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submission to author notification.
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vehicle for presenting research ideas that do not require a full-length paper to describe and evaluate. In judging short 
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We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the 
authors who submitted their work to FAST ’16. We would also like to thank the attendees of FAST ’16 and future 
readers of these papers. Together with the authors, you form the FAST community and make storage research 
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the planning and organizing of this conference with the highest degree of professionalism and friendliness. Most im-
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of the FAST Steering Committee who provided invaluable advice and feedback.
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with a few external reviewers, they wrote over 496 thoughtful and meticulous reviews. HotCRP recorded over 
310,000 words in reviews and comments. The reviewers’ reviews, and their thorough and conscientious deliberations 
at the PC meeting, contributed significantly to the quality of our decisions. Finally, we also thank several people 
who helped make the PC meeting run smoothly: student volunteers George Amvrosiadis, Daniel Fryer, and Ioan 
Stefanovici; local arrangements and administrative support from Joseph Raghubar and Regina Hui; and IT support 
from Tom Glinos.

We look forward to an interesting and enjoyable conference!

Angela Demke Brown, University of Toronto 
Florentina Popovici, Google 
FAST ’16 Program Co-Chairs
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Optimizing Every Operation in a Write-Optimized File System

Jun Yuan, Yang Zhan, William Jannen, Prashant Pandey, Amogh Akshintala,
Kanchan Chandnani, Pooja Deo, Zardosht Kasheff∗, Leif Walsh∗∗, Michael A. Bender,

Martin Farach-Colton†, Rob Johnson, Bradley C. Kuszmaul‡, and Donald E. Porter

Stony Brook University, ∗Facebook, ∗∗Two Sigma, †Rutgers University,
and ‡Massachusetts Institute of Technology

Abstract
File systems that employ write-optimized dictionaries
(WODs) can perform random-writes, metadata updates,
and recursive directory traversals orders of magnitude
faster than conventional file systems. However, previ-
ous WOD-based file systems have not obtained all of
these performance gains without sacrificing performance
on other operations, such as file deletion, file or directory
renaming, or sequential writes.

Using three techniques, late-binding journaling, zon-
ing, and range deletion, we show that there is no funda-
mental trade-off in write-optimization. These dramatic
improvements can be retained while matching conven-
tional file systems on all other operations.

BetrFS 0.2 delivers order-of-magnitude better perfor-
mance than conventional file systems on directory scans
and small random writes and matches the performance
of conventional file systems on rename, delete, and se-
quential I/O. For example, BetrFS 0.2 performs directory
scans 2.2× faster, and small random writes over two or-
ders of magnitude faster, than the fastest conventional file
system. But unlike BetrFS 0.1, it renames and deletes
files commensurate with conventional file systems and
performs large sequential I/O at nearly disk bandwidth.
The performance benefits of these techniques extend to
applications as well. BetrFS 0.2 continues to outperform
conventional file systems on many applications, such as
as rsync, git-diff, and tar, but improves git-clone
performance by 35% over BetrFS 0.1, yielding perfor-
mance comparable to other file systems.

1 Introduction

Write-Optimized Dictionaries (WODs)1, such as Log-
Structured Merge Trees (LSM-trees) [24] and Bε -
trees [6], are promising building blocks for managing
on-disk data in a file system. Compared to conventional

1The terms Write-Optimized Index (WOI), Write-Optimized Dic-
tionary (WOD), and Write-Optimized Data Structure (WODS) can be
used interchangeably.

file systems, previous WOD-based file systems have im-
proved the performance of random writes [7, 12, 30],
metadata updates [7, 12, 25, 30], and recursive directory
traversals [7, 12] by orders of magnitude.

However, previous WOD-based file systems have not
obtained all three of these performance gains without
sacrificing performance on some other operations. For
example, TokuFS [7] and BetrFS [12] have slow file
deletions, renames, and sequential file writes. Directory
traversals in KVFS [30] and TableFS [25] are essentially
no faster than conventional file systems. TableFS stores
large files in the underlying ext4 file system, and hence
offers no performance gain for random file writes.

This paper shows that a WOD-based file system can
retain performance improvements to metadata updates,
small random writes, and recursive directory traversals—
sometimes by orders of magnitude—while matching
conventional file systems on other operations.

We identify three techniques to address fundamental
performance issues for WOD-based file systems and im-
plement them in BetrFS [11, 12]. We call the resulting
system BetrFS 0.2 and the baseline BetrFS 0.1. Although
we implement these ideas in BetrFS, we expect they will
improve any WOD-based file system and possibly have
more general application.

First, we use a late-binding journal to perform large
sequential writes at disk bandwidth while maintaining
the strong recovery semantics of full-data journaling.
BetrFS 0.1 provides full-data journaling, but halves sys-
tem throughput for large writes because all data is writ-
ten at least twice. Our late-binding journal adapts an ap-
proach used by no-overwrite file systems, such as zfs [4]
and btrfs [26], which writes data into free space only
once. A particular challenge in adapting this technique to
a Bε -tree is balancing crash consistency of data against
sufficient I/O scheduling flexibility to avoid reintroduc-
ing large, duplicate writes in Bε -tree message flushing.

Second, BetrFS 0.2 introduces a tunable directory tree
partitioning technique, called zoning, that balances the
tension between fast recursive directory traversals and
fast file and directory renames. Fast traversals require

1
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co-locating related items on disk, but to maintain this lo-
cality, renames must physically move data. Fast renames
can be implemented by updating a few metadata pointers,
but this can scatter a directory’s contents across the disk.
Zoning yields most of the benefits of both designs. Be-
trFS 0.2 traverses directories at near disk bandwidth and
renames at speeds comparable to inode-based systems.

Finally, BetrFS 0.2 contributes a new range delete
WOD operation that accelerates unlinks, sequential
writes, renames, and zoning. BetrFS 0.2 uses range
deletes to tell the WOD when large swaths of data are no
longer needed. Range deletes enable further optimiza-
tions, such as avoiding the read-and-merge of stale data,
that would otherwise be difficult or impossible.

With these enhancements, BetrFS 0.2 can roughly
match other local file systems on Linux. In some cases, it
is much faster than other file systems or provides stronger
guarantees at a comparable cost. In a few cases, it is
slower, but within a reasonable margin.

The contributions of this paper are:
• A late-binding journal for large writes to a message-

oriented WOD. BetrFS 0.2 writes large files at
96MB/s, compared to 28MB/s in BetrFS 0.1.

• A zone-tree schema and analytical framework for rea-
soning about trade-offs between locality in directory
traversals and indirection for fast file and directory re-
names. We identify a point that preserves most of the
scan performance of the original BetrFS and supports
renames competitive with conventional file systems
for most file and directory sizes. The highest rename
overhead is bound at 3.8× slower than the ext4.

• A range delete primitive, which enables WOD-
internal optimizations for file deletion, and also avoids
costly reads and merges of dead tree nodes. With
range delete, BetrFS 0.2 can unlink a 1 GB file in
11ms, compared to over a minute on BetrFS 0.1 and
110ms on ext4.

• A thorough evaluation of these optimizations and their
impact on real-world applications.

Thus, BetrFS 0.2 demonstrates that a WOD can improve
file-system performance on random writes, metadata up-
dates, and directory traversals by orders of magnitude
without sacrificing performance on other file-system op-
erations.

2 Background

This section gives the background necessary to under-
stand and analyze the performance of WOD-based file
systems, with a focus on Bε -trees and BetrFS. See Ben-
der et al. [3] for a more comprehensive tutorial.

2.1 Write-Optimized Dictionaries

WODs include Log-Structured Merge Trees (LSM-
trees) [24] and their variants [29, 30, 37], Bε -trees [6],
xDicts [5], and cache-oblivious lookahead arrays (CO-
LAs) [2, 28]. WODs provide a key-value interface sup-
porting insert, query, delete, and range-query operations.

The WOD interface is similar to that of a B-tree, but
the performance profile is different:
• WODs can perform inserts of random keys orders of

magnitude faster than B-trees. On a rotating disk, a B-
tree can perform only a couple of hundred inserts per
second in the worst case, whereas a WOD can perform
many tens of thousands.

• In WODs, a delete is implemented by inserting a
tombstone message, which is extremely fast.

• Some WODs, such as Bε -trees, can perform point
queries as fast as a B-tree. Bε -trees (but not LSM-
trees) offer a provably optimal combination of query
and insert performance.

• WODs perform range queries at nearly disk band-
width. Because a WOD can use nodes over a
megabyte in size, a scan requires less than one disk
seek per MB of data and hence is bandwidth bound.

The key idea behind write optimization is deferring
and batching small, random writes. A Bε -tree logs in-
sertions or deletions as messages at the root of the tree,
and only flushes messages down a level in the tree when
enough messages have accrued to offset the cost of ac-
cessing the child. As a result, a single message may be
written to disk multiple times. Since each message is al-
ways written as part of a larger batch, the amortized cost
for each insert is typically much less than one I/O. In
comparison, writing a random element to a large B-tree
requires a minimum of one I/O.

Most production-quality WODs are engineered for use
in databases, not in file systems, and are therefore de-
signed with different performance requirements. For ex-
ample, the open-source WOD implementation underly-
ing BetrFS is a port of TokuDB2 into the Linux ker-
nel [32]. TokuDB logs all inserted keys and values to
support transactions, limiting the write bandwidth to at
most half of disk bandwidth. As a result, BetrFS 0.1 pro-
vides full-data journaling, albeit at a cost to large sequen-
tial writes.

Caching and recovery. We now summarize relevant
logging and cache-management features of TokuDB.

TokuDB updates Bε -tree nodes using redirect on
write [8]. In other words, each time a dirty node is writ-
ten to disk, the node is placed at a new location. Recov-
ery is based on periodic, stable checkpoints of the tree.
Between checkpoints, a write-ahead, logical log tracks

2TokuDB implements Fractal Tree indexes [2], a Bε -tree variant.
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all tree updates and can be replayed against the last stable
checkpoint for recovery. This log is buffered in memory,
and is made durable at least once every second.

This scheme of checkpoint and write-ahead log allows
the Bε -tree to cache dirty nodes in memory and write
them back in any order, as long as a consistent version
of the tree is written to disk at checkpoint time. After
each checkpoint, old checkpoints, logs, and unreachable
nodes are garbage collected.

Caching dirty nodes improves insertion performance
because TokuDB can often avoid writing internal tree
nodes to disk. When a new message is inserted into the
tree, it can immediately be moved down the tree as far
as possible without dirtying any new nodes. If the mes-
sage is part of a long stream of sequential inserts, then
the entire root-to-leaf path is likely to be dirty, and the
message can go straight to its leaf. This caching, com-
bined with write-ahead logging, explains why large se-
quential writes in BetrFS 0.1 realize at most half3 of the
disk’s bandwidth: most messages are written once to the
log and only once to a leaf. Section 3 describes a late-
binding journal, which lets BetrFS 0.2 write large data
values only once, without sacrificing the crash consis-
tency of data.

Message propagation. As the buffer in an internal Bε -
tree node fills up, the Bε -tree estimates which child or
children would receive enough messages to amortize the
cost of flushing these messages down one level. Mes-
sages are kept logically consistent within a node buffer,
stored in commit order. Even if messages are physically
applied to leaves at different times, any read applies all
matching buffered messages between the root and leaf in
commit order. Section 5 introduces a “rangecast” mes-
sage type, which can propagate to multiple children.

2.2 BetrFS
BetrFS stores all file system data—both metadata and file
contents—in Bε -trees [12]. BetrFS uses two Bε -trees: a
metadata index and a data index. The metadata index
maps full paths to the corresponding struct stat in-
formation. The data index maps (path, block-number)
pairs to the contents of the specified file block.

Indirection. A traditional file system uses indirection,
e.g., inode numbers, to implement renames efficiently
with a single pointer swap. This indirection can hurt di-
rectory traversals because, in the degenerate case, there
could be one seek per file.

The BetrFS 0.1 full-path-based schema instead opti-
mizes directory traversals at the expense of renaming

3TokuDB had a performance bug that further reduced BetrFS 0.1’s
sequential write performance to at most 1/3rd of disk bandwidth. See
Section 6 for details.

large files and directories. A recursive directory traversal
maps directly to a range query in the underlying Bε -tree,
which can run at nearly disk bandwidth. On the other
hand, renames in BetrFS 0.1 must move all data from
the old keys to new keys, which can become expensive
for large files and directories. Section 4 presents schema
changes that enable BetrFS 0.2 to perform recursive di-
rectory traversals at nearly disk bandwidth and renames
at speeds comparable to inode-based file systems.

Indexing data and metadata by full path also harms
deletion performance, as each block of a large file
must be individually removed. The sheer volume of
these delete messages in BetrFS 0.1 leads to orders-of-
magnitude worse unlink times for large files. Section 5
describes our new “rangecast delete” primitive for imple-
menting efficient file deletion in BetrFS 0.2.

Consistency. In BetrFS, file writes and metadata
changes are first recorded in the kernel’s generic VFS
data structures. The VFS may cache dirty data and meta-
data for up to 5 seconds before writing it back to the un-
derlying file system, which BetrFS converts to Bε -tree
operations. Thus BetrFS can lose at most 6 seconds of
data during a crash—5 seconds from the VFS layer and
1 second from the Bε -tree log buffer. fsync in BetrFS
first writes all dirty data and metadata associated with the
inode, then writes the entire log buffer to disk.

3 Avoiding Duplicate Writes

This section discusses late-binding journaling, a tech-
nique for delivering the sequential-write performance of
metadata-only journaling while guaranteeing full-data-
journaling semantics.

BetrFS 0.1 is unable to match the sequential-write per-
formance of conventional file systems because it writes
all data at least twice: once to a write-ahead log and at
least once to the Bε -tree. As our experiments in Section 7
show, BetrFS 0.1 on a commodity disk performs large se-
quential writes at 28MB/s, whereas other local file sys-
tems perform large sequential writes at 78–106MB/s—
utilizing nearly all of the hard drive’s 125 MB/s of band-
width. The extra write for logging does not significantly
affect the performance of small random writes, since they
are likely to be written to disk several times as they move
down the Bε -tree in batches. However, large sequential
writes are likely to go directly to tree leaves, as explained
in Section 2.1. Since they would otherwise be written
only once in the Bε -tree, logging halves BetrFS 0.1 se-
quential write bandwidth. Similar overheads are well-
known for update-in-place file systems, such as ext4,
which defaults to metadata-only journaling as a result.

Popular no-overwrite file systems address journal
write amplification with indirection. For small values,
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Figure 1: Late-binding journaling in a Bε -tree.

zfs embeds data directly in a log entry. For large val-
ues, it writes data to disk redirect-on-write, and stores a
pointer in the log [21]. This gives zfs fast durability for
small writes by flushing the log, avoids the overhead of
writing large values twice, and retains the recovery se-
mantics of data journaling. On the other hand, btrfs [26]
uses indirection for all writes, regardless of size. It writes
data to newly-allocated blocks, and records those writes
with pointers in its journal.

In the rest of this section, we explain how we inte-
grate indirection for large writes into the BetrFS recov-
ery mechanism, and we discuss the challenges posed by
the message-oriented design of the Bε -tree.

BetrFS on-disk structures. The BetrFS Bε -tree imple-
mentation writes Bε -tree nodes to disk using redirect-on-
write and maintains a logical write-ahead redo log. Each
insert or delete message is first recorded in the log and
then inserted into the tree’s in-memory nodes. Each en-
try in the log specifies the operation (insert or delete) and
the relevant keys and values.

Crash consistency is implemented by periodically
checkpointing the Bε -tree and by logging operations be-
tween checkpoints. An operation is durable once its log
entry is on disk. At each checkpoint, all dirty nodes are
written to ensure that a complete and consistent Bε -tree
snapshot is on disk, and the log is discarded. For in-
stance, after checkpoint i completes, there is a single Bε -
tree, Ti, and an empty log. Any blocks that are not reach-
able in Ti can be garbage collected and reallocated.

Between checkpoints i and i + 1, all operations are
logged in Logi+1. If the system crashes at any time
between the completion of checkpoint i and checkpoint
i+1, it will resume from tree Ti and replay Logi+1.

Late-binding journal. BetrFS 0.2 handles large mes-
sages, or large runs of consecutive messages, as follows
and illustrated in Figure 1:
• A special unbound log entry is appended to the in-

memory log buffer 1 . An unbound log entry spec-
ifies an operation and a key, but not a value. These
messages record the insert’s logical order.

• A special unbound message is inserted into the Bε -tree
2 . An unbound message contains the key, value, and

log entry ID of its corresponding unbound log entry.
Unbound messages move down the tree like any other
message.

• To make the log durable, all nodes containing unbound
messages are first written to disk. As part of writing
the node to disk, each unbound message is converted
to a normal insert message (non-leaf node) or a normal
key-value pair (leaf node). After an unbound message
in a node is written to disk, a binding log entry is ap-
pended to the in-memory log buffer 3 . Each bind-
ing log entry contains the log entry ID from the un-
bound message and the physical disk address of the
node. Once all inserts in the in-memory log buffer are
bound, the in-memory log buffer is written to disk.

• Node write-backs are handled similarly: when a node
containing an unbound message is written to disk as
part of a cache eviction, checkpoint, or for any other
reason, binding entries are appended to the in-memory
log buffer for all the unbound messages in the node,
and the messages in the node are marked as bound.

The system can make logged operations durable at any
time by writing out all the tree nodes that contain un-
bound messages and then flushing the log to disk. It is an
invariant that all unbound inserts in the on-disk log will
have matching binding log entries. Thus, recovery can
always proceed to the end of the log.

The on-disk format does not change for an unbound
insert: unbound messages exist only in memory.

The late-binding journal accelerates large messages.
A negligible amount of data is written to the log, but a
tree node is forced to be written to disk. If the amount of
data to be written to a given tree node is equivalent to the
size of the node, this reduces the bandwidth cost by half.

In the case where one or more inserts only account for
a small fraction of the node, logging the values is prefer-
able to unbound inserts. The issue is that an unbound
insert can prematurely force the node to disk (at a log
flush, rather than the next checkpoint), losing opportuni-
ties to batch more small modifications. Writing a node
that is mostly unchanged wastes bandwidth. Thus, Be-
trFS 0.2 uses unbound inserts only when writing at least
1MB of consecutive pages to disk.

Crash Recovery. Late-binding requires two passes over
the log during recovery: one to identify nodes containing
unbound inserts, and a second to replay the log.

The core issue is that each checkpoint only records the
on-disk nodes in use for that checkpoint. In BetrFS 0.2,
nodes referenced by a binding log entry are not marked
as allocated in the checkpoint’s allocation table. Thus,
the first pass is needed to update the allocation table to in-
clude all nodes referenced by binding log messages. The

4



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 5

second pass replays the logical entries in the log. After
the next checkpoint, the log is discarded, and the refer-
ence counts on all nodes referenced by the log are decre-
mented. Any nodes whose reference count hits zero (i.e.
because they are no longer referenced by other nodes in
the tree) are garbage collected at that time.

Implementation. BetrFS 0.2 guarantees consistent re-
covery up until the last log flush or checkpoint. By de-
fault, a log flush is triggered on a sync operation, every
second, or when the 32 MB log buffer fills up. Flush-
ing a log buffer with unbound log entries also requires
searching the in-memory tree nodes for nodes contain-
ing unbound messages, in order to first write these nodes
to disk. Thus, BetrFS 0.2 also reserves enough space at
the end of the log buffer for the binding log messages.
In practice, the log-flushing interval is long enough that
most unbound inserts are written to disk before the log
flush, minimizing the delay for a log write.

Additional optimizations. Section 5 explains some op-
timizations where logically obviated operations can be
discarded as part of flushing messages down one level of
the tree. One example is when a key is inserted and then
deleted; if the insert and delete are in the same message
buffer, the insert can be dropped, rather than flushed to
the next level. In the case of unbound inserts, we allow
a delete to remove an unbound insert before the value
is written to disk under the following conditions: (1) all
transactions involving the unbound key-value pair have
committed, (2) the delete transaction has committed, and
(3) the log has not yet been flushed. If these conditions
are met, the file system can be consistently recovered
without this unbound value. In this situation, BetrFS 0.2
binds obviated inserts to a special NULL node, and drops
the insert message from the Bε -tree.

4 Balancing Search and Rename

In this section, we argue that there is a design trade-off
between the performance of renames and recursive di-
rectory scans. We present an algorithmic framework for
picking a point along this trade-off curve.

Conventional file systems support fast renames at the
expense of slow recursive directory traversals. Each file
and directory is assigned its own inode, and names in
a directory are commonly mapped to inodes with point-
ers. Renaming a file or directory can be very efficient,
requiring only creation and deletion of a pointer to an in-
ode, and a constant number of I/Os. However, searching
files or subdirectories within a directory requires travers-
ing all these pointers. When the inodes under a directory
are not stored together on disk, for instance because of
renames, then each pointer traversal can require a disk
seek, severely limiting the speed of the traversal.

BetrFS 0.1 and TokuFS are at the other extreme. They
index every directory, file, and file block by its full path
in the file system. The sort order on paths guarantees that
all the entries beneath a directory are stored contiguously
in logical order within nodes of the Bε -tree, enabling fast
scans over entire subtrees of the directory hierarchy. Re-
naming a file or directory, however, requires physically
moving every file, directory, and block to a new location.

This trade-off is common in file system design. In-
termediate points between these extremes are possible,
such as embedding inodes in directories but not moving
data blocks of renamed files. Fast directory traversals re-
quire on-disk locality, whereas renames must issue only
a small number of I/Os to be fast.

BetrFS 0.2’s schema makes this trade-off parameteri-
zable and tunable by partitioning the directory hierarchy
into connected regions, which we call zones. Figure 2a
shows how files and directories within subtrees are col-
lected into zones in BetrFS 0.2. Each zone has a unique
zone-ID, which is analogous to an inode number in a tra-
ditional file system. Each zone contains either a single
file or has a single root directory, which we call the root
of the zone. Files and directories are identified by their
zone-ID and their relative path within the zone.

Directories and files within a zone are stored together,
enabling fast scans within that zone. Crossing a zone
boundary potentially requires a seek to a different part of
the tree. Renaming a file under a zone root moves the
data, whereas renaming a large file or directory (a zone
root) requires only changing a pointer.

Zoning supports a spectrum of trade-off points be-
tween the two extremes described above. When zones
are restricted to size 1, the BetrFS 0.2 schema is equiv-
alent to an inode-based schema. If we set the zone size
bound to infinity (∞), then BetrFS 0.2’s schema is equiv-
alent to BetrFS 0.1’s schema. At an intermediate set-
ting, BetrFS 0.2 can balance the performance of direc-
tory scans and renames.

The default zone size in BetrFS 0.2 is 512 KiB. In-
tuitively, moving a very small file is sufficiently inex-
pensive that indirection would save little, especially in
a WOD. On the other extreme, once a file system is
reading several MB between each seek, the dominant
cost is transfer time, not seeking. Thus, one would ex-
pect the best zone size to be between tens of KB and a
few MB. We also note that this trade-off is somewhat
implementation-dependent: the more efficiently a file
system can move a set of keys and values, the larger a
zone can be without harming rename performance. Sec-
tion 7 empirically evaluates these trade-offs.

As an effect of zoning, BetrFS 0.2 supports hard links
by placing a file with more than 1 link into its own zone.

Metadata and data indexes. The BetrFS 0.2 meta-
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(a) An example zone tree in BetrFS 0.2.

Metadata Index
(0,”/”) → stat info for “/”
(0,”/docs”) → zone 1
(0,”/local”) → stat info for “/local”
(0,”/src”) → stat info for “/src”
(0,”/local/bin”) → stat info for “/local/bin”
(0,”/local/bin/ed”) → stat info for “/local/bin/ed”
(0,”/local/bin/vi”) → stat info for “/local/bin/vi”
(0,”/src/abc.c”) → zone 2
(1,”/”) → stat info for “/docs”
(1,”/a.tex”) → stat info for “/docs/a.tex”
(1,”/b.tex”) → stat info for “/docs/b.tex”
(2,”/”) → stat info for “/src/abc.c”

Data Index
(0,“/local/bin/ed”, i) → block i of “/local/bin/ed”
(0,“/local/bin/vi”, i) → block i of “/local/bin/vi”
(1,“/a.tex”, i) → block i of “/docs/a.tex”
(1,“/b.tex”, i) → block i of “/docs/b.tex”
(2,“/”, i) → block i of “/src/abc.c”

(b) Example metadata and data indices in BetrFS 0.2.

Figure 2: Pictorial and schema illustrations of zone trees in BetrFS 0.2.

data index maps (zone-ID, relative-path) keys to meta-
data about a file or directory, as shown in Figure 2b. For
a file or directory in the same zone, the metadata includes
the typical contents of a stat structure, such as owner,
modification time, and permissions. For instance, in zone
0, path “/local” maps onto the stat info for this directory.
If this key (i.e., relative path within the zone) maps onto
a different zone, then the metadata index maps onto the
ID of that zone. For instance, in zone 0, path “/docs”
maps onto zone-ID 1, which is the root of that zone.

The data index maps (zone-ID, relative-path, block-
number) to the content of the specified file block.

Path sorting order. BetrFS 0.2 sorts keys by zone-ID
first, and then by their relative path. Since all the items
in a zone will be stored consecutively in this sort order,
recursive directory scans can visit all the entries within a
zone efficiently. Within a zone, entries are sorted by path
in a “depth-first-with-children” order, as illustrated in
Figure 2b. This sort order ensures that all the entries be-
neath a directory are stored logically contiguously in the
underlying key-value store, followed by recursive list-
ings of the subdirectories of that directory. Thus an ap-
plication that performs readdir on a directory and then
recursively scans its sub-directories in the order returned
by readdir will effectively perform range queries on
that zone and each of the zones beneath it.

Rename. Renaming a file or directory that is the root of
its zone requires simply inserting a reference to its zone
at its new location and deleting the old reference. So,
for example, renaming “/src/abc.c” to “/docs/def.c” in
Figure 2 requires deleting key (0, “/src/abc.c”) from the

metadata index and inserting the mapping (1, “/def.c”)
→ Zone 2.

Renaming a file or directory that is not the root of its
zone requires copying the contents of that file or direc-
tory to its new location. So, for example, renaming “/lo-
cal/bin” to “/docs/tools” requires (1) deleting all the keys
of the form (0, “/local/bin/p”) in the metadata index, (2)
reinserting them as keys of the form (1, “/tools/p”), (3)
deleting all keys of the form (0, “/local/bin/p”, i) from the
data index, and (4) reinserting them as keys of the form
(1, “/tools/p”, i). Note that renaming a directory never
requires recursively moving into a child zone. Thus, by
bounding the size of the directory subtree within a sin-
gle zone, we also bound the amount of work required to
perform a rename.

Splitting and merging. To maintain a consistent rename
and scan performance trade-off throughout system life-
time, zones must be split and merged so that the follow-
ing two invariants are upheld:

ZoneMin: Each zone has size at least C0.

ZoneMax: Each directory that is not the root of its
zone has size at most C1.

The ZoneMin invariant ensures that recursive directory
traversals will be able to scan through at least C0 consec-
utive bytes in the key-value store before initiating a scan
of another zone, which may require a disk seek. The
ZoneMax invariant ensures that no directory rename will
require moving more than C1 bytes.

The BetrFS 0.2 design upholds these invariants as
follows. Each inode maintains two counters to record
the number of data and metadata entries in its subtree.
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Whenever a data or metadata entry is added or removed,
BetrFS 0.2 recursively updates counters from the corre-
sponding file or directory up to its zone root. If either of a
file or directory’s counters exceed C1, BetrFS 0.2 creates
a new zone for the entries in that file or directory. When
a zone size falls below C0, that zone is merged with its
parent. BetrFS 0.2 avoids cascading splits and merges
by merging a zone with its parent only when doing so
would not cause the parent to split. To avoid unneces-
sary merges during a large directory deletion, BetrFS 0.2
defers merging until writing back dirty inodes.

We can tune the trade-off between rename and di-
rectory traversal performance by adjusting C0 and C1.
Larger C0 will improve recursive directory traversals.
However, increasing C0 beyond the block size of the
underlying data structure will have diminishing returns,
since the system will have to seek from block to block
during the scan of a single zone. Smaller C1 will im-
prove rename performance. All objects larger than C1
can be renamed in a constant number of I/Os, and the
worst-case rename requires only C1 bytes be moved. In
the current implementation, C0 =C1 = 512 KiB.

The zone schema enables BetrFS 0.2 to support a spec-
trum of trade-offs between rename performance and di-
rectory traversal performance. We explore these trade-
offs empirically in Section 7.

5 Efficient Range Deletion

This section explains how BetrFS 0.2 obtains nearly-flat
deletion times by introducing a new rangecast message
type to the Bε -tree, and implementing several Bε -tree-
internal optimizations using this new message type.

BetrFS 0.1 file and directory deletion performance is
linear in the amount of data being deleted. Although this
is true to some extent in any file system, as the freed disk
space will be linear in the file size, the slope for BetrFS
0.1 is alarming. For instance, unlinking a 4GB file takes
5 minutes on BetrFS 0.1!

Two underlying issues are the sheer volume of delete
messages that must be inserted into the Bε -tree and
missed optimizations in the Bε -tree implementation. Be-
cause the Bε -tree implementation does not bake in any
semantics about the schema, the Bε -tree cannot infer that
two keys are adjacent in the keyspace. Without hints
from the file system, a Bε -tree cannot optimize for the
common case of deleting large, contiguous key ranges.

5.1 Rangecast Messages
In order to support deletion of a key range in a sin-
gle message, we added a rangecast message type to
the Bε -tree implementation. In the baseline Bε -tree im-
plementation, updates of various forms (e.g., insert and

delete) are encoded as messages addressed to a single
key, which, as explained in §2, are flushed down the path
from root-to-leaf. A rangecast message can be addressed
to a contiguous range of keys, specified by the beginning
and ending keys, inclusive. These beginning and ending
keys need not exist, and the range can be sparse; the mes-
sage will be applied to any keys in the range that do exist.
We have currently added rangecast delete messages, but
we can envision range insert and upsert [12] being useful.

Rangecast message propagation. When single-key
messages are propagated from a parent to a child, they
are simply inserted into the child’s buffer space in logi-
cal order (or in key order when applied to a leaf). Range-
cast message propagation is similar to regular message
propagation, with two differences.

First, rangecast messages may be applied to multi-
ple children at different times. When a rangecast mes-
sage is flushed to a child, the propagation function must
check whether the range spans multiple children. If so,
the rangecast message is transparently split and copied
for each child, with appropriate subsets of the original
range. If a rangecast message covers multiple children
of a node, the rangecast message can be split and ap-
plied to each child at different points in time—most com-
monly, deferring until there are enough messages for that
child to amortize the flushing cost. As messages propa-
gate down the tree, they are stored and applied to leaves
in the same commit order. Thus, any updates to a key
or reinsertions of a deleted key maintain a global serial
order, even if a rangecast spans multiple nodes.

Second, when a rangecast delete is flushed to a leaf, it
may remove multiple key/value pairs, or even an entire
leaf. Because unlink uses rangecast delete, all of the
data blocks for a file are freed atomically with respect to
a crash.

Query. A Bε -tree query must apply all pending modifi-
cations in node buffers to the relevant key(s). Applying
these modifications is efficient because all relevant mes-
sages will be in a node’s buffer on the root-to-leaf search
path. Rangecast messages maintain this invariant.

Each Bε -tree node maintains a FIFO queue of pend-
ing messages, and, for single-key messages, a balanced
binary tree sorted by the messages’ keys. For range-
cast messages, our current prototype checks a simple
list of rangecast messages and interleaves the messages
with single-key messages based on commit order. This
search costs linear in the number of rangecast messages.
A faster implementation would store the rangecast mes-
sages in each node using an interval tree, enabling it to
find all the rangecast messages relevant to a query in
O(k+ logn) time, where n is number of rangecast mes-
sages in the node and k is the number of those messages
relevant to the current query.
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Rangecast unlink and truncate. In the BetrFS 0.2
schema, 4KB data blocks are keyed by a concatenated
tuple of zone ID, relative path, and block number. Un-
linking a file involves one delete message to remove the
file from the metadata index and, in the same Bε -tree-
level transaction, a rangecast delete to remove all of the
blocks. Deleting all data blocks in a file is simply en-
coded by using the same prefix, but from blocks 0 to
infinity. Truncating a file works the same way, but can
start with a block number other than zero, and does not
remove the metadata key.

5.2 Bε -Tree-Internal Optimizations

The ability to group a large range of deletion messages
not only reduces the number of total delete messages re-
quired to remove a file, but it also creates new opportu-
nities for Bε -tree-internal optimizations.

Leaf Pruning. When a Bε -tree flushes data from one
level to the next, it must first read the child, merge the in-
coming data, and rewrite the child. In the case of a large,
sequential write, a large range of obviated data may be
read from disk, only to be overwritten. In the case of Be-
trFS 0.1, unnecessary reads make overwriting a 10 GB
file 30–63 MB/s slower than the first write of the file.

The leaf pruning optimization identifies when an en-
tire leaf is obviated by a range delete, and elides reading
the leaf from disk. When a large range of consecutive
keys and values are inserted, such as overwriting a large
file region, BetrFS 0.2 includes a range delete for the key
range in the same transaction. This range delete message
is necessary, as the Bε -tree cannot infer that the range of
the inserted keys are contiguous; the range delete com-
municates information about the keyspace. On flush-
ing messages to a child, the Bε -tree can detect when a
range delete encompasses the child’s keyspace. BetrFS
0.2 uses transactions inside the Bε -tree implementation
to ensure that the removal and overwrite are atomic: at
no point can a crash lose both the old and new contents
of the modified blocks. Stale leaf nodes are reclaimed as
part of normal Bε -tree garbage collection.

Thus, this leaf pruning optimization avoids expensive
reads when a large file is being overwritten. This opti-
mization is both essential to sequential I/O performance
and possible only with rangecast delete.

Pac-Man. A rangecast delete can also obviate a signifi-
cant number of buffered messages. For instance, if a user
creates a large file and immediately deletes the file, the
Bε -tree may include many obviated insert messages that
are no longer profitable to propagate to the leaves.

BetrFS 0.2 adds an optimization to message flushing,
where a rangecast delete message can devour obviated
messages ahead of it in the commit sequence. We call

this optimization “Pac-Man”, in homage to the arcade
game character known for devouring ghosts. This op-
timization further reduces background work in the tree,
eliminating “dead” messages before they reach a leaf.

6 Optimized Stacking

BetrFS has a stacked file system design [12]; Bε -tree
nodes and the journal are stored as files on an ext4 file
system. BetrFS 0.2 corrects two points where BetrFS 0.1
was using the underlying ext4 file system suboptimally.

First, in order to ensure that nodes are physically
placed together, TokuDB writes zeros into the node files
to force space allocation in larger extents. For sequen-
tial writes to a new FS, BetrFS 0.1 zeros these nodes and
then immediately overwrites the nodes with file contents,
wasting up to a third of the disk’s bandwidth. We re-
placed this with the newer fallocate API, which can
physically allocate space but logically zero the contents.

Second, the I/O to flush the BetrFS journal file was
being amplified by the ext4 journal. Each BetrFS log
flush appended to a file on ext4, which required updat-
ing the file size and allocation. BetrFS 0.2 reduces this
overhead by pre-allocating space for the journal file and
using fdatasync.

7 Evaluation

Our evaluation targets the following questions:
• How does one choose the zone size?
• Does BetrFS 0.2 perform comparably to other file sys-

tems on the worst cases for BetrFS 0.1?
• Does BetrFS 0.2 perform comparably to BetrFS 0.1 on

the best cases for BetrFS 0.1?
• How do BetrFS 0.2 optimizations impact application

performance? Is this performance comparable to other
file systems, and as good or better than BetrFS 0.1?

• What are the costs of background work in BetrFS 0.2?
All experimental results were collected on a Dell Opti-
plex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, and a 500 GB, 7200 RPM ATA disk, with
a 4096-byte block size. Each file system’s block size
is 4096 bytes. The system ran Ubuntu 13.10, 64-bit,
with Linux kernel version 3.11.10. Each experiment is
compared with several file systems, including BetrFS
0.1 [12], btrfs [26], ext4 [20], XFS [31], and zfs [4].
We use the versions of XFS, btrfs, ext4 that are part
of the 3.11.10 kernel, and zfs 0.6.3, downloaded from
www.zfsonlinux.org. The disk was divided into 2 par-
titions roughly 240 GB each; one for the root FS and the
other for experiments. We use default recommended file
system settings unless otherwise noted. Lazy inode table
and journal initialization were turned off on ext4. Each

8
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Figure 3: The impact of zone size on rename and scan
performance. Lower is better.
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experiment was run a minimum of 4 times. Error bars
and ± ranges denote 95% confidence intervals. Unless
noted, all benchmarks are cold-cache tests.

7.1 Choosing a Zone Size

This subsection quantifies the impact of zone size on re-
name and scan performance.

A good zone size limits the worst-case costs of
rename but maintains data locality for fast directory
scans. Figure 3a shows the average cost to rename a file
and fsync the parent directory, over 100 iterations, plot-
ted as a function of size. We show BetrFS 0.2 with an
infinite zone size (no zones are created—rename moves
all file contents) and 0 (every file is in its own zone—
rename is a pointer swap). Once a file is in its own zone,
the performance is comparable to most other file sys-
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Figure 5: Large file I/O performance. We sequentially
read and write a 10GiB file. Higher is better.

tems (16ms on BetrFS 0.2 compared to 17ms on ext4).
This is balanced against Figure 3b, which shows grep

performance versus zone size. As predicted in Sec-
tion 4 directory-traversal performance improves as the
zone size increases.

We select a default zone size of 512 KiB, which en-
forces a reasonable bound on worst case rename (com-
pared to an unbounded BetrFS 0.1 worst case), and keeps
search performance within 25% of the asymptote. Fig-
ure 4 compares BetrFS 0.2 rename time to other file sys-
tems. Specifically, worst-case rename performance at
this zone size is 66ms, 3.7× slower than the median file
system’s rename cost of 18ms. However, renames of files
512 KiB or larger are comparable to other file systems,
and search performance is 2.2× the best baseline file sys-
tem and 8× the median. We use this zone size for the rest
of the evaluation.

7.2 Improving the Worst Cases
This subsection measures BetrFS 0.1’s three worst cases,
and shows that, for typical workloads, BetrFS 0.2 is ei-
ther faster or within roughly 10% of other file systems.

Sequential Writes. Figure 5 shows the throughput to se-
quentially read and write a 10GiB file (more than twice
the size of the machine’s RAM). The optimizations de-
scribed in §3 improve the sequential write throughput
of BetrFS 0.2 to 96MiB/s, up from 28MiB/s in BetrFS
0.1. Except for zfs, the other file systems realize roughly
10% higher throughput. We also note that these file sys-
tems offer different crash consistency properties: ext4
and XFS only guarantee metadata recovery, whereas zfs,
btrfs, and BetrFS guarantee data recovery.

The sequential read throughput of BetrFS 0.2 is im-
proved over BetrFS 0.1 by roughly 12MiB/s, which is
attributable to streamlining the code. This places BetrFS
0.2 within striking distance of other file systems.

Rename. Table 1 shows the execution time of sev-
eral common directory operations on the Linux 3.11.10

9



10 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

File System find grep mv rm -rf
BetrFS 0.1 0.36 ± 0.0 3.95 ± 0.2 21.17 ± 0.7 46.14 ± 0.8
BetrFS 0.2 0.35 ± 0.0 5.78 ± 0.1 0.13 ± 0.0 2.37 ± 0.2
btrfs 4.84 ± 0.7 12.77 ± 2.0 0.15 ± 0.0 9.63 ± 1.4
ext4 3.51 ± 0.3 49.61 ± 1.8 0.18 ± 0.1 4.17 ± 1.3
xfs 9.01 ± 1.9 61.09 ± 4.7 0.08 ± 0.0 8.16 ± 3.1
zfs 13.71 ± 0.6 43.26 ± 1.1 0.14 ± 0.0 13.23 ± 0.7

Table 1: Time in seconds to complete directory operations on the
Linux 3.11.10 source: find of the file “wait.c”, grep of the string
“cpu to be64”, mv of the directory root, and rm -rf. Lower is better.

File System Time (s)
BetrFS 0.1 0.48 ± 0.1
BetrFS 0.2 0.32 ± 0.0
btrfs 104.18 ± 0.3
ext4 111.20 ± 0.4
xfs 111.03 ± 0.4
zfs 131.86 ± 12.6

Table 2: Time to perform
10,000 4-byte overwrites on a
10 GiB file. Lower is better.
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source tree. The rename test renames the entire source
tree. BetrFS 0.1 directory rename is two orders of mag-
nitude slower than any other file system, whereas BetrFS
0.2 is faster than every other file system except XFS. By
partitioning the directory hierarchy into zones, BetrFS
0.2 ensures that the cost of a rename is comparable to
other file systems.

Unlink. Table 1 also includes the time to recursively
delete the Linux source tree. Again, whereas BetrFS 0.1
is an order of magnitude slower than any other file sys-
tem, BetrFS 0.2 is faster. We attribute this improvement
to BetrFS 0.2’s fast directory traversals and to the effec-
tiveness of range deletion.

We also measured the latency of unlinking files of in-
creasing size. Due to scale, we contrast BetrFS 0.1 with
BetrFS 0.2 in Figure 6, and we compare BetrFS 0.2 with
other file systems in Figure 7. In BetrFS 0.1, the cost
to delete a file scales linearly with the file size. Fig-
ure 7 shows that BetrFS 0.2 delete latency is not sen-
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Figure 8: Sustained file creation for 3 million 200-byte
files, using 4 threads. Higher is better, y-axis is log scale.

sitive to file size. Measurements show that zfs perfor-
mance is considerably slower and noisier; we suspect
that this variance is attributable to unlink incurring amor-
tized housekeeping work.

7.3 Maintaining the Best Cases

This subsection evaluates the best cases for a write-
optimized file system, including small random writes,
file creation, and searches. We confirm that our optimiza-
tions have not eroded the benefits of write-optimization.
In most cases, there is no loss.

Small, random writes. Table 2 shows the execution
time of a microbenchmark that issues 10,000 4-byte
overwrites at random offsets within a 10GiB file, fol-
lowed by an fsync. BetrFS 0.2 not only retains a two
orders-of-magnitude improvement over the other file sys-
tems, but improves the latency over BetrFS 0.1 by 34%.

Small file creation. To evaluate file creation, we used the
TokuBench benchmark [7] to create three million 200-
byte files in a balanced directory tree with a fanout of
128. We used 4 threads, one per core of the machine.

Figure 8 graphs files created per second as a function
of the number of files created. In other words, the point
at 1 million on the x-axis is the cumulative throughput at
the time the millionth file is created. zfs exhausts system
memory after creating around a half million files.

The line for BetrFS 0.2 is mostly higher than the line

10
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Figure 9: Application benchmarks

for BetrFS 0.1, and both sustain throughputs at least
3×, but often an order of magnitude, higher than any
other file system (note the y-axis is log scale). Due to
TokuBench’s balanced directory hierarchy and write pat-
terns, BetrFS 0.2 performs 16,384 zone splits in quick
succession at around 2 million files. This leads to a sud-
den drop in performance and immediate recovery.

Searches. Table 1 shows the time to search for files
named “wait.c” (find) and to search the file contents
for the string “cpu to be64” (grep). These operations
are comparable on both write-optimized file systems, al-
though BetrFS 0.2 grep slows by 46%, which is at-
tributable to the trade-offs to add zoning.

7.4 Application Performance

This subsection evaluates the impact of the BetrFS 0.2
optimizations on the performance of several applications,
shown in Figure 9. Figure 9a shows the throughput of an
rsync, with and without the --in-place flag. In both
cases, BetrFS 0.2 improves the throughput over BetrFS
0.1 and maintains a significant improvement over other
file systems. Faster sequential I/O and, in the second
case, faster rename, contribute to these gains.

In the case of git-clone, sequential write improve-
ments make BetrFS 0.2 performance comparable to other
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Figure 10: Sequential read throughput after sequentially
writing a 10GiB file (left) and after partially overwriting
10,000 random blocks in the file (right). Higher is better.

file systems, unlike BetrFS 0.1. Similarly, BetrFS
0.2 marginally improves the performance of git-diff,
making it clearly faster than the other FSes.

Both BetrFS 0.2 and zfs outperform other file sys-
tems on the Dovecot IMAP workload, although zfs is the
fastest. This workload is characterized by frequent small
writes and fsyncs, and both file systems persist small
updates quickly by flushing their logs.

On BetrFS 0.2, tar is 1% slower than BetrFS 0.1 due
to the extra work of splitting zones.
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7.5 Background costs

This subsection evaluates the overheads of deferred work
attributable to batching in a WOD. To measure the cost
of deferred writes, we compare the time to read a sequen-
tially written 10GiB file to the time to read that same file
after partially overwriting 10,000 random blocks. Both
reads are cold cache, and shown in Figure 10.

This experiment demonstrates that BetrFS 0.2’s ef-
fective read throughput is nearly identical (87MiB/s vs.
85MiB/s), regardless of how the file was written.

8 Related Work

Zoning. Dynamic subtree partitioning [35] is a tech-
nique designed for large-scale distributed systems, like
Ceph [36], to reduce metadata contention and balance
load. These systems distribute (1) the number of meta-
data objects and (2) the frequency of metadata accesses,
across nodes. Zones instead partition objects according
to their aggregate size to bound rename costs.

Spyglass [15] introduces a partitioning technique for
multi-dimensional metadata indices based on KD-trees.
Partitioning techniques have also been used to determine
which data goes on slower versus faster media [23], to ef-
ficiently maintain inverted document indices [14], or to
plug in different storage data structures to optimize for
read- or write-intensive workloads [19]. Chunkfs [10]
partitions the ext2 file system to improve recovery time.
A number of systems also divide disk bandwidth and
cache space for performance isolation [33, 34]; speak-
ing generally, these systems are primarily concerned
with fairness across users or clients, rather than bound-
ing worst-case execution time. These techniques strike
domain-specific trade-offs different from zoning’s bal-
ance of directory searches and renames.

IceFS [18] uses cubes, a similar concept to zones,
to isolate faults, remove physical dependencies in data
structures and transactional mechanisms, and allow for
finer granularity recovery and journal configuration.
Cubes are explicitly defined by users to consist of an en-
tire directory subtree, and can grow arbitrarily large as
users add more data. In contrast, zones are completely
transparent to users, and dynamically split and merged.

Late-binding log entries. KVFS [30] avoids the jour-
naling overhead of writing most data twice by creating
a new VT-tree snapshot for each transaction. When a
transaction commits, all in-memory data from the trans-
action’s snapshot VT-tree is committed to disk, and that
transaction’s VT-tree is added above dependent VT-trees.
Data is not written twice in this scenario, but the VT-tree
may grow arbitrarily tall, making search performance
difficult to reason about.

Log-structured file systems [1, 13, 16, 27] avoid the
problem of duplicate writes by only writing into a log.
This improves write throughput in the best cases, but
does not enforce an optimal lower bound on query time.

Physical logging [9] stores before- and after-images of
individual database pages, which may be expensive for
large updates or small updates to large objects. Logical
logging [17] may reduce log sizes when operations have
succinct representations, but not for large data inserts.

The zfs intent log combines copy-on-write updates
and indirection to avoid log write amplification for large
records [21]. We adapt this technique to implement late-
binding journaling of large messages (or large groups of
related small messages) in BetrFS 0.2.

Previous systems have implemented variations of soft
updates [22], where data is written first, followed by
metadata, from leaf-to-root. This approach orders writes
so that on-disk structures are always a consistent check-
point. Although soft updates may be possible in a Bε -
tree, this would be challenging. Like soft updates, the
late-binding journal avoids the problem of doubling large
writes, but, unlike soft updates, is largely encapsulated
in the block allocator. Late-binding imposes few addi-
tional requirements on the Bε -tree itself and does not de-
lay writes of any tree node to enforce ordering. Thus, a
late-binding journal is particularly suitable for a WOD.

9 Conclusion

This paper shows that write-optimized dictionaries can
be practical not just to accelerate special cases, but as a
building block for general-purpose file systems. BetrFS
0.2 improves the performance of certain operations by
orders of magnitude and offer performance comparable
to commodity file systems on all others. These improve-
ments are the product of fundamental advances in the de-
sign of write-optimized dictionaries. We believe some of
these techniques may be applicable to broader classes of
file systems, which we leave for future work.

The source code for BetrFS 0.2 is available under
GPLv2 at github.com/oscarlab/betrfs.
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Abstract 
Traditional file system optimizations typically use a one-
to-one mapping of logical files to their physical metadata 
representations. This mapping results in missed 
opportunities for a class of optimizations in which such 
coupling is removed. 

We have designed, implemented, and evaluated a 
composite-file file system, which allows many-to-one 
mappings of files to metadata, and we have explored the 
design space of different mapping strategies. Under 
webserver and software development workloads, our 
empirical evaluation shows up to a 27% performance 
improvement. This result demonstrates the promise of 
composite files. 

1. Introduction 
File system performance optimization is a well-
researched area. However, most optimization techniques 
(e.g., caching, better data layout) retain the one-to-one 
mapping of logical files to their physical metadata 
representations (i.e., each file is associated with its own 
i-node on UNIX platforms). Such mapping is desirable 
because metadata constructs are deep-rooted data 
structures, and many storage components and 
mechanisms—such as VFS API [MCK90], prefetching, 
and metadata caching—rely on such constructs. 
However, this rigid mapping also presents a blind spot 
for a class of performance optimizations. 

We have designed, implemented, and evaluated the 
composite-file file system (CFFS), where many logical 
files can be grouped together and associated with a single 
i-node (plus extra information stored as extended 
attributes). Such an arrangement is possible because 
many files accessed together share similar metadata 
subfields [EDL04], which can be deduplicated. Thus, the 
CFFS can yield fewer metadata accesses to storage, a 
source of significant overhead for accessing small files, 
which still dominates the majority of file references for 
modern workloads [ROS00; HAR11]. 

Based on web server and software development 
workloads, the CFFS can outperform ext4 by up to 27%, 
suggesting that the approach of relaxing the file-to-
metadata mapping is promising. 

2. Observations 
The following observations led to the CFFS design:  

Frequent access to small files: Studies [ROS00; 
HAR11] show that small files receive the majority of file 

references. Our in-house analyses of a desktop file 
system confirmed that >80% of accesses are to files 
smaller than 32 bytes. Further, ~40% of the access time 
to access a small file on a disk can be attributable to 
metadata access. Thus, reducing this access overhead 
may lead to a large performance gain. 

Redundant metadata information: A traditional file 
is associated with its own physical metadata, which 
tracks information such as the locations of file blocks, 
access permissions, etc. However, many files share 
similar file attributes, as the number of file owners, 
permission patterns, etc. are limited. Edel et al. [2004] 
showed up to a 75% metadata compression ratio for a 
typical workstation. Thus, we see many opportunities to 
reduce redundant metadata information. 

Files accessed in groups: Files tend to be accessed 
together, as shown by [KRO01, LI04, DIN07, and 
JIA13]. For example, web access typically involves 
accessing many associated files. However, optimizations 
that exploit file grouping may not yield automatic 
performance gains, as the process of identifying and 
grouping files incurs overhead. 

Limitations of prefetching: While prefetching is an 
effective optimization, the separate act of fetching each 
file and associated metadata access can impose a high 
overhead. For example, accessing 32 small files can 
incur 50% higher latency than accessing a single file 
with a size equal to the sum of the 32 files, even with 
warm caches. 

This observation begs the question of whether we 
can improve performance by consolidating small files 
that are accessed together. This is achieved through our 
approach of decoupling the one-to-one mapping of 
logical files to their physical representation of metadata. 

3. Composite-file File System 
We introduce the CFFS, which allows multiple small 
files to be combined and share a single i-node. 

3.1. Design Overview 
The CFFS introduces an internal physical representation 
called a composite file, which holds the content of small 
files that are often accessed together. A composite file is 
invisible to end users and is associated with a single 
composite i-node shared among small files. The original 
information stored in small files’ inodes are deduplicated 
and stored as extended attributes of a composite file. The 
metadata attributes of individual small files can still be 
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reconstructed, checked, and updated, so that legacy 
access semantics (e.g., types, permissions, timestamps) 
are unchanged. The extended attributes also record the 
locations within the composite file for individual small 
files. With this representation, the CFFS can translate a 
physical composite file into logical files. 

Which files to combine into a composite file is an 
important workload-dependent policy decision. As an 
example, the CFFS has been configured three ways. The 
first scheme is directory-based consolidation, where all 
files within a directory (excluding subdirectories) form a 
composite file. The second scheme is embedded-
reference consolidation, where file references within 
file contents are extracted to identify files that can form 
composite files. The third is frequency-mining-based 
consolidation, where file references are analyzed 
through set frequency mining [AGR94], so that files that 
are accessed together frequently form composite files.  

A composite file exploits legacy VFS prefetching 
mechanisms because the entire composite file may be 
prefetched as a unit in a similar manner to the benefit 
FFS achieved by combining small data blocks into fewer 
larger blocks [MCK84]. 

3.2. Data Representation 
The content of a composite file is formed by 
concatenating small files, referred to as subfiles. All 
subfiles within a composite file share the same i-node, as 
well as indirect blocks, doubly indirect blocks, etc. The 
maximum size limit of a composite file is not a concern, 
as composite files are designed to group small files. If 
the sum of subfile sizes exceeds the maximum file size 
limit, we can resort to the use of multiple composite files.  

Often, the first subfile in a composite file is the 
entry point, whose access will trigger the prefetching of 
the remaining subfiles. For example, when a browser 
accesses an html file, it loads a css file and flash script. 
The html file can serve as the entry point and 
prefetching trigger of this three-subfile composite file. 
For the frequency-based consolidation, the ordering of 
subfiles reflects how they are accessed. Although the 
same group of files may have different access patterns 
with different entry points, the data layout is based on the 
most prevalent access pattern. 

3.3. Metadata Representations and Operations 
Composite file creation: When a composite file is 
created, the CFFS allocates an i-node and copies and 
concatenates the contents of the subfiles as its data. The 
composite file records the composite file offsets and 
sizes of individual subfiles as well as their deduplicated 
i-node information into its extended attributes. The 
original subfiles then are truncated, with their directory 
entries remapped to the i-node of the composite file 

extended to also include the subfile ID and their original 
i-nodes deallocated. Thus, end users still perceive 
individual logical files in the name space, while 
individual subfiles can still be located (Figure 3.3.1).  

I-node content reconstruction: Deduplicated 
subfile i-nodes are reconstructed on the fly. By default, a 
subfile’s i-node field inherits the value of the composite 
file’s i-node field, unless otherwise specified in the 
extended attributes. 

Figure 3.3.1: Creation of the internal composite file 
(bottom) from the two original files (top). 

Permissions: At file open, the permission test is 
first checked based on the composite i-node. If this fails, 
no further check is needed. Otherwise, if a subfile has a 
different permission stored as an extended attribute, the 
permission will be checked again. Therefore, the 
composite i-node will have the broadest permissions 
across all subfiles. For example, if within a composite 
file, we have a read-only subfile A, and a writable subfile 
B, the permission for the composite i-node will be read-
write. However, when opening subfile A with a write 
permission, the read-only permission restriction in the 
extended attribute will catch the violation. 

Timestamps: The timestamps of individual subfiles 
and the composite file are updated with each file 
operation. However, during checks (e.g., stat system 
calls), we return the timestamps of the subfiles. 

Sizes: For data accesses, the offsets are translated 
and bound-checked via subfile offsets and sizes encoded 
in the extended attributes. The size of a composite file is 
the length of the composite file, which can be greater 
than the total size of its subfiles. For example, if a subfile 
in the middle of a composite file is deleted, the region is 
freed, without changing the size of the composite file. 

i-node namespace: For i-node numbers larger than 
a threshold X, upper zero-extended N bits are used for 
composite i-node numbers, and lower M bits are 
reserved for subfile IDs. We refer this range of i-node 
numbers as CFFS unique IDs (CUIDs). 

Subfile lookups and renames: If a name in a 
directory is mapped to a CUID, a subfile’s attributes can 
be looked up via the subfile ID. Renaming will proceed 
as if a CUID were an i-node number in a non-CFFS 

File 1 i-node 1 Indirect 1 Data 1 

File 2 i-node 2 Indirect 2 Data 2 

File 1 i-node C Indirect 1 Data 1 

File 2 Deduplicated metadata 

Data 2 
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system. Since moving a subfile in and out of a composite 
file will change its CUID, we need to store backpointers 
[CHI12], to update all names mapped to the CUID.  

The changes in CUID may break applications (e.g., 
backups) that uniquely identify a file by its i-node 
number. However, today’s file systems can also lead to 
different files sharing the same i-node number at 
different times; the CFFS design amplifies the reasons 
that applications should not assume that an i-node 
number is a unique property of a file. 

Subfile and subfile membership updates: When a 
subfile is added to a composite file, it is appended to the 
composite file. When a subfile is deleted from a 
composite file, the corresponding data region within the 
composite file is marked freed in the extended attributes. 

Subfile open/close operations: An open/close call 
to a subfile is the same as an open/close call to the 
composite file, with the file-position pointer translated. 

Subfile write operations: In-place updates are 
handled the same way as those in a traditional file 
system. However, if an update involves growing a 
subfile in the middle of a composite file and no free space 
is available at the end of the subfile, we move the 
updated subfile to the end of the composite file. This 
scheme exploits the potential temporal locality that a 
growing subfile is likely to grow again in the near future. 

Hardlinks: Different names in directories can be 
mapped to the same i-node number or CUID. 

Space compaction: The composite file compacts its 
space when half of its allotted size contains no useful 
data.  

Concurrent updates to subfiles within a composite 
file: Concurrent updates to subfiles within a composite 
file carry the same semantics as concurrent updates to a 
normal file. To avoid lock contention, files detected to 
be involved in concurrent updates might have to be 
extracted into multiple regular files. 

Locking and consistency: The CFFS does not 
support flock, but we believe it is possible to implement 
a subfile locking subsystem. 

3.4. Identifying Composite File Membership 

3.4.1 Directory-based Consolidation 
Given that legacy file systems have deep-rooted spatial 
locality optimizations revolving around directories, a 
directory is a good approximation of file access patterns 
and for forming composite files. Currently, this 
consolidation scheme excludes subdirectories. 

The directory-based consolidation can be performed 
on all directories without tracking and analyzing file 
references. However, it will not capture file relationships 
across directories. 

 

3.4.2 Embedded-reference-based Consolidation 
Embedded-reference-based consolidation identifies 
composite file memberships based on embedded file 
references in files. For example, hyperlinks may be 
embedded in an html file, and a web crawler is likely to 
access each web page via these links. In this case, we 
consolidate the original html file and the referenced 
files. Similar ideas apply to compilation. We can extract 
the dependency rules from Makefile and consolidate 
source files that lead to the generation of the same 
binary. As file updates may break a dependency, the 
CFFS could sift periodically through modified files to 
reconcile composite file membership. 

The embedded-reference-based scheme can identify 
related files accessed across directories, but it may not 
be easy to extract embedded file references beyond text-
based file formats (e.g., html, source code). In addition, 
it requires knowledge of specific file formats. 

{A} 5  {A, B} 2  {A, B, C} 5 
{B} 2  {A, C} 2  {A, B, D}  
{C} 2  {A, D} 6  {A, C, D}  
{D} 4  {B, C} 2  {B, C, D}  
{E} 1  {B, D} 0    

   {C, D} 0    
Figure 3.4.3.1: Steps for the Apriori algorithm to identify 
frequently accessed file sets for a file reference stream E, 
D, A, D, A, D, A, B, C, A, B, C, A, D. 

3.4.3 Frequency-mining-based Consolidation 
In our exploration of a frequency-mining-based 
consolidation, we use a variant of the Apriori algorithm 
[AGR94]. The key observation is that if a set of files is 
accessed frequently, its subsets must be as well (the 
Apriori property). Figure 3.4.3.1 illustrates the algorithm 
with an access stream to files A, B, C, D, and E. 

Initial pass: First, we count the number of accesses 
for each file, and then we remove files with counts less 
than a threshold (say two) for further analysis. 

Second pass: For the remaining files, we permute, 
build, and count all possible two-file reference sets. 
Whenever file A is accessed right after B, or vice versa, 
we increment the count for file set {A, B}. Sets with 
counts less than the threshold are removed (e.g., {B, D}). 

Third pass: We can generate all three-file reference 
sets based on the remaining two-file reference sets. 
However, if a three-file reference set occurs frequently, 
all its two-file reference sets also need to occur 
frequently. Thus, file sets such as {A, B, D} are pruned, 
since {B, D} is eliminated in the second pass. 

Termination: As we can no longer generate four-file 
reference sets, the algorithm ends. Now, if a file can 
belong to multiple file sets, we return sets {A, B, C} and 
{A, D} as two frequently accessed sets. Sets such as {A, 
B} are removed as they are subsets of {A, B, C}. 
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Variations: An alternative is to use a normalized 
threshold, or support, which is the percentage of set 
occurrences (number of the occurrences of a set divided 
by the total occurrences, ranged between 0 and 1). 

Instead of tracking file sets, we can also track file 
reference sequences to determine the entry point and the 
content layout of the composite file. 

We currently disallow overlapping file sets to avoid 
the complexity of replication and maintaining 
consistency. To choose a subfile’s membership between 
two composite files, the decision depends on whether a 
composite file has more subfiles, higher support, and 
more recent creation timestamps. 

The frequency-mining-based consolidation can 
identify composite file candidates based on dynamic file 
references. However, the cost of running it limits its 
application to more popular file reference sequences. 

4. Implementation 
The two major components of our prototype are the 
composite file membership generator tool and the CFFS.  

We prototyped the CFFS in user space via the FUSE 
(v2.9.3) framework [SZE05] (Figure 4.1) running on top 
of Linux 3.16.7. The CFFS is stacked on ext4, so that we 
can leverage legacy tools and features such as 
persistence bootstrapping (e.g., file-system creation 
utilities), extended attributes, and journaling. 

The CFFS periodically consults with the generator 
tool to create new composite files. We leveraged 
mechanisms similar to hardlinks to allow multiple file 
names to be mapped to the same composite i-node. We 
intercepted all file-system-related calls due to the need 
to update the timestamps of individual subfiles. We also 
need to ensure that various accesses use the correct 
permissions (e.g., open and readdir), translated 
subfile offsets and sizes (e.g., read and write), and 
timestamps (e.g., getattr and setattr). The actual 
composite file, its i-node, and its extended attributes are 
stored by the underlying ext4 file system. The CFFS is 
implemented in C++ with ~1,600 semicolons. 

For directory-based consolidation, we used a Perl 
script to list all the files in a directory as composite file 
members. For the embedded-reference-based scheme, 
we focus on two scenarios. For the web server workload, 
we consolidate html files and their immediately 
referenced files. In the case of conflicting composite file 
memberships, preference is given to index.html, and 
then the html that first includes a file. The other is the 
source code compilation. We used Makefile as a 
guide to consolidate source code files. For the frequency-
mining-based scheme, the membership generator tool 
takes either a http access log or a strace output. The 
generator implements the Apriori algorithm, with the 
support parameter set to 5%. The analysis batch size is 

set to 50K references. The parameters were chosen based 
on empirical experience to limit the amount of memory 
and processing overhead. The generator code contains 
~1,200 semicolons. 

Figure 4.1: CFFS components (shaded) and data path 
from applications to the underlying ext4. 

Table 5.1: Experimental platform. 
Processor 2.8GHz Intel® Xeon® E5-1603, L1 cache 64KB, 

L2 cache 256KB, L3 cache 10MB 
Memory 2GBx4, Hyundai, 1067MHz, DDR3 

Disk 250GB, 7200 RPM, WD2500AAKX with 16MB 
cache 

Flash 200GB, Intel SSD DC S3700 

5. Performance Evaluation 
We compared the performance of the CFFS stacked on 
ext4 via FUSE with the baseline ext4 file system (with 
the requests routed through an empty FUSE module). 

We evaluated our system via replaying two traces. 
The first is an http log gathered from our departmental 
web server (01/01/2015-03/18/2015). The trace contains 
14M file references to 1.0TB of data; of this, 3.1M files 
are unique, holding 76GB of data. The second trace was 
gathered via strace from a software development 
workstation (11/20/2014 – 11/30/2014). The trace 
contained over 240M file-system-related system calls to 
24GB of data; of this, 291,133 files are unique with 
2.9GB bytes. Between read and write operations, 59% 
are reads, and 41% are writes. 

We conducted multi-threaded, zero-think-time trace 
replays on a storage device. We also skipped trace 
intervals with no activities. The replay experiments were 
performed on a Dell workstation (Table 5.1). Each 
experiment was repeated 5 times, and results are 
presented at 90% confidence intervals. 

Prior to each experiment, we rebuilt the file system 
with dummy content. For directory- and embedded-
reference-based schemes, composite file memberships 
are updated continuously. For the frequency-mining-
based consolidation, the analysis is performed in 
batches, but the composite files are updated daily. 

5.2. Web Server Trace Replay 
HDD performance: Figure 5.2.1 shows the CDF of web 
server request latency for a disk, measured from the time 
a request is sent to the time a request is completed. 

VFS FUSE 

ext4 

user space 
kernel space 

CFFS applications 

composite file membership generator tool 
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The original intent of our work is to reduce the 
number of IOs for small files that are frequently accessed 
together. However, the benefit of fewer accesses to 
consolidated metadata displays itself as metadata 
prefetching for all subfiles, and the composite-file 
semantics enable cross-file prefetching, resulting in 
much higher cache-hit rates. 

The embedded-reference-based consolidation 
performed the best, with 62% of requests serviced from 
the cache, which is 20% higher than ext4. Thus, 
composite files created based on embedded references 
capture the access pattern more accurately. The overall 
replay time was also reduced by ~20%. 

The directory-based composite files can also 
improve the cache-hit rate by 15%, reflecting the 
effectiveness of directories to capture spatial localities. 

The frequency-mining-based consolidation 
performed worse than the directory-based. We examined 
the trace and found that 48% of references are made by 
crawlers, and the rest by users. Thus, the bifurcated 
traffic patterns for the mining algorithm form less 
aggressive file groupings, yielding reduced benefits. 

SSD Performance: Figure 5.2.2 shows the CDF of 
web server request latency for an SSD. Compared to a 
disk, the relative trends are similar, with request latency 
times for cache misses reduced by two orders of 
magnitude due to the speed of the SSD. As the main 
performance gains are caused by higher cache-hit rates 
and IO avoidance, this 20% benefit is rather independent 
of the underlying storage media. 

5.3. Software Development File-system Trace Replay 
For the software development workload replay, it is 
more difficult to capture the latency of individual file-
system call requests, as many are asynchronous (e.g., 
writes), and calls like mmap do not know the number of 
requests sent to the underlying storage. Thus, we 
summarize our results with overall elapsed times, which 
include all overheads of composite file operations, 
excluding the initial setup cost for the directory- and 
embedded-reference-based schemes (Figure 5.3.1). 

HDD performance: The embedded-reference-based 
scheme has poor coverage, as many references are 
unrelated to compilation. Therefore, the elapsed time is 
closer to that of ext4. Directory-based consolidation 
achieves a 17% elapsed time reduction, but the 
frequency-mining-based scheme can achieve 27% 
because composite files include files across directories. 

SSD performance: The relative performance trend 
for different consolidation settings is similar to that of 
HDD. Similar to the web traces, the gain is up to 20%. 

When comparing the performance improvement 
gaps between the HDD and SSD experiments, up to an 
11% performance gain under HDD cannot be realized by 

SSD, as an SSD does not incur disk seek overheads. 

Figure 5.2.1: Web server request latency for HDD. 

Figure 5.2.2: Web server request latency for SSD. 

 
Figure 5.3.1: Elapsed times for 5 runs of the software 
development file system trace replay. Error bars show 
90% confidence intervals. 

5.4. Overheads 
Directory- and embedded-reference-based schemes: 
Directory- and embedded-reference-based schemes 
incur an initial deployment cost to create composite files 
based on directories and embedded file references. The 
initial cost of the embedded-reference scheme depends 
on the number of file types from which file references 
can be extracted. For our workloads, this cost is 
anywhere from 1 to 14 minutes (Figure 5.3.1). 

As for the incremental cost of updating composite 
file memberships, adding members involves appending 
to the composite files. Removing members involves 
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mostly metadata updates. A composite file is not 
compacted until half its allotted space is unused. As the 
trace replay numbers already include this overhead, this 
cost is offset by the benefits. 

Frequency-mining-based scheme: The trace 
gathering overhead is below 0.6%, and the memory 
overhead for trace analyses is within 200MB for an 
average of 15M lines of daily logs. 

The frequency-mining-based scheme involves 
learning from recent file references, and it took a few 
replay days to reap the full benefit of this scheme. 

5.5. Discussion and Future Work 
Composite files can benefit both read-dominant and 
read-write workloads using different storage media, 
suggesting that the performance gains are mostly due to 
the reduction in the number of IOs (~20%). The 
performance improvement gaps between the SSD and 
HDD suggest the performance gains due to reduced disk 
seeks and modified data layouts are up to ~10%. 

Overall, we are intrigued by the relationship among 
ways to form composite files, the performance effects of 
consolidating metadata and prefetching enabled by the 
composite files. Future work will explore additional 
ways to form composite files and quantify their interplay 
with different components of performance contributions. 
Additionally, future work will more fully explore the 
ramifications of metadata compression, concurrency, 
and security. 

6. Related Work 
Small file optimizations: While our research focuses on 
the many-to-one mapping of logical files and physical 
metadata, this work is closely related to ways to optimize 
small file accesses by reducing the number of storage 
accesses. Early work on this area involve collocating a 
file’s i-node with its first data block [MUL84] and 
embedding i-nodes in directories [GAN97]. Later, hFS 
[ZHA07] used separate storage areas to optimize small 
file and metadata accesses. Btrfs [ROD13] packs 
metadata and small files into copy-on-write b-trees. 
TableFS [REN13] packs metadata and small files into a 
table and flushes 2MB logs of table entry modifications, 
organized as a log-structured merge tree. The CFFS 
complements many existing approaches by 
consolidating i-nodes for files that are often accessed 
together.  

The idea of accessing subfile regions and 
consolidating metadata is also explored in the parallel 
and distributed computing domain, where CPUs on 
multiple computers need to access the same large data 
file [YU07]. Facebook’s photo storage [BEA10] 
leverages the observation that the permissions of images 
are largely the same and can be consolidated. However, 

these mechanisms are tailored for very homogeneous 
data types. With different ways to form composite files, 
the CFFS can work with subfiles with more diverse 
content and access semantics.  

Prefetching: While a large body of work can be 
found to improve prefetching, perhaps C-Miner [LI04] is 
closest to our work. In particular, C-Miner applied 
frequent-sequence mining at the block level to optimize 
the layout of the file and metadata blocks and improve 
prefetching. However, the CFFS reduces the number of 
frequently accessed metadata blocks and avoids the need 
for a large table to map logical to physical blocks. In 
addition, our file-system-level mining deals with 
significantly fewer objects and associated overheads. 
DiskSeen [DIN07] incorporates the knowledge of disk 
layout to improve prefetching, and the prefetching can 
cross file and metadata boundaries. The CFFS 
proactively reduces the number of physical metadata 
items and alters the storage layout to promote sequential 
prefetching. Soundararajan et al. [2008] observed that by 
passing high-level execution contexts (e.g., thread, 
application ID) to the block layer, the resulting data 
mining can generate prefetching rules with longer runs 
under concurrent workloads. Since the CFFS performs 
data mining at the file-system level, we can use PIDs and 
IP addresses to detangle concurrent file references. 
Nevertheless, the CFFS’s focus on altering the mapping 
of logical files to their physical representations, and it 
can adopt various mining algorithms to consolidate 
metadata and improve storage layouts. 

