD
vendors have no way to assess whether a device is legit-
imately eligible for replacement, or if flash simply wore
out because of excessive usage. To provide warranty, PE
cycles must be managed on the device. See Figure 1 for
an illustration.

2. Exposing media characterization to the host is inef-
ficient and limits media abstraction. Traditional SSD
vendors perform media characterization with NAND
vendors to adapt their embedded Flash Translation Layer
to the characteristics of a given NAND chip. Such in-
house NAND characterization is protected under IP. It is
neither desirable nor feasible to let application and sys-
tem developers struggle with the internal details of a spe-
cific NAND chip, in particular threshold tuning or ECC.
These must be managed on the device. This greatly sim-
plifies the logic in the host and lets the open-channel SSD
vendor differentiate their controller implementation.

3. Write buffering should be handled on the host or
the device depending on the use case. If the host han-
dles write buffering, then there is no need for DRAM
on the device, as the small data structures needed to
maintain warranty and physical media information can
be stored in device SRAM or persistent media if nec-
essary. Power consumption can thus be drastically re-
duced. Managing the write buffer on the device, through
a CMB, efficiently supports small writes but requires ex-
tra device-side logic, together with power-capacitors or
similar functionality to guarantee durability. Both op-
tions should be available to open-channel SSD vendors.

4. Application-agnostic wear leveling is mandatory.
As NAND ages, its access time becomes longer. In-
deed, the voltage thresholds become wider, and more
time must be spent to finely tune the appropriate volt-
age to read or write data. NAND specifications usually
report both a typical access latency and a max latency.
To make sure that latency does not fluctuate depending
on the age of the block accessed, it is mandatory to per-
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Figure 1: Core SSD Management modules on (a) a traditional
Block I/O SSD, (b) the class of open-channel SSD considered
in this paper, and (c) future open-channel SSDs.

form wear-leveling independently from the application
workload, even if it introduces an overhead.

It must be possible, either for the host or the controller,
to pick free blocks from a die in a way that (i) hides bad
blocks, (ii) implements dynamic wear leveling by tak-
ing the P/E cycle count into account when allocating a
block, and possibly (iii) implements static wear level-
ing by copying cold data to a hot block. Such decisions
should be based on metadata collected and maintained
on the device: P/E cycle per block, read counts per page,
and bad blocks. Managing block metadata and a level of
indirection between logical and physical block addresses
incurs a significant overhead regarding latency and might
generate internal I/Os (to store the mapping table or due
to static wear leveling) that might interfere with an appli-
cation I/Os. This is the cost of wear-leveling [6].

2.4 Architectures
Different classes of open-channel SSDs can be defined
based on how the responsibilities of SSD management
are shared between host and SSD. Figure 1 compares
(a) traditional block I/O SSD with (b) the class of open-
channel SSDs considered in this paper, where PE cycles
and write buffering are managed on the host, and (c) fu-
ture open-channel SSDs that will provide warranties and
thus support PE cycle management and wear-leveling on
the device. The definition of the PPA I/O interface and
the architecture of LightNVM encompass all types of
open-channel SSDs.

3 Physical Page Address I/O Interface

We propose an interface for open-channel SSDs, the
Physical Page Address (PPA) I/O interface, based on
a hierarchical address space. It defines administration
commands to expose the device geometry and let the host
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take control of SSD management, and data commands to
efficiently store and retrieve data. The interface is inde-
pendent of the type of non-volatile media chip embedded
on the open-channel SSD.

Our interface is implemented as a vendor-specific ex-
tension to the NVM Express 1.2.1 specification [43], a
standard that defines an optimized interface for PCIe-
attached SSDs.

3.1 Address Space
We rely on two invariants to define the PPA address
space:

1. SSD Architecture. Open-channel SSDs expose to
the host a collection of channels, each containing a
set of Parallel Units (PUs), also known as LUNs.
We define a PU as the unit of parallelism on the
device. A PU may cover one or more physical die,
and a die may only be a member of one PU. Each
PU processes a single I/O request at a time.

2. Media Architecture. Regardless of the media, stor-
age space is quantized on each PU. NAND flash
chips are decomposed into blocks, pages (the min-
imum unit of transfer), and sectors (the minimum
unit of ECC). Byte-addressable memories may be
organized as a flat space of sectors.

The controller can choose the physical representation
for the PUs. This way the controller can expose a per-
formance model, at the PU level, that reflects the per-
formance of the underlying storage media. If the con-
troller chooses a logical definition for PUs (e.g., sev-
eral NAND dies accessed through RAID) then the per-
formance model for a PU must be constructed based on
storage media characteristics and controller functionality
(e.g., XOR engine acceleration). A logical representa-
tion might be beneficial for byte-addressable memories,
where multiple dies are grouped together to form a sin-
gle sector. In the rest of this paper, we assume that a PU
corresponds to a single physical NAND die. With such
a physical PU definition, the controller exposes a simple,
well-understood, performance model of the media.

PPAs are organized as a decomposition hierarchy that
reflects the SSD and media architecture. For example,
NAND flash may be organized as a hierarchy of plane,
block, page, and sector, while byte-addressable memo-
ries, such as PCM, is a collection of sectors. While the
components of the SSD architecture, channel and PU, are
present in all PPA addresses, media architecture compo-
nents can be abstracted. This point is illustrated in Fig-
ure 2.

Each device defines its bit array nomenclature for PPA
addresses, within the context of a 64-bit address. Put dif-
ferently, the PPA format does not put constraints on the

Physical Page Address (NAND with Sector-sized Pages)

MSB LSB

Channel PU Sector

Physical Page Address (NAND)

Channel PU PlaneBlock Page Sector

Block

Logical Block Address (LBA)

Sector

64bit

Figure 2: Logical Block Addresses compared to Physical Page
Addresses for NAND flash.

maximum number of channels per device or the max-
imum number of blocks per PU. It is up to each de-
vice to define these limitations, and possibly ignore some
media-specific components. This flexibility is a major
difference between the PPA format and the hierarchical
CHS (Cylinder-Head-Sector) format introduced for early
hard drives.

Encoding the SSD and media architecture into physi-
cal addresses makes it possible to define hardware units,
embedded on an open-channel SSD, that map incoming
I/Os to their appropriate physical placement. The PPA
format is also well-suited for a representation where the
identifiers are independent variables as a power of two.
This way, operations on the name-space (e.g., get next
page on the next channel, or get next page on a different
PU) are efficiently implemented by shifting bits.

The PPA address space can be organized logically to
act as a traditional logical block address (LBA), e.g., by
arranging NAND flash using "block, page, plane, and
sector" [34]. This enables the PPA address space to be
exposed through traditional read/write/trim commands.
In contrast to traditional block I/O, the I/Os must follow
certain rules. Writes must be issued sequentially within
a block. Trim may be issued for a whole block, so that
the device interprets the command as an erase. It is im-
plementation specific whether a single read may cross
multiple blocks in a single I/O.

In comparison with a traditional, linear LBA space, the
PPA address space may contain invalid addresses, where
I/Os are not accepted. Consider for example that there
are 1067 available blocks per PU, then it would be repre-
sented by 11 bits. Blocks 0–1066 would be valid, while
blocks 1067–2047 would be invalid. It is up to the con-
troller to return an error in this case. In case the me-
dia configuration for each level in the hierarchy is not a
power of two, then there will be such holes in the address
space.

3.2 Geometry and Management

To let a host take control of SSD management, an open-
channel SSD must expose four characteristics:
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1. Its geometry, i.e., the dimensions of the PPA address
space. How many channels? How many PUs within
a channel? How many planes per PU? How many
blocks per plane? How many pages per block? How
many sectors per page? How large is the out-of-
bound region per page? We assume that PPA di-
mensions are uniform for a given address space. If
an SSD contains different types of storage chips,
then the SSD must expose the storage as separate
address spaces, each based on similar chips.

2. Its performance, i.e., statistics that capture the per-
formance of data commands, channel capacity and
controller overhead. The current version of the
specification captures typical and max latency for
page read, page write, and erase commands and the
maximum number of in-flight commands addressed
to separate PUs within a channel.

3. Media-specific metadata. For instance, NAND
flash-specific metadata includes the type of NAND
flash on the device, whether multi-plane operations
are supported, the size of the user-accessible out-of-
bound area, or page pairing information for MLC
and TLC chips. As media evolves, and becomes
more complex, it may be advantageous to let SSDs
handle this complexity.

4. Controller functionalities. As we have seen in Sec-
tion 2, a controller might support write buffering,
failure handling, or provisioning. Each of these ca-
pabilities might be configured (e.g., RAID across
PUs). If the controller supports write buffering, then
a flush command enables the host to force the con-
troller to write the contents of its buffer to the stor-
age media.

3.3 Read/Write/Erase
The data commands directly reflect the read, write, and
erase interface of NAND flash cells. The erase command
is ignored for media that does not support it.

Vectored I/Os. Data commands expand upon tradi-
tional LBA access. A read or write command is no longer
defined by a start LBA, some sectors to access, and a data
buffer. Instead, a read or write is applied to a vector of
addresses to leverage the intrinsic parallelism of the SSD.
For example, let us consider 64KB of application data.
Assuming a page size of 4KB, this data might be striped
with a write command applied to 16 sectors simultane-
ously, thus efficiently supporting scattered access.

Concretely, each I/O is represented as an NVMe I/O
read/write command. We replace the start LBA (SLBA)
field with a single PPA address or a pointer to an address
list, denoted PPA list. The PPA list contains an LBA

for each sector to be accessed. Similarly, we utilize the
NVMe I/O metadata field to carry out-of-band metadata.
The metadata field is typically used for end-to-end data
consistency (T10-PI/DIF/DIX [25, 43]). How to grace-
fully combine end-to-end and PPA metadata is a topic
for future work.

When a data command completes, the PPA interface
returns a separate completion status for each address.
This way, the host can distinguish and recover from fail-
ures at different addresses. For the first iteration of the
specification, the first 64 bits of the NVMe I/O command
completion entry are used to signal the completion status.
This limits the number of addresses in the PPA list to 64.

We considered alternatives to the PPA list. In fact, we
evaluated three approaches: (i) NVMe I/O command, (ii)
grouped I/Os, and (iii) Vectored I/Os. An NVMe I/O
command issues commands serially. When a full page
buffer is constituted, it is flushed to the media. Each
command rings the doorbell of the controller to notify a
new submission. With grouped I/Os, several pages con-
stitute a submission, the doorbell is only rung once, but
it is up to the controller to maintain the state of each sub-
mission. With vectored I/Os, an extra DMA is required
to communicate the PPA list. We opt for the third option,
as the cost of an extra DMA mapping is compensated by
simplified controller design.

Media specific. Each I/O command provides media-
specific hints, including plane operation mode (single,
dual, or quad plane), erase/program suspend [56], and
limited retry. The plane operation mode defines how
many planes should be programmed at once. The con-
troller may use the plane operation mode hint to effi-
ciently program planes in parallel, as it accesses PUs
sequentially by default. Similarly, the erase-suspend al-
lows reads to suspend an active write or program, and
thus improve its access latency, at the cost of longer write
and erase time. Limited retry allows the host to let the
controller know that it should not exhaust all options to
read or write data, but instead fail fast to provide a better
quality of service, if data is already available elsewhere.

4 LightNVM

LightNVM is the open-channel SSD subsystem in Linux.
In this section, we give an overview of its architecture,
and we present the pblk target in detail.

4.1 Architecture

LightNVM is organized in three layers (see Figure 3),
each providing a level of abstraction for open-channel
SSDs:
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Figure 3: LightNVM Subsystem Architecture

1. NVMe Device Driver. A LightNVM-enabled
NVMe device driver gives kernel modules access to
open-channel SSDs through the PPA I/O interface.
The device driver exposes the device as a traditional
Linux device to user-space, which allows applica-
tions to interact with the device through ioctls. If the
PPA interface is exposed through an LBA, it may
also issue I/Os accordingly.

2. LightNVM Subsystem. An instance of the subsys-
tem is initialized on top of the PPA I/O-supported
block device. The instance enables the kernel to ex-
pose the geometry of the device through both an in-
ternal nvm_dev data structure and sysfs. This way
FTLs and user-space applications can understand
the device geometry before use. It also exposes the
vector interface using the blk-mq [4] device driver
private I/O interface, enabling vector I/Os to be ef-
ficiently issued through the device driver.

3. High-level I/O Interface. A target gives kernel-
space modules or user-space applications access to
open-channel SSDs through a high-level I/O inter-
face, either a standard interface like the block I/O
interface provided by pblk (see Section 4.2), or an
application-specific interface provided by a custom
target.

4.2 pblk: Physical Block Device
The Physical Block Device (pblk) is a LightNVM tar-
get implementing a fully associative, host-based FTL
that exposes a traditional block I/O interface. In
essence, pblk’s main responsibilities are to (i) deal with
controller- and media-specific constraints (e.g., caching
the necessary amount of data to program a flash page),
(ii) map logical addresses onto physical addresses (4KB
granularity) and guarantee the integrity—and eventual
recovery in the face of crashes—of the associated map-
ping table (L2P), (iii) handle errors, and (iv) implement
garbage collection (GC). Since typical flash page sizes

are bigger than 4KB, pblk must also (v) handle flushes.
A flush forces pblk’s in-flight data to be stored on the de-
vice before it completes. It might be required by a file
system or an application (i.e., fsync).

4.2.1 Write Buffering

The pblk target is based on the architecture described in
Section 2.4, where write buffering is managed on the
host. The write buffer is managed as a circular ring
buffer. It is internally decoupled into two buffers: a data
buffer storing 4KB user data entries (4KB corresponds
to the size of a sector), and a context buffer storing per-
entry metadata. The size of the buffer is the product of
flash page size (FPSZ), the number of flash pages to write
(lower/upper pages), and the number of PUs (N). For
example, if FPSZ = 64KB,PP = 8,N = 128, the write
buffer is 64MB.

The write buffer is accessed by several producers and
a single consumer:

Producers. Both pblk users and pblk’s own garbage
collector insert I/Os as entries into the write buffer. When
a new entry is written, the L2P table is updated with the
entry line and the write is acknowledged. If the buffer
is full, the write is re-scheduled. In case that a mapping
already exists for the incoming logical address, the old
entry is invalidated.

Consumer. A single thread consumes buffered entries
either when there is enough data to fill a flash page or
when a flush command has been issued. If multi-plane
programming is used then the number of planes must
also be considered (e.g., 16KB pages with quad plane
programming requires 64KB chunks for a single write).
At this point, logical addresses are mapped to physi-
cal ones. By default, pblk’s mapping strategy targets
throughput and stripes data across channels and PUs at
a page granularity. Other data placement strategies can
be used. After mapping takes place, a vector write com-
mand is formed and sent to the device. Note that in case
of a flush, if there is not enough data to fill a flash page,
pblk adds padding (i.e., unmapped data) in the write
command before it is sent to the device.

In order to respect the lower/upper page pairs (Sec-
tion 2.1), the L2P table is not modified as pages are
mapped. This way, reads are directed to the write buffer
until all page pairs have been persisted. When this hap-
pens, the L2P table is updated with the physical address.
L2P recovery is discussed in Section 4.2.2.

The number of channels and PUs used for mapping
incoming I/Os can be tuned at run-time. We refer to them
as active PUs. For example, let us consider 4 active PUs
on an open-channel SSD with 4 channels and 8 PUs per
channel. To start with, PU0, PU8, PU16, and PU24 are
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active. Pages are written on those PUs in a round-robin
fashion. When a block fills up on PU0, then that PU
becomes inactive and PU1 takes over as the active PU.
At any point in time, only 4 PUs are active, but data is
still striped across all available PUs at a page granularity.

When an application or file system issues a flush, pblk
ensures that all outstanding data is written to the media.
The consumer thread empties the write buffer and uses
padding to fill up the last flash page if necessary. As
data is persisted, the last write command holds an extra
annotation that indicates that it must complete before the
flush is successful.

4.2.2 Mapping Table Recovery

The L2P mapping table is essential for data consistency
in a block device. Thus, we persist a redundant version
of the mapping table in three forms: First, as a snapshot,
which is stored (i) on power-down, in form of a full copy
of the L2P, and (ii) periodically as checkpoints in form
of an FTL log that persists operations on blocks (allocate
and erase). Second, as block-level metadata, on the first
and last page of each block. When a block is opened,
the first page is used to store a block sequence number
together with a reference to the previous block. When
a block is fully written, the last pages are used to store
(1) an FTL-log consisting of the portion of the L2P map
table corresponding to data in the block, (2) the same se-
quence number as in the first page in order to avoid an
extra read during recovery, and (3) a pointer to the next
block. The number of pages needed depends on the size
of the block. This strategy allows us to recover the FTL
in an ordered manner and prevent old mappings from
overwriting new ones. Finally, a portion of the mapping
table is kept (iii) within the OOB area of each flash page
that is written to the device. Here, for each persisted flash
page, we store the logical addresses that correspond to
physical addresses on the page together with a bit that
signals that the page is valid. Since blocks can be reused
as they are garbage collected, all metadata is persisted
together with its CRC and relevant counters to guarantee
consistency.

Any initialization of the device will trigger a full re-
covery. If an L2P mapping table snapshot is available
(e.g., due to a graceful shutdown), then the mapping ta-
ble is directly retrieved from disk and loaded into mem-
ory. In the case of a non-graceful shutdown, the mapping
table must be recovered. We designed a two-phase re-
covery process.

To start with, we scan the last page of all available
blocks and we classify them into free, partially written,
and fully written. We can reduce the scanning by look-
ing at the sequence numbers and only recovering written
blocks. In the first phase, fully written blocks are or-

dered using the sequence number. The L2P table is then
updated with the map portions stored on each last page.
Similarly, in the second phase, partially written blocks
are ordered. After this, blocks are scanned linearly until
a page with an invalid bit on the OOB area is reached.
Each valid mapping triggers an update in the L2P ta-
ble. To ensure data correctness, it is paramount that half-
written lower/upper pages are padded before reads can
be issued. If the controller counts on a super capacitor,
padding can be done in the device on ungraceful power-
down. Otherwise, padding must be implemented on the
second phase of recovery, as partially written blocks are
recovered.

4.2.3 Error Handling

Unlike a traditional FTL that deals with read, write, and
erase failures, pblk deals only with write and erase er-
rors. As discussed in Section 2.2, ECC and threshold
tuning are enforced by the device. If a read fails, then
data is irrecoverable from the device’s perspective; re-
covery must be managed by the upper layers of the sys-
tem, above pblk.

When a write fails, pblk initiates two recovery mech-
anisms. First, the blocks corresponding to sectors on
which a write failed are identified using the per-sector
completion bits encoded in the command completion en-
try. These failed sectors are remapped and re-submitted
to the device directly. They are not inserted in the write
buffer because of the flush guarantee provided by pblk.
In case a flush is attached to the failed command, sub-
sequent writes will stop until the pointed I/O completes.
Writes preceding that flush must be persisted before for-
ward progress can be made. The second mechanism
starts when the block corresponding to the failed sectors
is marked as bad. Here, the remaining pages are padded
and the block is sent for GC.

In the case of erase failures, the block is directly
marked as bad. Since no writes have been issued at this
point, there is no data to recover.

4.2.4 Garbage Collection

As any log-structured FTL, pblk must implement
garbage collection. Blocks are re-purposed by garbage
collecting any valid pages and returning blocks for new
writes. Wear-leveling is assumed to happen either on
the device or within the LightNVM core (Section 2.3).
Therefore, pblk simply maintains a valid page count for
each block, and selects the block with the lowest number
of valid sectors for recycling.

The reverse logical to physical mapping table is not
stored in host memory. To find a reverse mapping, we
leverage the fact that a block is first recycled when it
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is fully written. Thus, we can use the partial L2P table
stored for recovery on the last pages of the block. In case
a page in that block is still valid, it is queued for rewrite.
When all pages have been safely rewritten, the original
block is recycled.

To prevent user I/Os from interfering with garbage
collection, pblk implements a PID controlled [44] rate-
limiter, whose feedback loop is based on the total num-
ber of free blocks available. When the number of free
blocks goes under a configurable threshold, GC starts.
Note that GC can also be managed from sysfs. In the be-
ginning, both GC and user I/Os compete equally for the
write buffer. But as the number of available blocks de-
creases, GC is prioritized in order to guarantee the con-
sistency of already persisted data. The feedback loop en-
sures that incoming I/Os and GC I/Os move towards a
steady state, where enough garbage collection is applied
given the user I/O workload. The rate-limiter uses write
buffer entries as a natural way to control incoming I/Os;
entries are reserved as a function of the feedback loop.
If the device reaches its capacity, user I/Os will be com-
pletely disabled until enough free blocks are available.

5 Experimental Evaluation

The purpose of our experimental evaluation is threefold.
First, we verify the correctness of the LightNVM stack,
and we evaluate the overhead it introduces. Second,
we characterize pblk on top of a first generation open-
channel SSD (OCSSD) and compare it to a state-of-the-
art NVMe SSD in terms of throughput, latency, and CPU
utilization. We rely on fio [2] and application workloads
for this study. Finally, we show how explicit PU write
provisioning can be used to optimize I/O scheduling and
achieve predictable latencies.

Our experimental setup consists of a server equipped
with an Intel Xeon E5-2620v3, 32 GB of DDR4 RAM,
an Open-Channel SSD (CNEX Labs Westlake SDK)
with 2TB NAND MLC Flash, denoted OCSSD in the rest
of this section, and an NVMe SSD (Intel P3700) with
400GB storage, denoted NVMe SSD. Both SSDs are
datacenter/enterprise SSDs using MLC NAND, which
makes them comparable in terms of hardware raw per-
formance. A new instance of pblk is used for each run
on the OCSSD; the NVMe SSD is formatted to 4K sec-
tor size and is low-level formatted before each run. The
host runs Ubuntu 15.04 with Linux Kernel 4.8-rc4 and
pblk patches applied.

The entire LightNVM stack amounts to approximately
10K LOC; pblk is responsible for almost 70% of that
code.

Open-Channel Solid-State Drive
Controller CNEX Labs Westlake ASIC
Interface NVMe, PCI-e Gen3x8
Channels 16
PUs per Channel 8 (128 total)
Channel Data Bandwidth 280MB/s

Parallel Unit Characteristics
Page Size 16K + 64B user OOB
Planes 4
Blocks 1,067
Block Size 256 Pages
Type MLC

Bandwidths
Single Seq. PU Write 47MB/s
Single Seq. PU Read 105MB/s (4K), 280MB/s (64KB)
Single Rnd. PU Read 56MB/s (4K), 273MB/s (64KB)
Max Write 4GB/s
Max Read 4.5GB/s
pblk Factory Write (no GC) 4GB/s
pblk Steady Write (GC) 3.2GB/s

Table 1: Solid-State Drive Characterization.

5.1 Sanity Check
Table 1 contains a general characterization for the eval-
uated Open-Channel SSD. Per-PU sequential read and
write bandwidth were gathered experimentally through a
modified version [3] of fio that uses the PPA I/O interface
and issues vector I/Os directly to the device. The pblk
factory state and steady state (where garbage collection
is active) are measured experimentally through standard
fio on top of pblk. Note that we leave the detailed char-
acterization of pblk for future work and only prove that
the implementation works as expected. Unless specified
otherwise, each experiment is conducted in factory state
with pblk’s rate-limiter disabled.

In terms of CPU utilization, pblk introduces an over-
head of less than 1% CPU overhead for reads with 0.4µs
additional latency (2.32µs with, and 1.97µs without, a
difference of 18%). While for writes, it adds 4% CPU
overhead with an additional 0.9µs latency (2.9µs with,
and 2µs without, a difference of 45%). Overhead on the
read path is due to an extra lookup into the L2P table and
the overhead on the write path is due to buffer and de-
vice write I/O requests management. CPU overhead is
measured by comparing the time it takes with and with-
out pblk on top of a null block device [4] and does not
include device I/O timings.

5.2 Uniform Workloads
Figure 4 captures throughput and latency for sequential
and random reads issued with fio on 100GB of data. The
preparation for the test has been performed with pblk us-
ing the full bandwidth of the device (128 PUs). This
means that sequential reads are more easily parallelized
internally by the controller since sequential logical ad-
dresses are physically striped across channels and PUs
on a per-page basis.

USENIX Association 15th USENIX Conference on File and Storage Technologies    367



QD1 QD2 QD4 QD8 QD16

Th
ro

ug
hp

ut
 (G

B
/s

)

0
1
2
3
4

SR
4 8 16 32 64 128 256

0
1
2
3
4

RR
4 8 16 32 64 128 256

La
te

nc
y 

(m
s)

0
0.5

1
1.5

2
2.5

SR
4 8 16 32 64 128 256

0
0.5

1
1.5

2
2.5

RR
4 8 16 32 64 128 256

Figure 4: Throughput and corresponding latencies for sequen-
tial and random read workloads as a function of queue depths
(QD) and block sizes (x axis in KB).

We see that the OCSSD is capable of reaching 4GB/s
using sequential reads at an average latency of 970µs
using 256KB request size and a queue depth of 16. The
99th percentile latency is reported at 1,200µs. Similarly,
we measure throughput and latency for 4KB reads using
a queue depth of 1. Maximum throughput is 105MB/s,
with 40µs average access latency and 99th percentile at
400µs. The average access latency is lower than a sin-
gle flash page access because the controller caches the
flash page internally. Thus, all sectors located on the
same flash page will be served from the controller buffer
instead of issuing a new flash page read. Also, read
throughput is limited by the flash page access time, as
we only perform one read at a time.

Pure read and write workloads can be used to calibrate
queue depths to reach full bandwidth. They show the
optimal case, where reads and writes do not block each
other. Let us now discuss mixed workloads, which are
much more challenging for SSDs.

5.3 Mixed Workloads

For a mixed workload, we use the same write preparation
as in the previous experiment (stripe across all PUs with
a 100GB dataset).

Then, we proceed to write with an offset of 100GB,
while we read from the first 100GB. We repeat this ex-
periment, varying stripe size (number of active write
PUs) for new writes. The hypothesis is that as the stripe
size decreases, read performance predictability should
increase as the probability of a read being stuck behind a
write lowers.

Figure 5 depicts the behavior of pblk when reads and
writes are mixed. In Figure 5(a), we show through-
put for both writes and random reads together with their
reference value, represented by 100% writes (4GB/s–
200MB/s) and 100% random reads (3GB/s), respec-
tively; Figure 5(b) depicts its latencies. The experiment
consists of large sequential 256KB writes at queue depth
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Figure 5: R/W throughput and latencies as a function of active
write PUs configurations. Top graph, and a: throughput and
corresponding latency (Writes: 256KB, QD1; Reads: 256KB,
QD16); b: read latency (Writes: 256KB, QD1; Reads: 4KB,
QD1); c: read latency (Write: 256KB, QD1, rate-limited at
200MB/s; Reads: 256KB, QD1).

1, and 256KB random reads at queue depth 16. The
write queue depth is 1, as it is enough to satisfy the
full write bandwidth (defined by the capacity of the pblk
write buffer). Note that reads are issued at queue depth
16 so that enough parallelism can be leveraged by the
controller. This allows us to better visualize the worst-
case latencies and the effect of fewer writing PUs.

We observe that when new writes are striped across all
128 PUs, throughput is halved for both reads and writes
compared to the reference value, while average latency
doubles for reads (maximum latency is increased by 4×).
Write latencies are close to not being affected because
they are buffered. This represents the typical case on
a traditional SSD: reads are stacked behind writes, thus
affecting read performance; host and controller queues
are filled with read requests, thus affecting write perfor-
mance. However, as soon as we start limiting the num-
ber of active write PUs, we observe how reads rapidly
recover. For this experiment, we configured one block
to be fully written on an active PU before switching to a
different PU. Writes are still striped across all 128 PUs,
but instead of being striped at page granularity, they are
striped at block granularity. This lowers the probabil-
ity of reads being issued to the same PU as new writes
(because, reads and writes are striped at different granu-
larities). If we lower the number of write-active PUs to
4, we see that reads are very close to the reference read
workload, while still writing at 200MB/s.

Figure 5(c) shows latency for 4K reads at queue depth
1. Here, we emphasize the impact of a read being
blocked by a write. As in Figure 5(b), latency variance
reduces as we decrease the number of active write PUs.
With 4 active write PUs, the maximum latency for ran-
dom reads in the 99th percentile is only 2µs higher than
in the average case.

Figure 5(d) shows the same experiment as in a) and
b), with the difference that writes are rate-limited to
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Figure 6: Latencies for RocksDB sequential writes, random
reads and mixed workloads on OCSSD and NVMe SSD

NVMe SSD OCSSD 128 OCSSD 4
SW 276 396 80
RR 5064 5819 5319

Mixed 2208 3897 4825

Table 2: Throughput (MB/s) for RocksDB sequential writes,
random reads, and mixed workloads on OCSSD and NVMe
SSD

200MB/s. The motivation for this experiment is the ex-
pectation of consistent writes in next-generation SSDs.
Note that current SSDs already define the maximal sus-
tained write bandwidths over a three-year period. Ex-
amples are write-heavy (e.g., Intel DC P3608, 1.6GB, 5
DWPD) and read-heavy (e.g., Samsung 960 Pro, 2TB,
2.2 DWPD) SSDs, where the limits are 95MB/s and
26MB/s, respectively. The interesting output of this ex-
periment is that even when writes are rated, the variance
of reads is still very much affected by the number of ac-
tive write PUs.

More generally, the experiments with mixed work-
loads show that informed decisions based on the actual
workload of an application can be leveraged to optimize
a traditional block device interface, without requiring an
application-specific FTL.

5.4 Application Workloads
We evaluate pblk with a NoSQL database, and MySQL
with both OLTP and OLAP workloads. The NoSQL
database relies on an LSM-tree for storage and leans to-
wards fewer flushes (sync is enabled to guarantee data
integrity), while MySQL has tight bounds on persisting
transactional data to disk. We evaluate both using the
NVMe SSD and the OCSSD using 128 and 4 active write
PUs.

NoSQL. For this experiment, we ran RocksDB [17] on
top of an Ext4 file system and made use of RocksDB’s
db_bench to execute three workloads: sequential writes,
random reads, and mixed (RocksDB read-while-writing
test). Figure 6 shows user throughput and latencies for
the three workloads. We show latency for the 95th, 99th

and 99.9th percentile of the latency distribution. Note
that internally RocksDB performs its own garbage col-
lection (i.e., sstable compaction). This consumes device
bandwidth, which is not reported by db_bench.

Figure 7: Transactions per second and latencies for OLTP and
OLAP on NVMe SSD and OCSSD.

The user write throughput is 276MB/s for the NVMe
SSD, 396MB/s for the OCSSD with 128 active PUs, and
88MB/s with 4 active PUs. The fewer active PUs clearly
show that the write performance is limited. The perfor-
mance of the random reads workload is comparable for
both SSDs. There is a significant difference when writes
are involved. First, both SSDs expose the same behavior
for sequential workloads until we reach the 99.9th per-
centile, where the OCSSD provides a lower latency, by
a factor of two. Second, for mixed workload, the OC-
SSD provides a much lower latency (approximately a
factor of three) already for the 99th percentile. This is
because reads get much more often stuck after writes on
the NVMe SSD and that the OCSSD has more internal
parallelism that can be leveraged by writes.

OLTP and OLAP. Figure 7 shows Sysbench’s [32]
OLTP and OLAP workloads on top of the MySQL
database system and an Ext4 file system. The latency er-
ror bounds show the min/max for the workloads as well.

Both workloads are currently CPU bound and thus
similar for all SSDs. When writing, however, the OLTP
workload exhibits significant flush overheads. For 10GB
write, 44,000 flushes were sent, with roughly 2GB data
padding applied. For OLAP (as for RocksDB), only 400
flushes were sent, with only 16MB additional padding.
Thus, for a transactional workload, a device-side buffer
would significantly reduce the amount of padding re-
quired.

The latency results show the same trend as RocksDB.
In the 95th percentile, latency increases a lot for write-
heavy OLTP on the traditional SSD compared to the
average case, while the increase is insignificant for the
open-channel SSD. For OLAP, the results are similar
both in terms of throughput and latency due to the work-
load being CPU-intensive, and mostly read-only. Thus,
there is no interference between reads and writes/erases.
Tuning SQL databases for performance on open-channel
SSDs is an interesting topic for future work (possibly via
a KV-based storage engine [39]).
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5.5 Predictable Latency
This experiment illustrates the potential benefits of
application-specific FTLs. We use again the modified
version of fio to run two concurrent streams of vector
I/Os directly to the device. One thread issues 4KB ran-
dom reads at queue depth 1, while another thread is-
sues 64K writes at the same queue depth. The streams
for the OCSSD are isolated to separate PUs, while the
NVMe SSD mixes both reads and writes. We measure
the workload over five seconds and report the latency
percentiles in Figure 8. We report the latency granu-
larities as 100/0,80/20,66/33, and 50/50. As writes
increase, performance remains stable on the OCSSD.
While the NVMe SSDs has no method to separate the
reads from the writes, and as such higher read latency
are introduced even for light workloads (20% writes).

Our point is that the PPA I/O interface enables ap-
plication developers to explicitly manage the queue for
each separate PU in an SSD and thus achieve predictable
I/O latency. Characterizing the potential of application-
specific FTLs with open-channel SSDs is a topic for fu-
ture work.

6 Related Work

As SSD shortcomings become apparent [12, 15, 30, 37],
research has focused on organizing the cooperation be-
tween host and SSDs. One form of cooperation consists
of passing hints from hosts to embedded FTLs. The work
on multi-streaming falls in this category [28]. Other
forms of cooperation consist in bypassing the FTL [24,
35, 50], or designing the upper layers of the system
around the properties of a given FTL [29, 33, 36, 38, 46].
Finally, host-based FTLs let the host control data place-
ment and I/O scheduling. This is the approach we have
taken with LightNVM.

Host-side FTLs have been implemented by both Fu-
sionIO DFS [27] and Violin Memory [54], each moving
the FTL into the host in order to expose a block I/O SSD.
Similarly, Ouyang et al. [45] proposed Software-Defined
Flash that allows a key-value store to integrate with the
underlying storage media. Also, Lu et al. [37] defined a

host-based object-based FTL (OFTL) on top of raw flash
devices that correspond to Baidu’s open-channel SSDs.
In contrast, we specify a cross-vendor interface for open-
channel SSDs, and we show how a tunable block I/O tar-
get can reduce read latency variability.

Lee et. al. [34] proposed a new SSD interface, compat-
ible with the legacy block device interface, that exposes
error-free append-only segments through read/write/trim
operations. This work is based on a top-down approach,
which shows how a state-of-art file system (F2FS) can
be implemented on top of the proposed append-only in-
terface. Our paper, in contrast, describes a bottom-up
approach where the PPA interface reflects SSD charac-
teristics independently of the upper layers of the system.
First, our PPA interface allows write and erase errors to
propagate up to the host for increased I/O predictability.
We also define a vector I/O interface, allowing the host
to leverage the device parallelism. Finally, we explicitly
expose the read and write granularity of the media to the
host so that write buffering can be placed on the host or
the device. Demonstrating the benefits of application-
specific SSD management with LightNVM is a topic for
future research. Initial results with RocksDB [22] or
multi-tenant I/O isolation [21, 26] are promising.