7. Conclusions 
We have presented the design, implementation, and 
evaluation of a composite-file file system, which 
explores the many-to-one mapping of logical files and 
metadata. The CFFS can be configured differently to 
identify files that are frequently accessed together, and it 
can consolidate their metadata. The results show up to a 
27% performance improvement under two real-world 
workloads. The CFFS experience shows that the 
approach of decoupling the one-to-one mapping of files 
and metadata is promising and can lead to many new 
optimization opportunities. 
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Abstract
Existing storage stacks are top-heavy and expect little
from block storage. As a result, new high-level storage
abstractions – and new designs for existing abstractions
– are difficult to realize, requiring developers to imple-
ment from scratch complex functionality such as failure
atomicity and fine-grained concurrency control. In this
paper, we argue that pushing transactional isolation into
the block store (in addition to atomicity and durability) is
both viable and broadly useful, resulting in simpler high-
level storage systems that provide strong semantics with-
out sacrificing performance. We present Isotope, a new
block store that supports ACID transactions over block
reads and writes. Internally, Isotope uses a new multi-
version concurrency control protocol that exploits fine-
grained, sub-block parallelism in workloads and offers
both strict serializability and snapshot isolation guaran-
tees. We implemented several high-level storage systems
over Isotope, including two key-value stores that imple-
ment the LevelDB API over a hashtable and B-tree, re-
spectively, and a POSIX filesystem. We show that Iso-
tope’s block-level transactions enable systems that are
simple (100s of lines of code), robust (i.e., providing
ACID guarantees), and fast (e.g., 415 MB/s for random
file writes). We also show that these systems can be com-
posed using Isotope, providing applications with transac-
tions across different high-level constructs such as files,
directories and key-value pairs.

1 Introduction
With the advent of multi-core machines, storage systems
such as filesystems, key-value stores, graph stores and
databases are increasingly parallelized over dozens of
cores. Such systems run directly over raw block stor-
age but assume very little about its interface and seman-
tics; usually, the only expectations from the block store
are durability and single-operation, single-block lineariz-
ability. As a result, each system implements complex
code to layer high-level semantics such as atomicity and
isolation over the simple block address space. While
multiple systems have implemented transactional atom-
icity within the block store [18, 24, 46, 6, 19], concur-
rency control has traditionally been delegated to the stor-
age system above the block store.

In this paper, we propose the abstraction of a transac-
tional block store that provides isolation in addition to

atomicity and durability. A number of factors make iso-
lation a prime candidate for demotion down the stack.

1) Isolation is general; since practically every storage
system has to ensure safety in the face of concur-
rent accesses, an isolation mechanism implemented
within the block layer is broadly useful.

2) Isolation is hard, especially for storage systems that
need to integrate fine-grained concurrency control
with coarse-grained durability and atomicity mech-
anisms (e.g., see ARIES [40]); accordingly, it is bet-
ter provided via a single, high-quality implementa-
tion within the block layer.

3) Block-level transactions allow storage systems
to effortlessly provide end-user applications with
transactions over high-level constructs such as files
or key-value pairs.

4) Block-level transactions are oblivious to software
boundaries at higher levels of the stack, and can
seamlessly span multiple layers, libraries, threads,
processes, and interfaces. For example, a single
transaction can encapsulate an end application’s ac-
cesses to an in-process key-value store, an in-kernel
filesystem, and an out-of-process graph store.

5) Finally, multiversion concurrency control
(MVCC) [17] provides superior performance
and liveness in many cases but is particularly hard
to implement for storage systems since it requires
them to maintain multiversioned state; in contrast,
many block stores (e.g., log-structured designs) are
already internally multiversioned.

Block-level isolation is enabled and necessitated by re-
cent trends in storage. Block stores have evolved over
time. They are increasingly implemented via a combi-
nation of host-side software and device firmware [9, 3];
they incorporate multiple, heterogeneous physical de-
vices under a single address space [59, 56]; they lever-
age new NVRAM technologies to store indirection meta-
data; and they provide sophisticated functionality such
as virtualization [9, 61], tiering [9], deduplication and
wear-leveling. Unfortunately, storage systems such as
filesystems continue to assume minimum functionality
from the block store, resulting in redundant, complex,
and inefficient stacks where layers constantly tussle with
each other [61]. A second trend that argues for push-
ing functionality from the filesystem to a lower layer
is the increasing importance of alternative abstractions
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that can be implemented directly over block storage,
such as graphs, key-value pairs [8], tables, caches [53],
tracts [42], byte-addressable [14] and write-once [15] ad-
dress spaces, etc.

To illustrate the viability and benefits of block-level
isolation, we built Isotope, a transactional block store
that provides isolation (with a choice of strict serializ-
ability or snapshot isolation) in addition to atomicity and
durability. Isotope is implemented as an in-kernel soft-
ware module running over commodity hardware, expos-
ing a conventional block read/write interface augmented
with beginTX/endTX IOCTLs to demarcate transactions.
Transactions execute speculatively and are validated by
Isotope on endTX by checking for conflicts. To minimize
the possibility of conflict-related aborts, applications can
provide information to Isotope about which sub-parts of
each 4KB block are read or written, allowing Isotope to
perform conflict detection at sub-block granularity.

Internally, Isotope uses an in-memory multiversion in-
dex over a persistent log to provide each transaction with
a consistent, point-in-time snapshot of a block address
space. Reads within a transaction execute against this
snapshot, while writes are buffered in RAM by Isotope.
When endTX is called, Isotope uses a new MVCC com-
mit protocol to determine if the transaction commits or
aborts. The commit/abort decision is a function of the
timestamp-ordered stream of recently proposed transac-
tions, as opposed to the multiversion index; as a re-
sult, the protocol supports arbitrarily fine-grained con-
flict detection without requiring a corresponding increase
in the size of the index. When transactions commit, their
buffered writes are flushed to the log, which is imple-
mented on an array of physical drives [56], and reflected
in the multiversion index. Importantly, aborted transac-
tions do not result in any write I/O to persistent storage.

Storage systems built over Isotope are simple, state-
less, shim layers that focus on mapping some variable-
sized abstraction – such as files, tables, graphs, and key-
value pairs – to a fixed-size block API. We describe sev-
eral such systems in this paper, including a key-value
store based on a hashtable index, one based on a B-tree,
and a POSIX user-space filesystem. These systems do
not have to implement their own fine-grained locking for
concurrency control and logging for failure atomicity.
They can expose transactions to end applications with-
out requiring any extra code. Storage systems that reside
on different partitions of an Isotope volume can be com-
posed with transactions into larger end applications.

Block-level isolation does have its limitations. Stor-
age systems built over Isotope cannot share arbitrary, in-
memory soft state such as read caches across transaction
boundaries, since it is difficult to update such state atom-
ically based on the outcome of a transaction. Instead,
they rely on block-level caching in Isotope by provid-

ing hints about which blocks to cache. We found this
approach well-suited for both the filesystem application
(which cached inode blocks, indirection blocks and al-
location maps) and the key-value stores (which cached
their index data structures). In addition, information is
invariably lost when functionality is implemented at a
lower level of the stack: Isotope cannot leverage prop-
erties such as commutativity and idempotence while de-
tecting conflicts.

This paper makes the following contributions:

• We revisit the end-to-end argument for storage
stacks with respect to transactional isolation, in the
context of modern hardware and applications.

• We propose the abstraction of a fully transactional
block store that provides isolation, atomicity and
durability. While others have explored block-level
transactional atomicity [18, 24, 46, 19], this is the
first proposal for block-level transactional isolation.

• We realize this abstraction in a system called Iso-
tope via a new MVCC protocol. We show that Iso-
tope exploits sub-block concurrency in workloads
to provide a high commit rate for transactions and
high I/O throughput.

• We describe storage systems built using Isotope
transactions – two key-value stores and a filesystem
– and show that they are simple, fast, and robust,
as well as composable via Isotope transactions into
larger end applications.

2 Motivation
Block-level isolation is an idea whose time has come.
In the 90s, the authors of Rio Vista (a system that pro-
vided atomic transactions over a persistent memory ab-
straction) wrote in [36]: “We believe features such as se-
rializability are better handled by higher levels of soft-
ware... adopting any concurrency control scheme would
penalize the majority of applications, which are single-
threaded and do not need locking.” Today, applications
run on dozens of cores and are multi-threaded by default;
isolation is a universal need, not a niche feature.

Isolation is simply the latest addition to a long list of
features provided by modern block stores: caching, tier-
ing, mapping, virtualization, deduplication, and atomic-
ity. This explosion of features has been triggered partly
by the emergence of software-based block layers, rang-
ing from flash FTLs [3] to virtualized volume man-
agers [9]. In addition, the block-level indirection nec-
essary for many of these features has been made prac-
tical and inexpensive by hardware advances in the last
decade. In the past, smart block devices such as HP Au-
toRAID [65] were restricted to enterprise settings due
to their reliance on battery-backed RAM; today, SSDs
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routinely implement indirection in FTLs, using super-
capacitors to flush metadata and data on a power fail-
ure. Software block stores in turn can store metadata on
these SSDs, on raw flash, or on derivatives such as flash-
backed RAM [34] and Auto-Commit Memory [7].

What about the end-to-end argument? We argue
that block-level isolation passes the litmus test imposed
by the end-to-end principle [49] for pushing functional-
ity down the stack: it is broadly useful, efficiently im-
plementable at a lower layer of the stack with negligible
performance overhead, and leverages machinery that al-
ready exists at that lower layer. The argument regarding
utility is obvious: pushing functionality down the stack
is particularly useful when it is general enough to be used
by the majority of applications, which is undeniably the
case for isolation or concurrency control. However, the
other motivations for a transactional block store require
some justification:

Isolation is hard. Storage systems typically imple-
ment pessimistic concurrency control via locks, open-
ing the door to a wide range of aberrant behavior such
as deadlocks and livelocks. This problem is exacerbated
when developers attempt to extract more parallelism via
fine-grained locks, and when these locks interact with
coarse-grained failure atomicity and durability mecha-
nisms [40]. Transactions can provide a simpler pro-
gramming model that supplies isolation, atomicity and
durability via a single abstraction. Additionally, trans-
actions decouple the policy of isolation – as expressed
through beginTX/endTX calls – from the concurrency
control mechanism used to implement it under the hood.

Isolation is harder when exposed to end applications.
Storage systems often provide concurrency control APIs
over their high-level storage abstractions; for example,
NTFS offers transactions over files, while Linux provides
file-level locking. Unfortunately, these high-level con-
currency control primitives often have complex, weak-
ened, and idiosyncratic semantics [44]; for instance,
NTFS provides transactional isolation for accesses to the
same file, but not for directory modifications, while a
Linux fcntl lock on a file is released when any file de-
scriptor for that file is closed by a process [1]. The com-
plex semantics are typically a reflection of a complex im-
plementation, which has to operate over high-level con-
structs such as files and directories. In addition, compos-
ability is challenging if each storage system implements
isolation independently: for example, it is impossible to
do a transaction over an NTFS file and a Berkeley DB
key-value pair.

Isolation is even harder when multiversion concur-
rency control is required. In many cases, pessimistic
concurrency control is slow and prone to liveness bugs;
for example, when locks are exposed to end applications
directly or via a transactional interface, the application

/*** Transaction API ***/
int beginTX();
int endTX();
int abortTX();
//POSIX read/write commands
/*** Optional API ***/
//release ongoing transaction and return handle
int releaseTX();
//take over a released transaction
int takeoverTX(int tx_handle);
//mark byte range accessed by last read/write
int mark_accessed(off_t blknum, int start, int size);
//request caching for blocks
int please_cache(off_t blknum);

Figure 1: The Isotope API.

could hang while holding a lock. Optimistic concur-
rency control [35] works well in this case, ensuring that
other transactions can proceed without waiting for the
hung process. Multiversion concurrency control works
even better, providing transactions with stable, consis-
tent snapshots (a key property for arbitrary applications
that can crash if exposed to inconsistent snapshots [31]);
allowing read-only transactions to always commit [17];
and enabling weaker but more performant isolation lev-
els such as snapshot isolation [16].

However, switching to multiversion concurrency con-
trol can be difficult for storage systems due to its inherent
need for multiversion state. High-level storage systems
are not always intrinsically multiversioned (with notable
exceptions such as WAFL [33] and other copy-on-write
filesystems), making it difficult for developers to switch
from pessimistic locking to a multiversion concurrency
control scheme. Multiversioning can be particularly dif-
ficult to implement for complex data structures used by
storage systems such as B-trees, requiring mechanisms
such as tombstones [26, 48].

In contrast, multiversioning is relatively easy to imple-
ment over the static address space provided by a block
store (for example, no tombstones are required since
addresses can never be ‘deleted’). Additionally, many
block stores are already multiversioned in order to ob-
tain write sequentiality: examples include log-structured
disk stores, shingled drives [11] and SSDs.

3 The Isotope API
The basic Isotope API is shown in Figure 1: applications
can use standard POSIX calls to issue reads and writes
to 4KB blocks, bookended by beginTX/endTX calls. The
beginTX call establishes a snapshot; all reads within the
transaction are served from that snapshot. Writes within
the transaction are speculative. Each transaction can
view its own writes, but the writes are not made visi-
ble to other concurrent transactions until the transaction
commits. The endTX call returns true if the transaction
commits, and false otherwise. The abortTX allows the
application to explicitly abort the transaction. The appli-
cation can choose one of two isolation levels on startup:
strict serializability or snapshot isolation.

3



26 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

The Isotope API implicitly associates transaction IDs
with user-space threads, instead of augmenting each call
signature in the API with an explicit transaction ID that
the application supplies. We took this route to allow ap-
plications to use the existing, highly optimized POSIX
calls to read and write data to the block store. The con-
trol API for starting, committing and aborting transac-
tions is implemented via IOCTLs. To allow transactions
to execute across different threads or processes, Isotope
provides additional APIs via IOCTLs: releaseTX discon-
nects the association between the current thread and the
transaction, and returns a temporary transaction handle.
A different thread can call takeoverTX with this handle
to associate itself with the transaction.

Isotope exposes two other optional calls via IOCTLs.
After reading or writing a 4KB block within a transac-
tion, applications can call mark accessed to explicitly
specify the accessed byte range within the block. This
information is key for fine-grained conflict detection; for
example, a filesystem might mark a single inode within
an inode block, or a single byte within a data allocation
bitmap. Note that this information cannot be inferred im-
plicitly by comparing the old and new values of the 4KB
block; the application might have overwritten parts of the
block without changing any bits. The second optional
call is please cache, which lets the application request
Isotope to cache specific blocks in RAM; we discuss this
call in detail later in the paper. Figure 2 shows a snippet
of application code that uses the Isotope API (the setattr
function from a filesystem).

If a read or write is issued outside a transaction, it is
treated as a singleton transaction. In effect, Isotope be-
haves like a conventional block device if the reads and
writes issued to it are all non-transactional. In addi-
tion, Isotope can preemptively abort transactions to avoid
buggy or malicious applications from hoarding resources
within the storage subsystem. When a transaction is pre-
emptively aborted, any reads, writes, or control calls is-
sued within it will return error codes, except for endTX,
which will return false, and abortTX.

Transactions can be nested – i.e., a beginTX/endTX
pair can have other pairs nested within it – with the sim-
ple semantics that the internal transactions are ignored.
A nested beginTX does not establish a new snapshot,
and a nested endTX always succeeds without changing
the persistent state of the system. A nested abortTX
causes any further activity in the transaction to return
error codes until all the enclosing abortTX/endTX have
been called. This behavior is important for allowing stor-
age systems to expose transactions to end-user applica-
tions. In the example of the filesystem, if an end-user
application invokes beginTX (either directly on Isotope
or through a filesystem-provided API) before calling the
setattr function in Figure 2 multiple times, the internal

isofs_inode_num ino;
unsigned char *buf;
//allocate buf, set ino to parameter
...
int blknum = inode_to_block(ino);
txbegin:
beginTX();
if(!read(blknum, buf)){

abortTX();
return EIO;

}
mark_accessed(blknum, off, sizeof(inode));
//update attributes
...
if(!write(blknum, buf)){

abortTX();
return EIO;

}
mark_accessed(blknum, off, sizeof(inode));
if(!endTX()) goto txbegin;

Figure 2: Example application: setattr code for a filesys-
tem built over Isotope.

transactions within each setattr call are ignored and the
entire ensemble of operations will commit or abort.

3.1 Composability
As stated earlier, a primary benefit of a transactional
block store is its obliviousness to the structure of the
software stack running above it, which can range from
a single-threaded application to a composition of multi-
threaded application code, library storage systems, out-
of-process daemons and kernel modules. The Isotope
API is designed to allow block-level transactions to span
arbitrary compositions of different types of software
modules. We describe some of these composition pat-
terns in the context of a simple photo storage application
called ImgStore, which stores photos and their associated
metadata in a key-value store.

In the simplest case, ImgStore can store images and
various kinds of metadata as key-value pairs in IsoHT,
which in turn is built over a Isotope volume using trans-
actions. Here, a single transaction-oblivious application
(ImgStore) runs over a single transaction-aware library-
based storage system (IsoHT).
Cross-Layer: ImgStore may want to atomically update
multiple key-value pairs in IsoHT; for example, when a
user is tagged in a photo, ImgStore may want to update
a photo-to-user mapping as well as a user-to-photo map-
ping, stored under two different keys. To do so, Img-
Store can encapsulate calls to IsoHT within Isotope be-
ginTX/endTX calls, leveraging nested transactions.
Cross-Thread: In the simplest case, ImgStore executes
each transaction within a single thread. However, if Img-
Store is built using an event-driven library that requires
transactions to execute across different threads, it can use
the releaseTX/takeoverTX calls.
Cross-Library: ImgStore may find that IsoHT works
well for certain kinds of accesses (e.g., retrieving a spe-
cific image), but not for others such as range queries
(e.g., finding photos taken between March 4 and May
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Figure 3: Isotope consists of (A) a timestamp counter,
(B) a multiversion index, (C) a write buffer, (D) a deci-
sion algorithm, and (E) a persistent log.

10, 2015). Accordingly, it may want to spread its state
across two different library key-value stores, one based
on a hashtable (IsoHT) and another on a B-tree (IsoBT)
for efficient range queries. When a photo is added to the
system, ImgStore can transactionally call put operations
on both stores. This requires the key-value stores to run
over different partitions on the same Isotope volume.
Cross-Process: For various reasons, ImgStore may want
to run IsoHT in a separate process and access it via an
IPC mechanism; for example, to share it with other ap-
plications on the same machine, or to isolate failures in
different codebases. To do so, ImgStore has to call re-
leaseTX and pass the returned transaction handle via IPC
to IsoHT, which then calls takeoverTX. This requires
IsoHT to expose a transaction-aware IPC interface for
calls that occur within a transactional context.

4 Design and Implementation
Figure 3 shows the major components of the Isotope de-
sign. Isotope internally implements an in-memory mul-
tiversion index (B in the figure) over a persistent log (E).
Versioning is provided by a timestamp counter (A) which
determines the snapshot seen by a transaction as well as
its commit timestamp. This commit timestamp is used
by a decision algorithm (D) to determine if the transac-
tion commits or not. Writes issued within a transaction
are buffered (C) during its execution, and flushed to the
log if the transaction commits. We now describe the in-
teraction of these components.

When the application calls beginTX, Isotope creates
an in-memory intention record for the speculative trans-
action: a simple data structure with a start timestamp and
a read/write-set. Each entry in the read/write-set consists
of a block address, a bitmap that tracks the accessed sta-
tus of smaller fixed-size chunks or fragments within the
block (by default, the fragment size is 16 bytes, resulting
in a 256-bit bitmap for each 4KB block), and an addi-
tional 4KB payload only in the write-set. These bitmaps
are never written persistently and are only maintained in-

memory for currently executing transactions. After cre-
ating the intention record, the beginTX call sets its start
timestamp to the current value of the timestamp counter
(A in Figure 3) without incrementing it.

Until endTX is called, the transaction executes specu-
latively against the (potentially stale) snapshot, without
any effect on the shared or persistent state of the sys-
tem. Writes update the write-set and are buffered in-
memory (C in Figure 3) without issuing any I/O. A trans-
action can read its own buffered writes, but all other reads
within the transaction are served from the snapshot cor-
responding to the start timestamp using the multiversion
index (B in Figure 3). The mark accessed call mod-
ifies the bitmap for a previously read or written block
to indicate which bits the application actually touched.
Multiple mark accessed calls have a cumulative effect
on the bitmap. At any point, the transaction can be pre-
emptively aborted by Isotope simply by discarding its
intention record and buffered writes. Subsequent reads,
writes, and endTX calls will be unable to find the record
and return an error code to the application.

All the action happens on the endTX call, which con-
sists of two distinct phases: deciding the commit/abort
status of the transaction, and applying the transaction (if
it commits) to the state of the logical address space. Re-
gardless of how it performs these two phases, the first
action taken by endTX is to assign the transaction a com-
mit timestamp by reading and incrementing the global
counter. The commit timestamp of the transaction is used
to make the commit decision, and is also used as the ver-
sion number for all the writes within the transaction if it
commits. We use the terms timestamp and version num-
ber interchangeably in the following text.

4.1 Deciding Transactions
To determine whether the transaction commits or aborts,
endTX must detect the existence of conflicting transac-
tions. The isolation guarantee provided – strict serializ-
ability or snapshot isolation – depends on what consti-
tutes a conflicting transaction. We first consider a simple
strawman scheme that provides strict serializability and
implements conflict detection as a function of the multi-
version index. Here, transactions are processed in com-
mit timestamp order, and for each transaction the multi-
version index is consulted to check if any of the logical
blocks in its read-set has a version number greater than
the current transaction’s start timestamp. In other words,
we check whether any of the blocks read by the transac-
tion has been updated since it was read.

This scheme is simple, but suffers from a major draw-
back: the granularity of the multiversion index has to
match the granularity of conflict detection. For exam-
ple, if we want to check for conflicts at 16-byte grain, the
index has to track version numbers at 16-byte grain as
well; this blows up the size of the in-memory index by
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Figure 4: Conflict detection under snapshot isolation: a
transaction commits if no other committed transaction in
its conflict window has an overlapping write-set.

256X compared to a conventional block-granular index.
As a result, this scheme is not well-suited for fine-grained
conflict detection.

To perform fine-grained conflict detection while
avoiding this blow-up in the size of the index, Isotope
instead implements conflict detection as a function over
the temporal stream of prior transactions (see Figure 4).
Concretely, each transaction has a conflict window of
prior transactions between its start timestamp and its
commit timestamp.
• For strict serializability, the transaction T aborts if

any committed transaction in its conflict window
modified an address that T read; else, T commits.

• For snapshot isolation, the transaction T aborts if
any committed transaction in its conflict window
modified an address that T wrote; else, T commits.

In either case, the commit/abort status of a transaction
is a function of a window of transactions immediately
preceding it in commit timestamp order.

When endTX is called on T , a pointer to its intention
record is inserted into the slot corresponding to its com-
mit timestamp in an in-memory array. Since the counter
assigns contiguous timestamps, this array has no holes;
each slot is eventually occupied by a transaction. At this
point, we do not yet know the commit/abort status of T
and have not issued any write I/O, but we have a start
timestamp and a commit timestamp for it. Each slot is
guarded by its own lock.

To decide if T commits or aborts, we simply look at
its conflict window of transactions in the in-memory ar-
ray (i.e., the transactions between its start and commit
timestamps). We can decide T ’s status once all these
transactions have decided. T commits if each transaction
in the window either aborts or has no overlap between
its read/write-set and T ’s read/write-set (depending on
the transactional semantics). Since each read/write-set
stores fine-grained information about which fragments of
the block are accessed, this scheme provides fine-grained

conflict detection without increasing the size of the mul-
tiversion index.

Defining the commit/abort decision for a transaction
as a function of other transactions is a strategy as old
as optimistic concurrency control itself [35], but choos-
ing an appropriate implementation is non-trivial. Like
us, Bernstein et al. [48] formulate the commit/abort de-
cision for distributed transactions in the Hyder system
as a function of a conflict window over a totally ordered
stream of transaction intentions. Unlike us, they explic-
itly make a choice to use the spatial state of the system
(i.e., the index) to decide transactions. A number of fac-
tors drive our choice in the opposite direction: we need
to support writes at arbitrary granularity (e.g., an inode)
without increasing index size; our intention log is a lo-
cal in-memory array and not distributed or shared across
the network, drastically reducing the size of the conflict
window; and checking for conflicts using read/write-sets
is easy since our index is a simple address space.

4.2 Applying Transactions
If the outcome of the decision phase is commit, endTX
proceeds to apply the transaction to the logical address
space. The first step in this process is to append the
writes within the transaction to the persistent log. This
step can be executed in parallel for multiple transactions,
as soon as each one’s decision is known, since the ex-
istence and order of writes on the log signifies nothing:
the multiversion index still points to older entries in the
log. The second step involves changing the multiversion
index to point to the new entries. Once the index has
been changed, the transaction can be acknowledged and
its effects are visible.

One complication is that this protocol introduces a
lost update anomaly. Consider a transaction that reads
a block (say an allocation bitmap in a filesystem), exam-
ines and changes the first bit, and writes it back. A sec-
ond transaction reads the same block concurrently, ex-
amines and changes the last bit, and writes it back. Our
conflict detection scheme will correctly allow both trans-
actions to commit. However, each transaction will write
its own version of the 4KB bitmap, omitting the other’s
modification; as a result, the transaction with the higher
timestamp will destroy the earlier transaction’s modifica-
tion. To avoid such lost updates, the endTX call performs
an additional step for each transaction before appending
its buffered writes to the log. Once it knows that the cur-
rent transaction can commit, it scans the conflict window
and merges updates made by prior committed transac-
tions to the blocks in its write-set.

4.3 Implementation Details
Isotope is implemented as an in-kernel software module
in Linux 2.6.38; specifically, as a device mapper that ex-
poses multiple physical block devices as a single virtual
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disk, at the same level of the stack as software RAID.
Below, we discuss the details of this implementation.
Log implementation: Isotope implements the log (i.e.,
E in Figure 3) over a conventional address space with
a counter marking the tail (and additional bookkeeping
information for garbage collection, which we discuss
shortly). From a correctness and functionality stand-
point, Isotope is agnostic to how this address space is re-
alized. For good performance, it requires an implementa-
tion that works well for a logging workload where writes
are concentrated at the tail, while reads and garbage col-
lection can occur at random locations in the body. A
naive solution is to use a single physical disk (or a RAID-
0 or RAID-10 array of disks), but garbage collection ac-
tivity can hurt performance significantly by randomizing
the disk arm. Replacing the disks with SSDs increases
the cost-to-capacity ratio of the array without entirely
eliminating the performance problem [58].

As a result, we use a design where a log is chained
across multiple disks or SSDs (similar to Gecko [56]).
Chaining the log across drives ensures that garbage col-
lection – which occurs in the body of the log/chain – is
separated from the first-class writes arriving at the tail
drive of the log/chain. In addition, a commodity SSD
is used as a read cache with an affinity for the tail drive
of the chain, preventing application reads from disrupt-
ing write sequentiality at the tail drive. In essence, this
design ‘collars’ the throughput of the log, pegging write
throughput to the speed of a single drive, but simultane-
ously eliminating the throughput troughs caused by con-
current garbage collection and read activity.
Garbage collection (GC): Compared to conventional
log-structured stores, GC is slightly complicated in Iso-
tope by the need to maintain older versions of blocks.
Isotope tracks the oldest start timestamp across all on-
going transactions and makes a best-effort attempt to
not garbage collect versions newer than this timestamp.
In the worst case, any non-current versions can be dis-
carded without compromising safety, by first preemp-
tively aborting any transactions reading from them. The
application can simply retry its transactions, obtaining a
new, current snapshot. This behavior is particularly use-
ful for dealing with the effects of rogue transactions that
are never terminated by the application. The alternative,
which we did not implement, is to set a flag that pre-
serves a running transaction’s snapshot by blocking new
writes if the log runs out of space; this may be required
if it’s more important for a long-running transaction to
finish (e.g., if it’s a critical backup) than for the system
to be online for writes.
Caching: The please cache call in Isotope allows the ap-
plication to mark the blocks it wants cached in RAM. To
implement caching, Isotope annotates the multiversion
index with pointers to cached copies of block versions.

This call is merely a hint and provides no guarantees to
the application. In practice, our implementation uses a
simple LRU scheme to cache a subset of the blocks if the
application requests caching indiscriminately.
Index persistence: Thus far, we have described the mul-
tiversion index as an in-memory data structure pointing
to entries on the log. Changes to the index have to be
made persistent so that the state of the system can be re-
constructed on failures. To obtain persistence and failure
atomicity for these changes, we use a metadata log. The
size of this log can be limited via periodic checkpoints.

A simple option is to store the metadata log on battery-
backed RAM, or on newer technologies such as PCM or
flash-backed RAM (e.g., Fusion-io’s AutoCommit Mem-
ory [7]). In the absence of special hardware on our ex-
perimental testbed, we instead used a commodity SSD.
Each transaction’s description in the metadata log is quite
compact (i.e., the logical block address and the physical
log position of each write in it, and its commit times-
tamp). To avoid the slowdown and flash wear-out in-
duced by logging each transaction separately as a syn-
chronous page write, we batch multiple committed trans-
actions together [25], delaying the final step of modify-
ing the multiversion index and acknowledging the trans-
action to the application. We do not turn off the write
cache on the SSD, relying on its ability to flush data on
power failures using supercapacitors.
Memory overhead: A primary source of memory over-
head in Isotope is the multiversion index. A single-
version index that maps a 2TB logical address space to
an 4TB physical address space can be implemented as a
simple array that requires 2GB of RAM (i.e., half a bil-
lion 4-byte entries), which can be easily maintained in
RAM on modern machines. Associating each address
with a version (without supporting access to prior ver-
sions) doubles the space requirement to 4GB (assum-
ing 4-byte timestamps), which is still feasible. However,
multiversioned indices that allow access to past versions
are more expensive, due to the fact that multiple ver-
sions need to be stored, and because a more complex
data structure is required instead of an array with fixed-
size values. These concerns are mitigated by the fact that
Isotope is not designed to be a fully-fledged multiversion
store; it only stores versions from the recent past, corre-
sponding to the snapshots seen by executing transactions.

Accordingly, Isotope maintains a pair of indices: a
single-version index in the form of a simple array and
a multiversion index implemented as a hashtable. Each
entry in the single-version index either contains a valid
physical address if the block has only one valid, non-
GC’ed version, a null value if the block has never been
written, or a constant indicating the existence of multiple
versions. If a transaction issues a read and encounters
this constant, the multiversion index is consulted. An ad-
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dress is moved from the single-version index to the mul-
tiversion index when it goes from having one version to
two; it is moved back to the single-version index when
its older version(s) are garbage collected (as described
earlier in this section).

The multiversion index consists of a hashtable that
maps each logical address to a linked list of its exist-
ing versions, in timestamp order. Each entry contains
forward and backward pointers, the logical address, the
physical address, and the timestamp. A transaction walks
this linked list to find the entry with the highest times-
tamp less than its snapshot timestamp. In addition, the
entry also has a pointer to the in-memory cached copy,
as described earlier. If an address is cached, the first
single-version index is marked as having multiple ver-
sions even if it does not, forcing the transaction to look
at the hashtable index and encounter the cached copy. In
the future, we plan on applying recent work on compact,
concurrent maps [28] to further reduce overhead.
Rogue Transactions: Another source of memory over-
head in Isotope is the buffering of writes issued by in-
progress transactions. Each write adds an entry to the
write-set of the transaction containing the 4KB payload
and a 4K

C bit bitmap, where C is the granularity of con-
flict detection (e.g., with 16-byte detection, the bitmap is
256 bits). Rogue transactions that issue a large number
of writes are a concern, especially since transactions can
be exposed to end-user applications. To handle this, Iso-
tope provides a configuration parameter to set the maxi-
mum number of writes that can be issued by a transaction
(set to 256 by default); beyond this, writes return an er-
ror code. Another parameter sets the maximum number
of outstanding transactions a single process can have in-
flight (also set to 256). Accordingly, the maximum mem-
ory a rogue process can use within Isotope for buffered
writes is roughly 256MB. When a process is killed, its
outstanding transactions are preemptively aborted.

Despite these safeguards, it is still possible for Isotope
to run out of memory if many processes are launched
concurrently and each spams the system with rogue,
never-ending transactions. In the worst case, Isotope can
always relieve memory pressure by preemptively abort-
ing transactions. Another option which we considered is
to flush writes to disk before they are committed; since
the metadata index does not point to them, they won’t
be visible to other transactions. Given that the system is
only expected to run out of memory in pathological cases
where issuing I/O might worsen the situation, we didn’t
implement this scheme.

Note that the in-memory array that Isotope uses for
conflict detection is not a major source of memory over-
head; pointers to transaction intention records are in-
serted into this array in timestamp order only after the ap-
plication calls endTX, at which point it has relinquished

Application Original Basic APIs Optional APIs
with locks (lines modified) (lines added)

IsoHT 591 591 (15) 617 (26)
IsoBT 1,229 1,229 (12) 1,246 (17)
IsoFS 997 997 (19) 1,022 (25)

Table 1: Lines of code for Isotope storage systems.

control to Isotope and cannot prolong the transaction. As
a result, the lifetime of an entry in this array is short and
limited to the duration of the endTX call.

5 Isotope Applications
To illustrate the usability and performance of Isotope, we
built four applications using Isotope transactions: IsoHT,
a key-value store built over a persistent hashtable; IsoBT,
a key-value store built over a persistent B-tree; IsoFS,
a user-space POSIX filesystem; and ImgStore, an im-
age storage service that stores images in IsoHT, and a
secondary index in IsoBT. These applications implement
each call in their respective public APIs by following a
simple template that wraps the entire function in a sin-
gle transaction, with a retry loop in case the transaction
aborts due to a conflict (see Figure 2).

5.1 Transactional Key-Value Stores
Library-based or ‘embedded’ key-value stores (such as
LevelDB or Berkeley DB) are typically built over per-
sistent, on-disk data structures. We built two key-value
stores called IsoHT and IsoBT, implemented over an
on-disk hashtable and B-tree data structure, respectively.
Both key-value stores support basic put/get operations on
key-value pairs, while IsoBT additionally supports range
queries. Each API call is implemented via a single trans-
action of block reads and writes to an Isotope volume.

We implemented IsoHT and IsoBT in three stages.
First, we wrote code without Isotope transactions, us-
ing a global lock to guard the entire hashtable or B-tree.
The resulting key-value stores are functional but slow,
since all accesses are serialized by the single lock. Fur-
ther, they do not provide failure atomicity: a crash in the
middle of an operation can catastrophically violate data
structure integrity.

In the second stage, we simply replaced the ac-
quisitions/releases on the global lock with Isotope be-
ginTX/endTX/ abortTX calls, without changing the over-
all number of lines of code. With this change, the
key-value stores provide both fine-grained concurrency
control (at block granularity) and failure atomicity. Fi-
nally, we added optional mark accessed calls to obtain
sub-block concurrency control, and please cache calls to
cache the data structures (e.g., the nodes of the B-tree,
but not the values pointed to by them). Table 1 reports
on the lines of code (LOC) counts at each stage for the
two key-value stores.
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5.2 Transactional Filesystem
IsoFS is a simple user-level filesystem built over Iso-
tope accessible via FUSE [2], comprising 1K lines of C
code. Its on-disk layout consists of distinct regions for
storing inodes, data, and an allocation bitmap for each.
Each inode has an indirect pointer and a double indirect
pointer, both of which point to pages allocated from the
data region. Each filesystem call (e.g., setattr, lookup,
or unlink) uses a single transaction to access and modify
multiple blocks. The only functionality implemented by
IsoFS is the mapping and allocation of files and direc-
tories to blocks; atomicity, isolation, and durability are
handled by Isotope.

IsoFS is stateless, caching neither data nor metadata
across filesystem calls (i.e., across different transac-
tions). Instead, IsoFS tells Isotope which blocks to cache
in RAM. This idiom turned out to be surprisingly easy to
use in the context of a filesystem; we ask Isotope to cache
all bitmap blocks on startup, each inode block when an
inode within it is allocated, and each data block that’s al-
located as an indirect or double indirect block. Like the
key-value stores, IsoFS was implemented in three stages
and required few extra lines of code to go from a global
lock to using the Isotope API (see Table 1).

IsoFS trivially exposes transactions to end applica-
tions over files and directories. For example, a user might
create a directory, move a file into it, edit the file, and
rename the directory, only to abort the entire transac-
tions and revert the filesystem to its earlier state. One
implementation-related caveat is that we were unable
to expose transactions to end applications of IsoFS via
the FUSE interface, since FUSE decouples application
threading from filesystem threading and does not provide
any facility for explicitly transferring a transaction han-
dle on each call. Accordingly, we can only expose trans-
actions to the end application if IsoFS is used directly as
a library within the application’s process.

5.3 Experience
Composability: As we stated earlier, Isotope-based stor-
age systems are trivially composable: a single transac-
tion can encapsulate calls to IsoFS, IsoHT and IsoBT.
To demonstrate the power of such composability, we
built ImgStore, the image storage application described
in Section 3. ImgStore stores images in IsoHT, using 64-
bit IDs as keys. It then stores a secondary index in IsoBT,
mapping dates to IDs. The implementation of ImgStore
is trivially simple: to add an image, it creates a trans-
action to put the image in IsoHT, and then updates the
secondary index in IsoBT. The result is a storage system
that – in just 148 LOC – provides hashtable-like perfor-
mance for gets while supporting range queries.
Isolation Levels: Isotope provides both strict serializ-
ability and snapshot isolation; our expectation was that
developers would find it difficult to deal with the seman-

tics of the latter. However, our experience with IsoFS,
IsoHT and IsoBT showed otherwise. Snapshot isolation
provides better performance than strict serializability, but
introduces the write skew anomaly [16]: if two concur-
rent transactions read two blocks and each updates one
of the blocks (but not the same one), they will both com-
mit despite not being serializable in any order. The write
skew anomaly is problematic for applications if a trans-
action is expected to maintain an integrity constraint that
includes some block it does not write to (e.g., if the two
blocks in the example have to sum to less than some con-
stant). In the case of the storage systems we built, we did
not encounter these kinds of constraints; for instance, no
particular constraint holds between different bits on an
allocation map. As a result, we found it relatively easy
to reason about and rule out the write skew anomaly.
Randomization: Our initial implementations exhibited
a high abort rate due to deterministic behavior across dif-
ferent transactions. For example, a simple algorithm for
allocating a free page involved getting the first free bit
from the allocation bitmap; as a result, multiple concur-
rent transactions interfered with each other by trying to
allocate the same page. To reduce the abort rate, it was
sufficient to remove the determinism in simple ways; for
example, we assigned each thread a random start offset
into the allocation bitmap.

6 Performance Evaluation
We evaluate Isotope on a machine with an Intel Xeon
CPU with 24 hyper-threaded cores, 24GB RAM, three
10K RPM disks of 600GB each, an 128GB SSD for the
OS and two other 240GB SSDs with SATA interfaces. In
the following experiments, we used two primary config-
urations for Isotope’s persistent log: a three-disk chained
logging instance with a 32GB SSD read cache in front,
and a 2-SSD chained logging instance. In some of the
experiments, we compare against conventional systems
running over RAID-0 configurations of 3 disks and 2
SSDs, respectively. In the chained logging configura-
tions, all writes are logged to the single tail drive, while
reads are mostly served by the other drives (and the SSD
read cache for the disk-based configuration). The perfor-
mance of this logging design under various workloads
and during GC activity has been documented in [56].
In all our experiments, GC is running in the background
and issuing I/Os to the drives in the body of the chain to
compact segments, without disrupting the tail drive.

Our evaluation consists of two parts. First, we fo-
cus on the performance and overhead of Isotope, show-
ing that it exploits fine-grained concurrency in work-
loads and provides high, stable throughput. Second, we
show that Isotope applications – in addition to being sim-
ple and robust – are fast, efficient, and composable into
larger applications.
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Figure 5: Without fine-grained conflict detection, Isotope
performs well under low contention workloads.

6.1 Isotope Performance
To understand how Isotope performs depending on the
concurrency present in the workload, we implemented a
synthetic benchmark. The benchmark executes a sim-
ple type of transaction that reads three randomly chosen
blocks, modifies a random 16-byte segment within each
block (aligned on a 16-byte boundary), and writes them
back. This benchmark performs identically with strict
serializability and snapshot isolation, since the read-set
exactly matches the write-set.

In the following experiments, we executed 64 in-
stances of the micro benchmark concurrently, varying
the size of the address space accessed by the instances to
vary contention. The blocks are chosen from a specific
prefix of the address space, which is a parameter to the
benchmark; the longer this prefix, the bigger the fraction
of the address space accessed by the benchmark, and the
less skewed the workload. The two key metrics of inter-
est are transaction goodput (measured as the number of
successfully committed transactions per second, as well
as the total number of bytes read or written per second
by these transactions) and overall transaction throughput;
their ratio is the commit rate of the system. Each data
point in the following graphs is averaged across three
runs; in all cases, the minimum and the maximum run
were within 10% of the average.

Figure 5 shows the performance of this benchmark
against Isotope without fine-grained conflict detection;
i.e., the benchmark does not issue mark accessed calls
for the 16-byte segments it modifies. On the x-axis,
we increase the fraction of the address space accessed
by the benchmark. On the left y axis, we plot the rate
at which data is read and written by transactions; on
the right y-axis, we plot the number of transactions/sec.
On both disk and SSD, transactional contention cripples
performance on the left part of the graph: even though
the benchmark attempts to commit thousands of transac-
tions/sec, all of them access a small number of blocks,
leading to low goodput. Note that overall transaction
throughput is very high when the commit rate is low:
aborts are cheap and do not result in storage I/O.

Conversely, disk contention hurts performance on the
right side of Figure 5-Left: since the blocks read by
each transaction are distributed widely across the address
space, the 32GB SSD read cache is ineffective in serving
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Figure 6: With fine-grained conflict detection, Isotope
performs well even under high block-level contention.

reads and the disk arm is randomized and seeking con-
stantly. As a result, the system provides very few trans-
actions per second (though with a high commit rate). In
the middle of the graph is a sweet spot where Isotope sat-
urates the disk at roughly 120 MB/s of writes, where the
blocks accessed are concentrated enough for reads to be
cacheable in the SSD (which supplies 120 MB/s of reads,
or 30K 4KB IOPS), while distributed enough for writes
to not trigger frequent conflicts.

We can improve performance on the left side of the
graphs in Figure 5 via fine-grained conflict detection. In
Figure 6, the benchmark issues mark accessed calls to
tell Isotope which 16-byte fragment it is modifying. The
result is high, stable goodput even when all transactions
are accessing a small number of blocks, since there is
enough fragment-level concurrency in the system to en-
sure a high commit rate. Using the same experiment but
with smaller and larger data access and conflict detec-
tion granularities than 16 bytes showed similar trends.
Isotope’s conflict detection was not CPU-intensive: we
observed an average CPU utilization of 5.96% without
fine-grained conflict detection, and 6.17% with it.

6.2 Isotope Application Performance
As described earlier, we implemented two key-value
stores over Isotope: IsoHT using a hashtable index and
IsoBT using a B-tree index, respectively. IsoBT ex-
poses a fully functional LevelDB API to end applica-
tions; IsoHT does the same minus range queries. To eval-
uate these systems, we used the LevelDB benchmark [5]
as well as the YCSB [21] benchmark. We ran the fill-
random, read-random, and delete-random workloads of
the LevelDB benchmark and YCSB workload-A traces
(50% reads and 50% updates following a zipf distribution
on keys). All these experiments are on the 2-SSD config-
uration of Isotope. For comparison, we ran LevelDB on
a RAID-0 array of the two SSDs, in both synchronous
mode (‘LvlDB-s’) and asynchronous mode (‘LvlDB’).
LevelDB was set to use no compression and the default
write cache size of 8MB. For all the workloads, we used
a value size of 8KB and varied the number of threads is-
suing requests from 4 to 128. Results with different value
sizes (from 4KB to 32KB) showed similar trends.

For operations involving writes (Figure 7-(a), (c), and
(d)), IsoHT and IsoBT goodput increases with the num-
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Figure 7: IsoHT and IsoBT outperform LevelDB for data
operations while providing stronger consistency.

ber of threads, but dips slightly beyond 64 threads due to
an increased transaction conflict rate. For the read work-
load (Figure 7-(b)), throughput increases until the un-
derlying SSDs are saturated. Overall, IsoHT has higher
goodput than IsoBT, since it touches fewer metadata
blocks per operation. We ran these experiments with Iso-
tope providing snapshot isolation, since it performed bet-
ter for certain workloads and gave sufficiently strong se-
mantics for building the key-value stores. With strict se-
rializability, for instance, the fill workload showed nearly
identical performance, whereas the delete workload ran
up to 25% slower.

LevelDB’s performance is low for fill operations due
to sorting and multi-level merging (Figure 7-(a)), and its
read performance degrades as the number of concurrent
threads increases because of the CPU contention in the
skip list, cache thrashing, and internal merging opera-
tions (Figure 7-(b)). Still, LevelDB’s delete is very effi-
cient because it only involves appending a small delete
intention record to a log, whereas IsoBT/IsoHT has to
update a full 4KB block per delete (Figure 7-(c)).

The point of this experiment is not to show Iso-
HT/IsoBT is better than LevelDB, which has a different
internal design and is optimized for specific workloads
such as sequential reads and bulk writes. Rather, it shows
that systems built over Isotope with little effort can pro-
vide equivalent or better performance than an existing
system that implements its own concurrency control and
failure atomicity logic.

6.2.1 Composability

To evaluate the composability of Isotope-based storage
systems, we ran the YCSB workload on ImgStore, our
image storage application built over IsoHT and IsoBT.
In our experiments, ImgStore transactionally stored a
16KB payload (corresponding to an image) in IsoHT and
a small date-to-ID mapping in IsoBT. To capture the var-
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Figure 8: YCSB over different compositions of IsoBT
and IsoHT.
ious ways in which Isotope storage systems can be com-
posed (see Section 3), we implemented several versions
of ImgStore: cross-library, where ImgStore accesses the
two key-value stores as in-process libraries, with each
transaction executing within a single user-space thread;
cross-thread, where ImgStore accesses each key-value
store using a separate thread, and requires transactions
to execute across them; and cross-process, where each
key-value store executes within its own process and is
accessed by ImgStore via socket-based IPC. Figure 8
shows the resulting performance for all three versions.
It shows that the cost of the extra takeoverTX/releaseTX
calls required for cross-thread transactions is negligi-
ble. As one might expect, cross-process transactions
are slower due to the extra IPC overhead. Additionally,
ImgStore exhibits less concurrency than IsoHT or IsoBT
(peaking at 32 threads), since each composite transaction
conflicts if either of its constituent transactions conflict.

6.2.2 Filesystem Performance

Next, we compare the end-to-end performance of IsoFS
running over Isotope using the IOZone [4] write/rewrite
benchmark with 8 threads. Each thread writes to its
own file using a 16KB record size until the file size
reaches 256MB; it then rewrites the entire file sequen-
tially; and then rewrites it randomly. We ran this work-
load against IsoFS running over Isotope, which con-
verted each 16KB write into a transaction involving four
4KB Isotope writes, along with metadata writes. We also
ran ext2 and ext3 over Isotope; these issued solitary, non-
transactional reads and writes, which were interpreted by
Isotope as singleton transactions (in effect, Isotope oper-
ated as a conventional log-structured block store, so that
ext2 and ext3 are not penalized for random I/Os). We ran
ext3 in ‘ordered’ mode, where metadata is journaled but
file contents are not.

Figure 9 plots the throughput observed by IOZone:
on disk, IsoFS matches or slightly outperforms ext2 and
ext3, saturating the tail disk on the chain. On SSD, IsoFS
is faster than ext2 and ext3 for initial writes, but is bot-
tlenecked by FUSE on rewrites. When we ran IsoFS di-
rectly using a user-space benchmark that mimics IOZone
(‘IsoFS-lib’), throughput improved to over 415MB/s. A
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secondary point made by this graph is that Isotope does
not slow down applications that do not use its transac-
tional features (the high performance is mainly due to
the underlying logging scheme, but ext2 and ext3 still
saturate disk and SSD for rewrites), satisfying a key con-
dition for pushing functionality down the stack [49].

7 Related Work
The idea of transactional atomicity for multi-block writes
was first proposed in Mime [18], a log-structured storage
system that provided atomic multi-sector writes. Over
the years, multiple other projects have proposed block-
level or page-level atomicity: the Logical Disk [24] in
1993, Stasis [54] in 2006, TxFlash [46] in 2008, and
MARS [19] in 2013. RVM [51] and Rio Vista [36] pro-
posed atomicity over a persistent memory abstraction.
All these systems explicitly stopped short of providing
full transactional semantics, relying on higher layers to
implement isolation. To the best of our knowledge, no
existing single-machine system has implemented trans-
actional isolation at the block level, or indeed any con-
currency control guarantee beyond linearizability.

On the other hand, distributed filesystems have often
relied on the underlying storage layer to provide con-
currency control. Boxwood [37], Sinfonia [12], and
CalvinFS [62] presented simple NFS designs that lever-
aged transactions over distributed implementations of
high-level data structures and a shared address space.
Transaction isolation has been proposed for shared block
storage accessed over a network [13] and for key-value
stores [60]. Isotope can be viewed as an extension of
similar ideas to single-machine, multi-core systems that
does not require consensus or distributed rollback pro-
tocols. Our single-machine IsoFS implementation has
much in common with the Boxwood, Sinfonia, and Calv-
inFS NFS implementations which ran against clusters of
storage servers.

Isotope also fits into a larger body of work on smart
single-machine block devices, starting with Loge [27]
and including HP AutoRAID [65]. Some of this work
has focused on making block devices smarter without
changing the interface [57], while other work has looked
at augmenting the block interface [18, 64, 30], modify-
ing it [67], and even replacing it with an object-based
interface [38]. In a distributed context, Parallax [39]
and Strata [23] provide virtual disks on storage clusters.
A number of filesystems are multiversion, starting with

WAFL [33], and including many others [50, 41, 22]. Un-
derlying these systems is research on multiversion data
structures [26]. Less common are multiversion block
stores such as Clotho [29] and Venti [47].

A number of filesystems have been built over a
full-fledged database. Inversion [43] is a conven-
tional filesystem built over the POSTGRES database,
while Amino [66] is a transactional filesystem (i.e., ex-
posing transactions to users) built over Berkeley DB.
WinFS [10] was built over a relational engine derived
from SQL Server. This route requires storage system de-
velopers to adopt a complex interface – one that does not
match or expose the underlying grain of the hardware –
in order to obtain benefits such as isolation and atomic-
ity. In contrast, Isotope retains the simple block storage
interface while providing isolation and atomicity.

TxOS [45] is a transactional operating system that
provides ACID semantics over syscalls, include file ac-
cesses. In contrast, Isotope is largely OS-agnostic and
can be ported easily to commodity operating systems, or
even implemented under the OS as a hardware device. In
addition, Isotope supports the easy creation of new sys-
tems such as key-value stores and filesystems that run
directly over block storage.

Isotope is also related to the large body of work on
software transactional memory (STM) [55, 32] systems,
which typically provide isolation but not durability or
atomicity. Recent work has leveraged new NVRAM
technologies to add durability to the STM abstraction:
Mnemosyne [63] and NV-Heaps [20] with PCM and
Hathi [52] with commodity SSDs. In contrast, Iso-
tope aims for transactional secondary storage, rather than
transactional main-memory.

8 Conclusion
We described Isotope, a transactional block store that
provides isolation in addition to atomicity and durabil-
ity. We showed that isolation can be implemented ef-
ficiently within the block layer, leveraging the inher-
ent multi-versioning of log-structured block stores and
application-provided hints for fine-grained conflict de-
tection. Isotope-based systems are simple and fast, while
obtaining database-strength guarantees on failure atom-
icity, durability, and consistency. They are also compos-
able, allowing application-initiated transactions to span
multiple storage systems and different abstractions such
as files and key-value pairs.
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Abstract
The increase in high-precision, high-sample-rate

telemetry timeseries poses a problem for existing time-
series databases which can neither cope with the through-
put demands of these streams nor provide the necessary
primitives for effective analysis of them. We present
a novel abstraction for telemetry timeseries data and a
data structure for providing this abstraction: a time-
partitioning version-annotated copy-on-write tree. An
implementation in Go is shown to outperform existing
solutions, demonstrating a throughput of 53 million in-
serted values per second and 119 million queried values
per second on a four-node cluster. The system achieves
a 2.9x compression ratio and satisfies statistical queries
spanning a year of data in under 200ms, as demonstrated
on a year-long production deployment storing 2.1 trillion
data points. The principles and design of this database
are generally applicable to a large variety of timeseries
types and represent a significant advance in the develop-
ment of technology for the Internet of Things.

1 Introduction

A new class of distributed system with unique storage
requirements is becoming increasingly important with
the rise of the Internet of Things. It involves collecting,
distilling and analyzing – in near real-time and histori-
cally – time-correlated telemetry from a large number of
high-precision networked sensors with fairly high sam-
ple rates. This scenario occurs in monitoring the internal
dynamics of electric grids, building systems, industrial
processes, vehicles, structural health, and so on. Often,
it provides situational awareness of complex infrastruc-
ture. It has substantially different characteristics from ei-
ther user-facing focus and click data, which is pervasive
in modern web applications, smart metering data, which
collects 15-minute interval data from many millions of
meters, or one-shot dedicated instrument logging.

We focus on one such source of telemetry – mi-
crosynchophasors, or uPMUs. These are a new gener-
ation of small, comparatively cheap and extremely high-
precision power meters that are to be deployed in the dis-
tribution tier of the electrical grid, possibly in the mil-
lions. In the distributed system shown in Figure 2, each
device produces 12 streams of 120 Hz high-precision
values with timestamps accurate to 100 ns (the limit of
GPS). Motivated by the falling cost of such data sources,
we set out to construct a system supporting more than
1000 of these devices per backing server – more than
1.4 million inserted points per second, and several times
this in expected reads and writes from analytics. Fur-
thermore, this telemetry frequently arrives out of order,
delayed and duplicated. In the face of these character-
istics, the storage system must guarantee the consistency
of not only the raw streams, but all analytics derived from
them. Additionally, fast response times are important for
queries across time scales from years to milliseconds.

These demands exceed the capabilities of current
timeseries data stores. Popular systems, such as
KairosDB [15], OpenTSDB [20] or Druid [7], were de-
signed for complex multi-dimensional data at low sam-
ple rates and, as such, suffer from inadequate through-
put and timestamp resolution for these telemetry streams,
which have comparatively simple data and queries based
on time extents. These databases all advertise reads and
writes of far less than 1 million values per second per
server, often with order-of-arrival and duplication con-
straints, as detailed in Section 2.

As a solution to this problem, a novel, ground-up, use-
inspired time-series database abstraction – BTrDB – was
constructed to provide both higher sustained through-
put for raw inserts and queries, as well as advanced
primitives that accelerate the analysis of the expected 44
quadrillion datapoints per year per server.

The core of this solution is a new abstraction for time
series telemetry data (Section 3) and a data structure
that provides this abstraction: a time-partitioning, multi-
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Figure 1: Locating interesting events in typical uPMU telemetry streams using statistical summaries
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resolution, version-annotated, copy-on-write tree, as de-
tailed in Section 4. A design for a database using this
data structure is presented in Section 5.

An open-source 4709-line Go implementation of
BTrDB demonstrates the simplicity and efficacy of this
method, achieving 53 million inserted values per sec-
ond and 119 million queried values per second on a four
node cluster with the necessary fault-tolerance and con-
sistency guarantees. Furthermore, the novel analytical
primitives allow the navigation of a year worth of data
comprising billions of datapoints (e.g. Figure 1a) to lo-
cate and analyse a sub-second event (e.g. Figure 1b)
using a sequence of statistical queries that complete in
100-200ms, a result not possible with current tools. This
is discussed in Section 6.

2 Related work

Several databases support high-dimensionality time-
series data, including OpenTSDB [20], InfluxDB [12],

KairosDB [15] and Druid [7]. In terms of raw telemetry,
these databases are all limited to millisecond-precision
timestamps. This is insufficient to capture phase angle
samples from uPMUs, which require sub-microsecond-
precision timestamps. While all of these are capable of
storing scalar values, they also support more advanced
“event” data, and this comes at a cost. Druid adver-
tises that “large production clusters” have reached “1M+
events per second” on “tens of thousands of cores.” Pub-
lished results for OpenTSDB show < 1k operations per
second per node [4][10]. MapR has shown OpenTSDB
running on MapR-DB, modified to support batch inserts
and demonstrated 27.5 million inserted values per second
per node (bypassing parts of OpenTSDB) and 375 thou-
sand reads per second per node [28][8]; unfortunately
this performance is with 1 byte values and counter-
derived second-precision timestamps, which somewhat
undermines its utility [27].

A study evaluating OpenTSDB and KairosDB [10]
with real PMU data showed that KairosDB significantly
outperforms OpenTSDB, but only achieves 403,500 in-
serted values per second on a 36 node cluster. KairosDB
gives an example of 133 k inserted values per second [14]
using bulk insert in their documentation. Rabl et. al [24]
performed an extensive benchmark comparing Project
Voldemort [23], Redis [26], HBase [3], Cassandra [2],
MySQL [21] and VoltDB [31][29]. Cassandra exhib-
ited the highest throughput, inserting 230k records per
second on a twelve node cluster. The records used
were large (75 bytes), but even if optimistically nor-
malised to the size of our records (16 bytes) it only
yields roughly 1M inserts per second, or 89K inserts
per second per node. The other five candidates exhib-
ited lower throughput. Datastax [6] performed a simi-
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lar benchmark [9] comparing MongoDB [19], Cassan-
dra [2], HBase [3] and Couchbase [5]. Here too, Cassan-
dra outperformed the competition obtaining 320k insert-
s/sec and 220k reads/sec on a 32 node cluster.

Recently, Facebook’s in-memory Gorilla
database [22] takes a similar approach to BTrDB -
simplifying the data model to improve performance.
Unfortunately, it has second-precision timestamps, does
not permit out-of-order insertion and lacks accelerated
aggregates.

In summary, we could find no databases capable of
handling 1000 uPMUs per server node (1.4 million in-
serts/s per node and 5x that in reads), even without con-
sidering the requirements of the analytics. Even if ex-
isting databases could handle the raw throughput, and
timestamp precision of the telemetry, they lack the abil-
ity to satisfy queries over large ranges of data efficiently.
While many time series databases support aggregate
queries, the computation requires on-the-fly iteration of
the base data (e.g. OpenTSDB, Druid) - untenable at 50
billion samples per year per uPMU. Alternatively, some
timeseries databases offer precomputed aggregates (e.g,
InfluxDB, RespawnDB [4]), accelerating these queries,
but they are unable to guarantee the consistency of the
aggregates when data arrives out of order or is modi-
fied. The mechanisms to guarantee this consistency exist
in most relational databases, but those fare far worse in
terms of throughput.

Thus, we were motivated to investigate a clean slate
design and implementation of a time-series database
with the necessary capabilities – high throughput, fixed-
response-time analytics irrespective of the underlying
data size and eventual consistency in a graph of interde-
pendent analytics despite out of order or duplicate data.
This was approached in an integrated fashion from the
block or file server on up. Our goal was to develop
a multi-resolution storage and query engine for many
higher bandwidth (> 100 Hz) streams that provides the
above functionality essentially “for free”, in that it op-
erates at the full line rate of the underlying network or
storage infrastructure for affordable cluster sizes (< 6
servers).

BTrDB has promising functionality and performance.
On four large EC2 nodes it achieves over 119M queried
values per second (>10GbE line rate) and over 53M in-
serted values per second of 8 byte time and 8 byte value
pairs, while computing statistical aggregates. It returns
results of 2K points summarizing anything from the raw
values (9 ms) to 4 billion points (a year) in 100-250ms.
It does this while maintaining the provenance of all com-
puted values and consistency of a network of streams.
The system storage overhead is negligible, with an all-
included compression ratio of 2.9x – a significant im-
provement on existing compression techniques for syn-

chrophasor data streams.

3 Time Series Data Abstraction

The fundamental abstraction provided by BTrDB is a
consistent, write-once, ordered sequence of time-value
pairs. Each stream is identified by a UUID. In typi-
cal uses, a substantial collection of metadata is associ-
ated with each stream. However, the nature of the meta-
data varies widely amongst uses and many good solu-
tions exist for querying metadata to obtain a collection
of streams. Thus, we separate the lookup (or directory)
function entirely from the time series data store, identi-
fying each stream solely by its UUID. All access is per-
formed on a temporal segment of a version of a stream.
All time stamps are in nanoseconds with no assumptions
on sample regularity.

InsertValues(UUID, [(time, value)]) creates a new
version of a stream with the given collection of
(time,value) pairs inserted. Logically, the stream is main-
tained in time order. Most commonly, points are ap-
pended to the end of the stream, but this cannot be as-
sumed: readings from a device may be delivered to the
store out of order, duplicates may occur, holes may be
backfilled and corrections may be made to old data –
perhaps as a result of recalibration. These situations rou-
tinely occur in real world practice, but are rarely sup-
ported by timeseries databases. In BTrDB, each insertion
of a collection of values creates a new version, leaving
the old version unmodified. This allows new analyses to
be performed on old versions of the data.

The most basic access method, GetRange(UUID,
StartTime, EndTime, Version) → (Version, [(Time,
Value)]) retrieves all the data between two times in a
given version of the stream. The ‘latest’ version can be
indicated, thereby eliminating a call to GetLatestVer-
sion(UUID) → Version to obtain the latest version for a
stream prior to querying a range. The exact version num-
ber is returned along with the data to facilitate a repeat-
able query in future. BTrDB does not provide operations
to resample the raw points in a stream on a particular
schedule or to align raw samples across streams because
performing these manipulations correctly ultimately de-
pends on a semantic model of the data. Such operations
are well supported by mathematical environments, such
as Pandas [17], with appropriate control over interpola-
tion methods and so on.

Although this operation is the only one provided by
most historians, with trillions of points, it is of limited
utility. It is used in the final step after having isolated
an important window or in performing reports, such as
disturbances over the past hour. Analyzing raw streams
in their entirety is generally impractical; for example,
each uPMU produces nearly 50 billion samples per year.
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The following access methods are far more powerful for
broad analytics and for incremental generation of com-
putationally refined streams.

In visualizing or analyzing huge segments of data Get-
StatisticalRange(UUID, StartTime, EndTime, Ver-
sion, Resolution) → (Version, [(Time, Min, Mean,
Max, Count)]) is used to retrieve statistical records be-
tween two times at a given temporal resolution. Each
record covers 2resolution nanoseconds. The start time and
end time are on 2resolution boundaries and result records
are periodic in that time unit; thus summaries are aligned
across streams. Unaligned windows can also be queried,
with a marginal decrease in performance.

GetNearestValue(UUID, Time, Version, Direction)
→ (Version, (Time, Value)) locates the nearest point to a
given time, either forwards or backwards. It is commonly
used to obtain the ‘current’, or most recent to now, value
of a stream of interest.

In practice, raw data streams feed into a graph of dis-
tillation processes in order to clean and filter the raw data
and then combine the refined streams to produce useful
data products, as illustrated in Figure 2. These distillers
fire repeatedly, grab new data and compute output seg-
ments. In the presence of out of order arrival and loss,
without support from the storage engine, it can be com-
plex and costly to determine which input ranges have
changed and which output extents need to be computed,
or recomputed, to maintain consistency throughout the
distillation pipeline.

To support this, ComputeDiff(UUID, FromVersion,
ToVersion, Resolution) → [(StartTime, EndTime)]
provides the time ranges that contain differences between
the given versions. The size of the changeset returned
can be limited by limiting the number of versions be-
tween FromVersion and ToVersion as each version has
a maximum size. Each returned time range will be larger
than 2resolution nanoseconds, allowing the caller to opti-
mize for batch size.

As utilities, DeleteRange(UUID, StartTime, End-
Time): create a new version of the stream with the given
range deleted and Flush(UUID) ensure the given stream
is flushed to replicated storage.

4 Time partitioned tree

To provide the abstraction described above, we use a
time-partitioning copy-on-write version-annotated k-ary
tree. As the primitives API provides queries based on
time extents, the use of a tree that partitions time serves
the role of an index by allowing rapid location of spe-
cific points in time. The base data points are stored in the
leaves of the tree, and the depth of the tree is defined by
the interval between data points. A uniformly sampled
telemetry stream will have a fixed tree depth irrespective
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Figure 3: An example of a time-partitioning tree with version-
annotated edges. Node sizes correspond to a K=64 implemen-
tation

of how much data is in the tree. All trees logically rep-
resent a huge range of time (from −260ns to 3∗260ns as
measured from the Unix epoch, or approximately 1933
to 2079 with nanosecond precision) with big holes at the
front and back ends and smaller holes between each of
the points. Figure 3 illustrates a time-partitioning tree
for 16 ns. Note the hole between 8 and 12 ns.

To retain historic data, the tree is copy on write: each
insert into the tree forms an overlay on the previous tree
accessible via a new root node. Providing historic data
queries in this way ensures that all versions of the tree
require equal effort to query – unlike log replay mech-
anisms which introduce overheads proportional to how
much data has changed or how old is the version that is
being queried. Using the storage structure as the index
ensures that queries to any version of the stream have an
index to use, and reduces network round trips.

Each link in the tree is annotated with the version of
the tree that introduced that link, also shown in Figure
3. A null child pointer with a nonzero version annota-
tion implies the version is a deletion. The time extents
that were modified between two versions of the tree can
be walked by loading the tree corresponding to the later
version, and descending into all nodes annotated with the
start version or higher. The tree need only be walked to
the depth of the desired difference resolution, thus Com-
puteDiff() returns its results without reading the raw data.
This mechanism allows consumers of a stream to query
and process new data, regardless of where the changes
were made, without a full scan and with only 8 bytes of
state maintenance required - the ‘last version processed’.

Each internal node holds scalar summaries of the sub-
trees below it, along with the links to the subtrees. Sta-
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tistical aggregates are computed as nodes are updated,
following the modification or insertion of a leaf node.
The statistics currently supported are min, mean, max
and count, but any operation that uses intermediate re-
sults from the child subtrees without requiring iteration
over the raw data can be used. Any associative operation
meets this requirement.

This approach has several advantages over conven-
tional discrete rollups. The summary calculation is free
in terms of IO operations – the most expensive part of
a distributed storage system. All data for the calcula-
tion is already in memory, and the internal node needs to
be copied anyway, since it contains new child addresses.
Summaries do increase the size of internal nodes, but
even so, internal nodes are a tiny fraction of the total
footprint ( < 0.3% for a single version of a K = 64 k-
ary tree). Observable statistics are guaranteed to be con-
sistent with the underlying data, because failure during
their calculation would prevent the root node from being
written and the entire overlay would be unreachable.

When querying a stream for statistical records, the tree
need only be traversed to the depth corresponding to the
desired resolution, thus the response time is proportional
to the number of returned records describing the tempo-
ral extent, not the length of the extent nor the number of
datapoints within it. Records from disparate streams are
aligned in time, so time-correlated anaylsis can proceed
directly. For queries requiring specific non-power-of-two
windows, the operation is still dramatically accelerated
by using the precomputed statistics to fill in the middle
of each window, only requiring a “drill down” on the side
of each window, so that the effort to generate a window
is again proportional to the log of the length of time it
covers, not linear in the underlying data.

Although conceptually a binary tree, an implementa-
tion may trade increased query-time computation for de-
creased storage and IO operations by using a k-ary tree
and performing just-in time computation of the statistical
metrics for windows that lie between actual levels of the
tree. If k is too large, however, the on-the-fly computa-
tion impacts increases the variability of statistical query
latencies, as discussed in Section 6.3.

To allow fetching nodes from the tree in a single IO
operation, all addresses used in the tree are “native” in
that they are directly resolvable by the storage layer with-
out needing a translation step. If an indirect address were
used it would require either a costly remote lookup in a
central map, or complex machinery to synchronize a lo-
cally stored map. Multiple servers can execute reads on
the same stream at a time, so all servers require an up-
to-date view of this mapping. Native addresses remove
this problem entirely, but they require care to maintain,
as discussed below.

The internal blocks have a base size of 2× 8×K for

the child addresses and child pointer versions. On top of
that, the statistics require 4× 8×K for min, mean, max
and count making them 3KB in size for K = 64. The leaf
nodes require 16 bytes per (time, value) pair, and a 16
byte length value. For Nlea f = 1024 they are 16KB big.
Both of these blocks are compressed, as discussed below.

5 System design

The overall system design of BTrDB, shown in Figure 4,
is integrally tied to the multi-resolution COW tree data
structure described above, but also represents a family
of trade-offs between complexity, performance and re-
liability. This design prioritizes simplicity first, perfor-
mance second and then reliability, although it does all
three extremely well. The ordering is the natural evolu-
tion of developing a database that may require frequent
changes to match a dynamically changing problem do-
main and workload (simplicity leads to an easily modi-
fiable design). Performance requirements originate from
the unavoidable demands placed by the devices we are
deploying and, as this system is used in production, reli-
ability needs to be as high as possible, without sacrificing
the other two goals.

The design consists of several modules: request han-
dling, transaction coalescence, COW tree construction
and merge, generation link, block processing, and block
storage. The system follows the SEDA [34] paradigm
with processing occuring in three resource control stages
– request, write and storage – with queues capable of ex-
erting backpressure decoupling them.

5.1 Request processing stage
At the front end, flows of insertion and query requests are
received over multiple sockets, either binary or HTTP.
Each stream is identified by UUID. Operations on many
streams may arrive on a single socket and those for a par-
ticular stream may be distributed over multiple sockets.
Inserts are collections of time-value pairs, but need not
be in order.

Insert and query paths are essentially separate. Read
requests are comparatively lightweight and are handled
in a thread of the session manager. These construct and
traverse a partial view of the COW tree, as described
above, requesting blocks from the block store. The
block store in turn requests blocks from a reliable stor-
age provider (Ceph in our implementation) and a cache
of recently used blocks. Read throttling is achieved by
the storage stage limiting how many storage handles are
given to the session thread to load blocks. Requests hit-
ting the cache are only throttled by the socket output.

On the insert path, incoming data is demultiplexed into
per-stream coalescence buffers by UUID. Session man-
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agers compete for a shortly held map lock and then grab
a lock on the desired buffer. This sync point provides
an important write-throttling mechanism, as discussed in
Section 7.3. Each stream is buffered until either a cer-
tain time interval elapses or a certain number of points
arrive, which triggers a commit by the write stage. These
parameters can be adjusted according to target workload
and platform, with the obvious trade-offs in stream up-
date delay, number of streams, memory pressure, and ra-
tio of tree and block overhead per version commit. These
buffers need not be very big; we see excellent storage uti-
lization in production where the buffers are configured
for a maximum commit of 5 seconds or 16k points and
the average commit size is 14400 points.

5.2 COW merge
A set of threads in the write stage pick up buffers await-
ing commit and build a writable tree. This process is
similar to the tree build done by a read request, except
that all traversed nodes are modified as part of the merge,
so must remain in memory. Copying existing nodes or
creating new nodes requires a chunk of memory which
is obtained from a free pool in the block store. At this
point the newly created blocks have temporary addresses
– these will be resolved by the linker later to obtain the
index-free native addressing.

5.3 Block store
The block store allocates empty blocks, stores new
blocks and fetches stored blocks. It also provides com-
pression/decompression of storage blocks, and a cache.
Empty blocks, used in tree merges, are satisfied primarily
from the free pool to avoid allocations. After blocks are

evicted from the block cache and are about to be garbage
collected, they are inserted back into this pool.

Fields such as a block’s address, UUID, resolution
(tree depth) and time extent are useful for traversing the
tree, but can be deduced from context when a block is
read from disk, so are stripped before the block enters
the compression engine.

The block cache holds all the blocks that pass through
the block store with the least recently used blocks evicted
first. It consumes a significant (tunable) portion of the
memory footprint. Cache for a time series store may
not seem an obvious win, other than for internal nodes
in the COW tree, but it is extremely important for near-
real-time analytics. As the majority of our read workload
consists of processes waiting to consume any changes to
a set of streams – data that just passed through the system
– a cache of recently used blocks dramatically improves
performance.

5.4 Compression engine
Part of the block store, the compression engine com-
presses the min, mean, max, count, address and version
fields in internal nodes, as well as the time and value
fields in leaf nodes. It uses a method we call delta-
delta coding followed by Huffman coding using a fixed
tree. Typical delta coding works by calculating the dif-
ference between every value in the sequence and storing
that using variable-length symbols (as the delta is nor-
mally smaller than the absolute values [18]). Unfortu-
nately with high-precision sensor data, this process does
not work well because nanosecond timestamps produce
very large deltas, and even linearly-changing values pro-
duce sequences of large, but similar, delta values.

In lower precision streams, long streams of identi-
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cal deltas are typically removed with run-length encod-
ing that removes sequences of identical deltas. Unfortu-
nately noise in the lower bits of high precision sensor
values prevents run-length encoding from successfully
compacting the sequence of deltas. This noise, how-
ever, only adds a small jitter to the delta values. They
are otherwise very similar. Delta-delta compression re-
places run-length encoding and encodes each delta as the
difference from the mean of a window of previous delta
values. The result is a sequence of only the jitter values.
Incidentally this works well for the addresses and ver-
sion numbers, as they too are linearly increasing values
with some jitter in the deltas. In the course of system de-
velopment, we found that this algorithm produces better
results, with a simpler implementation, than the residual
coding in FLAC [13] which was the initial inspiration.

This method is lossless only if used with integers. To
overcome this, the double floating point values are bro-
ken up into mantissa and exponent and delta-delta com-
pressed as independent streams. As the exponent field
rarely changes, it is elided if the delta-delta value is zero.

While a quantitative and comparative analysis of this
compression algorithm is beyond the scope of this paper,
its efficacy is shown in Section 6.

5.5 Generation linker

The generation linker receives a new tree overlay from
the COW merge process, sorts the new tree nodes from
deepest to shallowest and sends them to the block store
individually, while resolving the temporary addresses
to addresses native to the underlying storage provider.
As nodes reference only nodes deeper than themselves,
which have been written already, any temporary address
encountered can be immediately resolved to a native ad-
dress.

This stage is required because most efficient storage
providers – such as append-only logs – can only write an
object of arbitrary size to certain addresses. In the case of
a simple file, arbitrarily sized objects can only be written
to the tail, otherwise they overwrite existing data. Once
the size of the object is known, such as after the linker
sends the object to the block store and it is compressed,
a new address can be derived from the previous one. The
nature of the storage may limit how many addresses can
be derived from a given initial address. For example, if
the maximum file size is reached and a new file needs to
be used.

For some storage providers, obtaining the first address
is an expensive operation e.g. in a cluster operation,
this could involve obtaining a distributed lock to ensure
uniqueness of the generated addresses. For this reason
the block store maintains a pool of pre-created initial ad-
dresses.

5.6 Root map
The root map is used before tree construction in both
reads and writes. It resolves a UUID and a version to
a storage “address.” When the blocks for a new version
have been acknowledged as durably persisted by the stor-
age provider, a new mapping for the version is inserted
into this root map. It is important that the map is fault
tolerant as it represents a single point of failure. Without
this mapping, no streams can be accessed. If the latest
version entry for a stream is removed from the map, it is
logically equivalent to rolling back the commit. Inciden-
tally, as the storage costs of a small number of orphaned
versions are low, this behaviour can be used deliberately
to obtain cheap single-stream transaction semantics with-
out requiring support code in the database.

The demands placed by these inserts / requests are
much lower than those placed by the actual data, so many
off-the-shelf solutions can provide this component of the
design. We use MongoDB as it has easy-to-use replica-
tion.

One side effect of the choice of an external provider is
that the latency in resolving this first lookup is present in
all queries – even ones that hit the cache for the rest of the
query. Due to the small size of this map, it would be rea-
sonable to replicate the map on all BTrDB nodes and use
a simpler storage solution to reduce this latency. All the
records are the same size, and the version numbers incre-
ment sequentially, so a flat file indexed by offset would
be acceptable.

5.7 Storage provider
The storage provider component wraps an underly-
ing durable storage system and adds write batching,
prefetching, and a pool of connection handles. In
BTrDB, a tree commit can be done as a single write,
as long as addresses can be generated for all the nodes
in the commit without performing intermediate commu-
nication with the underlying storage. Throttling to the
underlying storage is implemented here, for reasons de-
scribed in Section 7.3.

As the performance of a storage system generally de-
creases with the richness of its features, BTrDB is de-
signed to require only three very simple properties from
the underlying storage:

1. It must be able to provide one or more free “ad-
dresses” that an arbitrarily large object can be writ-
ten to later. Only a small finite number of these ad-
dresses need be outstanding at a time.

2. Clients must be able to derive another free “ad-
dress” from the original address, and the size of the
object that was written to it.
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3. Clients must be able to read back data given just the
“address” and a length.

Additional properties may be required based on the
desired characteristics of the BTrDB deployment as a
whole, for example distributed operation and durable
writes. Sans these additional requirements, even a simple
file is sufficient as a storage provider: (1) is the current
size of the file, (2) is addition and (3) is a random read.

Note that as we are appending and reading with a
file-like API, almost every distributed file system auto-
matically qualifies as acceptable, such as HDFS, Glus-
terFS [25], CephFS [32], MapR-FS, etc.

Note also that if arbitrary but unique “addresses” are
made up, then any database offering a key-value API
would also work, e.g. , Cassandra, MongoDB, RA-
DOS [33] (the object store under CephFS), HBase or
BigTable. Most of these offer capabilities far beyond
what is required by BTrDB, however, usually at a per-
formance or space cost.

Although we support file-backed storage, we use Ceph
RADOS in production. Initial addresses are read from
a monotonically increasing integer stored in a RADOS
object. Servers add a large increment to this integer
while holding a distributed lock (provided by Ceph). The
server then has a range of numbers it knows are unique.
The high bits are used as a 16MB RADOS object iden-
tifier, while the low bits are used as an offset within that
object. The address pool in the block store decouples the
latency of this operation from write operations.

6 Quasi-production implementation

An implementation of BTrDB has been constructed us-
ing Go [11]. This language was chosen as it offers prim-
itives that allow for rapid development of highly SMP-
scalable programs in a SEDA [34] paradigm – namely
channels and goroutines. As discussed above, one of the
primary tenets of BTrDB is performance through sim-
plicity: the entire implementation sans test code and
auto-generated libraries is only 4709 lines.

Various versions of BTrDB have been used in a year-
long deployment to capture data from roughly 35 mi-
crosynchrophasors deployed in the field, comprising 12
streams of 120 Hz data each. Data from these devices
streams in over LTE and wired connections, as shown in
Figure 2, leading to unpredictable delays, out-of-order
chunk delivery and many duplicates (when the GPS-
derived time synchronizes to different satellites). Many
of the features present in BTrDB were developed to sup-
port the storage and analysis of this sensor data.

The hardware configuration for this deployment is
shown in Figure 5. The compute server runs BTrDB (in a
single node configuration). It also runs the DISTIL ana-

Compute
Server

BTrDB

DISTIL

Mongo

20 cores (40 virtual)
256GB RAM

1Gbit
Clients

Storage
Server

28x 
4TB

OSDs

Ceph
Mon

10Gbit

4 cores (8 virtual)
128GB RAM

2x slave 
replicas on 

shared 
servers

Figure 5: The architecture of our production system

lytics framework [1] and a MongoDB replica set master.
The MongoDB database is used for the root map along
with sundry metadata, such as engineering units for the
streams and configuration parameters for DISTIL algo-
rithms. The storage server is a single-socket server con-
taining 28 commodity 4TB 5900 RPM spinning-metal
drives. The IO capacity of this server may seem abnor-
mally low for a high performance database, but it is typ-
ical for data warehousing applications. BTrDB’s IO pat-
tern was chosen with this type of server in mind: 1MB
reads and writes with excellent data locality for the pri-
mary analytics workload.

6.1 Golang – the embodiment of SEDA
SEDA advocates constructing reliable, high-
performance systems via decomposition into inde-
pendent stages separated by queues with admission
control. Although not explicitly referencing this
paradigm, Go encourages the partitioning of complex
systems into logical units of concurrency, connected by
channels, a Go primitive roughly equal to a FIFO with
atomic enqueue and dequeue operations. In addition,
Goroutines – an extremely lightweight thread-like prim-
itive with userland scheduling – allow for components of
the system to be allocated pools of goroutines to handle
events on the channels connecting a system in much the
same way that SEDA advocates event dispatch. Unlike
SEDA’s Java implementation, however, Go is actively
maintained, runs at near native speeds and can elegantly
manipulate binary data.

6.2 Read throttling
As discussed below, carefully applied backpressure is
necessary to obtain good write performance. In con-
trast, we have not yet found the need to explicitly throttle

8
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reads, despite having a higher read load than write load.
The number of blocks that are kept in memory to satisfy a
read is fewer than for a write. If the nodes are not already
in the block cache (of which 95% are), they are needed
only while their subtree is traversed, and can be freed
afterwards. This differs from a write, where all the tra-
versed blocks will be copied and must therefore be kept
in memory until the linker has patched them and written
them to the storage provider. In addition, Go channels
are used to stream query data directly to the socket as it
is read. If the socket is too slow, the channel applies back
pressure to the tree traversal so that nodes are not fetched
until the data has somewhere to go. For this reason, even
large queries do not place heavy memory pressure on the
system.

6.3 Real-data quantitative evaluation

Although the version of BTrDB running on production
is lacking the performance optimizations implemented
on the version evaluated in Section 7, it can provide in-
sight into the behavior of the database with large, real
data sets. At the time of writing, we have accumulated
more than 2.1 trillion data points over 823 streams, of
which 500 billion are spread over 506 streams feeding
from instruments deployed in the field. The remaining
1.6 trillion points were produced by the DISTIL analy-
sis framework. Of this analysis data, roughly 1.1 trillion
points are in extents that were invalidated due to algo-
rithm changes, manual flagging or replaced data in input
streams. This massive dataset allows us to assess several
aspects of the design.

Compression: A concern with using a copy-on-write
tree data structure with “heavyweight” internal nodes is
that the storage overheads may be unacceptable. With
real data, the compression more than compensates for
this overhead. The total size of the instrument data in
the production Ceph pool (not including replication) is
2.757 TB. Dividing this by the number of raw data points
equates to 5.514 bytes per reading including all statisti-
cal and historical overheads. As the raw tuples are 16
bytes, we have a compression ratio of 2.9x despite the
costs of the time-partitioning tree. Compression is highly
data dependent, but this ratio is better than the results
of in-depth parametric studies of compression on similar
synchrophasor telemetry [16][30].

Statistical queries: As these queries come into play
with larger data sets, they are best evaluated on months
of real data, rather than the controlled study in Section 7.
These queries are typically used in event detectors to lo-
cate areas of interest – the raw data is too big to navigate
with ease – and for visualization. To emulate this work-
load, we query a year’s worth of voltage data – the same
data illustrated in Figure 1a – to locate a voltage sag (the

Figure 6: Query latencies for 2048 statistical records covering a
varying time extent (1 year to 5 seconds), queried from a single
node

dashed box) and then issue progressively finer-grained
queries until we are querying a 5 second window (Fig-
ure 1b). Automated event detectors typically skip sev-
eral levels of resolution between queries, but this pattern
is typical of data exploration where a user is zooming in
to the event interactively. This process is repeated 300
times, with pauses between each sequence to obtain dis-
tributions on the query response times. The results can
be found in Figure 6. Typically these distributions would
be tighter, but the production server is under heavy load.

Each query is for the same number of statistical
records (2048), but the number of data points that these
records represent grows exponentially as the resolution
becomes coarser (right to left in Figure 6). In a typ-
ical on-the-fly rollup database, the query time would
grow exponentially as well, but with BTrDB it remains
roughly constant within a factor of three. The implemen-
tation’s choice of K (64 = 26) is very visible in the query
response times. The query can be satisfied directly from
the internal nodes with no on-the-fly computation every
6 levels of resolution. In between these levels, BTrDB
must perform a degree of aggregation – visible in the
query latency – to return the statistical summaries, with
the most work occurring just before the next tier of the
tree (244, 238, 232). Below 227 the data density is low
enough (< 16 points per pixel column) that the query is
being satisfied from the leaves.

Cache hit ratios: Although cache behavior is work-
load dependent, our mostly-automated-analysis is likely
representative of most use-cases. Over 22 days, the block
cache has exhibited a 95.93% hit rate, and the Ceph read-
behind prefetch cache exhibited a 95.22% hit rate.

6.4 Analysis pipeline
The raw data acquired from sensors in the field is even-
tually used for decision support; grid state estimation; is-

9
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land detection and reverse power flow detection, to name
a few examples. To obtain useful information the data
must first go through a pipeline consisting of multiple
transformation, fusion and synthesis stages, as shown in
Figure 2.

All the stages of the pipeline are implemented with the
same analysis framework and all consist of the same se-
quence of operations: find changes in the inputs, com-
pute which ranges of the outputs need to be updated,
fetch the data required for the computation, compute the
outputs, and insert them. Finally, if this process com-
pletes successfully, the version numbers of the inputs
that the distiller has now “caught up to” are written to
durable storage (the same MongoDB replica set used for
the root map). This architecture allows for fault tolerance
without mechanisms, as each computation is idempotent:
the output range corresponding to a given input range is
deleted and replaced for each run of a DISTIL stage. If
any error occurs, simply rerun the stage until it completes
successfully, before updating the “input → last version”
metadata records for the input streams.

This illustrates the power of the BTrDB CalculateD-
iff() primitive: an analysis stream can be “shelved,” i.e.,
not kept up to date, and when it becomes necessary later
it can be brought up-to date just-in-time with guaranteed
consistency, even if the changes to the dependencies have
occurred at random times throughout the stream. Fur-
thermore the consumer obtains this with just 8 bytes of
state per stream. The mechanism allows changes in a
stream to propagate to all streams dependent on it, even
if the process materializing the dependent stream is not
online or known to the process making the change up-
stream. Achieving this level of consistency guarantee in
existing systems typically requires a journal of outstand-
ing operations that must be replayed on downstream con-
sumers when they reappear.

7 Scalability Evaluation

To evaluate the design principles and implementation of
BTrDB in a reproducible manner, we use a configuration
of seven Amazon EC2 instances. There are four primary
servers, one metadata server and two load generators.
These machines are all c4.8xlarge instances. These were
chosen as they are the only available instance type with

Metric Mean Std. dev.
Write bandwidth [MB/s] 833 151
Write latency [ms] 34.3 40.0
Read bandwidth [MB/s] 1174 3.8
Read latency [ms] 22.0 18.7

Table 2: The underlying Ceph pool performance at max band-
width

both 10GbE network capabilities and EBS optimization.
This combination allows the scalability of BTrDB to be
established in the multiple-node configuration where net-
work and disk bandwidth are the limiting factors.

Ceph version 0.94.3 was used to provide the storage
pool over 16 Object Store Daemons (OSDs). It was con-
figured with a size (replication factor) of two. The band-
width characteristics of the pool are shown in Table 2.
It is important to note the latency of operations to Ceph,
as this establishes a lower bound on cold query laten-
cies, and interacts with the transaction coalescence back-
pressure mechanism. The disk bandwidth on a given
BTrDB node to one of the OSD volumes measured us-
ing dd was approximately 175MB/s. This matched the
performance of the OSD reported by ceph tell osd.N

bench.
To keep these characteristics roughly constant, the

number of Ceph nodes is kept at four, irrespective of how
many of the servers are running BTrDB for a given ex-
periment, although the bandwidth and latency of the pool
does vary over time. As the Ceph CRUSH data place-
ment rules are orthogonal to the BTrDB placement rules,
the probability of a RADOS request hitting a local OSD
is 0.25 for all experiments.

7.1 Throughput

The throughput of BTrDB in raw record tuples per sec-
ond is measured for inserts, cold queries (after flushing
the BTrDB cache) and warm queries (with a preheated
BTrDB cache). Each tuple is an 8 byte time stamp and
an 8 byte value. Warm and cold cache performance is
characterized independently, because it allows an esti-
mation of performance under different workloads after
estimating the cache hit ratio.

#BTrDB Streams Total points #Conn Insert [mil/s] Cold Query [mil/s] Warm Query [mil/s]
1 50 500 mil 30 16.77 9.79 33.54
2 100 1000 mil 60 28.13 17.23 61.44
3 150 1500 mil 90 36.68 22.05 78.47
4 200 2000 mil 120 53.35 33.67 119.87

Table 1: Throughput evaluation as number of servers and size of load increases
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Figure 7: Throughput as the number of BTrDB nodes increases.
The horizontal dashed line indicates the independently bench-
marked write bandwidth of the underlying storage system.

When insertion was
Throughput [million pt/s] for Chrono. Random
Insert 28.12 27.73
Cold query in chrono. order 31.41 31.67
Cold query in same order - 32.61
Cold query in random order 29.67 28.26
Warm query in chrono. order 114.1 116.2
Warm query in same order - 119.0
Warm query in random order 113.7 117.2

Table 3: The influence of query/insert order on throughput

Inserts and queries are done in 10 kilorecord chunks,
although there is no significant change in performance if
this is decreased to 2 kilorecords.

Figure 7 shows that insert throughput scales linearly,
to approximately 53 million records per second with four
nodes. The horizontal dashed line is calculated as the
maximum measured pool bandwidth (823MB/s) divided
by the raw record size (16 bytes). This is the bandwidth
that could be achieved by simply appending the records
to a log in Ceph without any processing. This shows
that despite the functionality that BTrDB offers, and the
additional statistical values that must be stored, BTrDB
performs on par with an ideal data logger.

The warm query throughput of 119 million read-
ings per second is typical for tailing-analytics workloads
where distillers process recently changed data. This
throughput equates to roughly 1815 MB/s of network
traffic, or 907MB/s per load generator.

7.2 Data and operation ordering

BTrDB allows data to be inserted in arbitrary order,
and queried in arbitrary order. To characterize the ef-

(a) Latency

(b) Aggregate bandwidth

Figure 9: Ceph pool performance characteristics as the number
of concurrent connections increases

fect of insertion and query order on throughput, mea-
surements with randomized operations were performed.
The workload consists of two hundred thousand insert-
s/queries of 10k points each (2 billion points in total).
Two datasets were constructed, one where the data was
inserted chronologically and one where the data was in-
serted randomly. After this, the performance of cold and
warm queries in chronological order and random order
were tested on both datasets. For the case of random in-
sert, queries in the same (non-chronological) order as the
insert were also tested. Note that operations were ran-
domized at the granularity of the requests; within each
request the 10k points were still in order. The results are
presented in Table 3. The differences in throughput are
well within experimental noise and are largely insignifi-
cant. This out-of-order performance is an important re-
sult for a database offering insertion speeds near that of
an in-order append-only log.

7.3 Latency

Although BTrDB is designed to trade a small increase in
latency for a large increase in throughput, latency is still
an important metric for evaluation of performance under
load. The load generators record the time taken for each

11
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(a) Insert latencies (b) Cold query latencies (c) Warm query latencies

Figure 8: Operation latencies as server count and workload is increased linearly

insert or query operation. Figure 8 gives an overview of
the latency of operations as the workload and number of
servers grows. Ideally all four points would be equal in-
dicating perfect scaling. The range of latencies seen for
insert operations increases as the cluster approaches the
maximum bandwidth of Ceph. This is entirely Ceph’s
latency being presented to the client as backpressure.
When a transaction coalescence buffer is full or being
committed, no data destined for that stream is admitted to
the database. Furthermore, a fixed number of tree merges
are allowed at a time, so some buffers may remain full
for some time. Although this appears counter-intuitive,
in fact it increases system performance. Applying this
backpressure early prevents Ceph from reaching patho-
logical latencies. Consider Figure 9a where it is appar-
ent that not only does the Ceph operation latency increase
with the number of concurrent write operations, but it de-
velops a long fat tail, with the standard deviation exceed-
ing the mean. Furthermore, this latency buys nothing, as
Figure 9b shows that the aggregate bandwidth plateaus
after the number of concurrent operations reaches 16 –
the number of OSDs.

With Ceph’s latency characteristics in mind, BTrDB’s
write latency under maximum load is remarkable. A four
node cluster inserting more than 53 million points per
second exhibits a third quartile latency of 35ms: less than
one standard deviation above the raw pool’s latency.

7.4 Limitations and future work

The tests on EC2 show that the throughput and latency
characteristics of the system are defined primarily by the
underlying storage system. This is the ideal place to be,
as it renders most further optimization in the timeseries
database tier irrelevant.

The exception to this is optimizations that reduce the
number of IO operations. We have already optimized the
write path to the point of one write operation per commit.

Nevertheless, there are significant performance gains to
be had by optimizing the read path. One such avenue is
to improve the block cache policy, reducing read ops. At
present, the cache evicts the least recently used blocks.
More complex policies could yield improved cache uti-
lization: for example, if clients query only the most re-
cent version of a stream, then all originals of blocks
that were copied during a tree merge operation could be
evicted from the cache. If most clients are executing sta-
tistical queries, then leaf nodes (which are 5x bigger than
internal nodes) can be prioritized for eviction. Further-
more, as blocks are immutable, a distributed cache would
not be difficult to implement as no coherency algorithm
is required. Querying from memory on a peer BTrDB
server would be faster than hitting disk via Ceph.

8 Conclusion

BTrDB provides a novel set of primitives, especially
fast difference computation and rapid, low-overhead sta-
tistical queries that enable analysis algorithms to lo-
cate subsecond transient events in data comprising bil-
lions of datapoints spanning months – all in a fraction
of a second. These primitives are efficiently provided
by a time-partitioning version-annotated copy-on-write
tree, which is shown to be easily implementable. A Go
implementation is shown to outperform existing time-
series databases, operating at 53 million inserted values
per second, and 119 million queried values per second
with a four node cluster. The principles underlying this
database are potentially applicable to a wide range of
telemetry timeseries, and with slight modification, are
applicable to all timeseries for which statistical aggre-
gate functions exist and which are indexed by time.
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Abstract
Free cooling lowers datacenter costs significantly, but
may also expose servers to higher and more variable tem-
peratures and relative humidities. It is currently unclear
whether these environmental conditions have a signifi-
cant impact on hardware component reliability. Thus,
in this paper, we use data from nine hyperscale datacen-
ters to study the impact of environmental conditions on
the reliability of server hardware, with a particular fo-
cus on disk drives and free cooling. Based on this study,
we derive and validate a new model of disk lifetime as a
function of environmental conditions. Furthermore, we
quantify the tradeoffs between energy consumption, en-
vironmental conditions, component reliability, and data-
center costs. Finally, based on our analyses and model,
we derive server and datacenter design lessons.

We draw many interesting observations, including (1)
relative humidity seems to have a dominant impact on
component failures; (2) disk failures increase signifi-
cantly when operating at high relative humidity, due to
controller/adaptor malfunction; and (3) though higher
relative humidity increases component failures, software
availability techniques can mask them and enable free-
cooled operation, resulting in significantly lower infras-
tructure and energy costs that far outweigh the cost of the
extra component failures.

1 Introduction

Datacenters consume a massive amount of energy. A
recent study [18] estimates that they consume roughly
2% and 1.5% of the electricity in the United States and
world-wide, respectively. In fact, a single hyperscale dat-
acenter may consume more than 30MW [7].

These staggering numbers have prompted many ef-
forts to reduce datacenter energy consumption. Perhaps
the most successful of these efforts have involved reduc-
ing the energy consumption of the datacenter cooling
infrastructure. In particular, three important techniques

∗This work was done while Ioannis was at Microsoft.

have helped reduce the cooling energy: (1) increasing
the hardware operating temperature to reduce the need
for cool air inside the datacenter; (2) building datacen-
ters where their cooling can directly leverage the outside
air, reducing the need for energy-hungry (and expensive)
water chillers; and (3) eliminating the hot air recircula-
tion within the datacenter by isolating the cold air from
the hot air. By using these and other techniques, large
datacenter operators today can report yearly Power Us-
age Effectiveness (PUE) numbers in the 1.1 to 1.2 range,
meaning that only 10% to 20% of the total energy goes
into non-IT activities, including cooling. The low PUEs
of these modern (“direct-evaporative-cooled” or simply
“free-cooled”1) datacenters are substantially lower than
those of older generation datacenters [14, 15].

Although lowering cooling costs and PUEs would
seem like a clear win, increasing the operating tempera-
ture and bringing the outside air into the datacenter may
have unwanted consequences. Most intriguingly, these
techniques may decrease hardware component reliabil-
ity, as they expose the components to aggressive environ-
mental conditions (e.g., higher temperature and/or higher
relative humidity). A significant decrease in hardware re-
liability could actually increase rather than decrease the
total cost of ownership (TCO).

Researchers have not yet addressed the tradeoffs be-
tween cooling energy, datacenter environmental condi-
tions, hardware component reliability, and overall costs
in modern free-cooled datacenters. For example, the
prior work on the impact of environmental conditions on
hardware reliability [10, 25, 27] has focused on older
(non-free-cooled) datacenters that maintain lower and
more stable temperature and relative humidity at each
spatial spot in the datacenter. Because of their focus on
these datacenters, researchers have not addressed the re-
liability impact of relative humidity in energy-efficient,
free-cooled datacenters at all.

1Throughout the paper, we refer to free cooling as the direct use of
outside air to cool the servers. Some authors use a broader definition.
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Understanding these tradeoffs and impacts is the topic
of this paper. First, we use data collected from the opera-
tions of nine world-wide Microsoft datacenters for 1.5
years to 4 years to study the impact of environmental
conditions (absolute temperature, temperature variation,
relative humidity, and relative humidity variation) on the
reliability of server hardware components. Based on this
study and the dominance of disk failures, we then derive
and validate a new model of disk lifetime as a function
of both temperature and relative humidity. The model
leverages data on the impact of relative humidity on cor-
rosion rates. Next, we quantify the tradeoffs between en-
ergy consumption, environmental conditions, component
reliability, and costs. Finally, based on our dataset and
model, we derive server and datacenter design lessons.

We draw many observations from our dataset and anal-
yses, including (1) disks account for the vast majority
(89% on average) of the component failures regardless
of the environmental conditions; (2) relative humidity
seems to have a much stronger impact on disk failures
than absolute temperature in current datacenter operat-
ing conditions, even when datacenters operate within
ASHRAE’s “allowable” conditions [4] (i.e., 10-35◦C in-
let air temperature and 20–80% relative humidity); (3)
temperature variation and relative humidity variation are
negatively correlated with disk failures, but this is a con-
sequence of these variations tending to be strongest when
relative humidity is low; (4) disk failure rates increase
significantly during periods of high relative humidity,
i.e. these periods exhibit temporal clustering of failures;
(5) disk controller/connectivity failures increase signifi-
cantly when operating at high relative humidity (the con-
troller and the adaptor are the only parts that are exposed
to the ambient conditions); (6) in high relative humidity
datacenters, server designs that place disks in the back of
enclosures can reduce the disk failure rate significantly;
and (7) though higher relative humidity increases com-
ponent failures, relying on software techniques to mask
them and operate in this mode also significantly reduces
infrastructure and energy costs, and more than compen-
sates for the cost of the additional failures.

Note that, unlike disk vendors, we do not have access
to a large isolated chamber where thousands of disks can
be exposed to different environmental conditions in a
controlled and repeatable manner.2 Instead, we derive
the above observations from multiple statistical analy-
ses of large-scale commercial datacenters under their real
operating conditions, as in prior works [10, 25, 27]. To
increase confidence in our analyses and inferences, we

2From these experiments, vendors derive recommendations for the
ideal operating conditions for their parts. Unfortunately, it is very dif-
ficult in practice to guarantee consistent operation within those con-
ditions, as server layouts vary and the environment inside servers is
difficult to control exactly, especially in free-cooled datacenters.

personally inspected two free-cooled datacenters that ex-
perience humid environments and observed many sam-
ples of corroded parts.

In summary, we make the following contributions:
• We study the impact of relative humidity and rela-

tive humidity variation on hardware reliability (with
a strong focus on disk drives) in datacenters.

• We study the tradeoffs between cooling energy, en-
vironmental conditions, hardware reliability, and
cost in datacenters.

• Using data from nine datacenters, more than 1M
disks, and 1.5–4 years, we draw many interesting
observations. Our data suggests that the impact of
temperature and temperature variation on disk reli-
ability (the focus of the prior works) is much less
significant than that of relative humidity in modern
cooling setups.

• Using our disk data and a corrosion model, we also
derive and validate a new model of disk lifetime as
a function of environment conditions.

• From our observations and disk lifetime model, we
draw a few server and datacenter design lessons.

2 Related Work

Environmentals and their impact on reliability. Sev-
eral works have considered the impact of the cooling in-
frastructure on datacenter temperatures and humidities,
e.g. [3, 22, 23]. However, they did not address the hard-
ware reliability implications of these environmental con-
ditions. The reason is that meaningful reliability stud-
ies require large server populations in datacenters that
are monitored for multiple years. Our paper presents the
largest study of these issues to date.

Other authors have had access to such large real
datasets for long periods of time: [5, 10, 20, 25, 27, 28,
29, 35]. A few of these works [5, 28, 29, 35] considered
the impact of age and other factors on hardware relia-
bility, but did not address environmental conditions and
their potential effects. The other prior works [10, 25, 27]
have considered the impact of absolute temperature and
temperature variation on the reliability of hardware com-
ponents (with a significant emphasis on disk drives) in
datacenters with fairly stable temperature and relative
humidity at each spatial spot, i.e. non-air-cooled data-
centers. Unfortunately, these prior works are inconclu-
sive when it comes to the impact of absolute tempera-
ture and temperature variations on hardware reliability.
Specifically, El-Sayed et al. [10] and Pinheiro et al. [25]
found a smaller impact of absolute temperature on disk
lifetime than previously expected, whereas Sankar et al.
[27] found a significant impact. El-Sayed et al. also
found temperature variations to have a more significant
impact than absolute temperature on Latent Sector Errors



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 55

(LSEs), a common type of disk failure that renders sec-
tors inaccessible. None of the prior studies considered
relative humidity or relative humidity variations.

Our paper adds to the debate about the impact of ab-
solute temperature and temperature variation. However,
our paper suggests that this debate may actually be moot
in modern (air-cooled) datacenters. In particular, our re-
sults show that relative humidity is a more significant
factor than temperature. For this reason, we also extend
an existing disk lifetime model with a relative humidity
term, and validate it against our real disk reliability data.

Other tradeoffs. Prior works have also considered the
impact of the cooling infrastructure and workload place-
ment on cooling energy and costs, e.g. [1, 6, 8, 17, 19,
21, 23]. However, they did not address the impact of en-
vironmental conditions on hardware reliability (and the
associated replacement costs). A more complete under-
standing of these tradeoffs requires a more comprehen-
sive study, like the one we present in this paper. Specifi-
cally, we investigate a broader spectrum of tradeoffs, in-
cluding cooling energy, environmental conditions, hard-
ware reliability, and costs. Importantly, we show that
the increased hardware replacement cost in free-cooled
datacenters is far outweighed by their infrastructure and
operating costs savings.

However, we do not address effects that our dataset
does not capture. In particular, techniques devised to re-
duce cooling energy (increasing operating temperature
and using outside air) may increase the energy consump-
tion of the IT equipment, if server fans react by spinning
faster. They may also reduce performance, if servers
throttle their speed as a result of the higher operating
temperature. Prior research [10, 32] has considered these
effects, and found that the cooling energy benefits of
these techniques outweigh the downsides.

3 Background

Datacenter cooling and environmentals. The cooling
infrastructure of hyperscale datacenters has evolved over
time. The first datacenters used water chillers with com-
puter room air handlers (CRAHs). CRAHs do not feature
the integrated compressors of traditional computer room
air conditioners (CRACs). Rather, they circulate the air
carrying heat from the servers to cooling coils carrying
chilled water. The heat is then transferred via the water
back to the chillers, which transfer the heat to another
water loop directed to a cooling tower, before returning
the chilled water back inside the datacenter. The cooling
tower helps some of the water to evaporate (dissipating
heat), before it loops back to the chillers. Chillers are
expensive and consume a large amount of energy. How-
ever, the environmental conditions inside the datacenter

Technology Temp/RH Control CAPEX PUE
Chillers Precise / Precise $2.5/W 1.7
Water-side Precise / Precise $2.8/W 1.19
Free-cooled Medium / Low $0.7/W 1.12

Table 1: Typical temperature and humidity control, CAPEX
[11], and PUEs of the cooling types [13, 34].

can be precisely controlled (except for hot spots that may
develop due to poor air flow design). Moreover, these
datacenters do not mix outside and inside air. We refer to
these datacenters as chiller-based.

An improvement over this setup allows the chillers to
be bypassed (and turned off) when the cooling towers
alone are sufficient to cool the water. Turning the chillers
off significantly reduces energy consumption. When the
cooling towers cannot lower the temperature enough, the
chillers come back on. These datacenters tightly con-
trol the internal temperature and relative humidity, like
their chiller-based counterparts. Likewise, there is still
no mixing of outside and inside air. We refer to these
datacenters as water-side economized.

A more recent advance has been to use large fans to
blow cool outside air into the datacenter, while filter-
ing out dust and other air pollutants. Again using fans,
the warm return air is guided back out of the datacen-
ter. When the outside temperature is high, these data-
centers apply an evaporative cooling process that adds
water vapor into the airstream to lower the temperature
of the outside air, before letting it reach the servers.
To increase temperature (during excessively cold peri-
ods) and/or reduce relative humidity, these datacenters
intentionally recirculate some of the warm return air.
This type of control is crucial because rapid reductions
in temperature (more than 20◦C per hour, according to
ASHRAE [4]) may cause condensation inside the data-
center. This cooling setup enables the forgoing of chillers
and cooling towers altogether, thus is the cheapest to
build. However, these datacenters may also expose the
servers to warmer and more variable temperatures, and
higher and more variable relative humidities than other
datacenter types. We refer to these datacenters as direct-
evaporative-cooled or simply free-cooled.

A survey of the popularity of these cooling infrastruc-
tures can be found in [16]. Table 1 summarizes the main
characteristics of the cooling infrastructures in terms of
their ability to control temperature and relative humidity,
and their estimated cooling infrastructure costs [11] and
PUEs. For the PUE estimates, we assume Uptime Insti-
tute’s surveyed average PUE of 1.7 [34] for chiller-based
cooling. For the water-side economization PUE, we as-
sume that the chiller only needs to be active 12.5% of the
year, i.e. during the day time in the summer. The PUE
of free-cooled datacenters depends on their locations, but
we assume a single value (1.12) for simplicity. This value
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is in line with those reported by hyperscale datacenter
operators. For example, Facebook’s free-cooled datacen-
ter in Prineville, Oregon reports an yearly average PUE
of 1.08 with peaks around 1.14 [13]. All PUE estimates
assume 4% overheads due to factors other than cooling.

Hardware lifetime models. Many prior reliability mod-
els associated component lifetime with temperature. For
example, [30] considered several CPU failure modes that
result from high temperatures. CPU manufacturers use
high temperatures and voltages to accelerate the onset of
early-life failures [30]. Disk and other electronics ven-
dors do the same to estimate mean times to failure (mean
lifetimes). The Arrhenius model is often used to calcu-
late an acceleration factor (AFT ) for the lifetime [9].

AFT = e
Ea
k ·( 1

Tb
− 1

Te
)

(1)

where Ea is the activation energy (in eV) for the device,
k is Boltzmann’s constant (8.62 · 10−5 eV/K), Tb is the
average baseline operating temperature (in K) of the de-
vice, and Te is the average elevated temperature (in K).

The acceleration factor can be used to estimate how
much higher the failure rate will be during a certain pe-
riod. For example, if the failure rate is typically 2%
over a year (i.e., 2% of the devices fail in a year) at
a baseline temperature, and the acceleration factor is 2
at a higher temperature, the estimate for the accelerated
rate will be 4% (2% × 2) for the year. In other words,
FRT = AFT ×FRT b, where FRT is the average failure
rate due to elevated temperature, and FRT b is the aver-
age failure rate at the baseline temperature. Prior works
[10, 27] have found the Arrhenius model to approximate
disk failure rates accurately, though El-Sayed et al. [10]
also found accurate linear fits to their failure data.

The Arrhenius model computes the acceleration fac-
tor assuming steady-state operation. To extrapolate the
model to periods of changing temperature, existing mod-
els compute a weighted acceleration factor, where the
weights are proportional to the length of the temperature
excursions [31]. We take this approach when proposing
our extension of the model to relative humidity and free-
cooled datacenters. Our validation of the extended model
(Section 6) shows very good accuracy for our dataset.

4 Methodology

In this section, we describe the main characteristics of
our dataset and the analyses it enables. We purposely
omit certain sensitive information about the datacenters,
such as their locations, numbers of servers, and hard-
ware vendors, due to commercial and contractual rea-
sons. Nevertheless, the data we do present is plenty to
make our points, as shall become clear in later sections.

DC
Tag Cooling Months Refresh

Cycles
Disk
Popul.

CD1 Chiller 48 2 117 K
CD2 Water-Side 48 2 146 K
CD3 Free-Cooled 27 1 24 K
HD1 Chiller 24 1 16 K
HD2 Water-Side 48 2 100 K
HH1 Free-Cooled 24 1 168 K
HH2 Free-Cooled 22 1 213 K
HH3 Free-Cooled 24 1 124 K
HH4 Free-Cooled 18 1 161 K
Total 1.07 M

Table 2: Main datacenter characteristics. The “C” and “D”
tags mean cool and dry. An “H” as the first letter of the tag
means hot, whereas an “H” as the second letter means humid.

Data sources. We collect data from nine hyperscale Mi-
crosoft datacenters spread around the world for periods
from 1.5 to 4 years. The data includes component health
and failure reports, traces of environmental conditions,
traces of component utilizations, cooling energy data,
and asset information.

The datacenters use a variety of cooling infras-
tructures, exhibiting different environmental conditions,
hardware component reliabilities, energy efficiencies,
and costs. The three first columns from the left of Table 2
show each datacenter’s tag, its cooling technology, and
the length of data we have for it. The tags correspond to
the environmental conditions inside the datacenters (see
caption for details), not their cooling technology or lo-
cation. We classify a datacenter as “hot” (“H” as the
first letter of its tag) if at least 10% of its internal tem-
peratures over a year are above 24◦C, whereas we clas-
sify it as “humid” (“H” as the second letter of the tag)
if at least 10% of its internal relative humidities over a
year are above 60%. We classify a datacenter that is not
“hot” as “cool”, and one that is not “humid” as “dry”. Al-
though admittedly arbitrary, our naming convention and
thresholds reflect the general environmental conditions
in the datacenters accurately. For example, HD1 (hot
and dry) is a state-of-the-art chiller-based datacenter that
precisely controls temperature at a high setpoint. More
interestingly, CD3 (cool and dry) is a free-cooled data-
center so its internal temperatures and relative humidities
vary more than in chiller-based datacenters. However,
because it is located in a cold region, the temperatures
and relative humidities can be kept fairly low the vast
majority of the time.

To study hardware component reliability, we gather
failure data for CPUs, memory modules (DIMMs),
power supply units (PSUs), and hard disk drives. The
two rightmost columns of Table 2 list the number of
disks we consider from each datacenter, and the number
of “refresh” cycles (servers are replaced every 3 years)
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in each datacenter. We filter the failure data for entries
with the following properties: (1) the entry was clas-
sified with a maintenance tag; (2) the component is in
either Failing or Dead state according to the datacenter-
wide health monitoring system; and (3) the entry’s error
message names the failing component. For example, a
disk error will generate either a SMART (Self-Monitoring,
Analysis, and Reporting Technology) report or a failure
to detect the disk on its known SATA port. The nature of
the error allows further classification of the underlying
failure mode.

Defining exactly when a component has failed perma-
nently is challenging in large datacenters [25, 28]. How-
ever, since many components (most importantly, hard
disks) exhibit recurring errors before failing permanently
and we do not want to double-count failures, we consider
a component to have failed on the first failure reported to
the datacenter-wide health monitoring system. This fail-
ure triggers manual intervention from a datacenter tech-
nician. After this first failure and manual repair, we count
no other failure against the component. For example, we
consider a disk to have failed on the first LSE that gets
reported to the health system and requires manual inter-
vention; this report occurs after the disk controller itself
has already silently reallocated many sectors (e.g., 2000+
sectors for many disks in our dataset). Though this fail-
ure counting may seem aggressive at first blush (a com-
ponent may survive a failure report and manual repair),
note that others [20, 25] have shown high correlations of
several types of SMART errors, like LSEs, with permanent
failures. Moreover, the disk Annualized Failure Rates
(AFRs) that we observe for chiller-based datacenters are
in line with previous works [25, 28].

Detailed analyses. To correlate the disk failures with
their environmental conditions, we use detailed data
from one of the hot and humid datacenters (HH1). The
data includes server inlet air temperature and relative hu-
midity values, as well as outside air conditions with a
granularity of 15 minutes. The dataset does not contain
the temperature of all the individual components inside
each server, or the relative humidity inside each box.
However, we can accurately use the inlet values as the
environmental conditions at the disks, because the disks
are placed at the front of the servers (right at their air in-
lets) in HH1. For certain analyses, we use CD3 and HD1
as bases for comparison against HH1. Although we do
not have information on the disks’ manufacturing batch,
our cross-datacenter comparisons focus on disks that dif-
fer mainly in their environmental conditions.

To investigate potential links between the compo-
nents’ utilizations and their failures, we collect histori-
cal average utilizations for the processors and disks in a
granularity of 2 hours, and then aggregate them into life-
time average utilization for each component.

Figure 1: HH1 temperature and relative humidity distribu-
tions. Both of these environmentals vary widely.

We built a tool to process all these failure, environ-
mental, and utilization data. After collecting, filtering,
and deduplicating the data, the tool computes the AFRs
and timelines for the component failures. With the time-
lines, it also computes daily and monthly failure rates.
For disks, the tool also breaks the failure data across
models and server configurations, and does disk error
classification. Finally, the tool derives linear and expo-
nential reliability models (via curve fitting) as a function
of environmental conditions, and checks their accuracy
versus the observed failure rates.

5 Results and Analyses

In this section, we first characterize the temperatures and
relative humidities in a free-cooled datacenter, and the
hardware component failures in the nine datacenters. We
then perform a detailed study of the impact of environ-
mental conditions on the reliability of disks. We close
the section with an analysis of the hardware reliability,
cooling energy, and cost tradeoffs.

5.1 Environmentals in free-cooled DCs
Chiller-based datacenters precisely control temperature
and relative humidity, and keep them stable at each spa-
tial spot in the datacenter. For example, HD1 exhibits a
stable 27◦C temperature and a 50% average relative hu-
midity. In contrast, the temperature and relative humid-
ity at each spatial spot in the datacenter vary under free
cooling. For example, Figure 1 shows the temperature
and relative humidity distributions measured at a spatial
spot in HH1. The average temperature is 24.5◦C (the
standard deviation is 3.2◦C) and the average relative hu-
midity is 43% (the standard deviation is 20.3%). Clearly,
HH1 exhibits wide ranges, including a large fraction of
high temperatures (greater than 24◦C) and a large frac-
tion of high relative humidities (greater than 60%).

5.2 Hardware component failures
In light of the above differences in environmental condi-
tions, an important question is whether hardware compo-
nent failures are distributed differently in different types
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DC Tag Cooling AFR Increase wrt
AFR = 1.5%

CD1 Chiller 1.5% 0%
CD2 Water-Side 2.1% 40%
CD3 Free-Cooled 1.8% 20%
HD1 Chiller 2.0% 33%
HD2 Water-Side 2.3% 53%
HH1 Free-Cooled 3.1% 107%
HH2 Free-Cooled 5.1% 240%
HH3 Free-Cooled 5.1% 240%
HH4 Free-Cooled 5.4% 260%

Table 3: Disk AFRs. HH1-HH4 incur the highest rates.

of datacenters. We omit the full results due to space lim-
itations, but highlight that disk drive failures dominate
with 76%–95% (89% on average) of all hardware com-
ponent failures, regardless of the component models, en-
vironmental conditions, and cooling technologies. As an
example, disks, DIMMs, CPUs, and PSUs correspond
to 83%, 10%, 5%, and 2% of the total failures, respec-
tively, in HH1. The other datacenters exhibit a similar
pattern. Disks also dominate in terms of failure rates,
with AFRs ranging from 1.5% to 5.4% (average 3.16%)
in our dataset. In comparison, the AFRs of DIMMs,
CPUs, and PSUs were 0.17%, 0.23%, and 0.59%, re-
spectively. Prior works had shown that disk failures are
the most common for stable environmental conditions,
e.g. [27]. Our data shows that they also dominate in
modern, hotter and more humid datacenters. Interest-
ingly, as we discuss in Section 7, the placement of the
components (e.g., disks) inside each server affects their
failure rates, since the temperature and relative humidity
vary as air flows through the server.

Given the dominance of disk failures and rates, we fo-
cus on them in the remainder of the paper.

5.3 Impact of environmentals
Disk failure rates. Table 3 presents the disk AFRs for
the datacenters we study, and how much they differ rela-
tive to the AFR of one of the datacenters with stable tem-
perature and relative humidity at each spatial spot (CD1).
We repeat the cooling technology information from Ta-
ble 2 for clarity. The data includes a small number of
disk models in each datacenter. For example, CD3 and
HD1 have two disk models, whereas HH1 has two disk
models that account for 95% of its disks. More impor-
tantly, the most popular model in CD3 (55% of the total)
and HD1 (85%) are the same. The most popular model in
HH1 (82%) is from the same disk manufacturer and se-
ries as the most popular model in CD3 and HD1, and has
the same rotational speed, bus interface, and form factor;
the only differences between the models are their stor-
age and cache capacities. In more detailed studies below,

we compare the impact of environmentals on these two
models directly.

We make several observations from these data:
1. The datacenters with consistently or frequently dry

internal environments exhibit the lowest AFRs, re-
gardless of cooling technologies. For example, CD1
and HD1 keep relative humidities stable at 50%.

2. High internal relative humidity increases AFRs by
107% (HH1) to 260% (HH4), compared to CD1.
Compared to HD1, the increases range from 55% to
170%. For example, HH1 exhibits a wide range of
relative humidities, with a large percentage of them
higher than 50% (Figure 1).

3. Free cooling does not necessarily lead to high AFR,
as CD3 shows. Depending on the local climate (and
with careful humidity control), free-cooled datacen-
ters can have AFRs as low as those of chiller-based
and water-side economized datacenters.

4. High internal temperature does not directly corre-
late to the high range of AFRs (greater than 3%), as
suggested by datacenters HD1 and HD2.

The first two of these observations are indications that
relative humidity may have a significant impact on disk
failures. We cannot state a stronger result based solely on
Table 3, because there are many differences between the
datacenters, their servers and environmental conditions.
Thus, in the next few pages, we provide more detailed
evidence that consistently points in the same direction.

Causes of disk failures. The first question then becomes
why would relative humidity affect disks if they are en-
capsulated in a sealed package? Classifying the disk fail-
ures in terms of their causes provides insights into this
question. To perform the classification, we divide the
failures into three categories [2]: (1) mechanical (pre-
fail) issues; (2) age-related issues; and (3) controller and
connectivity issues. In Table 4, we list the most com-
mon errors in our dataset. Pre-fail and old-age errors
are reported by SMART. In contrast, IOCTL ATA PASS

THROUGH (inability to issue an ioctl command to the con-
troller) and SMART RCV DRIVE DATA (inability to read
the SMART data from the controller) are generated in the
event of an unresponsive disk controller.

In Figure 2, we present the failure breakdown for the
popular disk model in HD1 (top), CD3 (middle), and
HH1 (bottom). We observe that 67% of disk failures are
associated with SMART errors in HD1. The vast majority
(65%) of these errors are pre-fail, while just 2% are old-
age errors. The remaining 33% correspond to controller
and connectivity issues. CD3 also exhibits a substantially
smaller percentage (42%) of controller and connectivity
errors than SMART errors (58%). In contrast, HH1 ex-
periences a much higher fraction of controller and con-
nectivity errors (66%). Given that HH1 runs its servers
cooler than HD1 most of the time, its two-fold increase in
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Error Name Type
IOCTL ATA PASS THROUGH Controller/Connectivity
SMART RCV DRIVE DATA Controller/Connectivity
Raw Read Error Rate Pre-fail
Spin Up Time Pre-fail
Start Stop Count Old age
Reallocated Sectors Count Pre-fail
Seek Error Rate Pre-fail
Power On Hours Old age
Spin Retry Count Pre-fail
Power Cycle Count Old age
Runtime Bad Block Old age
End-to-End Error Old age
Airflow Temperature Old age
G-Sense Error Rate Old age

Table 4: Controller/connectivity and SMART errors [2].

controller and connectivity errors (66% vs 33% in HD1)
seems to result from its higher relative humidity. To un-
derstand the reason for this effect, consider the physi-
cal design of the disks. The mechanical parts are sealed,
but the disk controller and the disk adaptor are directly
exposed to the ambient, allowing possible condensation
and corrosion agents to damage them.

The key observation here is:
5. High relative humidity seems to increase the inci-

dence of disk controller and connectivity errors, as
the controller board and the disk adaptor are ex-
posed to condensation and corrosion effects.

Temporal disk failure clustering. Several of the above
observations point to high relative humidity as an impor-
tant contributor to disk failures. Next, we present even
more striking evidence of this effect by considering the
temporal clustering of failures of disks of the same char-
acteristics and age.

Figure 3 presents the number of daily disk failures
at HD1 (in red) and HH1 (in black) for the same two-
year span. We normalize the failure numbers to the size
of HD1’s disk population to account for the large dif-
ference in population sizes. The green-to-red gradient
band across the graph shows the temperature and humid-
ity within HH1. The figure shows significant temporal
clustering in the summer of 2013, when relative humid-
ity at HH1 was frequently very high. Technicians found
corrosion on the failed disks. The vast majority of the
clustered HH1 failures were from disks of the same pop-
ular model; the disks had been installed within a few
months of each other, 1 year earlier. Moreover, the figure
shows increased numbers of daily failures in HH1 after
the summer of 2013, compared to before it.

In more detail, we find that the HD1 failures were
roughly evenly distributed with occasional spikes. The
exact cause of the spikes is unclear. In contrast, HH1
shows a slightly lower failure rate in the first 12 months

Figure 2: Failure classification in HD1 (top), CD3 (middle),
and HH1 (bottom). Controller/connectivity failures in HH1 are
double compared to HD1.

of its life, followed by a 3-month period of approxi-
mately 4x–5x higher daily failure rate. These months
correspond to the summer, when the outside air tempera-
ture at HH1’s location is often high. When the outside air
is hot but dry, HH1 adds moisture to the incoming air to
lower its temperature via evaporation. When the outside
air is hot and humid, this humidity enters the datacenter
directly, increasing relative humidity, as the datacenter’s
ability to recirculate heat is limited by the already high
air temperature. As a result, relative humidity may be
high frequently during hot periods.

We make three observations from these HH1 results:
6. High relative humidity may cause significant tem-

poral clustering of disk failures, with potential con-
sequences in terms of the needed frequency of man-
ual maintenance/replacement and automatic data
durability repairs during these periods.

7. The temporal clustering occurred in the second
summer of the disks’ lifetimes, suggesting that they
did not fail simply because they were first exposed
to high relative humidity. Rather, this temporal be-
havior suggests a disk lifetime model where high
relative humidity excursions consume lifetime at
a rate corresponding to their duration and magni-
tude. The amount of lifetime consumption during
the summer of 2012 was not enough to cause an in-
creased rate of failures; the additional consumption
during the summer of 2013 was. This makes in-
tuitive sense: it takes time (at a corrosion rate we
model) for relative humidity (and temperature) to
produce enough corrosion to cause hardware mis-
behavior. Our relative humidity modeling in Sec-
tion 6 embodies the notion of lifetime consumption
and matches our data well. A similar lifetime model
has been proposed for high disk temperature [31].

8. The increased daily failures after the second sum-
mer provide extra evidence for the lifetime con-
sumption model and the long-term effect of high
relative humidity.

Correlating disk failures and environmentals. So far,
our observations have listed several indications that rel-
ative humidity is a key disk reliability factor. However,
one of our key goals is to determine the relative impact of
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Figure 3: Two-year comparison between HD1 and HH1 daily failures. The horizontal band shows the outside temperature and
relative humidity at HH1. HH1 experienced temporally clustered failures during summer’13, when the relative humidities were
high. We normalized the data to the HD1 failures due to the different numbers of disks in these datacenters.

the four related environmental conditions: absolute tem-
perature, relative humidity, temperature variation, and
relative humidity variation.

In Table 5, we present both linear and exponential fits
of the monthly failure rates for HH1, as a function of
our four environmental condition metrics. For example,
when seeking a fit for relative humidity, we use x = the
average relative humidity experienced by the failed disks
during a month, and y = the failure rate for that month.
Besides the parameter fits, we also present R2 as an es-
timate of the fit error. The exponential fit corresponds
to a model similar to the Arrhenius equation (Equation
1). We use the disks’ temperature and relative humid-
ity Coefficient of Variation (CoV) to represent temporal
temperature and relative humidity variations. (The ad-
vantage of the CoV over the variance or the standard de-
viation is that it is normalized by the average.) El-Sayed
et al. [10] studied the same types of fits for their data,
and also used CoVs to represent variations. Note that
we split HH1’s disk population into four groups (P1–P4)
roughly corresponding to the spatial location of the disks
in the datacenter; this accounts for potential environmen-
tal differences across cold aisles.

We can see that the relative humidity consistently ex-
hibits positive correlations with failure rates, by consid-
ering the a parameter in the linear fit and the b parameter
in the exponential fit. This positive correlation means
that the failure rate increases when the relative humid-
ity increases. In contrast, the other environmental condi-
tions either show some or almost all negative parameters,
suggesting much weaker correlations.

Interestingly, the temperature CoVs and the relative
humidity CoVs suggest mostly negative correlations
with the failure rate. This is antithetical to the physi-
cal stresses that these variations would be expected to
produce. To explain this effect most clearly, we plot
two correlation matrices in Figure 4 for the most pop-
ular disk model in HH1. The figure illustrates the corre-
lations between all environmental condition metrics and

the monthly failure rate. To derive these correlations, we
use (1) the Pearson product-moment correlation coeffi-
cient, as a measure of linear dependence; and (2) Spear-
man’s rank correlation coefficient, as a measure of non-
linear dependence. The color scheme indicates the cor-
relation between each pair of metrics. The diagonal el-
ements have a correlation equal to one as they repre-
sent dependence between the same metric. As before, a
positive correlation indicates an analogous relationship,
whereas a negative correlation indicates an inverse rela-
tionship. These matrices show that the CoVs are strongly
negatively correlated (correlations close to -1) with aver-
age relative humidity. This implies that the periods with
higher temperature and relative humidity variations are
also the periods with low relative humidity, providing ex-
tended lifetime.

For completeness, we also considered the impact of
average disk utilization on lifetime, but found no corre-
lation. This is consistent with prior work, e.g. [25].

From the figures and table above, we observe that:
9. Average relative humidity seems to have the

strongest impact on disk lifetime of all the environ-
mental condition metrics we consider.

10. Average temperature seems to have a substantially
lower (but still non-negligible) impact than average
relative humidity on disk lifetime.

11. Our dataset includes no evidence that temperature
variation or relative humidity variation has an effect
on disk reliability in free-cooled datacenters.

5.4 Trading off reliability, energy, and cost

The previous section indicates that higher relative hu-
midity appears to produce shorter lifetimes and, con-
sequently, higher equipment costs (maintenance/repair
costs tend to be small compared to the other TCO fac-
tors, so we do not consider them. However, the set of
tradeoffs is broader. Higher humidity results from free
cooling in certain geographies, but this type of cooling
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Popul. %
Linear Fit a · x+b

Temperature RH CoV - Temperature CoV - RH
a b R2 a b R2 a b R2 a b R2

P1 30.1 5.17 ·10−5 −2.43 ·10−3 0.81 1.20 ·10−4 −4.88 ·10−3 0.83 −7.90 ·10−3 1.14 ·10−3 0.83 −6.56 ·10−3 3.29 ·10−3 0.84
P2 25.6 −1.91 ·10−5 2.46 ·10−3 0.83 1.03 ·10−4 −1.73 ·10−3 0.84 −9.06 ·10−3 1.28 ·10−3 0.84 −3.71 ·10−3 1.98 ·10−3 0.83
P3 23.3 1.41 ·10−3 −1.04 ·10−1 0.75 2.11 ·10−4 −5.59 ·10−3 0.71 −4.91 ·10−2 7.26 ·10−2 0.77 −4.46 ·10−2 2.42 ·10−2 0.78
P4 19.6 1.73 ·10−3 −1.07 ·10−1 0.36 4.45 ·10−4 −16.4 ·10−3 0.44 −1.36 ·10−1 1.33 ·10−2 0.47 −8.02 ·10−2 4.13 ·10−2 0.55

Popul. %
Exponential Fit a · eb·x

Temperature RH CoV - Temperature CoV - RH
a b R2 a b R2 a b R2 a b R2

P1 30.1 2.38 ·10−3 −6.45 ·10−3 0.84 2.67 ·10−4 5.11 ·10−2 0.89 2.06 ·10−3 −1.74 ·100 0.72 1.74 ·10−2 −9.01 ·100 0.81
P2 25.6 3.08 ·10−3 −1.64 ·10−2 0.85 5.37 ·10−4 5.38 ·10−2 0.88 1.84 ·10−3 −1.09 ·101 0.79 1.37 ·10−2 −1.63 ·101 0.81
P3 23.3 2.57 ·10−3 6.35 ·10−3 0.76 5.31 ·10−5 9.93 ·10−2 0.69 5.13 ·10−3 −8.45 ·100 0.58 1.66 ·10−3 3.57 ·100 0.57
P4 19.6 3.62 ·10−4 3.36 ·10−2 0.43 1.31 ·10−5 11.54 ·10−2 0.59 6.10 ·10−3 −3.91 ·100 0.23 7.17 ·10−3 −1.39 ·100 0.21

Table 5: Linear (a · x+b) and nonlinear (a · eb·x) fits for the monthly failure rates of four disk populations in HH1, as a function of
the absolute temperature, relative humidity, temperature variation, and relative humidity variation.

Figure 4: Linear and non-linear correlation between the
monthly failure rate and the environmental conditions we con-
sider, for the most popular disk model in HH1. red = high
correlation, dark blue = low correlation.

also improves energy efficiency and lowers both capital
and operating costs.

Putting all these effects together, in Figure 5 we com-
pare the cooling-related (capital + operational + disk re-
placement) costs for a chiller-based (CD1), a water-side
economized (HD2), and a free-cooled datacenter (HH4).
For the disk replacement costs, we consider only the
cost above that of a 1.5% AFR (the AFR of CD1), so
the chiller-based bars do not include these costs. We
use HD2 and HH4 datacenters for this figure because
they exhibit the highest disk AFRs in their categories;
they represent the worst-case disk replacement costs for
their respective datacenter classes. We use the PUEs and
CAPEX estimates from Table 1, and estimate the cool-
ing energy cost assuming $0.07/kWh for the electric-
ity price (the average industrial electricity price in the
United States). We also assume that the datacenter oper-
ator brunts the cost of replacing each failed disk, which
we assume to be $100, by having to buy the extra disk
(as opposed to simply paying a slightly more expensive
warranty). We perform the cost comparison for 10, 15,
and 20 years, as the datacenter lifetime.

The figure shows that, for a lifetime of 10 years, the
cooling cost of the chiller-based datacenter is roughly
balanced between capital and operating expenses. For
a lifetime of 15 years, the operational cooling cost be-
comes the larger fraction, whereas for 20 years it be-

Figure 5: 10, 15, and 20-year cost comparison for chiller-
based, water-side, and free-cooled datacenters including the
cost replacing disks.

comes roughly 75% of the total cooling-related costs.
In comparison, water-side economized datacenters have
slightly higher capital cooling costs than chiller-based
ones. However, their operational cooling costs are sub-
stantially lower, because of the periods when the chillers
can be bypassed (and turned off). Though these data-
centers may lead to slightly higher AFRs, the savings
from lower operational cooling costs more than compen-
sate for the slight disk replacement costs. In fact, the
fully burdened cost of replacing a disk would have to
be several fold higher than $100 (which is unlikely) for
replacement costs to dominate. Finally, the free-cooled
datacenter exhibits lower capital cooling costs (by 3.6x)
and operational cooling costs (by 8.3x) than the chiller-
based datacenter. Because of these datacenters’ some-
times higher AFRs, their disk replacement costs may be
non-trivial, but the overall cost tradeoff is still clearly
in their favor. For 20 years, the free-cooled datacen-
ter exhibits overall cooling-related costs that are roughly
74% and 45% lower than the chiller-based and water-side
economized datacenters, respectively.

Based on this figure, we observe that:
12. Although operating at higher humidity may entail

substantially higher component AFRs in certain ge-
ographies, the cost of this increase is small com-
pared to the savings from reducing energy con-
sumption and infrastructure costs via free cooling,
especially for longer lifetimes.
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Figure 6: Normalized daily failures in CD1 over 4 years. In-
fant mortality seems clear.

6 Modeling Lifetime in Modern DCs

Models of hardware component lifetime have been used
extensively in industry and academia to understand and
predict failures, e.g. [9, 29, 30]. In the context of a dat-
acenter, which hosts hundreds of thousands of compo-
nents, modeling lifetimes is important to select the con-
ditions under which datacenters should operate and pre-
pare for the unavoidable failures. Because disk drives
fail much more frequently than other components, they
typically receive the most modeling attention. The two
most commonly used disk lifetime models are the bath-
tub model and the failure acceleration model based on
the Arrhenius equation (Equation 1). The latter acceler-
ation model does not consider the impact of relative hu-
midity, which has only become a significant factor after
the advent of free cooling (Section 5.3).

Bathtub model. This model abstracts the lifetime
of large component populations as three consecutive
phases: (1) in the first phase, a significant number of
components fail prematurely (infant mortality); (2) the
second phase is a stable period of lower failure rate; and
(3) in the third phase, component failure increase again
due to wear-out effects. We clearly observe infant mor-
tality in some datacenters but not others, depending on
disk model/vendor. For example, Figure 3 does not show
any obvious infant mortality in HH1. The same is the
case of CD3. (Prior works have also observed the ab-
sence of infant mortality in certain cases, e.g. [28].) In
contrast, CD1 uses disks from a different vendor and
does show clear infant mortality. Figure 6 shows the
normalized number of daily failures over a period of 4
years in CD1. This length of time implies 1 server refresh
(which happened after 3 years of operation). The figure
clearly shows 2 spikes of temporally clustered failures:
one group 8 months after the first server deployment, and
another 9 months after the first server refresh. A full de-
ployment/refresh may take roughly 3 months, so the first
group of disks may have failed 5-8 months after deploy-
ment, and the second 6-9 months after deployment.

A new disk lifetime model for free-cooled datacenters.
Section 5.3 uses multiple sources of evidence to argue
that relative humidity has a significant impact on hard-

ware reliability in humid free-cooled datacenters. The
section also classifies the disk failures into two main
groups: SMART and controller/connectivity. Thus, we
extend the acceleration model above to include relative
humidity, and recognize that there are two main disk life-
time processes in free-cooled datacenters: (1) one that af-
fects the disk mechanics and SMART-related errors; and
(2) another that affects its controller/connector.

We model process #1 as the Arrhenius acceleration
factor, i.e. AF1 = AFT (we define AFT in Equation 1),
as has been done in the past [10, 27]. For process #2,
we model the corrosion rate due to high relative humidity
and temperature, as both of them are known to affect cor-
rosion [33]. Prior works have devised models allowing
for more than one accelerating variable [12]. A general
such model extends the Arrhenius failure rate to account
for relative humidity, and compute a corrosion rate CR:

CR(T ,RH) = const · e(−Ea
k·T ) · e(b·RH)+( c·RH

k·T ) (2)

where T is the average temperature, RH is the average
relative humidity, Ea is the temperature activation energy,
k is Boltzmann’s constant, and const, b, and c are other
constants. Peck empirically found an accurate model that
assumes c = 0 [24], and we make the same assumption.
Intuitively, Equation 2 exponentially relates the corro-
sion rate with both temperature and relative humidity.

One can now compute the acceleration factor AF2 by
dividing the corrosion rate at the elevated temperature
and relative humidity CR(Te,RHe) by the same rate at the
baseline temperature and relative humidity CR(Tb,RHb).
Essentially, AF2 calculates how much faster disks will
fail due to the combined effects of these environmentals.
This division produces:

AF2 = AFT ·AFRH (3)

where AFRH = eb·(RHe−RHb) and AFT is from Equation 1.
Now, we can compute the compound average failure

rate FR as AF1 ·FR1b +AF2 ·FR2b, where FR1b is the
average mechanical failure rate at the baseline tempera-
ture, and FR2b is the average controller/connector fail-
ure rate at the baseline relative humidity and tempera-
ture. The rationale for this formulation is that the two
failure processes proceed in parallel, and a disk’s con-
troller/connector would not fail at exactly the same time
as its other components; AF1 estimates the extra failures
due to mechanical/SMART issues, and AF2 estimates the
extra failures due to controller/connectivity issues.

To account for varying temperature and relative hu-
midity, we also weight the factors based on the dura-
tion of those temperatures and relative humidities. Other
works have used weighted acceleration factors, e.g. [31].
For simplicity in the monitoring of these environmentals,
we can use the average temperature and average relative
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Figure 7: AFR prediction using our new disk lifetime model
and the environmental conditions from HH1.

humidity per unit of time (e.g., hour, day) and compute
the compound acceleration as a function of time t:

FR(t) = AF1(t) ·FR1b(t)+AF2(t) ·FR2b(t) (4)

Model validation. We validate our disk lifetime model
using real temperature, relative humidity, and daily fail-
ure rate data from HH1. (In the next section, we also
validate it for CD3.) We use daily failure rates as they
are finer grained than annualized failure rates and cap-
ture the underlying processes well.

Since ours is an acceleration model, we need to build
it on a baseline failure rate. Unfortunately, our dataset
does not include data that we could use as such a baseline
(e.g., daily failure rates for a datacenter that keeps tem-
perature and relative humidity consistently low and uses
the same disk model as HH1). Instead of this data, we
use daily failure rates derived from Equation 4 with tem-
perature and relative humidity fixed at 20◦C and 30%,
respectively. For this baseline, we use Ea = 0.46 as com-
puted by Sankar et al. [27], and b = 0.0455 as we de-
rive from the copper corrosion rate measured by Rice et
al. [26]. These values produce an AFR = 1.5%, and an
average daily failure rate of 1.5%/365.

Using the actual temperatures and relative humidities
of HH1, we apply our acceleration model to the baseline
average daily failure rate. We train the model with data
for populations P2 and P3 (for these data, b = 0.0652),
and validate the results with data from P1 and P4. We
do not include any infant mortality effects, because HH1
does not exhibit them. If desired, infant mortality can
be modeled using a Weibull distribution, as other authors
have done, e.g. [28].

Figure 7 shows the predicted acceleration factors, pre-
dicted daily failure rates, and the baseline failure rate
over 2 years, starting in the beginning of the summer.
Based on the daily baseline and acceleration factors, we
compute the predicted daily failure rates and depict them
with the red curve. These results show that our model is
accurate: from the red curve, we compute the predicted
disk AFR for P1 and P4 to be 3.04%, whereas the real
AFR for these populations is 3.18%.

As one would expect from Section 5.3, the relative hu-
midity contributes the most to the accuracy of the model.

Removing the temperature components from the acceler-
ation factors shows that it accounts for only 8.12% of the
predicted AFR. Previous models (which are based solely
on temperature) predict no increase in failure rates with
respect to a baseline of 1.5%. Thus, models that do not
account for relative humidity severely underestimate the
corresponding failure rates.

7 Design Lessons

We next derive design lessons for servers and datacen-
ters. We start by using our acceleration model to discuss
different server layouts, and then discuss the implications
of our findings to the placement, design, and manage-
ment of datacenters.

Server design lessons. Our discussion of server designs
relies on two main observations: (1) high relative humid-
ity tends to produce more disk failures, as we have seen
so far; and (2) higher temperature leads to lower relative
humidity, given a constant amount of moisture in the air.
These observations suggest that the layout of the disks
within a server blade or enclosure may have a significant
impact on its reliability in free-cooled datacenters.

To see this, consider Figure 8, where we present three
possible layouts for a two-socket server blade. Our
dataset has examples of all these layouts. In Figures 8(a)
and (c), the disks are not exposed to the heat generated
by the processors and memory DIMMs. This means that
the relative humidity to which the disks will be exposed
is roughly the same as that in the server’s air inlet. In con-
trast, in Figure 8(b), the disks will be exposed to lower
relative humidity, as they are placed downstream from
the processors and DIMMs. The difference in relative
humidity in this layout can be significant.

To demonstrate this difference, we consider the inlet
air temperature and relative humidity data from CD3, in
which the server blades have the layout of Figure 8(b).
This datacenter exhibits average inlet air temperatures
of 19.9◦C, leading to a much higher air temperature of
roughly 42◦C at the disks. Given these temperatures and
an average inlet relative humidity of 44.1%, psychomet-
rics calculations show that the average relative humidity
at the disks would be only 13%. This is one of the rea-
sons that CD3 exhibits such a low AFR. In fact, given
this adjusted temperature and relative humidity, our ac-
celeration model produces an accurate prediction of the
AFR: 1.75% versus the real AFR of 1.8%.

In contrast with CD3, HH1 uses server blades with the
layout in Figure 8(a). As HH1 exhibits a wider range of
temperatures and relative humidities than CD3, we com-
pute what the maximum relative humidity at any disk
across the entire range of air temperatures would be at
the back to the servers. The maximum values would be



64 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Figure 8: The server blade designs. Server designs with disks
near the air exhaust lower their AFRs.

27% and 54.4◦C at the disks. These values suggest that
relative humidity should no longer have an impact on the
AFR, while temperature should have a stronger impact.
Overall, our model predicts AFR = 2.7%, instead of the
actual AFR = 3.1% with disks in the front. Thus, chang-
ing the server layout in HH1 would decrease the impor-
tance of the relative humidity, increase the importance of
temperature, but still produce a substantially lower AFR.

Obviously, placing disks at the back of servers could
cause other components to experience higher relative hu-
midity. Memory DIMMs would perhaps be the most rel-
evant concern, as they also have exposed connectors. To
prevent increases in AFR, DIMMs may be placed down-
stream from CPUs, which are the components most re-
sponsible for lowering relative humidity. Clearly, the full
AFR and cost implications of the different layouts need
to be understood, especially in free-cooled datacenters.

Datacenter lessons. As we argue in Section 5.4, free
cooling reduces capital and operational cooling expenses
significantly compared to other approaches. These sav-
ings may come at the cost of higher AFRs, depending on
the outside environmental conditions at the datacenter’s
location. Fortunately, the server design lessons above
suggest that organizations can lower the disk AFR of
their hot and humid datacenters by simply using server
designs in which the disks are placed in the back.

In fact, since high relative humidity seems much more
harmful than high temperature, operators may consider
running their datacenters somewhat hotter in the summer,
instead of increasing the relative humidity to keep the
temperature lower. Obviously, this has to be done care-
fully, since our observations and inferences apply only to
the conditions that our datacenters have experienced.

Another important lesson involves data availabil-
ity/reliability. Clearly, a higher disk AFR could require
the datacenter software (i.e., its online services and/or
management systems) to manage data redundancy more
aggressively. Fortunately, this does not pose a serious
problem for at least two reasons: (1) in large datacenters
with hundreds of thousands of hardware components,
failures are a common occurrence, so software is already
capable of tolerating them via data redundancy within
or across datacenters; (2) the increases in disk AFR that
may result from using free cooling at challenging loca-
tions (roughly 3x in our dataset) are not large enough
that they would threaten the reliability of data stored by
these datacenters. In the worst case, the software would
add slightly more redundancy to the data (disk space has
negligible cost per bit, compared to other TCO factors).
Nevertheless, if software cannot manage the impact of
the higher AFRs, datacenter operators must tightly con-
trol the relative humidity and site their datacenters in lo-
cations where this is more easily accomplished.

8 Conclusions

In this paper, we studied the impact of environmental
conditions on the reliability of disk drives from nine data-
centers. We also explored the tradeoffs between environ-
mental conditions, energy consumption, and datacenter
costs. Based on these analyses, we proposed and vali-
dated a new disk lifetime model that is particularly use-
ful for free-cooled datacenters. Using the model and our
data, we derived server and datacenter design lessons.