7 Conclusion

LightNVM is the open-channel SSD subsystem in the
Linux kernel. It exposes any open-channel SSD to the
host through the PPA I/O interface. LightNVM also
provides a partition manager and a tunable Block I/O
interface. Our experimental results show that Light-
NVM provides (i) low overhead with significant flex-
ibility, (ii) reduced read variability compared to tradi-
tional NVMe SSDs, and (iii) the possibility of obtaining
predictable latency. Future work includes characteriz-
ing the performance of various open-channel SSD mod-
els (products from three vendors have been announced
at the time of writing), devising tuning strategies for
relational database systems and designing application-
specific FTLs for key-value stores.
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Abstract
A longstanding goal of SSD virtualization has been to
provide performance isolation between multiple tenants
sharing the device. Virtualizing SSDs, however, has tra-
ditionally been a challenge because of the fundamental
tussle between resource isolation and the lifetime of the
device – existing SSDs aim to uniformly age all the re-
gions of flash and this hurts isolation. We propose uti-
lizing flash parallelism to improve isolation between vir-
tual SSDs by running them on dedicated channels and
dies. Furthermore, we offer a complete solution by also
managing the wear. We propose allowing the wear of dif-
ferent channels and dies to diverge at fine time granular-
ities in favor of isolation and adjusting that imbalance at
a coarse time granularity in a principled manner. Our ex-
periments show that the new SSD wears uniformly while
the 99th percentile latencies of storage operations in a
variety of multi-tenant settings are reduced by up to 3.1x
compared to software isolated virtual SSDs.

1 Introduction
SSDs have become indispensable for large-scale cloud
services as their cost is fast approaching to that of HDDs.
They out-perform HDDs by orders of magnitude, provid-
ing up to 5000x more IOPS, at 1% of the latency [21].
The rapidly shrinking process technology has allowed
SSDs to boost their bandwidth and capacity by increas-
ing the number of chips. However, the limitations of
SSDs’ management algorithms have hindered these par-
allelism trends from efficiently supporting multiple ten-
ants on the same SSD.

Tail latency of SSDs in multi-tenant settings is one
such limitation. Cloud storage and database systems
have started colocating multiple tenants on the same
SSDs [14, 58, 79] which further exacerbates the already
well known tail latency problem of SSDs [25, 26, 60, 78].

The cause of tail latency is the set of complex flash
management algorithms in the SSD’s controller, called
the Flash Translation Layer (FTL). The fundamental
goals of these algorithms are decades-old and were

meant for an age when SSDs had limited capacity and lit-
tle parallelism. The goals were meant to hide the idiosyn-
crasies of flash behind a layer of indirection and expose
a block interface. These algorithms, however, conflate
wear leveling (to address flash’s limited lifetime) and re-
source utilization (to exploit parallelism) which increases
interference between tenants sharing an SSD.

While application-level flash-awareness [31, 36, 37,
51, 75] improves throughput by efficiently leveraging the
device level parallelism, these optimizations do not di-
rectly help reduce the interference between multiple ten-
ants sharing an SSD. These tenants cannot effectively
leverage flash parallelism for isolation even when they
are individually flash-friendly because FTLs hide the
parallelism. Newer SSD interfaces [38, 49] that pro-
pose exposing raw parallelism directly to higher layers
provide more flexibility in obtaining isolation for tenants
but they complicate the implementation of wear-leveling
mechanisms across the different units of parallelism.

In this work, we propose leveraging the inherent par-
allelism present in today’s SSDs to increase isolation be-
tween multiple tenants sharing an SSD. We propose cre-
ating virtual SSDs that are pinned to a dedicated num-
ber of channels and dies depending on the capacity and
performance needs of the tenant. The fact that the chan-
nels and dies can be more or less operated upon indepen-
dently helps such virtual SSDs avoid adverse impacts on
each other’s performance. However, different workloads
can write at different rates and in different patterns, this
could age the channels and dies at different rates. For
instance, a channel pinned to a TPC-C database instance
wears out 12x faster than a channel pinned to a TPC-
E database instance, reducing the SSD lifetime dramat-
ically. This non-uniform aging creates an unpredictable
SSD lifetime behavior that complicates both provision-
ing and load-balancing aspects of data center clusters.

To address this problem, we propose a two-part wear-
leveling model which balances wear within each virtual
SSD and across virtual SSDs using separate strategies.
Intra-virtual SSD wear is managed by leveraging exist-
ing SSD wear-balancing mechanisms while inter-virtual
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Figure 1: Tenants sharing an SSD get better bandwidth (compare (a) vs. (b)) and tail latency as shown in (c) when
using new hardware isolation. However, dedicating channels to tenants can lead to wear-imbalance between the various
channels as shown in (d). Note that the number of blocks erased in the first, fourth and fifth channels is close to zero
because they host workloads with only read operations. This imbalance of write bandwidth across different workloads
creates wear-imbalance across channels. A new design for addressing such a wear-imbalance is proposed in this paper.

SSD wear is balanced at coarse-time granularities to re-
duce interference by using new mechanisms. We con-
trol the wear imbalance between virtual SSDs using a
mathematical model and show that the new wear-leveling
model ensures near-ideal lifetime for the SSD with neg-
ligible disruption to tenants. More specifically, this work
makes the following contributions:

• We present a system named FlashBlox using which
tenants can share an SSD with minimal interference
by working on dedicated channels and dies.

• We present a new wear-leveling mechanism that al-
lows measured amounts of wear imbalance to obtain
better performance isolation between such tenants.

• We present an analytical model and a system that
control the wear imbalance between channels and
dies, so that they age uniformly with negligible in-
terruption to the tenants.

We design and implement FlashBlox and its new wear-
leveling mechanisms inside an open-channel SSD stack
(from CNEX labs [18]), and demonstrate benefits for a
Microsoft data centers’ multi-tenant storage workloads:
the new SSD delivers up to 1.6x better throughput and
reduces the 99th percentile latency by up to 3.1x. Fur-
thermore, our wear leveling mechanism provides 95% of
the ideal SSD lifetime even in the presence of adversar-
ial write workloads that execute all the writes on a single
channel while only reading on other channels.

The rest of this paper is organized as follows: § 2
presents the challenges that we address in this work. De-
sign and implementation of FlashBlox are described in
§ 3. Evaluation results are shown in § 4. § 5 presents the
related work. We present the conclusions in § 6.

2 SSD Virtualization: Opportunity
and Challenges

Premium storage Infrastructure-as-a-Service (IaaS) of-
ferings [4, 7, 22], persistent Platform-as-a-Service
(PaaS) systems [8] and Database-as-a-Service (DaaS)
systems [2, 5, 9, 23] need SSDs to meet their service
level objectives (SLO) that are usually outside the scope

of HDD performance. For example, DocDB [5] guaran-
tees 250, 1,000 and 2,500 queries per second respectively
for the S1, S2 and S3 offerings [6].

Storage virtualization helps such services make effi-
cient use of SSDs’ high capacity and performance by
slicing resources among multiple customers or instances.
Typical database instances in DaaS systems are 10 GB –
1 TB [6, 10] whereas each server can have more than 20
TB of SSD capacity today.

Bandwidth, IOPS [48, 56] or a convex combination
of both [57, 74] is limited on a per-instance basis using
token bucket rate limiters or intelligent IO throttling [41,
59, 66] to meet SLOs. However, there is no analogous
mechanism for sharing the SSD while maintaining low
IO tail latency – an instance’s latency still depends on
the foreground reads/writes [25, 42, 73] and background
garbage collection [34] of other instances.

Moreover, it is becoming increasingly necessary to co-
locate diverse workloads (e.g. latency-critical applica-
tions and batch processing jobs), to improve resource uti-
lization, while maintaining isolation [33, 42]. Virtualiza-
tion and container technologies are evolving to exploit
hardware isolation of memory [11, 47], CPU [16, 40],
caches [28, 52], and networks [30, 72] to support such
scenarios. We extend this line of research to SSDs by
providing hardware-isolated SSDs, complete with a so-
lution for the wear-imbalance problem that arises due to
the physical flash partitioning across tenants with diverse
workloads.

2.1 Hardware Isolation vs. Wear-Leveling
To understand this problem, we compare the two differ-
ent approaches to sharing hardware. The first approach
stripes data from all the workloads across all the flash
channels (eight total), just as existing SSDs do. This
scheme provides the maximum throughput for each IO,
and uses the software rate limiter which has been used
for Linux containers and Docker [12, 13] to implement
weighted fair sharing of the resources (the scenario for
Figure 1(a)). Note that instances in the software-isolated
case do not share physical flash blocks with other colo-
cated instances. This eliminates the interference due to
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Figure 2: SSD Architecture: Internal parallelism in SSDs
creates opportunities for hardware-level isolation.

garbage collection in one instance affecting another in-
stance’s read performance [34]. The second approach
uses a configuration from our proposed mechanism that
provides the hardware isolation by assigning a certain
number of channels to each instance (the scenario for
Figure 1(b)).

In both scenarios, there are four IO-intensive work-
loads. These workloads request 1/8th, 1/4th, 1/4th and
3/8th of the shared storage resource. The rate limiter
uses these as weights in the first approach, while Flash-
Blox assigns 1, 2, 2 and 3 channels respectively. Work-
loads 2 and 4 perform 100% writes and workloads 1 and
3 perform 100% reads. All workloads issue sequentially-
addressed and aligned 64 KB IOs.

Hardware isolation not only reduces the 99th per-
centile latencies by up to 1.7x (Figure 1(c)), but also in-
creases the aggregate throughput by up to 10.8% com-
pared to software isolation. However, pinning instances
to channels prevents the hardware from automatically
leveling the wear across all the channels, as shown in
Figure 1(d). We exaggerate the variance of write rates
to better motivate the problem of wear-imbalance that
stems from hardware-isolation of virtual SSDs. Later in
the paper, we will use applications’ typical write rates
(see Figure 5) to design our final solution. To moti-
vate the problem further, we must first explore the par-
allelism available in SSD hardware, and the aspects of
FTLs which cause interference in the first approach.

2.2 Leveraging Parallelism for Isolation
Typical SSDs organize their flash array into a hierar-
chy of channels, dies, planes, blocks and pages [1, 17].
As shown in Figure 2, each SSD has multiple channels,
each channel has multiple dies, and each die has mul-
tiple planes. The number of channels, dies and planes
varies by vendor and generation. Typically, there are 2 -
4 planes per die, 4 - 8 dies per channel, and 8 - 32 chan-
nels per drive. Each plane is composed of thousands of
blocks (typically 4-9MB) and each block contains 128-
256 pages.

This architecture plays an important role in defining
isolation boundaries. Channels, which share only the re-
sources common to the whole SSD, provide the strongest
isolation. Dies execute their commands with complete
independence, but they must share a bus with other dies
on the same channel. Planes’ isolation is limited because
the die contains only one address buffer. The controller

may isolate data to different planes, but operations on
these data must happen at different times or to the same
address on each plane in a die [32].

In current drives, none of this flexibility is exposed to
the host. Drives instead optimize for a single IO pat-
tern: extremely large or sequential IO. The FTL logically
groups all planes into one large unit, creating “super-
pages” and “super-blocks” are hundreds of times larger
than their base unit. For example, a drive with 4MB
blocks and 256 planes has a 1GB super-block.

Striping increases the throughput of large, sequential
IOs, but introduces the negative side effect of interfer-
ence between multiple tenants sharing the drive. As all
data is striped, every tenant’s reads, writes and erases can
potentially conflict with every other tenant’s operations.

Previous work had proposed novel techniques to help
tenants place their data such that underlying flash pages
are allocated from separate blocks. This helps improve
performance by reducing the write amplification factor
(WAF) [34]. Lack of block sharing has the desirable side
effect of clumping garbage into fewer blocks, leading to
more efficient garbage collection (GC), thereby reducing
tail latency of SSDs [25, 42, 43, 73].

However, significant interference still exists between
tenants because when data is striped, every tenant uses
every channel, die and plane for storing data and the
storage operations of one tenant can delay other tenants.
Software isolation techniques [57, 67, 68] split the the
SSD’s resources fairly. However, they cannot maximally
utilize the flash parallelism when resource contention ex-
ists at a layer below because of the forced sharing of in-
dependent resources such as channels, dies and planes.

New SSD designs, such as open-channel SSDs that ex-
plicitly expose channels, dies and planes to the operating
system [44, 38, 49], can help tenants who share an SSD
avoid some of these pitfalls by using dedicated channels.
However, the wear imbalance problem between chan-
nels that ensues from different tenants writing at different
rates remains unsolved. We propose a holistic approach
to solve this problem by exposing flash channels and dies
as virtual SSDs, while the system underneath wear-levels
within each vSSD and balances the wear across channels
and dies at coarse time granularities.

FlashBlox is concerned only with sharing of the re-
sources within a single NVMe SSD. Fair sharing mech-
anisms that split PCIe bus bandwidth across multiple
NVMe devices, network interface cards, graphic pro-
cessing units and other PCIe devices is beyond the scope
of this work.

3 Design and Implementation
Figure 3 shows the FlashBlox architecture. At a high
level, FlashBlox consists of the following three compo-
nents: (1) A resource manager that allows tenants to al-
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Figure 3: The system architecture of FlashBlox.

Table 1: Virtual SSD types supported in FlashBlox.
Virtual SSD Type Isolation Level Alloc. Granularity
Channel Isolated vSSD (§ 3.1) High Channel
Die Isolated vSSD (§ 3.2) Medium Die
Software Isolated vSSD (§ 3.3) Low Plane/Block
Unisolated vSSD (§ 3.3) None Block/Page

locate and deallocate virtual SSDs (vSSD); (2) A host-
level flash manager that implements inter-vSSD wear-
levelling by balancing wear across channels and dies
at coarse time granularities; (3) An SSD-level flash
manager that implements intra-vSSD wear-levelling and
other FTL functionalities.

One of the key new abstractions provided by Flash-
Blox is that of a virtual SSD (vSSD) which can reduce
tail latency. It uses dedicated flash hardware resources
such as channels and dies that can be operated indepen-
dently from each other. The following API creates a
vSSD:
vssd t AllocVirtualSSD(int isolationLevel,

int tputLevel, size t capacity);

Instead of asking tenants to specify absolute numbers,
FlashBlox enables them to create different sizes and
types of vSSDs with different levels of isolation and
throughput (see Table 1). These parameters are compat-
ible with the performance and economic cost levels such
as the ones [3, 6] advertised in DaaS systems to ease us-
age and management. Tenants can scale up capacity by
creating multiple vSSDs of supported sizes just as it is
done in DaaS systems today. A vSSD is deallocated with
void DeallocVirtualSSD(vssd t vSSD).

Channels, dies and planes are used for providing dif-
ferent levels of performance isolation. This brings sig-
nificant performance benefits to multi-tenant scenarios
(details discussed in § 4.2) because they can be operated
independently from each other.

Higher levels of isolation have larger resource alloca-
tion granularities as channels are larger than dies. There-
fore, channel-granular allocations can have higher inter-
nal fragmentation compared to die-granular allocations.
However, this is less of a concern for FlashBlox’s design
for several reasons. First, a typical data center server
can house eight NVMe SSDs [46]. Therefore, the maxi-

FlashBlox SSD

Channel

vSSD_A vSSD_B

D
ie

vSSD_C vSSD_D vSSD_E vSSD_F

Soft-Plane for Software Isolated vSSD

Figure 4: A FlashBlox SSD: vSSD A and B use one and
two channels respectively. vSSD C and D use three dies
each. vSSD E, and F use three soft-planes each.

mum number of channel-isolated and die-isolated vSSDs
we can support is 128 and 1024 respectively using 16-
channel SSDs. Further, SSDs with 32 channels are on the
horizon which can double the number of vSSDs which
should be sufficient based on our conversations with the
service providers at Microsoft.

Second, the differentiated storage offerings of DaaS
systems [3, 6, 10] allow tenants to choose from a certain
fixed number of performance and capacity classes. This
allows the cloud provider to reduce complexity. In such
applications, the flexibility of dynamically changing ca-
pacity and IOPS is obtained by changing the number of
partitions dedicated to the application. FlashBlox’s de-
sign of bulk channel/die allocations aligns well with such
a model. Third, the differentiated isolation levels match
with the existing cost model for cloud storage platforms,
in which better services are subject to increased pricing.
This is a natural fit for FlashBlox where channels are
more expensive and performant than dies.

In DaaS systems, capacity is simply scaled up by cre-
ating new partitions. For instance in Amazon RDS and
Azure DocumentDB, applications scale capacity by in-
creasing the number of partitions. Each partition is of-
fered as a fixed unit containing a certain amount of stor-
age and IOPS (or application-relevant operations per sec-
ond). We designed FlashBlox for meeting the demands
of DaaS applications. Finally, hardware-isolated vSSDs
can coexist with software-isolated ones. For instance,
a few channels of each SSD can be used for provid-
ing traditional software-isolated SSDs whereby the cloud
provider further increases the number of differentiated
performance and isolation levels.

Beyond providing different levels of hardware isola-
tion, FlashBlox has to overcome the unbalanced wear-
leveling challenge to prolong the SSD lifetime. We de-
scribe the design of each vSSD type and its correspond-
ing wear-leveling mechanism respectively as follows.

3.1 Channel Isolated Virtual SSDs
A vSSD with high isolation receives its own dedicated
set of channels. For instance, the resource manager of an
SSD with 16 channels can host up to 16 channel-isolated
vSSDs, each containing one or more channels inaccessi-
ble to any other vSSD. Figure 4 illustrates vSSD A and
B that span one and two channels respectively.
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Figure 5: The average rate at which flash blocks are
erased for various workloads, including NoSQL, SQL
and batch processing workloads.