Based on our experience and observations, we con-
clude that high relative humidity degrades reliability sig-
nificantly, having a much more substantial impact than
temperature or temperature variation. Thus, the design of
free-cooled datacenters and their servers must consider
the relative humidity to which components are exposed
as a first-class issue. Organizations that operate datacen-
ters with different cooling technologies in multiple ge-
ographies can select the conditions under which their ser-
vices strike the right tradeoff between energy consump-
tion, hardware reliability, cost, and quality of service.
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Abstract
As solid state drives based on flash technology are be-
coming a staple for persistent data storage in data centers,
it is important to understand their reliability characteris-
tics. While there is a large body of work based on ex-
periments with individual flash chips in a controlled lab
environment under synthetic workloads, there is a dearth
of information on their behavior in the field. This paper
provides a large-scale field study covering many millions
of drive days, ten different drive models, different flash
technologies (MLC, eMLC, SLC) over 6 years of pro-
duction use in Google’s data centers. We study a wide
range of reliability characteristics and come to a number
of unexpected conclusions. For example, raw bit error
rates (RBER) grow at a much slower rate with wear-out
than the exponential rate commonly assumed and, more
importantly, they are not predictive of uncorrectable er-
rors or other error modes. The widely used metric UBER
(uncorrectable bit error rate) is not a meaningful metric,
since we see no correlation between the number of reads
and the number of uncorrectable errors. We see no evi-
dence that higher-end SLC drives are more reliable than
MLC drives within typical drive lifetimes. Comparing
with traditional hard disk drives, flash drives have a sig-
nificantly lower replacement rate in the field, however,
they have a higher rate of uncorrectable errors.

1 Introduction
The use of solid state drives based on NAND flash
technology in data center servers is continuously grow-
ing. As more data lives on flash, data durability and
availability critically depend on flash reliability. While
it is widely understood that flash drives offer substan-
tial performance improvements relative to hard disk
drives, their failure characteristics are not well under-
stood. The datasheets that manufacturers provide only
contain vague guarantees, such as the number of times a
flash chip can be erased before wearing out. Our current
understanding is based on work that studies flash relia-

bility in controlled lab experiments (such as accelerated
life tests), using a small population of raw flash chips un-
der synthetic workloads. There is a dearth of studies that
report on the reliability of flash drives and their failure
characteristics in large-scale production use in the field.

This paper provides a detailed field study of flash reli-
ability based on data collected over 6 years of production
use in Google’s data centers. The data spans many mil-
lions of drive days 1, ten different drive models, different
flash technologies (MLC, eMLC and SLC) and feature
sizes (ranging from 24nm to 50nm). We use this data
to provide a better understanding of flash reliability in
production. In particular, our contributions include a de-
tailed analysis of the following aspects of flash reliability
in the field:

1. The different types of errors experienced by flash
drives and their frequency in the field (Section 3).

2. Raw bit error rates (RBER), how they are affected
by factors such as wear-out, age and workload, and
their relationship with other types of errors (Sec-
tion 4).

3. Uncorrectable errors, their frequency and how they
are affected by various factors (Section 5).

4. The field characteristics of different types of hard-
ware failure, including block failures, chip fail-
ures and the rates of repair and replacement of
drives (Section 6).

5. A comparison of the reliability of different flash
technologies (MLC, eMLC, SLC drives) in Sec-
tions 7, and between flash drives and hard disk
drives in Section 8.

As we will see, our analysis uncovers a number of as-
pects of flash reliability in the field that are different from
common assumptions and reports in prior work, and will
hopefully motivate further work in this area.

1The size of their fleet and the number of devices in it is considered
confidential at Google, so we can not provide precise numbers. We
are making sure throughout this work that the reported numbers are
statistically significant.
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Model name MLC-A MLC-B MLC-C MLC-D SLC-A SLC-B SLC-C SLC-D eMLC-A eMLC-B
Generation 1 1 1 1 1 1 1 1 2 2
Vendor I II I I I I III I I IV
Flash type MLC MLC MLC MLC SLC SLC SLC SLC eMLC eMLC
Lithography (nm) 50 43 50 50 34 50 50 34 25 32
Capacity 480GB 480GB 480GB 480GB 480GB 480GB 480GB 960GB 2TB 2TB
PE cycle limit 3,000 3,000 3,000 3,000 100,000 100,000 100,000 100,000 10,000 10,000
Avg. PE cycles 730 949 529 544 860 504 457 185 607 377

Table 1: Overview of drive models

2 Background on data and systems
2.1 The flash drives
The drives in our study are custom designed high perfor-
mance solid state drives, which are based on commodity
flash chips, but use a custom PCIe interface, firmware
and driver. We focus on two generations of drives, where
all drives of the same generation use the same device
driver and firmware. That means that they also use the
same error correcting codes (ECC) to detect and cor-
rect corrupted bits and the same algorithms for wear-
levelling. The main difference between different drive
models of the same generation is the type of flash chips
they comprise.

Our study focuses on the 10 drive models, whose key
features are summarized in Table 1. Those models were
chosen as they each span millions of drive days, comprise
chips from four different flash vendors, and cover the
three most common types of flash (MLC, SLC, eMLC).

2.2 The data
The data was collected over a 6-year period and contains
for each drive aggregated monitoring data for each day
the drive was in the field. Besides daily counts for a va-
riety of different types of errors, the data also includes
daily workload statistics, including the number of read,
write, and erase operations, and the number of bad blocks
developed during that day. The number of read, write,
and erase operations includes user-issued operations, as
well as internal operations due to garbage collection. An-
other log records when a chip was declared failed and
when a drive was being swapped to be repaired.

3 Prevalence of different error types
We begin with some baseline statistics on the frequency
of different types of errors in the field. We distinguish
transparent errors, which the drive can mask from the
user, and non-transparent errors, which will lead to a
failed user operation. The device driver of the flash
drives reports the following transparent types of errors:

Correctable error: During a read operation an error is
detected and corrected by the drive internal ECC (error
correcting code).

Read error: A read operation experiences a (non-ECC)
error, but after retrying it succeeds.
Write error: A write operation experiences an error, but
after retrying the operation succeeds.
Erase error: An erase operation on a block fails.

The devices report the following types of non-
transparent errors:
Uncorrectable error: A read operation encounters more
corrupted bits than the ECC can correct.
Final read error: A read operation experiences an error,
and even after retries the error persists.
Final write error: A write operation experiences an error
that persists even after retries.
Meta error: An error accessing drive-internal metadata.
Timeout error: An operation timed out after 3 seconds.

Uncorrectable errors include errors that were detected
either during user-initiated operations or internal opera-
tions due to garbage collection, while final read errors
include only errors encountered during user operations.

Note that errors vary in the severity of their possible
impact. Besides the distinction between transparent and
non-transparent errors, the severity of non-transparent er-
rors varies. In particular, some of these errors (final read
error, uncorrectable error, meta error) lead to data loss,
unless there is redundancy at higher levels in the system,
as the drive is not able to deliver data that it had previ-
ously stored.

We consider only drives that were put into production
at least 4 years ago (for eMLC drives 3 years ago, as they
are more recent drives), and include any errors that they
experienced during their first 4 years in the field. Table 2
reports for each error type the fraction of drives for each
model that experienced at least one error of that type (top
half of table) and the fraction of drives days that had an
error of that type (bottom half of table).

3.1 Non-transparent errors
We find that the most common non-transparent errors
are final read errors, i.e. read errors that cannot be re-
solved even after retrying the operation. Depending on
the model, between 20-63% of drives experience at least
one such error and between 2-6 out of 1,000 drive days
are affected. We find that the count of final read errors

2
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Model name MLC-A MLC-B MLC-C MLC-D SLC-A SLC-B SLC-C SLC-D eMLC-A eMLC-B
Fraction of drives affected by different types of errors

final read error 2.63e-01 5.64e-01 3.25e-01 3.17e-01 5.08e-01 2.66e-01 1.91e-01 6.27e-01 1.09e-01 1.27e-01
uncorrectable error 2.66e-01 5.75e-01 3.24e-01 3.24e-01 5.03e-01 2.84e-01 2.03e-01 6.34e-01 8.63e-01 9.05e-01
final write error 1.73e-02 2.11e-02 1.28e-02 1.85e-02 2.39e-02 2.33e-02 9.69e-03 5.67e-03 5.20e-02 3.16e-02
meta error 9.83e-03 7.97e-03 9.89e-03 1.93e-02 1.33e-02 3.68e-02 2.06e-02 7.04e-03 0.00e+00 0.00e+00
timeout error 5.68e-03 9.17e-03 5.70e-03 8.21e-03 1.64e-02 1.15e-02 8.47e-03 5.08e-03 0.00e+00 0.00e+00
response error 7.95e-04 3.90e-03 1.29e-03 1.88e-03 4.97e-03 2.08e-03 0.00e+00 9.78e-04 1.97e-03 8.76e-04
correctable error 9.89e-01 9.98e-01 9.96e-01 9.91e-01 9.99e-01 9.61e-01 9.72e-01 9.97e-01 9.97e-01 9.94e-01
read error 8.64e-03 1.46e-02 9.67e-03 1.12e-02 1.29e-02 1.77e-02 6.05e-03 1.02e-02 2.61e-01 2.23e-01
write error 6.37e-02 5.61e-01 6.11e-02 6.40e-02 1.30e-01 1.11e-01 4.21e-01 9.83e-02 5.46e-02 2.65e-01
erase error 1.30e-01 3.91e-01 9.70e-02 1.26e-01 6.27e-02 3.91e-01 6.84e-01 4.81e-02 1.41e-01 9.38e-02

Fraction of drive days affected by different types of errors
final read error 1.02e-03 1.54e-03 1.78e-03 1.39e-03 1.06e-03 9.90e-04 7.99e-04 4.44e-03 1.67e-04 2.93e-04
uncorrectable error 2.14e-03 1.99e-03 2.51e-03 2.28e-03 1.35e-03 2.06e-03 2.96e-03 6.07e-03 8.35e-03 7.82e-03
final write error 2.67e-05 2.13e-05 1.70e-05 3.23e-05 2.63e-05 4.21e-05 1.21e-05 9.42e-06 1.06e-04 6.40e-05
meta error 1.32e-05 1.18e-05 1.16e-05 3.44e-05 1.28e-05 5.05e-05 3.62e-05 1.02e-05 0.00e+00 0.00e+00
timeout error 7.52e-06 9.45e-06 7.38e-06 1.31e-05 1.73e-05 1.56e-05 1.06e-05 8.88e-06 0.00e+00 0.00e+00
response error 7.43e-07 3.45e-06 2.77e-06 2.08e-06 4.45e-06 3.61e-06 0.00e+00 2.69e-06 2.05e-06 1.11e-06
correctable error 8.27e-01 7.53e-01 8.49e-01 7.33e-01 7.75e-01 6.13e-01 6.48e-01 9.00e-01 9.38e-01 9.24e-01
read error 7.94e-05 2.75e-05 3.83e-05 7.19e-05 3.07e-05 5.85e-05 1.36e-05 2.91e-05 2.81e-03 5.10e-03
write error 1.12e-04 1.40e-03 1.28e-04 1.52e-04 2.40e-04 2.93e-04 1.21e-03 4.80e-04 2.07e-04 4.78e-04
erase error 2.63e-04 5.34e-04 1.67e-04 3.79e-04 1.12e-04 1.30e-03 4.16e-03 1.88e-04 3.53e-04 4.36e-04

Table 2: The prevalence of different types of errors. The top half of the table shows the fraction of drives affected by
each type of error, and the bottom half the fraction of drive days affected.

and that of uncorrectable errors is strongly correlated and
conclude that these final read errors are almost exclu-
sively due to bit corruptions beyond what the ECC can
correct. For all drive models, final read errors are around
two orders of magnitude more frequent (in terms of the
number of drive days they affect) than any of the other
non-transparent types of errors.

In contrast to read errors, write errors rarely turn into
non-transparent errors. Depending on the model, 1.5-
2.5% of drives and 1-4 out of 10,000 drive days experi-
ence a final write error, i.e. a failed write operation that
did not succeed even after retries. The difference in the
frequency of final read and final write errors is likely due
to the fact that a failed write will be retried at other drive
locations. So while a failed read might be caused by only
a few unreliable cells on the page to be read, a final write
error indicates a larger scale hardware problem.

Meta errors happen at a frequency comparable to write
errors, but again at a much lower frequency than final
read errors. This might not be surprising given that a
drive contains much less meta-data than real data, which
lowers the chance of encountering an error accessing
meta data. Other non-transparent errors (timeout and re-
sponse errors) are rare, typically affecting less than 1%
of drives and less than 1 in 100,000 drive days.

3.2 Transparent errors
Maybe not surprisingly, we find that correctable errors
are the most common type of transparent error. Virtually
all drives have at least some correctable errors, and the
majority of drive days (61-90%) experience correctable

errors. We discuss correctable errors, including a study
of raw bit error rates (RBER), in more detail in Section 4.

The next most common transparent types of error are
write errors and erase errors. They typically affect 6-10%
of drives, but for some models as many as 40-68% of
drives. Generally less than 5 in 10,000 days experience
those errors. The drives in our study view write and erase
errors as an indication of a block failure, a failure type
that we will study more closely in Section 6.

Errors encountered during a read operations are rarely
transparent, likely because they are due to bit corruption
beyond what ECC can correct, a problem that is not fix-
able through retries. Non-final read errors, i.e. read er-
rors that can be recovered by retries, affect less than 2%
of drives and less than 2-8 in 100,000 drive days.

In summary, besides correctable errors, which affect
the majority of drive days, transparent errors are rare in
comparison to all types of non-transparent errors. The
most common type of non-transparent errors are uncor-
rectable errors, which affect 2–6 out of 1,000 drive days.

4 Raw bit error rates (RBER)
The standard metric to evaluate flash reliability is the raw
bit error rate (RBER) of a drive, defined as the number
of corrupted bits per number of total bits read (including
correctable as well as uncorrectable corruption events).
The second generation of drives (i.e. models eMLC-A
and eMLC-B) produce precise counts of the number of
corrupted bits and the number of bits read, allowing us
to accurately determine RBER. The first generation of

3
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Model name MLC-A MLC-B MLC-C MLC-D SLC-A SLC-B SLC-C SLC-D eMLC-A eMLC-B
Median RBER 2.1e-08 3.2e-08 2.2e-08 2.4e-08 5.4e-09 6.0 e-10 5.8 e-10 8.5 -09 1.0 e-05 2.9 e-06
95%ile RBER 2.2e-06 4.6e-07 1.1e-07 1.9e-06 2.8e-07 1.3e-08 3.4e-08 3.3e-08 5.1e-05 2.6e-05
99%ile RBER 5.8e-06 9.1e-07 2.3e-07 2.7e-05 6.2e-06 2.2e-08 3.5e-08 5.3e-08 1.2e-04 4.1e-05

Table 3: Summary of raw bit error rates (RBER) for different models

drives report accurate counts for the number of bits read,
but for each page, consisting of 16 data chunks, only re-
port the number of corrupted bits in the data chunk that
had the largest number of corrupted bits. As a result,
in the (unlikely) absolute worst case, where all chunks
have errors and they all have the same number of errors
as the worst chunk, the RBER rates could be 16X higher
than the drives record. While irrelevant when comparing
drives within the same generation, this subtlety must be
kept in mind when comparing across generations.

4.1 A high-level view of RBER
Table 3 shows for each drive model the median RBER
across all drives for that model, as well as the 95th and
99th percentile. We decided to work with medians and
percentiles since we find averages to be heavily biased
by a few outliers, making it hard to identify any trends.

We observe large differences in the RBER across dif-
ferent drive models, ranging from as little as 5.8e-10 to
more than 3e-08 for drives of the first generation. The
differences are even larger when considering the 95th or
99th percentile RBER, rather than the median. For ex-
ample, the 99th percentiles of RBER ranges from 2.2e-
08 for model SLC-B to 2.7e-05 for MLC-D. Even within
drives of the same model, there are large differences: the
RBER of a drive in the 99th percentile tends to be at least
an order of magnitude higher than the RBER of the me-
dian drive of the same model.

The difference in RBER between models can be par-
tially explained by differences in the underlying flash
technology. RBER rates for the MLC models are orders
of magnitudes higher than for the SLC models, so the
higher price point for the SLC models pays off with re-
spect to RBER. We will see in Section 5 whether these
differences will translate to differences in user-visible,
non-transparent errors.

The eMLC models report RBER that are several or-
ders of magnitude larger than for the other drives. Even
taking into account that the RBER for the first generation
drives are a lower bound and might in the worst case be
16X higher, there is still more than an order of magni-
tude difference. We speculate that feature size might be
a factor, as the two eMLC models have the chips with the
smallest lithography of all models.

Finally, there is not one vendor that consistently out-
performs the others. Within the group of SLC and eMLC
drives, respectively, the same vendor is responsible for
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Figure 1: The Spearman rank correlation coefficient be-
tween the RBER observed in a drive month and other
factors.

one of the worst and the best models in the group.
In summary, RBER varies greatly across drive mod-

els and also across drives within the same model. This
motivates us to further study what factors affect RBER.

4.2 What factors impact RBER
In this section, we consider the effect of a number of
factors on RBER: wear-out from program erase (PE) cy-
cles; physical age, i.e. the number of months a device has
been in the field, independently of PE cycles; workload,
measured by the number of read, write, and erase oper-
ations, as an operation to a page can potentially disturb
surrounding cells; and the presence of other errors.

We study the effect of each factor on RBER in two
different ways. We use visual inspection by plotting the
factor against RBER and we quantify the relationship us-
ing correlation coefficients. We use the Spearman rank
correlation coefficient as it can also capture non-linear
relationships, as long as they are monotonic (in contrast,
for example, to the Pearson correlation coefficient).

Before analyzing individual factors in detail, we
present a summary plot in Figure 1. The plot shows
the Spearman rank correlation coefficient between the
RBER observed in a given drive month, and other factors
that were present, including the device age in months,
the number of previous PE cycles, the number of read,
write or erase operations in that month, the RBER ob-
served in the previous month and the number of uncor-
rectable errors (UEs) in the previous month. Values for
the Spearman correlation coefficient can range from -1

4
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Figure 2: The figures show the median and the 95th percentile RBER as a function of the program erase (PE) cycles.

(strong negative correlation) to +1 (strong positive cor-
relation). Each group of bars shows the correlation co-
efficients between RBER and one particular factor (see
label on X-axis) and the different bars in each group cor-
respond to the different drive models. All correlation co-
efficients are significant at more than 95% confidence.

We observe that all of the factors, except the prior oc-
currence of uncorrectable errors, show a clear correla-
tion with RBER for at least some of the models. We also
note that some of these correlations might be spurious,
as some factors might be correlated with each other. We
will therefore investigate each factor in more detail in the
following subsections.

4.2.1 RBER and wear-out
As the endurance of flash cells is limited, RBER rates
are expected to grow with the number of program erase
(PE) cycles, with rates that have previously been reported
as exponential [5, 8, 18, 22]. The high correlation coeffi-
cients between RBER and PE cycles in Figure 1 confirm
that there is a correlation.

To study the effect of PE cycles on RBER in more
detail, the two graphs in Figure 2 plot the median and
the 95th percentile RBER against the number of PE cy-
cles. We obtain these graphs by dividing all drive days
in our data into different bins, based on their PE cycle
count, and then determine the median and 95th percentile
RBER across all days in a bin.

We observe that, as expected, RBER grows with the
number of PE cycles, both in terms of median and 95th
percentile RBER. However, the growth rate is slower
than the commonly assumed exponential growth, and
more closely resembles a linear increase. We verified this
observation through curve fitting: we fit a linear model
and an exponential model to the data and find that the
linear model has a better fit than the exponential model.

The second interesting observation is that the RBER
rates under wear-out vary greatly across drive models,
even for models that have very similar RBER rates for
low PE cycles. For example, the four MLC models start
out with nearly identical RBER at very low PE cycles,

but by the time they reach their PE cycle limit (3,000 for
all MLC models) there is a 4X difference between the
model with the highest and the lowest RBER.

Finally, we find that the increase in RBER is surpris-
ingly smooth, even when a drive goes past its expected
end of life (see for example model MLC-D with a PE cy-
cle limit of 3,000). We note that accelerated life tests for
the devices showed a rapid increase in RBER at around
3X the vendor’s PE cycle limit, so vendors PE cycle lim-
its seem to be chosen very conservatively.

4.2.2 RBER and age (beyond PE cycles)
Figure 1 shows a significant correlation between age,
measured by the number of months a drive has been in
the field, and RBER. However, this might be a spurious
correlation, since older drives are more likely to have
higher PE cycles and RBER is correlated with PE cycles.

To isolate the effect of age from that of PE cycle wear-
out we group all drive months into bins using deciles
of the PE cycle distribution as the cut-off between bins,
e.g. the first bin contains all drive months up to the first
decile of the PE cycle distribution, and so on. We verify
that within each bin the correlation between PE cycles
and RBER is negligible (as each bin only spans a small
PE cycle range). We then compute the correlation coef-
ficient between RBER and age separately for each bin.
We perform this analysis separately for each model, so
that any observed correlations are not due to differences
between younger and older drive models, but purely due
to younger versus older drives within the same model.

We observe that even after controlling for the effect
of PE cycles in the way described above, there is still a
significant correlation between the number of months a
device has been in the field and its RBER (correlation
coefficients between 0.2 and 0.4) for all drive models.

We also visualize the effect of drive age, by separating
out drive days that were observed at a young drive age
(less than one year) and drive days that were observed
when a drive was older (4 years or more) and then plot-
ting each group’s RBER as a function of PE cycles. The
results for one drive model (MLC-D) are shown in Fig-
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Figure 3: RBER rates as a function of P/E cycles for
young and old drives, showing that age has an effect on
RBER, independently of P/E cycle induced wear-out.

ure 3. We see a marked difference in the RBER rates
between the two groups, across all PE cycles.

We conclude that age, as measured by days in the field,
has a significant effect on RBER, independently of cell
wear-out due to PE cycles. That means there must be
other aging mechanisms at play, such as silicon aging.

4.2.3 RBER and workload
Bit errors are thought to be caused by one of four dif-
ferent mechanisms: retention errors, where a cell loses
charge over time; read disturb errors, where a read oper-
ation disturbs the charge in a nearby cell; write disturb
errors, where a write disturbs the charge in a nearby cell;
or an incomplete erase errors, where an erase operation
did not fully reset the cells in an erase block.

Errors that are of the latter three types (read dis-
turb, write disturb, incomplete erase) will be correlated
with workload, so understanding the correlation between
RBER and workload helps us understand the prevalence
of different error mechanisms. A recent field study [16]
concludes that errors in the field are dominated by reten-
tion errors, while read disturb errors are negligible.

Figure 1 shows a significant correlation between the
RBER in a given drive month and the number of read,
write, and erase operations in the same month for some
models (e.g. a correlation coefficient above 0.2 for model
MLC-B and above 0.6 for model SLC-B). However, this
might be a spurious correlation, as the per-month work-
load might be correlated with the total number of PE cy-
cles seen so far. We use the same technique as described
in Section 4.2.2 to isolate the effects of workload from
that of PE cycles, by binning the drive months based on
the prior PE cycles, and then determining correlation co-
efficients separately for each bin.

We find that the correlation between the number of
read operations in a given drive month and the RBER
in the same month does persist for models MLC-B and
SLC-B, even when controlling for the PE cycles. We also
repeat a similar analysis, where we isolate the effect of
read operations from the count of concurrent write and

erase operations, and find that for model SLC-B the cor-
relation between RBER and read counts persists.

Figure 1 also showed a correlation between RBER and
write and erase operations. We therefore repeat the same
analysis we performed for read operations, for write and
erase operations. We find that the correlation between
RBER and write and erase operations is not significant,
when controlling for PE cycles and read operations.

We conclude that there are drive models, where the ef-
fect of read disturb is significant enough to affect RBER.
On the other hand there is no evidence for a significant
impact of write disturb and incomplete erase operations
on RBER.

4.2.4 RBER and lithography
Differences in feature size might partially explain the dif-
ferences in RBER across models using the same technol-
ogy, i.e. MLC or SLC. (Recall Table 1 for an overview
of the lithography of different models in our study.) For
example, the two SLC models with a 34nm lithogra-
phy (models SLC-A and SLC-D) have RBER that are
an order of magnitude higher than the two 50nm models
(models SLC-B and SLC-C). For the MLC models, the
only 43nm model (MLC-B) has a median RBER that is
50% higher than that of the other three models, which are
all 50nm. Moreover, this difference in RBER increases
to 4X with wear-out, as shown in Figure 2. Finally, their
smaller lithography might explain the higher RBER for
the eMLC drives compared to the MLC drives.

In summary, there is clear evidence that lithography
affects RBER.

4.2.5 Presence of other errors
We investigate the relationship between RBER and other
errors (such as uncorrectable errors, timeout errors, etc.),
in particular whether RBER is higher in a month that also
experiences other types of errors.

Figure 1 shows that while RBER experienced in the
previous month is very predictive of future RBER (cor-
relation coefficient above 0.8), there is no significant cor-
relation between uncorrectable errors and RBER (see the
right-most group of bars in Figure 1). Correlation coef-
ficients are even lower for other error types (not shown
in plot). We will further investigate the relationship be-
tween RBER and uncorrectable errors in Section 5.2.

4.2.6 Effect of other factors
We find evidence that there are factors with significant
impact on RBER that our data does not directly account
for. In particular, we observe that the RBER for a partic-
ular drive model varies depending on the cluster where
the drive is deployed. One illustrative example is Fig-
ure 4, which shows RBER against PE cycles for drives of
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Figure 4: Figure (a) shows the median RBER rates as a function of PE cycles for model MLC-D for three different
clusters. Figure (b) shows for the same model and clusters the read/write ratio of the workload.

model MLC-D in three different clusters (dashed lines)
and compares it to the RBER for this model across its
entire population (solid line). We find that these differ-
ences persist even when we control for other factors, such
as age or read count.

One possible explanation are differences in the type of
workload in different clusters, as we observe that those
clusters, whose workload has the highest read/write ra-
tios, tend to be among the ones with the highest RBER.
For example, Figure 4(b) shows the read/write ratio of
model MLC-D. However, the read/write ratio does not
explain differences across clusters for all models, so
there might be other factors the data does not account
for, such as environmental factors or other workload pa-
rameters.

4.3 RBER in accelerated life tests
Much academic work and also tests during the procure-
ment phase in industry rely on accelerated life tests to
derive projections for device reliability in the field. We
are interested in how well predictions from such tests re-
flect field experience.

Analyzing results from tests performed during the pro-
curement phase at Google, following common methods
for test acceleration [17], we find that field RBER rates
are significantly higher than the projected rates. For ex-
ample, for model eMLC-A the median RBER for drives
in the field (which on average reached 600 PE cycles at
the end of data collection) is 1e-05, while under test the
RBER rates for this PE cycle range were almost an order
of magnitude lower and didn’t reach comparable rates
until more than 4,000 PE cycles. This indicates that it
might be very difficult to accurately predict RBER in the
field based on RBER estimates from lab tests.

We also observe that some types of error, seem to be
difficult to produce in accelerated tests. For example,
for model MLC-B, nearly 60% of drives develop un-
correctable errors in the field and nearly 80% develop
bad blocks. Yet in accelerated tests none of the six de-
vices under test developed any uncorrectable errors or

bad blocks until the drives reached more than 3X of their
PE cycle limit. For the eMLC models, more than 80%
develop uncorrectable errors in the field, while in accel-
erated tests no device developed uncorrectable errors be-
fore 15,000 PE cycles.

We also looked at RBER reported in previous work,
which relied on experiments in controlled environments.
We find that previously reported numbers span a very
large range. For example, Grupp et al. [10, 11] report
RBER rates for drives that are close to reaching their PE
cycle limit. For SLC and MLC devices with feature sizes
similar to the ones in our work (25-50nm) the RBER
in [11] ranges from 1e-08 to 1e-03, with most drive mod-
els experiencing RBER close to 1e-06. The three drive
models in our study that reach their PE cycle limit expe-
rienced RBER between 3e-08 to 8e-08. Even taking into
account that our numbers are lower bounds and in the
absolute worst case could be 16X higher, or looking at
the 95th percentile of RBER, our rates are significantly
lower.

In summary, while the field RBER rates are higher
than in-house projections based on accelerated life tests,
they are lower than most RBER reported in other work
for comparable devices based on lab tests. This suggests
that predicting field RBER in accelerated life tests is not
straight-forward.

5 Uncorrectable errors
Given the high prevalence of uncorrectable errors (UEs)
we observed in Section 3, we study their characteristics
in more detail in this section, starting with a discussion
of what metric to use to measure UEs, their relationship
with RBER and then moving to the impact of various
factors on UEs.

5.1 Why UBER is meaningless
The standard metric used to report uncorrectable errors
is UBER, i.e. the number of uncorrectable bit errors per

7
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Figure 5: The two figures show the relationship between RBER and uncorrectable errors for different drive models
(left) and for individual drives within the same model (right).

total number of bits read. This metric makes the im-
plicit assumption that the number of uncorrectable errors
is in some way tied to the number of bits read, and hence
should be normalized by this number.

This assumption makes sense for correctable errors,
where we find that the number of errors observed in a
given month is strongly correlated with the number of
reads in the same time period (Spearman correlation co-
efficient larger than 0.9). The reason for this strong cor-
relation is that one corrupted bit, as long as it is cor-
rectable by ECC, will continue to increase the error count
with every read that accesses it, since the value of the
cell holding the corrupted bit is not immediately cor-
rected upon detection of the error (drives only periodi-
cally rewrite pages with corrupted bits).

The same assumption does not hold for uncorrectable
errors. An uncorrectable error will remove the affected
block from further usage, so once encountered it will
not continue to contribute to error counts in the future.
To formally validate this intuition, we used a variety of
metrics to measure the relationship between the num-
ber of reads in a given drive month and the number
of uncorrectable errors in the same time period, includ-
ing different correlation coefficients (Pearson, Spearman,
Kendall) as well as visual inspection. In addition to the
number of uncorrectable errors, we also looked at the in-
cidence of uncorrectable errors (e.g. the probability that
a drive will have at least one within a certain time period)
and their correlation with read operations.

We find no evidence for a correlation between the
number of reads and the number of uncorrectable errors.
The correlation coefficients are below 0.02 for all drive
models, and graphical inspection shows no higher UE
counts when there are more read operations.

As we will see in Section 5.4, also write and erase op-
erations are uncorrelated with uncorrectable errors, so an
alternative definition of UBER, which would normalize
by write or erase operations instead of read operations,
would not be any more meaningful either.

We therefore conclude that UBER is not a meaningful

metric, except maybe in controlled environments where
the number of read operations is set by the experimenter.
If used as a metric in the field, UBER will artificially
decrease the error rates for drives with high read count
and artificially inflate the rates for drives with low read
counts, as UEs occur independently of the number of
reads.

5.2 Uncorrectable errors and RBER
RBER is relevant because it serves as a measure for gen-
eral drive reliability, and in particular for the likelihood
of experiencing UEs. Mielke et al. [18] first suggested
to determine the expected rate of uncorrectable errors as
a function of RBER. Since then many system designers,
e.g. [2,8,15,23,24], have used similar methods to, for ex-
ample, estimate the expected frequency of uncorrectable
errors depending on RBER and the type of error correct-
ing code being used.

The goal of this section is to characterize how well
RBER predicts UEs. We begin with Figure 5(a), which
plots for a number of first generation drive models 2 their
median RBER against the fraction of their drive days
with UEs. Recall that all models within the same gener-
ation use the same ECC, so differences between models
are not due to differences in ECC. We see no correlation
between RBER and UE incidence. We created the same
plot for 95th percentile of RBER against UE probability
and again see no correlation.

Next we repeat the analysis at the granularity of in-
dividual drives, i.e. we ask whether drives with higher
RBER have a higher incidence of UEs. As an exam-
ple, Figure 5(b) plots for each drive of model MLC-C its
median RBER against the fraction of its drive days with
UEs. (Results are similar for 95th percentile of RBER.)
Again we see no correlation between RBER and UEs.

Finally, we perform an analysis at a finer time granu-
larity, and study whether drive months with higher RBER
are more likely to be months that experience a UE. Fig-

2Some of the 16 models in the figure were not included in Table 1,
as they do not have enough data for some other analyses in the paper.
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Figure 6: The figure shows the daily probability of a drive
experiencing an uncorrectable error as a function of the
PE cycles the drive has experienced.

ure 1 already indicated that the correlation coefficient be-
tween UEs and RBER is very low. We also experimented
with different ways of plotting the probability of UEs as
a function of RBER for visual inspection, and did not
find any indication of a correlation.

In summary, we conclude that RBER is a poor pre-
dictor of UEs. This might imply that the failure mech-
anisms leading to RBER are different from those lead-
ing to UEs (e.g. retention errors in individual cells versus
larger scale issues with the device).

5.3 Uncorrectable errors and wear-out
As wear-out is one of the main concerns with flash
drives, Figure 6 shows the daily probability of develop-
ing an uncorrectable error as a function of the drive’s P/E
cycles. We observe that the UE probability continuously
increases with age. However, as was the case for RBER,
the increase is slower than commonly assumed: both vi-
sual inspection and curve fitting indicate that the UEs
grow linearly with PE cycles rather than exponentially.

Also two other observations we made for RBER apply
to UEs as well: First, there is no sharp increase in error
probabilities after the PE cycle limit is reached, e.g. con-
sider model MLC-D in Figure 6, whose PE cycle limit
is 3,000. Second, error incidence varies across models,
even within the same class. However, the differences are
not as large as they were for RBER.

Finally, further supporting the observations we make
in Section 5.2 we find that within a class of models (MLC
versus SLC) the models with the lowest RBER rates for
a given PE cycle count are not necessarily the ones with
the lowest probabilities of UEs. For example, for 3,000
PE cycles model MLC-D had RBER rates 4X lower than
that of MLC-B, yet its UE probability at the same PE
cycles is slightly higher than that of MLC-B.

5.4 Uncorrectable errors and workload
For the same reasons that workload can affect RBER (re-
call Section 4.2.3) one might expect an effect on UEs.
For example, since we observed read disturb errors af-

fin
al

_w
rit

e_
er

ro
r

w
rit

e_
er

ro
r

er
as

e_
er

ro
r

m
et

a_
er

ro
r

re
sp

on
se

_e
rro

r

tim
eo

ut
_e

rro
r

ba
d_

bl
oc

k_
co

un
t

re
ad

_e
rro

r

un
co

rre
ct

ab
le

_e
rro

r

av
g 

m
on

th

U
E 

pr
ob

ab
ilit

y

0.0
0.1
0.2
0.3
0.4 any prior error

error in prior month

Figure 7: The monthly probability of a UE as a function
of whether there were previous errors of various types.

fecting RBER, read operations might also increase the
chance of uncorrectable errors.

We performed a detailed study of the effect of work-
load on UEs. However, as noted in Section 5.1, we find
no correlation between UEs and the number of read oper-
ations. We repeated the same analysis for write and erase
operations and again see no correlation.

Note that at first glance one might view the above ob-
servation as a contradiction to our earlier observation that
uncorrectable errors are correlated with PE cycles (which
one would expect to be correlated with the number of
write and erase operations). However, in our analysis
of the effect of PE cycles we were correlating the num-
ber of uncorrectable errors in a given month with the to-
tal number of PE cycles the drive has experienced in its
life at that point (in order to measure the effect of wear-
out). When studying the effect of workload, we look at
whether drive months that had a higher read/write/erase
count in that particular month also had a higher chance
of uncorrectable errors in that particular month, i.e. we
do not consider the cumulative count of read/write/erase
operations.

We conclude that read disturb errors, write disturb er-
rors or incomplete erase operations are not a major factor
in the development of UEs.

5.5 Uncorrectable errors and lithography
Interestingly, the effect of lithography on uncorrectable
errors is less clear than for RBER, where smaller lithog-
raphy translated to higher RBER, as expected. Figure 6
shows, for example, that model SLC-B has a higher rate
of developing uncorrectable errors than SLC-A, although
SLC-B has the larger lithography (50nm compared to
34nm for model SLC-A). Also, the MLC model with the
smallest feature size (model MLC-B), does not generally
have higher rates of uncorrectable errors than the other
models. In fact, during the first third of its life (0−1,000
PE cycles) and the last third (> 2,200 PE cycles) it has
lower rates than, for example, model MLC-D. Recall,
that all MLC and SLC drives use the same ECC, so these
effects cannot be attributed to differences in the ECC.

9
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Model name MLC-A MLC-B MLC-C MLC-D SLC-A SLC-B SLC-C SLC-D eMLC-A eMLC-B
Drives w/ bad blocks (%) 31.1 79.3 30.7 32.4 39.0 64.6 91.5 64.0 53.8 61.2
Median # bad block 2 3 2 3 2 2 4 3 2 2
Mean # bad block 772 578 555 312 584 570 451 197 1960 557
Drives w/ fact. bad blocks (%) 99.8 99.9 99.8 99.7 100 97.0 97.9 99.8 99.9 100
Median # fact. bad block 1.01e+03 7.84e+02 9.19e+02 9.77e+02 5.00e+01 3.54e+03 2.49e+03 8.20e+01 5.42e+02 1.71e+03
Mean # fact. bad block 1.02e+03 8.05e+02 9.55e+02 9.94e+02 3.74e+02 3.53e+03 2.55e+03 9.75e+01 5.66e+02 1.76e+03

Table 4: Overview of prevalence of factory bad blocks and new bad blocks developing in the field

Overall, we find that lithography has a smaller effect
on uncorrectable errors than expected and a smaller ef-
fect than what we observed for RBER.

5.6 Other types of errors versus UEs
Next we look at whether the presence of other errors in-
creases the likelihood of developing uncorrectable errors.
Figure 7 shows the probability of seeing an uncorrectable
error in a given drive month depending on whether the
drive saw different types of errors at some previous point
in its life (yellow) or in the previous month (green bars)
and compares it to the probability of seeing an uncor-
rectable error in an average month (red bar).

We see that all types of errors increase the chance
of uncorrectable errors. The increase is strongest when
the previous error was seen recently (i.e. in the previous
month, green bar, versus just at any prior time, yellow
bar) and if the previous error was also an uncorrectable
error. For example, the chance of experiencing an uncor-
rectable error in a month following another uncorrectable
error is nearly 30%, compared to only a 2% chance of
seeing an uncorrectable error in a random month. But
also final write errors, meta errors and erase errors in-
crease the UE probability by more than 5X.

In summary, prior errors, in particular prior uncor-
rectable errors, increase the chances of later uncor-
rectable errors by more than an order of magnitude.

6 Hardware failures

6.1 Bad blocks
Blocks are the unit at which erase operations are per-
formed. In our study we distinguish blocks that fail in
the field, versus factory bad blocks that the drive was
shipped with. The drives in our study declare a block
bad after a final read error, a write error, or an erase er-
ror, and consequently remap it (i.e. it is removed from
future usage and any data that might still be on it and can
be recovered is remapped to a different block).

The top half of Table 4 provides for each model the
fraction of drives that developed bad blocks in the field,
the median number of bad blocks for those drives that
had bad blocks, and the average number of bad blocks
among drives with bad blocks. We only include drives
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Figure 8: The graph shows the median number of bad
blocks a drive will develop, as a function of how many
bad blocks it has already developed.

that were put into production at least four years ago, and
consider only bad blocks that developed during the first
four years in the field. The bottom half of the table pro-
vides statistics for factory bad blocks.

6.1.1 Bad blocks developed in the field
We find that bad blocks are a frequent occurrence: De-
pending on the model, 30-80% of drives develop bad
blocks in the field. A study of the cumulative distribu-
tion function (CDF) for the number of bad blocks per
drive shows that most drives with bad blocks experience
only a small number of them: the median number of bad
blocks for drives with bad blocks is 2-4, depending on
the model. However, if drives develop more than that
they typically develop many more. Figure 8 illustrates
this point. The figure shows the median number of bad
blocks drives develop, as a function of how many bad
blocks a drive has already experienced. The blue solid
lines correspond to MLC models, while the red dashed
lines correspond to the SLC models. We observe, in par-
ticular for MLC drives, a sharp increase after the second
bad block is detected, when the median number of total
bad blocks jumps to close to 200, i.e. 50% of those drives
that develop two bad blocks will develop close to 200 or
more bad blocks in total.

While we don’t have access to chip-level error counts,
bad block counts on the order of hundreds are likely due
to chip failure, so Figure 8 indicates that after experienc-
ing only a handful of bad blocks there is a large chance
of developing a chip failure. This might imply potential
for predicting chip failures, based on previous counts of

10
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Model name MLC-A MLC-B MLC-C MLC-D SLC-A SLC-B SLC-C SLC-D eMLC-A eMLC-B
Drives w/ bad chips (%) 5.6 6.5 6.6 4.2 3.8 2.3 1.2 2.5 1.4 1.6
Drives w/ repair (%) 8.8 17.1 8.5 14.6 9.95 30.8 25.7 8.35 10.9 6.2
MTBRepair (days) 13,262 6,134 12,970 5,464 11,402 2,364 2,659 8,547 8,547 14,492
Drives replaced (%) 4.16 9.82 4.14 6.21 5.02 10.31 5.08 5.55 4.37 3.78

Table 5: The fraction of drives for each model that developed bad chips, entered repairs and were replaced during the
first four years in the field.

bad blocks, and by potentially taking other factors (such
as age, workload, PE cycles) into account.

Besides the frequency of bad blocks, we are also in-
terested in how bad blocks are typically detected – in a
write or erase operation, where the block failure is trans-
parent to the user, or in a final read error, which is visible
to the user and creates the potential for data loss. While
we don’t have records for individual block failures and
how they were detected, we can turn to the observed fre-
quencies of the different types of errors that indicate a
block failure. Going back to Table 2, we observe that for
all models, the incidence of erase errors and write errors
is lower than that of final read errors, indicating that most
bad blocks are discovered in a non-transparent way, in a
read operation.

6.1.2 Factory bad blocks
While the discussion above focused on bad blocks that
develop in the field, we note that nearly all drives (> 99%
for most models) are shipped with factory bad blocks and
that the number of factory bad blocks can vary greatly
between models, ranging from a median number of less
than 100 for two of the SLC models, to more typical val-
ues in the range of 800 or more for the others. The dis-
tribution of factory bad blocks looks close to a normal
distribution, with mean and median being close in value.

Interestingly, we find that the number of factory
bad blocks is to some degree predictive of other issues
the drive might develop in the field: For example, we
observe that for all but one drive model the drives that
have above the 95%ile of factory bad blocks have a
higher fraction of developing new bad blocks in the field
and final write errors, compared to an average drive
of the same model. They also have a higher fraction
that develops some type of read error (either final or
non-final). The drives in the bottom 5%ile have a lower
fraction of timeout errors than average.

We summarize our observations regarding bad blocks
as follows: Bad blocks are common: 30-80% of drives
develop at least one in the field. The degree of correlation
between bad blocks in a drive is surprisingly strong: after
only 2-4 bad blocks on a drive, there is a 50% chance
that hundreds of bad blocks will follow. Nearly all drives
come with factory bad blocks, and the number of factory
bad blocks shows a correlation with the number of bad

blocks the drive will develop in the field, as well as a few
other errors that occur in the field.

6.2 Bad chips
The drives in our study consider a chip failed if more
than 5% of its blocks have failed, or after the number
of errors it has experienced within a recent time window
exceed a certain threshold. Some commodity flash drives
contain spare chips, so that the drive can tolerate a bad
chip by remapping it to a spare chip. The drives in our
study support a similar feature. Instead of working with
spare chips, a bad chip is removed from further usage and
the drive continues to operate with reduced capacity. The
first row in Table 5 reports the prevalence of bad chips.

We observe that around 2-7% of drives develop bad
chips during the first four years of their life. These are
drives that, without mechanisms for mapping out bad
chips, would require repairs or be returned to the vendor.

We also looked at the symptoms that led to the chip
being marked as failed: across all models, around two
thirds of bad chips are declared bad after reaching the
5% threshold on bad blocks, the other third after exceed-
ing the threshold on the number of days with errors. We
note that the vendors of all flash chips in these drives
guarantee that no more than 2% of blocks on a chip will
go bad while the drive is within its PE cycle limit. There-
fore, the two thirds of bad chips that saw more than 5%
of their blocks fail are chips that violate vendor specs.

6.3 Drive repair and replacement
A drive is being swapped and enters repairs if it develops
issues that require manual intervention by a technician.
The second row in Table 5 shows the fraction of drives
for each model that enter repairs at some point during the
first four years of their lives.

We observe significant differences in the repair rates
between different models. While for most drive models
6-9% of their population at some point required repairs,
there are some drive models, e.g. SLC-B and SLC-C,
that enter repairs at significantly higher rates of 30% and
26%, respectively. Looking at the time between repairs
(i.e. dividing the total number of drive days by the total
number of repair events, see row 3 in Table 5) we see a
range of a couple of thousand days between repairs for
the worst models to nearly 15,000 days between repairs
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for the best models. We also looked at how often in their
life drives entered repairs: The vast majority (96%) of
drives that go to repairs, go there only once in their life.

We also check whether a drive returns to the fleet af-
ter visiting repairs or not, the latter indicating that it was
permanently replaced. The fourth row in Table 5 shows
that most models see around 5% of their drives perma-
nently removed from the field within 4 years after being
deployed, while the worst models (MLC-B and SLC-B)
see around 10% of their drives replaced. For most mod-
els less than half as many drives are being replaced as
being sent to repairs, implying that at least half of all re-
pairs are successful.

7 Comparison of MLC, eMLC, and SLC
drives

eMLC and SLC drives target the enterprise market and
command a higher price point. Besides offering a higher
write endurance, there is also the perception that the en-
terprise drives are higher-end drives, which are overall
more reliable and robust. This section evaluates the ac-
curacy of this perception.

Revisiting Table 3, we see that this perception is cor-
rect when it comes to SLC drives and their RBER, as they
are orders of magnitude lower than for MLC and eMLC
drives. However, Tables 2 and 5 show that SLC drives do
not perform better for those measures of reliability that
matter most in practice: SLC drives don’t have lower re-
pair or replacement rates, and don’t typically have lower
rates of non-transparent errors.

The eMLC drives exhibit higher RBER than the MLC
drives, even when taking into account that the RBER
for MLC drives are lower bounds and could be up to
16X higher in the worst case. However, these differ-
ences might be due to their smaller lithography, rather
than other differences in technology.

Based on our observations above, we conclude that
SLC drives are not generally more reliable than MLC
drives.

8 Comparison with hard disk drives
An obvious question is how flash reliability compares to
that of hard disk drives (HDDs), their main competitor.
We find that when it comes to replacement rates, flash
drives win. The annual replacement rates of hard disk
drives have previously been reported to be 2-9% [19,20],
which is high compared to the 4-10% of flash drives we
see being replaced in a 4 year period. However, flash
drives are less attractive when it comes to their error
rates. More than 20% of flash drives develop uncor-
rectable errors in a four year period, 30-80% develop bad

blocks and 2-7% of them develop bad chips. In compar-
ison, previous work [1] on HDDs reports that only 3.5%
of disks in a large population developed bad sectors in a
32 months period – a low number when taking into ac-
count that the number of sectors on a hard disk is orders
of magnitudes larger than the number of either blocks or
chips on a solid state drive, and that sectors are smaller
than blocks, so a failure is less severe.

In summary, we find that the flash drives in our study
experience significantly lower replacement rates (within
their rated lifetime) than hard disk drives. On the down-
side, they experience significantly higher rates of uncor-
rectable errors than hard disk drives.

9 Related work
There is a large body of work on flash chip reliability
based on controlled lab experiments with a small num-
ber of chips, focused on identifying error patterns and
sources. For example, some early work [3, 4, 9, 12–14,
17, 21] investigates the effects of retention, program and
read disturbance in flash chips, some newer work [5–8]
studies error patterns for more recent MLC chips. We are
interested in behaviour of flash drives in the field, and
note that our observations sometimes differ from those
previously published studies. For example, we find that
RBER is not a good indicator for the likelihood of uncor-
rectable errors and that RBER grows linearly rather than
exponentially with PE cycles.

There is only one, very recently published study on
flash errors in the field, based on data collected at Face-
book [16]. Our study and [16] complement each other
well, as they have very little overlap. The data in the
Facebook study consists of a single snapshot in time for
a fleet consisting of very young (in terms of the usage
they have seen in comparison to their PE cycle limit)
MLC drives and has information on uncorrectable errors
only, while our study is based on per-drive time series
data spanning drives’ entire lifecycle and includes de-
tailed information on different types of errors, including
correctable errors, and different types of hardware fail-
ures, as well as drives from different technologies (MLC,
eMLC, SLC). As a result our study spans a broader range
of error and failure modes, including wear-out effects
across a drive’s entire life. On the other hand, the Face-
book study includes the role of some factors (tempera-
ture, bus power consumption, DRAM buffer usage) that
our data does not account for.

Our studies overlap in only two smaller points and
in both of them we reach slightly different conclusions:
(1) The Facebook paper presents rates of uncorrectable
errors and studies them as a function of usage. They ob-
serve significant infant mortality (which they refer to as
early detection and early failure), while we don’t. Be-
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sides differences in burn-in testing at the two companies,
which might affect infant mortality, the differences might
also be due to the fact that the Facebook study presents
more of a close-up view of a drive’s early life (with no
datapoints past a couple of hundred PE cycles for drives
whose PE cycle limits are in the tens of thousands) while
our view is more macroscopic spanning the entire life-
cycle of a drive. (2) The Facebook study concludes that
read disturb errors are not a significant factor in the field.
Our view of read disturb errors is more differentiated,
showing that while read disturb does not create uncor-
rectable errors, read disturb errors happen at a rate that is
significant enough to affect RBER in the field.

10 Summary
This paper provides a number of interesting insights into
flash reliability in the field. Some of these support com-
mon assumptions and expectations, while many were un-
expected. The summary below focuses on the more sur-
prising results and implications from our work:
• Between 20–63% of drives experience at least one

uncorrectable error during their first four years in the
field, making uncorrectable errors the most common
non-transparent error in these drives. Between 2–6 out
of 1,000 drive days are affected by them.
• The majority of drive days experience at least one

correctable error, however other types of transparent er-
rors, i.e. errors which the drive can mask from the user,
are rare compared to non-transparent errors.
• We find that RBER (raw bit error rate), the stan-

dard metric for drive reliability, is not a good predictor
of those failure modes that are the major concern in prac-
tice. In particular, higher RBER does not translate to a
higher incidence of uncorrectable errors.
• We find that UBER (uncorrectable bit error rate), the

standard metric to measure uncorrectable errors, is not
very meaningful. We see no correlation between UEs
and number of reads, so normalizing uncorrectable er-
rors by the number of bits read will artificially inflate the
reported error rate for drives with low read count.
• Both RBER and the number of uncorrectable er-

rors grow with PE cycles, however the rate of growth
is slower than commonly expected, following a linear
rather than exponential rate, and there are no sudden
spikes once a drive exceeds the vendor’s PE cycle limit,
within the PE cycle ranges we observe in the field.
• While wear-out from usage is often the focus of at-

tention, we note that independently of usage the age of a
drive, i.e. the time spent in the field, affects reliability.
• SLC drives, which are targeted at the enterprise mar-

ket and considered to be higher end, are not more reliable
than the lower end MLC drives.
• We observe that chips with smaller feature size tend

to experience higher RBER, but are not necessarily the
ones with the highest incidence of non-transparent errors,
such as uncorrectable errors.
• While flash drives offer lower field replacement rates

than hard disk drives, they have a significantly higher
rate of problems that can impact the user, such as un-
correctable errors.
• Previous errors of various types are predictive of

later uncorrectable errors. (In fact, we have work in
progress showing that standard machine learning tech-
niques can predict uncorrectable errors based on age and
prior errors with an interesting accuracy.)
• Bad blocks and bad chips occur at a signicant rate:

depending on the model, 30-80% of drives develop at
least one bad block and and 2-7% develop at least one
bad chip during the first four years in the field. The latter
emphasizes the importance of mechanisms for mapping
out bad chips, as otherwise drives with a bad chips will
require repairs or be returned to the vendor.
• Drives tend to either have less than a handful of bad

blocks, or a large number of them, suggesting that im-
pending chip failure could be predicted based on prior
number of bad blocks (and maybe other factors). Also,
a drive with a large number of factory bad blocks has a
higher chance of developing more bad blocks in the field,
as well as certain types of errors.
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Abstract

Large distributed storage systems use erasure codes to re-
liably store data. Compared to replication, erasure codes
are capable of reducing storage overhead. However, re-
pairing lost data in an erasure coded system requires
reading from many storage devices and transferring over
the network large amounts of data. Theoretically, Min-
imum Storage Regenerating (MSR) codes can signifi-
cantly reduce this repair burden. Although several ex-
plicit MSR code constructions exist, they have not been
implemented in real-world distributed storage systems.
We close this gap by providing a performance analysis
of Butterfly codes, systematic MSR codes with optimal
repair I/O. Due to the complexity of modern distributed
systems, a straightforward approach does not exist when
it comes to implementing MSR codes. Instead, we show
that achieving good performance requires to vertically
integrate the code with multiple system layers. The en-
coding approach, the type of inter-node communication,
the interaction between different distributed system lay-
ers, and even the programming language have a signif-
icant impact on the code repair performance. We show
that with new distributed system features, and careful im-
plementation, we can achieve the theoretically expected
repair performance of MSR codes.

1 Introduction
Erasure codes are becoming the redundancy mechanism
of choice in large scale distributed storage systems.
Compared to replication, erasure codes allow reduction
in storage overhead, but at a higher repair cost expressed
through excessive read operations and expensive compu-
tation. Increased repair costs negatively affect the Mean
Time To Data Loss (MTTDL) and data durability.

New coding techniques developed in recent years
improve the repair performance of classical erasure
codes (e.g. Reed-Solomon codes) by reducing exces-
sive network traffic and storage I/O. Regenerating Codes
(RGC) [13] and Locally Repairable Codes (LRC) [19]

are the main representatives of these advanced coding
techniques. RGCs achieve an optimal trade-off between
the storage overhead and the amount of data transferred
(repair traffic) during the repair process. LRCs offer an
optimal trade-off between storage overhead, fault toler-
ance and the number of nodes involved in repairs. In
both cases, the repairs can be performed with a fraction
of the read operations required by classical codes.

Several explicit LRC code constructions have been
demonstrated in real world production systems [20, 35,
28]. LRCs are capable of reducing the network and stor-
age traffic during the repair process, but the improved
performance comes at the expense of requiring extra stor-
age overhead. In contrast, for a fault tolerance equivalent
to that of a Reed-Solomon code, RGCs can significantly
reduce repair traffic [28] without increasing storage over-
head. This specifically happens for a subset of RGCs
operating at the Minimum Storage Regenerating tradeoff
point, i.e. MSR codes. At this tradeoff point the stor-
age overhead is minimized over repair traffic. Unfortu-
nately, there has been little interest in using RGCs in real-
-world scenarios. RGC constructions of interest, those
with the storage overhead below 2×, require either en-
coding/decoding operations over an exponentially grow-
ing finite field [8], or an exponential increase in number
of sub-elements per storage disk [14, 31]. Consequently,
implementation of RGCs in production systems requires
dealing with complex and bug-prone algorithms. In this
study we focus on managing the drawbacks of RGC-
MSR codes. We present the first MSR implementation
with low-storage overhead (under 2×), and we explore
the design space of distributed storage systems and char-
acterize the most important design decisions affecting the
implementation and performance of MSRs.

Practical usage of MSR codes equals the importance
of a code design. For example, fine-grain read accesses
introduced by MSR codes may affect performance neg-
atively and reduce potential code benefits. Therefore,
understanding the advantages of MSR codes requires
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characterizing not only the theoretical performance, but
also observing the effect the code has on real-world dis-
tributed systems. Because of the complex and multi-
-layer design of distributed storage systems, it is also
important to capture the interaction of MSR codes with
various system layers, and pinpoint the system features
that improve/degrade coding performance.

We implement an MSR code in two mainstream dis-
tributed storage systems: HDFS and Ceph. These are the
two most widely used systems in industry and academia,
and are also based on two significantly different dis-
tributed storage models. Ceph does online encoding
while data is being introduced to the system. HDFS per-
forms encoding as a batch job. Moreover, Ceph applies
erasure codes in a per-object basis whereas HDFS does it
on groups of objects of the same size. And finally, Ceph
has an open interface to incorporate new code implemen-
tations in a pluggable way, while HDFS has a monolithic
approach where codes are embedded within the system.

The differences between HDFS and Ceph allow us to
cover an entire range of system design decisions that one
needs to make while designing distributed storage sys-
tems. The design observations presented in this study
are intended for designing future systems that are built
to allow effortless integration of MSR codes. To summa-
rize, this paper makes the following contributions: (i) We
design a recursive Butterfly code construction —a two-
parity MSR code— and implement it in two real-world
distributed storage systems: HDFS and Ceph. Compared
to other similar codes, Butterfly only requires XOR op-
erations for encoding/decoding, allowing for more effi-
cient computation. To the best of our knowledge, these
are the first implementations of a low overhead MSR
code in real-world storage systems. (ii) We compare
two major approaches when using erasure codes in dis-
tributed storage systems: online and batch-based encod-
ing and point the major tradeoffs between the two ap-
proaches. (iii) We examine the performance of Butterfly
code and draw a comparison between the theoretical re-
sults of MSR codes and the performance achievable in
real systems. We further use our observations to suggest
appropriate distributed system design that allows best us-
age of MSR codes. Our contributions in this area include
communication vectorization and a plug-in interface de-
sign for pluggable MSR encoders/decoders.

2 Background

In this section we introduce erasure coding in large-scale
distributed storage systems. In addition we provide a
short overview of HDFS and Ceph distributed filesys-
tems and their use of erasure codes.

2.1 Coding for Distributed Storage

Erasure codes allow reducing the storage footprint of
distributed storage systems while providing equivalent
or even higher fault tolerance guarantees than replica-
tion. Traditionally, the most common type of codes used
in distributed systems were Reed-Solomon (RS) codes.
RS are well-known maximum distance separable (MDS)
codes used in multiple industrial contexts such as optical
storage devices or data transmission. In a nutshell, Reed-
Solomon codes split each data object into k chunks and
generate r linear combinations of these k chunks. Then,
the n = k + r total chunks are stored into n storage de-
vices. Finally, the original object can be retrieved as long
as k out of the n chunks are available.

In distributed storage systems, achieving long
MTTDL and high data durability requires efficient data
repair mechanisms. The main drawback of traditional
erasure codes is that they have a costly repair mechanism
that compromises durability. Upon a single chunk fail-
ure, the system needs to read k out of n chunks in order
to regenerate the missing part. The repair process entails
a k to 1 ratio between the amount of data read (and trans-
ferred) and the amount of data regenerated. Regenerating
Codes (RGC) and Locally Repairable Codes (LRC) are
two family of erasure codes that can reduce the data and
storage traffic during the regeneration. LRCs reduce the
number of storage devices accessed during the regener-
ation of a missing chunk. However, this reduction re-
sults in losing the MDS property, and hence, relaxing the
fault tolerance guarantees of the code. On the other hand,
RGCs aim at reducing the amount of data transferred
from each of the surviving devices, at the expense of in-
creased number of devices contacted during repair. Ad-
ditionally, when RGCs minimize the repair traffic with-
out any additional storage overhead, we say that the code
is a Minimum Storage Regenerating (MSR) code.

LRCs have been demonstrated and implemented in
production environments [20, 35, 28]. However, the use
of LRCs in these systems reduces the fault tolerance
guarantees of equivalent traditional erasure codes, and
cannot achieve the minimum theoretical repair traffic de-
scribed by RGCs. Therefore, RGCs seem to be a bet-
ter option when searching for the best tradeoff between
storage overhead and repair performance in distributed
storage systems. Several MSR codes constructions ex-
ist for rates smaller that 1/2 (i.e. r ≥ k) [26, 23, 29, 30],
however, designing codes for higher rates (more storage
efficient regime) is far more complex. Although it has
been shown that codes for arbitrary (n,k) values can be
asymptotically achieved [9, 30], explicit finite code con-
structions require either storing an exponentially grow-
ing number of elements per storage device [7, 31, 24, 14],
or increasing the finite field size [27]. To the best of our
knowledge, Butterfly codes [14] are the only codes that
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allow a two-parity erasure code (n− k = 2) over a small
field (i.e. GF(2)), and hence, they incur low computa-
tional overhead. The relatively simple design and low
computational overhead make Butterfly codes a good
candidate for exploring the challenges of implementing
a MSR code in real distributed storage systems.

2.2 Hadoop Filesystem

Hadoop is a scalable runtime designed for managing
large-scale computation/storage systems. Hadoop sup-
ports a map-reduce computational model and therefore
is very suitable for algorithms that target processing of
large amounts of data. The Hadoop filesystem (HDFS)
is its default storage backend, and was initially devel-
oped as an open source version of the Google filesys-
tem [17] (GFS), containing many of the features initially
designed for GFS. HDFS is currently one of the most
widely used distributed storage systems in industrial and
academic deployments.

In HDFS there are two types of physical nodes: the
Namenode server and multiple Datanode servers. The
Namenode server contains various metadata as well as
the location information about all data blocks residing
in HDFS, whereas Datanode servers contain the actual
blocks of data. The “centralized metadata server” archi-
tecture lowers the system design complexity, but poses
certain drawbacks: (i) Limited metadata storage This
problem has been addressed by recent projects (such as
Hadoop Federation [4]) that allow multiple namespaces
per HDFS cluster. (ii) Single point of failure - In case
of the Namenode failure, the entire system is unaccessi-
ble until the Namenode is repaired. Recent versions of
HDFS address this problem by introducing multiple re-
dundant Namenodes, allowing fast failover in case the
Namenode fails.

Starting with the publicly available Facebook’s im-
plementation of a Reed-Solomon code for HDFS [2],
Hadoop allows migration of replicated data into more
storage efficient encoded format. The erasure code is
usually used to reduce the replication factor once the data
access frequency reduces. Hence, the encoding process
in HDFS is not a real-time task, instead it is performed
in the background, as a batch job. While the batch-based
approach provides low write latency, it also requires ad-
ditional storage where the intermediate data resides be-
fore being encoded.

2.3 Ceph’s Distributed Object Store

Ceph [32] is an open source distributed storage system
with a decentralized design and no single point of failure.
Like HDFS, Ceph is self-healing and a self-managing
system that can guarantee high-availability and consis-
tency with little human intervention. RADOS [34] (Reli-
able, Autonomic Distributed Object Store) is Ceph’s core

component. It is formed by a set of daemons and libraries
that allow users accessing an object-based storage system
with partial and complete read/writes, and snapshot ca-
pabilities. RADOS has two kinds of daemons: monitors
(MONs), that maintain consistent metadata, and object
storage devices (OSDs). A larger cluster of OSDs is re-
sponsible to store all data objects and redundant replicas.
Usually a single OSD is used to manage a single HDD,
and typically multiple OSDs are collocated in a single
server.

RADOS storage is logically divided into object con-
tainers named pools. Each pool has independent ac-
cess control and redundancy policies, providing isolated
namespaces for users and applications. Internally, and
transparent to the user/application, pools are divided into
subsets of OSDs named placement groups. The OSDs
in a placement group run a distributed leader-election to
elect a Primary OSD. When an object is stored into a
pool, it is assigned to one placement group and uploaded
to its Primary OSD. The Primary OSD is responsible to
redundantly store the object within the placement group.
In a replicated pool this means forwarding the object
to all the other OSDs in the group. In an erasure en-
coded pool, the Primary splits and encodes the object,
uploading the corresponding chunks to the other OSDs
in the group. Hence, the encoding process in Ceph is
performed as real-time job, i.e. the data is encoded while
being introduced into the system. The placement group
size directly depends on the number of replicas or the
length of the code used. OSDs belong to multiple place-
ment groups, guaranteeing good load balancing without
requiring large amount of computing resources. Given
the cluster map, the pool policies, and a set of fault do-
main constraints, RADOS uses a consistent hashing al-
gorithm [33] to assign OSDs to placement groups, and
map object names to placement groups within a pool.

3 Butterfly Codes
Vector codes are a generalization of classical erasure
codes where k α-dimensional data vectors are encoded
into a codeword of n α-dimensional redundant vectors,
for n > k. As it happens for classical erasure codes, we
say that a vector code is systematic if the original k vec-
tors form a subset of the n codeword vectors, that is, the
codeword only adds n− k redundant vectors. In this pa-
per we refer to the codeword vectors as code columns,
and to the vector components as column elements.

Butterfly Codes are an MDS vector code construction
for two-parities (i.e. n− k = 2) of an explicit Regener-
ating Code operating at the minimum storage regenerat-
ing (MSR) point. This means that to repair a single disk
failure, Butterfly codes require to transfer 1/2 of all the
remaining data, which is optimal. Additionally, Butterfly
codes are binary vector codes defined over GF(2), allow-
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ing implementation of encoding and decoding operations
by means of simple exclusive-or operations.

A preliminary construction of the Butterfly code was
presented earlier [14], and in this section we provide a
new recursive construction of the code. Compared to the
original construction, the recursive approach has a sim-
plified design that results in a simpler implementation.
Furthermore, the recursive design partitions the problem
in a way that allows for a better reuse of precomputed
values, leading to better cache locality. Due to space lim-
itations we omit the exhaustive cache behavior analysis.

3.1 Butterfly Encoder

Let Dk be a matrix of boolean values of size 2k−1 × k,
for k ≥ 2. Dk represents a data object to be encoded and
stored in the distributed storage system. For the purpose
of describing the encoding/decoding process, we repre-
sent Dk by the following components:

Dk =

[
a A
b B

]
, (1)

where A and B are 2k−2 × k− 1 boolean matrices, and a
and b are column vectors of 2k−2 elements.

Let D j
k be the jth column of Dk, j ∈ {0, . . . ,k − 1}.

Therefore, the matrix Dk can be written as a vector of k
columns Dk = (Dk−1

k , . . . ,D0
k). From a traditional erasure

code perspective each of the columns is an element of
GF(2k−1), and after encoding we get a systematic code-
word Ck = (Dk−1

k , . . . ,D0
k ,H,B), where H and B are two

vector columns representing the horizontal and butterfly
parities respectively.

To describe how to generate H and B, we define two
functions such that H =H(Dk) and B = B(Dk):

• if k = 2, then:

H
([

d1
0 d0

0
d1

1 d0
1

])
=

[
d1

0 ⊕d0
0

d1
1 ⊕d0

1

]
; (2)

B
([

d1
0 d0

0
d1

1 d0
1

])
=

[
d1

1 ⊕d0
0

d1
0 ⊕d0

0 ⊕d0
1

]
. (3)

• if k > 2, then:

H(Dk) =

[
a⊕H(A)

Pk−1 [Pk−1b⊕H(Pk−1B)]

]
; (4)

B(Dk) =

[
Pk−1b⊕B(A)

Pk−1 [a⊕H(A)⊕B(Pk−1B)]

]
, (5)

where Pk represents a k × k permutation matrix
where the counter-diagonal elements are one and
all other elements are zero. Notice that left-
multiplication of a vector or a matrix by Pk flips the
matrix vertically.

It is interesting to note that the double vertical flip in
(4) is intentionally used to simultaneously compute H

C4

D3
4 D2

4 D1
4 D0

4 H B
d0 c0 b0 a0 d0+ c0+b0+a0 d7+ c3+ b1+ a0
d1 c1 b1 a1 d1+ c1+b1+a1 d6+ c2+ b0+a0+a1
d2 c2 b2 a2 d2+ c2+b2+a2 d5+ c1+b1+a1+b3+a3+a2
d3 c3 b3 a3 d3+ c3+b3+a3 d4+ c0+b0+a0+b2+ a3
d4 c4 b4 a4 d4+ c4+b4+a4 d3+c3+b3+a3+ c7+b7+a7+b5+ a4
d5 c5 b5 a5 d5+ c5+b5+a5 d2+c2+b2+a2+ c6+b6+a6+b4+a4+a5
d6 c6 b6 a6 d6+ c6+b6+a6 d1+c1+b1+a1+ c5+ b7+a7+a6
d7 c7 b7 a7 d7+ c7+b7+a7 d0+c0+b0+a0+ c4+ b6+ a7

a

b

Figure 1: Butterfly codeword for k = 4, C4. One can observe
how C4 can be computed by recursively encoding submatrix A
(red highlight) and B (yellow highlight) from (1) and adding
the extra non-highlighted elements.

and B over the same data Dk. Because of the double ver-
tical flip, the recursion can be simplified, and encoding
of Dk can be done by encoding A and Pk−1B. In Figure 1
we show an example of the recursive encoding for k = 4.

3.2 Butterfly Decoder

In this section we show that Butterfly code can decode
the original data matrix when any two of the codeword
columns are missing, and hence it is an MDS code.

Theorem 1 (MDS). The Butterfly code can recover from
the loss of any two columns (i.e. two erasures).

Proof. The proof is by induction over the number of
columns, k. In the base case, k = 2, one can carefully
verify from (2) and (3) that the code can recover from
the loss of any two columns. The inductive step proceed
as follows. Let’s assume that the Butterfly construction
gives an MDS code for k−1 columns, for k > 2. We will
prove that the construction for k columns is also MDS.
We distinguish the following cases:
(1) The two parity nodes are lost. In this case we encode
them again through H and B functions.
(2) One of the parities is lost, along with one data col-
umn. In this case we can use the remaining parity node
to decode the lost data column, and then re-encode the
missing parity node.
(3) Two data columns are lost, neither of which is the
leftmost column. In this case we can generate from the
parity columns the vectors H(A), B(A), by XOR-ing a
and Pk−1b. By using the inductive hypothesis, we can re-
cover the top half of the missing columns (which is part
of the A matrix). Similarly, we can generate by simple
XOR the values H(Pk−1B) and B(Pk−1B). By the induc-
tion hypothesis we can recover the bottom half of the
missing columns (which is part of the B matrix).
(4) The leftmost column along with another data column
D j

k, j �= k−1, are lost. From the bottom half of the but-
terfly parity B(Dk) we can obtain B(Pk−1B), and then de-
code the bottom half of D j

k. From the bottom half of the
horizontal parity H(Dk) we can now decode b. Follow-
ing the decoding chain, from the top half of the butterfly
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parity B(Dk) we can obtain B(A), and then decode the
top half of D j

k. Finally, from the top half of the horizon-
tal parity H(Dk) we can obtain a.
Theorem 2 (optimal regeneration). In the case of one
failure, the lost column can be regenerated by communi-
cating an amount of data equal to 1/2 of the remaining
data (i.e., 1/2 of k+1 columns). If the lost column is not
the butterfly parity, the amount of communicated data is
exactly equal to the amount read form surviving disks
(i.e. optimal I/O access).

Due to space constrains we do not provide a proof
here. Instead, in the next section we provide the details
required to regenerate any of the codeword columns.

3.3 Single Column Regeneration

The recovery of a single column falls under four cases.
Note that in all of them, the amount of data that is trans-
ferred is optimal, and equal to half of the remaining data.
Moreover, the amount of data that is accessed (read) is
also optimal (and equal to the data that is transferred),
except in case (4) when we recover the butterfly parity.
Case (1) is the most common. The data to be trans-
ferred is selected by algebraic expressions, but there are
more intuitive ways to understand the process. The inde-
ces correspond to locations in the butterfly parity that do
not require the additional elements; similarly, they corre-
spond to inflexion points in the butterfly lines (v-points);
also they correspond to 0 value for bit j − 1 of the bi-
nary representation of numbers ordered by the reflected
Gray code. Finally, the recovery in case (4) is based on a
self-duality of the butterfly encoding.

(1) One column from {D1
k , . . . ,D

k−1
k } is lost Let D j

k
be the lost columnn. Every remaining column (system-
atic data and parities), will access and transfer the el-
ements in position i for which

⌊
i

2 j−1

⌋
≡ 0 mod 4, or⌊

i
2 j−1

⌋
≡ 3 mod 4. Let Dk−1 be the matrix of size (k−

1)× 2k−2 formed from the transmitted systematic data,
and Hk−1,Bk−1 the columns of size 2k−2 formed from the
transmitted parity information. Let h =H(Dk−1)⊕Hk−1
and b = B(Dk−1)⊕Bk−1 (i.e., we use butterfly encoding
on the matrix Dk−1). The data lost from D j is now con-
tained by h and b. More precisely, for i ∈ {0, . . . ,2k−2},
let p =

⌊
i+2 j−1

2 j

⌋
2 j + i, and let r = p mod 2 j. Then

D j
k(p)← h(i), and D j

k(p−2r+2 j −1)← b(i).