3.1.1 Channel Allocation

The throughput level and target capacity determine
the number of channels allocated to a channel iso-
lated vSSD. To this end, FlashBlox allows the data
center/DaaS administrator to implement the size t
tputToChannel(int tputLevel) function that
maps between throughput levels and required num-
ber of channels. The number of channels allo-
cated to the vSSD is, therefore, the maximum of
tputToChannel(tputLevel) and dcapacity /
capacityPerChannele.

Within a vSSD, the system stripes data across its al-
located channels similar to traditional SSDs. This maxi-
mizes the peak throughput by operating on the channels
in parallel. Thus, the size of the super-block of vSSD A
in Figure 4 is half that of vSSD B. Pages within the
super-block are also striped across the channels similar
to existing physical SSDs.

The hardware-level isolation present between the
channels by virtue of hardware parallelism allows the
read, program and erase operations on one vSSD to
largely be unaffected by the operations on other vSSDs.
Such an isolation enables latency sensitive applications
to significantly reduce their tail latencies.

Compared to an SSD that stripes data from all appli-
cations across all channels, a vSSD (over fewer chan-
nels) delivers a portion of the SSD’s all-channel band-
width. Customers of DaaS systems are typically given
and charged for a fixed bandwidth/IOPS level, and soft-
ware rate-limiters actively keep their consumption in
check. Thus, there is no loss of opportunity for not pro-
viding the peak-bandwidth capabilities for every vSSD.

3.1.2 Unbalanced Wear-Leveling Challenge

A significant side effect of channel isolation is the risk
of uneven aging of the channels in the SSD as different
vSSDs may be written at different rates. Figure 5 shows
how various storage workloads erase blocks at different
rates indicating that channels pinned naively to vSSDs
will age at different rates if left unchecked.

Such uneven aging may exhaust a channel’s life long
before other channels fail. Premature death of even a
single channel would render significant capacity losses
(> 6% in our SSD). Furthermore, premature death of a
single channel leads to an opportunity loss of never be-

ing able to create a vSSD that spans all the 16 channels
for the rest of the server’s lifetime. Such an imbalance
in capability of servers represents lost opportunity costs
given that other components in the server such as CPU,
network and memory do not prematurely lose capabili-
ties. Furthermore, unpredictable changes in capabilities
also complicate the job of load-balancers which typically
assume uniform or predictably non-uniform (by design)
capabilities. Therefore, it is necessary to ensure that all
the channels are aging at the same rate.

3.1.3 Inter-Channel Wear-Leveling

To ensure uniform aging of all channels, FlashBlox uses
a simple yet effective wear-leveling scheme:

Periodically, the channel that has incurred the maxi-
mum wear thus far is swapped with the channel that has
the minimum rate of wear.

A channel’s wear rate is the average rate at which
it erased blocks since the last time the channel was
swapped. This prevents the most-aged channels from
seeing high wear rates, thus intuitively extending their
lifetime to match that of the other channels in the sys-
tem.

Our experiments with workload traces from Mi-
crosoft’s data center workloads show that such an ap-
proach works well in practice. We can ensure near-
perfect wear-leveling with this mechanism and a swap
frequency of once every few weeks. Furthermore, the
impact on tail-latency remains low during the 15-minute
migration period (see § 4.3.1). We analytically derive the
minimum necessary frequency in § 3.1.4 and present the
design of the migration mechanism in § 3.1.5.

3.1.4 Swap Frequency Analysis

Let σi denote the wear (total erase count of all the blocks
till date) of the ith channel. ξ = σmax/σavg denotes the
wear imbalance1 which must not exceed 1 + δ ; where
σmax = Max(σ1, ...,σN), σavg = Avg(σ1, ...,σN), N is the
total number of channels, and δ measures the imbalance.

When the device is new, it is obviously not possible
to ensure that ξ ≤ 1+ δ without aggressively swapping
channels. On the other hand, it must be brought within
bounds early in the lifetime of the server (L = 150–250
weeks typical) such that all the channels are available for
as much of the server’s lifetime as possible.

SSDs are provisioned with a target erase workload and
we analyze for the same – let’s say M erases per week.
We mathematically study the wear-imbalance vs. fre-
quency of migration ( f ) tradeoff and show that manage-

1The ratio of maximum to average is an effective way to quantify
imbalance [45]. This is especially true in our case, as the lifetime of
the new SSD is determined by the maximum wear of a single channel,
whereas the lifetime of ideal wear-leveling is determined by the aver-
age wear of all the channels. The ratio of maximum to average thus
represents the loss of lifetime due to imperfect wear leveling.
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able values of f can provide acceptable wear imbalance
where ξ comes below 1+δ after αL weeks, where α is
between 0 and 1.

The worst-case workload for FlashBlox is when all the
writes go to a single channel.2 The assumption that a
single channel’s bandwidth can handle the entire provi-
sioned bandwidth is valid for modern SSDs: most SSDs
are provisioned with 3,000-10,000 erases per cell to last
150–250 weeks. The provisioned erase rate for a 1TB
SSD is therefore M=21–116 MBPS, which is lower than
a channel’s erase bandwidth (typically 64–128MBPS).

For an SSD with N channels, the wear imbalance
of ideal wear-leveling is ξ = 1, while the worst case
workload for FlashBlox gives a ξ = N: σmax/σavg =
M ∗ time/(M ∗ time/N) = N before any swaps. A sim-
ple swap strategy of cycling the write workload through
the N channels (write workload spends 1/ f weeks per
channel) is analyzed. Let’s assume that after K rounds of
cycling through all the channels, KN/ f ≥ αL holds true
– that is αL weeks have elapsed and ξ has become less
than 1+ δ and continues to remain there. At that very
instant ξ equals 1. Therefore, σmax = MK and σavg =
MK, then after the next swap, σmax = MK +M and σavg
= MK +M/N. In order to guarantee that the imbalance
is always limited, we need:

ξ = σmax/σavg = (MK +M)/(MK +M/N) ≤ (1 + δ )

This implies K ≥ (N − 1− δ )/(Nδ ) which is up-
per bounded by 1/δ . Therefore, to guarantee that ξ ≤
(1+δ ), it is enough to swap NK = N/δ times in the first
αL weeks. This implies that, over a period of five years,
if α were 0.9 then a swap must be performed once ev-
ery 12 days (= 1/ f ) for a δ = 0.1 (N = 16). Table 2
shows how the frequency of swaps increases with the
number of channels (shown as decreasing time period).
This also implies that 2

16
th

of the SSD is erased to per-
form the swap once every 12 days, which is negligible
compared to the 3,000–10,000 cycles that typical SSDs
have. However, for realistic workloads that do not have
such a skewed write pattern with a constant bandwidth,
swaps must be adaptively performed according to work-
load patterns (see Table 5) to reduce the number of swaps
needed while maintaining balanced wear.

3.1.5 Adaptive Migration Mechanism

We assume a constant write rate of M for analysis pur-
poses, but in reality writes are bursty. High write rates
must trigger frequent swaps while swapping may not be
needed as often during periods of low write rates. To
achieve this, FlashBlox maintains a counter per channel

2This worst-case is from a non-adversarial point of view. An adver-
sary could change the vSSD write bandwidth at runtime such that no
swapping strategy can keep up. But most data center workloads are not
adversarial and have predictable write patterns. We leave it to a security
watch dog to kill over-active workloads that are not on a whitelist.

Table 2: The frequency of swaps increases as the number
of channels increase to maintain balanced wear – swap
periods shown below for the SSD to last five years.

Number of Channels 8 16 32 64
Swap Period (days) 26 12 6 3

to represent the amount of space erased (MB) in each
channel since the last swap. Once one of the counters
goes beyond a certain threshold γ , a swap is performed,
and the counters are cleared. γ is set to the amount of
space erased if the channel experiences the worst-case
write workload between two swaps (i.e., M/ f ).

The rationale behind this mechanism is that the chan-
nels must always be positioned in a manner to be able
to catch up in the worst-case. FlashBlox then swaps the
channels with σmax and λmin, where λi denotes the wear
rate of the ith channel and λmin = Min(λ1, ...,λN).

FlashBlox uses an atomic block-swap mechanism to
gradually migrate the candidate channels to their new lo-
cations without any application involvement. The mech-
anism uses an erase-block granular mapping table (de-
scribed in § 3.4) for each vSSD that is maintained in a
consistent and durable manner.

The migration happens in four steps. First, FlashBlox
stops and queues all of the in-flight read, program and
erase operations associated with the two erase-blocks be-
ing swapped. Second, the erase-blocks are read into a
memory buffer. Third, the erase-blocks are written to
their new locations. Fourth, the stopped operations are
then dequeued. Note that only the IO operations for the
swapping erase blocks in the vSSD are queued and de-
layed. The IO requests for other blocks are still issued
with higher priority to mitigate the migration overhead.

The migrations affect the throughput and latency of
the vSSDs involved. However, they are rare (happen less
than once in a month for real workloads) and take only
15 minutes to finish (see § 4.3.1).

As a future optimization, we wish to modify the DaaS
system to perform the read operations on other replicas to
further reduce the impact. For systems that perform reads
only on the primary replica, the migration can be staged
within a replica-set such that the replica that is currently
undergoing a vSSD migration is, if possible, first con-
verted into a backup. Such an optimization would reduce
the impact of migrations on the reads in applications that
are replicated.

3.2 Die-Isolated Virtual SSDs
For applications which can tolerate some interference
(i.e., medium isolation) such as the non-premium cloud
database offerings (e.g., Amazon’s small database in-
stance [3] and Azure’s standard database service [62]),
FlashBlox provides die-level isolation. The num-
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ber of dies in such a vSSD is the maximum of
tputToDie(tputLevel) (defined by the adminis-
trator) and dcapacity / capacityPerDiee. Their
super-blocks and pages stripe across all the dies within
the vSSD to maximize throughput. Figure 4 illustrates
vSSD C, and D containing three dies each (vSSD D
has dies from different channels). These vSSDs, how-
ever, have weaker isolation guarantees since dies within
a channel must share a bus.

The wear-leveling mechanism has to track wear at the
die level as medium-level isolated vSSDs are pinned to
dies. Thus, we split the wear-leveling mechanism in
FlashBlox into two sub-mechanisms: channel level and
die level. The job of the channel-level wear-balancing
mechanism is to ensure that all the channels are aging at
roughly the same rate (see § 3.1). The job of the die-level
wear-balancing mechanism is to ensure that all the dies
within a channel are aging roughly at the same rate.

As shown in § 3.1.4, an N channel SSD has to swap at
least N/δ times to guarantee ξ ≤ (1+δ ) within a target
time period. This analysis also holds true for dies within
a channel. For the SSDs today, in which each channel
has 4 dies, FlashBlox has to swap dies in each channel
40 times in the worst case during the course of the SSD’s
lifetime or once every month.

As an optimization, we leverage the channel-level mi-
gration to opportunistically achieve the goal of die-level
wear-leveling, based on the fact that dies have to mi-
grate along with the channel-level migration. During
each channel-level migration, the dies within the mi-
grated channels with the largest wear is swapped with the
dies that have the lowest write rate in the respective chan-
nels. Experiments with real workloads show that such a
simple optimization can effectively provide satisfactory
lifetime for SSDs (see § 4.3.2).

3.3 Software Isolated Virtual SSDs
For applications that have even lower requirements of
isolation like Azure’s basic database service [62], the
natural possibility of using plane level isolation arises.
However, planes within a die do not provide the same
level of flexibility as channels and dies with respect to
operating them independently from each other: Each die
allows operating either one plane at a time or all the
planes at the same address offset. Therefore, we use
an approach where all the planes are operated simultane-
ously but their bandwidth/IOPS is split using software.

Each die is split into four regions of equal size called
soft-planes by default, the size of each soft-plane is 4 GB
in FlashBlox (other configurations are also supported).
Planes are physical constructs inside a die. Soft-planes
however are simply obtained by striping data across all
the planes in the die. Further, each soft-plane in a die ob-
tains an equal share of the total number of blocks within a

die. They also receive fair share of bandwidth of the die.
The rationale behind this is to make it easier for data cen-
ter/PaaS administrator to map the throughput levels re-
quired from tenants to quantified numbers of soft-planes.

vSSDs created using soft-planes are otherwise indis-
tinguishable from traditional virtual SSDs where soft-
ware rate limiters are used to split an SSD across multiple
tenants. Similar to such settings, we use the state-of-the-
art token bucket rate-limiter [13, 67, 78] which has been
widely used for Linux containers and Docker [12] to im-
prove isolation and utilization at the same time. Our ac-
tual implementation is similar to the weighted fair-share
mechanisms in prior work [64]. In addition, separate
queues are used for enqueuing requests to each die.

The number of soft-planes used for creating these
vSSDs is determined similarly to the previous cases: as
the maximum of tputToSoftPlane(tputLevel)
and dcapacity / capacityPerSoftPlanee. Fig-
ure 4 illustrates vSSDs E and F that contain three soft-
planes each. The super-block used by such vSSDs is sim-
ply striped across all the soft-planes used by the vSSD.
We use such vSSDs as the baseline for our comparison
of channel and die isolated vSSDs.

The software mechanism allows the flash blocks of
each vSSD to be trimmed in isolation, which can reduce
the GC interference. However, it cannot address the sit-
uation where erase operations on one soft-planes occa-
sionally block all the operations of other soft-planes on
the shared die. Thus, such vSSDs can only provide soft-
ware isolation which is lower than die-level isolation.

Besides these isolated vSSDs, FlashBlox also supports
an unisolated vSSD model which is similar to software
isolated vSSD, but a fair sharing mechanism is not used
to isolate such vSSDs from each other. To guarantee the
fairness between vSSDs in today’s cloud platforms, soft-
ware isolated vSSDs are enabled by default in FlashBlox
to meet low isolation requirements.

For both software isolated and unisolated vSSDs, their
wear-balancing strategy is kept the same rather than
swapping soft-planes. The rationale for this is that isola-
tion between soft-planes of a die is provided using soft-
ware and not by pinning vSSDs to physical flash planes.
Therefore, a more traditional wear-leveling mechanism
of simply rotating blocks between soft-planes of a die
is sufficient to ensure that the soft-planes within a die
are all aging roughly at the same rate. We describe this
mechanism in more detail in the next section.

3.4 Intra Channel/Die Wear-Leveling
The goals of intra die wear-leveling are to ensure that
the blocks in each die are aging at the same rate while
enabling applications to access data efficiently by avoid-
ing the pitfalls of multiple indirection layers and redun-
dant functionalities across these layers [27, 35, 54, 77].
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granular log-structured data store and align compaction
units to erase-blocks. A device level indirection layer is
used to ensure all erase-blocks are aging at the same rate.

With both die-level (see § 3.3) and intra-die wear leveling
mechanisms, FlashBlox inevitably achieves the goal of
intra-channel wear-leveling as well: all the dies in each
channel and all the blocks in each die age uniformly.

The intra-die wear-leveling in FlashBlox is illustrated
in Figure 6. We leverage flash-friendly application or file
system logic to perform GC and compaction, and sim-
plify the device level mapping. We also leverage the
drive’s capabilities to manage bad blocks without hav-
ing to burden applications with error correction, detec-
tion and scrubbing. We base our design for intra-die
wear-levelling on existing open SSDs [27, 38, 49]. We
describe our specific design for completeness.

3.4.1 Application/Filesystem Level Log

The API of FlashBlox, as shown in Table 3, is designed
with log-structured systems in mind. The only restriction
it imposes is that the application or the file system per-
form the log-compaction at a granularity that is the same
as the underlying vSSD’s erase granularity.

When a FlashBlox based log-structured application
or a filesystem needs to clean an erase-block that con-
tains a live object (say O) then, (1) It first allocates a
new block via AllocBlock; (2) It reads object O via
ReadData; (3) It writes object O in to the new block
via WriteData; (4) It modifies its index to reflect the
new location of object O; (5) It frees the old block via
FreeBlock. Note that the newly allocated block still
has many pages that can be written to, which can be used
as the head of the log for writing live data from other
cleaned blocks or for writing new data.

FlashBlox does not assume that the log-structured sys-
tem frees all the allocated erase-blocks at the same rate.
Such a restriction would force the system to implement
a sequential log cleaner/compactor as opposed to tech-
niques that give weight to other aspects such as garbage
collection efficiency [37, 38]. Instead, FlashBlox ensures
uniform wear of erase-blocks at a lower level.

3.4.2 Device-Level Mapping

The job of the lower layers is to ensure: (1) that all erase-
blocks within a die are being erased at roughly the same

Table 3: FlashBlox API
vssd t AllocVirtualSSD( int isolationLevel, int
tputLevel, size t capacity )
/*Creates a virtual SSD*/
void DeallocVirtualSSD( vssd t vSSD )
/*Deletes a virtual SSD*/
size t GetBlockSize( vssd t vSSD )
/*Erase-block size of vSSD: depends on the number of channels/dies used*/
int ReadData( vssd t vSSD, void* buf, off t offset,
size t size )
/*Reads data; contiguous data is read faster with die-parallel reads*/
block t AllocBlock( vssd t vSSD )
/*Allocates a new block; it can be written to only once and sequentially*/
int WriteData( vssd t vSSD, block t
logical block id, void* buf, size t size )
/*Writes page aligned data to a previously allocated (erased) block;
contiguous data is written faster with die-parallel writes*/
void FreeBlock( vssd t vSSD, block t
logical block id )
/*Frees a previously allocated block*/

rate and (2) that erase-blocks that have imminent fail-
ures have their data migrated to a different erase-block
and the erase-block be permanently hidden from appli-
cations; both without requiring application changes.

With device-level mapping, the physical erase-blocks’
addresses are not exposed to applications – only logi-
cal erase-block addresses are exposed to upper software.
That is, the device exposes each die as an individual SSD
that uses a block-granular FTL, while application-level
log in FlashBlox ensures that upper layers only issue
block-level allocation and deallocation calls. The indi-
rection overhead is small since they are maintained at
erase-block granularity (requiring 8MB per TB of SSD).

Unlike tradtional SSDs, in FlashBlox, tenants cannot
share pre-erased blocks. While this has the advantage
that the tenants control their own write-amplification fac-
tors, write and GC performance, the disadvantage is that
bursty writes within a tenant cannot opportunistically use
pre-erased blocks from the entire device.

In FlashBlox, each die is given its own private block-
granular mapping table, and a IO queue with a depth of
256 by default (it is configurable) to support basic stor-
age operations and software rate limiter for software iso-
lated vSSDs. The out-of-band metadata (16 bytes used)
in each block is used to note the logical address of the
physical erase-block; this enables atomic, consistent and
durable operations. The logical address is a unique and
global 8 bytes number consisting of die ID and block ID
within the die. The other 8 bytes of the metadata are
used for a 2 bytes erase counter and a 6 byte erase times-
tamp. FlashBlox caches the mapping table and all other
out-of-band metadata in the host memory. Upon system
crashes, FlashBlox leverages the reverse mappings and
timestamps in out-of-metadata to recover the mapping
table [24, 80]. More specifically, we use the implemen-
tation from our prior work [27].

The device-level mapping layer can be implemented
either in the host or in the drive’s firmware itself [49] if
the device’s controller has under-utilized resources; we
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implement it in the host. Error detection, correction and
masking, and other low-level flash management systems
remain unmodified in FlashBlox.

Both the application/filesystem level log and the
device-level mapping need to over provision, but for
different reasons. The log needs to over-provision for
the sake of garbage collection efficiency. Here, we
rely on the existing logic within log-structured, flash-
aware applications and file systems to perform their own
over-provisioning appropriate for their workloads. The
device-level mapping needs its own over-provisioning
for the sake of retiring error-prone erase-blocks. In our
implementation, we set this to 1% based on the error rate
analysis from our prior work [29].

3.5 Implementation Details
Prototype SSD. We implement FlashBlox using a
CNEX SSD [18] which is an open-channel SSD [44]
containing 1 TB Toshiba A19 flash memory and an open
controller that allows physical resource access from the
host. It has 16 channels, each channel has 4 dies, each
die has 4 planes, each plane has 1024 blocks, each block
has 256 pages with 16 KB page size. This hardware pro-
vides basic I/O control commands to issue read, write
and erase operations against flash memory. We use a
modified version of the CNEX firmware/driver stack that
allows us to independently queue requests to each die.
FlashBlox is implemented using the C programming lan-
guage in 11,219 lines of code (LoC) layered on top of the
CNEX stack.

Prototype Application and Filesystem. We were
able to modify LevelDB key-value store and the Shore-
MT database engine to use FlashBlox using only 38 and
22 LoC modifications respectively. These modifications
are needed to use the APIs in Table 3. Additionally,
we implemented a user-space log-structured file system
(vLFS) with 1,809 LoC (only 26 LoC are from Flash-
Blox API) based on FUSE for applications which cannot
be modified.

Resource Allocation. For each call to create a vSSD,
the resource manager performs a linear search of all the
available channels, dies and soft-planes to satisfy the re-
quirements. A set of free lists of them are maintained for
this purpose. During deallocation, the resource manager
takes the freed channels, dies and soft-planes and coa-
lesces them when possible. For instance, if all the four
dies of a channel become free then the resource manager
coalesces the dies into a channel and adds the channel to
the free channel set. In the future, we wish to explore ad-
mission control and other resource allocation strategies.

4 Evaluation
Our evaluation demonstrates that: (1) FlashBlox has
overheads (WAF and CPU) comparable to state-of-the-

Table 4: Application workloads used for evaluation.
Workload I/O Pattern

K
ey

-V
al

ue
St

or
e YCSB-A 50% read, 50% update

YCSB-B 95% read, 5% update
YCSB-C 100% read
YCSB-D 95% read, 5% insert
YCSB-E 95% scan, 5% insert
YCSB-F 50% read, 50% read-modify-write

D
at

a
C

en
te

r Cloud Storage 26.2% read, 73.8% write
Web Search 83.0% read, 17.0% write

Web PageRank 17.7% read, 82.2% write
MapReduce 52.9% read, 47.1% write

D
at

ab
as

es TPC-C mix (65.5% read, 34.5% write)
TATP mix (81.2% read, 18.8% write)

TPC-B account update (100% write)
TPC-E mix (90.7% read, 9.3% write)

art FTLs (§ 4.1); (2) Different levels of hardware isola-
tion can be achieved by utilizing flash parallelism, and
they perform better than software isolation (§ 4.2.1);
(3) Hardware isolation enables latency-sensitive appli-
cations such as web search to effectively share an SSD
with bandwidth-intensive workloads like MapReduce
jobs (§ 4.2.2); (4) The impact of wear-leveling migra-
tions on data center applications’ performance is low
(§ 4.3.1) and (5) FlashBlox’s wear-leveling is near to
ideal (§ 4.3.2).

Experimental Setup: We used FIO benchmarks [20]
and 14 different workloads for the evaluation (Table 4):
six NoSQL workloads from the Yahoo Cloud Serv-
ing Benchmarks (YCSB) [19], four database workloads:
TPC-C [70], TATP [65], TPC-B [69] and TPC-E [71],
and four storage workload traces collected from Mi-
crosoft’s data centers.

YCSB is a framework for evaluating the performance
of NoSQL stores. All of the six core workloads con-
sisting of A, B, C, D, E and F are used for the evalua-
tion. LevelDB [39] is modified to run using the vSSDs
from FlashBlox with various isolation levels. The open-
source SQL database Shore-MT [55] is modified to work
over the vSSDs of FlashBlox. The table size of the four
database workloads TPC-C, TATP, TPC-B and TPC-E
range from 9 - 25 GB each. A wear-imbalance factor
limit of 1.1 is used for all our experiments to capture re-
alistic swapping frequencies. The number of dies, chan-
nels and planes used for each experiment is specified sep-
arately for each experiment.

Storage intensive and latency sensitive applications
from Microsoft’s data centers are instrumented to col-
lect traces for cloud storage, web search, PageRank and
MapReduce workloads. These applications are the first-
party customers of Microsoft’s storage IaaS system.

4.1 Microbenchmarks
We benchmark two vSSDs that each run an FIO bench-
mark to evaluate FlashBlox’s WAF. Compared to the un-
modified CNEX SSD’s page-level FTL, FlashBlox deliv-
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Figure 7: WAF comparison between FlashBlox and a tra-
ditional SSD. RW/RR: random write/read; SW/SR: se-
quential write/read.

ers lower WAFs as shown in Figure 7 because of the fact
that FlashBlox’s vSSDs never share the same physical
flash blocks for storing their pages. As shown by previ-
ous work [34], this reduces WAF because of absence of
false sharing of blocks at the application level. The dif-
ferent types of vSSDs of FlashBlox have similar WAFs
because they all use separate blocks, yet they provide dif-
ferent throughput and tail latency levels (shown in Sec-
tion 4.2) because of higher levels of isolation.

In addition, FlashBlox has up to 6% higher total sys-
tem CPU usage compared to the unmodified CNEX
SSD when running FIO. Despite merging the file sys-
tem’s index with that of the FTL’s by using FlashBlox’s
APIs which reduces latency as shown by existing open-
channel work [38, 49], the additional CPU overhead is
due to the device-level mapping layer that is accesed in
every critical path. As a future optimization for the pro-
duction SSD, we plan to transparently move the device-
level mapping layer into the SSD.

4.2 Isolation Level vs. Tail Latency
In this section, we demonstrate that higher levels of iso-
lation provide lower tail latencies. Multiple instances of
application workloads are run on individual vSSDs of
different kinds. In each workload, the number of client
threads executing transactions is gradually increased un-
til the throughput tapers off. The maximum through-
put achieved for the lowest number of threads is then
recorded. The average and tail latencies of transactions
are recorded for the same number of threads.

4.2.1 Hardware Isolation vs. Software Isolation

In this experiment, the channel and die isolated vSSDs
are evaluated against the software isolated vSSDs (with
weighted fair sharing of storage bandwidth enabled). We
begin with a scenario of two LevelDB instances. They
run on two vSSDs in three different configurations, each
using a different isolation level: high, medium, and low;
they contain one channel, four dies and sixteen soft-
planes respectively to ensure that the resources are con-
sistent across experiments. The two instances run a
YCSB workload each. The choice of YCSB is made for
this experiment to show how removing IO interference
can improve the throughput and reduce latency for IO-
bottlenecked applications.
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and MapReduce workload traces.

Each LevelDB instance is first populated with 32 GB
of data and each key-value pair is 1 KB. The YCSB client
threads perform 50 million CRUD (i.e., create, read, up-
date and delete) operations against each LevelDB in-
stance. We pick the size of the database and number of
operations such that GC is always triggered. YCSB C is
read-only, thus we report results for read operations only.

The total number of dies in each setting is the same. In
the channel isolation case, two vSSDs are allocated from
two different channels. In the die isolation case, both
vSSDs share the channels, but are isolated at the die level
within the channel. In the software isolation case, both
vSSDs are striped across all the dies in two channels.

Figure 8 shows that on average, channel isolated vSSD
provides 1.3x better throughput compared to die isolated
vSSD and 1.6x compared to the software isolated vSSD.
Similarly, higher levels of isolation lead to lower average
latencies as shown in Figure 9 (a) and Figure 9 (b). This
is because higher levels of isolation suffer from less in-
terference between read and write operations from other
instances. Die isolated vSSDs have to share the bus with
each other, thus, their performance is worse than chan-
nel isolated vSSDs, which are fully isolated in hardware.
Software isolated vSSDs share the same dies with each
other, suffering from higher interference.

Tail latency improvements are much more significant.
As shown in Figure 9 (c) and Figure 9 (d), channel iso-
lated vSSDs provide up to 1.7x lower tail latency com-
pared to die isolated vSSDs and up to 2.6x lower tail la-
tency compared to vSSDs that stripe data across all the
dies akin to software isolated vSSDs whose operations
are not fully isolated from each other.

A similar experiment with four LevelDB instances is
also performed. Tail latency results are shown in Fig-
ure 10 where channel isolated vSSDs provide up to 3.1x
lower tail latency compared the software isolated vSSDs.
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Figure 9: The average and 99th percentile latencies of LevelDB+YCSB workloads running at various levels of storage
isolation. Compared to die and software isolated vSSDs, channel isolated vSSD reduces the average latency by 1.2x
and 1.4x respectively, and decreases the 99th percentile latency by 1.2 - 1.7x and 1.9 - 2.6x respectively. Note that the
update latencies are not applicable for workload C which is read-only.
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Figure 10: The 99th percentile latency of running four LevelDB instances with various levels of storage isolation. The
channel isolated vSSD reduces the 99th percentile latency by 1.3 - 2.7x and 1.5 - 3.1x for read and update operation
respectively, compared to software isolated vSSD.

4.2.2 Latency vs. Bandwidth Sensitive Tenants

We now evaluate how hardware isolation provides bene-
fits for instances that share the same physical SSD when
one is latency sensitive while others are not (for resource
efficiency [42]). Channel, software isolated and uniso-
lated vSSDs are used in this experiment. The total num-
ber of dies is the same in all three settings and is eight.
The workloads from a large cloud provider are used for
performing this experiment. Web search is the instance
that requires lower tail latencies while MapReduce jobs
are not particularly latency sensitive.

Results shown in Figure 11 demonstrate three trends:
First, channel isolated vSSDs provide the best compro-
mise between throughput and tail latency: tail latency
of the web search workloads decreases by over 2x for a
36% reduction of bandwidth of the MapReduce job when
compared to an unisolated vSSD. The fall in throughput
of MapReduce is expected because it only has half of the
channels of the unisolated case where its large sequential
IOs end up consuming the bandwidth unfairly due to the
lack of any isolation techniques.

Second, software isolated vSSDs for web search and
MapReduce can reduce the tail latency of web search to
the same level as the channel-isolated case, but the band-
width of the MapReduce job decreases by more than 4x
when compared to the unisolated vSSD. This is also ex-
pected because the work that an SSD can perform is a
convex combination of IOPS and bandwidth. Web search
takes a significant number of small IOPS when sharing
bandwidth fairly with MapReduce and this in-turn re-
duces the total bandwidth available for MapReduce.

4.3 Wear-Leveling Efficacy and Overhead
Wear-leveling in FlashBlox is supported in two different
layers. One layer ensures that all the dies in the system
are aging at the same rate overall with channel migra-
tions, while the other layer ensures that blocks within a
given die are aging at the same rate overall. Its overhead
and efficacy are evaluated in this section.

4.3.1 Migration Overhead

We first evaluate the overhead of the migration mecha-
nism. We migrate one channel and measure the change
in throughput and 99th percentile latency on a variety of
YCSB workloads that are running on the channel.

The throughput of LevelDB running on that channel
drops by no more than 33.8% while the tail latencies of
reads and updates increase by up to 22.1% (Figure 12).
For simplicity, we show results for migrating 1 GB of
the 64GB channel. We use a single thread and the data
moves at a rate of 78.9MBPS. Moving all of the 64 GB
of data would take close to 15 minutes.

The impact of migration on web search and MapRe-
duce workloads is shown in Figure 13. During migra-
tion, the bandwidth of the MapReduce job decreases by
36.7%, the tail latencies of reads and writes of the web
search increase by 34.2%. These performance slow-
downs bring channel-isolation numbers on par with the
software isolation. This implies that a 36.7% drop for
15 minutes when amortized over our recommended swap
rate represents a 0.04% overall drop.

4.3.2 Migration Frequency Analysis

To evaluate the wear-leveling efficacy, we built a simula-
tor and used it to understand how the device ages for var-
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Figure 12: The impact of a channel migration on workloads: LevelDB’s throughput falls by 33.8%, its 99th percentile
read and update latencies increase by 22.1% and 18.7% respectively.
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Figure 13: The overhead of migrating 1GB of data as MapReduce and web search are running on the channels involved:
MapReduce’s bandwidth falls by up to 36.7% while web search’s latency increases by up to 34.2%.
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Figure 14: SSD lifetime of running adversarial write
workloads that stress a single channel or a die.

ious workloads. For workload traces that are not from a
log-structured application, we first execute the workload
on the log-structured file system vLFS built using Flash-
Blox and trace FlashBlox API calls. We measure the
block consumption rate of these traces to evaluate the ef-
ficacy of wear-leveling. For the CNEX SSD, γ = M/ f =
24 TB (discussed in § 3.1.5). The supported number of
program erase (PE) cycles is 10 K in our drive. Our ab-
solute lifetimes scale linearly for other SSDs and factor
improvements remain the same regardless of the number
of supported PE cycles.

Worst-case workloads. To evaluate the possible
worst cases for SSDs, we run the most write-intensive
workloads against a few channels (channel killer) and
dies (die killer). We gradually increase the number of
such workloads to stress the SSD. Each workload is
pinned to exactly one channel or one die while keeping
other channels or dies for read-only operations.

Figure 14 shows the SSD’s lifetime for a variety of
wear-leveling schemes. Without wear-leveling (NoSwap
in Figure 14), the SSD dies after less than 4 months,
while FlashBlox can always guarantee 95% of the ideal
lifetime within migration frequency of once per ≤ 4
weeks for both channel and die killer workloads. The
adaptive wear-leveling scheme in FlashBlox automati-
cally migrates a channel by adjusting to write-rates.

Mixed workloads. In real-world scenarios, a mix of
various kinds of workloads would run on the same SSD.
We use all the 14 workloads (Table 4) simultaneously in
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Figure 15: Wear imbalance of FlashBlox with different
wear-leveling schemes. The ideal wear imbalance is 1.0.

Table 5: Monte Carlo simulation (10K runs) of SSD life-
time with randomly sampled workloads on the channels.

#vSSD
NoSwap

Lifetime (Years)
Ideal vs. FlashBlox

Lifetime (Years) Wear Im-
balance

Swap Once in
Days (Avg)99th 50th 99th 50th

4 1.2 1.6 6.2/6.1 13.8/13.5 1.02 94
8 1.2 1.3 3.7/3.6 6.7/6.6 1.02 22
16 1.2 1.2 2.1/2.1 3.4/3.3 1.01 19

the experiment, and measure FlashBlox’s wear leveling.
Fourteen channel isolated vSSDs are created for running
these workloads and migrations. Figure 5 shows how the
erase rates of these applications vary.

For the scheme without any migrations, the wear im-
balance is 3.1, and the SSD dies after 1.2 years. Also,
results show that blocks are more or less evenly aged for
a migration frequency as high as once in four weeks, as
shown in Figure 15. This indicates that for realistic sce-
narios, where write traffic is more evenly matched, sig-
nificantly fewer swaps could be tolerated.

Figure 16 shows the absolute erase counts of the chan-
nels (including the erases needed for migrations and
GC). Compared to the ideal wear-leveling, the absolute
erase counts are almost the same with the migration fre-
quency of a week.

To further evaluate FlashBlox’s wear-leveling efficacy,
we run a Monte Carlo simulation (10K runs) of the SSD
lifetime. We create various number of vSSDs and assign
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Figure 16: Erase counts over three years for workloads in Table 4. The erase count per block in each channel of
FlashBlox is close to that of the ideal SSD. The numbers on the top shows the cumulative migration count.

them uniformly at random to one of the fourteen work-
loads. The SSD is then simulated to end-of-life.

We report the 99th and 50th percentile lifetime of ideal
SSD, SSD without swapping (NoSwap) and FlashBlox in
Table 5. For the case of running 16 instances, 99% of the
ideal SSDs last 2.1 years, and half of them can work for
3.4 years. With adaptive wear-leveling scheme, Flash-
Blox’s lifetime is close to ideal and its wear imbalance is
close to the ideal case. In real world, where not all ap-
plications are adversarial (channel/die-killer workloads),
the swap frequency automatically increases.