(2) Column D0
k is lost In this case, the columns

D1
k , . . . ,D

k−1
k ,H will access and transfer the elements

with even index, and the column B will access and trans-
fer the elements with odd index. Similar to case (1), the
vectors h and b are obtained by applying butterfly encod-
ing, and they provide the even, repectively odd, index
elements of the lost column.

(3) First parity column H is lost All the remaining
columns access and transfer their lower half, namely all
the elements with index i ∈ {2k−2, . . . ,2k−1 − 1}. The
horizontal parity over the systematic transmitted data
provides the lower half of H, and the butterfly parity over
D0

k−1, . . . ,D
k−2
k−1 XOR-ed with data from B will provide

the top half of H.

(4) Second parity column B is lost In this case Dk−1
k

will access and transfer its top half, while H will do
the same with its bottom half. The rest of the columns
D0

k , . . . ,D
k−2
k will access all of their data, but they will

perform XOR operations and only transfer an amount of
data equal to half of their size. Each D j

k for j �= k − 1
will compute and transfer values equal to their contribu-
tions in the bottom half of B. Therefore a simple XOR
operation between the data transferred from the system-
atic columns will recover the bottom half of B. Interest-
ingly, computing a butterfly parity over the data trans-
ferred from D j

k, where j �= k− 1, and XOR-ing it corre-
spondingly with the bottom half of H will recover the top
half of B.

4 Butterfly Codes in HDFS
To avoid recursion in Java, and possible performance
drawbacks due to non-explicit memory management,
in HDFS we implement an iterative version of Butter-
fly [14]. Our implementation of Butterfly code in HDFS
is based on publicly available Facebook’s Hadoop [2]
version. In this section we provide implementation and
optimization details of our Butterfly implementation.

4.1 Erasure Coding in HDFS

We use the Facebook HDFS implementation as a starting
point for the Butterfly implementation. Facebook ver-
sion of Hadoop contains two daemons, RaidNode and
BlockFixer, that respectively create parity files and fix
corrupted data. Once inserted into the HDFS, all files
are initially replicated according to the configured repli-
cation policy. The RaidNode schedules map-reduce jobs
for erasure encoding the data. The encoding map-reduce
jobs take groups of k newly inserted chunks, and gener-
ate n− k parity chunks, as presented in Figure 2. The
parity chunks are then stored back in HDFS, and the
replicas can be garbage collected. Lost or corrupted
data is detected and scheduled for repair by the Block-
Fixer daemon. The repair is performed using map-reduce
decode tasks. Upon decoding completion, the recon-
structed symbol is stored back to HDFS.

4.2 Butterfly Implementation in HDFS

The encoding and repair process in HDFS-Butterfly fol-
lows a 4-step protocol: (i) in the first step the encod-
ing/decoding task determines the location of the data
blocks that are part of the k symbol message; (ii) the sec-
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D = ( D  D  …    D  )
k-1 

HDFS Data Blocks 
        (symbols)

(n,k) code in HDFS: Parity Blocks

Symbol Size:

2 k-1 elements

k-2 0

C = ( D  D  …    D    H     B)
k-1 k-2 0

Figure 2: Erasure Coding (k,n) in HDFS: (i) each symbol is
part of a separate HDFS block, (ii) k symbols represent a mes-
sage, n symbols represent a codeword (initial message blocks
+ parity blocks), (ii) In Butterfly, each symbol is divided in
α = 2k−1 elements.

ond step assumes fetching the data to the node where
the task is running; (iii) in the third step the encod-
ing/decoding computation is performed, and finally (iv)
the newly created data is committed back to HDFS.

The first step, locating the data necessary for encod-
ing/decoding process, is identical to the initial Facebook
implementation: position of the symbol being built is
used to calculate the HDFS file offset of the entire k-
symbol message/codeword (data necessary for building
the symbol). Calculating the offsets is possible because
the size of the data being repaired equals the size of an
entire HDFS block. In case the symbol being repaired
is smaller than the HDFS block size, we rebuild all the
symbols contained in that HDFS block. Therefore, we al-
ways fetch k consecutive HDFS blocks – k-symbol mes-
sage. The location of the parity symbols/blocks during
the decoding is determined using similar approach.

The second step, data fetching, is performed asyn-
chronously and in parallel, from multiple datanodes. The
size of the fetched data is directly related to the But-
terfly message size, i.e. set of butterfly symbols spread
across different datanodes. We allow the size of a But-
terfly symbol to be a configurable parameter. We set the
symbol element size to �=symbol size/2k−1. The advan-
tage of tunable symbol size is twofold: (i) improved data
locality: size of the data chunks used in computation can
be tuned to fit in cache; (ii) computation - communica-
tion overlap: “rightszing” the data chunk allows commu-
nication to be completely overlapped by computation.

The third step implements Butterfly encoding and de-
coding algorithms. While Section 3.2 presents formal
definition of Butterfly, in Figure 3 we describe an exam-
ple of Butterfly encoding/decoding schemes in HDFS.
Figure 3 is intended to clarify the encoding/decoding
process in HDFS-Butterfly through a simple example,
and encoding/decoding of specific components might
be somewhat different. Our encoding/decoding imple-
mentation is completely written in Java. While mov-
ing computation to a JNI module would significantly in-
crease the level of applicable optimizations (including
vectorization), these benefits would be shadowed by the
cost of data movements between Java and JNI modules.
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Figure 3: Regenerating column 1 for HDFS-Butterfly with
k = 4. The line represents the elements that are xored to re-
generate the first two symbols. The dark gray elements are the
total required ones. White elements are skipped during com-
munication.

Our Java computation is aggressively optimized through
manual loop reordering and unrolling but we saw lit-
tle benefits from these optimizations. By instrumenting
the computational code, we found that the time spent in
memory management significantly outweighs the ben-
efits computational optimizations. We also parallelize
computational loops in the OpenMP fashion. The degree
of parallelization is a configurable parameter.

During the fourth step, the encoding/decoding task de-
tects physical location of all the symbols (HDFS blocks)
contained in the k-symbol message. The newly created
symbol is placed on a physical node that does not con-
tain any of the other message symbols, i.e. we avoid
collocating two symbols from the same message on the
same physical node. In this way we increase the system
reliability in case of a singe node failure.

4.3 Communication Protocol

HDFS is a streaming filesystem and the client is designed
to receive large amounts of contiguous data. If the data
stream is broken, client assumes communication error
and starts an expensive process of re-establishing con-
nection with the datanode. However, the Butterfly repair
process does not read remote data in a sequential manner.
As explained in Figure 3, not all of the vector-symbol’s
elements are used during the decoding process (in Fig-
ure 3 only gray elements are used for reconstructing Sym-
bol 1). The elements used for decoding can change, de-
pending on the symbol ID being repaired. In our ini-
tial implementation, we allowed the datanode to skip
reading unnecessary symbol components and send back
only useful data (method sendChunks() in the HDFS
datanode implementation). Surprisingly, this approach
resulted in very low performance due to the interruptions
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in client–datanode data stream.
To avoid the HDFS overhead associated with stream-

ing non-contiguous data, we implement vector commu-
nication between the client and the datanode: datanode
packs all non-contiguous data chunks into a single con-
tiguous buffer (gray components in Figure 3) and streams
the entire buffer to the client side. On the client side, the
received data is extracted and properly aligned follow-
ing the requirements of the decoding process. Vector-
ization of communication introduced multi-fold perfor-
mance improvement in HDFS.

To implement vectorized communication, we intro-
duce symbol ID parameter to client→datanode request.
symbol ID represents the position of the requested sym-
bol in the butterfly message. In HDFS, the client dis-
covers data blocks (symbols) needed for the decoding
process. Therefore, the client passes symbol ID to the
datanode, and the datanode uses this information to read
from a local storage and send back only useful vector
components.

4.4 Memory Management

Butterfly decoding process requires an amount of DRAM
capable of storing an entire k symbol message. When the
symbol size equals the size of the HDFS block (64 MB),
the amount of DRAM equals (k+ 2)x64M. In addition,
unpacking the data upon completing vector communica-
tion requires additional buffer space. The RaidNode dae-
mon assigns recovery of multiple corrupted symbols to
each map-reduce task for sequential processing. Tasks
are required to allocate large amounts of memory when
starting symbol recovery, and free the memory (garbage
collect) upon decoding completion. Frequent and not
properly scheduled garbage collection in JVM brings
significant performance degradation.

To reduce the garbage collection overhead, we imple-
mented a memory pool that is reused across multiple
symbol decoders. The memory pool is allocated during
the map-reduce task setup and reused later by the com-
putation and communication threads. Moving the mem-
ory management from JVM to the application level in-
creases implementation complexity, but at the same time
we measured overall performance benefits of up to 15%.

5 Butterfly Codes in Ceph
Starting from version 0.80 Firefly, Ceph supports erasure
code data redundancy through a pluggable interface that
allows the use of a variety of traditional erasure codes
and locally repairable codes (LRC). Unlike HDFS, Ceph
allows encoding objects on-line as they are inserted in
the system. The incoming data stream is partitioned into
small chunks, or stripes, typically around 4096 bytes.
Each of these small chunks is again split into k parts
and encoded using the erasure code of choice. The de-
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Figure 4: Ceph-Butterfly encoding example. For simplicity
reasons k = 2. Object is divided in multiple stripes, and the
Butterfly elements within each of the stripes are encoded.

scribed stripe-based approach allows the encoding pro-
cess to be performed simultaneously while the data is
being streamed in the system. Acknowledgment con-
firming the completed write operation is sent to the user
immediately upon the data uploading and encoding are
completed. Figure 4 describes the encoding process.

The stripe size in Ceph determines the amount of
memory required to buffer the data before the encoding
process starts, i.e. larger stripe size requires more mem-
ory. Note that the entire encoding process takes place
within a single server, therefore the memory is likely to
be a scarce resource. In addition, having larger stripe
sizes negatively affects the object write latency since one
would get less benefits from pipelining the encoding pro-
cess. Hence, from the performance point of view, it is de-
sirable to use small stripe sizes. However, erasure code
implementations benefit from operating on larger data
chunks, because of being able to perform coarser com-
putation tasks and read operations. In case of Butter-
fly codes, the performance is even more impacted by the
stripe size, due to the large number of elements stored
per column. As described in Figure 3, the Butterfly re-
pair process requires accessing and communicating non-
-contiguous fragments of each code column. Small frag-
ments incur high network and even higher HDD over-
head. Due to internal HDD designs, reading random
small fragments of data results in suboptimal disk per-
formance. Because each Ceph stripe contains multiple
Butterfly columns with k ·2k−1 elements per column, us-
ing large stripes is of great importance for the Butterfly
repair process. In Section 6 we evaluate the effects that
Ceph stripe size has on Butterfly repair performance.

5.1 Plug-In Infrastructure

To separate the erasure code logic from that of the OSD,
RADOS uses an erasure code plug-in infrastructure that
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allows dynamical use of external erasure code libraries.
The plug-in infrastructure is designed for traditional and
LRC codes. Third-party developers can provide indepen-
dent erasure code implementations and use the plug-in
infrastructure to achieve seamless integration with RA-
DOS. We summarize the three main plug-in functions:
– encode(): Given a data stripe, it returns a list of n en-
coded redundant chunks, each to be stored in a different
node in the placement group. This function is not only
used to generate parity chunks, but it is also responsible
to stripe data across n nodes.
– minimum to decode(): Given a list of available chunks,
it returns the IDs of the chunks required to decode the
original data stripe. During the decoding process, Ceph
will fetch the chunks associated with these IDs.
– decode(): Given a list of redundant chunks (corre-
sponding to the IDs returned by minimum to decode) it
decodes and returns the original data stripe.

Because it was intended for traditional and LRC
codes, the Ceph erasure coding plug-in infrastructure
does not differentiate between repairing missing redun-
dant chunks, and decoding the original data. When RA-
DOS needs to repair a missing chunk, it uses the decode
function to decode all the k original message symbols,
and then uses the encode function to only regenerate the
missing ones. The described model does not allow re-
covering a missing chunk by only partially downloading
other chunks, a feature that is indispensable for efficient
MSR implementation.

Efficient integration of Butterfly code with Ceph re-
quires re-defining the plug-in interface. The interface we
propose is a generalization of the existing one, and is us-
able across all types of RGCs as well as existing LRCs
and traditional codes. Compared to the previous inter-
face, the new plug-in provides the following two extra
functions:
– minimum to repair(): Given the ID of a missing chunk,
it returns a list of IDs of the redundant blocks required to
repair the missing one. Additionally, for each of the re-
quired IDs, it specifies an additional list of the subparts
that need to be downloaded (a list of offsets and lengths).
Ceph will download all the returns subparts from the cor-
responding nodes.
– repair(): Given the ID of a missing chunk, and the list
of chunk subparts returned by minimum to repair, the
function reconstructs the missing chunks.

In order to implement the new plug-in infrastructure,
parts of the OSD implementation had to be changed.
These changes in Ceph do not allow to support both sys-
tems simultaneously. For back-compatibility with legacy
erasure code plug-ins, we implemented a proxy plug-in
that dynamically links with existing plug-ins. In prac-
tice, if the new plug-in system does not find a requested
plug-in library, the legacy proxy plug-in is loaded.

5.2 Butterfly Implementation

Matching the previous plug-in interface, Butterfly is im-
plemented as an external C library and compiled as a
new-style RADOS erasure code plug-in. The level of
algorithmic and implementation optimizations included
in Ceph-Butterfly is significantly higher than HDFS-
-Butterfly, due to HDFS’s dependency on Java. Our
implementation of Butterfly in Ceph follows the recur-
sive description provided in Section 3. Compared to
HDFS, the recursive approach simplifies implementa-
tion. The recursive approach also achieves better data
locality, which provides better encoding throughput.

6 Results
In this section, we evaluate the repair performance of
our two Butterfly implementations, HDFS-Butterfly and
Ceph-Butterfly.

6.1 Experimental Setup

To evaluate our Butterfly implementations we use a clus-
ter of 12 Dell R720 servers, each with one HDD ded-
icated to the OS, and seven 4TB HDDs dedicated to
the distributed storage service. This makes a total clus-
ter capacity of 336TB. The cluster is interconnected
via 56 Gbps Infiniband network using IPoIB. High-
-performance network ensures that the communication
bandwidth per server exceeds the aggregated disk band-
width. In addition to 12 storage nodes, we use one node
to act as a metadata server. In HDFS a single DataNode
daemon per server manages the seven drives and an ad-
ditional NameNode daemon runs on the metadata server.
In Ceph each server runs one OSD daemon per drive and
the MON daemon runs separately on the metadata server.

For the erasure code we consider two different con-
figurations: k = 5 and k = 7. Since Butterfly codes add
two parities, these parameters give us a storage overhead
of 1.4x and 1.3x respectively, with a number of elements
per code column of 16 and 64 respectively. Having two
different k values allows capturing the impact that the
number of code columns (and hence the IO granularity)
has on the repair performance. We compare the Butter-
fly code performance against the default Reed Solomon
code implementations in HDFS and Ceph for the same k
values. For both systems we evaluate the performance to
repair single node failures. Upon crashing a single data
node, the surviving 11 servers are involved in recreating
and storing the lost data.

Our experiments comprise 2 stages: (i) Initially we
store 20,000 objects of 64MB each in the storage sys-
tem. Including redundant data, that accounts for a total
of 1.8TB of total stored data. Due to the data redundancy
overhead, on average each node stores a total 149.33GB
for k = 5, and 137.14GB for k = 7. (ii) In the second
stage we power-off a single storage server and let the 11
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surviving servers repair the lost data. We log CPU uti-
lization, IO activity and network transfers of each server
during the recovery process.

6.2 Repair Throughput

In Figure 5 we show aggregate repair throughput across
all 12 nodes, in MB/s. Figure 5(a) represents a com-
parison of Butterfly and Reed-Solomon on HDFS when
k = 5 and k = 7. For HDFS we allow 12 reduce tasks
per node (1 task per core), i.e. each node can work on
repairing 12 blocks simultaneously. In Figure 5(a), it is
observable that in all cases the repair throughput has a
steep fall towards the end. In addition, RS(k = 7) experi-
ences very low repair throughput towards the end of the
repair process. If the number of blocks to be repaired
is lower than the number of available tasks, the repair
system does not run at the full capacity, resulting in the
steep decline of the aggregated repair throughput. Repair
process for RS (k= 7) experiences load imbalance result-
ing in low throughput towards the end. Providing repair
load-balancing in Hadoop is out of scope of this study.
We focus on the sustainable repair throughput rather than
the overall running time.

In HDFS, for k = 5, Butterfly reaches a repair through-
put between 500 and 600MB/s, which is 1.6x higher than
RS repair throughput. Although this is an encouraging
result, Butterfly does not reach twice the performance of
RS due to several reasons. The most important being
the higher storage media contention in case of Butter-
fly. During the repair process Butterfly accesses small
non-contiguous column elements (see gray components
in Figrue 3). Larger number of relatively small IOs in-
troduces more randomness in HDD behavior which in
turn reduces the overall repair performance of Butterfly.
Another performance degrading source is the data ma-
nipulation required by the vector-based communications
we introduced (see Section 4.3). Although vector-based
communication significantly improves the overall perfor-
mance, certain overhead is present due to data packing
and unpacking, i.e. high overhead memory manipulation
operations in Java.

It is interesting to note that for k = 7, the difference
in repair throughput between Butterfly and RS is ∼2x.
With larger values of k communication bandwidth re-
quirements increase due to large number of blocks re-
quired during the repair process. For k = 7 the benefits
of reducing the network contention with Butterfly sig-
nificantly outweigh possible drawbacks related to HDD
contention and vector communication.

In Figure 5(b),(c) we depict the repair throughput for
Ceph. In the case of 4MB stripe size, Figure 5(b), each
stripe forms a Butterfly data matrix of 2k−1 rows and
k columns. Consequently, the size of each data ele-
ment is of 50KB and 9KB for k = 5 and k = 7 respec-

tively. During the repair process, when non-contiguous
elements are accessed, the small element size results in
an inefficient HDD utilization and additional CPU oper-
ations due to element manipulation. This in turn leads
to a degraded an inconsistent repair throughput as we
can observe in Figure 5(b). Increasing the stripe size
to 64MB results into having element sizes of 800KB,
143KB, large enough sizes to make a better utilization
of the disk, and provide better repair throughput as we
depict in Figure 5(c).

6.3 CPU Utilization

We measure CPU utilization of Butterfly/RS repair and
evaluate the capability of each approach to possibly share
in-node resources with other applications. CPU utiliza-
tion understanding is of importance in distributed sys-
tems running in cloud-virtualized environments, or when
the data repair processes share resources with other ap-
plications (e.g., map-reduce tasks). Figure 6 represents
the CPU utilization of Butterfly and RS on a single node.
The presented results are averaged across all nodes in-
volved in computation.

For HDFS, in Figure 6(a) we observe that the CPU
utilization for Butterfly exceeds RS CPU utilization by
a factor of 3-4x, for both k = 5 and k = 7. Partially,
this is due to the fact that RS spends more time waiting
for network IO, because it requires higher communica-
tion costs compared to Butterfly. However, the number
of total CPU cycles spent on computation in Butterfly is
significantly higher than in RS. Compared to RS, But-
terfly spends ∼2.1x and ∼1.7x more cycles, for k = 5
and k = 7 respectively. The observed CPU utilization
is strongly tied to Java as the programming language of
choice for HDFS. Butterfly implementation frequently
requires non-contiguous data accesses and vector-based
communication. Java does not have slice access to buffer
arrays, requiring extra memory copies for packing and
unpacking non-contiguous data.

Figure 6(b),(c) represents the CPU utilization for
Ceph-Butterfly and RS, when the Ceph stripe size is
4MB and 64MB. For Ceph stripe size of 4MB and k = 5,
the Butterfly repair process operates on large number of
elements that are only ∼50K in size. The fine granu-
larity computation, together with frequent and fine gran-
ularity communication, causes erratic and unpredictable
CPU utilization, presented in Figure 6(b). Similar obser-
vation applies for k = 7. Note that the CPU utilization
for RS is somewhat lower compared to Butterfly, but still
unstable and with high oscillations. The RS repair pro-
cess operates on somewhat coarser data chunks, but the
software overhead (memory management, function calls,
cache misses, etc.) is still significant.

With the Ceph stripe size of 64M, Figure 6(c), the But-
terfly element size as well as the I/O size increases sig-
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(a) HDFS. (b) Ceph with 4MB stripes. (c) Ceph with 64MB stripes.

Figure 5: Repair throughput aggregated across all nodes involved in the repair process. Each system configuration we
run with RS and Butterfly, with k = 5 and k = 7.

(a) HDFS. (b) Ceph with 4MB stripes. (c) Ceph with 64MB stripes.

Figure 6: Average CPU utilization per server. Each system configuration we run with RS and Butterfly, with k = 5 and
k = 7. The graphs represent the average utilization across all 12 nodes involved in the repair process.

nificantly, resulting in lower and more predictable CPU
utilization. Although Butterfly algorithm requires more
operations compared to RS, our cache-aware implemen-
tation, carefully optimized with vector instructions in
C/C++, achieves CPU utilization comparable to that of
RS. Furthermore, both Butterfly and RS achieve ∼2-3%
CPU utilization across all observed k values.

The presented results show that MSR codes over
GF(2) achieve low CPU usage and are a good candi-
date for running in multi-user environments. However,
achieving efficient CPU utilization requires a program-
ming language that allows appropriate set of optimiza-
tions, and relatively coarse data chunks. In an on-line
encoding system, such as Ceph, the size of the stripe size
is of extreme importance for achieving efficient CPU us-
age and good repair performance.

6.4 Network Traffic

In all systems used in this study we monitor network and
storage traffic, and compare the observed results to the
theoretical expectations. Figure 7 presents the results.

Figure 7(a) depicts the network traffic comparison.
The optimal bars represent the lower bound on the
amount of traffic. The optimal + 1 bars represent the
minimum increased by the size of a single HDFS block

(we use 64MB block size). The original implementation
of Reed-Solomon in Facebook - HDFS [2] unnecessar-
ily moves an extra HDFS block to the designated repair
node, causing somewhat higher network utilization. op-
timal + 1 matches the amount of data pushed through the
network in case of Reed-Solomon on HDFS.

We can observe in Figure 7(a) that HDFS-Butterfly
implementation is very close to the theoretical minimum.
The small difference between Butterfly and the optimal
value is due to the impact of metadata size. Similarly,
Reed-Solomon on HDFS is very close to optimal + 1
with the additional metadata transfer overhead. In case of
Ceph, the network traffic overhead is significantly higher.
For Ceph-4MB, the large overhead comes from the very
small chunks being transferred between the nodes and
the per-message overhead introduced by the system. The
communication overhead reduces for larger stripe sizes,
i.e. Ceph-64MB. However, even with Ceph-64MB the
communication overhead increases with k, again due to
reduced message size and larger per-message overhead.
Small message sizes in Ceph come as a consequence of
the on-line encoding approach that significantly reduces
the size of encoded messages, and hence the sizes of the
symbol elements.

The results presented in Figure 7(a) reveal that if care-
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(a) Overall Network Traffic in GB (b) Overall Disk Reads in GB (c) Overall Disk Writes in GB

Figure 7: The aggregate amount (across all 11 nodes included in the repair process) of network traffic and IOs during
the repair process. We observe RS and Butterfly with k = 5 and k = 7.

fully implemented, MSR codes can reduce the repair net-
work traffic by a factor of 2x compared to traditional era-
sure codes. Higher amount of network traffic in case of
Ceph suggests that a specific system designs that avoid
fine-grain communication is necessary.

6.5 Storage Traffic

Figures 7(b),(c) represent the observed HDD read/write
traffic, as well as the theoretically optimal values pre-
dicted from the code design. We record the total amount
of traffic across all HDDs in the system. HDFS-Butterfly
achieves nearly optimal amount of read traffic, with the
addition of metadata. HDFS-RS read traffic is also very
close to optimal + 1, again the extra overhead comes
from the HDFS metadata.

The results become somewhat more interesting with
Ceph. It is noticeable that the difference between Ceph-
-Butterfly and optimal increases as we move from k = 5
to k = 7. Due to the small read I/O sizes with Ceph-
-Butterfly, reads suffer two drawbacks: (i) misaligned
reads may cause larger data transfer (smallest HDD I/O
is 4K and it needs to be 4K aligned), and (ii) read-ahead
mechanism (128K by default) increases the amount of
data transferred from an HDD. While read-ahead can be
disabled, the entire system would suffer when reading
sequential data, which is likely the most frequent sce-
nario. The mentioned two drawbacks increase the influ-
ence on performance when the read size reduces, which
is the case when we move from k = 5 to k = 7. With
large enough Ceph stripes, the read I/O size increases in
size, and the read overhead converges to zero. Exam-
ple of large read I/Os is Ceph-RS, where the read over-
head becomes negligible, Figure 7(b). In case of Butter-
fly, achieving large read I/Os requires impractically large
Ceph stripe sizes.

For both systems and for both erasure code schemes,
the overall amount of writes exceeds the optimal (lost
data) amount by a factor of ∼2, as presented in Fig-
ure 7(c). Ceph allows updates of stored data, and for
maintaining consistency in case of a failure, Ceph re-
lies on journaling. In our experiments the journal for

each OSD was co-located with the data, sharing the
same HDD. In Ceph, all data being written have to pass
through the journal and as a consequence the write traf-
fic is doubled. Furthermore, the amount of data written
in Ceph exceeds 2 x optimal because of data balancing.
By examining the Ceph logs, we found that during the
repair process many OSDs become unresponsive for cer-
tain amount of time. When that happens the recovered
data is redirected to available OSDs, and load-balancing
is performed when the non-responsive OSDs come back
on-line. Note that the load-balancing can be performed
among OSDs on the same server, therefore not affect-
ing the network traffic significantly. Also, reads are not
affected by load balancing since the data being moved
around is “hot” and in large part cached in the local
filesystem. Tracking down the exact reason for having
OSDs temporarily unavailable is outside of scope of this
study.

In case of HDFS, there is an intermediate local file
where the recovered block is being written before com-
mitted back to the filesystem. This was the initial design
in HDFS-RS, and our HDFS-Butterfly currently uses the
same design. We will remove the extra write in the fu-
ture. The intermediate file is not always entirely synced
to HDD before the recovered data is further destaged to
HDFS, resulting in the overall write traffic being some-
times lower than 2 x optimal.

7 Related Work

Traditional erasure codes, such as Reed-Solomon, have
been implemented and tested in a number of large-
-scale distributed storage systems. Compared to replica-
tion, Reed-Solomon emerged as a good option for cost-
-effective data storage and good data durability. Most
widely used open source distributed systems HDFS and
Ceph implement Reed-Solomon variants [1, 5]. In addi-
tion, traditional erasure codes have been used in numer-
ous other studies and production systems, including stor-
age systems in Google and Facebook [3, 6, 15, 16, 18,
22]. Compared to the MSR code used in this study, the
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traditional erasure codes initiate up to 2x more network
and storage traffic during the repair process.

When it comes to practical usage of advanced erasure
coding schemes, previous work have mostly been fo-
cused on LRC-based implementations in distributed stor-
age systems. Sathiamoorthy et al. [28] introduce Xorbas,
an LRC-based erasure coding that they also implement in
HDFS. The study presents significant performance im-
provements in terms of both, disk and network traffic
during the repair process. Xorbas introduce 14% storage
overhead compared to RS.

Huang et al. [20] implement and demonstrate the ben-
efits of LRC-based erasure coding in Windows Azure
Storage. Khan et al. [21] designed a variation of Reed-
Solomon codes that allow to construct MDS array codes
with symbol locality, optimized to improve degraded
read performance. In case of Butterfly codes, the de-
graded reads performance would be equivalent to RAID
5 degraded reads, and not as efficient as the work pre-
sented in by Khan. Xia et al. [35] present an interest-
ing approach, where they combine two different erasure
coding techniques from the same family, depending on
the workload. They use the fast code for high recov-
ery performance, and compact code for low storage over-
head. They focus on two erasure coding families, prod-
uct codes and LRC. All of the mentioned studies focus on
the LRC erasure codes that cannot achieve the minimum
repair traffic described by MSRs.

Rashmi et al. [25] implemented a MSR code construc-
tion with a storage overhead above 2×. In the regime be-
low 2×, Hu et al. [11] presented functional MSR code,
capable of achieving significant performance improve-
ment over the traditional erasure codes when it comes to
repair throughput. However, upon the first data loss and
repair process, functional MSRs do not hold systematic
(raw) data in the system any more. Consequently, the
cost of reading systematic data increases significantly as
the system ages.

In recent years, several erasure code constructions
have attained the theoretical minimum repair traffic [7,
10, 12, 24, 31]. Although similar in the amount of repair
traffic, Butterfly codes are systematic MDS array codes
with node elements over GF(2). This small field size al-
lows relatively simple implementation and high compu-
tational performance.

8 Discussion, Future Work, Conclusions
In this study we captured the performance of MSR codes
in real-world distributed systems. Our study is based
on Butterfly codes, a novel MSR code which we imple-
mented in two widely used distributed storage systems,
Ceph and HDFS. Our study aims at providing answers
to important questions related to MSR codes: (i) can
the theoretical reduction in repair traffic translate to an

actual performance improvement, and (ii) in what way
the system design affects the MSR code repair perfor-
mance. Our analysis shows that MSR codes are capable
reducing network traffic and read I/O access during re-
pairs. For example, Butterfly codes in HDFS achieves
almost optimal network and storage traffic. However,
the overall encoding/decoding performance in terms of
latency and storage utilization heavily depends on the
system design, as well as the ability of the system to
efficiently manage local resources, such as memory al-
location/deallocation/movement. Java-based HDFS ex-
periences significant CPU overhead mainly due to non-
transparent memory management in Java.

The encoding approach is one of the most important
decisions the system architect faces when designing a
distributed erasure coding system. The initial decision
of using real-time or batch-based encoding strongly im-
pacts the overall system design and performance. The
real-time approach achieves efficient storage utilization,
but suffers high storage access overhead due to exces-
sive data fragmentation. We show that in Ceph, for
stripes of 4MB the repair network overhead exceeds
many times the expected one, while the storage access
overhead goes up to 60% higher than optimal (depend-
ing on code parameters). The situation improves with
larger stripe sizes but the communication and storage
overhead remains. Batch-based data encoding (imple-
mented in HDFS) achieves better performance, but re-
duces storage efficiency due to the required intermediate
persistent buffer where input data is stored before being
encoded.

To address the design issues, we suggest a system with
on-line data encoding with large stripes, able to use lo-
cal non-volatile memory (NVM) to accumulate enough
data before encoding it. The non-volatile device has to
be low-latency and high-endurance which are important
attributes of future NVM devices, some of which have
already been prototyped. Part of our on-going effort is
to incorporate this non-volatile and low-latency devices
into a distributed coding system.

When it comes to the features required to efficiently
implement MSR codes in distributed storage systems,
our results indicate that communication vectorization be-
comes necessary approach due to the non-contiguous
data access pattern. The interface between the system
and the MSR codes requires novel designs supporting the
specific requirements of these codes. In case of Ceph we
showed the necessity for chaining the plug-in API, and
we proposed a new model that is suitable for MSR codes.

While the overall performance of MSR codes in dis-
tributed storage systems depends on many factors, we
have shown that with careful design and implementation,
MSR-based repairs can meet theoretical expectations and
outperform traditional codes by up to a factor of 2x.
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Abstract
Flash memory is prevalent in modern servers and de-

vices. Coupled with the scaling down of flash technol-
ogy, the popularity of flash memory motivates the search
for methods to increase flash reliability and lifetime. Era-
sures are the dominant cause of flash cell wear, but re-
ducing them is challenging because flash is a write-once
medium— memory cells must be erased prior to writing.

An approach that has recently received considerable at-
tention relies on write-once memory (WOM) codes, de-
signed to accommodate additional writes on write-once
media. However, the techniques proposed for reusing flash
pages with WOM codes are limited in their scope. Many
focus on the coding theory alone, while others suggest
FTL designs that are application specific, or not applicable
due to their complexity, overheads, or specific constraints
of MLC flash.

This work is the first that addresses all aspects of page
reuse within an end-to-end implementation of a general-
purpose FTL on MLC flash. We use our hardware im-
plementation to directly measure the short and long-term
effects of page reuse on SSD durability, I/O performance
and energy consumption, and show that FTL design must
explicitly take them into account.

1 Introduction
Flash memories have special characteristics that make
them especially useful for solid-state drives (SSD). Their
short read and write latencies and increasing throughput
provide a great performance improvement compared to
traditional hard disk based drives. However, once a flash
cell is written upon, changing its value from 1 to 0, it must
be erased before it can be rewritten. In addition to the la-
tency they incur, these erasures wear the cells, degrading
their reliability. Thus, flash cells have a limited lifetime,
measured as the number of erasures a block can endure.

Multi-level flash cells (MLC), which support four volt-
age levels, increase available capacity but have especially
short lifetimes, as low as several thousands of erasures.
Many methods for reducing block erasures have been
suggested for incorporation in the flash translation layer
(FTL), the SSD management firmware. These include

minimizing user and internal write traffic [14, 19, 20, 28,
37, 38, 42, 46, 55] and distributing erasure costs evenly
across the drive’s blocks [7, 22, 25, 27].

A promising technique for reducing block erasures is to
use write-once memory (WOM) codes. WOM codes alter
the logical data before it is physically written, thus allow-
ing the reuse of cells for multiple writes. They ensure that,
on every consecutive write, ones may be overwritten with
zeros, but not vice versa. Reusing flash cells with this
technique might make it possible to increase the amount
of data written to the block before it must be erased.

Flash page reuse is appealing because it is orthogonal
to other FTL optimizations. Indeed, the design of WOM
codes and systems that use them has received much atten-
tion in recent years. While the coding theory community
focuses on optimizing these codes to reduce their redun-
dancy and complexity [9, 10, 13, 17, 44, 49], the storage
community focuses on SSD designs that can offset these
overheads and be applied to real systems [24, 36, 53].

However, the application of WOM codes to state-of-
the-art flash chips is not straightforward. MLC chips im-
pose additional constraints on modifying their voltage lev-
els. Previous studies that examined page reuse on real
hardware identified some limitations on reprogramming
MLC flash, and thus resort to page reuse only on SLC
flash [24], outside an SSD framework [18], or within a
limited special-purpose FTL [31].

Thus, previous SSD designs that utilize WOM codes
have not been implemented on real platforms, and their
benefits were analyzed by simulation alone, raising the
concern that they could not be achieved in real world stor-
age systems. In particular, hardware aspects such as pos-
sible increase in cell wear and energy consumption due
to the additional writes and higher resulting voltage lev-
els have not been examined before, but may have dramatic
implications on the applicability of this approach.

In this study, we present the first end-to-end evaluation
and analysis of flash page reuse with WOM codes. The
first part of our analysis consists of a low-level evaluation
of four state-of-the-art MLC flash chips. We examine the
possibility of several reprogramming schemes for MLC
flash and their short and long-term effects on the chip’s
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durability, as well as the difference in energy consumption
compared to that of traditional use.

The second part of our analysis consists of a system-
level FTL evaluation on the OpenSSD board [4]. Our
FTL design takes into account the limitations identified
in the low-level analysis and could thus be implemented
and evaluated on real hardware. We measure erasures and
I/O response time and compare them to those observed in
previous studies.

The discrepancy between our results and previous ones
emphasizes why understanding low-level constraints on
page reuse is crucial for high-level designs and their ob-
jectives. We present the lessons learned from our analysis
in the form of guidelines to be taken into account in future
designs, implementations, and optimizations.

The rest of this paper is organized as follows. Section 2
describes the basic concepts that determine to what extent
it is possible to benefit from flash page reuse. We identify
the limitations on page reuse in MLC flash in Section 3,
with the implications on FTL design in Section 4. We de-
scribe our experimental setup and FTL implementation in
Section 5, and present our evaluation in Section 6. We sur-
vey related work in Section 7, and conclude in Section 8.

2 Preliminaries
In this section, we introduce the basic concepts that deter-
mine the potential benefit from flash page reuse: WOM
codes, MLC flash, and SSD design.

2.1 Write-Once Memory Codes
Write-once memory (WOM) codes were first introduced
in 1982 by Rivest and Shamir, for recording informa-
tion multiple times on a write-once storage medium [40].
They give a simple WOM code example, presented in Ta-
ble 1. This code enables the recording of two bits of

Data bits 1st write 2nd write
11 111 000
01 011 100
10 101 010
00 110 001

Table 1: WOM code example

information in three cells
twice, ensuring that in
both writes the cells
change their value only
from 1 to 0. For example,
if the first message to be
stored is 00, then 110 is
written, programming only the last cell. If the second
message is 10, then 010 is written, programming the
first cell as well. Note that without special encoding, 00
cannot be overwritten by 10 without prior erasure. If the
first and second messages are identical, then the cells do
not change their value between the first and second writes.
Thus, before performing a second write, the cell values
must be read in order to determine the correct encoding.

WOM code instances, or constructions, differ in the
number of achievable writes and in the manner in which
each successive write is encoded. The applicability of a
WOM code construction to storage depends on three char-
acteristics: (a) the capacity overhead —the number of

extra cells required to encode the original message, (b)
the encoding and decoding efficiency, and (c) the success
rate—the probability of producing an encoded output that
can be used for overwriting the chosen cells. Any two of
these characteristics can be optimized at the cost of com-
promising the third.

Consider, for example, the code depicted in Table 1,
where encoding and decoding are done by a simple table
lookup, and therefore have complexityO(1) and a success
rate of 100%. However, this code incurs a capacity over-
head of 50% on each write. This means that (1) only 2

3

of the overall physical capacity can be utilized for logical
data, and (2) every read and write must access 50% more
cells than what is required by the logical data size.

The theoretical lower bound on capacity overhead for
two writes is 29% [40]. Codes that incur this minimal
overhead (capacity achieving) are not suitable for real sys-
tems. They either have exponential and thus inapplica-
ble complexity, or complexity of n logn (where n is the
number of encoded bits) but a failure rate that approaches
1 [10, 56]. Thus, early proposals for rewriting flash pages
using WOM codes that were based on capacity achieving
codes were impractical. In addition, they required par-
tially programming additional pages on each write, mod-
ifying the physical page size [8, 18, 23, 30, 36, 50], or
compressing the logical data prior to encoding [24].

Two recently suggested WOM code families, Polar [9,
10] and LDPC [56], have the same complexities as the er-
ror correction codes they are derived from. For these com-
plexities, different constructions incur different capacity
overheads, and the failure rate decreases as the capacity
overhead increases. Of particular interest are construc-
tions in which the overhead of the first write is 0, i.e., one
logical page is written on one physical page. The data
encoded for the second write requires two full physical
pages for one logical page. Such a construction is used in
the design of ReusableSSD [53], where the second write is
performed by programming pages containing invalid data
on two different blocks in parallel.

2.2 Multi-Level Cell (MLC) Flash
A flash chip is built from floating-gate cells whose state
depends on the number of electrons they retain. Writing
is done by programming the cell, increasing the threshold
voltage (Vth) required to activate it. Cells are organized in
blocks, which are the unit of erasure. Blocks are further
divided into pages, which are the read and program units.

Single-level cells (SLC) support two voltage levels,
mapped to either 1 (in the initial state) or 0. Thus, SLC
flash is a classic write-once memory, where pages can be
reused by programming some of their 1’s to 0’s. We re-
fer to programming without prior erasure as reprogram-
ming. Multi-level cells (MLC) support four voltage levels,
mapped to 11 (in the initial state), 01, 00 or 10. This map-
ping, in which a single bit is flipped between successive
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Figure 1: Normal
programming order
and states of MLC
flash. ER is the ini-
tial (erased) state.

ER
(11)

ER
(11)

Tmp
(X0)

1 0

High
bit

Low
bit

ER
(11)

P1
(01)

P2
(00)

P3
(10)

1 0 10

Low bit program

High bit program

states, minimizes bit errors if the cell’s voltage level is dis-
turbed. The least and most significant bits represented by
the voltage levels of a multi-level cell are mapped to two
separate pages, the low page and high page, respectively.
These pages can be programmed and read independently.
However, programming must be done in a certain order to
ensure that all possible bit combinations can be read cor-
rectly. Triple-level cells (TLC) support eight voltage lev-
els, and can thus store three bits. Their mapping schemes
and programming constraints are similar to those of MLC
flash. We focus our discussion on MLC flash, which is the
most common technology in SSDs today.

Figure 1 depicts a normal programming order of the low
and high bits in a multi-level cell. The cell’s initial state
is the erased (ER) state corresponding to 11. The low
bit is programmed first: programming 1 leaves the cell in
the erased state, while programming 0 raises its level and
moves it to a temporary state. Programming the high bit
changes the cell’s state according to the state it was in after
the low bit was programmed, as shown in the bottom part
of the figure.1 We discuss the implications of this mapping
scheme on page reuse in the following section.

Bit errors occur when the state of the cell changes un-
intentionally, causing a bit value to flip. The reliability of
a flash block is measured by its bit error rate (BER)—the
average number of bit errors per page. The high voltage
applied to flash cells during repeated program and erase
operations gradually degrades their ability to retain the ap-
plied voltage level. This causes the BER to increase as the
block approaches the end of its lifetime, which is mea-
sured in program/erase (P/E) cycles.

Bit errors in MLC flash are due mainly to retention er-
rors and program disturbance [11]. Retention errors occur
when the cell’s voltage level gradually decreases below
the boundaries of the state it was programmed to. Pro-
gram disturbance occurs when a cell’s state is altered dur-
ing programming of cells in a neighboring page. In the
following section, we discuss how program disturbance
limits MLC page reuse, and evaluate the effects of reusing
a block’s pages on its BER.

Error correction codes (ECC) are used to correct some
of the errors described above. The redundant bits of the
ECC are stored in each page’s spare area. The number of

1Partially programming the high bit in the temporary state is designed
to reduce program disturbance.

A16 A27 B16 B29 C35
Feature size 16nm 27nm 16nm 29nm 35nm
Page size 16KB 8KB 16KB 4KB 8KB
Pages/block 256 256 512 256 128
Spare area (%) 10.15 7.81 11.42 5.47 3.12
Lifetime (T ) 3K 5K 10K 10K NA

Table 2: Evaluated flash chip characteristics. A, B and C rep-
resent different manufacturers. The C35 chip was examined in a
previous study, and is included here for completeness.

bit errors an ECC can correct increases with the number
of redundant bits, chosen according to the expected BER
at the end of a block’s lifetime [56].

Write requests cannot update the data in the same place
it is stored, because the pages must first be erased. Thus,
writes are performed out-of-place: the previous data lo-
cation is marked as invalid, and the data is written again
on a clean page. The flash translation layer (FTL) is the
SSD firmware component responsible for mapping logical
addresses to physical pages. We discuss relevant compo-
nents of the FTL further in Section 4.

3 Flash Reliability
Flash chips do not support reprogramming via their stan-
dard interfaces. Thus, the implications of reprogramming
on the cells’ state transitions and durability cannot be de-
rived from standard documentation, and require experi-
mentation with specialized hardware. We performed a se-
ries of experiments with several state-of-the-art flash chips
to evaluate the limitations on reprogramming MLC flash
pages and the implications of reprogramming on the chip’s
lifetime, reliability, and energy consumption.

3.1 Flash Evaluation Setup
We used four NAND flash chips from two manufacturers
and various feature sizes, detailed in Table 2. We also
include in our discussion the observations from a previous
study on a chip from a third manufacturer [31]. Thus, our
analysis covers three out of four existing flash vendors.

Chip datasheets include the expected lifetime of the
chip, which is usually the maximal number of P/E cycles
that can be performed before the average BER reaches
10−3. However, cycling the chips in a lab setup usually
wears the cells faster than normal operation because they
program and erase the same block continuously. Thus, the
threshold BER is reached after fewer P/E cycles than ex-
pected. In our evaluation, we consider the lifetime (T ) of
the chips as the minimum of the expected number of cy-
cles, and the number required to reach a BER of 10−3.

Our experiments were conducted using the SigNASII
commercial NAND flash tester [6]. The tester allows soft-
ware control of the physically programmed flash blocks
and pages within them. By disabling the ECC hardware
we were able to examine the state of each cell, and to count
the bit errors in each page.
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Figure 2: State transitions in the three reprogramming schemes. A thin arrow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow representing the erroneous transition that takes place instead. Only LLH
reprogramming achieves all the required transitions for page reuse without program disturbance.

Some manufacturers employ scrambling within their
chip, where a random vector is added to the logical data
before it is programmed. Scrambling achieves uniform
distribution of the flash cell levels, thus reducing various
disturbance effects. In order to control the exact data that
is programmed on each page, we bypass the scrambling
mechanism on the chips that employ it.

Our evaluation excludes retention errors, which occur
when considerable time passes between programming and
reading a page. Reprogramming might increase the prob-
ability of retention errors because it increases the cell’s
Vth. However, since it is intended primarily for hot data,
we believe it will not cause additional retention errors.

3.2 Limitations on reprogramming
Flash cell reprogramming is strictly limited by the con-
straint that Vth can only increase, unless the block is
erased. At the same time, WOM encoding ensures that
reprogramming only attempts to change the value of each
bit from 1 to 0. However, additional limitations are im-
posed by the scheme used for mapping voltage levels to
bit values, and by the need to avoid additional program
disturbance. Thus, page reuse must follow a reprogram-
ming scheme which ensures that all reprogrammed cells
reach their desired state. We use our evaluation setup to
examine which state transitions are possible in practice.
We first consider three reprogramming schemes in which
a block has been fully programmed, and show why they
are impractical. We then validate the applicability of re-
programming when only the low pages of the block have
been programmed before.

Let us assume that the entire block’s pages have been
programmed before they are reused. Thus, the states of
the cells are as depicted in the bottom row of Figure 1. In
the low-high-low (LHL) reprogramming scheme, depicted
in Figure 2(a), we attempt to program the low bit from this
state. The thin arrows depict possible desired transitions
in this scheme. Two such transitions are impossible, re-
sulting in an undesired state (depicted by the bold arrow).

In the low-high-high (LHH) reprogramming scheme, de-
picted in Figure 2(b), the high page is reprogrammed in a
fully used block. Here, too, two state transitions fail.

A possible reason for the failed transitions in the LHL
scheme is that the voltage applied by the command to pro-
gram the low bit is not high enough to raise Vth from P1
to P2 and from ER to P3.2 The transition from P3 to
P2 in the LHH scheme is impossible, because it entails
decreasing Vth. Another problem in the LHH scheme oc-
curs in state P1 when we attempt to leave the already pro-
grammed high bit untouched. Due to an unknown distur-
bance, the cell transitions unintentionally to P2, corrupt-
ing the data on the corresponding low page.

Three of these problematic transitions can probably
be made possible with proper manufacturer support—the
transition from P3 to P2 in the LHH scheme would be
possible with a different mapping of voltage levels to
states, and the two transitions in the LHL scheme could
succeed if a higher voltage was applied during reprogram-
ming. While recent technology trends, such as one-shot
programming and 3D V-NAND [21], eliminate some con-
straints on page programming, applying such architectural
changes to existing MLC flash might amplify program dis-
turbance and increase the BER. Thus, they require careful
investigation and optimization.

An alternative to modifying the state mapping is modi-
fying the WOM encoding, so that the requirement that 1’s
are only overwritten by 0’s is replaced by the requirement
that 0’s are only overwritten by 1’s. Figure 2(c) shows the
resulting low-high-high (LHH) reprogramming scheme.
Its first drawback is that it corrupts the low pages, so a high
page can be reused only if the data on the low page is ei-
ther invalid, or copied elsewhere prior to reprogramming.
Such reprogramming also corrupted the high pages adja-
cent to the reprogrammed one. Thus, this scheme allows
safe reprogramming of only one out of two high pages.

2The transition from ER to P3 actually succeeded in the older, C35
chip [31]. All other problematic transitions discussed in this section
failed in all the chips in Table 2.
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Figure 2: State transitions in the three reprogramming schemes. A thin arrow represents an attempted transition. A dashed
arrow represents a failed transition, with a bold arrow representing the erroneous transition that takes place instead. Only LLH
reprogramming achieves all the required transitions for page reuse without program disturbance.

Some manufacturers employ scrambling within their
chip, where a random vector is added to the logical data
before it is programmed. Scrambling achieves uniform
distribution of the flash cell levels, thus reducing various
disturbance effects. In order to control the exact data that
is programmed on each page, we bypass the scrambling
mechanism on the chips that employ it.

Our evaluation excludes retention errors, which occur
when considerable time passes between programming and
reading a page. Reprogramming might increase the prob-
ability of retention errors because it increases the cell’s
Vth. However, since it is intended primarily for hot data,
we believe it will not cause additional retention errors.

3.2 Limitations on reprogramming
Flash cell reprogramming is strictly limited by the con-
straint that Vth can only increase, unless the block is
erased. At the same time, WOM encoding ensures that
reprogramming only attempts to change the value of each
bit from 1 to 0. However, additional limitations are im-
posed by the scheme used for mapping voltage levels to
bit values, and by the need to avoid additional program
disturbance. Thus, page reuse must follow a reprogram-
ming scheme which ensures that all reprogrammed cells
reach their desired state. We use our evaluation setup to
examine which state transitions are possible in practice.
We first consider three reprogramming schemes in which
a block has been fully programmed, and show why they
are impractical. We then validate the applicability of re-
programming when only the low pages of the block have
been programmed before.

Let us assume that the entire block’s pages have been
programmed before they are reused. Thus, the states of
the cells are as depicted in the bottom row of Figure 1. In
the low-high-low (LHL) reprogramming scheme, depicted
in Figure 2(a), we attempt to program the low bit from this
state. The thin arrows depict possible desired transitions
in this scheme. Two such transitions are impossible, re-
sulting in an undesired state (depicted by the bold arrow).

In the low-high-high (LHH) reprogramming scheme, de-
picted in Figure 2(b), the high page is reprogrammed in a
fully used block. Here, too, two state transitions fail.

A possible reason for the failed transitions in the LHL
scheme is that the voltage applied by the command to pro-
gram the low bit is not high enough to raise Vth from P1
to P2 and from ER to P3.2 The transition from P3 to
P2 in the LHH scheme is impossible, because it entails
decreasing Vth. Another problem in the LHH scheme oc-
curs in state P1 when we attempt to leave the already pro-
grammed high bit untouched. Due to an unknown distur-
bance, the cell transitions unintentionally to P2, corrupt-
ing the data on the corresponding low page.

Three of these problematic transitions can probably
be made possible with proper manufacturer support—the
transition from P3 to P2 in the LHH scheme would be
possible with a different mapping of voltage levels to
states, and the two transitions in the LHL scheme could
succeed if a higher voltage was applied during reprogram-
ming. While recent technology trends, such as one-shot
programming and 3D V-NAND [21], eliminate some con-
straints on page programming, applying such architectural
changes to existing MLC flash might amplify program dis-
turbance and increase the BER. Thus, they require careful
investigation and optimization.

An alternative to modifying the state mapping is modi-
fying the WOM encoding, so that the requirement that 1’s
are only overwritten by 0’s is replaced by the requirement
that 0’s are only overwritten by 1’s. Figure 2(c) shows the
resulting low-high-high (LHH) reprogramming scheme.
Its first drawback is that it corrupts the low pages, so a high
page can be reused only if the data on the low page is ei-
ther invalid, or copied elsewhere prior to reprogramming.
Such reprogramming also corrupted the high pages adja-
cent to the reprogrammed one. Thus, this scheme allows
safe reprogramming of only one out of two high pages.

2The transition from ER to P3 actually succeeded in the older, C35
chip [31]. All other problematic transitions discussed in this section
failed in all the chips in Table 2.

The benefits from such a scheme are marginal, as these
pages must also store the redundancy of the encoded data.

Interestingly, reprogramming the high bits in chips from
manufacturer A returned an error code and did not change
their state, regardless of the attempted transition. A pos-
sible explanation is that this manufacturer might block re-
programming of the high bit by some internal mechanism
to prevent the corruption described above.

The problems with the LHL and LHH schemes moti-
vated the introduction of the low-low-high (LLH) repro-
gramming scheme by Margaglia et al. [31]. Blocks in
this scheme are programmed in two rounds. In the first
round only the low pages are programmed. The second
round takes place after most of the low pages have been
invalidated. All the pages in the block are programmed
in order, i.e., a low page is reprogrammed and then the
corresponding high page is programmed for the first time,
before moving on to the next pair of pages.

We validated the applicability of the LLH scheme on
the chips of manufacturers A and B. Figure 2(d) depicts
the corresponding state transitions of the cells. Since both
programming and reprogramming of the low bit leave the
cell in either the erased or temporary state, there are no
limitations on the programming of the high page in the
bottom row. This scheme works well in all the chips we
examined. However, it has the obvious drawback of leav-
ing half of the block’s capacity unused in the first round.
This leads to the first lesson from our low-level evaluation.

Lesson 1: Page reuse in MLC flash is possible, but can
utilize only half of the pages and only if some of its ca-
pacity has been reserved in advance. FTL designs must
consider the implications of this reservation.

3.3 Average Vth and BER
In analyzing the effects of reprogramming on a chip’s
durability, we distinguish between short-term effects on
the BER due to modifications in the current P/E cycle, and
long-term wear on the cell, which might increase the prob-
ability of errors in future cycles. With this distinction, we
wish to identify a safe portion of the chip’s lifetime, dur-
ing which the resulting BER as well as the long term wear
are kept at an acceptable level.

Reprogramming increases the probability that a cell’s
value is 0. Thus, the average Vth of reused pages is higher
than that of pages that have only been programmed once.
A higher Vth increases the probability of a bit error. The
short-term effects of increased Vth include increased pro-
gram disturbance and retention errors, which are a direct
result of the current Vth of the cell and its neighboring
cells. The long-term wear is due to the higher voltage ap-
plied during programming and erasure.

Our first set of experiments evaluated the short-term ef-
fects of increased Vth on a block’s BER. In each chip, we
performed T regular P/E cycles writing random data on
one block, where T is the lifetime of the chip as detailed

Num. of PLLH cycles A16 A27 B16 B29
T (= entire lifetime) 32% 29% 20% 30.5%

0.6× T 8% 9% 8% 9%
0.4× T 6% 6.5% 6% 6.5%
0.2× T 2% 3% 3% 3.5%

Table 3: Expected reduction in lifetime due to increased Vth.
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Figure 3: Effects of increased Vth on the A16 chip.

in Table 2. We repeated this processwith different distri-
butions of 1 and 0. P0.5, in which the probability of a bit to
be 0 is 0.5, is our baseline. With PLLH the probability of
0 was 0.75 and 0.5 in the low and high page, respectively.
This corresponds to the expected probabilities after LLH
reprogramming. We read the block’s content and recorded
the BER after every P/E cycle. We repeated each experi-
ment on six blocks, and calculated the average.

The implication of an increase in BER depends on
whether it remains within the error correction capabili-
ties of the ECC. A small increase in BER at the end of
a block’s lifetime might deem it unusable, while a large
increase in a ‘young’ block has little practical effect. For
a chip with lifetime T , let T ′ be the number of cycles re-
quired to reach a BER of 10−3 in this experiment. Then
T − T ′ is the lifetime reduction caused by increasing Vth.
Our results, summarized in Table 3, were consistent in all
the chips we examined.3 Programming with PLLH , which
corresponds to a higher average Vth, shortened the chips’
lifetime considerably, by 20–32%.

In the next set of experiments, we evaluated the long-
term effects of Vth. Each experiment had two parts: we
programmed the block with PLLH in the first part, for a
portion of its lifetime, and with P0.5 in the second part,
which consists of the remaining cycles. Thus, the BER
in the second part represents the long-term effect of the
biased programming in the first part. We varied the length
of the first part between 20%, 40% and 60% of the block’s
lifetime. Figure 3 shows the BER of blocks in the A16
chip (the graphs for the different chips were similar), with
the lifetime reduction of the rest of the chips in Table 3.

Our results show that the long-term effect of increas-
ing Vth is modest, though nonnegligible—increasing Vth

early in the block’s lifetime shortened it by as much as
3.5%, 6.5% and 9%, with increased Vth during 20%, 40%
and 60% of the block’s lifetime, respectively.

3The complete set of graphs for all the experiments described in this
section is available in our technical report [54].
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Figure 4: Short-term effects of reprogramming on the A16 chip.
Num. of LLH cycles A16 A27 B16 B29
T (= entire lifetime) 38% 59.5% 99% 31%

0.6× T 8.5% 8% 7% 8.5%
0.4× T 5.2% 6% 5% 5.5%
0.2× T 1% 2.5% 3% 3%

Table 4: Expected reduction in lifetime due to reprogramming.

3.4 Reprogramming and BER
In the third set of experiments, we measured the effects
of reprogramming by performing T LLH reprogramming
cycles on blocks in each chip. Figure 4 shows the BER
results for the A16 chip, and Table 4 summarizes the ex-
pected lifetime reduction for the remaining chips.

In all the chips, the BER in the first round of program-
ming the low pages was extremely low, thanks to the lack
of interference from the high pages. In the second round,
however, the BER of all pages was higher than the base-
line, and resulted in a reduction of lifetime greater than
that caused by increasing Vth. We believe that a major
cause of this difference are optimizations tailored for the
regular LH programming order [39]. These optimizations
are more common in recent chips, such as the B16 chip.

In the last set of experiments, we evaluated the long-
term effects of reprogramming. Here, too, each exper-
iment was composed of two parts: we programmed the
block with LLH reprogramming in the first part, and with
P0.5 and regular programming in the second part. We var-
ied the length of the first part between 20%, 40% and 60%
of the block’s lifetime. Figure 5 shows the BER results
for the A16 chip, and Table 4 summarizes the expected
lifetime reduction for the remaining chips.

We observe that the long-term effects of reprogramming
are modest, and comparable to the long-term effects of in-
creasing Vth. This supports our assumption that the addi-
tional short-term increase in BER observed in the previous
set of experiments is not a result of the actual reprogram-
ming process, but rather of the mismatch between the pro-
gramming order the chips are optimized for and the LLH
reprogramming scheme. This is especially evident in the
B16 chip, in which the BER during the first part was high
above the limit of 10−3, but substantially smaller in the
second part of the experiment.

Thus, schemes that reuse flash pages only at the be-
ginning of the block’s lifetime can increase its utilization
without degrading its long-term reliability. Moreover, in
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Figure 5: Long-term effects of reprogramming on the A16 chip.
Operation Baseline (µJ) LLH (µJ)
Erase 192.79 186.49
Read (L) 50.37 50.37
Read (H) 51.25 51.25
Program (L1) 68.18 68.55
Reprogram (L2) NA 63.04
Program (H) 195.65 180.85
Average logical read 50.81 60.79
Average logical write 132.64 145.71

Table 5: Energy consumed by flash operations on chip A16.

all but the B16 chips, LLH reprogramming in the first
40% of the block’s lifetime resulted in BER that was well
within the error correction capabilities of the ECC. We
rely on this observation in our FTL design in Section 4.

We note, however, that the variance between the chips
we examined is high, and that short and long-term effects
do not depend only on the feature size. For example, the
A16 chip is “better” than the A27 chip, but the B16 chip is
“worse” than the B29 chip. This leads to the second lesson
from our low-level evaluation.

Lesson 2: The portion of the block’s lifetime in which its
pages can be reused safely depends on the characteristics
of its chip. The FTL must take into account the long-term
implications of reuse on the chips it is designed for.
3.5 Energy consumption
Flash read, write and erase operations consume different
amounts of energy, which also depend on whether the op-
eration is performed on the high page or on the low one,
and on its data pattern. We examined the effect of repro-
gramming on energy consumption by connecting an oscil-
loscope to the SigNAS tester. We calculated the energy
consumed by each of the following operations on the A16
chip: an erasure of a block programmed with PLLH and
p=0.5, reading and writing a high and a low page, repro-
gramming a low page, and programming a high page on a
partially-used block.

To account for the transfer overhead of WOM encoded
data, our measurements of read, program and reprogram
operations included the I/O transfer to/from the registers.
Our results, averaged over three independent measure-
ments, are summarized in Table 5. We also present the
average energy consumption per read or write operation
with baseline and with LLH reprogramming, taking into
account the size of the programmed data, the reading of
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Figure 6: Block life cycle in a Low-Low-High FTL.

used pages for supplying the invalid data as input to the
WOM encoder, and the number of pages that can be writ-
ten before each erasure.

These results show that page reuse consumes more
overall energy than the baseline. This is in contrast to
previous studies showing possible energy savings. These
studies assumed that the energy is proportional to the num-
ber of programmed cells, which is equivalent in a first and
in a second write [18, 53]. However, our hardware eval-
uation shows that the number of reprogrammed pages is
the dominant factor in energy consumption. While repro-
gramming a lower page consumes less energy than the av-
erage logical write in the baseline, the use of WOM en-
coding entails an extra read and page reprogram for each
logical write. The low energy consumption of the saved
erasures does not offset the additional energy consumed
by those operations. We note, however, that when page
reuse reduces the internal writes by the FTL, some energy
savings may result. We examine that possibility further in
Section 6, but can already draw the following lesson.

Lesson 3: With WOM encoded data, the energy con-
sumed by the additional flash operations is larger than
that required by the saved erase operations. Energy sav-
ings are possible only if they reduce the number of write
operations performed on the flash chip.

4 FTL Design
Following our lessons from Section 3, we describe the
general design principles for a Low-Low-High FTL—an
FTL that reuses flash pages using the LLH reprogramming
scheme. We assume such an FTL would run on the SSD
controller, and utilize the physical page and block opera-
tions supported by the flash controller. Thus, it shares the
following basic concepts with the standard FTL and SSD.

To accommodate out-of-place writes, the physical stor-
age capacity of the drive is larger than its exported logical
capacity. The drive’s overprovisioning is defined as T−U

U
,

where T and U represent the number of physical and logi-
cal blocks, respectively [15]. Typical values of overprovi-
sioning are 7% and 28% for consumer and enterprise class
SSDs, respectively [45].

Whenever the number of clean blocks drops below a
certain threshold, garbage collection is invoked. Garbage
collection is typically performed greedily, picking the
block with the minimum valid count (the lowest number
of valid pages) as the victim for cleaning. The valid pages

are moved—read and copied to another available block,
and then the block is erased. These additional internal
writes, referred to as write amplification, delay the clean-
ing process, and require, eventually, additional erasures.
Write amplification does not accurately represent the uti-
lization of drives that reuse pages for WOM encoded data,
since some redundancy must always be added to the log-
ical data to enable second writes [51, 52]. Thus, instead
of deriving the number of erasures performed by the FTL
from its write amplification, we measure them directly.

Low-Low-High (LLH) programming. Blocks in a
Low-Low-High FTL cycle between four states, as de-
picted in Figure 6. In the initial, clean state all the cells
are in the erased state, ER. If all the pages are programmed
(write L1H), the block reaches the used state. Alterna-
tively, if only the low pages are used (write L1), the block
reaches the partially-used state. A partially-used block
can be reused, in which case the FTL will reprogram all or
some of the low pages and all the high pages (write L2H),
transitioning the block to the reused state. Alternatively,
the FTL can program the high pages and leave the low
pages untouched (write H), thus transitioning the block
to the used state. Used and reused blocks return to the
clean state when they are erased.

The choice of state transition is determined by the con-
ditions depicted in Figure 6. The conditions that deter-
mine when to partially use, use or reuse a block, as well
as the encoding scheme used for reprogrammed pages, are
in turn determined by the specific FTL design. We next
describe LLH-FTL—the FTL used for our evaluation.

WOM encoding. When WOM codes are employed for
reusing flash pages, the FTL is responsible for determin-
ing whether a logical page is written in a first or a sec-
ond write, and for recording the required metadata. The
choice of WOM code determines the data written on the
low pages of partially-used blocks, and the data written on
them when they are reprogrammed. The encoding scheme
in LLH-FTL is similar to that of ReusableSSD [53]. Data
in the low pages of partially-used blocks is written as is,
without storage or encoding overheads. Data written as
a second write on low pages of reused blocks is encoded
with a Polar WOM code that requires two physical pages
to store the encoded data of one logical page [9, 10]. This
WOM implementation has a 0.25% encoding failure rate.

We note that the mathematical properties of WOM
codes ensure they can be applied to any data pattern,
including data that was previously scrambled or com-
pressed. In fact, WOM encoding also ensures an even
distribution of zeroes throughout the page, and can thus
replace data scrambling on second writes.

While manufacturers have increased the flash page size
(see Table 2), the most common size used by file sys-
tems remains 4KB. Our LLH-FTL design distinguishes
between the logical page used by the host and some larger
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physical page size. Thus, the FTL maps several logical
pages onto each physical page. This allows LLH-FTL to
program the encoded data for a second write on one phys-
ical page. In the rest of this section we assume that the
physical page size is exactly twice the logical page size.
We note that the changes required in the design if the phys-
ical pages are even larger are straightforward.

If the physical and logical page sizes are equal, a Low-
Low-High FTL can utilize the multi-plane command that
allows programming two physical pages in parallel on two
different blocks, as in the ReusableSSD design. In both
approaches, the latency required for reading or writing an
encoded logical page on a second write is equal to the la-
tency of one flash page write.

As in the design of ReusableSSD [53], LLH-FTL ad-
dresses the 0.25% probability of encoding failure by writ-
ing the respective logical page as a first write on a clean
block, and prefetches the content of physical pages that are
about to be rewritten to avoid the latency of an additional
read. Pages are reprogrammed only in the safe portion of
their block’s lifetime (the first 40% in all but one of the
chips we examined), thus limiting the long-term effect of
reprogramming to an acceptable level.

Hot and cold data separation. Workloads typically
exhibit a certain amount of skew, combining frequently
updated hot data with infrequently written cold data. Sep-
arating hot and cold pages has been demonstrated as ben-
eficial in several studies [16, 22, 25, 47]. Previous stud-
ies also showed that second writes are most beneficial for
hot pages, minimizing the time in which the capacity of
reused blocks is not fully utilized [31, 36, 52, 53]. In
LLH-FTL, we write hot data on partially-used and reused
blocks, and cold data on used blocks. Hot data on par-
tially-used blocks is invalidated quickly, maximizing the
benefit from reusing the low pages they are written on.
Reused blocks store pages in first as well as in second
writes. Nevertheless, we use them only for hot data, in or-
der to maintain the separation of hot pages from cold ones.
The classification of hot and cold pages is orthogonal to
the design of LLH-FTL, and can be done using a variety
of approaches [12, 22, 33, 47]. We describe the classifica-
tion schemes used in our experiments in Section 5.

Partially-use, use and reuse conditions. The number
of partially-used blocks greatly affects the performance of
a Low-Low-High FTL. Too few mean that the blocks will
be reused too soon, while they still contain too many valid
low pages, thus limiting the benefit from reprogramming.
Too many mean that too many high pages will remain un-
used, reducing the available overprovisioned space, which
might increase internal page moves. The three conditions
in Figure 6 control the number of partially-used blocks: if
the partially-use condition does not hold, a clean block is
used with regular LH programming. In addition, the FTL
may define a use condition, which specifies the circum-

stances in which a partially-used block is reclaimed, and
its high pages will be written without rewriting the low
pages. Finally, the reuse condition ensures efficient reuse
of the low pages. The FTL allows partially-used blocks to
accumulate until the reuse condition is met.

Our LLH-FTL allows accumulation of at most
thresholdpu partially-used blocks. This threshold is up-
dated in each garbage collection invocation. An increase
in the valid count of the victim block compared to previ-
ous garbage collections indicates that the effective over-
provisioned space is too low. In this case the threshold is
decreased. Similarly, a decrease in the valid count indi-
cates that page reuse is effective in reducing garbage col-
lections, in which case the threshold is increased to allow
more reuse. Thus, the partially-use and reuse conditions
simply compare the number of partially-used blocks to
the threshold. To maintain the separation between hot and
cold pages, LLH-FTL does not utilize the use condition.
Expected benefit. The reduction in erasures in LLH-

FTL depends on the amount of hot data in the work-
load, and on the number of valid pages that remain on
partially-used blocks when they are reused. We assume,
for the sake of this analysis, that the low pages on a
reused block, as well as all the pages on an erased block,
have all been invalidated. Without reprogramming, this
means that there is no write amplification, and the ex-
pected number of erasures is E=M

N
, where M is the num-

ber of logical page write requests, and N is the number
of pages in each block. With LLH programming, every
two low pages are reused to write an extra logical page,
so N+N

4
logical pages are written on each block before it

is erased. Let X be the portion of hot data in the work-
load, 0 ≤ X < 1, and recall that only blocks containing
hot pages are reused. Then the expected number of era-
sures is E′=(1−X)M

N
+X M

N+N

4

=E(5−X
5

). The maximal
reduction in erasures is expected in traces where almost
all the write requests access hot pages (X → 1), where
E′ = 0.8E, a reduction of 20%.

For a rough estimate of the resulting lifetime extension,
let us assume that all the blocks are reused in the first 40%
of their lifetime, i.e., during 0.4T cycles. In each of these
cycles, 5N

4
logical pages are written on these blocks, a to-

tal of 0.5TN . Assuming we can use the remaining 0.6T
cycles, we write an additional 0.6TN pages. The total
amount of data written is 1.1TN , an increase of 10% com-
pared to regular programming. However, we must also
consider the reduction in lifetime observed in the exper-
iments in Section 3.3. A 5%–6% reduction means that
the reduction in erasures translates to a modest 4%–5%
increase in lifetime.

Comparing our analysis to that of previous designs is
not straightforward. Most studies, including of designs
that reuse flash pages with WOM codes, did not consider
the overall amount of logical data that could be written
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on the device. The only comparable analysis is that of
ReusableSSD [53], which resulted in an estimated reduc-
tion of up to 33% of erasures, assuming that all the blocks
(storing both hot and cold data) could be reused, and that
both the low and high pages could be reprogrammed. This
analysis also excluded the lifetime reduction due to repro-
gramming. This discrepancy leads to our next lesson.

Lesson 4: A reduction in erasures does not necessarily
translate to a substantial lifetime increase, due to the low
utilization of pages that store WOM encoded data, and to
the long-term effects of reprogramming. The increase in
lifetime strongly depends on chip characteristics.

5 SSD Evaluation Setup
In our FTL evaluation, we wish to quantify the possible
benefit from reusing flash pages with WOM codes, when
all the limitations of physical MLC flash and practical
codes are considered. Thus, we measure the savings in
erasures and the lifetime extension they entail, as well as
the effects of LLH reprogramming on I/O performance.

5.1 OpenSSD evaluation board
We use the OpenSSD Jasmineboard [4] for our FTL eval-
uation. The board includes an ARM-based IndilinxTM

Barefoot controller, 64MB of DRAM for storing the flash
translation mapping and SATA buffers, and eight slots for
custom flash modules, each of which can host four 64Gb
35nm MLC flash chips. The chips have two planes and
8KB physical pages. The device uses large 32KB virtual
pages for improved parallelism. Thus, erase blocks are
4MB and consist of 128 contiguous virtual pages [4].

On the OpenSSD board, an FTL that uses 8KB pages
rather than 32KB virtual pages incurs unacceptable laten-
cies [43]. Thus, we use a mapping granularity of 4KB
logical pages and a merge buffer that ensures that data is
written at virtual-page granularity [31, 43]. The downside
of this optimization is an exceptionally large block size
(1024 logical pages) that increases the valid count of used
and partially-used blocks. As a result, garbage collection
entails more page moves, and reprogramming is possible
on fewer pages.

We were also unable to fully implement WOM encoded
second writes on the OpenSSD board. While mature and
commonly used error correction codes are implemented
in hardware, the Polar WOM codes used in our design are
currently only available with software encoding and de-
coding. These implementations are prohibitively slow, and
are thus impractical for latency evaluation purposes. In ad-
dition, in OpenSSD, only the ECC hardware accelerator is
allowed to access the page spare area, and cannot be dis-
abled. Thus, reprogrammed pages will always appear as
corrupted when compared with their corresponding ECC.
This also prevents the FTL from utilizing the page spare
area for encoding purposes [53]. We address these limita-
tions in our FTL implementation described below.