5 Related Work
Open Architecture SSDs. Recent research has proposed
exposing flash parallelism directly to the host [38, 49, 61,
76]. This is immensely helpful for applications where
each unit of flash parallelism receives more or less sim-
ilar write workloads. However, this is often not the case
in multi-tenant cloud platform where workloads with a
variety of write-rates co-exist on the same SSD. Flash-
Blox takes a holistic approach to solve this problem, it
not only provides hardware isolation but also ensures all
the units of parallelism are aging uniformly.

SSD-level Optimizations. Recent work has success-
fully improved SSDs’ performance by enhancing how
FTLs leverage the flash parallelism [17, 32]. We extend
this line of research for performance isolation for appli-
cations in a multi-tenant setting. FlashBlox uses dedi-
cated channels and dies for each application to improve
isolation and balances inter-application wear using a new
strategy, while existing FTL optimizations are relevant
for intra-application wear-leveling.

SSD Interface. Programmable and flexible SSD inter-
faces have been proposed to improve the communication
between applications and SSD hardware [15, 50, 53].
SR-IOV [63] is a hardware bus standard that helps vir-
tual machines bypass the host to safely share hardware
to reduce CPU overhead. These techniques are compli-
mentary to FlashBlox which helps applications use dedi-
cated flash regions. Multi-streamed SSDs [33] addresses
a similar problem with a stream tag, isolating each stream
to dedicated flash blocks but sharing all channels, dies
and planes to achieve maximum per-stream throughput.
OPS isolation [34] has been proposed to dedicate flash
blocks to each virtual machine sharing an SSD. They re-

duce fragmentation and GC overheads. FlashBlox builds
upon this work and extends the isolation to channels and
dies without compromising on wear-leveling.

Storage Isolation. Recent research has demonstrated
that making software aware of the underlying hardware
constraints can improve isolation. Shared SSD per-
formance [56, 57] can be improved by observing the
convex-dependency between IOPS and bandwidth, and
also by predicting future workloads [64]. In contrast,
FlashBlox identifies the relation between flash isolation
and wear when using hardware isolation, and makes
software schedulers aware of it. It solves this problem
by helping software perform coarse time granular wear-
levelling across channels and dies.

6 Conclusions and Future Work
In this paper, we propose leveraging channel and die-
level parallelism present in SSDs to provide isolation for
latency sensitive applications sharing an SSD. Further-
more, FlashBlox provides near-ideal lifetime despite the
fact that individual applications write at different rates
to their respective channels and dies. FlashBlox achieves
this by migrating applications between channels and dies
at coarse time granularities. Our experiments show that
FlashBlox can improve throughput by 1.6x and reduce
tail latency by up to 3.1x. We also show that migrations
are rare for real world workloads and do not adversely
impact applications’ performance. In the future, we wish
to take FlashBlox in two directions. First, we would like
to investigate how to integrate with the virtual hard drive
stack such that virtual machines can leverage FlashBlox
without modification. Second, we would like to under-
stand how FlashBlox should be integrated with multi-
resource data center schedulers to help applications ob-
tain predictable end-to-end performance.
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Abstract
In recent years, flash-based key-value cache systems
have raised high interest in industry, such as Facebook’s
McDipper and Twitter’s Fatcache. These cache systems
typically use commercial SSDs to store and manage
key-value cache data in flash. Such a practice, though
simple, is inefficient due to the huge semantic gap
between the key-value cache manager and the underlying
flash devices. In this paper, we advocate to reconsider
the cache system design and directly open device-level
details of the underlying flash storage for key-value
caching. This co-design approach bridges the semantic
gap and well connects the two layers together, which
allows us to leverage both the domain knowledge of
key-value caches and the unique device properties. In
this way, we can maximize the efficiency of key-value
caching on flash devices while minimizing its weakness.
We implemented a prototype, called DIDACache, based
on the Open-Channel SSD platform. Our experiments on
real hardware show that we can significantly increase the
throughput by 35.5%, reduce the latency by 23.6%, and
remove unnecessary erase operations by 28%.

1 Introduction
High-speed key-value caches, such as Memcached [31]
and Redis [37], are the “first line of defense” in today’s
low-latency Internet services. By caching the working
set in memory, key-value cache systems can effectively
remove time-consuming queries to the back-end data
store (e.g., MySQL or LevelDB). Though effective,
the in-memory key-value caches heavily rely on large
amount of expensive and power-hungry DRAM for high
cache hit ratio [18]. As the workload size rapidly grows,
an increasing concern with such memory-based cache
systems is their cost and scalability [2]. Recently, a more
cost-efficient alternative, flash-based key-value caching,
has raised high interest in the industry [12, 45].

NAND flash memory provides a much larger capacity
and lower cost than DRAM, which enables a low Total
Cost of Ownership (TCO) for a large-scale deployment
of key-value caches. Facebook, for example, deploys
a Memcached-compatible key-value cache system based
on flash memory, called McDipper [12]. It is reported
that McDipper allows Facebook to reduce the number of
deployed servers by as much as 90% while still delivering
more than 90% “get responses” with sub-millisecond

latencies [23]. Twitter also has a similar key-value cache
system, called Fatcache [45].

Typically, these flash-based key-value cache systems
directly use commercial flash SSDs and adopt a
Memcached-like scheme to manage key-value cache data
in flash. For example, key-values are organized into
slabs of different size classes, and an in-memory hash
table is used to maintain the key-to-value mapping.
Such a design is simple and allows a quick deployment.
However, it disregards an important fact – the key-value
cache systems and the underlying flash devices both have
very unique properties. Simply treating flash SSDs as
a faster storage and the key-value cache as a regular
application not only fails to exploit various optimization
opportunities but also raises several critical concerns,
namely redundant mapping, double garbage collection,
and over-overprovisioning. All these issues cause
enormous inefficiencies in practice, which motivated
us to reconsider the software/hardware structure of the
current flash-based key-value cache systems.

In this paper, we will discuss the above-mentioned
three key issues (Section 3) caused by the huge semantic
gap between the key-value caches and the underlying
flash devices, and further present a cohesive cross-
layer design to fundamentally address these issues.
Through our studies, we advocate to open the underlying
details of flash SSDs for key-value cache systems.
Such a co-design effort not only enables us to remove
the unnecessary intermediate layers between the cache
manager and the storage devices, but also allows us
to leverage the precious domain knowledge of key-
value cache systems, such as the unique access patterns
and mapping structures, to effectively exploit the great
potential of flash storage while avoiding its weakness.

By reconsidering the division between software and
hardware, a variety of new optimization opportunities
can be explored: (1) A single, unified mapping structure
can directly map the “keys” to physical flash pages
storing the “values”, which completely removes the
redundant mapping table and saves a large amount of on-
device memory; (2) An integrated Garbage Collection
(GC) procedure, which is directly driven by the cache
system, can optimize the decision of when and how
to recycle semantically invalid storage space at a fine
granularity, which removes the high overhead caused by
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the unnecessary and uncoordinated GCs at both layers;
(3) An on-line scheme can determine an optimal size of
Over-Provisioning Space (OPS) and dynamically adapt
to the workload characteristics, which will maximize the
usable flash space and greatly increase the cost efficiency
of using expensive flash devices.

We have implemented a fully functional prototype,
called DIDACache, based on a PCI-E Open-Channel
SSD hardware to demonstrate the effectiveness of this
new design scheme. A thin intermediate library
layer, libssd, is created to provide a programming
interface to facilitate applications to access low-level
device information and directly operate the underlying
flash device. Using the library layer, we developed a
flash-aware key-value cache system based on Twitter’s
Fatcache [45]. Our experiments show that this approach
can increase the throughput by 35.5%, reduce the latency
by 23.6%, and remove erase operations by 28%.

The rest of paper is organized as follows. Section 2
and Section 3 give background and motivation. Section 4
describes the design and implementation. Experimental
results are presented in Section 5. Section 6 gives the
related work. The final section concludes this paper.

2 Background
This section briefly introduces three key technologies,
flash memory, SSDs, and the current flash-based key-
value cache systems.
• Flash Memory. NAND flash memory is a type of
EEPROM device. A flash memory chip consists of
multiple planes, each of which consists of thousands
of blocks (a.k.a. erase blocks). A block is further
divided into hundreds of pages. Flash memory supports
three main operations, namely read, write, and erase.
Reads and writes are normally performed in units of
pages. A read is typically fast (e.g., 50µs), while a write is
relatively slow (e.g., 600µs). A constraint is that pages in
a block must be written sequentially, and pages cannot
be overwritten in place, meaning that once a page is
programmed (written), it cannot be written again until the
entire block is erased. An erase is typically slow (e.g.,
5ms) and must be done in block granularity.
• Flash SSDs. A typical flash SSD includes a host
interface logic, an SSD controller, a dedicated buffer,
and flash memory controllers connecting to flash memory
chips via multiple channels. A Flash Translation Layer
(FTL) is implemented in firmware to manage flash
memory. An FTL has three major roles: (1) Logical block
mapping. An in-memory mapping table is maintained in
the on-device buffer to map logical block addresses to
physical flash pages dynamically. (2) Garbage collection.
Due to the erase-before-write constraint, upon a write, the
corresponding logical page is written to a new location,
and the FTL simply marks the old page invalid. A GC

procedure recycles obsolete pages later, which is similar
to a Log-Structured File System [38]. (3) Wear Leveling.
Since flash cells could wear out after a certain number
of Program/Erase cycles, the FTL shuffles read-intensive
blocks with write-intensive blocks to even out writes over
flash memory. A previous work [13] provides a detailed
survey of FTL algorithms.
• Flash-based key-value caches. In-memory key-value
cache systems, such as Memcached, adopt a slab-based
allocation scheme. Due to its efficiency, flash-based
key-value cache systems, such as Fatcache, inherit a
similar structure. Here we use Fatcache as an example;
based on open documents [12], McDipper has a similar
design. In Fatcache, the SSD space is first segmented
into slabs. Each slab is further divided into an array of
slots (a.k.a. chunks) of equal size. Each slot stores a
“value” item. Slabs are logically organized into different
slab classes based on the slot sizes. An incoming key-
value item is stored into a class whose slot size is the
best fit of its size. For quick access, a hash mapping
table is maintained in memory to map the keys to the
slabs containing the values. Querying a key-value pair
(GET) is accomplished by searching the in-memory hash
table and loading the corresponding slab block from
flash into memory. Updating a key-value pair (SET) is
realized by writing the updated value into a new location
and updating the key-to-slab mapping in the hash table.
Deleting a key-value pair (DELETE) simply removes the
mapping from the hash table. The deleted or obsolete
value items are left for GC to reclaim later.

Despite the structural similarity to Memcached, flash-
based key-value cache systems have several distinctions
from their memory-based counterparts. First, the I/O
granularity is much larger. For example, Memcached can
update the value items individually. In contrast, Fatcache
has to maintain an in-memory slab to buffer small items
in memory first and then flush to storage in bulk later,
which causes a unique “large-I/O-only” pattern on the
underlying flash SSDs. Second, unlike Memcached,
which is byte addressable, flash-based key-value caches
cannot update key-value items in place. In Fatcache, all
key-value updates are written to new locations. Thus,
a GC procedure is needed to clean/erase slab blocks.
Third, the management granularity in flash-based key-
value caches is much coarser. For example, Memcached
maintains an object-level LRU list, while Fatcache uses
a simple slab-level FIFO policy to evict the oldest slab
when free space is needed.

3 Motivation
As shown in Figure 1, in a flash-based key-value cache,
the key-value cache manager and the flash SSD run at the
application and device levels, respectively. Both layers
have complex internals, and the interaction between the
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Figure 1: Architecture of flash-based key-value cache.
two raises three critical issues, which have motivated the
work presented in this paper.
• Problem 1: Redundant mapping. Modern flash SSDs
implement a complex FTL in firmware. Although a
variety of mapping schemes, such as DFTL [17], exist,
high-end SSDs often still adopt fine-grained page-level
mapping for performance reasons. As a result, for a 1TB
SSD with a 4KB page size, a page-level mapping table
could be as large as 1GB. Integrating such a large amount
of DRAM on device not only raises production cost but
also reliability concerns [17, 53, 54]. In the meantime,
at the application level, the key-value cache system also
manages another mapping structure, an in-memory hash
table, which translates the keys to the corresponding slab
blocks. The two mapping structures exist at two levels
simultaneously, which unnecessarily doubles the memory
consumption.

A fundamental problem is that the page-level mapping
is designed for general-purpose file systems, rather than
key-value caching. In a typical key-value cache, the
slab block size is rather large (in Megabytes), which is
typically 100-1,000x larger than the flash page size. This
means that the fine-grained page-level mapping scheme
is an expensive over-kill. Moreover, a large mapping
table also incurs other overheads, such as the need for
a large capacitor or battery, increased design complexity,
reliability risks, etc. If we could directly map the hashed
keys to the physical flash pages, we can completely
remove this redundant and highly inefficient mapping for
lower cost, simpler design, and improved performance.
• Problem 2: Double garbage collection. GC is the
main performance bottleneck of flash SSDs [3, 7]. In
flash memory, the smallest read/write unit is a page (e.g.,
4KB). A page cannot be overwritten in place until the
entire erase block (e.g., 256 pages) is erased. Thus,
upon a write, the FTL marks the obsolete page “invalid”
and writes the data to another physical location. At a
later time, a GC procedure is scheduled to recycle the
invalidated space for maintaining a pool of clean erase
blocks. Since valid pages in the to-be-cleaned erase block
must be first copied out, cleaning an erase block often
takes hundreds of milliseconds to complete. A key-value
cache system has a similar GC procedure to recycle the
slab space occupied by obsolete key-value pairs.

Running at different levels (application vs. device),
these two GC processes not only are redundant but also
could interfere with one another. For example, from the
FTL’s perspective, it is unaware of the semantic meaning
of page content. Even if no key-value pair is valid (i.e.,
no key maps to any value item), the entire page is still
considered as “valid” at the device level. During the
FTL-level GC, this page has to be moved unnecessarily.
Moreover, since the FTL-level GC has to assume all valid
pages contain useful content, it cannot selectively recycle
or even aggressively invalidate certain pages that contain
semantically “unimportant” (e.g., LRU) key-value pairs.
For example, even if a page contains only one valid key-
value pair, the entire page still has to be considered valid
and cannot be erased, although it is clearly of relatively
low value. Note that TRIM command [43] cannot address
this issue as well. If we merge the two-level GCs and
control the GC process based on semantic knowledge of
the key-value caches, we could completely remove all the
above-mentioned inefficient operations and create new
optimization opportunities.
• Problem 3: Over-overprovisioning. In order to
minimize the performance impact of GC on foreground
I/Os, the FTL typically reserves a portion of flash
memory, called Over-Provisioned Space (OPS), to
maintain a pool of clean blocks ready for use. High-end
SSDs often reserve 20-30% or even larger amount of flash
space as OPS. From the user’s perspective, the OPS space
is nothing but an expensive unusable space. We should
note that the factory setting for OPS is mostly based on
a conservative estimation for worst-case scenarios, where
the SSD needs to handle extremely intensive write traffic.
In key-value cache systems, in contrast, the workloads are
often read-intensive [5]. Reserving such a large portion
of flash space is a significant waste of expensive resource.
In the meantime, key-value cache systems possess rich
knowledge about the I/O patterns and have the capability
of accurately estimating the incoming write intensity.
Based on such estimation, a suitable amount of OPS
could be determined during runtime for maximizing the
usable flash space for effective caching. Considering
the importance of cache size for cache hit ratio, such a
20-30% extra space could significantly improve system
performance. If we could leverage the domain knowledge
of the key-value cache systems to determine the OPS
management at the device level, we would be able to
maximize the usable flash space for caching and greatly
improve the overall cost efficiency as well as system
performance.

In essence, all the above-mentioned issues stem from
a fundamental problem in the current I/O stack design:
the key-value cache manager runs at the application
level and views the storage abstraction as a sequence
of sectors; the flash memory manager (i.e., the FTL)
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Figure 2: The architecture overview of DIDACache.
runs at the device firmware layer and views incoming
requests simply as a sequence of individual I/Os. This
abstraction, unfortunately, creates a huge semantic gap
between the key-value cache and the underlying flash
storage. Since the only interface connecting the two
layers is a strictly defined block-based interface, no
semantic knowledge about the data could be passed over.
This enforces the key-value cache manager and the flash
memory manager to work individually and prevents any
collaborative optimizations. This motivates us to study
how to bridge this semantic gap and build a highly
optimized flash-based key-value cache system.

4 Design
As an unconventional hardware/software architecture
(see Figure 2), our key-value cache system is highly
optimized for flash and eliminates all unnecessary
intermediate layers. Its structure includes three layers.

• An enhanced flash-aware key-value cache manager,
which is highly optimized for flash memory storage,
runs at the application level, and directly drives the
flash management;

• A thin intermediate library layer, which provides
a slab-based abstraction of low-level flash memory
space and an API interface for directly and easily
operating flash devices (e.g., read, write, erase);

• A specialized flash memory SSD hardware, which
exposes the physical details of flash memory
medium and opens low-level direct access to the
flash memory medium through the ioctl interface.