5.2 FTL Implementation
The FTL used on the OpenSSD board is implemented in
software, and can thus also be used as an emulator of SSD
performance when executed on a standard server without
being connected to the actual board. Replaying a work-
load on the emulator is considerably faster than on the
board itself, because it does not perform the physical flash
operations. We validated this emulator, ensuring that it re-
ports the same count of flash operations as would be per-
formed on the actual board. Thus, using the emulator, we
were able to experiment with a broad set of setups and
parameters that are impractical on the Jasmine board. In
particular, we were able to evaluate an FTL that uses 8KB
physical pages, rather than the 32KB physical pages man-
dated by the limitations of the board.We refer to the FTL
versions with 32KB pages as 〈FTL name〉-32.

We first implemented a baseline FTL that performs only
first writes on all the blocks. It employs greedy garbage
collection within each bank and separates hot and cold
pages by writing them on two different active blocks. The
identification of hot pages is described in Section 5.3. We
also implemented LLH-FTL described in Section 4.4 It
uses greedy garbage collection for choosing the block with
the minimum number of valid logical pages among used
and reused blocks. Garbage collection is triggered when-
ever a clean block should be allocated and no such block is
available. If the number of partially-used blocks is lower
than the threshold and a hot active block is required, LLH-
FTL allocates the partially-used block with the minimum
valid count. If the threshold is exceeded or if a cold active
block is required, it allocates a new clean block.

The threshold is updated after each garbage collection,
taking into account the valid count in w previous garbage
collections. Due to lack of space, we present results only
forw = 5, and two initial threshold values, which were the
most dominant factor in the performance of LLH-FTL.

LLH-FTL reuses low pages on partially-used blocks
only if all the logical pages on them have been invali-
dated. LLH-FTL-32 writes four logical pages on each
reused physical pages, requiring eight consecutive invalid
logical pages in order to reuse a low page. We evaluate the
effect of this limitation on LLH-FTL-32 in Section 6.

Our implementation of LLH-FTL does not include ac-
tual WOM encoding and decoding for the reasons de-
scribed above. Instead, it writes arbitrary data during re-
programming of low pages, and ignores the ECC when
reading reprogrammed data. In a real system, the WOM
encoding and decoding would be implemented in hard-
ware, and incur the same latency as the ECC. Thus, in
our evaluation setup, their overheads are simulated by the
ECC computations on the OpenSSD board. Coding fail-
ures are simulated by a random “coin flip” with the appro-
priate probability. To account for the additional prefetch-

4The code for the emulator and FTLs is available online [1, 2].
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src1 2 2 16 3.15 0.75 0.22 45
stg 0 2 3.36 0.85 0.85 16
hm 0 4 32 6.6 0.64 0.7 23
rsrch 0 1.5 2.37 0.91 0.95 11
src2 0 1.5 2.58 0.89 0.91 10
ts 0 2 2.98 0.82 0.94 12
usr 0 2.5 3.7 0.6 0.86 14
wdev 0 1 1.89 0.8 0.85 7
prxy 0 12.5 64 20.7 0.97 0.67 83
proj 0 4 6.98 0.88 0.14 145
web 0 2 3.36 0.7 0.87 17
online 5.5 16 3.14 0.74 0.31 16
webresearch 3 1.8 1 0.41 13
webusers 8 4.26 0.9 0.32 27
webmail 8 32 4.3 0.82 0.3 24
web-online 14 7.88 0.78 0.31 43
zipf(0.9,0.95,1) 12.5 16 200 1 0.5 48

Table 6: Trace characteristics of MSR (top box), FIU (middle),
and synthetic (bottom) workloads.

ing of the invalid data, this data is read from the flash into
the DRAM, but is never transferred to the host.

5.3 Workloads
We use real world traces from two sources. The first is
the MSR Cambridge workload [5, 35], which contains
week-long traces from 36 volumes on 13 servers. The
second is a set of traces from FIU [3, 29], collected dur-
ing three weeks on servers of the computer science depart-
ment. Some of the volumes are too big to fit on the drive
size supported by our FTL implementation, which is lim-
ited by the DRAM available on the OpenSSD. We used the
16 traces whose address space fit in an SSD size of 64GB
or less, and that include enough write requests to invoke
the garbage collector on that drive. These traces vary in
a wide range of parameters, summarized in Table 6. We
also used three synthetic workloads with a Zipf distribu-
tion with exponential parameter α = 0.9, 0.95 and 1.

We used a different hot/cold classification heuristic for
each set of traces. For the MSR traces, pages were classi-
fied as cold if they were written in a request of size 64KB
or larger. This simple online heuristic was shown to per-
form well in several previous studies [12, 22, 53]. In the
FIU traces, all the requests are of size 4KB, so accesses to
contiguous data chunks appear as sequential accesses. We
applied a similar heuristic by tracking previously accessed
pages, and classifying pages as cold if they appeared in a
sequence of more than two consecutive pages. In the syn-
thetically generated Zipf traces, the frequency of access
to page n is proportional to 1

αn . Thus, we extracted the
threshold n for each Zipf trace, such that pages with logi-
cal address smaller than n were accessed 50% of the time,
and pages with logical address larger than n were classi-
fied as cold. While this classification is impossible in real
world settings, these traces demonstrate the benefit from
page reuse under optimal conditions.

Each workload required a different device size, and
thus, a different number of blocks. In order to maintain
the same degree of parallelism in all experiments, we al-
ways configured the SSD with 16 banks, with 256, 512
and 1024 4MB blocks per bank for drives of size 16GB,
32GB and 64GB, respectively. Pages were striped across
banks, so that page p belonged to bank b = p mod 16.

6 Evaluation
Reduction in erasures. To verify that the expected reduc-
tion in erasures from LLH reprogramming can be achieved
in real workloads, we calculated the expected reduction
for each workload according to the formula in Section 4.
We then used the emulator to compare the number of era-
sures performed by the baseline and LLH-FTL. Our re-
sults are presented in Figure 7(a), where the workloads
are aggregated according to their source (and correspond-
ing hot page classification) and ordered by the amount of
data written divided by the corresponding drive size. Our
results show that the normalized number of erasures is be-
tween 0.8 and 1. The reduction in erasures mostly depends
on the workload and the amount of hot data in it.

The amount of overprovisioning (OP) substantially af-
fects the benefit from reprogramming. With 28% overpro-
visioning, the reduction in erasures is very close to the ex-
pected reduction. Low overprovisioning is known to incur
excessive internal writes. Thus, with the already low 7%
overprovisioning, reserving partially-used blocks for addi-
tional writes was not as efficient for reducing erasures; it
might increase the number of erasures instead. The adap-
tive thresholdpu avoids this situation quite well, as it is
decreased whenever the valid count increases. Still, the re-
duction in erasures is smaller than with OP=28% because
both the low overprovisioning and low threshold result in
more valid logical pages on the partially-used blocks, al-
lowing fewer pages to be reused.

The time required for the adaptive thresholdpu to con-
verge depends on its initial value. In setups where the
reservation of partially-used blocks is useful, such as high
overprovisioning, LLH-FTL with initial thresholdpu =
OP/2 achieves greater reduction than with thresholdpu =
OP/4, because a higher initial value means that the opti-
mal value is found earlier. The difference between the two
initial values is smaller for traces that write more data, al-
lowing the threshold more time to adapt.

The quality of the hot data classification also affected
the reduction in erasures. While the baseline and LLH-
FTL use the same classification, misclassification inter-
feres with page reuse in a manner similar to low overpro-
visioning, as it increases the number of valid logical pages
during block erase and reuse. This effect is demonstrated
in the lower reductions achieved on the FIU workloads, in
which classification was based on a naive heuristic.

We repeated the above experiments with LLH-FTL-32,
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Figure 7: (a) Normalized number of erasures (compared to baseline) of LLH-FTL (b) Normalized number of erasures (compared
to baseline-32) of LLH-FTL-32 (c) Normalized I/O response time (compared to baseline-32) of LLH-FTL-32 (c).

to evaluate the effect of increasing the physical page size.
Indeed, the reduction in erasures was smaller than with
8KB pages, although the differences were minor. The av-
erage difference was 1% with 28% overprovisioning, but
it was 6% with 7% overprovisioning because of the higher
number of leftover valid logical pages on each physical
page in partially-used blocks.

I/O response time. To evaluate the effect of LLH repro-
gramming on I/O response time, we replayed the work-
loads on the OpenSSD board. We warmed up the board
by filling the SSD and then replaying the workload twice,
measuring the I/O response time in the last 12 hours of
each workload. We accelerated the workloads by a factor
of 10 in order to speed up the experiment. While main-
taining the original access pattern, the accelerated request
rate is more realistic for workloads that use SSDs.

We use LLH-FTL-32 with the optimal initial
thresholdpu for representative MSR traces. Fig-
ure 7(b) shows the normalized number of erasures
compared to baseline-32, and Figure 7(c) shows the
normalized I/O response time of LLH-FTL-32. Despite
the considerable reduction in erasures, and thus, garbage
collection invocations, the average I/O response time
is almost unchanged. The 90th and 99th percentiles
were also similar. This contradicts previous simulation
results [53] that correlated the reduction in erasures with
a reduction in I/O response time.

One reason for this discrepancy is that the accumulation
of write requests in the merge buffers in OpenSSD causes
writes to behave asynchronously—the write request re-
turns to the host as complete once the page is written in
the buffer. Flushing the merge buffer onto a physical flash
page is the cause for latency in writes. The baseline flushes
the buffer whenever eight logical pages are accumulated in
it. However, a buffer containing WOM encoded data must
be flushed after accumulating four logical pages, possibly
incurring additional latency. This effect was not observed
in previous studies that used a simulator that flushes all

writes synchronously.
The average I/O response time does not increase be-

cause even though the trace is accelerated, the extra buffer
flushes usually do not delay the following I/O requests. In
addition, due to the allocation of partially-used and reused
pages for hot data, this data is more likely to reside on low
pages, which are faster to read and program [18].

The second reason for the discrepancy is the reserva-
tion of partially-used blocks for reprogramming. This re-
duces the available overprovisioned capacity, potentially
increasing the number of valid pages that must be copied
during each garbage collection. As a result, although the
number of erasures decreased, the total amount of data
copied by LLH-FTL-32 was similar to that copied by the
baseline, and sometimes higher (by up to 50%). One ex-
ception is the src1 2 workload, where in the last 12 hours,
garbage collection in LLH-FTL-32 moved less data than
in baseline-32. In the other traces, the total delay caused
by garbage collections was not reduced, despite the con-
siderably lower number of erasures.

Energy consumption. We used the values from Table 5
and the operation counts from the emulator to compare the
energy consumption of LLH-FTL-32 to that of baseline-
32. The energy measurements were done on the A16 chip,
whose page size is 16KB. We doubled the values for the
read and program operations to estimate the energy for
programming 32KB pages as in LLH-FTL-32. Figure 8
shows that when reprogramming reduced erasures, the en-
ergy consumed by LLH-FTL-32 increased with inverse
proportion to this reduction. This is not surprising, since
the reduction in erasures does not reduce the amount of
internal data copying in most of the workloads. In the FIU
traces with 7% OP, reprogramming increased the number
of erasures due to increased internal writes, which, in turn,
also increased the energy consumption.

Lesson 5: A reduction in erasures does not necessarily
translate to a reduction in I/O response time or energy
consumption. These are determined by the overall amount
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Figure 8: Normalized energy consumption (compared to
baseline-32) of LLH-FTL-32 with two overprovisioning values.

of data moved during garbage collections. Designs that
are aimed at reducing energy consumption or I/O response
time should address these objectives explicitly.

7 Related Work
Several studies proposed FTL designs that reuse pages to
extend SSD lifetime. Some are based on capacity achiev-
ing codes, and bound the resulting capacity loss by limit-
ing second writes to several blocks [36] or by assuming the
logical data has been compressed by the upper level [24].
The overheads and complexities in these designs are ad-
dressed in the design of ReusableSSD [53]. However,
none of these studies addressed the limitations of repro-
gramming MLC flash pages. Some of these limitations
were addressed in the design of an overwrite compatible
B+-tree data structure, assuming the mapping of Vth to
bits can be modified [26]. Like the previous approaches,
it has been implemented only in simulation. Extended P/E
cycles [31] were implemented on real hardware, but the
FTL that uses them relies on the host to supply and indi-
cate data that is overwrite compatible. LLH-FTL is the
first general-purpose FTL that addresses all practical lim-
itations of WOM codes as well as MLC flash. Thus, we
were able to demonstrate its strengths and weaknesses on
real hardware and workloads.

Numerous studies explored the contributors to BER in
flash, on a wide variety of chip technologies and manu-
facturers. They show the effects of erasures, retention,
program disturbance and scaling down technology on the
BER [11, 18, 32, 48]. These studies demonstrate a trend
of increased BER as flash feature sizes scale down, and
the need for specialized optimizations employed by man-
ufacturers as a result. Thus, we believe that some of the
interference effects observed in our experiments are a re-
sult of optimizing the chips for regular LH programming.
Adjusting these optimizations to LLH reprogramming is a
potential approach to increase the benefit from page reuse.

Several studies examined the possibility of reprogram-
ming flash cells. Most used either SLC chips [24], or
MLC chips as if they were SLC [17]. A thorough study

on 50nm and 72nm MLC chips demonstrated that after a
full use of the block (LH programming), half of the pages
are “WOM-safe” [18]. However, they do not present the
exact reprogramming scheme, nor the problems encoun-
tered when using other schemes. A recent study [31]
mapped all possible state transitions with reprogramming
on a 35nm MLC chip, and proposed the LLH reprogram-
ming scheme. Our results in Section 3 show that smaller
feature sizes impose additional restrictions on reprogram-
ming, but that LLH reprogramming is still possible.

Previous studies examined the energy consumption of
flash chips as a factor of the programmed pattern and
page [34], and suggested methods for reducing the energy
consumption of the flash device [41]. To the best of our
knowledge, this study is the first to measure the effect of
reprogramming on the energy consumption of a real flash
chip and incorporate it into the evaluation of the FTL.

8 Conclusions
Our study is the first to evaluate the possible benefit from
reusing flash pages with WOM codes on real flash chips
and an end-to-end FTL implementation. We showed that
page reuse in MLC flash is possible, but can utilize only
half of the pages and only if some of its capacity has been
reserved in advance. While reprogramming is safe for at
least 40% of the lifetime of the chips we examined, it in-
curs additional long-term wear on their blocks. Thus, even
with an impressive 20% reduction in erasures, the increase
in lifetime strongly depends on chip physical characteris-
tics, and is fairly modest.

A reduction in erasures does not necessarily translate to
a reduction in I/O response time or energy consumption.
These are determined by the overall amount of data moved
during garbage collections, which strongly depends on the
overprovisioning. The reduction in physical flash page
writes is limited by the storage overhead of WOM encoded
data, and is mainly constrained by the limitation of reusing
only half of the block’s pages.

This study exposed a considerable gap between the pre-
viously shown benefits of page reuse, which were based on
theoretical analysis and simulations, and those that can be
achieved on current state-of-the-art hardware. However,
we believe that most of the limitations on these benefits
can be addressed with manufacturer support, and that the
potential benefits of page reuse justify reevaluation of cur-
rent MLC programming constraints.

Acknowledgments
We thank the anonymous reviewers and our shepherd, An-
drea Arpaci-Dusseau, whose suggestions helped improve
this paper. We also thank Alex Yucovich and Hila Arobas
for their help with the low-level experiments. This work
was supported in part by BSF grant 2010075, NSF grant
CCF-1218005, ISF grant 1624/14 and EU Marie Curie Ini-
tial Training Network SCALUS grant 238808.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 107

References

[1] https://github.com/zdvresearch/fast2016-ftl.
[2] https://github.com/zdvresearch/fast2016-openssd-

emulator.
[3] I/O deduplication traces. http://sylab-

srv.cs.fiu.edu/doku.php?id=projects:iodedup:start.
Retrieved: 2014.

[4] Jasmine OpenSSD platform. http://www.openssd-
project.org/.

[5] SNIA IOTTA. http://iotta.snia.org/traces/388. Re-
trieved: 2014.

[6] NAND flash memory tester (SigNASII).
http://www.siglead.com/eng/innovation signas2.html,
2014.

[7] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs
for SSD performance. In USENIX Annual Technical
Conference (ATC), 2008.

[8] A. Berman and Y. Birk. Retired-page utilization
in write-once memory – a coding perspective. In
IEEE International Symposium on Information The-
ory (ISIT), 2013.

[9] D. Burshtein. Coding for asymmetric side informa-
tion channels with applications to polar codes. In
IEEE International Symposium on Information The-
ory (ISIT), 2015.

[10] D. Burshtein and A. Strugatski. Polar write once
memory codes. IEEE Transactions on Information
Theory, 59(8):5088–5101, 2013.

[11] Y. Cai, O. Mutlu, E. Haratsch, and K. Mai. Pro-
gram interference in MLC NAND flash memory:
Characterization, modeling, and mitigation. In 31st
IEEE International Conference onComputer Design
(ICCD), 2013.

[12] M.-L. Chiao and D.-W. Chang. ROSE: A novel flash
translation layer for NAND flash memory based on
hybrid address translation. IEEE Transactions on
Computers, 60(6):753–766, 2011.

[13] G. D. Cohen, P. Godlewski, and F. Merkx. Linear bi-
nary code for write-once memories. IEEE Transac-
tions on Information Theory, 32(5):697–700, 1986.

[14] J. Colgrove, J. D. Davis, J. Hayes, E. L. Miller,
C. Sandvig, R. Sears, A. Tamches, N. Vachhara-
jani, and F. Wang. Purity: Building fast, highly-
available enterprise flash storage from commodity
components. In ACM SIGMOD International Con-
ference on Management of Data (SIGMOD), 2015.

[15] P. Desnoyers. What systems researchers need to
know about NAND flash. In 5th USENIX Workshop
on Hot Topics in Storage and File Systems (HotStor-
age), 2013.

[16] P. Desnoyers. Analytic models of SSD write perfor-
mance. Trans. Storage, 10(2):8:1–8:25, Mar. 2014.

[17] E. En Gad, H. W., Y. Li, and J. Bruck. Rewriting
flash memories by message passing. In IEEE Inter-
national Symposium on Information Theory (ISIT),
2015.

[18] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swan-
son, E. Yaakobi, P. H. Siegel, and J. K. Wolf. Char-
acterizing flash memory: Anomalies, observations,
and applications. In 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
2009.

[19] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Sivasub-
ramaniam. Leveraging value locality in optimizing
NAND flash-based SSDs. In 9th USENIX Confer-
ence on File and Storage Technologies (FAST), 2011.

[20] S. Huang, Q. Wei, J. Chen, C. Chen, and D. Feng.
Improving flash-based disk cache with lazy adaptive
replacement. In IEEE 29th Symposium on Mass Stor-
age Systems and Technologies (MSST), 2013.

[21] J.-W. Im et al. A 128Gb 3b/cell V-NAND flash mem-
ory with 1gb/s i/o rate. In IEEE International Solid-
State Circuits Conference (ISSCC), 2015.

[22] S. Im and D. Shin. ComboFTL: Improving per-
formance and lifespan of MLC flash memory using
SLC flash buffer. J. Syst. Archit., 56(12):641–653,
Dec. 2010.

[23] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin.
Writing cosets of a convolutional code to increase the
lifetime of flash memory. In 50th Annual Allerton
Conference on Communication, Control, and Com-
puting, 2012.

[24] A. Jagmohan, M. Franceschini, and L. Lastras. Write
amplification reduction in NAND flash through
multi-write coding. In 26th IEEE Symposium on
Mass Storage Systems and Technologies (MSST),
2010.

[25] X. Jimenez, D. Novo, and P. Ienne. Wear unleveling:
Improving NAND flash lifetime by balancing page
endurance. In 12th USENIX Conference on File and
Storage Technologies (FAST), 2014.

[26] J. Kaiser, F. Margaglia, and A. Brinkmann. Extend-
ing SSD lifetime in database applications with page
overwrites. In 6th International Systems and Storage
Conference (SYSTOR), 2013.

[27] T. Kgil, D. Roberts, and T. Mudge. Improving
NAND flash based disk caches. In 35th Annual
International Symposium on Computer Architecture
(ISCA), 2008.

[28] H. Kim and S. Ahn. BPLRU: A buffer management
scheme for improving random writes in flash stor-
age. In 6th USENIX Conference on File and Storage



108 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Technologies (FAST), 2008.
[29] R. Koller and R. Rangaswami. I/O deduplication:

Utilizing content similarity to improve I/O perfor-
mance. Trans. Storage, 6(3):13:1–13:26, Sept. 2010.

[30] X. Luojie, B. M. Kurkoski, and E. Yaakobi. WOM
codes reduce write amplification in NAND flash
memory. In IEEE Global Communications Confer-
ence (GLOBECOM), 2012.

[31] F. Margaglia and A. Brinkmann. Improving MLC
flash performance and endurance with extended P/E
cycles. In IEEE 31st Symposium on Mass Storage
Systems and Technologies (MSST), 2015.

[32] N. Mielke, T. Marquart, N. Wu, J. Kessenich,
H. Belgal, E. Schares, F. Trivedi, E. Goodness, and
L. Nevill. Bit error rate in NAND flash memories.
In Reliability Physics Symposium (IRPS). IEEE In-
ternational, 2008.

[33] C. Min, K. Kim, H. Cho, S.-W. Lee, and Y. I. Eom.
SFS: Random write considered harmful in solid state
drives. In 10th USENIX Conference on File and Stor-
age Technologies (FAST), 2012.

[34] V. Mohan, T. Bunker, L. Grupp, S. Gurumurthi,
M. Stan, and S. Swanson. Modeling power consump-
tion of NAND flash memories using FlashPower.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(7):1031–1044,
July 2013.

[35] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: Practical power management for enter-
prise storage. Trans. Storage, 4(3):10:1–10:23, Nov.
2008.

[36] S. Odeh and Y. Cassuto. NAND flash architec-
tures reducing write amplification through multi-
write codes. In IEEE 30th Symposium on Mass Stor-
age Systems and Technologies (MSST), 2014.

[37] Y. Oh, J. Choi, D. Lee, and S. H. Noh. Caching less
for better performance: Balancing cache size and up-
date cost of flash memory cache in hybrid storage
systems. In 10th USENIX Conference on File and
Storage Technologies (FAST), 2012.

[38] H. Park, J. Kim, J. Choi, D. Lee, and S. Noh. Incre-
mental redundancy to reduce data retention errors in
flash-based SSDs. In IEEE 31st Symposium on Mass
Storage Systems and Technologies (MSST), 2015.

[39] K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B. Y.
Choi, Y.-T. Lee, C. Kim, and K. Kim. A zeroing cell-
to-cell interference page architecture with temporary
LSB storing and parallel MSB program scheme for
MLC NAND flash memories. IEEE Journal of Solid-
State Circuits, 43(4):919–928, April 2008.

[40] R. L. Rivest and A. Shamir. How to Reuse a Write-
Once Memory. Inform. and Contr., 55(1-3):1–19,

Dec. 1982.
[41] M. Salajegheh, Y. Wang, K. Fu, A. Jiang, and

E. Learned-Miller. Exploiting half-wits: Smarter
storage for low-power devices. In 9th USENIX Con-
ference on File and Stroage Technologies (FAST),
2011.

[42] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier:
A lightweight, consistent and durable storage cache.
In 7th ACM European Conference on Computer Sys-
tems (EuroSys), 2012.

[43] M. Saxena, Y. Zhang, M. M. Swift, A. C. Arpaci-
Dusseau, and R. H. Arpaci-Dusseau. Getting real:
Lessons in transitioning research simulations into
hardware systems. In 11th USENIX Conference on
File and Storage Technologies (FAST), 2013.

[44] A. Shpilka. Capacity achieving multiwrite WOM
codes. IEEE Transactions on Information Theory,
60(3):1481–1487, 2014.

[45] K. Smith. Understanding SSD over-provisioning.
EDN Network, January 2013.

[46] G. Soundararajan, V. Prabhakaran, M. Balakrishnan,
and T. Wobber. Extending SSD lifetimes with disk-
based write caches. In 8th USENIX Conference on
File and Storage Technologies (FAST), 2010.

[47] R. Stoica and A. Ailamaki. Improving flash write
performance by using update frequency. Proc. VLDB
Endow., 6(9):733–744, July 2013.

[48] E. Yaakobi, L. Grupp, P. Siegel, S. Swanson, and
J. Wolf. Characterization and error-correcting codes
for TLC flash memories. In International Confer-
ence on Computing, Networking and Communica-
tions (ICNC), 2012.

[49] E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy, and
J. K. Wolf. Codes for write-once memories. IEEE
Transactions on Information Theory, 58(9):5985–
5999, 2012.

[50] E. Yaakobi, J. Ma, L. Grupp, P. H. Siegel, S. Swan-
son, and J. K. Wolf. Error characterization and cod-
ing schemes for flash memories. In IEEE GLOBE-
COM Workshops (GC Wkshps), 2010.

[51] E. Yaakobi, A. Yucovich, G. Maor, and G. Yadgar.
When do WOM codes improve the erasure factor in
flash memories? In IEEE International Symposium
on Information Theory (ISIT), 2015.

[52] G. Yadgar, R. Shor, E. Yaakobi, and A. Schuster. It’s
not where your data is, it’s how it got there. In 7th
USENIX Conference on Hot Topics in Storage and
File Systems (HotStorage), 2015.

[53] G. Yadgar, E. Yaakobi, and A. Schuster. Write once,
get 50% free: Saving SSD erase costs using WOM
codes. In 13th USENIX Conference on File and Stor-
age Technologies (FAST), 2015.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 109

[54] G. Yadgar, A. Yucovich, H. Arobas, E. Yaakobi,
Y. Li, F. Margaglia, A. Brinkmann, and A. Schuster.
Limitations on MLC flash page reuse and its effects
on durability. Technical Report CS-2016-02, Com-
puter Science Department, Technion, 2016.

[55] J. Yang, N. Plasson, G. Gillis, and N. Talagala. HEC:
Improving endurance of high performance flash-
based cache devices. In 6th International Systems
and Storage Conference (SYSTOR), 2013.

[56] K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng,
and T. Zhang. LDPC-in-SSD: Making advanced er-
ror correction codes work effectively in solid state
drives. In 11th USENIX Conference on File and Stor-
age Technologies (FAST), 2013.





USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 111

Reducing Solid-State Storage Device Write Stress Through Opportunistic
In-Place Delta Compression

Xuebin Zhang�, Jiangpeng Li�, Hao Wang�, Kai Zhao† and Tong Zhang�
�ECSE Department, Rensselaer Polytechnic Institute, USA

†SanDisk Corporation, USA
{xuebinzhang.rpi@gmail.com, tzhang@ecse.rpi.edu}

Abstract
Inside modern SSDs, a small portion of MLC/TLC
NAND flash memory blocks operate in SLC-mode
to serve as write buffer/cache and/or store hot data.
These SLC-mode blocks absorb a large percentage of
write operations. To balance memory wear-out, such
MLC/TLC-to-SLC configuration rotates among all the
memory blocks inside SSDs. This paper presents a
simple yet effective design approach to reduce write
stress on SLC-mode flash blocks and hence improve the
overall SSD lifetime. The key is to implement well-
known delta compression without being subject to the
read latency and data management complexity penalties
inherent to conventional practice. The underlying
theme is to leverage the partial programmability of
SLC-mode flash memory pages to ensure that the
original data and all the subsequent deltas always
reside in the same memory physical page. To avoid
the storage capacity overhead, we further propose to
combine intra-sector lossless data compression with
intra-page delta compression, leading to opportunistic
in-place delta compression. This paper presents specific
techniques to address important issues for its practical
implementation, including data error correction, and
intra-page data placement and management. We
carried out comprehensive experiments, simulations,
and ASIC (application-specific integrated circuit)
design. The results show that the proposed design
solution can largely reduce the write stress on SLC-
mode flash memory pages without significant latency
overhead and meanwhile incurs relatively small silicon
implementation cost.

1 Introduction
Solid-state data storage built upon NAND flash memory
is fundamentally changing the storage hierarchy for
information technology infrastructure. Unfortunately,
technology scaling inevitably brings the continuous
degradation of flash memory endurance and write

speed. Motivated by data access locality and hetero-
geneity in real-world applications, researchers have well
demonstrated the effectiveness of complementing bulk
MLC/TLC NAND flash memory with small-capacity
SLC NAND flash memory to improve the endurance
and write speed (e.g., see [1–3]). The key is to use
SLC memory blocks serve as write buffer/cache and/or
store relatively hot data. Such a design strategy has
been widely adopted in commercial solid-state drives
(SSDs) [4–6], where SSD controllers dynamically
configure a small portion of MLC/TLC flash memory
blocks to operate in SLC mode. The MLC/TLC-to-SLC
configuration rotates throughout all the MLC/TLC flash
memory blocks in order to balance the flash memory
wear-out.

This paper is concerned with reducing the write
stress on those SLC-mode flash memory blocks in
SSDs. Aiming to serve as write buffer/cache and/or
store hot data, SLC-mode flash memory blocks account
for a large percentage of overall data write traffic [7].
Reducing their write stress can directly reduce the
flash memory wear-out. Hence, when these SLC-mode
memory blocks are configured back to operate as
normal MLC/TLC memory blocks, they could have
a long cycling endurance. Since a specific location
tends to be repeatedly visited/updated within a short
time (like consecutive metadata updates or in-place
minor revisions of file content), it is not uncommon
that data written into this SLC-mode flash based cache
have abundant temporal redundancy. Intuitively, this
feature makes the delta compression an appealing
option to reduce the write stress. In fact, the abundance
of data temporal redundancy in real systems has
inspired many researchers to investigate the practical
implementation of delta compression at different levels,
such as filesystems [8, 9], block device [10–13] and FTL
(Flash Translation Layer) [14]. Existing solutions store
the original data and all the subsequent compressed
deltas separately at different physical pages of the
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storage devices. As a result, to serve a read request,
they must fetch the original data and all the subsequent
deltas from different physical pages, leading to inherent
read amplification, particularly for small read request
or largely accumulated delta compression. In addition,
the system needs to keep the mapping information for
the original data and all the compressed deltas, leading
to a sophisticated data structure in the filesystem and/or
firmware. These issues inevitably lead to significant read
latency and hence a system performance penalty.

This paper aims to implement delta compression for
SLC-mode flash memory blocks with small read latency
penalty and very simple data management. First, we
note that the read latency penalty inherent to existing
delta compression design solutions is fundamentally
due to the per-sector/page atomic write inside storage
devices, which forces us to store the original data and
all the subsequent deltas across different sectors/pages.
Although per-sector atomic write is essential in hard
disk drives (i.e., hard disk drives cannot perform
partial write/update within one 4kB sector), per-page
atomic write is not absolutely necessary in NAND flash
memory. Through experiments with 20nm MLC NAND
flash memory chips, we observed that SLC-mode pages
can support partial programming, i.e., different portions
of the same SLC-mode page can be programmed at
different times. For example, given a 16kB flash
memory page size, we do not have to write one entire
16kB page at once, and instead we can write one portion
(e.g., 4kB or even a few bytes) at a time and finish
writing the entire 16kB page over a period of time. This
clearly warrants re-thinking the implementation of delta
compression.

Leveraging the per-page partial-programming support
of SLC-mode flash memory, we propose a solution
to implement delta compression without incurring
significant read latency penalty and complicating data
management. The key idea is simple and can be
described as follows. When a 4kB sector is being written
the first time, we always try to compress it before writing
to an SLC-mode flash memory page. Assume the flash
memory page size is 16kB, we store four 4kB sectors
in each page as normal practice. The use of per-sector
lossless compression leaves some memory cells unused
in the flash memory page. Taking advantage of the
per-page partial-programming support of SLC-mode
flash memory, we can directly use those unused memory
cells to store subsequent deltas later on. As a result,
the original data and all its subsequent deltas reside in
the same SLC flash memory physical page. Since the
runtime compression/decompression can be carried out
by SSD controllers much faster than a flash memory
page read, this can largely reduce the data access latency
overhead in the realization of delta compression. In

addition, it can clearly simplify data management since
everything we need to re-construct the latest data is
stored in a single flash page. This design strategy is
referred to as opportunistic in-place delta compression.

For the practical implementation of the proposed
design strategy, this paper presents two different
approaches to layout the data within each SLC-mode
flash memory page, aiming at different trade-offs
between write stress reduction and flash-to-controller
data transfer latency. We further develop a hybrid error
correction coding (ECC) design scheme to cope with the
significantly different data size among original data and
compressed deltas. We carried out experiments and sim-
ulations to evaluate the effectiveness of proposed design
solutions. First, we verified the feasibility of SLC-mode
flash memory page partial programming using a PCIe
FPGA-based flash memory characterization hardware
prototype with 20nm MLC NAND flash memory
chips. For the two different data layout approaches,
we evaluated the write stress reduction under a variety
of delta compression values, and quantitatively studied
their overall latency comparison. To estimate the silicon
cost induced by the hybrid ECC design scheme and
on-the-fly compression/decompression, we further
carried out ASIC (application-specific integrated circuit)
design, and the results show that the silicon cost is not
significant. In summary, the contributions of this paper
include:
• We for the first time propose to cohesively integrate

SLC-mode flash memory partial programmability,
data compressibility and delta compressibility to
reduce write stress on SLC-mode pages in SSDs
without incurring significant read latency and
storage capacity penalty;

• We develop specific solutions to address the data er-
ror correction and data management design issues
in the proposed opportunistic delta-compression de-
sign strategy;

• We carried out comprehensive experiments to
demonstrate its effectiveness on reducing write
stress at small read latency overhead and show its
practical silicon implementation feasibility.

2 Background and Motivation
2.1 Write Locality
The content temporal locality in storage system implies
that one specific page could be visited for multiple times
within a short time period. To quantitatively investigate
this phenomenon, we analyzed several typical traces
including Finance-1, Finance-2 [15], Homes [16] and
Webmail Server traces [16], and their information
is listed in Table 1. We analyzed the percentage of
repeated LBA (logical block address) in the collected
traces. Figure 1 shows the distribution of repeated
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overwrite times within one hour. In the legend, ’1’
means a specific LBA is only visited once while ’2-10’
means an LBA is visited more than twice and less than
10 times. We can find more than 90% logical blocks are
updated more than once in Finance-1 and Finance-2.
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Figure 1: Percentage of repeated overwrite times of
several typical workload traces.

Table 1: Disk traces information

Name duration # of unique LBAs # of total LBAs

Finance-1 1h 109,177 3,051,388
Finance-2 1h 31,625 571,529
Homes 24h 20,730 28,947
Webmail 24h 6,853 16,514

Another noticeable characteristic in most applica-
tions is the partial page content overwrite or update.
Authors in [17] revealed that more than 60% of write
operations involve partial page overwrites and some
write operations even only update less than 10 bytes.
This implies a significant content similarity (or temporal
redundancy) among consecutive data writes to the same
LBA. However, due to the page-based data write in flash
memory, such content temporal redundancy is however
left unexplored in current conventional practice.

2.2 Delta Compression

Although delta compression can be realized at different
levels spanning filesystems [8, 9], block device [10–13]
and FTL [14], their basic strategy is very similar and can
be illustrated in Figure 2. For the sake of simplicity, we
consider the case of applying delta compression to the
4kB content at the LBA of La. Let C0 denote the original
content at the LBA of La, which is stored in one flash
memory physical page P0. At time T1, we update the 4kB
content at LBA of La with C1. Under delta compression,
we obtain the compressed delta between C0 and C1, de-
noted as d1, and store in another flash memory physical
page P1. At time T2, we update the content again with C2.
To maximize the delta compression efficiency, we obtain

and store the compressed delta between C2 and C1, de-
noted as d2. The process continues as we keep updating
the content at the LBA of La, for which we need to keep
the original content C0 and all the subsequent deltas (i.e.,
d1, d2, · · · ).

  



 



  

 



 



 



 



Figure 2: Illustration of conventional method for
realizing temporal redundancy data compression.

Clearly, conventional practice could result in notice-
able read latency penalty. In particular, to serve each
read request, we must fetch the original data and all
the deltas in order to re-construct the current content,
leading to read amplification and hence latency penalty.
In addition, it comes with sophisticated data structure
and hence complicates data management, which could
further complicate flash memory garbage collection. As
a result, although delta compression can very naturally
exploit abundant temporal redundancy inherent in many
applications, it has not been widely deployed in practice.

2.3 Partial Programming
Through experiments with flash memory chips, we ob-
served that SLC-mode NAND flash memory can readily
support partial programming, i.e., different portions
in an SLC flash memory page can be programmed at
different time. This feature can be explained as follows.
Each SLC flash memory cell can operate in either erased
state or programmed state, corresponding to the storage
of ‘1’ and ‘0’, respectively. At the beginning, all the
memory cells within the same flash memory page are
erased simultaneously, i.e., the storage of each memory
cell is reset to be ‘1’. During runtime, if we write a
‘1’ to one memory cell, memory chip internal circuits
simply apply a prohibitive bit-line voltages to prevent
this cell from being programmed; if we write a ‘0’ to
one memory cell, memory chip internal circuits apply
a programming bit-line voltage to program this cell
(i.e., move from erased state to programmed state).
Meanwhile, a series of high voltage are applied to the
word-line to enable programming. This can directly
enable partial programming as illustrated in Figure 3: At
the beginning of T0, all the four memory cells m1, m2,

3
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m3 and m4 are in the erased state, and we write ‘0’ to
memory cell m3 and write ‘1’ to the others. Internally,
the memory chip applies programming bit-line voltage
to m3 and prohibitive bit-line voltage to the others, hence
the storage content becomes {‘1’, ‘1’, ‘0’, ‘1’}. Later at
time T1, if we want to switch memory cell m1 from ‘1’ to
‘0’, we write ‘0’ to memory cell m1 and ‘1’ to the others.
Accordingly, memory chip applies prohibitive bit-line
voltage to the other three cells so that their states remain
unchanged. As a result, the storage content becomes
{‘0’, ‘1’, ‘0’, ‘1’}.


 










  

  

  

 

Figure 3: Illustration of the underlying physics enabling
SLC-mode flash memory partial programming.

Therefore, we can carry out partial programming
to SLC-mode flash memory pages as illustrated in
Figure 4. Let Is denote an all-one bit vector with the
length of s. Given an erased SLC flash memory page
with the size of L, we first write [d1, · · · ,dn,IL−n] to
partially program the first n memory cells and leave the
rest L− n memory cells intact. Later on, we can write
[In,c1, · · · ,cm,IL−n−m] to partially program the next m
memory cells and leave all the other memory cells intact.
The same process can continue until the entire page has
been programmed.

 … 



 …  …

 … 





 …  
… … …





Figure 4: Illustration of SLC-mode flash memory partial
programming.

Using 20nm MLC NAND flash memory chips, we car-
ried out experiments and the results verify that the chips

can support the partial programming when being oper-
ated in the SLC mode. In our experiments, we define
“one cycle” as progressively applying partial program-
ming for 8 times before one entire page is filled up and
then being erased. In contrast, the conventional “one cy-
cle” is to fully erase before each programming. Figure 5
demonstrates the bit error rate comparison of these two
schemes. The flash memory can be used for 8000 cy-
cles with the conventional way. The progressive partial
programming can work for more than 7100 cycles. And
this modest endurance reduction indicates that the partial
programming mechanism does not bring noticeable extra
physical damage to flash memory cells.
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Figure 5: Comparison of the bit error rate of conventional
programming and progressive partial programming.

3 Proposed Design Solution
Leveraging the partial programmability of SLC-mode
flash memory, very intuitively we can deploy in-place
delta compression, as illustrated in Figure 6, to eliminate
the read latency penalty inherent to conventional design
practice as described in Section 2.2. As shown in
Figure 6, the original data content C0 and all the
subsequent deltas di’s are progressively programmed
into a single physical page. Once the physical page is
full after the k-th update, or the number of deltas reaches
a threshold T (we don’t expect to accumulate too many
deltas in case of a larger retrieval latency), we allocate a
new physical page, write the latest version data Ck+1 to
the new physical page, and reset the delta compression
for subsequent updates. This mechanism can guarantee
that we only need to read a single flash memory page to
retrieve the current data content.

In spite of the very simple basic concept, its practical
implementation is subject to several non-trivial issues:
(i) Storage capacity utilization: Suppose each flash
memory page can store m (e.g., 4 or 8) 4kB sectors.
The straightforward implementation of in-place delta
compression explicitly reserves certain storage capacity
within each SLC flash memory page for storing deltas.
As a result, we can only store at most m−1 4kB sectors
per page at the very beginning. Due to the runtime
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Figure 7: Illustration of opportunistic in-place delta compression and two different data placement strategies.



























 

   




Figure 6: Illustration of the basic concept of in-place
delta compression.

variation of the delta compressibility among all the
data, these explicitly reserved storage space may not be
highly utilized. This clearly results in storage capacity
penalty. In addition, by changing the number of 4kB
sectors per page, it may complicate the design of FTL.
(ii) Error correction: All the data in flash memory must
be protected by ECC. Due to the largely different size
among the original data and all the deltas, the ECC
must be devised differently. In particular, the widely
used low-density parity-check (LDPC) codes are only
suitable for protecting large data chunk size (e.g., 2kB
or 4kB), while each delta can only be a few tens of
bytes. In the remainder of this section, we present
design techniques to address these issues and discuss the
involved trade-offs.

3.1 Opportunistic In-place Delta Com-
pression

To eliminate the storage capacity penalty, we propose to
complement delta compression with intra-sector lossless
data compression. In particular, we apply lossless data
compression to each individual 4kB sector being written
to an SLC-mode flash memory page, and opportunisti-
cally utilize the storage space left by compression for s-

toring subsequent deltas. This is referred to as oppor-
tunistic in-place delta compression. This is illustrated in
Figure 7, where we assume the flash memory page size
is 16kB. Given four 4kB sectors denoted as A, B, C, and
D, we first apply lossless data compression to each sector
individually and obtain Ac, Bc, Cc, and Dc. As shown in
Figure 7, we can place these four compressed sectors in-
to a 16kB SLC-mode flash memory page in two different
ways:

1. Clustered placement: All the four compressed sec-
tors are stored consecutively, and the remaining s-
pace within the 16kB page can store any deltas as-
sociated with these four sectors.

2. Segmented placement: Each 16kB SLC-mode flash
memory page is partitioned into four 4kB segments,
and each segment is dedicated for storing one com-
pressed sector and its subsequent deltas.

These two different placement strategies have different
trade-offs between delta compression efficiency and read
latency. For the clustered placement, the four sectors
share a relatively large residual storage space for storing
subsequent deltas. Hence, we may expect that more
deltas can be accumulated within the same physical
page, leading to a higher delta compression efficiency.
However, since the storage of original content and deltas
of all the four sectors are mixed together, we have to
transfer the entire 16kB from flash memory to SSD
controller in order to reconstruct the current version of
any one sector, leading to a longer flash-to-controller
data transfer latency. On the other hand, in the case of
segmented placement, we only need to transfer a 4kB
segment from flash memory to SSD controller to serve
one read request. Meanwhile, since the deltas associated
with each sector can only stored within one 4kB
segment, leading to lower delta compression efficiency
compared with the case of clustered placement. In
addition, segmented placement tends to have lower
computational complexity than clustered placement,
which will be further elaborated later in Section 3.3.

5
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3.2 Hybrid ECC and Data Structure
The above opportunistic in-place delta compression de-
mands a careful design of data error correction and over-
all data structure. As illustrated in Figure 8, we must s-
tore three types of data elements: (1) compressed sector,
(2) delta, and (3) header. Each compressed sector and
delta follows one header that contains all the necessary
metadata (e.g., element length and ECC configuration).
Each element must be protected individually by one EC-
C codeword. In addition, each header should contain an
unique marker to identify a valid header. Since all the
unwritten memory cells have the value of 1, we can use
an all-zero bit vector as the header marker.













Figure 8: Illustration of three types of data elements, all
of which must be protected by ECC.

Since all the elements have different different size, the
ECC coding must natively support variable ECC code-
word length, for which we can use the codeword punc-
turing [18]. Given an (n,k) ECC that protects k-bit user
data with (n− k)-bit redundancy. If we want to use this
ECC to protect m-bit user data um (where m< k), we first
pad (k−m)-bit all-zero vector Ok−m to form a k-bit vec-
tor [um,Ok−m]. We encode the k-bit vector to generate
(n− k)-bit rn−k of redundancy, leading to an n-bit code-
word [um,Ok−m,rn−k]. Then we remove the (k−m)-bit
all-zero vector Ok−m from the codeword to form an (n+
m− k)-bit punctured ECC codeword [um,rn−k], which is
stored into flash memory. To read the data, we retrieve
the noisy version of the codeword, denoted as [ũm, r̃n−k],
and insert (k−m)-bit all-zero vector Ok−m back to form
an n-bit vector [ũm,Ok−m, r̃n−k], to which we apply ECC
decoding to recover the user data um.

In order to avoid wasting too much coding redun-
dancy, the ratio of m/k in ECC puncturing should not
be too small (i.e., we should not puncture too many
bits). Hence, instead of using a single ECC, we should
use multiple ECCs with different codeword length to
accommodate the large variation of data element length.
To protect relatively long data elements (in particular the
compressed 4kB sectors), we can use three LDPC codes
with different codeword length, denoted as LDPC4kB,
LDPC2kB, and LDPC1kB. The code LDPC4kB protects
all the elements with the length bigger than 2kB, the
code LDPC2kB protects all the elements with the length

within 1kB and 2kB, and the code LDPC1kB protects
all the elements with the length within 512B and 1kB.
Thanks to recent work on versatile LDPC coding system
design [19, 20], all the three LDPC codes can share the
same silicon encoder and decoder, leading to negligible
silicon penalty in support of multiple LDPC codes.
Since LDPC codes can only work with relatively large
codeword length (i.e., 1kB and beyond) due to the error
floor issue [21], we have to use a set of BCH codes
to protect all the elements with the length less than
512B. BCH codes with different codeword length are
constructed under different Galois Fields, hence cannot
share the same silicon encoder and decoder. In this work,
we propose to use three different BCH codes, denoted
as BCH4B, BCH128B, and BCH512B, which can protect
4B, 128B, and 512B, respectively. We fix the size of
element header as 4B, and the BCH4B aims to protect
each element header. The code BCH512B protects all the
elements with the length within 128B and 512B, and the
code BCH128B protects all the non-header elements with
the length of less than 128B.

3.3 Overall Implementation

Based upon the above discussions, this subsection
presents the overall implementation flow of the proposed
opportunistic in-place delta compression design frame-
work. Figure 9 shows the flow diagram for realizing
delta compression to reduce write stress. Upon a request
of writing 4kB sector Ck at a given LBA within the SLC-
mode flash memory region, we retrieve and re-construct
the current version of the data Ck−1 from an SLC-mode
physical page. Then we obtain the compressed delta
between Ck and Ck−1, denoted as dk. Accordingly we
generate its header and apply ECC encoding to both the
header and compressed delta dk, which altogether form
a bit-vector denoted as pk. If there is enough space in
this SLC-mode page and the number of existing deltas is
smaller than the threshold T , we write pk into the page
through partial programming; otherwise we allocate a
new physical page, compress the current version Ck and
write it to this new page to reset the delta compression.
In addition, if the original sector is not compressible, like
video or photos, we simply write the original content
to flash memory without adding a header. Meanwhile,
we write a special marker bit to the reserved flash page
metadata area [22]. During the read operation, if the
controller detected the marker, it will know that this
sector is written uncompressed.

The key operation in the process shown in Figure 9
is the data retrieval and reconstruction. As discussed
in Section 3.1, we can use two different intra-page
data placement strategies, i.e., clustered placement
and segmented placement, for which the data retrieval

6
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Figure 9: Flow diagram for realizing delta compression.

and reconstruction operation involves different la-
tency overhead and computational complexity. In
short, compared with clustered placement, segmented
placement has shorter latency and less computational
complexity. This can be illustrated through the following
example. Suppose a single 16kB flash page contains four
compressed 4kB sectors, Ac, Bc, Cc, and Dc. Associated
with each sector, there is one compressed delta, dA,1,
dB,1, dC,1, and dD,1. Each of these eight data elements
follows a header, hence we have total eight headers.
Suppose we need to read the current content of sector
B, the data retrieval and reconstruction process can be
described as follows:
• In the case of clustered placement, the SSD

controller must retrieve and scan the entire 16kB
flash memory page. It must decode and analyze all
the eight headers to determine whether to decode
or skip the next data element (compressed sector
or delta). During the process, it carries out further
ECC decoding to obtain Bc and dB,1, based upon
which it performs decompression and accordingly
reconstruct the current content of sector B.

• In the case of segmented placement, the SSD con-
troller only retrieves and scans the second 4kB from
from the 16kB flash memory page. As a result, it
only decodes and analyzes two headers, and accord-
ingly decodes and decompresses Bc and dB,1, and
finally reconstructs the current content of sector B.

From above simple example, it is clear that, compared
with clustered placement, segmented placement largely
reduces the amount of data being transferred from flash
memory chips to SSD controller, and involves a fewer
number of header ECC decoding. This leads to lower
latency and less computation. On the other hand, clus-

tered placement tends to have a better storage efficiency
by allowing different sectors to share the same storage
region for storing deltas.

Thus the proposed design solution essentially elimi-
nates read amplification and filesystem/firmware design
overhead, which are two fundamental drawbacks inher-
ent to conventional practice. Meanwhile, by opportunis-
tically exploiting lossless compressibility inherent to da-
ta content itself, this design solution does not incur a s-
torage capacity penalty on the SLC-mode flash memory
region in SSDs.

Based upon the above discussions, we may find that a
noticeable write traffic reduction could be expected with
a good compression efficiency and delta compression
efficiency. So if the data content is not compressible (like
multimedia data or encrypted data), the reduction would
be limited. In addition, another application condition is
that the proposed design solution favors update-in-place
file system because only the write requests to the same
LBA have a chance to be combined to the same physical
page. Therefore, the proposed technique could not be
very conveniently applied to some log-structured file
system like F2FS, LFS because the in-place update is
not inherently supported in the logging area of these
file systems. And besides, the proposed design solution
can be integrated with other appearing features of SSD
such as encryption. SSDs are using high performance
hardware modules to implement encryption. And
the data/delta compression will not be affected if the
encryption module is placed after compression.

4 Evaluations
This section presents our experimental and simulation
results to quantitatively demonstrate the effectiveness
and involved trade-offs of our proposed design solution.

4.1 Per-sector Compressibility

To evaluate the potential of compressing each original
4kB sector to opportunistically create space for deltas,
we measured the per-4kB-sector data compressibility on
different data types. We collected a large amount of 4kB
data sectors from various database files, document files,
and filesystem metadata. These types of data tend to be
relatively hot and frequently updated, hence more likely
reside in the SLC-mode region in SSDs.

We use the sample databases from [23, 24] to test
the compressibility of MySQL database files. MySQL
database uses pre-allocated data file, hence we ignored
the unfilled data segments when we measured the
compression ratio distribution. The Excel/Text datasets
were collected from an internal experiment lab server.
We used Linux Kernel 3.11.10 source [25] as the source
code dataset. We collected the metadata (more than
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34MB) of files in an ext4 partition as the metadata
dataset. Figure 10 shows the compressibility of different
data types with LZ77 compression algorithm. The
compression ratio is defined as the ratio of the size
after compression to before compression, thus a smaller
ratio means a better compressibility. As shown in
Figure 10, data compression ratio tends to follow a
Gaussian-like distribution, while different datasets have
largely different mean and variation. Because each delta
tends to be much smaller than 4kB, the results show
that the simple LZ77 compression is sufficient to leave
enough storage space for storing multiple deltas.
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Figure 10: Compression ratio distribution of different
data types with LZ77 compression.

4.2 Write Stress Reduction
We further evaluated the effectiveness of using the
proposed opportunistic in-place delta compression to
reduce the flash memory write stress. Clearly, the
effectiveness heavily depends on the per-sector data
compressibility and delta compressibility. Although
per-sector data compressibility can be relatively easily
obtained as shown in Section 4.1, empirical measure-
ment of the delta compressibility is non-trivial. Due
to the relative update regularity and controllability of
filesystem metadata, we empirically measured the delta
compressibility of metadata, based upon which we
analyzed the write stress reduction for metadata. To
cover the other types of data, we carried out analysis by
assuming a range of Gaussian-like distributions of delta
compressibility following prior work [10, 13].

4.2.1 A Special Case Study: Filesystem Metadata

To measure the metadata delta compressibility, we
modified Mobibench [26] to make it work as the
I/O workload benchmark under Linux Ubuntu 14.04
Desktop. We use a large set of SQLite workloads
(create, insert, update, delete) and general
filesystem tasks (file read, update, append) to

trigger a large amount of file metadata updates. To
monitor the characteristics of metadata, based upon the
existing tool debugfs [27], we implemented a metadata
analyzer tool [28] to track, extract, and analyze the
filesystem metadata. We use an ext4 filesystem as the
experimental environment and set the system page cache
write back period as 500ms. Every time before we
collect the file metadata, we wait for 1s to ensure that
file metadata are flushed back to the storage device. For
each workload, we collected 1000 consecutive versions
of metadata.
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Figure 11: Delta compression ratio of consecutive
versions of metadata for different workloads.

Based on the collected consecutive versions of meta-
data, we measured the delta compressibility as shown in
Figure 11. The number inside the bar indicates the av-
erage number of bytes needed to store the difference be-
tween two consecutive versions of metadata, while the
complete size of ext4 file metadata is 256 byte. The av-
erage delta compression ratio is 1:0.087 with the stan-
dard deviation of 0.0096. The results indicate that the
delta compression ratio is quite stable with a very small
deviation.
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Figure 12: Number of flash memory pages being
programmed for storing 1000 consecutive versions of
metadata. (In comparison with conventional practice, we
need at most 1000 pages to store these versions. )

The results in Figure 11 clearly suggest the significant
data volume reduction potential by applying delta com-
pression for metadata. To estimate the corresponding
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Figure 13: Reduction of the number of programmed flash memory pages under different workloads and over different
data compressibility.

write stress reduction, we set that each SLC-mode flash
memory page is 16kB and stores four compressed 4kB
sectors and their deltas. Figure 12 shows the average
number of flash memory pages that must be programmed
in order to store 1000 consecutive versions of metadata
pages. We considered the use of both segmented
placement and clustered placement design strategies
as presented in Section 3.1. Thanks to the very good
per-sector compressibility and delta compressibility of
metadata, the flash memory write stress can be reduced
by over 20×. In addition, by allowing all the four sectors
share the space for storing deltas, clustered placement
can achieve higher write stress reduction than segmented
placement, as shown in Figure 12.

4.2.2 Analytical Results for General Cases

Prior work [10, 13, 14] modeled delta compressibility to
follow Gaussian-like distributions. To facilitate the eval-
uation over a broader range of data types, we follow this
Gaussian distribution based model in these work as well.
Let Rdata denote the mean of the per-sector compression
ratio of original data, and let Rdelta denote the mean of
delta compression ratio. Based upon the results shown
in Section 4.1, we considered three different values of
Rdata, i.e., 0.2, 0.4, and 0.7. scenarios. According to pri-
or work [10,13,14], we considered three different values
of Rdelta, i.e., 0.1, 0.3, and 0.6. Meanwhile, we set the
value of deviation to 10% of the corresponding value of

mean according to our measurements in Section 4.1.
In this section, we carried out simulations to estimate

the flash memory write stress reduction over different
workloads, and the results are shown in Figure 13. We
chose the following four representative workloads:
• Webmail Server: We used Webmail Server block

trace from [16], which was obtained from a
department mail sever and the activities include
mail editing, saving, backing up, etc.

• Repeated File Update: We enhanced the benchmark
in [26] to generate a series of file updating in an
Android Tablet, and accordingly captured the block
IO traces.

• Home: We used the Homes Traces in [16], which
include a research group activities of developing,
testing, experiments, technical writing, plotting,
etc.

• Transaction: We executed TPC-C benchmarks (10
warehouses) for transaction processing on MySQL
5.1 database system. We ran the benchmarks and
use blktrace tool to obtain the corresponding traces.

As shown in Figure 13, the write stress can be
noticeably reduced by using the proposed design
solution (a smaller value in figure indicates a better
stress reduction). In the “Repeated File Update” and
TPC-C workloads, the number of programmed flash
memory pages can be reduced by over 80%. The results
clearly show that the flash memory write stress reduction
is reversely proportional to Rdata and Rdelta, which can
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be intuitively justified. When both the original data and
delta information cannot be compressed efficiently (such
as Rdata is 0.7 and Rdelta is 0.6), the write stress can be
hardly reduced because the compressed delta cannot be
placed in the same page with the original data. However,
with the clustered data placement strategy, some deltas
could be placed because of a larger shared spare space.
Thus the clustered data placement strategy has a better
performance than the segmented approach in most of
the cases, especially when the compression efficiency is
relatively poor.

The write stress reduction varies among different
workloads and strongly depends on the data update op-
eration frequency. For example, with a large percentage
of data updates than “Homes”, “Repeated File Update”
can achieve noticeably better write stress reduction as
shown in Figure 13. In essence, there exists a upper
bound of write stress reduction, which is proportional to
the percentage of update operations. This explains why
the write stress reduction cannot be further noticeably
reduced even with better data compressibility, as shown
in Figure 13.

4.3 Implementation Overhead Analysis
This subsection discusses and analyzes the overhead
caused by the proposed design solution in terms of read
latency, update latency, and SSD controller silicon cost.

4.3.1 Read Latency Overhead

Figure 14 illustrates the read process to recover the
latest data content. After the flash memory sensing
and flash-to-controller data transfer, the SSD controller
parses the data elements and accordingly carries out
the ECC decoding and data/delta decompression, based
upon which it combines the original data and all the
subsequent deltas to obtain the latest data content.
As explained in Section 3.2, different segments are
protected by different ECC codes (LDPC codes or
BCH codes) according to the length of information bits.
Hence the controller must contain several different ECC
decoders.

Memory
Sensing

Data
Transfer

LDPC
Decodesen xfer Decompress

BCH
Decode Decompress

Combine

dececc

SATA
Transfer

com sata

Figure 14: Illustration the process to obtain the latest data
content.

Let τsen denote the flash memory sensing latency(the
latency to read out the data content from flash cells us-

ing sensing circuits [29]), τx f er(Ω) denote the latency of
transferring Ω amount of data from flash memory chip to
SSD controller, τ(dec)

LDPC and τ(dec)
BCH denote the LDPC and

BCH decoding latency, τ(dec)
sec and τ(dec)

delta denote the la-
tency of decompressing the original data and deltas, τcom
denote the latency to combine the original data and all
the deltas to obtain the latest data content, and τsata de-
note the latency of transferring 4kB from SSD to host.
In the conventional design practice without delta com-
pression, to serve a single 4kB read request, the overall
latency can be expressed as:

τread = τsen + τx f er(4kB)+ τ(dec)
LDPC + τsata. (1)

When using the proposed design solution to realize
delta compression, the read latency can be expressed as:

τread =τsen + τx f er(n ·4kB)+max(τ(dec)
LDPC,τ

(dec)
BCH )

+max(τ(dec)
sec ,τ(dec)

delta )+ τcom + τsata,
(2)

where n denotes the number of 4kB sectors being
transferred from flash memory chip to SSD controller.
We have that n = 1 in the case of segmented placement,
and n is the number of 4kB in each flash memory
physical page in the case of clustered placement. Since
there could be multiple elements that are decoded by
the LDPC decoder or the same BCH decoder, τ (dec)

LDPC

and τ(dec)
BCH in Eq. 2 are the aggregated LDPC and BCH

decoding latency. In addition, τ(dec)
delta in Eq. 2 is the

aggregated delta decompression latency because there
could be multiple deltas to be decompressed by the same
decompression engine.

We can estimate the read latency based on the follow-
ing configurations. The SLC-mode sensing latency τsen
is about 40µs in sub-20nm NAND flash memory. We set
the flash memory physical page size as 16kB. Under the
latest ONFI 4.0 flash memory I/O specification with the
throughput of 800MB/s, the transfer latency τx f er(4kB)
is 5µs. We set the throughput of both LDPC and BCH
decoding as 1GBps. Data decompression throughput is
set as 500MBps, and delta decompression throughput is
set as 4GBps due to its very simple operations. When
combining the original data and all the deltas, we simply
use parallel XOR operations and hence set τcom as 1µs.
Under the SATA 3.0 I/O specification with the through-
put of 6Gbps, the SSD-to-host data transfer latency τsata
is set as 5.3µs.

Based upon the above configurations, we have that, to
serve a 4kB read request, the overall read latency is 54µs
under the conventional practice without delta compres-
sion. When using the proposed design solution, the over-
all latency depends on the number of deltas involved in
the read operation. With the two different data placement
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Table 2: Read/Update latency overhead comparison of
different cases.

Operation Technique
Average-case

( sµ )
Worst-case

( sµ )

Read

Conventional 54

Clustered 76 102

Segmented 56 63

Update

Conventional 186

Clustered 246 272

Segmented 226 233

 

strategies, we estimate the worst-case and average-case
read latency as shown in Table 2:

• Clustered placement: In this case, the flash-to-
controller data transfer latency is τx f er(16kB)=20µs.
In the worse case, the compressed 4kB sector being
requested and all its deltas almost completely
occupy the entire 16kB flash memory physical
page, and are all protected by the same ECC
(LDPC or BCH). And the total information bit
length will be nearly 32kB at most due to ECC
code word puncturing (as explained in Section 3.2).
As a result, the decoding latency is 32µs at
most and delta decompression latency is 4µs.
Hence, the overall worst-case read latency is
102µs, representing a 88% increase compared
with the conventional practice. In the average
case, the latency of decoding/decompressing
the original 4kB sector is longer than that of
its deltas. Assuming the original 4kB sector is
compressed to 3kB, we can estimate the decoding
and decompression latency as 4µs and 6µs. Hence,
the overall average-case read latency is 76µs,
representing a 41% increase compared with the
conventional practice.

• Segmented placement: In this case, the flash-to-
controller data transfer latency is τx f er(4kB)=5µs.
The worst-case scenario occurs when the data
compressibility is low and hence the compressed
sector is close to to 4kB, leading to the decoding
and decompression latency of 4µs (using LDPC4kB)
and 8µs, respectively. Hence, the worst-case
overall read latency is 63µs, representing a 17%
increase compared with the conventional practice.
Under the average case, the compression ratio is
modest and multiple deltas are stored, for which the
latency could be about 2∼4µs. Hence the average-
case overall latency is about 56µs, representing a
4% increase compared with conventional practice.

4.3.2 Update Latency Overhead

In conventional practice without using delta compres-
sion, a data update operation simply invokes a flash
memory write operation. However, in our case, a data
update operation invokes data read, delta compression,
and flash memory page partial programming. Let τread
denote the latency to read and reconstruct one 4kB sector
data (as discussed in the above), τ(enc)

delta denote the delta
compression latency, and τprogram denote the latency
of flash memory page partial programming. Hence the
update latency can be expressed as:

τwrite = τread + τ(enc)
delta + τ(enc)

ecc + τx f er + τprogram (3)

Based upon our experiments with sub-20nm NAND
flash memory, we set τprogram as of 150µs. We set
the delta compression throughput τ(enc)

delta as 4GBps

and the ECC encoding throughput τ(enc)
ecc as 1GBps.

Therefore, the overall of writing one flash memory page
is 186µs. When using the proposed design solution, as
illustrated in Table 2, the value of τread could largely
vary. In the case of clustered placement, the worst-case
and average-case update latency is 272µs and 246µs,
representing 32% and 46% increase compared with
the conventional practice. In the case of segmented
placement, the worst-case and average-case update
latency is 233µs and 226µs, representing 25% and 22%
increase compared with the conventional practice.

4.3.3 Silicon Cost

Finally, we evaluated the silicon cost overhead when us-
ing the proposed design solution. In particular, the SSD
controller must integrate several new processing engines,
including (1) multiple BCH code encoders/decoders, (2)
per-sector lossless data compression and decompression
engines, and (3) delta compression and decompression
engines. As discussed in Section 3.2, we use three
different BCH codes, BCH4B, BCH128B, and BCH512B,
which protect upto 4B, 128B, and 512B, respectively.
Setting the worst-case SLC-mode flash memory bit error
rate (BER) as 2× 10−3 and the decoding failure rate as
10−15, we constructed the code BCH4B as the (102, 32)
binary BCH code over GF(27), BCH128B as the (1277,
1024) binary BCH code over GF(211), and BCH512B as
the (4642, 4096) binary BCH code over GF(213). To
evaluate the entire BCH coding system silicon cost, we
carried out HDL-based ASIC design using Synopsys
synthesis tool set and results show that the entire BCH
coding system occupies 0.24mm2 of silicon area at the
22nm node, while achieving 1GBps throughput.

Regarding the per-sector lossless data compression
and decompression, we chose the LZ77 compression
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algorithm [30], and designed the LZ77 compression
and decompression engines with HDL-based design
entry and Synopsys synthesis tool set. The results show
that the LZ77 compression and decompression engine
occupies 0.15mm2 of silicon area at the 22nm node
(memory costs included), while achieving 500MBps
throughput. Regarding delta compression and decom-
pression, since they mainly involve simple XOR and
counting operations, it is reasonable to expect that their
silicon implementation cost is negligible compared with
BCH coding and LZ77 compression. Therefore, we
estimate that the overall silicon cost for implementing
the proposed design solution is 0.39mm2 at the 22nm
node. According to our knowledge, the LDPC decoder
module accounts for up to 10% of a typical SSD
controller, meanwhile our silicon cost (including the
logical resources such as gates, registers, memory,
etc) is about 1/3 of an LDPC decoder. Therefore, we
can estimate that the involved silicon area in proposed
solution will occupy less than 5% of the silicon area
of an SSD controller, which is a relatively small cost
compared to the entire SSD controller.

5 Related Work
Aiming to detect the data content similarity and store the
compressed difference, delta compression has been well
studied in the open literature. Dropbox [31] and Github
use delta compression to reduce the network bandwidth
and storage workload using a pure application software
level solution. Design solutions in [10,11,13] reduce the
waste of space by detecting and eliminating the duplicate
content in block device level while the proposed solution
could further reduce the redundancy of similar but not
identical writes. The FTL-level approach presented
in [14] stores the compressed deltas to a temporary
buffer and commits them together to the flash memory
when the buffer is full, thus the number of writes could
be reduced. Authors of [32] proposed a design solution
to extend the NAND flash lifetime by detecting the
identical writes. Authors of [33] developed an approach
to utilize the content similarity to improve the IO
performance while the proposed techniques pay more
attention on the write stress reduction to extend the SSD
lifetime. To improve the performance of data backup
workloads in disks, authors of [9] proposed an approach
to implement delta compression on top of deduplication
to further eliminate redundancy among similar data. The
key difference between proposed solution and existing
solutions is that we can make sure the deltas and original
data content locate in the same physical flash memory
page, which will eliminate the read latency overhead
fundamentally.

General-purpose lossless data compression also has
been widely studied in flash-based storage system.

The authors of [34, 35] presented a solution to realize
transparent compression at the block layer to improve
the space efficiency of SSD based cache. A mathematic
framework to estimate how data compression can
improve NAND flash memory lifetime is presented
in [12]. The authors of [36] proposed to integrate
database compression and flash-aware FTL to effectively
support database compression on SSDs. The authors
of [37] evaluated several existing compression solutions
and compared their performance. Different from all the
prior work, we for the first time present a design solution
that cohesively exploits data compressibility and SLC-
mode flash memory page partial-programmability to
implement delta compression at minimal read latency
and data management overhead.

6 Conclusion
In this paper, we present a simple design solution to
most effectively reduce the write stress on SLC-mode
region inside modern SSDs. The key is to leverage the
fact that SLC-mode flash memory pages can naturally
support partial programming, which makes it possible
to use intra-page delta compression to reduce write
stress without incurring significant read latency and
data management complexity penalties. To further
eliminate the impact on storage capacity, we combine
intra-page delta compression with intra-sector lossless
data compression, leading to the opportunistic in-place
delta compression. Its effectiveness has been well
demonstrated through experiments and simulations.
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Abstract
The relatively high cost of write operations has become
the performance bottleneck of flash memory. Write cost
refers to the time needed to program a flash page using
incremental-step pulse programming (ISPP), while read
cost refers to the time needed to sense and transfer a page
from the storage. If a flash page is written with a higher
cost by using a finer step size during the ISPP process,
it can be read with a relatively low cost due to the time
saved in sensing and transferring, and vice versa.

We introduce AGCR, an access characteristic guided
cost regulation scheme that exploits this tradeoff to im-
prove flash performance. Based on workload character-
istics, logical pages receiving more reads will be written
using a finer step size so that their read cost is reduced.
Similarly, logical pages receiving more writes will be
written using a coarser step size so that their write cost
is reduced. Our evaluation shows that AGCR incurs neg-
ligible overhead, while improving performance by 15%
on average, compared to previous approaches.

1 Introduction

NAND flash memory sees an increasing deployment in
embedded systems, personal computers, mobile devices
and servers over the last decades due to its advantages,
such as light weight, high performance, and small form
factors [1][2]. Although flash-based storage outperforms
most magnetic-based storage, the costs of write and read
operations are still the performance bottleneck of cur-
rent systems. The write operation of flash memory is
performed by the incremental-step pulse programming
(ISPP) [3] scheme. ISPP is designed to iteratively in-
crease the program voltage and use a small verification
voltage to reliably program flash cells to their specified
voltages. In each iteration, the program voltage is in-
creased by a predefined program step size. Generally,
write cost is much higher than read cost, usually by 10 to
20 times, and has been identified as a major performance

bottleneck [4][5]. At the same time, read cost has also in-
creased significantly with the increasing bit density and
technology scaling [6][7][8].

The following tradeoffs of read and write costs have
been identified [9][10][11][12][13]. First, read cost
highly depends on the maximum raw bit error rate
(RBER) of data pages and the deployed error correcting
code (ECC). For a specific ECC, the lower the maximum
RBER, the lower the read cost [6][7][14]. Second, write
cost can be reduced by increasing the program step sizes
in the ISPP process, at the cost of increasing the maxi-
mum RBER of the programmed pages. This in turn re-
duces the maximum retention time [9][10] and increases
the read cost of the programmed page [13].

Previous approaches differ in the strategies used to
select the data pages that will be written with different
write costs. Pan et al. [9] and Liu et al. [10] proposed
to apply low-cost writes (i.e., using coarser step sizes) to
the data pages through retention time relaxation. Their
approach was motivated by the significantly short life-
time of most data in several workloads compared to the
predefined retention time. On the other hand, a high-
cost write reduces the cost of the following reads to the
same page [6][14]. Based on this characteristic, Li et al.
[13] proposed to apply low-cost writes when there are
several queued requests, and high-cost writes otherwise.
Wu et al. [12] proposed to apply high-cost writes when,
according to their estimation, the next access operation
will not be delayed due to the increased cost. However,
none of these works exploit the access characteristics of
workloads.

This work is the first to exploit the access character-
istics of workloads for cost regulation. We define three
page access characteristics: If almost all the accesses to
a data page are read (write) requests, the page is char-
acterized as read-only (write-only). If the accesses to
a data page are interleaved with reads and writes, the
page is characterized as interleaved-access. Our ap-
proach is based on the observation that most accesses
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from the host are performed on either read-only or write-
only pages. We exploit this observation to regulate ac-
cess costs: for accesses identified as read-only, low-cost
reads are preferred; for accesses identified as write-only,
low-cost writes are preferred. The proposed approach
chooses low-density parity code (LPDC) as the ECC,
which is the best candidate for the advanced flash mem-
ory storage systems [6][14]. For the pages that are writ-
ten with low cost, the required retention time can still
be maintained as long as the resulting error rates do not
exceed the error correction capability of the deployed
LPDC code. Thus, read and write costs can be regulated
to significantly improve overall performance. Our main
contributions are as follows:
• We propose AGCR, a comprehensive approach to reg-

ulate the cost of writes and reads;
• We present a preliminary study to show the potential

performance improvement of AGCR;
• We present an efficient implementation of AGCR

with negligible overhead. Experimental results on a
trace driven simulator [15][16] with 12 workloads [17]
show that AGCR achieves significant performance im-
provement.