With such a holistic design, we strive to completely
bypass multiple intermediate layers in the conventional
structure, such as file system, generic block I/O,
scheduler, and the FTL layer in SSD. Ultimately,
we desire to let the application-level key-value cache
manager leverage its domain knowledge and directly
drive the underlying flash devices to operate only
necessary functions while leaving out unnecessary ones.
In this section, we will discuss each of the three layers.
4.1 Application Level: Key-value Cache
Our key-value cache manager has four major compo-
nents: (1) a slab management module, which manages
memory and flash space in slabs; (2) a unified direct
mapping module, which records the mapping of key-
value items to their physical locations; (3) an integrated

GC module, which reclaims flash space occupied by
obsolete key-values; and (4) an OPS management
module, which dynamically adjusts the OPS size.
4.1.1 Slab Management
Similar to Memcached, our key-value cache system
adopts a slab-based space management scheme – the
flash space is divided into equal-sized slabs; each slab
is divided into an array of slots of equal size; each slot
stores a key-value item; slabs are logically organized into
different slab classes according to the slot size.

Despite these similarities to in-memory key-value
caches, caching key-value pairs in flash has to deal with
several unique properties of flash memory, such as the
“out-of-place update” constraint. By directly controlling
flash hardware, our slab management can be specifically
optimized to handle these issues as follows.
• Mapping slabs to blocks: Our key-value cache directly
maps (logical) slabs to physical flash blocks. We divide
flash space into equal-sized slabs, and each slab is
statically mapped to one or several flash blocks. There
are two possible mapping schemes: (1) Per-channel
mapping, which maps a slab to a sequence of contiguous
physical flash blocks in one channel, and (2) Cross-
channel mapping, which maps a slab across multiple
channels in a round-robin way. Both have pros and cons.
The former is simple and allows to directly infer the
logical-to-physical mapping, while the latter could yield
a better bandwidth through channel-level parallelism.

We choose the simpler per-channel mapping for two
reasons. First, key-value cache systems typically have
sufficient slab-level parallelism. Second, this allows us to
directly translate “slabs” into “blocks” at the library layer
with minimal calculation. In fact, in our prototype, we
directly map a flash slab to a physical flash block, since
the block size (8MB) is appropriate as one slab. For flash
devices with a smaller block size, we can group multiple
contiguous blocks in one channel into one slab.
• Slab buffer: Unlike DRAM memory, flash does not
support random in-place overwrite. As so, a key-value
item cannot be directly updated in its original place in
flash. For a SET operation, the key-value item has to be
stored in a new location in flash (appended like a log),
and the obsolete item will be recycled later. To enhance
performance, we maintain an in-memory slab as a buffer
for each slab class. Upon receiving a SET operation,
the key-value pair is first stored in the corresponding in-
memory slab and completion is immediately returned.
When the in-memory slab is full, it is flushed into an in-
flash slab for persistent storage.

The slab buffer brings two benefits. First, the in-
memory slab works as a write-back buffer. It not only
speeds up accesses but also makes incoming requests
asynchronous, which greatly improves the throughput.
Second, and more importantly, the in-memory slab
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merges small key-value slot writes into large slab writes
(in units of flash blocks), which completely removes the
unwanted small flash writes. Our experiments show that
a small slab buffer is sufficient for performance.
• Channel selection and slab allocation: For load
balance considerations, when an in-memory slab is full,
we first select the channel with the lowest load. The load
of each channel is estimated by counting three key flash
operations (read, write, and erase). Once a channel
is selected, a free slab is allocated. For each channel, we
maintain a Free Slab Queue and a Full Slab Queue to
manage clean slabs and used slabs separately. The slabs
in a free slab queue are sorted in the order of their erase
counts, and we always select the slab with the lowest
erase count first for wear-leveling purposes. The slabs
in a full slab queue are sorted in the Least Recently Used
(LRU) order. When running out of free slabs, the GC
procedure is triggered to produce clean slabs, which we
will discuss in more details later.

With the above optimizations, a fundamental effect is,
all I/Os seen at the device level are shaped into large-size
slab writes, which completely removes small page writes
as well as the need for generic GC at the FTL level.
4.1.2 Unified Direct Mapping
In order to address the double mapping problem, a
key change is to remove all the intermediate mappings,
and directly map the SHA-1 hash of the key to the
corresponding physical location (i.e., the slab ID and the
offset) in the in-memory hash table.

Figure 3 shows the structure of the in-memory hash
table. Each hash table entry includes three fields: <md,
sid, offset>. For a given key, md is the SHA-1 digest,
sid is the ID of the slab that stores the key-value item,
and offset is the slot number of the key-value item
within the slab. Upon a request, we first calculate the
hash value of the “key” to locate the bucket in the hash
table, and then use the SHA-1 digest (md) to retrieve the
hash table entry, in which we can find the slab (sid)
containing the key-value pair and the corresponding slot
(offset). The found slab could be in memory (i.e., in
the slab buffer) or in flash. In the former case, the value
is returned in a memory access; in the latter case, the item
is read from the corresponding flash page(s).
4.1.3 Garbage Collection
Garbage collection is a must-have in key-value cache
systems, since operations (e.g., SET and DELETE) can
create obsolete value items in slabs, which need to be
recycled at a later time. When the system runs out of
free flash slabs, we need to reclaim their space in flash.

With the semantic knowledge about the slabs, we
can perform a fine-grained GC in one single procedure,
running at the application level only. There are two
possible strategies for identifying a victim slab: (1)
Space-based eviction, which selects the slab containing

the largest number of obsolete values, and (2) Locality-
based eviction, which selects the coldest slab for cleaning
based on the LRU order. Both policies are used
depending on the runtime system condition.
• Space-based eviction: As a greedy approach, this
scheme aims to maximize the freed flash space for each
eviction. To this end, we first select a channel with the
lowest load to limit the search scope, and then we search
its Full Slab Queue to identify the slab that contains the
least amount of valid data. As the slot sizes of different
slab classes are different, we use the number of valid key-
value items times their size to calculate the valid data
ratio for a given flash slab. Once the slab is identified,
we scan the slots of the slab, copy all valid slots into the
current in-memory slab, update the hash table mapping
accordingly, then erase the slab and place the cleaned slab
back in the Free Slab Queue of the channel.
• Locality-based eviction: This policy adopts an
aggressive measure to achieve fast reclamation of free
slabs. Similar to space-based eviction, we first select
the channel with the lowest load. We then select the
LRU slab as the victim slab to minimize the impact to
hit ratio. This can be done efficiently as the full flash
slabs are maintained in their LRU order for each channel.
A scheme, called quick clean, is then applied by simply
dropping the entire victim slab, including all valid slots.
It is safe to remove valid slots, since our application is
a key-value cache (rather than a key-value store) – all
clients are already required to write key-values to the
back-end data store first, so it is safe to aggressively drop
any key-value pairs in the cache without any data loss.

Comparing these two approaches, space-based evic-
tion needs to copy still-valid items in the victim slab, so it
takes more time to recycle a slab but retains the hit ratio.
In contrast, locality-based eviction allows to quickly
clean a slab without moving data, but it aggressively
erases valid key-value items, which may reduce the cache
hit ratio. To reach a balance between the hit ratio and
GC overhead, we apply these two policies dynamically
during runtime – when the system is under high pressure
(e.g., about to run out of free slabs), we use the fast but
imprecise locality-based eviction to quickly release free
slabs for fast response; when the system pressure is low,
we use space-based eviction and try to retain all valid
key-values in the cache for hit ratio.

To realize the above-mentioned dynamic selection
policies, we set two watermarks, low (Wlow) and high
(Whigh). We will discuss how to determine the two
watermarks in the next section. The GC procedure
checks the number of free flash slabs, S f ree, in the
current system periodically. If S f ree is between the high
watermark, Whigh, and the low watermark, Wlow, it means
that the pool of free slabs is running low but under
moderate pressure. So we activate the less aggressive
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Figure 3: Unified mapping structure. Figure 4: Low and high watermarks Figure 5: M/M/1 queuing model.
space-based eviction policy to clean slabs. This process
repeats until the number of free slabs, S f ree, reaches the
high watermark. If S f ree is below the low watermark,
which means that the system is under high pressure, the
aggressive space-based eviction policy kicks in and uses
quick clean to erase the entire LRU slab and discard all
items immediately. This fast-response process repeats
until the number of free slabs in the system, S f ree, is
brought back to Wlow. If the system is idle, the GC
procedure switches to the space-based eviction policy
and continues to clean slabs until reaching the high
watermark. Figure 4 illustrates this process.

4.1.4 Over-Provisioning Space Management
In conventional SSDs, a large portion of flash space
is reserved as OPS, which is invisible and unusable
by applications. In our architecture, we can leverage
the domain knowledge to dynamically adjust OPS and
maximize the usable flash space for caching.

In our system, the two watermarks, Wlow and
Whigh, drive the GC procedure. The two watermarks
effectively determine the available OPS size – Wlow is
the dynamically adjusted OPS size, and Whigh can be
viewed as the upper bound of allowable OPS. We set the
difference between the two watermarks, Whigh − Wlow,
as a constant (15% of the flash space in our prototype).
Ideally, we desire to have the number of free slabs, S f ree,
fluctuating in the window between the two watermarks.

Our goal is to keep just enough flash space for over-
provisioning. However, it is challenging to appropriately
position the two watermarks and make them adaptive
to the workload. It is desirable to have an automatic,
self-tuning scheme to dynamically determine the two
watermarks based on runtime situation. In our prototype,
we have designed two schemes, a feedback-based
heuristic model and a queuing theory based model.

Our heuristic scheme is simple and works as follows:
when the low watermark is hit, which means that
the current system is under high pressure, we lift
the low watermark by doubling Wlow to quickly
respond to increasing writes, and the high watermark is
correspondingly updated. As a result, the system will
activate the aggressive quick clean to produce more free
slabs quickly. This also effectively reserves a large OPS
space for use. When the number of free slabs reaches
the high watermark, which means the current system is
under light pressure, we linearly drop the watermarks.

This effectively returns free slabs back to the usable cache
space (i.e., reduced OPS size). In this way, the OPS space
automatically adapts to the incoming traffic.

The second scheme is based on the well-known
queuing theory, which builds slab allocation and reclaim
processes as a M/M/1 queue. As Figure 5 shows, in
this system, we maintain queues for free flash slabs and
full flash slabs for each channel, separately. The slab
drain process consumes free slabs, and the GC process
produces free slabs. Therefore we can view the drain
process as the consumer process, the GC process as the
producer process, and the free slabs as resources. The
drain process consumes flash slabs at a rate λ , and the
GC process generates free flash slabs at a rate µ . Prior
study [5] shows that in real applications, the incoming
of key-value pairs can be seen as a Markov process, so
the drain process is also a Markov process. For the
GC process, when S f ree is less than Wlow, the locality-
based eviction policy is adopted. The time consumed
for reclaiming one slab is equal to the flash erase time
plus the schedule time. The flash block erase time is
a constant, and the schedule time can be viewed as a
random number. Thus the locality-based GC process is
also a Markov process with a service rate µ . Based on the
analysis, the process can be modeled as a M/M/1 queue
with arrival rate λ , service rate µ , and one server.

According to Little’s law, the expected number of
slabs waiting for service is λ/(µ − λ ). If we reserve
at least this number of free slabs before the locality-
based GC process is activated, we can always eliminate
the synchronous waiting time. So, for the system
performance benefit, we set

Wlow = λ/(µ −λ ) (1)

In the above equation, λ is the slab consumption rate of
the drain process, and µ is the slab reclaim rate of GC,
which equals 1/(tevict + tother), where tevict is the block
erase time, and tother is other system time needed for GC.

In Equation 2, the arrival rate is decided by the
incoming rate of key-value pairs and their average size,
which are both measurable. Assuming the arrival rate of
key-values is λKV , the average size is SKV , and the slab
size is Sslab, λ can be calculated as follows.

λ =
λKV ×SKV

Sslab
(2)

So, we have

Wlow =
λKV ×SKV × (tevict + tother)

Sslab −λKV ×SKV × (tevict + tother)
(3)
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By using the above-mentioned equations, we can
periodically update the settings of the low and high
watermarks. In this way, we can adaptively tune the OPS
size based on real-time workload demands.

4.1.5 Other Technical Issues

Flash memory wears out after a certain number of
Program/Erase (P/E) cycles. In our prototype, for wear
leveling, when allocating slabs in the drain process and
reclaiming slabs in the GC process, we take the erase
count of each slab into consideration and always use the
block with the smallest erase count. As our channel-
slab selection and slab-allocation scheme can evenly
distribute the workloads across all channels, wears can be
approximately distributed across channels as well. Other
additional wear-leveling measures, such as dynamically
shuffling cold/hot slabs, could also be included to further
even out the wear distribution.

Crash recovery is also a challenge. We may simply
drop the entire cache upon crashes. However, due to the
excessively long warm-up time, it is preferred to retain
the cached data through crashes [52]. In our system, all
key-value items are stored in persistent flash but the hash
table is maintained in volatile memory. There are two
potential solutions to recover the hash table. One simple
method is to scan all the valid key-value items in flash
and rebuild the hash table, which is a time-consuming
process. A more efficient solution is to periodically
checkpoint the in-memory hash table into (a designated
area of) the flash. Upon recovery, we only need to reload
the latest hash table checkpoint into memory and then
apply changes by scanning the slabs written after the
checkpoint. Crash recovery is currently not implemented
in our prototype.

4.2 Library Level: libssd
As an intermediate layer, the library, libssd, connects
the application and device layers. Unlike Liblight-
nvm [15], libssd is highly integrated with the key-value
cache system. It has three main functions: (1) Slab-to-
block mapping, which statically maps a slab to one (or
multiple contiguous) flash memory block(s) in a channel.
In our prototype, it is a range of blocks in a flash LUN
(logic unit number). Such a mapping can be calculated
through a mathematical conversion and does not require
another mapping table. (2) Operation transformation,
which converts key slab operations, namely read, write,
and erase, to flash memory operations. This allows the
key-value cache system to operate in units of slabs, rather
than flash pages/blocks. (3) Bad block management,
which maintains a list of flash blocks that are detected as
“bad” and ineligible for allocation, and hides them from
the key-value cache.

4.3 Hardware Level: Open-Channel SSD
We use an Open-Channel SSD manufactured by
Memblaze [30]. This hardware is similar to that used in
SDF [35]. This PCIe based SSD contains 12 channels,
each of which connects to two Toshiba 19nm MLC flash
chips. Each chip contains two planes and has a capacity
of 66GB. Unlike SDF [35], our SSD exposes several
key device-level properties: first, the SSD exposes the
entire flash memory space to the upper level. The SSD
hardware abstracts the flash memory space in 192 LUNs,
and an LUN is the smallest parallelizable unit. The
LUNs are mapped to the 12 channels in a sequential
manner, i.e., channel #0 contains LUNs 0-15, channel
#1 contains LUNs 16-31, and so on. Therefore, we
know the physical mapping of slabs on flash memory
and channels. Second, unlike SDF, which presents
the flash space as 44 block devices, our SSD provides
direct access to raw flash memory through the ioctl

interface. It allows us to directly operate the target flash
memory pages and blocks by specifying the LUN ID and
page number to compose commands added to the device
command queue. Third, all FTL-level functions, such as
address mapping, wear-leveling, bad block management,
are bypassed. This allows us to remove the device-level
redundant operations and make them completely driven
by the user-level applications.

5 Evaluation
5.1 Prototype System
We have prototyped the proposed key-value cache on the
Open-Channel SSD hardware platform manufactured by
Memblaze [30]. Our implementation of the key-value
cache manager is based on Twitter’s Fatcache [45]. It
includes 1,500 lines of code in the stock Fatcache and
620 lines of code in the library.

In Fatcache, when a SET request arrives, if running out
of in-memory slabs, it selects and flushes a memory slab
to flash. If there is no free flash slab, a victim flash slab is
chosen to reclaim space. During this process, incoming
requests have to wait synchronously. To fairly compare
with a cache system with non-blocking flush and eviction,
we have enhanced the stock Fatcache by adding a drain
thread and a slab eviction thread. The other part remains
unchanged. We have open-sourced our asynchronous
version of Fatcache for public downloading [1]. In our
experiments, we denote the stock Fatcache working in the
synchronous mode as “Fatcache-Sync”, and the enhanced
one working in the asynchronous mode as “Fatcache-
Async”. For each platform, we configure the slab size
to 8 MB, the flash block size. The memory slab buffer is
set to 128MB.

For performance comparison, we also run Fatcache-
Sync and Fatcache-Async on a commercial PCI-E SSD
manufactured by Memblaze. The SSD is built on
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the exact same hardware as our Open-Channel SSD
but adopts a typical, conventional SSD architecture
design. This SSD employs a page-level mapping and
the page size is 16KB. Unlike the Open-Channel SSD,
the commercial SSD has 2GB of DRAM on the device,
which serves as a buffer for the mapping table and a
write-back cache. The other typical FTL functions (e.g.,
wear-leveling, GC, etc.) are active on the device.

5.2 Experimental Setup
Our experiments are conducted on a workstation, which
features an Intel i7-5820K 3.3GHZ processor and
16GB memory. An Open-Channel SSD introduced in
Section 4.3 is used as DIDACache’s underlying cache
storage. Since the SSD capacity is quite large (1.5TB),
it would take excessively long time to fill up the entire
SSD. To complete our tests in a reasonable time frame,
we only use part of the flash space, and we ensure the
used space is evenly spread across all the channels and
flash LUNs. For the software, we use Ubuntu 14.04
with Linux kernel 3.17.8. Our back-end database server
is MySQL 5.5 with InnoDB storage engine running
on a separate workstation, which features an Intel
Core 2 Duo processor (3.13GHZ), 8GB memory and a
500GB hard drive. The database server and the cache
server are connected in a 1Gbps local Ethernet network.
Fatcache-Sync and Fatcache-Async use the same system
configurations, except that they run on the commercial
SSD rather than the Open-Channel SSD.

5.3 Overall Performance
Our first set of experiments simulate a production data-
center environment to show the overall performance. In
this experiment, we have a complete system setup with a
workload generator (client simulator), a key-value cache
server, and a MySQL database server in the back-end.