The rest of the paper is organized as follows. Section
2 presents the motivation and problem statement. Sec-
tion 3 presents our proposed approach. Experiments and
analysis are presented in Section 4. Section 5 concludes
this work.

2 Motivation and Preliminary Study
2.1 Read and Write in Flash Memory
Write operations are the performance bottleneck of flash
memory, not only because they require more time than
read operations, but also because they block waiting op-
erations. Moreover, the cost of write operations implic-
itly determines the cost of subsequent reads. Flash tech-
nology uses incremental-step pulse programming (ISPP)
to program pages [3]. ISPP is designed to reliably pro-
gram flash cells to their specific voltage levels using an
iterative program-verify algorithm. The iterative algo-
rithm has two stages in each iteration step: it first pro-
grams a flash cell with an incremental program voltage,
and then verifies the voltage of the cell. If the voltage
is lower than the predefined threshold, the process con-
tinues. In each iteration, the program voltage increases
by a step size of ∆Vpp. The step size ∆Vpp determines
the write cost – a coarser step size indicates a smaller
number of steps (hence a lower write cost), but results
in higher raw bit error rate (RBER) in the programmed
page, and vice versa.

Low-density parity code (LDPC) is deployed as the
default ECC for most advanced flash memory technolo-
gies [14]. For a high RBER, LDPC requires fine-grained

memory-cell sensing, which is realized by comparing a
series of N reference voltages. The error correction ca-
pability of LDPC increases with N, but a larger N results
in a higher read cost.

Thus, there is a strong relationship between ISPP and
LDPC on the read and write cost of flash memory. With
a large step size in the ISPP process, the write cost is
reduced but the RBER and read cost increase, and vice
versa. The step size also affects the retention time of
flash pages. A longer retention time is expected for pages
written with finer step sizes [9][10]. In this work, we
focus on read and write cost interaction by tuning the step
size, where the tuning is constrained by the minimum
required retention time [18].

2.2 Read and Write Cost Regulator
Several strategies have been recently proposed for ex-
ploiting the reliability characteristics of flash memory to
regulate read and write costs. Pan et al. [9] and Liu et al.
[10] proposed to reduce write costs by relaxing the reten-
tion time requirement of the programmed pages. Wu et
al. [12] proposed to apply a high-cost write to reduce the
cost of read requests performed on the same page. The
high-cost write is performed on the premise that upcom-
ing requests will not be delayed by the increased cost.
Li et al. [13] proposed to apply low-cost writes when
there are queued requests to reduce the queueing delay,
and apply high-cost writes otherwise, allowing low-cost
reads of the page. However, none of these works ex-
ploit the access characteristics for cost regulation. Sev-
eral types of workload access characteristics have been
studied in previous works, including hot and cold ac-
cesses [19], inter-reference gaps [20], and temporal and
spacial locality [21][22][23]. These access characteris-
tics have been employed to guide the design of buffer
caches [20][21][22] and flash translation layers (FTL)
[19][23]. However, these characteristics imply the ac-
cess frequency, which cannot be exploited for read and
write cost regulation.

In this work, we applied the cost regulator proposed in
Li et al. [13], which has been validated by simulation in
previous studies [14][12][24]. The regulator consists of
a write cost regulator and a read cost regulator. The write
cost is inversely proportional to the program step size of
ISPP [3][9][10]. Thus, the write cost regulator is defined
as:

WC(∆Vpp) = γ × 1
∆Vpp

where RBER(∆Vpp)<CBERLDPC(N); (1)

WC(∆Vpp) denotes the write cost when the program step
size is ∆Vpp, and γ is a variable. A coarser step size re-
sults in a lower write cost, but a higher RBER. In ad-
dition, the reduction of the write cost is limited by the
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(a) Overall average access latency
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(b) Average access latency for read requests
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(c) Average access latency for write requests

Figure 1: IO latency comparison for read and write requests with different access costs.

condition that the resulting RBER should be within the
error correction capability of the deployed LDPC code,
CBERLDPC(N), with N reference voltages.

The read cost is composed of the time to sense the
page, which is proportional to N, and the time to trans-
fer the data from the page to the controller, which is
proportional to the size of the transferred information
[6][7][14]. Thus, the read cost regulator is defined as:

RC(N) = α ×N +β ×�log(N +1)�
where RBER(∆Vpp)<CBERLDPC(N); (2)

where RC(N) denotes the read cost with N reference
voltages in the deployed LDPC code, and α and β are
two variables. With a larger N, longer on-chip memory
sensing time and longer flash-to-controller data transfer
time are required, which lead to increased read cost.

Based on the two parts of the regulator, a low-cost
write leaves the page with a higher RBER, thereby re-
quiring an LDPC with more reference voltages, which
further results in higher-cost reads. On the other hand,
a high-cost write leaves the page with a lower RBER,
thereby requiring an LDPC with less reference voltages,
which further results in lower-cost reads. Note that the
regulator ensures that the retention time requirement is
always satisfied when writing data using different costs.

2.3 Preliminary Study
In the preliminary study, we evaluate three combi-
nations of read and write costs: 1) All the writes
are performed with a high cost, followed by low-cost
reads (HCW/LCR); 2) All the writes are performed
with a medium cost, followed by medium-cost reads
(MCW/MCR); 3) All the writes are performed with a low
cost, followed by high-cost reads (LCW/HCR). The de-
tailed settings for the regulator can be found in Section
4.1.

Figure 1 presents the comparison of access latency for
12 representative traces of the enterprise servers from
Microsoft Research (MSR) Cambridge [17]. Compared
to the default MCW/MCR, HCW/LCR improves read
performance by 54%, and LCW/HCR improves write
performance by 26%. The significant performance im-
provement comes from the corresponding reduction in
access costs. Comparing LCW/HCR and HCW/LCR, the

differences in their read and write latencies are 114% and
61%, respectively. The performance gap indicates that
the read and write cost regulator should be applied care-
fully. While LCW/HCR is able to improve the overall
performance, it introduces the worst read performance,
as shown Figure 1(b). However, read operations are al-
ways in the critical path, which motivates our approach.

3 AGCR: Access Characteristic Guided
Cost Regulation

In this section, we propose AGCR, an access charac-
teristic guided cost regulation scheme. We first present
the study on the access characteristics of several work-
loads. Then, based on the observations from this study,
we propose a comprehensive approach that includes a
high-accuracy access characteristic identification method
and a guided cost regulation scheme. Finally, we present
the implementation and the overhead analysis.

3.1 Access Characteristics of Workloads
In order to guide the read and write cost regulation, the
access characteristics of workloads are very important.
For example, if the accesses to a data page (logical page
at the host system) are dominated by read requests, ac-
cessing the data page with low-cost reads can signifi-
cantly improve performance.

Figure 2 presents the statistical results for the work-
loads analyzed in our preliminary study. We collected
access characteristics for all data pages at the host system
and distinguished between three types of data accesses:

1. Read-only: If almost all the accesses (>95%) to a data
page are read requests, we characterize this page as
read-only. This is typical when accessing media files
or other read-only files;

2. Write-only: If almost all the accesses (>95%) to a data
page are write requests, we characterize this page as
write-only. This is typical in periodical data flushes
from the memory system to storage for consistency
maintenance;

3. Interleaved-access: If the accesses to a data page are
interleaved with reads and writes, we characterize this
page as interleaved-access.

Figure 2 shows the request distributions for these logical
data page access characteristics. Figure 2(a) shows the
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Figure 2: Distribution of read and write requests on the three access characteristics.
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Figure 3: Example on the access characteristic identification and cost regulation: access characteristic, ↑ – read-only,
↓ – write-only, and � – interleaved-access; access cost, L – low-cost, M – medium-cost, and H – high-cost.

distribution of read requests of read-only pages and of
interleaved-access pages. Similarly, Figure 2(b) shows
the distribution of write request of write-only pages and
of interleaved-access pages. For each trace, the accesses
from both Figure 2(a) and 2(b) sum to 100%. We make
three observations from Figure 2:
• Observation 1 – Most read requests access read-only

pages, more than 85% on average;
• Observation 2 – Most write requests access write-only

pages, more than 91% on average;
• Observation 3 – Only a small part of all requests ac-

cess interleaved-access pages.
These observations guide the design of our read and write
cost regulation. We first present a simple, yet accurate,
access characteristic identification method.

3.2 Access Characteristic Identification
We identify the access characteristic of a data page
based on its most recent requests and the upcoming re-
quest which are recorded using a history window. If
the most recent requests and the upcoming request are
all reads (writes), the page is characterized as read-only
(write-only). Otherwise, the page is characterized as
interleaved-access. Essentially, the identification method
looks for consecutive reads or writes to characterize the
page.

Figure 3 shows examples of the identification method.
The first line shows the access lists. Case 1 has read
requests only, case 2 has write requests only, and case
3 has interleaved read and write requests. The length of
the history window is set to 2 in the examples. Thus it
includes the upcoming request (indicated by the arrow
above the window) and the most recent request to this
page. The arrows below the access lists represent the

identified access type of the page. As can be seen, the
identification is updated on the arrival of each access to
the page. If the access characteristic of the page is indeed
read-only or write-only, the identification is accurate and
stable, as shown in Figure 3(a) and 3(b). However, if the
access characteristic of the page is interleaved, such as in
Figure 3(c), the identification is unstable and may change
from time to time.

This simple identification method works well, be-
cause, as observed above, most accesses are either write-
only or read-only. The accuracy of the identification
method is further evaluated in Section 3.4, where we an-
alyze the effects of the size of the history window.

3.3 Access Cost Regulation

Based on the identified access characteristics of a page,
the cost of its upcoming requests can be regulated. The
main idea is to apply low-cost writes for write-only
pages, low-cost reads (enabled by applying high-cost
write), for read-only pages, and medium-cost accesses
for interleaved-access pages.

Write cost regulation. The cost of a write is regulated
when it is issued. As shown in Figure 3, there are two
cases for write cost regulation. Upon arrival of a write
request, the page is characterized and its cost is regulated
as follows:
• A write-only page will be written with a low-cost write

to improve write performance;

• An interleaved-access page , as in Figure 3(c), will be
written with a medium-cost write to avoid read perfor-
mance impact.

When a page is written for the first time, a high-cost write
is performed.
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Read cost regulation. A low-cost read can only be is-
sued if the page was written with a high-cost write. Thus,
a high-cost write will be inserted to the list of reads to
re-write the page before upcoming reads, if the page was
not written with a high cost before. As shown in Figure
3, there are three cases of read cost regulation. Upon ar-
rival of a read request, the page is characterized, and its
cost is regulated as follows:
• For a read-only page with a low-cost read, nothing

should be done;
• For an interleaved-access page, the read cost is not

regulated;
• For a read-only page with a high-cost read, a high-

cost re-write operation is inserted to the re-write queue
and performed during idle time to reduce the cost of
upcoming reads (denoted with H in Figure 3(c)).

3.4 Implementation and Overheads
Figure 4 shows the implementation of AGCR in the
flash memory controller. We add three new components:
Access Characteristic Identification, Cost Regulator and
Re-Write Queue. In addition, each mapping entry in the
FTL is extended with two fields, as shown in Figure 5.
The first is the access history, and the second is a 1-bit
low-cost write tag. When the low-cost write tag is set
for a read-only page, this indicates that the page must be
re-written. When an I/O request is issued, the page is
characterized, and its cost is regulated according to the
rules in Section 3.3. If a re-write operation is needed
for read cost regulation, the logical address of the data
page is added to the re-write queue. During idle time,
re-write operations are triggered to program the data in
the queue with a high cost, which guarantees low-cost
reads on these read-only pages. The re-write overhead
is evaluated in the experiments. This implementation
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incurs three types of overheads: storage, hardware and
firmware overhead. The storage overhead includes, for

each page, a number of bits for access history and one
bit for the low-cost write tag. Assuming access his-
tory is set to one bit, which records only the most re-
cent request to the page, the storage overhead is 4MB for
a 64GB flash memory with 4KB pages. The hardware
overhead includes the voltage thresholds needed to sup-
port the three sets of reads and writes with different costs.
This overhead is negligible according to previous stud-
ies [10][25]. The firmware overhead includes the pro-
cesses involved in access characterization, cost regula-
tion and re-write queuing. The overhead of these simple
processes is negligible. AGCR does not introduce relia-
bility issues thanks to the constraints in the read and write
cost regulators. In addition, the energy consumption of
the additional components is negligible.

4 Evaluation
4.1 Experimental Setup

Table 1: The access cost configurations.
Read Cost (µs) Low Medium High

70 170 310

Write Cost (µs) High Medium Low
800 600 450

Erase Cost (µs) 3000 3000 3000
 

 

70

75

80

85

90

95

100

Id
en

tif
ic

at
io

n 
Ac

cu
ra

cy
(%

)

Only Upcoming Request
Upcoming Request + Most Recent Request
Upcoming Request + Two Most Recent Requests

Figure 6: Window size impact on identification accuracy.

We use SSDsim [15] and workloads from MSR [17]
to evaluate our cost-regulation approach. From our stud-
ies, we found that all workloads in MSR have similar
access characteristics. We select the 12 representative
traces from Figure 2 for our evaluation. The simulated
storage system is configured with two bits per cell MLC
flash memory. It has eight channels, with eight chips
per channel and four planes per chip. Each chip has
2048 blocks and each block has 64 4KB pages. Default
page mapping based FTL, garbage collection, and wear
leveling are implemented in the simulator, representing
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Figure 8: Normalized access latency compared with traditional case and Li et al.[13].
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Figure 9: Distributions of different cost operations: T–Traditional, L–Li et al., and A–AGCR.

state-of-the-art storage systems [16]. The internal read
and write operations for these mechanisms are processed
with the regulated access costs. For fair comparison, we
use the parameters for the cost regulator from Li et al.
[13]. Table 1 shows the access costs. The cost of the
erase operation does not depend on the write cost.

One of the most important parameters is the size of
history window in the identification method. It affects
the storage overhead as well as the identification accu-
racy. Figure 6 shows the identification accuracy for three
window sizes. The results show that a larger window
results in a higher accuracy. However, the increase in ac-
curacy decreases as the size increases. In the following
experiments, we consider only the most recent request
and the upcoming request for identification to trade-off
the storage overhead and identification accuracy.

4.2 Experimental Results
In this section, read, write and overall performance of
AGCR are evaluated and compared with the traditional
case and the state-of-the-art work from Li et al. [13]. In
the traditional case, all reads and writes are performed
with medium-cost, while Li et al. used low-cost reads or
writes to reduce queueing delay. Cost regulation highly
depends on the access history in AGCR. If there is no
history for the accessed page, a high-cost write is used
for write requests and a low-cost read is used for read
requests. Figures 7 and 8 show the normalized access
latency compared to the traditional, non-regulated costs
(MCW/MCR in Figure 1) and to Li et al. Figure 7 shows
that, compared to Li et al., AGCR achieves the best over-
all performance improvement, 15%, on average. In addi-
tion, as shown in Figures 8(a) and 8(b), AGCR achieves

up to 48.3% and 20.4% latency improvement for reads
and writes, respectively, over Li et al.

To understand the performance variations, Figure 9
shows the distributions of operations of different costs,
including fast, medium, and slow reads and writes, as
well as re-writes. Comparing to Li et al.’s work, AGCR
issues considerably more low-cost reads and writes, thus
achieving great improvement. In addition, the percent-
age of re-write operations is negligible, no more than 1%
of all accesses issued by the host, thanks to the small
portion of interleaved-access page requests.

5 Conclusions and Future Work
In this paper, we introduced AGCR, a cost regulation ap-
proach for flash memory to improve access performance.
The proposed approach is motivated by observations de-
rived from widely studied workloads. Based on these
observations, we propose an accurate access characteri-
zation method, and regulate access costs to improve per-
formance. Our simulation results show that AGCR is ef-
fective, reducing I/O latency by as much as 48.3% and
20.4% for read and write requests respectively, compared
to the state-of-the-art approach.
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Abstract

We present WiscKey, a persistent LSM-tree-based
key-value store with a performance-oriented data layout
that separates keys from values to minimize I/O amplifi-
cation. The design of WiscKey is highly SSD optimized,
leveraging both the sequential and random performance
characteristics of the device. We demonstrate the ad-
vantages of WiscKey with both microbenchmarks and
YCSB workloads. Microbenchmark results show that
WiscKey is 2.5×–111× faster than LevelDB for load-
ing a database and 1.6×–14× faster for random lookups.
WiscKey is faster than both LevelDB and RocksDB in
all six YCSB workloads.

1 Introduction
Persistent key-value stores play a critical role in a va-
riety of modern data-intensive applications, including
web indexing [16, 48], e-commerce [24], data dedupli-
cation [7, 22], photo stores [12], cloud data [32], so-
cial networking [9, 25, 51], online gaming [23], messag-
ing [1, 29], software repository [2] and advertising [20].
By enabling efficient insertions, point lookups, and range
queries, key-value stores serve as the foundation for this
growing group of important applications.

For write-intensive workloads, key-value stores based
on Log-Structured Merge-Trees (LSM-trees) [43] have
become the state of the art. Various distributed and local
stores built on LSM-trees are widely deployed in large-
scale production environments, such as BigTable [16]
and LevelDB [48] at Google, Cassandra [33], HBase [29]
and RocksDB [25] at Facebook, PNUTS [20] at Yahoo!,
and Riak [4] at Basho. The main advantage of LSM-
trees over other indexing structures (such as B-trees) is
that they maintain sequential access patterns for writes.
Small updates on B-trees may involve many random
writes, and are hence not efficient on either solid-state
storage devices or hard-disk drives.

To deliver high write performance, LSM-trees batch
key-value pairs and write them sequentially. Subse-
quently, to enable efficient lookups (for both individual
keys as well as range queries), LSM-trees continuously
read, sort, and write key-value pairs in the background,
thus maintaining keys and values in sorted order. As a
result, the same data is read and written multiple times

throughout its lifetime; as we show later (§2), this I/O
amplification in typical LSM-trees can reach a factor of
50x or higher [39, 54].

The success of LSM-based technology is tied closely
to its usage upon classic hard-disk drives (HDDs). In
HDDs, random I/Os are over 100× slower than sequen-
tial ones [43]; thus, performing additional sequential
reads and writes to continually sort keys and enable effi-
cient lookups represents an excellent trade-off.

However, the storage landscape is quickly changing,
and modern solid-state storage devices (SSDs) are sup-
planting HDDs in many important use cases. As com-
pared to HDDs, SSDs are fundamentally different in
their performance and reliability characteristics; when
considering key-value storage system design, we believe
the following three differences are of paramount impor-
tance. First, the difference between random and sequen-
tial performance is not nearly as large as with HDDs;
thus, an LSM-tree that performs a large number of se-
quential I/Os to reduce later random I/Os may be wast-
ing bandwidth needlessly. Second, SSDs have a large
degree of internal parallelism; an LSM built atop an
SSD must be carefully designed to harness said paral-
lelism [53]. Third, SSDs can wear out through repeated
writes [34, 40]; the high write amplification in LSM-
trees can significantly reduce device lifetime. As we will
show in the paper (§4), the combination of these factors
greatly impacts LSM-tree performance on SSDs, reduc-
ing throughput by 90% and increasing write load by a
factor over 10. While replacing an HDD with an SSD un-
derneath an LSM-tree does improve performance, with
current LSM-tree technology, the SSD’s true potential
goes largely unrealized.

In this paper, we present WiscKey, an SSD-conscious
persistent key-value store derived from the popular LSM-
tree implementation, LevelDB. The central idea behind
WiscKey is the separation of keys and values [42]; only
keys are kept sorted in the LSM-tree, while values are
stored separately in a log. In other words, we decou-
ple key sorting and garbage collection in WiscKey while
LevelDB bundles them together. This simple technique
can significantly reduce write amplification by avoid-
ing the unnecessary movement of values while sorting.
Furthermore, the size of the LSM-tree is noticeably de-
creased, leading to fewer device reads and better caching
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during lookups. WiscKey retains the benefits of LSM-
tree technology, including excellent insert and lookup
performance, but without excessive I/O amplification.

Separating keys from values introduces a number
of challenges and optimization opportunities. First,
range query (scan) performance may be affected be-
cause values are not stored in sorted order anymore.
WiscKey solves this challenge by using the abundant
internal parallelism of SSD devices. Second, WiscKey
needs garbage collection to reclaim the free space used
by invalid values. WiscKey proposes an online and
lightweight garbage collector which only involves se-
quential I/Os and impacts the foreground workload min-
imally. Third, separating keys and values makes crash
consistency challenging; WiscKey leverages an interest-
ing property in modern file systems, that appends never
result in garbage data on a crash. WiscKey optimizes
performance while providing the same consistency guar-
antees as found in modern LSM-based systems.

We compare the performance of WiscKey with
LevelDB [48] and RocksDB [25], two popular LSM-
tree key-value stores. For most workloads, WiscKey
performs significantly better. With LevelDB’s own
microbenchmark, WiscKey is 2.5×–111× faster than
LevelDB for loading a database, depending on the size
of the key-value pairs; for random lookups, WiscKey is
1.6×–14× faster than LevelDB. WiscKey’s performance
is not always better than standard LSM-trees; if small
values are written in random order, and a large dataset
is range-queried sequentially, WiscKey performs worse
than LevelDB. However, this workload does not reflect
real-world use cases (which primarily use shorter range
queries) and can be improved by log reorganization. Un-
der YCSB macrobenchmarks [21] that reflect real-world
use cases, WiscKey is faster than both LevelDB and
RocksDB in all six YCSB workloads, and follows a trend
similar to the load and random lookup microbenchmarks.

The rest of the paper is organized as follows. We first
describe the background and motivation in Section 2.
Section 3 explains the design of WiscKey, and Section 4
analyzes its performance. We briefly describe related
work in Section 5, and conclude in Section 6.

2 Background and Motivation
In this section, we first describe the concept of a Log-
Structured Merge-tree (LSM-tree). Then, we explain the
design of LevelDB, a popular key-value store based on
LSM-tree technology. We investigate read and write am-
plification in LevelDB. Finally, we describe the charac-
teristics of modern storage hardware.

2.1 Log-Structured Merge-Tree
An LSM-tree is a persistent structure that provides effi-
cient indexing for a key-value store with a high rate of



 

 























  








Figure 1: LSM-tree and LevelDB Architecture. This
figure shows the standard LSM-tree and LevelDB architecture.
For LevelDB, inserting a key-value pair goes through many
steps: (1) the log file; (2) the memtable; (3) the immutable
memtable; (4) a SSTable in L0; (5) compacted to further levels.

inserts and deletes [43]. It defers and batches data writes
into large chunks to use the high sequential bandwidth
of hard drives. Since random writes are nearly two or-
ders of magnitude slower than sequential writes on hard
drives, LSM-trees provide better write performance than
traditional B-trees, which require random accesses.

An LSM-tree consists of a number of components
of exponentially increasing sizes, C0 to Ck, as shown
in Figure 1. The C0 component is a memory-resident
update-in-place sorted tree, while the other components
C1 to Ck are disk-resident append-only B-trees.

During an insert in an LSM-tree, the inserted key-
value pair is appended to an on-disk sequential log file,
so as to enable recovery in case of a crash. Then, the
key-value pair is added to the in-memory C0, which is
sorted by keys; C0 allows efficient lookups and scans on
recently inserted key-value pairs. Once C0 reaches its
size limit, it will be merged with the on-disk C1 in an
approach similar to merge sort; this process is known as
compaction. The newly merged tree will be written to
disk sequentially, replacing the old version of C1. Com-
paction (i.e., merge sorting) also happens for on-disk
components, when each Ci reaches its size limit. Note
that compactions are only performed between adjacent
levels (Ci and Ci+1), and they can be executed asyn-
chronously in the background.

To serve a lookup operation, LSM-trees may need to
search multiple components. Note that C0 contains the
freshest data, followed by C1, and so on. Therefore, to
retrieve a key-value pair, the LSM-tree searches com-
ponents starting from C0 in a cascading fashion until it
locates the desired data in the smallest component Ci.
Compared with B-trees, LSM-trees may need multiple
reads for a point lookup. Hence, LSM-trees are most
useful when inserts are more common than lookups [43].

2.2 LevelDB
LevelDB is a widely used key-value store based on LSM-
trees that is inspired by BigTable [16, 48]. LevelDB sup-
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ports range queries, snapshots, and other features that are
useful in modern applications. In this section, we briefly
describe the core design of LevelDB.

The overall architecture of LevelDB is shown in Fig-
ure 1. The main data structures in LevelDB are an on-
disk log file, two in-memory sorted skiplists (memtable
and immutable memtable), and seven levels (L0 to L6)
of on-disk Sorted String Table (SSTable) files. LevelDB
initially stores inserted key-value pairs in a log file and
the in-memory memtable. Once the memtable is full,
LevelDB switches to a new memtable and log file to
handle further inserts from the user. In the background,
the previous memtable is converted into an immutable
memtable, and a compaction thread then flushes it to the
disk, generating a new SSTable file (about 2 MB usually)
at level 0 (L0); the previous log file is discarded.

The size of all files in each level is limited, and in-
creases by a factor of ten with the level number. For
example, the size limit of all files at L1 is 10 MB, while
the limit of L2 is 100 MB. To maintain the size limit,
once the total size of a level Li exceeds its limit, the
compaction thread will choose one file from Li, merge
sort with all the overlapped files of Li+1, and generate
new Li+1 SSTable files. The compaction thread con-
tinues until all levels are within their size limits. Also,
during compaction, LevelDB ensures that all files in a
particular level, except L0, do not overlap in their key-
ranges; keys in files of L0 can overlap with each other
since they are directly flushed from memtable.

To serve a lookup operation, LevelDB searches the
memtable first, immutable memtable next, and then files
L0 to L6 in order. The number of file searches required to
locate a random key is bounded by the maximum number
of levels, since keys do not overlap between files within
a single level, except in L0. Since files in L0 can con-
tain overlapping keys, a lookup may search multiple files
at L0. To avoid a large lookup latency, LevelDB slows
down the foreground write traffic if the number of files
at L0 is bigger than eight, in order to wait for the com-
paction thread to compact some files from L0 to L1.

2.3 Write and Read Amplification
Write and read amplification are major problems in
LSM-trees such as LevelDB. Write (read) amplification
is defined as the ratio between the amount of data writ-
ten to (read from) the underlying storage device and the
amount of data requested by the user. In this section, we
analyze the write and read amplification in LevelDB.

To achieve mostly-sequential disk access, LevelDB
writes more data than necessary (although still sequen-
tially), i.e., LevelDB has high write amplification. Since
the size limit of Li is 10 times that of Li−1, when merg-
ing a file from Li−1 to Li during compaction, LevelDB
may read up to 10 files from Li in the worst case, and

1

10

100

1000

Am
pl

ifi
ca

tio
n 

R
at

io

3.1

14

1 GB

8.2

327

100 GB

Write Read

Figure 2: Write and Read Amplification. This fig-
ure shows the write amplification and read amplification of
LevelDB for two different database sizes, 1 GB and 100 GB.
Key size is 16 B and value size is 1 KB.

write back these files to Li after sorting. Therefore, the
write amplification of moving a file across two levels can
be up to 10. For a large dataset, since any newly gen-
erated table file can eventually migrate from L0 to L6

through a series of compaction steps, write amplification
can be over 50 (10 for each gap between L1 to L6).

Read amplification has been a major problem for
LSM-trees due to trade-offs made in the design. There
are two sources of read amplification in LevelDB. First,
to lookup a key-value pair, LevelDB may need to check
multiple levels. In the worst case, LevelDB needs
to check eight files in L0, and one file for each of
the remaining six levels: a total of 14 files. Sec-
ond, to find a key-value pair within a SSTable file,
LevelDB needs to read multiple metadata blocks within
the file. Specifically, the amount of data actually read
is given by (index block + bloom-filter blocks +

data block). For example, to lookup a 1-KB key-value
pair, LevelDB needs to read a 16-KB index block, a 4-
KB bloom-filter block, and a 4-KB data block; in total,
24 KB. Therefore, considering the 14 SSTable files in
the worst case, the read amplification of LevelDB is 24
× 14 = 336. Smaller key-value pairs will lead to an even
higher read amplification.

To measure the amount of amplification seen in prac-
tice with LevelDB, we perform the following experi-
ment. We first load a database with 1-KB key-value
pairs, and then lookup 100,000 entries from the database;
we use two different database sizes for the initial load,
and choose keys randomly from a uniform distribution.
Figure 2 shows write amplification during the load phase
and read amplification during the lookup phase. For a 1-
GB database, write amplification is 3.1, while for a 100-
GB database, write amplification increases to 14. Read
amplification follows the same trend: 8.2 for the 1-GB
database and 327 for the 100-GB database. The rea-
son write amplification increases with database size is
straightforward. With more data inserted into a database,
the key-value pairs will more likely travel further along
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Figure 3: Sequential and Random Reads on SSD. This
figure shows the sequential and random read performance for
various request sizes on a modern SSD device. All requests are
issued to a 100-GB file on ext4.

the levels; in other words, LevelDB will write data many
times when compacting from low levels to high levels.
However, write amplification does not reach the worst-
case predicted previously, since the average number of
files merged between levels is usually smaller than the
worst case of 10. Read amplification also increases with
the dataset size, since for a small database, all the index
blocks and bloom filters in SSTable files can be cached
in memory. However, for a large database, each lookup
may touch a different SSTable file, paying the cost of
reading index blocks and bloom filters each time.

It should be noted that the high write and read am-
plifications are a justified tradeoff for hard drives. As an
example, for a given hard drive with a 10-ms seek latency
and a 100-MB/s throughput, the approximate time re-
quired to access a random 1K of data is 10 ms, while that
for the next sequential block is about 10 µs – the ratio be-
tween random and sequential latency is 1000:1. Hence,
compared to alternative data structures such as B-Trees
that require random write accesses, a sequential-write-
only scheme with write amplification less than 1000 will
be faster on a hard drive [43, 49]. On the other hand,
the read amplification for LSM-trees is still comparable
to B-Trees. For example, considering a B-Tree with a
height of five and a block size of 4 KB, a random lookup
for a 1-KB key-value pair would require accessing six
blocks, resulting in a read amplification of 24.

2.4 Fast Storage Hardware
Many modern servers adopt SSD devices to achieve high
performance. Similar to hard drives, random writes are
considered harmful also in SSDs [10, 31, 34, 40] due to
their unique erase-write cycle and expensive garbage col-
lection. Although initial random-write performance for
SSD devices is good, the performance can significantly
drop after the reserved blocks are utilized. The LSM-tree
characteristic of avoiding random writes is hence a nat-

ural fit for SSDs; many SSD-optimized key-value stores
are based on LSM-trees [25, 50, 53, 54].

However, unlike hard-drives, the relative performance
of random reads (compared to sequential reads) is sig-
nificantly better on SSDs; furthermore, when random
reads are issued concurrently in an SSD, the aggregate
throughput can match sequential throughput for some
workloads [17]. As an example, Figure 3 shows the
sequential and random read performance of a 500-GB
Samsung 840 EVO SSD, for various request sizes. For
random reads by a single thread, the throughput in-
creases with the request size, reaching half the sequential
throughput for 256 KB. With concurrent random reads
by 32 threads, the aggregate throughput matches sequen-
tial throughput when the size is larger than 16 KB. For
more high-end SSDs, the gap between concurrent ran-
dom reads and sequential reads is much smaller [3, 39].

As we showed in this section, LSM-trees have a high
write and read amplification, which is acceptable for hard
drives. Using LSM-trees on a high-performance SSD
may waste a large percentage of device bandwidth with
excessive writing and reading. In this paper, our goal is to
improve the performance of LSM-trees on SSD devices
to efficiently exploit device bandwidth.

3 WiscKey
The previous section explained how LSM-trees maintain
sequential I/O access by increasing I/O amplification.
While this trade-off between sequential I/O access and
I/O amplification is justified for traditional hard disks,
they are not optimal for modern hardware utilizing SSDs.
In this section, we present the design of WiscKey, a key-
value store that minimizes I/O amplification on SSDs.

To realize an SSD-optimized key-value store,
WiscKey includes four critical ideas. First, WiscKey
separates keys from values, keeping only keys in the
LSM-tree and the values in a separate log file. Second,
to deal with unsorted values (which necessitate random
access during range queries), WiscKey uses the parallel
random-read characteristic of SSD devices. Third,
WiscKey utilizes unique crash-consistency and garbage-
collection techniques to efficiently manage the value log.
Finally, WiscKey optimizes performance by removing
the LSM-tree log without sacrificing consistency, thus
reducing system-call overhead from small writes.

3.1 Design Goals
WiscKey is a single-machine persistent key-value store,
derived from LevelDB. It can be deployed as the stor-
age engine for a relational database (e.g., MySQL) or
a distributed key-value store (e.g., MongoDB). It pro-
vides the same API as LevelDB, including Put(key,

value), Get(key), Delete(key) and Scan(start,

end). The design of WiscKey follows these main goals.
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Low write amplification. Write amplification intro-
duces extra unnecessary writes. Even though SSD de-
vices have higher bandwidth compared to hard drives,
large write amplification can consume most of the write
bandwidth (over 90% is not uncommon) and decrease the
SSD’s lifetime due to limited erase cycles. Therefore, it
is important to minimize write amplification, so as to im-
prove workload performance and SSD lifetime.
Low read amplification. Large read amplification
causes two problems. First, the throughput of lookups is
significantly reduced by issuing multiple reads for each
lookup. Second, the large amount of data loaded into
memory decreases the efficiency of the cache. WiscKey
targets a small read amplification to speedup lookups.
SSD optimized. WiscKey is optimized for SSD devices
by matching its I/O patterns with the performance char-
acteristics of SSD devices. Specifically, sequential writes
and parallel random reads are effectively utilized so that
applications can fully utilize the device’s bandwidth.
Feature-rich API. WiscKey aims to support modern fea-
tures that have made LSM-trees popular, such as range
queries and snapshots. Range queries allow scanning a
contiguous sequence of key-value pairs. Snapshots allow
capturing the state of the database at a particular time and
then performing lookups on the state.
Realistic key-value sizes. Keys are usually small in
modern workloads (e.g., 16 B) [7, 8, 11, 22, 35], though
value sizes can vary widely (e.g., 100 B to larger than
4 KB) [6, 11, 22, 28, 32, 49]. WiscKey aims to provide
high performance for this realistic set of key-value sizes.

3.2 Key-Value Separation
The major performance cost of LSM-trees is the com-
paction process, which constantly sorts SSTable files.
During compaction, multiple files are read into memory,
sorted, and written back, which could significantly af-
fect the performance of foreground workloads. However,
sorting is required for efficient retrieval; with sorting,
range queries (i.e., scan) will result mostly in sequen-
tial access to multiple files, while point queries would
require accessing at most one file at each level.

WiscKey is motivated by a simple revelation. Com-
paction only needs to sort keys, while values can be
managed separately [42]. Since keys are usually smaller
than values, compacting only keys could significantly re-
duce the amount of data needed during the sorting. In
WiscKey, only the location of the value is stored in the
LSM-tree with the key, while the actual values are stored
elsewhere in an SSD-friendly fashion. With this design,
for a database with a given size, the size of the LSM-tree
of WiscKey is much smaller than that of LevelDB. The
smaller LSM-tree can remarkably reduce the write am-
plification for modern workloads that have a moderately
large value size. For example, assuming a 16-B key, a 1-





 



  



Figure 4: WiscKey Data Layout on SSD. This figure
shows the data layout of WiscKey on a single SSD device. Keys
and value’s locations are stored in LSM-tree while values are
appended to a separate value log file.

KB value, and a write amplification of 10 for keys (in the
LSM-tree) and 1 for values, the effective write amplifica-
tion of WiscKey is only (10 × 16 + 1024) / (16 + 1024)
= 1.14. In addition to improving the write performance
of applications, the reduced write amplification also im-
proves an SSD’s lifetime by requiring fewer erase cycles.

WiscKey’s smaller read amplification improves
lookup performance. During lookup, WiscKey first
searches the LSM-tree for the key and the value’s
location; once found, another read is issued to retrieve
the value. Readers might assume that WiscKey will be
slower than LevelDB for lookups, due to its extra I/O
to retrieve the value. However, since the LSM-tree of
WiscKey is much smaller than LevelDB (for the same
database size), a lookup may search fewer levels of table
files in the LSM-tree and a significant portion of the
LSM-tree can be easily cached in memory. Hence, each
lookup only requires a single random read (for retrieving
the value) and thus achieves a lookup performance better
than LevelDB. For example, assuming 16-B keys and
1-KB values, if the size of the entire key-value dataset
is 100 GB, then the size of the LSM-tree is only around
2 GB (assuming a 12-B cost for a value’s location and
size), which can be easily cached in modern servers
which have over 100-GB of memory.

WiscKey’s architecture is shown in Figure 4. Keys are
stored in an LSM-tree while values are stored in a sep-
arate value-log file, the vLog. The artificial value stored
along with the key in the LSM-tree is the address of the
actual value in the vLog.

When the user inserts a key-value pair in WiscKey, the
value is first appended to the vLog, and the key is then
inserted into the LSM tree along with the value’s address
(<vLog-offset, value-size>). Deleting a key simply
deletes it from the LSM tree, without touching the vLog.
All valid values in the vLog have corresponding keys in
the LSM-tree; the other values in the vLog are invalid
and will be garbage collected later (§ 3.3.2).

When the user queries for a key, the key is first
searched in the LSM-tree, and if found, the correspond-
ing value’s address is retrieved. Then, WiscKey reads the
value from the vLog. Note that this process is applied to
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both point queries and range queries.
Although the idea behind key-value separation is sim-

ple, it leads to many challenges and optimization oppor-
tunities described in the following subsections.

3.3 Challenges
The separation of keys and values makes range queries
require random I/O. Furthermore, the separation makes
both garbage collection and crash consistency challeng-
ing. We now explain how we solve these challenges.

3.3.1 Parallel Range Query

Range queries are an important feature of modern key-
value stores, allowing users to scan a range of key-value
pairs. Relational databases [26], local file systems [30,
46, 50], and even distributed file systems [37] use key-
value stores as their storage engines, and range queries
are a core API requested in these environments.

For range queries, LevelDB provides the user with an
iterator-based interface with Seek(key), Next(), Prev(),
Key() and Value() operations. To scan a range of key-
value pairs, users can first Seek() to the starting key, then
call Next() or Prev() to search keys one by one. To re-
trieve the key or the value of the current iterator position,
users call Key() or Value(), respectively.

In LevelDB, since keys and values are stored together
and sorted, a range query can sequentially read key-value
pairs from SSTable files. However, since keys and values
are stored separately in WiscKey, range queries require
random reads, and are hence not efficient. As we see in
Figure 3, the random read performance of a single thread
on SSD cannot match the sequential read performance.
However, parallel random reads with a fairly large re-
quest size can fully utilize the device’s internal paral-
lelism, getting performance similar to sequential reads.

To make range queries efficient, WiscKey leverages
the parallel I/O characteristic of SSD devices to prefetch
values from the vLog during range queries. The under-
lying idea is that, with SSDs, only keys require special
attention for efficient retrieval. So long as keys are re-
trieved efficiently, range queries can use parallel random
reads for efficiently retrieving values.

The prefetching framework can easily fit with the cur-
rent range query interface. In the current interface, if
the user requests a range query, an iterator is returned to
the user. For each Next() or Prev() requested on the
iterator, WiscKey tracks the access pattern of the range
query. Once a contiguous sequence of key-value pairs is
requested, WiscKey starts reading a number of following
keys from the LSM-tree sequentially. The corresponding
value addresses retrieved from the LSM-tree are inserted
into a queue; multiple threads will fetch these addresses
from the vLog concurrently in the background.





 

Figure 5: WiscKey New Data Layout for Garbage
Collection. This figure shows the new data layout of WiscKey
to support an efficient garbage collection. A head and tail
pointer are maintained in memory and stored persistently in
the LSM-tree. Only the garbage collection thread changes the
tail, while all writes to the vLog are append to the head.

3.3.2 Garbage Collection
Key-value stores based on standard LSM-trees do not
immediately reclaim free space when a key-value pair
is deleted or overwritten. Rather, during compaction, if
data relating to a deleted or overwritten key-value pair is
found, the data is discarded and space is reclaimed. In
WiscKey, only invalid keys are reclaimed by the LSM-
tree compaction. Since WiscKey does not compact val-
ues, it needs a special garbage collector to reclaim free
space in the vLog.

Since we only store the values in the vLog file (§ 3.2),
a naive way to reclaim free space from the vLog is to first
scan the LSM-tree to get all the valid value addresses;
then, all the values in the vLog without any valid ref-
erence from the LSM-tree can be viewed as invalid and
reclaimed. However, this method is too heavyweight and
is only usable for offline garbage collection.

WiscKey targets a lightweight and online garbage col-
lector. To make this possible, we introduce a small
change to WiscKey’s basic data layout: while storing
values in the vLog, we also store the corresponding key
along with the value. The new data layout is shown
in Figure 5: the tuple (key size, value size, key,

value) is stored in the vLog.
WiscKey’s garbage collection aims to keep valid val-

ues (that do not correspond to deleted keys) in a contigu-
ous range of the vLog, as shown in Figure 5. One end of
this range, the head, always corresponds to the end of the
vLog where new values will be appended. The other end
of this range, known as the tail, is where garbage collec-
tion starts freeing space whenever it is triggered. Only
the part of the vLog between the head and the tail con-
tains valid values and will be searched during lookups.

During garbage collection, WiscKey first reads a
chunk of key-value pairs (e.g., several MBs) from the
tail of the vLog, then finds which of those values are
valid (not yet overwritten or deleted) by querying the
LSM-tree. WiscKey then appends valid values back to
the head of the vLog. Finally, it frees the space occupied
previously by the chunk, and updates the tail accordingly.
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To avoid losing any data if a crash happens dur-
ing garbage collection, WiscKey has to make sure that
the newly appended valid values and the new tail are
persistent on the device before actually freeing space.
WiscKey achieves this using the following steps. Af-
ter appending the valid values to the vLog, the garbage
collection calls a fsync() on the vLog. Then, it adds
these new value’s addresses and current tail to the LSM-
tree in a synchronous manner; the tail is stored in the
LSM-tree as <‘‘tail’’, tail-vLog-offset>. Finally,
the free space in the vLog is reclaimed.

WiscKey can be configured to initiate and continue
garbage collection periodically or until a particular
threshold is reached. The garbage collection can also run
in offline mode for maintenance. Garbage collection can
be triggered rarely for workloads with few deletes and
for environments with overprovisioned storage space.

3.3.3 Crash Consistency

On a system crash, LSM-tree implementations usually
guarantee atomicity of inserted key-value pairs and in-
order recovery of inserted pairs. Since WiscKey’s ar-
chitecture stores values separately from the LSM-tree,
obtaining the same crash guarantees can appear compli-
cated. However, WiscKey provides the same crash guar-
antees by using an interesting property of modern file
systems (such as ext4, btrfs, and xfs). Consider a file that
contains the sequence of bytes �b1b2b3...bn�, and the user
appends the sequence �bn+1bn+2bn+3...bn+m� to it. If a
crash happens, after file-system recovery in modern file
systems, the file will be observed to contain the sequence
of bytes �b1b2b3...bnbn+1bn+2bn+3...bn+x� ∃ x < m,
i.e., only some prefix of the appended bytes will be added
to the end of the file during file-system recovery [45]. It
is not possible for random bytes or a non-prefix subset
of the appended bytes to be added to the file. Since val-
ues are appended sequentially to the end of the vLog file
in WiscKey, the aforementioned property conveniently
translates as follows: if a value X in the vLog is lost in a
crash, all future values (inserted after X) are lost too.

When the user queries a key-value pair, if WiscKey
cannot find the key in the LSM-tree because the key had
been lost during a system crash, WiscKey behaves ex-
actly like traditional LSM-trees: even if the value had
been written in vLog before the crash, it will be garbage
collected later. If the key could be found in the LSM tree,
however, an additional step is required to maintain con-
sistency. In this case, WiscKey first verifies whether the
value address retrieved from the LSM-tree falls within
the current valid range of the vLog, and then whether the
value found corresponds to the queried key. If the ver-
ifications fail, WiscKey assumes that the value was lost
during a system crash, deletes the key from the LSM-
tree, and informs the user that the key was not found.
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Figure 6: Impact of Write Unit Size. This figure shows
the total time to write a 10-GB file to an ext4 file system on an
SSD device, followed by a fsync() at the end. We vary the size
of each write() system call.

Since each value added to the vLog has a header includ-
ing the corresponding key, verifying whether the key and
the value match is straightforward; if necessary, a magic
number or checksum can be easily added to the header.

LSM-tree implementations also guarantee the user
durability of key value pairs after a system crash if the
user specifically requests synchronous inserts. WiscKey
implements synchronous inserts by flushing the vLog be-
fore performing a synchronous insert into its LSM-tree.

3.4 Optimizations
Separating keys from values in WiscKey provides an op-
portunity to rethink how the value log is updated and the
necessity of the LSM-tree log. We now describe how
these opportunities can lead to improved performance.

3.4.1 Value-Log Write Buffer

For each Put(), WiscKey needs to append the value to
the vLog by using a write() system call. However, for
an insert-intensive workload, issuing a large number of
small writes to a file system can introduce a noticeable
overhead, especially on a fast storage device [15, 44].
Figure 6 shows the total time to sequentially write a 10-
GB file in ext4 (Linux 3.14). For small writes, the over-
head of each system call aggregates significantly, leading
to a long run time. With large writes (larger than 4 KB),
the device throughput is fully utilized.

To reduce overhead, WiscKey buffers values in a
userspace buffer, and flushes the buffer only when the
buffer size exceeds a threshold or when the user requests
a synchronous insertion. Thus, WiscKey only issues
large writes and reduces the number of write() sys-
tem calls. For a lookup, WiscKey first searches the vLog
buffer, and if not found there, actually reads from the
vLog. Obviously, this mechanism might result in some
data (that is buffered) to be lost during a crash; the crash-
consistency guarantee obtained is similar to LevelDB.
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3.4.2 Optimizing the LSM-tree Log

As shown in Figure 1, a log file is usually used in LSM-
trees. The LSM-tree tracks inserted key-value pairs in
the log file so that, if the user requests synchronous in-
serts and there is a crash, the log can be scanned after
reboot and the inserted key-value pairs recovered.

In WiscKey, the LSM-tree is only used for keys and
value addresses. Moreover, the vLog also records in-
serted keys to support garbage collection as described in
the previous section. Hence, writes to the LSM-tree log
file can be avoided without affecting correctness.

If a crash happens before the keys are persistent in the
LSM-tree, they can be recovered by scanning the vLog.
However, a naive algorithm would require scanning the
entire vLog for recovery. So as to require scanning only
a small portion of the vLog, WiscKey records the head
of the vLog periodically in the LSM-tree, as a key-value
pair <‘‘head’’, head-vLog-offset>. When a database
is opened, WiscKey starts the vLog scan from the most
recent head position stored in the LSM-tree, and con-
tinues scanning until the end of the vLog. Since the
head is stored in the LSM-tree, and the LSM-tree inher-
ently guarantees that keys inserted into the LSM-tree will
be recovered in the inserted order, this optimization is
crash consistent. Therefore, removing the LSM-tree log
of WiscKey is a safe optimization, and improves perfor-
mance especially when there are many small insertions.

3.5 Implementation
WiscKey is based on LevelDB 1.18. WiscKey creates
a vLog when creating a new database, and manages the
keys and value addresses in the LSM-tree. The vLog is
internally accessed by multiple components with differ-
ent access patterns. For example, a lookup is served by
randomly reading the vLog, while the garbage collector
sequentially reads from the tail and appends to the head
of the vLog file. We use posix fadvise() to predeclare
access patterns for the vLog under different situations.

For range queries, WiscKey maintains a background
thread pool with 32 threads. These threads sleep on a
thread-safe queue, waiting for new value addresses to
arrive. When prefetching is triggered, WiscKey inserts
a fixed number of value addresses to the worker queue,
and then wakes up all the sleeping threads. These threads
will start reading values in parallel, caching them in the
buffer cache automatically.

To efficiently garbage collect the free space of the
vLog, we use the hole-punching functionality of modern
file systems (fallocate()). Punching a hole in a file can
free the physical space allocated, and allows WiscKey to
elastically use the storage space. The maximal file size
on modern file systems is big enough for WiscKey to run
a long time without wrapping back to the beginning of

the file; for example, the maximal file size is 64 TB on
ext4, 8 EB on xfs and 16 EB on btrfs. The vLog can be
trivially adapted into a circular log if necessary.

4 Evaluation
In this section, we present evaluation results that demon-
strate the benefits of the design choices of WiscKey.

All experiments are run on a testing machine with
two Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30GHz pro-
cessors and 64-GB of memory. The operating system
is 64-bit Linux 3.14, and the file system used is ext4.
The storage device used is a 500-GB Samsung 840 EVO
SSD, which has 500 MB/s sequential-read and 400 MB/s
sequential-write maximal performance. Random read
performance of the device is shown in Figure 3.

4.1 Microbenchmarks
We use db bench (the default microbenchmarks in
LevelDB) to evaluate LevelDB and WiscKey. We al-
ways use a key size of 16 B, but perform experiments
for different value sizes. We disable data compression
for easier understanding and analysis of performance.

4.1.1 Load Performance
We now describe the results for the sequential-load and
random-load microbenchmarks. The former benchmark
constructs a 100-GB database by inserting keys in a se-
quential order, while the latter inserts keys in a uniformly
distributed random order. Note that the sequential-load
benchmark does not cause compaction in either LevelDB
or WiscKey, while the random-load does.

Figure 7 shows the sequential-load throughput of
LevelDB and WiscKey for a wide range of value sizes:
the throughput of both stores increases with the value
size. But, even for the largest value size considered
(256 KB), LevelDB’s throughput is far from the device
bandwidth. To analyze this further, Figure 8 shows the
distribution of the time spent in different components
during each run of the benchmark, for LevelDB; time
is spent in three major parts: writing to the log file, in-
serting to the memtable, and waiting for the memtable
to be flushed to the device. For small key-value pairs,
writing to the log file accounts for the most significant
percentage of the total time, for the reasons explained in
Figure 6. For larger pairs, log writing and the memtable
sorting are more efficient, while memtable flushes are the
bottleneck. Unlike LevelDB, WiscKey reaches the full
device bandwidth for value sizes more than 4 KB. Since
it does not write to the LSM-tree log and buffers appends
to the vLog, it is 3× faster even for small values.

Figure 9 shows the random-load throughput of
LevelDB and WiscKey for different value sizes.
LevelDB’s throughput ranges from only 2 MB/s (64-
B value size) to 4.1 MB/s (256-KB value size), while
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Figure 7: Sequential-load Performance. This figure
shows the sequential-load throughput of LevelDB and WiscKey
for different value sizes for a 100-GB dataset. Key size is 16 B.
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Figure 8: Sequential-load Time Breakup of LevelDB.
This figure shows the percentage of time incurred in different
components during sequential load in LevelDB.
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Figure 9: Random-load Performance. This figure
shows the random-load throughput of LevelDB and WiscKey
for different value sizes for a 100-GB dataset. Key size is 16 B.
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Figure 10: Write Amplification of Random Load.
This figure shows the write amplification of LevelDB and
WiscKey for randomly loading a 100-GB database.

WiscKey’s throughput increases with the value size,
reaching the peak device write throughput after the value
size is bigger than 4 KB. WiscKey’s throughput is 46×
and 111× of LevelDB for the 1-KB and 4-KB value size
respectively. LevelDB has low throughput because com-
paction both consumes a large percentage of the device
bandwidth and also slows down foreground writes (to
avoid overloading the L0 of the LSM-tree, as described
in Section 2.2). In WiscKey, compaction only introduces
a small overhead, leading to the full device bandwidth
being effectively utilized. To analyze this further, Fig-
ure 10 shows the write amplification of LevelDB and
WiscKeyṪhe write amplification of LevelDB is always
more than 12, while that of WiscKey decreases quickly
to nearly 1 when the value size reaches 1 KB, because
the LSM-tree of WiscKey is significantly smaller.

4.1.2 Query Performance

We now compare the random lookup (point query) and
range query performance of LevelDB and WiscKey. Fig-
ure 11 presents the random lookup results of 100,000

operations on a 100-GB random-loaded database. Even
though a random lookup in WiscKey needs to check both
the LSM-tree and the vLog, the throughput of WiscKey
is still much better than LevelDB: for 1-KB value size,
WiscKey’s throughput is 12× of that of LevelDB. For
large value sizes, the throughput of WiscKey is only lim-
ited by the random read throughput of the device, as
shown in Figure 3. LevelDB has low throughput because
of the high read amplification mentioned in Section 2.3.
WiscKey performs significantly better because the read
amplification is lower due to a smaller LSM-tree. An-
other reason for WiscKey’s better performance is that
the compaction process in WiscKey is less intense, thus
avoiding many background reads and writes.

Figure 12 shows the range query (scan) performance
of LevelDB and WiscKey. For a randomly-loaded
database, LevelDB reads multiple files from different
levels, while WiscKey requires random accesses to the
vLog (but WiscKey leverages parallel random reads). As
can be seen from Figure 12, the throughput of LevelDB
initially increases with the value size for both databases.
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Figure 11: Random Lookup Performance. This figure
shows the random lookup performance for 100,000 operations
on a 100-GB database that is randomly loaded.
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Figure 12: Range Query Performance. This figure
shows range query performance. 4 GB of data is queried from
a 100-GB database that is randomly (Rand) and sequentially
(Seq) loaded.

However, beyond a value size of 4 KB, since an SSTable
file can store only a small number of key-value pairs,
the overhead is dominated by opening many SSTable
files and reading the index blocks and bloom filters
in each file. For larger key-value pairs, WiscKey can
deliver the device’s sequential bandwidth, up to 8.4×
of LevelDB. However, WiscKey performs 12× worse
than LevelDB for 64-B key-value pairs due to the de-
vice’s limited parallel random-read throughput for small
request sizes; WiscKey’s relative performance is bet-
ter on high-end SSDs with higher parallel random-read
throughput [3]. Furthermore, this workload represents a
worst-case where the database is randomly-filled and the
data is unsorted in the vLog.

Figure 12 also shows the performance of range
queries when the data is sorted, which corresponds to a
sequentially-loaded database; in this case, both LevelDB
and WiscKey can sequentially scan through data. Per-
formance for sequentially-loaded databases follows the
same trend as randomly-loaded databases; for 64-B
pairs, WiscKey is 25% slower because WiscKey reads
both the keys and the values from the vLog (thus wasting
bandwidth), but WiscKey is 2.8× faster for large key-
value pairs. Thus, with small key-value pairs, log re-
organization (sorting) for a random-loaded database can
make WiscKey’s range-query performance comparable
to LevelDB’s performance.

4.1.3 Garbage Collection
We now investigate WiscKey’s performance while
garbage collection is performed in the background. The
performance can potentially vary depending on the per-
centage of free space found during garbage collection,
since this affects the amount of data written and the
amount of space freed by the garbage collection thread.
We use random-load (the workload that is most af-
fected by garbage collection) as the foreground work-

load, and study its performance for various percentages
of free space. Our experiment specifically involves three
steps: we first create a database using random-load, then
delete the required percentage of key-value pairs, and fi-
nally, we run the random-load workload and measure its
throughput while garbage collection happens in the back-
ground. We use a key-value size of 4 KB and vary the
percentage of free space from 25% to 100%.

Figure 13 shows the results: if 100% of data read by
the garbage collector is invalid, the throughput is only
10% lower. Throughput is only marginally lower be-
cause garbage collection reads from the tail of the vLog
and writes only valid key-value pairs to the head; if the
data read is entirely invalid, no key-value pair needs to
be written. For other percentages of free space, through-
put drops about 35% since the garbage collection thread
performs additional writes. Note that, in all cases, while
garbage collection is happening, WiscKey is at least 70×
faster than LevelDB.

4.1.4 Crash Consistency
Separating keys from values necessitates additional
mechanisms to maintain crash consistency. We verify
the crash consistency mechanisms of WiscKey by us-
ing the ALICE tool [45]; the tool chooses and simu-
lates a comprehensive set of system crashes that have a
high probability of exposing inconsistency. We use a test
case which invokes a few asynchronous and synchronous
Put() calls. When configured to run tests for ext4, xfs,
and btrfs, ALICE checks more than 3000 selectively-
chosen system crashes, and does not report any consis-
tency vulnerability introduced by WiscKey.

The new consistency mechanism also affects
WiscKey’s recovery time after a crash, and we design
an experiment to measure the worst-case recovery time
of WiscKey and LevelDB. LevelDB’s recovery time is
proportional to the size of its log file after the crash;
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Figure 13: Garbage Collection. This figure shows the
performance of WiscKey under garbage collection for vari-
ous free-space ratios.
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Figure 14: Space Amplification. This figure shows the
actual database size of LevelDB and WiscKey for a random-
load workload of a 100-GB dataset. User-Data represents
the logical database size.

the log file exists at its maximum size just before the
memtable is written to disk. WiscKey, during recovery,
first retrieves the head pointer from the LSM-tree, and
then scans the vLog file from the head pointer till the end
of the file. Since the updated head pointer is persisted
on disk when the memtable is written, WiscKey’s
worst-case recovery time also corresponds to a crash
happening just before then. We measured the worst-case
recovery time induced by the situation described so far;
for 1-KB values, LevelDB takes 0.7 seconds to recover
the database after the crash, while WiscKey takes 2.6
seconds. Note that WiscKey can be configured to persist
the head pointer more frequently if necessary.

4.1.5 Space Amplification

When evaluating a key-value store, most previous work
focused only on read and write amplification. How-
ever, space amplification is important for flash devices
because of their expensive price-per-GB compared with
hard drives. Space amplification is the ratio of the ac-
tual size of the database on disk to the logical size of
the the database [5]. For example, if a 1-KB key-value
pair takes 4 KB of space on disk, then the space ampli-
fication is 4. Compression decreases space amplification
while extra data (garbage, fragmentation, or metadata)
increases space amplification. Compression is disabled
to make the discussion simple.

For a sequential-load workload, the space amplifica-
tion can be near one, given that the extra metadata in
LSM-trees is minimal. For a random-load or overwrite
workload, space amplification is usually more than one
when invalid pairs are not garbage collected fast enough.

Figure 14 shows the database size of LevelDB and
WiscKey after randomly loading a 100-GB dataset (the
same workload as Figure 9). The space overhead of
LevelDB arises due to invalid key-value pairs that are not
garbage collected when the workload is finished. The
space overhead of WiscKey includes the invalid key-

value pairs and the extra metadata (pointers in the LSM-
tree and the tuple in the vLog as shown in Figure 5). Af-
ter garbage collection, the database size of WiscKey is
close to the logical database size when the extra meta-
data is small compared to the value size.

No key-value store can minimize read amplification,
write amplification, and space amplification at the same
time. Tradeoffs among these three factors are balanced
differently in various systems. In LevelDB, the sorting
and garbage collection are coupled together. LevelDB
trades higher write amplification for lower space ampli-
fication; however, the workload performance can be sig-
nificantly affected. WiscKey consumes more space to
minimize I/O amplification when the workload is run-
ning; because sorting and garbage collection are decou-
pled in WiscKey, garbage collection can be done later,
thus minimizing its impact on foreground performance.

4.1.6 CPU Usage
We now investigate the CPU usage of LevelDB and
WiscKey for various workloads shown in previous sec-
tions. The CPU usage shown here includes both the ap-
plication and operating system usage.

As shown in Table 1, LevelDB has higher CPU usage
for sequential-load workload. As we explained in Fig-
ure 8, LevelDB spends a large amount of time writing
key-value pairs to the log file. Writing to the log file
involves encoding each key-value pair, which has high
CPU cost. Since WiscKey removes the log file as an opti-
mization, WiscKey has lower CPU usage than LevelDB.
For the range query workload, WiscKey uses 32 back-
ground threads to do the prefetch; therefore, the CPU
usage of WiscKey is much higher than LevelDB.

We find that CPU is not a bottleneck for both LevelDB
and WiscKey in our setup. The architecture of LevelDB
is based on single writer protocol. The background com-
paction also only uses one thread. Better concurrency
design for multiple cores is explored in RocksDB [25].
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Figure 15: YCSB Macrobenchmark Performance. This figure shows the performance of LevelDB, RocksDB, and WiscKey
for various YCSB workloads. The X-axis corresponds to different workloads, and the Y-axis shows the performance normalized to
LevelDB’s performance. The number on top of each bar shows the actual throughput achieved (K ops/s). (a) shows performance
under 1-KB values and (b) shows performance under 16-KB values. The load workload corresponds to constructing a 100-GB
database and is similar to the random-load microbenchmark. Workload-A has 50% reads and 50% updates, Workload-B has 95%
reads and 5% updates, and Workload-C has 100% reads; keys are chosen from a Zipf, and the updates operate on already-existing
keys. Workload-D involves 95% reads and 5% inserting new keys (temporally weighted distribution). Workload-E involves 95%
range queries and 5% inserting new keys (Zipf), while Workload-F has 50% reads and 50% read-modify-writes (Zipf).

Workloads Seq Rand Rand Range
Load Load Lookup Query

LevelDB 10.6% 6.3% 7.9% 11.2%
WiscKey 8.2% 8.9% 11.3% 30.1%

Table 1: CPU Usage of LevelDB and WiscKey. This
table compares the CPU usage of four workloads on LevelDB
and WiscKey. Key size is 16 B and value size is 1 KB. Seq-
Load and Rand-Load sequentially and randomly load a 100-
GB database respectively. Given a 100-GB random-filled
database, Rand-Lookup issues 100 K random lookups, while
Range-Query sequentially scans 4-GB data.

4.2 YCSB Benchmarks
The YCSB benchmark [21] provides a framework and a
standard set of six workloads for evaluating the perfor-
mance of key-value stores. We use YCSB to compare
LevelDB, RocksDB [25], and WiscKey, on a 100-GB
database. In addition to measuring the usual-case perfor-
mance of WiscKey, we also run WiscKey with garbage
collection always happening in the background so as to
measure its worst-case performance. RocksDB [25] is a
SSD-optimized version of LevelDB with many optimiza-
tions, including multiple memtables and background
threads for compaction. We use RocksDB with the de-
fault configuration parameters. We evaluated the key-
value stores with two different value sizes, 1 KB and
16 KB (data compression is disabled).

WiscKey performs significantly better than LevelDB
and RocksDB, as shown in Figure 15. For example, dur-
ing load, for 1-KB values, WiscKey performs at least
50× faster than the other databases in the usual case, and
at least 45× faster in the worst case (with garbage col-

lection); with 16-KB values, WiscKey performs 104×
better, even under the worst case.

For reads, the Zipf distribution used in most workloads
allows popular items to be cached and retrieved with-
out incurring disk access, thus reducing WiscKey’s ad-
vantage over LevelDB and RocksDB. Hence, WiscKey’s
relative performance (compared to the LevelDB and
RocksDB) is better in Workload-A (50% reads) than in
Workload-B (95% reads) and Workload-C (100% reads).
However, RocksDB and LevelDB still do not match
WiscKey’s performance in any of these workloads.

The worst-case performance of WiscKey (with
garbage collection switched on always, even for read-
only workloads) is better than LevelDB and RocksDB.
However, the impact of garbage collection on perfor-
mance is markedly different for 1-KB and 16-KB values.
Garbage collection repeatedly selects and cleans a 4-MB
chunk of the vLog; with small values, the chunk will in-
clude many key-value pairs, and thus garbage collection
spends more time accessing the LSM-tree to verify the
validity of each pair. For large values, garbage collection
spends less time on the verification, and hence aggres-
sively writes out the cleaned chunk, affecting foreground
throughput more. Note that, if necessary, garbage collec-
tion can be throttled to reduce its foreground impact.

Unlike the microbenchmark considered previously,
Workload-E has multiple small range queries, with each
query retrieving between 1 and 100 key-value pairs.
Since the workload involves multiple range queries, ac-
cessing the first key in each range resolves to a ran-
dom lookup – a situation favorable for WiscKey. Hence,
WiscKey performs better than RocksDB and LevelDB
even for 1-KB values.
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5 Related Work
Various key-value stores based on hash tables have been
proposed for SSD devices. FAWN [8] keeps key-value
pairs in a append-only log on the SSD, and uses an
in-memory hash table index for fast lookups. Flash-
Store [22] and SkimpyStash [23] follow the same de-
sign, but optimize the in-memory hash table; FlashStore
uses cuckoo hashing and compact key signatures, while
SkimpyStash moves a part of the table to the SSD us-
ing linear chaining. BufferHash [7] uses multiple in-
memory hash tables, with bloom filters to choose which
hash table to use for a lookup. SILT [35] is highly
optimized for memory, and uses a combination of log-
structure, hash-table, and sorted-table layouts.WiscKey
shares the log-structure data layout with these key-value
stores. However, these stores use hash tables for index-
ing, and thus do not support modern features that have
been built atop LSM-tree stores, such as range queries or
snapshots. WiscKey instead targets a feature-rich key-
value store which can be used in various situations.

Much work has gone into optimizing the original
LSM-tree key-value store [43]. bLSM [49] presents a
new merge scheduler to bound write latency, thus main-
taining a steady write throughput, and also uses bloom
filters to improve performance. VT-tree [50] avoids sort-
ing any previously sorted key-value pairs during com-
paction, by using a layer of indirection. WiscKey instead
directly separates values from keys, significantly reduc-
ing write amplification regardless of the key distribution
in the workload. LOCS [53] exposes internal flash chan-
nels to the LSM-tree key-value store, which can exploit
the abundant parallelism for a more efficient compaction.
Atlas [32] is a distributed key-value store based on ARM
processors and erasure coding, and stores keys and val-
ues on different hard drives. WiscKey is a standalone
key-value store, where the separation between keys and
values is highly optimized for SSD devices to achieve
significant performance gains. LSM-trie [54] uses a trie
structure to organize keys, and proposes a more effi-
cient compaction based on the trie; however, this de-
sign sacrifices LSM-tree features such as efficient sup-
port for range queries. RocksDB, described previously,
still exhibits high write amplification due to its design
being fundamentally similar to LevelDB; RocksDB’s op-
timizations are orthogonal to WiscKey’s design.

Walnut [18] is a hybrid object store which stores small
objects in a LSM-tree and writes large objects directly
to the file system. IndexFS [47] stores its metadata in a
LSM-tree with the column-style schema to speed up the
throughput of insertion. Purity [19] also separates its in-
dex from data tuples by only sorting the index and storing
tuples in time order. All three systems use similar tech-
niques as WiscKey. However, we solve this problem in

a more generic and complete manner, and optimize both
load and lookup performance for SSD devices across a
wide range of workloads.

Key-value stores based on other data structures have
also been proposed. TokuDB [13, 14] is based on fractal-
tree indexes, which buffer updates in internal nodes; the
keys are not sorted, and a large index has to be main-
tained in memory for good performance. ForestDB [6]
uses a HB+-trie to efficiently index long keys, improv-
ing the performance and reducing the space overhead of
internal nodes. NVMKV [39] is a FTL-aware key-value
store which uses native FTL capabilities, such as sparse
addressing, and transactional supports. Vector interfaces
that group multiple requests into a single operation are
also proposed for key-value stores [52]. Since these key-
value stores are based on different data structures, they
each have different trade-offs relating to performance;
instead, WiscKey proposes improving the widely used
LSM-tree structure.

Many proposed techniques seek to overcome the
scalability bottlenecks of in-memory key-value stores,
such as Mastree [38], MemC3 [27], Memcache [41],
MICA [36] and cLSM [28]. These techniques may be
adapted for WiscKey to further improve its performance.

6 Conclusions
Key-value stores have become a fundamental building
block in data-intensive applications. In this paper, we
propose WiscKey, a novel LSM-tree-based key-value
store that separates keys and values to minimize write
and read amplification. The data layout and I/O pat-
terns of WiscKey are highly optimized for SSD devices.
Our results show that WiscKey can significantly im-
prove performance for most workloads. Our hope is
that key-value separation and various optimization tech-
niques in WiscKey will inspire the future generation of
high-performance key-value stores.
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Abstract
Multi-stage log-structured (MSLS) designs, such as Lev-
elDB, RocksDB, HBase, and Cassandra, are a family of
storage system designs that exploit the high sequential
write speeds of hard disks and flash drives by using mul-
tiple append-only data structures. As a first step towards
accurate and fast evaluation of MSLS, we propose new
analytic primitives and MSLS design models that quickly
give accurate performance estimates. Our model can al-
most perfectly estimate the cost of inserts in LevelDB,
whereas the conventional worst-case analysis gives 1.8–
3.5X higher estimates than the actual cost. A few minutes
of offline analysis using our model can find optimized
system parameters that decrease LevelDB’s insert cost by
up to 9.4–26.2%; our analytic primitives and model also
suggest changes to RocksDB that reduce its insert cost
by up to 32.0%, without reducing query performance or
requiring extra memory.

1 Introduction
Log-structured store designs provide fast write and easy
crash recovery for block-based storage devices that have
considerably higher sequential write speed than random
write speed [37]. In particular, multi-stage versions of
log-structured designs, such as LSM-tree [36], COLA [2],
and SAMT [42], strive to balance read speed, write speed,
and storage space use by segregating fresh and old data
in multiple append-only data structures. These designs
have been widely adopted in modern datastores including
LevelDB [19], RocksDB [12], Bigtable [8], HBase [45],
and Cassandra [27].

Given the variety of multi-stage log-structured (MSLS)
designs, a system designer is faced with a problem of
plenty, raising questions such as: Which design is best for
this workload? How should the systems’ parameters be
set? How sensitive is that choice to changes in workload?
Our goal in this paper is to move toward answering these
questions and more through an improved—both in quality
and in speed—analytical method for understanding and
comparing the performance of these systems. This analyt-
ical approach can help shed light on how different design
choices affect the performance of today’s systems, and it
provides an opportunity to optimize (based on the analy-
sis) parameter choices given a workload. For example, in

Section 6, we show that a few minutes of offline analysis
can find improved parameters for LevelDB that decrease
the cost of inserts by up to 9.4–26.2%. As another exam-
ple, in Section 7, we reduce the insert cost in RocksDB
by up to 32.0% by changing its system design based upon
what we have learned from our analytic approach.

Prior evaluations of MSLS designs largely reside at the
two ends of the spectrum: (1) asymptotic analysis and
(2) experimental measurement. Asymptotic analysis of
an MSLS design typically gives a big-O term describ-
ing the cost of an operation type (e.g., query, insert), but
previous asymptotic analyses do not reflect real-world
performance because they assume the worst case. Ex-
perimental measurement of an implementation produces
accurate performance numbers, which are often limited to
a particular implementation and workload, with lengthy
experiment time to explore various system configurations.

This paper proposes a new evaluation method for
MSLS designs that provides accurate and fast evalua-
tion without needing to run the full implementations. Our
approach uses new analytic primitives that help model the
dynamics of MSLS designs. We build upon this model by
combining it with a nonlinear solver to help automatically
optimize system parameters to maximize performance.

This paper makes four key contributions:
• New analytic primitives to model creating the log

structure and merging logs with redundant data (§3);
• System models for LevelDB and RocksDB, represen-

tative MSLS designs, using the primitives (§4, §5);
• Optimization of system parameters with the LevelDB

model, improving real system performance (§6); and
• Application of lessons from the LevelDB model to

the RocksDB system to reduce its write cost (§7).
Section 2 describes representative MSLS designs and

common evaluation metrics for MSLS designs. Section 8
broadens the applications of our analytic primitives. Sec-
tion 9 discusses the implications and limitations of our
method. Appendix A provides proofs. Appendices B
and C include additional system models.

2 Background
This section introduces a family of multi-stage log-
structured designs and their practical variants, and ex-
plains metrics commonly used to evaluate these designs.
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2.1 Multi-Stage Log-Structured Designs
A multi-stage log-structured (MSLS) design is a storage
system design that contains multiple append-only data
structures, each of which is created by sequential writes;
for instance, several designs use sorted arrays and ta-
bles that are often called SSTables [19, 42]. These data
structures are organized as stages, either logically or phys-
ically, to segregate different classes of data—e.g., fresh
data and old data, frequently modified data and static data,
small items and large items, and so forth. Components in
LSM-tree [36] and levels in many designs [2, 19, 42] are
examples of stages.