To generate key-value requests to the cache server, we
adopt a workload model presented in prior work [6]. This
model is built based on real Facebook workloads [5],
and we use it to generate a key-value object data set
and request sequences to exercise the cache server. The
size distribution of key-value objects in the database
follows a truncated Generalized Pareto distribution with
location θ = 0, scale ψ = 214.4766, and shape k =
0.348238. The object popularity, which determines
the request sequence, follows a Normal distribution
with mean µt and standard deviation σ , where µt is a
function of time. We first generate 800 million key-
value pairs (about 250GB data) to populate our database,
and then use the object popularity model to generate
200 million requests. We have run experiments with
various numbers of servers and clients with the above-
mentioned workstation, but due to the space constraint,
we only present the representative experimental results
with 32 clients and 8 key-value cache servers.

We test the system performance by varying the cache
size (in percentage of the data set size). Figure 6
shows the throughput, i.e., the number of operations
per second (ops/sec). We can see that as the cache
size increases from 5% to 12%, the throughput of all
the three schemes improves significantly, due to the
improved cache hit ratio. Comparing the three schemes,
DIDACache outperforms Fatcache-Sync and Fatcache-
Async substantially. With a cache size of 10% of
the data set (about 25GB), DIDACache outperforms
Fatcache-Sync and Fatcache-Async by 9.7% and 9.2%,
respectively. The main reason is that the dynamic
OPS management in DIDACache adaptively adjusts the
reserved OPS size according to the request arrival rate.
In contrast, Fatcache-Sync and Fatcache-Async statically
reserve 25% flash space as OPS, which affects the cache
hit ratio (see Figure 7). Another reason is the reduced
overhead due to the application-driven GC. The effect of
GC policies will be examined in Section 5.4.2.

We also note that Fatcache-Async only outperforms
Fatcache-Sync marginally in this workload. This is
because for this workload, Fatcache-Async adopts the
same static OPS policy as Fatcache-Sync, which leads to
the same cache hit ratio. Figure 7 shows the hit ratios of
these three cache systems. We can see that, as the cache
size increases, DIDACache’s hit ratio ranges from 76.5%
to 94.8%, which is much higher than that of Fatcache-
Sync, ranging from 71.1% to 87.3%.
5.4 Cache Server Performance
In this section we focus on studying the performance
details of the cache servers. In this experiment, we
directly generate SET/GET operations to the cache server.
We create objects with sizes ranging from 64 bytes to
4KB and first populate the cache server up to 25GB
in total. Then we generate SET and GET requests of
various key-value sizes to measure the average latency
and throughput. All experiments use 8 key-value cache
servers and 32 clients.
5.4.1 Random SET/GET Performance
Figure 8 shows the throughput of SET operations. Among
the three schemes, our DIDACache achieves the highest
throughput and Fatcache-Sync performs the worst. With
the object size of 64 bytes, the throughput of DIDACache
is 2.48×105 ops/sec, which is 1.3 times higher than that
of Fatcache-Sync and 35.5% higher than that of Fatcache-
Async. The throughput gain is mainly due to our unified
slab management policy and the integrated application-
driven GC policy. DIDACache also selects the least
loaded channel when flushing slabs to flash. Thus, the
SSD’s internal parallelism can be fully utilized, and
with software and hardware knowledge, the GC overhead
is significantly reduced. Compared with Fatcache-
Async, the relative performance gain of DIDACache
is smaller and decreases as the key-value object size
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Figure 10: Throughput vs. SET/GET ratio.
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Figure 11: Latency vs. SET/GET ratio.

increases. As the object size increases, the relative GC
efficiency improves and the valid data copy overhead is
decreased. It is worth noting that the practical systems
are typically dominated by small key-value objects, on
which DIDACache performs particularly well.

Figure 9 gives the average latency for SET operations
with different key-value object sizes. Similarly, it can
be observed that Fatcache-Sync performs the worst, and
DIDACache outperforms the other two significantly. For
example, for 64-byte objects, compared with Fatcache-
Sync and Fatcache-Async, DIDACache reduces the
average latency by 54.5% and 23.6%, respectively.

Figures 10 and 11 show the throughput and latency
for workloads with mixed SET/GET operations. Due
to the space constraint, we only show results for the
case with 256-byte key-value items, and other cases
with different key-value sizes show similar trend. We
can observe that DIDACache outperforms Fatcache-Sync
and Fatcache-Async across the board, but as the portion
of GET operations increases, the related performance
gain reduces. Although we also optimize the path of
processing GET, such as removing intermediate mapping,
the main performance bottleneck is the raw flash read.
Thus, with the workload of 100% GET, the latency and
throughput of the three schemes are nearly the same.
Figure 12 shows the latency distributions for key-value
items of 64 bytes with different SET/GET ratios.

5.4.2 Memory Slab Buffer

Memory slab buffer enables the asynchronous operations
of the drain and GC processes. To show the effect of
slab buffer size, we vary the slab buffer size from 128MB
to 1GB and test the average latency and throughput with
the workloads generated with the truncated Generalized
Pareto distribution. As shown in Figure 13 and Figure 14,
for both SET and GET operations, the average latency
and throughput are insensitive to the slab buffer size,
indicating that a small in-memory slab buffer size (128M)
is sufficient.

Table 1: Garbage collection overhead.
GC Scheme Key-values Flash Page Erase

DIDACache-Space 7.48GB N/A 4,231
DIDACache-Locality 0 N/A 3,679

DIDACache 2.05GB N/A 3,829
Fatcache-Greedy 7.48GB 5.73GB 5,024
Fatcache-Kick 0 3.86GB 4,122
Fatcache-FIFO 15.35GB 0 5,316

5.4.3 Garbage Collection

Our cross-layer solution also effectively reduces the GC
overhead, such as erase and valid page copy operations.
In our cache-driven system, we can easily count erase
and page copy operations in the library code. However,
we cannot directly obtain these values on the commercial
SSD as they are hidden at the device level. For effective
comparison, we use the SSD simulator (extension to
DiskSim [19]) from Microsoft Research and configure
it with the same parameters of the commercial SSD.
We first run the stock Fatcache on the commercial SSD
and collect traces by using blktrace in Linux, and
then replay the traces on the simulator. We compare
our results with the simulator-generated results. In our
experiments, we confine the available SSD size to 30GB,
and preload it with 25GB data with workloads generated
with the truncated Generalized Pareto distribution, and
then do SET operations (80 million requests, about
30GB), following the Normal distribution.

Table 1 shows GC overhead in terms of valid
data copies (key-values and flash pages) and block
erases. We compare DIDACache using space-based
eviction only (“DIDACache-Space”), locality-based
eviction only (“DIDACache-Locality”), the adaptively
selected eviction approach (“DIDACache”) with the
stock Fatcache using three schemes (“Fatcache-Greedy”,
“Fatcache-Kick”, and “Fatcache-FIFO”). In Fatcache,
the application-level GC has two options, copying valid
key-value items from the victim slab for retaining hit
ratio or directly dropping the entire slab for speed.
This incurs different overheads of key-value copy
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with different SET/GET ratios.
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Figure 14: Latency and throughput (GET)
with different buffer sizes.

operations, denoted as “Key-values”. In this experiment,
both Fatcache-Greedy and Fatcache-Kick use a greedy
algorithm to find a victim slab, but the former performs
key-value copy operations while the latter does not.
Fatcache-FIFO uses a FIFO algorithm to find the victim
slab and copies still-valid key-values. In the table, the
flash page copy and block erase operations incurred by
the device-level GC are denoted as “Flash Page” and
“Erase”, respectively.

Fatcache schemes show high GC overheads. For
example, both Fatcache-Greedy and Fatcache-FIFO
recycle valid key-value items at the application level,
incurring a large volume of key-value copies. Fatcache-
Kick, in contrast, aggressively drops victim slabs without
any key-value copy. However, since it adopts a greedy
policy (as Fatcache-Greedy) to evict the slabs with least
valid key-value items, erase blocks are mixed with valid
and invalid pages, which incurs flash page copies by the
device-level GC. Fatcache-FIFO fills and erases all slabs
in a sequential FIFO manner, thus, no device-level flash
page copy is needed. All three Fatcache schemes show a
large number of block erases.

The GC process in our scheme is directly driven by
the key-value cache. It performs a fine-grained, single-
level, key-value item-based reclamation, and no flash
page copy is needed (denoted as “N/A” in Table 1). The
locality-based eviction policy enjoys the minimum data
copy overhead, since it aggressively evicts the LRU slab
without copying any valid key-value items. The space-
based eviction policy needs to copy 7.48 GB key-value
items and incurs 4,231 erase operations. DIDACache
dynamically chooses the most appropriate policy at
runtime, so it incurs a GC overhead between the above
two (2.05 GB data copy and 3,829 erases). Compared to
Fatcache schemes, the overheads are much lower (e.g.,
28% lower than Fatcache-FIFO).

5.4.4 Dynamic Over-Provisioning Space
To illustrate the effect of our dynamic OPS management,
we run DIDACache on our testbed that simulates the data
center environment in Section 5.3. We use the same
data set containing 800 million key-value pairs (about
250GB), and the request sequence generated with the
Normal distribution model. We set the cache size as 12%
(around 30GB) of the data set size. In the experiment,
we first warm up the cache server with the generated

Table 2: Effect of different OPS policies.
GC Scheme Hit Ratio GC Latency Throughput

Static 87.7 % 2716 79.95 198,076
Heuristic 94.1 % 2480 64.24 223,146
Queuing 94.8 % 2288 62.41 229,956

data, and then change the request coming rates to test our
dynamic OPS policies.

Figure 15 shows the dynamic OPS and the number of
free slabs with the varying request incoming rates for
three different policies. The static policy reserves 25%
of flash space as OPS to simulate the conventional SSD.
For the heuristic policy, we set the initial Wlow with 5%.
For the queuing theory policy, we use the model built
in Equation 3 to determine the value of Wlow at runtime.
We set Whigh 15% higher than Wlow. The GC is triggered
when the number of free slabs drops below Whigh.

As shown in Figure 15(a), the static policy reserves a
portion of flash space for over-provisioning. The number
of free slabs fluctuates, responding to the incoming
request rate. In Figure 15(b), our heuristic policy
dynamically changes the two watermarks. When the
arrival rate of requests increases, the low watermark,
Wlow, increases to aggressively generate free slabs
by using quick clean. The number of free slabs
approximately follows the trend of the low watermark,
but we can also see a lag-behind effect. Our queuing
policy in Figure 15(c) performs even better, and it can be
observed that the free slab curve almost overlaps with the
low watermark curve. Compared with the static policy,
both heuristic and queuing theory policies enable a much
larger flash space for caching. Accordingly, we can see
in Figure 16 that the two dynamic OPS policies are able
to maintain a hit ratio close to 95%, which is 7% to 10%
higher than the static policy. Figure 17 shows the GC
cost, and we can find that the two dynamic policies incur
lower overhead than the static policy. In fact, compared
with the static policy and the heuristic policy, the queuing
theory policy erases 15.7% and 8% less flash blocks,
respectively. Correspondingly, in Figure 18, it can be
observed that the queuing policy can most effectively
reduce the number of requests with high latencies.

To further study the difference of these three policies,
we also compared their runtime throughput in Table 2.
We can see that the static policy has the lowest throughput
(198,076 ops/sec). The heuristic and queuing theory
policies can deliver higher throughput, 223,146 and
229,956 ops/sec, respectively.
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Figure 15: Over-provisioning space with different policies.
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Figure 16: Hit ratio with different OPS policies.
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Figure 17: Garbage collection overhead with different OPS policies.
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Figure 18: Request latency with different OPS policies.

5.5 Overhead Analysis
DIDACache is highly optimized for key-value caching
and moves certain device-level functions up to the
application level. This could raise consumption of host-
side resources, especially memory and CPU.

Memory Utilization: In DIDACache, memory is
mainly used for three purposes. (1) In-memory hash
table. DIDACache maintains a host-side hash table
with 44-byte mapping entries (<md, sid, offset>),
which is identical to the stock Fatcache. (2) Slab
buffer. DIDACache performance is insensitive to the
slab buffer size. We use a 128MB memory for slab
buffer, which is also identical to the stock Fatcache. (3)
Slab metadata. For slab allocation and GC, DIDACache
introduces two additional queues (Free Slab Queue and
Full Slab Queue) for each channel. Each queue entry is 8
bytes, corresponding to a slab. Each slab also maintains
an erase count and a valid data ratio, each requiring 4
bytes. Thus, in total, DIDACache adds 16-byte metadata
for each slab. For a 1TB SSD with a regular slab size
of 8MB, it consumes at most 2MB memory. In our
experiments, we found that the memory consumptions

Table 3: CPU utilization of different schemes.
Scheme SET GET SET/GET (1:1)

DIDACache 47.7% 20.5 % 37.4 %
Fatcache-Async 42.3 % 20 % 33.8 %
Fatcache-Sync 40.1 % 20 % 31.3 %

of DIDACache and Fatcache are almost identical during
runtime. Also note that the device-side demand for
memory is significantly decreased, such as the removed
FTL-level mapping table.

CPU utilization: DIDACache is multi-threaded. In
particular, we maintain 12 threads for monitoring the load
of each channel, one global thread for garbage collection,
and one load-monitoring thread for determining the OPS
size. To show the related computational cost, we compare
the CPU utilization of DIDACache, Fatcache-Async, and
Fatcache-Sync in Table 3. It can be observed that
DIDACache only incurs marginal increase of the host-
side CPU utilization. In the worst case (100% SET),
DIDACache only consumes extra 7.6% and 5.4% CPU
resources over Fatcache-Sync (40.1%) and Fatcache-
Async (42.3%), respectively. Finally it is worth noting
that DIDACache removes much device-level processing,
such as GC, which simplifies device hardware.
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Cost implications: DIDACache is cost efficient. As
an application-driven design, the device hardware can
be greatly simplified for lower cost. For example, the
DRAM required for the on-device mapping table can be
removed and the reserved flash space for OPS can be
saved. At the same time, our results also show that the
host-side overhead, as well as the additional utilization of
the host-side resources are minor.
6 Other Related Work
Both flash memory [3, 7–9, 11, 16, 20, 22, 26, 29, 41,
42] and key-value systems [4, 5, 10, 14, 24, 25, 47, 49]
are extensively researched. This section discusses prior
studies most related to this paper.

A recent research interest in flash memory is to
investigate the interaction between applications and
underlying flash storage devices. Yang et al. investigate
the interactions between log-structured applications and
the underlying flash devices [48]. Differentiated Storage
Services [32] proposes to optimize storage management
with semantic hints from applications. Nameless
Writes [50] is a de-indirection scheme to allow writing
only data into the device and let the device choose the
physical location. Similarly, FSDV [51] removes the FTL
level mapping by directly storing physical flash addresses
in the file systems. Willow [40] exploits on-device
programmability to move certain computation from the
host to the device. FlashTier [39] uses a customized
flash translation layer optimized for caching rather than
storage. OP-FCL dynamically manages OPS on SSD to
balance the space needs for GC and for caching [34].
RIPQ [44] optimizes the photo caching in Facebook
particularly for flash by reshaping the small random
writes to a flash-friendly workload. Our solution shares
a similar principle of removing unnecessary intermediate
layers and collapsing multi-layer mapping into only one,
but we particularly focus on tightly connecting key-value
cache systems and the underlying flash SSD hardware.

Key-value cache systems recently show its practical
importance in Internet services [5, 14, 25, 49]. A
report from Facebook discusses their efforts of scaling
Memcached to handle the huge amount of Internet I/O
traffic [33]. McDipper [12] is their latest effort on flash-
based key-value caching. Several prior research studies
specifically optimize key-value store/cache for flash.
Ouyang et al. propose an SSD-assisted hybrid memory
for Memcached in high performance network [36].
This solution essentially takes flash as a swapping
device. NVMKV [27, 28] gives an optimized key-
value store based on flash devices with several new
designs, such as dynamic mapping, transactional support,
and parallelization. Unlike NVMKV, our system is
a key-value cache, which allows us to aggressively
integrate the two layers together and exploit some unique
opportunities. For example, we can invalidate all slots

and erase an entire flash block, since we are dealing with
a cache rather than storage.

Some prior work also leverages Open-Channel SSDs
for domain optimizations. For example, Ouyang et
al. present SDF [35] for web-scale storage. Wang et
al. further present a design of LSM-tree based key-
value store on the same platform, called LOCS [46].
Instead of simplifying redundant functions at different
levels, they focus on enabling applications to take use
of internal parallelism of flash channels through using
Open-Channel SSD. Lee et al. [21] also propose an
application-managed flash for file systems. We share
the common principle of bridging the semantic gap
and aim to deeply integrate device and key-value cache
management.

7 Conclusions
Key-value cache systems are crucial to low-latency
high-throughput data processing. In this paper, we
present a co-design approach to deeply integrate the
key-value cache system design with the flash hardware.
Our solution enables three key benefits, namely a
single-level direct mapping from keys to physical flash
memory locations, a cache-driven fine-grained garbage
collection, and an adaptive over-provisioning scheme.
We implemented a prototype on real Open-Channel SSD
hardware platform. Our experimental results show that
we can significantly increase the throughput by 35.5%,
reduce the latency by 23.6%, and remove unnecessary
erase operations by 28%.

Although this paper focuses on key-value caching,
such an integrated approach can be generalized and
applied to other semantic-rich applications. For example,
for file systems and databases, which have complex
mapping structures in different levels, our unified direct
mapping scheme can also be applied. For read-
intensive applications with varying patterns, our dynamic
OPS approach would be highly beneficial. Various
applications may benefit from different policies or
different degrees of integration with our schemes. As
our future work, we plan to further generalize some
functionality to provide fine-grained control on flash
operations and allow applications to flexibly select
suitable schemes and reduce development overheads.
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