MSLS designs exploit the fast sequential write speed of
modern storage devices. On hard disk and flash drives, se-
quential writes are up to an order of magnitude faster than
random writes. By restricting most write operations to
incur only sequential I/O, MSLS can provide fast writes.

Using multiple stages reduces the I/O cost for data
updates. Frequent changes are often contained within a
few stages that either reside in memory and/or are cheap
to rewrite—this approach shares the same insight as the
generational garbage collection used for memory man-
agement [25, 28]. The downside is that the system may
have to search in multiple stages to find a single item
because the item can exist in any of these stages. This can
potentially reduce query performance.

The system moves data between stages based upon
certain criteria. Common conditions are the byte size
of the data stored in a stage, the age of the stored data,
etc. This data migration typically reduces the total data
volume by merging multiple data structures and reducing
the redundancy between them; therefore, it is referred to
as “compaction” or “merge.”

MSLS designs are mainly classified by how they or-
ganize log structures and how and when they perform
compaction. The data structures and compaction strategy
significantly affect the cost of various operations.

2.1.1 Log-Structured Merge-Tree

The log-structured merge-tree (LSM-tree) [36] is a write-
optimized store design with two or more components,
each of which is a tree-like data structure [35]. One com-
ponent (C0) resides in memory; the remaining compo-
nents (C1,C2,. . . ) are stored on disk. Each component can
hold a set of items, and multiple components can contain
multiple items of the same key. A lower-numbered com-
ponent always stores a newer version of the item than any
higher-numbered component does.

For query processing, LSM-tree searches in potentially
multiple components. It starts from C0 and stops as soon
as the desired item is found.

Handling inserts involves updating the in-memory com-
ponent and merging data between components. A new en-
try is inserted into C0 (and is also logged to disk for crash

Level L
Key space

Level L-1

Level 1
...

Level 0

Figure 1: A simplified overview of LevelDB data structures.
Each rectangle is an SSTable. Note that the x-axis is the key
space; the rectangles are not to scale to indicate their byte size.
The memtable and logs are omitted.
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Compaction

Figure 2: Compaction between two levels in LevelDB.

recovery), and the new item is migrated over time from
C0 to C1, from C1 to C2, and so on. Frequent updates of
the same item are coalesced in C0 without spilling them
to the disk; cold data, in contrast, remains in C1 and later
components which reside on low-cost disk.

The data merge in LSM-tree is mostly a sequential I/O
operation. The data from Cl is read and merged into Cl+1,
using a “rolling merge” that creates and updates nodes in
the Cl+1 tree incrementally in the key space.

The authors of LSM-tree suggested maintaining com-
ponent sizes to follow a geometric progression. The size
of a component is r times larger than the previous compo-
nent size, where r is commonly referred to as a “growth
factor,” typically between 10 and 20. With such size selec-
tion, the expected I/O cost per insert by the data migration
is O((r + 1) logr N), where N is the size of the largest
component, i.e., the total number of unique keys. The
worst-case lookup incurs O(logr N) random I/O by ac-
cessing all components, if finding an item in a component
costs O(1) random I/O.

2.1.2 LevelDB

LevelDB [19] is a well-known variant of LSM-tree. It
uses an in-memory table called a memtable, on-disk log
files, and on-disk SSTables. The memtable plays the same
role as C0 of LSM-tree, and write-ahead logging is used
for recovery. LevelDB organizes multiple levels that corre-
spond to the components of LSM-tree; however, as shown
in Figure 1, LevelDB uses a set of SSTables instead of a
single tree-like structure for each level, and LevelDB’s
first level (level-0) can contain duplicate items across
multiple SSTables.

Handing data updates in LevelDB is mostly similar
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to LSM-tree with a few important differences. Newly
inserted data is stored in the memtable and appended to
a log file. When the log size exceeds a threshold (e.g.,
4 MiB1), the content of the memtable is converted into
an SSTable and inserted to level-0. When the table count
in level-0 reaches a threshold (e.g., 4), LevelDB begins
to migrate the data of level-0 SSTables into level-1. For
level-1 and later levels, when the aggregate byte size of
SSTables in a level reaches a certain threshold, LevelDB
picks an SSTable from that level and merges it into the
next level. Figure 2 shows the compaction process; it takes
all next-level SSTables whose key range overlaps with
the SSTable being compacted, replacing the next-level
SSTables with new SSTables containing merged items.

The SSTables created by compaction follow several
invariants. A new SSTable has a size limit (e.g., 2 MiB),
which makes the compaction process incremental. An
SSTable cannot have more than a certain amount of over-
lapping data (e.g., 20 MiB) in the next level, which limits
the future cost of compacting the SSTable.

LevelDB compacts SSTables in a circular way within
the key space for each level. Fine-grained SSTables and
round-robin SSTable selection have interesting implica-
tions in characterizing LevelDB’s write cost.

There are several variants of LevelDB. A popular ver-
sion is RocksDB [12], which claims to improve write per-
formance with better support for multithreading. Unlike
LevelDB, RocksDB picks the largest SSTable available
for concurrent compaction. We discuss the impact of this
strategy in Section 7. RocksDB also supports “univer-
sal compaction,” an alternative compaction strategy that
trades read performance for faster writes.

We choose to apply our analytic primitives and mod-
eling techniques to LevelDB in Section 4 because it cre-
ates interesting and nontrivial issues related to its use
of SSTables and incremental compaction. We show how
we can analyze complex compaction strategies such as
RocksDB’s universal compaction in Section 5.

2.2 Common Evaluation Metrics
This paper focuses on analytic metrics (e.g., per-insert
cost factors) more than on experimental metrics (e.g.,
insert throughput represented in MB/s or kOPS).

Queries and inserts are two common operation types.
A query asks for one or more data items, which can also
return “not found.” An insert stores new data or updates
existing item data. While it is hard to define a cost metric
for every type of query and insert operation, prior studies
extensively used two metrics defined for the amortized
I/O cost per processed item: read amplification and write
amplification.

Read amplification (RA) is the expected number of
random read I/O operations to serve a query, assuming

1Mi denotes 220. k, M, and G denote 103, 106, and 109, respectively.

4 6 8 10 12 14 16 18 20 22

Write amplification

0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut
(k

O
P

S
) Zipf Uniform

x · y = 73586

Figure 3: Write amplification is an important metric; increased
write amplification decreases insert throughput on LevelDB.

that the total data size is much larger than the system mem-
ory size, which translates to the expected I/O overhead
of query processing [7, 29]. RA is based on the fact that
random I/O access on disk and flash is a critical resource
for query performance.

Write amplification (WA) is the expected amount of
data written to disk or flash per insert, which measures the
I/O overhead of insert processing. Its concept originates
from a metric to measure the efficiency of the flash trans-
lation layer (FTL), which stores blocks in a log structure-
like manner; WA has been adopted later in key-value store
studies to project insert throughput and estimate the life
expectancy of underlying flash drives [12, 19, 29, 30, 43].

WA and insert throughput are inversely related. Fig-
ure 3 shows LevelDB’s insert throughput for 1 kB items
on a fast flash drive.2 We vary the total data volume from
1 GB to 10 GB and examine two distributions for the
key popularity, uniform and Zipf. Each configuration is
run 3 times. Workloads that produce higher WA (e.g.,
larger data volume and/or uniform workloads) have lower
throughput.

In this paper, our main focus is WA. Unlike RA, whose
effect on actual system performance can be reduced by
dedicating more memory for caching, the effect of WA
cannot be mitigated easily without changing the core sys-
tem design because the written data must be eventually
flushed to disk/flash to ensure durability. For the same
reason, we do not to use an extended definition of WA
that includes the expected amount of data read from disk
per insert. We discuss how to estimate RA in Section 8.

3 Analytic Primitives
Our goal in later sections is to create simple but accu-
rate models of the write amplification of different MSLS
designs. To reach this goal, we first present three new
analytic primitives, Unique, Unique−1, and Merge, that
form the basis for those models. In Sections 4 and 5, we
show how to express the insert and growth behavior of
LevelDB and RocksDB using these primitives.

2We use Intel® SSDSC2BB160G4T with fsync enabled for Lev-
elDB.
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3.1 Roles of Redundancy
Redundancy has an important effect on the behavior of
an MSLS design. Any given table store (SSTable, etc.)
contains at most one entry for a single key, no matter how
many inserts were applied for that key. Similarly, when
compaction merges tables, the resulting table will also
contain only a single copy of the key, no matter how many
times it appeared in the tables that were merged. Accurate
models must thus consider redundancy.

Asymptotic analyses in prior studies ignore redundancy.
Most analyses assume that compactions observe no du-
plicate keys from insert requests and input tables being
merged [2, 19]. The asymptotic analyses therefore give
the same answer regardless of skew in the key popularity;
it ignores whether all keys are equally popular or some
keys are more popular than others. It also estimates only
an upper bound on the compaction cost—duplicate keys
mean that less total data is written, lowering real-world
write amplification.

We first clarify our assumptions and then explain how
we quantify the effect of redundancy.

3.2 Notation and Assumptions
Let K be the key space. Without loss of generality, K is
the set of all integers in [0,N − 1], where N is the total
number of unique keys that the workload uses.

A discrete random variable X maps an insert request
to the key referred to by the request. fX is the probability
mass function for X , i.e., fX (k) for k ∈ K is the proba-
bility of having a specific key k for each insert request,
assuming the keys in the requests are independent and
identically distributed (i.i.d.) and have no spatial locality
in popularity. As an example, a Zipf key popularity is
defined as fX (h(i)) = (1/is)/(∑N

n=1 1/ns), where s is the
skew and h maps the rank of each key to the key.3 Since
there is no restriction on how fX should look, it can be
built from a key popularity distribution inferred by an
empirical workload characterization [1, 38, 49].

Without loss of generality, 0 < fX (k)< 1. We can re-
move any key k satisfying fX (k) = 0 from K because k
will never appear in the workload. Similarly, fX (k) = 1
degenerates to a workload with exactly one key, which is
trivial to analyze.

A table is a set of the items that contains no duplicate
keys. Tables are constructed from a sequence of insert
requests or merges of other tables.

L refers to the total number of standard levels in an
MSLS design. Standard levels include only the levels that
follow the invariants of the design; for example, the level-
0 in LevelDB does not count towards L because level-0

3Note that s = 0 leads to a uniform key popularity, i.e., fX (k) =
1/N. We use s = 0.99 frequently to describe a “skewed” or simply
“Zipf” distribution for the key popularity, which is the default skew in
YCSB [11].
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Figure 4: Unique key count as a function of request count for
100 million unique keys, with varying Zipf skew (s).

contains overlapping tables, while other levels do not, and
has a different compaction trigger that is based on the
table count in the level, not the aggregate size of tables
in a level. L is closely related to read amplification; an
MSLS design may require L random I/Os to retrieve an
item that exists only in the last level (unless the design
uses additional data structures such as Bloom filters [5]).

To avoid complicating the analysis, we assume that all
items have equal size (e.g., 1000 bytes). This assumption
is consistent with YCSB [11], a widely-used key-value
store benchmark. We relax this assumption in Section 8.

3.3 Counting Unique Keys
A sequence of insert requests may contain duplicate keys.
The requests with duplicate keys overwrite or modify the
stored values. When storing the effect of the requests in a
table, only the final (combined) results survive. Thus, a
table can be seen as a set of distinct keys in the requests.

We first formulate Unique, a function describing the
expected number of unique keys that appear in p requests:
Definition 1.

Unique(p) := N −∑k∈K (1− fX (k))
p for p ≥ 0.

Theorem 1. Unique(p) is the expected number of unique
keys that appear in p requests.

Figure 4 plots the number of unique keys as a function
of the number of insert requests for 100 million unique
keys (N = 108). We use Zipf distributions with varying
skew. The unique key count increases as the request count
increases, but the increase slows down as the unique key
count approaches the total unique key count. The unique
key count with less skewed distributions increases more
rapidly than with more skewed distributions until it is
close to the maximum.

In the context of MSLS designs, Unique gives a hint
about how many requests (or how much time) it takes
for a level to reach a certain size from an empty state.
With no or low skew, a level quickly approaches its full
capacity and the system initiates compaction; with high
skew, however, it can take a long time to accumulate
enough keys to trigger compaction.

We examine another useful function, Unique−1, which
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Unique key countRequest count
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Figure 5: Isomorphism of Unique. Gray bars indicate a certain
redundant key.

is the inverse function of Unique. Unique−1(u) estimates
the expected number of requests to observe u unique
keys in the requests.4 By extending the domain of Unique
to the real numbers, we can ensure the existence of
Unique−1:
Lemma 1. Unique−1(u) exists for 0 ≤ u < N.

We further extend the domain of Unique−1 to include
N by using limits. Unique(∞) := limp→∞ Unique(p) = N;
Unique−1(N) := limu→N Unique−1(u) = ∞.

It is straightforward to compute the value of
Unique−1(u) by solving Unique(p) = u for p numeri-
cally or by approximating Unique and Unique−1 with
piecewise linear functions.

3.4 Merging Tables
Compaction takes multiple tables and creates a new set of
tables that contain no duplicate keys. Nontrivial cases in-
volve tables with overlapping key ranges. For such cases,
we can estimate the size of merged tables using a combi-
nation of Unique and Unique−1:
Definition 2. Merge(u,v) := Unique(Unique−1(u) +
Unique−1(v)) for 0 ≤ u,v ≤ N.
Theorem 2. Merge(u,v) is the expected size of a merged
table that is created from two tables of sizes u and v.

In worst-case analysis, merging tables of size u and v
results in a new table of size u+ v, assuming the input
tables contain no duplicate keys. The error caused by
this assumption grows as u and v approach N and as
the key popularity has more skew. For example, with
100 million (108) total unique keys and Zipf skew of
0.99, Merge(107,9× 107) ≈ 9.03× 107 keys, whereas
the worst-case analysis expects 108 keys.

Finally, Unique is an isomorphism as shown in Fig-
ure 5. Unique maps the length of a sequence of requests
to the number of unique keys in it, and Unique−1 does
the opposite. Adding request counts corresponds to ap-

4 Unique−1 is similar to, but differs from, the generalized coupon
collector’s problem (CCP) [16]. Generalized CCP terminates as soon as
a certain number of unique items has been collected, whereas Unique−1

is merely defined as the inverse of Unique. Numerically, solutions of
the generalized CCP are typically smaller than those of Unique−1 due
to CCP’s eager termination.

plying Merge to unique key counts; the addition calcu-
lates the length of concatenated request sequences, and
Merge obtains the number of unique keys in the merged
table. Translating the number of requests to the number
of unique keys and vice versa makes it easy to build an
MSLS model, as presented in Section 4.

3.5 Handling Workloads with Dependence
As stated in Section 3.2, our primitives assume i.i.d.,
that insertions are independent, yet real-world work-
loads can have dependence between keys. A common
scenario is using composite keys to describe multiple
attributes of a single entity [26, 34]: [book100|title],
[book100|author], [book100|date]. Related composite
keys are often inserted together, resulting in dependent
inserts.

Fortunately, we can treat these dependent inserts as in-
dependent if each insert is independent of a large number
of (but not necessarily all) other inserts handled by the sys-
tem. The dependence between a few inserts causes little
effect on the overall compaction process because com-
paction involves many keys; for example, the compaction
cost difference between inserting keys independently and
inserting 10 related keys sharing the same key prefix as a
batch is only about 0.2% on LevelDB when the workload
contains 1 million or more total unique keys (for depen-
dent inserts, 100,000 or more independent key groups,
each of which has 10 related keys). Therefore, our prim-
itives give good estimates in many practical scenarios
which lack strictly independent inserts.

4 Modeling LevelDB
This section applies our analytic primitives to model a
practical MSLS design, LevelDB. We explain how the
dynamics of LevelDB components can be incorporated
into the LevelDB model. We compare the analytic esti-
mate with the measured performance of both a LevelDB
simulator and the original implementation.

We assume that the dictionary-based compression [10,
17, 21] is not used in logs and SSTables. Using compres-
sion can reduce the write amplification (WA) by a certain
factor; its effectiveness depends on how compressible
the stored data is. Section 8 discusses how we handle
variable-length items created as a result of compression.

Algorithm 1 summarizes the WA estimation for Lev-
elDB. unique() and merge() calculate Unique and Merge
as defined in Section 3. dinterval() calculates DInterval,
defined in this section.

4.1 Logging
LevelDB’s write-ahead logging (WAL) writes roughly
the same amount as the data volume of inserts. We do
not need to account for key redundancy because logging
does not perform redundancy removal. As a consequence,
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1 // @param L maximum level
2 // @param wal write-ahead log file size
3 // @param c0 level-0 SSTable count
4 // @param size level sizes
5 // @return write amplification
6 function estimateWA_LevelDB(L, wal, c0, size[]) {
7 local l, WA, interval[], write[];
8
9 // mem -> log

10 WA = 1;
11
12 // mem -> level-0
13 WA += unique(wal) / wal;
14
15 // level-0 -> level-1
16 interval[0] = wal * c0;
17 write[1] = merge(unique(interval[0]), size[1]);
18 WA += write[1] / interval[0];
19
20 // level-l -> level-(l+1)
21 for (l = 1; l < L; l++) {
22 interval[l] = interval[l-1] + dinterval(size, l);
23 write[l+1] = merge(unique(interval[l]),

size[l+1]) + unique(interval[l]);
24 WA += write[l+1] / interval[l];
25 }
26
27 return WA;
28 }

Algorithm 1: Pseudocode of a model of WA of LevelDB.

logging contributes 1 unit of WA (line #10). An advanced
WAL scheme [9] can lower the logging cost below 1 unit.

4.2 Constructing Level-0 SSTables
LevelDB stores the contents of the memtable as a new
SSTable in level-0 whenever the current log size reaches
a threshold wal, which is 4 MiB by default.5 Because
an SSTable contains no redundant keys, we use Unique
to compute the expected size of the SSTable correspond-
ing to the accumulated requests; for every wal requests,
LevelDB creates an SSTable of Unique(wal), which adds
Unique(wal)/wal to WA (line #13).

4.3 Compaction
LevelDB compacts one or more SSTables in a level into
the next level when any of the following conditions is
satisfied: (1) level-0 has at least c0 SSTables; (2) the ag-
gregate size of SSTables in a level-l (1 ≤ l ≤ L) reaches
Size(l) bytes; or (3) an SSTable has observed a certain
number of seeks from query processing. The original Lev-
elDB defines c0 = 4 SSTables6 and Size(l) = 10l MiB.
The level to compact is chosen based on the ratio of the
current SSTable count or level size to the triggering con-
dition, which can be approximated as prioritizing levels

5We use the byte size and the item count interchangeably based on
the assumption of fixed item size, as described in Section 3.2.

6LevelDB begins compaction with 4 level-0 SSTables, and new insert
requests stall if the compaction of level-0 is not fast enough that the
level-0 SSTable count reaches 12.
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Figure 6: Non-uniformity of the key density caused by the
different compaction speed of two adjacent levels in the key
space. Each rectangle represents an SSTable. Vertical dotted
lines indicate the last compacted key; the rectangles right next
to the vertical lines will be chosen for compaction next time.

in their order from 0 to L in the model. The seek trigger
depends on the distribution of queries as well as of insert
requests, which is beyond the scope of this paper.

We examine two quantities to estimate the amortized
compaction cost: a certain interval (a request count) that
is large enough to capture the average compaction be-
havior of level-l, denoted as Interval(l); and the expected
amount of data written to level-(l +1) during that inter-
val, denoted as Write(l +1). The contribution to WA by
the compaction from level-l to level-(l + 1) is given by
Write(l+1)/ Interval(l) by the definition of WA (line #18,
#24).

4.3.1 Compacting Level-0 SSTables

LevelDB picks a level-0 SSTable and other level-0 SSTa-
bles that overlap with the first SSTable picked. It chooses
overlapping level-1 SSTables as the other compaction in-
put, and it can possibly choose more level-0 SSTables
as long as the number of overlapping level-1 SSTables
remains unchanged. Because level-0 contains overlapping
SSTables with a wide key range, a single compaction com-
monly picks multiple level-0 SSTables; to build a concise
model, we assume that all level-0 SSTables are chosen
for compaction whenever the trigger for level-0 is met.

Let Interval(0) be the interval of creating c0 SSTa-
bles, where Interval(0) = wal · c0 (line #16). Com-
paction performed for that duration merges the SSTa-
bles created from Interval(0) requests, which con-
tain Unique(Interval(0)) unique keys, into level-1
with Size(1) unique keys. Therefore, Write(1) =
Merge(Unique(Interval(0)),Size(1)) (line #17).

4.3.2 Compacting Non-Level-0 SSTables

While the compaction from level-l to level-(l +1) (1 ≤
l < L) follows similar rules as level-0 does, it is more
complicated because of how LevelDB chooses the next
SSTable to compact. LevelDB remembers LastKey(l),
the last key of the SSTable used in the last compaction
for level-l and picks the first SSTable whose smallest
key succeeds LastKey(l); if there exists no such SSTable,
LevelDB picks the SSTable with the smallest key in the
level. This compaction strategy chooses SSTables in a
circular way in the key space for each level.

Non-uniformity arises from round-robin compaction.
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Compaction removes items from a level, but its effect is
localized in the key space of that level. Compaction from
a lower level into that level, however, tends to push items
across the key space of the receiving level: the lower level
makes faster progress compacting the entire key space
because it contains fewer items, as depicted in Figure 6.
As a result, the recently-compacted part of the key space
has a lower chance of having items (low density), whereas
the other part, which has not been compacted recently,
is more likely to have items (high density). Because the
maximum SSTable size is constrained, the low density
area has SSTables covering a wide key range, and the
high density area has SSTables with a narrow key range.

This non-uniformity makes compaction cheaper. Com-
paction occurs for an SSTable at the dense part of the
key space. The narrow key range of the dense SSTable
means a relatively small number of overlapping SSTa-
bles in the next level. Therefore, the compaction of the
SSTable results in less data written to the next level.

Some LevelDB variants [22] explicitly pick an SSTable
that maximizes the ratio of the size of that SSTable to the
size of all overlapping SSTables in the next level, in hope
of making the compaction cost smaller. Interestingly, due
to the non-uniformity, LevelDB already implicitly realizes
a similar compaction strategy. Our simulation results (not
shown) indicate that the explicit SSTable selection brings
a marginal performance gain over LevelDB’s circular
SSTable selection.

To quantify the effect of the non-uniformity to com-
paction, we model the density distribution of a level. Let
DInterval(l) be the expected interval between compaction
of the same key in level-l. This is also the interval to merge
the level-l data into the entire key space of level-(l +1).
We use d to indicate the unidirectional distance from the
most recently compacted key LastKey(l) to a key in the
key space, where 0 ≤ d < N. d = 0 represents the key
just compacted, and d = N − 1 is the key that will be
compacted next time. Let Density(l,d) be the probability
of having an item for the key with distance d in level-l.
Because we assume no spatial key locality, we can for-
mulate Density by approximating LastKey(l) to have a
uniform distribution:
Theorem 3. Assuming P(LastKey(l) = k) = 1/N
for 1 ≤ l < L, k ∈ K, then Density(l,d) =
Unique(DInterval(l) ·d/N)/N for 1 ≤ l < L, 0 ≤ d < N.

We also use a general property of the density:
Lemma 2. ∑N−1

d=0 Density(l,d) = Size(l) for 1 ≤ l < L.

The value of DInterval(l) can be obtained by solving it
numerically using Theorem 3 and Lemma 2.

We see that DInterval(l) is typically larger than
Unique−1(Size(l)) that represents the expected interval
of compacting the same key without non-uniformity. For
example, with Size(l) = 10 Mi, N = 100 M (108), and

Level l

Level l+1
Key space

False overlaps

Figure 7: False overlaps that occur during the LevelDB com-
paction. Each rectangle indicates an SSTable; its width indicates
the table’s key range, not the byte size.

a uniform key popularity distribution, DInterval(l) is at
least twice as large as Unique−1(Size(l)): 2.26×107 vs.
1.11×107. This confirms that non-uniformity does slow
down the progression of LastKey(l), improving the effi-
ciency of compaction.

Interval(l), the actual interval we use to calculate the
amortized WA, is cumulative and increases by DInterval,
i.e., Interval(l) = Interval(l−1)+DInterval(l) (line #22).
Because compacting lower levels is favored over compact-
ing upper levels, an upper level may contain more data
than its compaction trigger as an overflow from lower
levels. We use a simple approximation to capture this
behavior by adding the cumulative term Interval(l −1).

False overlaps are another effect caused by the incre-
mental compaction using SSTables in LevelDB. Unlike
non-uniformity, they increase the compaction cost slightly.
For an SSTable being compacted, overlapping SSTables
in the next level may contain items that lie outside the
key range of the SSTable being compacted, as illustrated
in Figure 7. Even though the LevelDB implementation
attempts to reduce such false overlaps by choosing more
SSTables in the lower level without creating new over-
lapping SSTables in the next level, false overlaps may
add extra data writes whose size is close to that of the
SSTables being compacted, i.e., Unique(Interval(l)) for
Interval(l). Note that these extra data writes caused by
false overlaps are more significant when Unique for the
interval is large, i.e., under low skew, and they diminish
as Unique becomes small, i.e., under high skew.

Several proposals [30, 41] strive to further reduce false
overlaps by reusing a portion of input SSTables, essen-
tially trading storage space and query performance for
faster inserts. Such techniques can reduce WA by up to
1 per level, and even more if they address other types
of false overlaps; the final cost savings, however, largely
depend on the workload skew and the degree of the reuse.

By considering all of these factors, we can calculate the
expected size of the written data. During Interval(l), level-
l accepts Unique(Interval(l)) unique keys from the lower
levels, which are merged into the next level containing
Size(l +1) unique keys. False overlaps add extra writes
roughly as much as the compacted level-l data. Thus,
Write(l+1) =Merge(Unique(Interval(l)),Size(l+1))+
Unique(Interval(l)) (line #23).
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Figure 8: Effects of the workload skew on WA. Using 100
million unique keys, 1 kB item size.

4.4 Sensitivity to the Workload Skew
To examine how our LevelDB model reacts to the work-
load skew, we compare our WA estimates with worst-case
analysis results. Our worst-case scenarios make the same
assumption as prior asymptotic analyses [2, 36, 39], that
the workload has no redundancy; therefore, merging two
SSTables yields an SSTable whose size is exactly the
same as the sum of the input SSTable sizes. In other
words, compacting levels of size u and v results in u+ v
items in the worst case.

Figure 8 plots the estimated WA for different Zipf skew
parameters. Because our analytic model (“LevelDB-ana”)
considers the key popularity distribution of the workload
in estimating WA, it clearly shows how WA decreases
as LevelDB handles more skewed workloads; in contrast,
the worst-case analysis (“Worst-case analysis”) gives the
same result regardless of the skew.

4.5 Comparisons with the Worst-Case
Analysis, Simulation, and Experiment

We compare analytic estimates of WA given by our Lev-
elDB model with the estimates given by the worst-case
analysis, and the measured cost by running experiments
on a LevelDB simulator and the original implementation.

We built a fast LevelDB simulator in C++ that follows
the LevelDB design specification [20] to perform an item-
level simulation and uses system parameters extracted
from the LevelDB source code. This simulator does not
intend to capture every detail of LevelDB implementation
behaviors; instead, it realizes the high-level design com-
ponents as explained in the LevelDB design document.
The major differences are (1) our simulator runs in mem-
ory; (2) it performs compaction synchronously without
concurrent request processing; and (3) it does not imple-
ment several opportunistic optimizations: (a) reducing
false overlaps by choosing more SSTables in the lower
level, (b) bypassing level-0 and level-1 for a newly created
SSTable from the memtable if there are no overlapping
SSTables in these levels, and (c) dynamically allowing
more than 4 level-0 SSTables under high load.

For the measurement with the LevelDB implementa-
tion, we instrumented the LevelDB code (v1.18) to report
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Figure 9: Comparison of WA between the estimation from our
LevelDB model, the worst-case analysis, LevelDB simulation,
and implementation results, with a varying number of total
unique keys. Using 1 kB item size. Simulation and implementa-
tion results with a large number of unique keys are unavailable
due to excessive runtime.

the number of bytes written to disk via system calls. We
use an item size that is 18 bytes smaller than we do in
the analysis and simulation, to compensate for the in-
creased data writes due to LevelDB’s own storage space
overhead. For fast experiments, we disable fsync and
checksumming,7 which showed no effects on WA in our
experiments. We also avoid inserting items at an excessive
rate that can overload level-0 with many SSTables and
cause a high lookup cost.

Both LevelDB simulator and implementation use a
YCSB [11]-like workload generator written in C++. Each
experiment initializes the system by inserting all keys
once and then measures the average WA of executing
random insert requests whose count is 10 times the total
unique key count.

Figure 9 shows WA estimation and measurement with
a varying number of total unique keys. Due to exces-
sive experiment time, the graph excludes some data
points for simulation (“LevelDB-sim”) and implemen-
tation (“LevelDB-impl”) with a large number of unique
keys. The graph shows that our LevelDB model success-
fully estimates WA that agrees almost perfectly with the
simulation and implementation results. The most signif-
icant difference occurs at 330 M unique keys with the
uniform popularity distribution, where the estimated WA
is only 3.0% higher than the measured WA. The standard
worst-case analysis, however, significantly overestimates
WA by 1.8–3.5X compared to the actual cost, which high-
lights the accuracy of our LevelDB model.

Figure 10 compares results with different write buffer
size (i.e., the memtable size), which determines how much
data in memory LevelDB accumulates to create a level-0
SSTable (and also affects how long crash recovery may

7MSLS implementations can use special CPU instructions to acceler-
ate checksumming and avoid making it a performance bottleneck [23].
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Figure 10: Comparison of WA between the estimation from our
LevelDB model and implementation results, with varying write
buffer sizes. Using 10 million unique keys, 1 kB item size.

take). In our LevelDB model, wal reflects the write buffer
size. We use write buffer sizes between LevelDB’s default
size of 4 MiB and 10% of the last level size. The result in-
dicates that our model estimates WA with good accuracy,
but the error increases as the write buffer size increases
for uniform key popularity distributions. We suspect that
the error comes from the approximation in the model to
take into account temporal overflows of levels beyond
their maximum size; the error diminishes when level sizes
are set to be at least as large as the write buffer size. In
fact, avoiding too small level-1 and later levels has been
suggested by RocksDB developers [14], and our optimiza-
tion performed in Section 6 typically results in moderately
large sizes for lower levels under uniform distributions,
which makes this type of error insignificant for practical
system parameter choices.

5 Modeling Universal Compaction
This section focuses on how we can model complex com-
paction strategies such as “universal compaction” imple-
mented in RocksDB [15]. Section 7 revisits RocksDB to
compare its “level style compaction” with LevelDB.

Universal compaction combines three small com-
paction strategies. RocksDB keeps a list of SSTables or-
dered by the age of their data, and compaction is restricted
to adjacent tables. Compaction begins when the SSTable
count exceeds a certain threshold (Precondition). First,
RocksDB merges all SSTables whose total size minus the
last one’s size exceeds the last one’s size by a certain fac-
tor (Condition 1); second, it merges consecutive SSTables
that do not include a sudden increase in size beyond a
certain factor (Condition 2); third, it merges the newest
SSTables such that the total SSTable count drops below
a certain threshold (Condition 3). Condition 1 avoids ex-
cessive duplicate data across SSTables, and Conditions 2
and 3 prevent high read amplification.

In such a multi-strategy system, it is difficult to de-
termine how frequently each condition will cause com-
paction and what SSTables will be chosen for compaction.

We take this challenge as an opportunity to demonstrate
how our analytic primitives are applicable to analyzing
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Figure 11: Comparison of WA between the estimation from
our table-level simulation and implementation results for
RocksDB’s universal compaction, with a varying number of
total unique keys. Using 1 kB item size.

a complex system by using a table-level simulation. Un-
like full simulators that keep track of individual items, a
table-level simulator calculates only the SSTable size. It
implements compaction conditions as the system design
specifies, and it estimates the size of new or merged SSTa-
bles by using our analytic primitives. Dividing the total
size of created SSTables by the total number of inserts
gives the estimated WA. Unlike our LevelDB model that
understands incremental compaction, a model for univer-
sal compaction does not need to consider non-uniformity
and false overlaps. Interested readers may refer to Ap-
pendix C for the full pseudocode of the simulator.

Figure 11 compares WA obtained by our table-level
simulation and the full RocksDB implementation. We
use the default configuration, except for the SSTables
count for compaction triggers set to 12. The simulation
result (“RocksDBUC-sim”) is close to the measured WA
(“RocksDBUC-impl”). The estimated WA differs from
the measured WA by up to 6.5% (the highest error with
33 M unique keys and skewed key inserts) though the
overall accuracy remains as high as our LevelDB model
presented in Section 4.

6 Optimizing System Parameters
Compared to full simulators and implementations, an
analytic model offers fast estimation of cost metrics for
a given set of system parameters. To demonstrate fast
evaluation of the analytic model, we use an example of
optimizing LevelDB system parameters to reduce WA
using our LevelDB model.

Note that the same optimization effort could be made
with the full LevelDB implementation by substituting our
LevelDB model with the implementation and a synthetic
workload generator. However, it would take prohibitively
long to explore the large parameter space, as examined in
Section 6.4.

6.1 Parameter Set to Optimize
The level sizes, Size(l), are important system parameters
in LevelDB. They determine when LevelDB should initi-
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Figure 12: Improved WA using optimized level sizes on our
analytic model and simulator for LevelDB.
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Figure 13: Improved WA using optimized level sizes on the
LevelDB implementation.

ate compaction for standard levels and affect the overall
compaction cost of the system. The original LevelDB de-
sign uses a geometric progression of Size(l) = 10l MiB.
Interesting questions are (1) what level sizes different
workloads favor; and (2) whether the geometric progres-
sion of level sizes is the optimal for all workloads.

Using different level sizes does not necessarily trade
query performance or memory use. The log size, level-0
SSTable count, and total level count—the main determi-
nants of query performance—are all unaffected by this
system parameter.

6.2 Optimizer

We implemented a system parameter optimizer based on
our analytic model. The objective function to minimize
is the estimated WA. Input variables are Size(l), exclud-
ing Size(L), which will be equal to the total unique key
count. After finishing the optimization, we use the new
level sizes to obtain new WA estimates and measurement
results on our analytic model and simulator. We also force
the LevelDB implementation to use the new level sizes
and measure WA. Our optimizer is written in Julia [4] and
uses Ipopt [47] for nonlinear optimization. To speed up
Unique, we use a compressed key popularity distribution
which groups keys with similar probabilities and stores
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Figure 14: Original and optimized level sizes with varying Zipf
skew. Using 100 million unique keys, 1 kB item size.

Source Analysis Simulation
No opt Opt No opt Opt

mem→log 1.00 1.00 1.00 1.00
mem→level-0 1.00 1.00 1.00 1.00

level-0→1 1.62 3.85 1.60 3.75
level-1→2 4.77 4.85 4.38 4.49
level-2→3 6.22 4.82 6.04 4.66
level-3→4 6.32 4.65 6.12 4.58
level-4→5 4.89 3.50 5.31 3.93

Total 25.82 23.67 25.45 23.41

Table 1: Breakdown of WA sources on the analysis and simu-
lation without and with the level size optimization. Using 100
million unique keys, 1 kB item size, and a uniform key popular-
ity distribution.

their average probability.8

6.3 Optimization Results
Our level size optimization successfully reduces the insert
cost of LevelDB. Figures 12 and 13 plot WA with opti-
mized level sizes. Both graphs show that the optimization
(“LevelDB-ana-opt,” “LevelDB-sim-opt,” and “LevelDB-
impl-opt”) improves WA by up to 9.4%. The analytic
estimates and simulation results agree with each other as
before, and the LevelDB implementation exhibits lower
WA across all unique key counts.

The optimization is effective because level sizes differ
by the workload skew, as shown in Figure 14. Having
larger lower levels is beneficial for relatively low skew as
it reduces the size ratio of adjacent levels. On the other
hand, high skew favors smaller lower levels and level sizes
that grow faster than the standard geometric progression.
With high skew, compaction happens more frequently
in the lower levels to remove redundant keys; keeping
these levels small reduces the cost of compaction. This
result suggests that it is suboptimal to use fixed level
sizes for different workloads and that using a geometric
progression of level sizes is not always the best design to
minimize WA.

8For robustness, we optimize using both the primal and a dual form
of the LevelDB model presented in Section 4. The primal optimizes
over Size(l) and the dual optimizes over Unique−1(Size(l)). We pick
the result of whichever model produces the smaller WA.
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Figure 15: WA using varying numbers of levels. The level count
excludes level-0. Using 100 million unique keys, 1 kB item size.
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Figure 16: Improved WA using optimized level sizes on the
LevelDB implementation, with a large write buffer. Using 10
million unique keys, 1 kB item size.

Table 1 further examines how the optimization affects
per-level insert costs, using the LevelDB model and simu-
lation. Per-level WA tends to be more variable using the
original level sizes, while the optimization makes them
relatively even across levels except the last level. This
result suggests that it may be worth performing a run-
time optimization that dynamically adjusts level sizes to
achieve the lower overall WA by reducing the variance of
the per-level WA.

By lowering WA, the system can use fewer levels to
achieve faster lookup speed without significant impact
on insert costs. Figure 15 reveals how much extra room
for query processing the optimization can create. This
analysis changes the level count by altering the growth
factor of LevelDB, i.e., using a higher growth factor for a
lower level count. The result shows that the optimization
is particularly effective with a fewer number of levels, and
it can save almost a whole level’s worth of WA compared
to using a fixed growth factor. For example, with the
optimized level sizes, a system can use 3 levels instead of
4 levels without incurring excessively high insert costs.

A LevelDB system with large memory can further ben-
efit from our level size optimization. Figure 16 shows
the result of applying the optimization to the LevelDB
implementation, with a large write buffer. The improve-
ment becomes more significant as the write buffer size
increases, reaching 26.2% of WA reduction at the buffer
size of 1 million items.

6.4 Optimizer Performance
The level size optimization requires little time due to
the fast evaluation of our analytic model. For 100 mil-
lion unique keys with a uniform key popularity distribu-
tion, the entire optimization took 2.63 seconds, evaluat-
ing 17,391 different parameter sets (6,613 evaluations per
second) on a server-class machine equipped with Intel®
Xeon® E5-2680 v2 processors. For the same-sized work-
load, but with Zipf skew of 0.99, the optimization time
increased to 79 seconds, which is far more than the uni-
form case, but is less than 2 minutes; for this optimization,
the model was evaluated 16,680 times before convergence
(211 evaluations per second).

Evaluating this many system parameters using a full
implementation—or even item-level simulation—is pro-
hibitively expensive. Using the same hardware as above,
our in-memory LevelDB simulator takes 45 minutes to
measure WA for a single set of system parameters with
100 million unique keys. The full LevelDB implementa-
tion takes 101 minutes (without fsync) to 490 minutes
(with fsync), for a smaller dataset with 10 million unique
keys.

7 Improving RocksDB
In this section, we turn our attention to RocksDB [12],
a well-known variant of LevelDB. RocksDB offers im-
proved capabilities and multithreaded performance, and
provides an extensive set of system configurations to tem-
porarily accelerate bulk loading by sacrificing query per-
formance or relaxing durability guarantees [13, 14]; nev-
ertheless, there have been few studies of how RocksDB’s
design affects its performance. We use RocksDB v4.0 and
apply the same set of instrumentation, configuration, and
workload generation as we do to LevelDB.

RocksDB supports “level style compaction” that is sim-
ilar to LevelDB’s data layout, but differs in how it picks
the next SSTable to compact. RocksDB picks the largest
SSTable in a level for compaction,9 rather than keeping
LevelDB’s round-robin SSTable selection. We learned in
Section 4, however, that LevelDB’s compaction strategy
is effective in reducing WA because it tends to pick SSTa-
bles that overlap a relatively small number of SSTables in
the next level.

To compare the compaction strategies used by LevelDB
and RocksDB, we measure the insert cost of both systems
in Figure 17. Unfortunately, the current RocksDB strat-
egy produces higher WA (“RocksDB-impl”) than Lev-
elDB does (“LevelDB-impl”). In theory, the RocksDB
approach may help multithreaded compaction because
large tables may be spread over the entire key space so
that they facilitate parallel compaction; this effect, how-

9Recent versions of RocksDB support additional strategies for
SSTable selection.
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Figure 17: Comparison of WA between LevelDB, RocksDB,
and a modified RocksDB with LevelDB-like SSTable selection.

ever, was not evident in our experiments using multi-
ple threads. The high insert cost of RocksDB is entirely
caused by RocksDB’s compaction strategy; implementing
LevelDB’s SSTable selection in RocksDB (“RocksDB-
impl-rr”) reduces RocksDB’s WA by up to 32.0%, making
it comparable to LevelDB’s WA. This result confirms that
LevelDB’s strategy is good at reducing WA as our analytic
model predicts.

We have not found a scenario where RocksDB’s current
strategy excels, though some combinations of workloads
and situations may favor it. LevelDB and RocksDB devel-
opers may or may have not intended any of the effects on
WA when designing their systems. Either way, our ana-
lytic model provides quantitative evidence that LevelDB’s
table selection will perform well under a wide range of
workloads despite being the “conventional” solution.

8 Estimating Read Amplification
This section presents read amplification (RA) estimation.

We introduce a weighted variant of our analytic prim-
itives. A per-key weight w, which is nontrivial (i.e.,
w(k) �= 0 for some k) and nonnegative, specifies how
much contribution each key makes to the result:
Definition 3.
Unique(p,w) := ∑k∈K [1− (1− fX (k))

p]w(k) for p ≥ 0.
We construct w(k) to indicate the probability of having

key k for each query. For level-l, let s(l) and e(l) be
the expected age of the newest and oldest item in level-
l in terms of the number of inserts, obtained by using
the system model presented in Section 4. We find c(l),
the expected I/O cost to perform a query at level-l. The
expected I/O cost to perform queries that finish at level-l
is [Unique(e(l),w)−Unique(s(l),w)] · c(l). Adding the
expected I/O cost of each level gives the overall RA.

As another use case, the weighted variant can add sup-
port for variable-length items to the system models pre-
sented in Sections 4 and 5. By setting w(k) to the size of
the item for key k, Unique returns the expected size of
unique items instead of their expected count. Because
weighted Unique is still strictly monotonic, weighted
Unique−1 and Merge exist.

9 Discussion
Analyzing an MSLS design with an accurate model can
provide useful insights on how one should design a new
MSLS to exploit opportunities provided by workloads.
For example, our analytic model reveals that LevelDB’s
byte size-based compaction trigger makes compaction
much less frequent and less costly under skew; such a
design choice should be suitable for many real-world
workloads with skew [1].

A design process complemented with accurate analysis
can help avoid false conclusions about a design’s perfor-
mance. LevelDB’s per-level WA is less (only up to 4–6)
than assumed in the worst case (11–12 for a growth factor
of 10), even for uniform workloads. Our analytical model
justifies LevelDB’s high growth factor, which turns out
to be less harmful for insert performance than standard
worst-case analysis implies.

Our analytic primitives and modeling are not without
limitations. Assumptions such as independence and no
spatial locality in requested keys may not hold if there
are dependent keys that share the same prefix though a
small amount of such dependence does not change the
overall system behavior and thus can be ignored as dis-
cussed in Section 3.5. Our modeling in Section 4 does not
account for time-varying workload characteristics (e.g.,
flash crowds) or special item types such as tombstones
that represent item deletion, while the simulation-oriented
modeling in Section 5 can handle such cases. We leave ex-
tending our primitives further to accommodate remaining
cases as future work.

Both design and implementation influence the final sys-
tem performance. Our primitives and modeling are useful
for understanding the design of MSLS systems. Although
we use precise metrics such as WA to describe the sys-
tem performance throughout this work, these metrics are
ultimately not identical to implementation-level metrics
such as operations per second. Translating a good sys-
tem design into an efficient implementation is critical to
achieving good performance, and remains a challenging
and important goal for system developers and researchers.

10 Related Work
Over the past decade, numerous studies have proposed
new multi-stage log-structured (MSLS) designs and eval-
uated their performance. In almost every case, the authors
present implementation-level performance [2, 12, 18, 19,
22, 29, 30, 32, 39, 40, 41, 42, 43, 46, 48]. Some employ
analytic metrics such as write amplification to explain the
design rationale, facilitate design comparisons, and gener-
alize experiment results [12, 22, 29, 30, 32, 39, 43], and
most of the others also use the concept of per-operation
costs. However, they eventually rely on the experimental
measurement because their analysis fails to offer suffi-
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ciently high accuracy to make meaningful performance
comparisons. LSM-tree [36], LHAM [33], COLA [2],
bLSM [39], and B-tree variants [6, 24] provide extensive
analysis on their design, but their analyses are limited to
asymptotic complexities or always assume the worst case.

Despite such a large number of MSLS design proposals,
there is little active research to devise improved evaluation
methods for these proposals to fill the gap between asymp-
totic analysis and experimental measurement. The sole
existing effort is limited to a specific system design [31],
but does not provide general-purpose primitives. We are
unaware of prior studies that successfully capture work-
load skew and the dynamics of compaction to the degree
that the estimates are close to simulation and implementa-
tion results, as we present in this paper.

11 Conclusion
We present new analytic primitives for modeling multi-
stage log-structured (MSLS) designs, which can quickly
and accurately estimate their performance. We have pre-
sented a model for the popular LevelDB system, which
estimates write amplification very close to experimentally
determined actual costs; using this model, we were able
to find more favorable system parameters that reduce the
overall cost of writes. Based upon lessons learned from
the model, we propose changes to RocksDB to lower its
insert costs. We believe that our analytic primitives and
modeling method are applicable to a wide range of MSLS
designs and performance metrics. The insights derived
from the models facilitate comparisons of MSLS designs
and ultimately help develop new designs that better ex-
ploit workload characteristics to improve performance.

Acknowledgments
This work was supported by funding from National Sci-
ence Foundation under awards IIS-1409802 and CNS-
1345305, and Intel via the Intel Science and Technology
Center for Cloud Computing (ISTC-CC). We would like
to thank anonymous FAST reviewers for their feedback
and James Mickens for shepherding this paper. We ap-
preciate Eddie Kohler, Mark Callaghan, Kai Ren, and
anonymous SOSP reviewers for their comments on early
versions of this work.

References
[1] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and

M. Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the SIGMETRICS’12,
June 2012.

[2] M. A. Bender, M. Farach-Colton, J. T. Fineman,
Y. R. Fogel, B. C. Kuszmaul, and J. Nelson. Cache-
oblivious streaming B-trees. In Proceedings of the

Nineteenth Annual ACM Symposium on Parallel Al-
gorithms and Architectures, 2007.

[3] J. L. Bentley and J. B. Saxe. Decomposable search-
ing problems I: Static-to-dynamic transformations.
Journal of Algorithms, 1(4):301–358, Dec. 1980.

[4] J. Bezanson, A. Edelman, S. Karpinski, and V. B.
Shah. Julia: A fresh approach to numerical comput-
ing. Dec. 2014. http://arxiv.org/abs/1411.1
607.

[5] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[6] G. S. Brodal and R. Fagerberg. Lower bounds for
external memory dictionaries. In Proceedings of
the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2003.

[7] M. Callaghan. Read Amplification Factor.
http://mysqlha.blogspot.com/2011/08/read-
amplification-factor.html, 2011.

[8] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. In Proc. 7th USENIX OSDI, Nov.
2006.

[9] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and
S. Swanson. From ARIES to MARS: Transaction
support for next-generation, solid-state drives. In
Proc. 24th ACM Symposium on Operating Systems
Principles (SOSP), Nov. 2013.

[10] Y. Collet. LZ4. https://github.com/Cyan4973/
lz4, 2015.

[11] B. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with YCSB. In Proc. 1st ACM Symposium on Cloud
Computing (SOCC), June 2010.

[12] Facebook. RocksDB. http://rocksdb.org/,
2015.

[13] Facebook. Performance Benchmarks.
https://github.com/facebook/rocksdb/
wiki/Performance-Benchmarks, 2014.

[14] Facebook. RocksDB Tuning Guide.
https://github.com/facebook/rocksdb/
wiki/RocksDB-Tuning-Guide, 2015.

[15] Facebook. RocksDB Universal Compaction.
https://github.com/facebook/rocksdb/wiki
/Universal-Compaction, 2015.

[16] P. Flajolet, D. Gardy, and L. Thimonier. Birthday
paradox, coupon collectors, caching algorithms and
self-organizing search. Discrete Applied Mathemat-
ics, 39(3), Nov. 1992.

[17] J.-L. Gailly and M. Adler. zlib. http://www.zlib
.net/, 2013.



162 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[18] M. Ghosh, I. Gupta, S. Gupta, and N. Kumar.
Fast compaction algorithms for NoSQL databases.
In Proc. the 35th IEEE International Conference
on Distributed Computing Systems (ICDCS), June
2015.

[19] Google. LevelDB. https://github.com/google/
leveldb, 2014.

[20] Google. LevelDB file layout and compactions.
https://github.com/google/leveldb/blob/m
aster/doc/impl.html, 2014.

[21] Google. Snappy. https://github.com/google/
snappy, 2015.

[22] HyperDex. HyperLevelDB. http://hyperdex.o
rg/performance/leveldb/, 2013.

[23] Intel SSE4 programming reference. https:
//software.intel.com/sites/default/files
/m/8/b/8/D9156103.pdf, 2007.

[24] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet,
Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh,
M. Bender, M. Farach-Colton, R. Johnson, B. C.
Kuszmaul, and D. E. Porter. BetrFS: A right-
optimized write-optimized file system. In Proc. 13th
USENIX Conference on File and Storage Technolo-
gies (FAST), Feb. 2015.

[25] R. Jones, A. Hosking, and E. Moss. The Garbage
Collection Handbook: The Art of Automatic Memory
Management. Chapman & Hall/CRC, 2011.

[26] B. Kate, E. Kohler, M. S. Kester, N. Narula, Y. Mao,
and R. Morris. Easy freshness with Pequod cache
joins. In Proc. 11th USENIX NSDI, Apr. 2014.

[27] A. Lakshman and P. Malik. Cassandra: A decen-
tralized structured storage system. ACM SIGOPS
Operating System Review, 44:35–40, Apr. 2010.

[28] H. Lieberman and C. Hewitt. A real-time garbage
collector based on the lifetimes of objects. Commu-
nications of the ACM, 26(6), June 1983.

[29] H. Lim, B. Fan, D. G. Andersen, and M. Kamin-
sky. SILT: A memory-efficient, high-performance
key-value store. In Proc. 23rd ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2011.

[30] L. Marmol, S. Sundararaman, N. Talagala, and
R. Rangaswami. NVMKV: A scalable, lightweight,
FTL-aware key-value store. In Proceedings of the
2015 USENIX Conference on Usenix Annual Tech-
nical Conference (USENIX ATC), July 2015.

[31] P. Menon, T. Rabl, M. Sadoghi, and H.-A. Jacob-
sen. Optimizing key-value stores for hybrid storage
architectures. In Proceedings of CASCON, 2014.

[32] C. Min, W.-H. Kang, T. Kim, S.-W. Lee, and Y. I.
Eom. Lightweight application-level crash consis-
tency on transactional flash storage. In Proceedings

of the 2015 USENIX Conference on Usenix Annual
Technical Conference (USENIX ATC), July 2015.

[33] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The
LHAM log-structured history data access method.
The VLDB Journal, 8(3-4):199–221, Feb. 2000.

[34] NoSQL data modeling techniques. https:
//highlyscalable.wordpress.com/2012/03/0
1/nosql-data-modeling-techniques/, 2012.

[35] P. E. O’Neil. The SB-tree: An index-sequential
structure for high-performance sequential access.
Acta Inf., 29(3):241–265, 1992.

[36] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil.
The log-structured merge-tree (LSM-tree). Acta Inf.,
33(4):351–385, 1996.

[37] M. Rosenblum and J. K. Ousterhout. The design
and implementation of a log-structured file system.
ACM Transactions on Computer Systems, 10(1):26–
52, 1992.

[38] T. Saemundsson, H. Bjornsson, G. Chockler, and
Y. Vigfusson. Dynamic performance profiling of
cloud caches. In Proc. 5th ACM Symposium on
Cloud Computing (SOCC), Nov. 2014.

[39] R. Sears and R. Ramakrishnan. bLSM: A general
purpose log structured merge tree. In Proceedings of
the 2012 ACM SIGMOD International Conference
on Management of Data, 2012.

[40] R. Sears, M. Callaghan, and E. Brewer. Rose: Com-
pressed, log-structured replication. Proc. VLDB
Endowment, 1(1), Aug. 2008.

[41] P. Shetty, R. Spillane, R. Malpani, B. Andrews,
J. Seyster, and E. Zadok. Building workload-
independent storage with VT-trees. In Proceedings
of the 11th USENIX Conference on File and Storage
Technologies (FAST), 2013.

[42] R. P. Spillane, P. J. Shetty, E. Zadok, S. Dixit, and
S. Archak. An efficient multi-tier tablet server stor-
age architecture. In Proc. 2nd ACM Symposium on
Cloud Computing (SOCC), Oct. 2011.

[43] L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li.
RIPQ: Advanced photo caching on flash for Face-
book. In Proc. 13th USENIX Conference on File
and Storage Technologies (FAST), Feb. 2015.

[44] The Apache Software Foundation. Apache Cassan-
dra. https://cassandra.apache.org/, 2015.

[45] The Apache Software Foundation. Apache HBase.
https://hbase.apache.org/, 2015.

[46] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C.
Ooi. LogBase: A scalable log-structured database
system in the cloud. Proc. VLDB Endowment, 5(10),
June 2012.

[47] A. Wächter and L. T. Biegler. On the implementa-
tion of an interior-point filter line-search algorithm



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 163

for large-scale nonlinear programming. Mathemati-
cal Programming, 106(1):25–57, 2006.

[48] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin,
C. Zhang, and J. Cong. An efficient design and
implementation of LSM-tree based key-value store
on open-channel SSD. In Proceedings of the Ninth

European Conference on Computer Systems, 2014.
[49] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and

A. Warfield. Characterizing storage workloads with
counter stacks. In Proc. 11th USENIX OSDI, Oct.
2014.



164 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

A Proofs
This section provides proofs for theorems presented in
this paper.

Theorem 1. (in Section 3.3) Unique(p) is the expected
number of unique keys that appear in p requests.

Proof. Key k counts towards the unique key count if
k appears at least once in a sequence of p requests,
whose probability is 1− (1− fX (k))p. Therefore, the ex-
pected unique key count is ∑k∈K (1− (1− fX (k))p) =
N −∑k∈K (1− fX (k))p = Unique(p).

Lemma 1. (in Section 3.3) Unique−1(u) exists for 0 ≤
u < N.

Proof. Suppose 0 ≤ p < q. (1− fX (k))q < (1− fX (k))p

because 0 < 1− fX (k) < 1. Unique(q)−Unique(p) =
−∑k∈K (1− fX (k))q + ∑k∈K (1− fX (k))p > 0. Thus,
Unique is a strictly monotonic function that is defined
over [0,N).

Theorem 2. (in Section 3.4) Merge(u,v) is the expected
size of a merged table that is created from two tables
whose size is u and v.

Proof. Let p and q be the expected numbers of in-
sert requests that would produce tables of size u
and v, respectively. The merged table is expected
to contain all k ∈ K except those missing in both
request sequences. Therefore, the expected merged
table size is N − ∑k∈K (1− fX (k))p(1− fX (k))q =
Unique(p + q). Because p = Unique−1(u) and q =
Unique−1(v), Unique(Unique−1(u) + Unique−1(v)) =
Merge(u,v).

Theorem 3. (in Section 4.3) Assuming P(LastKey(l) =
k) = 1/N for 1 ≤ l < L, k ∈ K, then Density(l,d) =
Unique(DInterval(l) ·d/N)/N for 1 ≤ l < L, 0 ≤ d < N.

Proof. Suppose LastKey(l) = k ∈ K. Let k′ be (k− d +
N) mod N. Let r be DInterval(l) · d/N. There are r re-
quests since the last compaction of k′. Level-l has k′

if any of r requests contains k′, whose probability is
1− (1− fX (k′))r.

By considering all possible k and thus all possi-
ble k′, Density(l,d) = ∑k∈K (1/N)(1− (1− fX (k))r) =
Unique(DInterval(l) ·d/N)/N.

Lemma 2. (in Section 4.3) ∑N−1
d=0 Density(l,d) = Size(l)

for 1 ≤ l < L.

Proof. The sum over the density equals to the expected
unique key count, which is the number of keys level-l
maintains, i.e., Size(l).

Theorem 4. (in Section 8) The expected I/O cost to
perform queries that finishes at level-l is given by
[Unique(e(l),w)−Unique(s(l),w)] · c(l), where w de-
scribes the query distribution and c(l) is the expected
I/O cost to perform a query at level-l.

Proof. For key k to exist in level-l and be used for query
processing (without being served in an earlier level), it
must appear in at least one of e(l)− s(l) requests and in
none of other s(l) requests. The first condition ensures the
existence of the key in level-l, and the second condition
rejects the existence of the key in an earlier level (other-
wise, queries for key k will be served in that level). Thus,
the probability of such a case is (1− (1− fX (k))e(l)−s(l)) ·
(1− fX (k))s(l) = (1− fX (k))s(l)− (1− fX (k))e(l).

The expected I/O cost to perform a query for key k that
finishes at level-l is

[
(1− fX (k))s(l)− (1− fX (k))e(l)

]
·

c(l).
Because the fraction of the queries for key k

among all queries is given by w(k), the expected
I/O cost to perform queries that finishes at level-
l is ∑

k∈K

[
(1− fX (k))s(l)− (1− fX (k))e(l)

]
c(l)w(k) =

∑
k∈K

[(
(1− (1− fX (k))e(l)

)
−
(

1− (1− fX (k))s(l)
)]

w(k)

c(l) = [Unique(e(l),w)−Unique(s(l),w)] · c(l).

B Modeling COLA and SAMT
The cache-oblivious lookahead array (COLA) [2] is a
generalized and improved binomial list [3]. Like LSM-
tree, COLA has multiple levels whose count is �logr N�,
where r is the growth factor. Each level contains zero or
one SSTable. Unlike LSM-tree, however, COLA uses the
merge count as the main compaction criterion; a level in
COLA accepts r−1 merges with the lower level before
the level is merged into the next level.

COLA has roughly similar asymptotic complexities to
LSM-tree’s. A query in COLA may cost O(logr N) ran-
dom I/O per lookup if looking up a level costs O(1) ran-
dom I/O. COLA’s data migration costs O((r−1) logr N)
I/O per insert. r is usually chosen between 2 and 4.

The Sorted Array Merge Tree (SAMT) [42] is similar
to COLA but performs compaction differently. Instead of
eagerly merging data to have a single log structure per
level, SAMT keeps up to r SSTables before merging them
and moving the merged data into the next level. Therefore,
a lookup costs O(r logr N) random I/O, whereas the per-
update I/O cost decreases to O(logr N).

A few notable systems implementing a version of
COLA and SAMT are HBase [45] and Cassandra [27, 44].

Algorithm 2 presents models for COLA and SAMT.
Both models assume that the system uses write-ahead
log files whose count is capped by the growth factor r.
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1 // @param L maximum level
2 // @param wal write-ahead log file size
3 // @param r growth factor
4 // @return write amplification
5 function estimateWA_COLA(L, wal, r) {
6 local l, j, WA, interval[], write[];
7 // mem -> log
8 WA = 1;
9 // mem -> level-1; level-l -> level-(l+1)

10 interval[0] = wal;
11 for (l = 0; l < L - 1; l++) {
12 interval[l + 1] = interval[l] * r;
13 write[l + 1] = 0;
14 for (j = 0; j < r - 1; j++)
15 write[l + 1] += merge(unique(interval[l]),

unique(interval[l] * j));
16 WA += write[l + 1] / interval[l + 1];
17 }
18 // level-(L-1) -> level-L
19 WA += unique(∞) / interval[L - 1];
20 return WA;
21 }
22
23 function estimateWA_SAMT(L, wal, r) {
24 local l, WA, interval[], write[];
25 // mem -> log
26 WA = 1;
27 // mem -> level-1; level-l -> level-(l+1)
28 interval[0] = wal;
29 for (l = 0; l < L - 1; l++) {
30 interval[l + 1] = interval[l] * r;
31 write[l + 1] = r * unique(interval[l]);
32 WA += write[l + 1] / interval[l + 1];
33 }
34 // level-(L-1) -> level-L
35 WA += unique(∞) / interval[L - 1];
36 return WA;
37 }

Algorithm 2: Pseudocode of models of WA of COLA and
SAMT.

In COLA, line #15 calculates the amount of writes for a
level that has already accepted j merges (0 ≤ j < r−1).
Compaction of the second-to-last level is treated specially
because the last level must be large enough to hold all
unique keys and has no subsequent level (line #19). The
SAMT model is simpler because it defers merging the
data in the same level.

C Modeling Universal Compaction
Algorithm 3 models RocksDB’s universal compaction
using a table-level simulation presented in Section 5.
Line #15 estimates the size of a new SSTable created from
insert requests. Line #26, #43, and #55 predict the out-
come of SSTable merges caused of different compaction
triggers.

merge_all() takes a list of (multiple) SSTable sizes
and returns the expected size of the merge result (i.e.,
Unique(∑i Unique−1(sizes[i]))).
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1 // @param wal write-ahead log file size
2 // @param level0_file_num_compaction_trigger number of files to trigger compaction
3 // @param level0_stop_writes_trigger maximum number of files
4 // @param max_size_amplification_percent parameter for Condition 1
5 // @param size_ratio parameter for Condition 2
6 // @param tables list of initial SSTable sizes
7 // @param num_inserts number of inserts to simulate
8 // @return write amplification
9 function estimateWA_UC(wal, level0_file_num_compaction_trigger, level0_stop_writes_trigger,

max_size_amplification_percent, size_ratio, tables, num_inserts) {
10 local inserts, writes, done, last, start_i, last_i, i, candidate_count, candidate_size, table_size;
11 inserts = writes = 0;
12 while (inserts < num_inserts) {
13 if (len(tables) < level0_stop_writes_trigger) {
14 // a new SSTable
15 table_size = unique(wal);
16 writes += wal; // mem -> log
17 writes += table_size; // mem -> level-0
18 inserts += wal;
19 tables = [table_size] + tables;
20 }
21 // Precondition
22 if (len(tables) >= level0_file_num_compaction_trigger) {
23 last = len(tables) - 1;
24 // Condition 1
25 if (sum(tables[0...last-1]) / tables[last] > max_size_amplification_percent / 100) {
26 table_size = merge_all(tables);
27 tables = [table_size];
28 writes += table_size; // level-0 -> level-0
29 } else {
30 done = false;
31 // Condition 2
32 for (start_i = 0; start_i < len(tables); start_i++) {
33 candidate_count = 1;
34 candidate_size = tables[start_i];
35 for (i = start_i + 1; i < len(tables); i++) {
36 if (candidate_size * (100 + size_ratio) / 100 < tables[i])
37 break;
38 candidate_size += tables[i];
39 candidate_count++;
40 }
41 if (candidate_count >= 2) {
42 last_i = start_i + candidate_count - 1;
43 table_size = merge_all(tables[start_i...last_i]);
44 tables = tables[0...start_i-1] + [table_size] + tables[last_i+1...last]);
45 writes += table_size; // level-0 -> level-0
46 done = true;
47 break;
48 }
49 }
50 // Condition 3
51 if (done == false) {
52 candidate_count = len(tables) - level0_file_num_compaction_trigger;
53 if (candidate_count >= 2) {
54 last_i = candidate_count - 1;
55 table_size = merge_all(tables[0...last_i]);
56 tables = [table_size] + tables[last_i+1...last];
57 writes += table_size; // level-0 -> level-0
58 }
59 }
60 }
61 }
62 }
63 return writes / inserts;
64 }

Algorithm 3: Pseudocode of a table-level simulation of RocksDB’s universal compaction.
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ABSTRACT

In-memory key/value store (KV-store) is a key building

block for many systems like databases and large web-

sites. Two key requirements for such systems are effi-

ciency and availability, which demand a KV-store to con-

tinuously handle millions of requests per second. A com-

mon approach to availability is using replication such as

primary-backup (PBR), which, however, requires M +1
times memory to tolerate M failures. This renders scarce

memory unable to handle useful user jobs.

This paper makes the first case of building highly

available in-memory KV-store by integrating erasure

coding to achieve memory efficiency, while not notably

degrading performance. A main challenge is that an in-

memory KV-store has much scattered metadata. A sin-

gle KV put may cause excessive coding operations and

parity updates due to numerous small updates to meta-

data. Our approach, namely Cocytus, addresses this chal-

lenge by using a hybrid scheme that leverages PBR for

small-sized and scattered data (e.g., metadata and key),

while only applying erasure coding to relatively large

data (e.g., value). To mitigate well-known issues like

lengthy recovery of erasure coding, Cocytus uses an on-

line recovery scheme by leveraging the replicated meta-

data information to continuously serving KV requests.

We have applied Cocytus to Memcached. Evaluation us-

ing YCSB with different KV configurations shows that

Cocytus incurs low overhead for latency and throughput,

can tolerate node failures with fast online recovery, yet

saves 33% to 46% memory compared to PBR when tol-

erating two failures.

1 INTRODUCTION

The increasing demand of large-scale Web applications

has stimulated the paradigm of placing large datasets

within memory to satisfy millions of operations per

second with sub-millisecond latency. This new com-

puting model, namely in-memory computing, has been

emerging recently. For example, large-scale in-memory

key/value systems like Memcached [13] and Redis [47]

have been widely used in Facebook [24], Twitter [38]

∗Corresponding author

and LinkedIn. There have also been considerable in-

terests of applying in-memory databases (IMDBs) to

performance-hungry scenarios (e.g., SAP HANA [12],

Oracle TimesTen [18] and Microsoft Hekaton [9]).

Even if many systems have a persistent backing store

to preserve data durability after a crash, it is still impor-

tant to retain data in memory for instantaneously taking

over the job of a failed node, as rebuilding terabytes of

data into memory is time-consuming. For example, it

was reported that recovering around 120 GB data from

disk to memory for an in-memory database in Facebook

took 2.5-3 hours [14]. Traditional ways of providing

high availability are through replication such as standard

primary-backup (PBR) [5] and chain-replication [39], by

which a dataset is replicated M + 1 times to tolerate M

failures. However, this also means dedicating M copies

of CPU/memory without producing user work, requiring

more standby machines and thus multiplying energy con-

sumption.

This paper describes Cocytus, an efficient and avail-

able in-memory replication scheme that is strongly con-

sistent. Cocytus aims at reducing the memory consump-

tion for replicas while keeping similar performance and

availability of PBR-like solutions, though at additional

CPU cost for update-intensive workloads. The key of

Cocytus is efficiently combining the space-efficient era-

sure coding scheme with the PBR.

Erasure coding is a space-efficient solution for data

replication, which is widely applied in distributed stor-

age systems, including Windows Azure Store [15] and

Facebook storage [23]. However, though space-efficient,

erasure coding is well-known for its lengthy recovery and

transient data unavailability [15, 34].

In this paper, we investigate the feasibility of ap-

plying erasure coding to in-memory key/value stores

(KV-stores). Our main observation is that the abun-

dant and speedy CPU cores make it possible to per-

form coding online. For example, a single Intel Xeon

E3-1230v3 CPU core can encode data at 5.26GB/s for

Reed-Solomon(3,5) codes, which is faster than even cur-

rent high-end NIC with 40Gb/s bandwidth. However, the

block-oriented nature of erasure coding and the unique

feature of KV-stores raise several challenges to Cocytus

to meet the goals of efficiency and availability.
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The first challenge is that the scattered metadata like

a hashtable and the memory allocation information of

a KV-store will incur a large number of coding opera-

tions and updates even for a single KV put. This incurs

not only much CPU overhead but also high network traf-

fic. Cocytus addresses this issue by leveraging the idea

of separating metadata from data [42] and uses a hybrid

replication scheme. In particular, Cocytus uses erasure

coding for application data while using PBR for small-

sized metadata.

The second challenge is how to consistently recover

lost data blocks online with the distributed data blocks

and parity blocks1. Cocytus introduces a distributed on-

line recovery protocol that consistently collects all data

blocks and parity blocks to recover lost data, yet with-

out blocking services on live data blocks and with pre-

dictable memory.

We have implemented Cocytus in Memcached 1.4.21

with the synchronous model, in which a server sends re-

sponses to clients after receiving the acknowledgments

from backup nodes to avoid data loss. We also im-

plemented a pure primary-backup replication in Mem-

cached 1.4.21 for comparison. By using YCSB [8] to

issue requests with different key/value distribution, we

show that Cocytus incurs little degradation on throughput

and latency during normal processing and can gracefully

recover data quickly. Overall, Cocytus has high memory

efficiency while incurring small overhead compared with

PBR, yet at little CPU cost for read-mostly workloads

and modest CPU cost for update-intensive workloads.

In summary, the main contribution of this paper in-

cludes:

• The first case of exploiting erasure coding for in-

memory KV-store.

• Two key designs, including a hybrid replication

scheme and distributed online recovery that achieve

efficiency, availability and consistency.

• An implementation of Cocytus on Memcached [13]

and a thorough evaluation that confirms Cocytus’s

efficiency and availability.

The rest of this paper is organized as follows. The

next section describes necessary background information

about primary-backup replication and erasure coding on

a modern computing environment. Section 3 describes

the design of Cocytus, followed up by the recovery pro-

cess in section 4. Section 5 describes the implementa-

tion details. Section 6 presents the experimental data of

Cocytus. Finally, section 7 discusses related work, and

section 8 concludes this paper.

1Both data blocks and parity blocks are called code words in coding

theory. We term “parity blocks” as those code words generated from

the original data and “data blocks” as the original data.

2 BACKGROUND AND CHALLENGES

This section first briefly reviews primary-backup repli-

cation (PBR) and erasure coding, and then identifies op-

portunities and challenges of applying erasure coding to

in-memory KV-stores.

2.1 Background

Primary-backup replication: Primary-backup replica-

tion (PBR) [3] is a widely-used approach to providing

high availability. As shown in Figure 1(a), each pri-

mary node has M backup nodes to store its data repli-

cas to tolerate M failures. One of the backup nodes

would act as the new primary node if the primary node

failed, resulting in a view change (e.g., using Paxos [19]).

As a result, the system can still provide continuous ser-

vices upon node failures. This, however, is at the cost of

high data redundancy, e.g., M additional storage nodes

and the corresponding CPUs to tolerate M failures. For

example, to tolerate two node failures, the storage effi-

ciency of a KV-store can only reach 33%.

Erasure coding: Erasure coding is an efficient way to

provide data durability. As shown in Figure 1(b), with

erasure coding, an N-node cluster can use K of N nodes

for data and M nodes for parity (K +M = N ). A com-

monly used coding scheme is Reed-Solomon codes (RS-

code) [30], which computes parities according to its data

over a finite field by the following formula (the matrix is

called a Vandermonde matrix):
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An update on a DNode (a node for data) can be

achieved by broadcasting its delta to all PNodes (nodes

for parity) and asking them to add the delta to parity

with a predefined coefficient. This approach works sim-

ilarly for updating any parity blocks; its correctness can

be proven by the following equation, where A represents

the Vandermonde matrix mentioned in formula (1).
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In the example above, we denote the corresponding

RS-code scheme as RS(K,N). Upon node failures, any

K nodes of the cluster can recover data or parity lost in

the failed nodes, and thus RS(K,N) can handle M node
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(b) Key/value store with erasure coding

Figure 1: Data storage with two different replication schemes.

failures at most. During recovery, the system recalculates

the lost data or parity by solving the equations generated

by the above equation.

As only M of N nodes are used for storing parities,

the memory efficiency can reach K/N . For example,

an RS(3,5) coding scheme has storage efficiency of 60%

while tolerating up to two node failures.

2.2 Opportunities and Challenges

The emergence of in-memory computing significantly

boosts the performance of many systems. However, this

also means that a large amount of data needs to be placed

in memory. As memory is currently volatile, a node fail-

ure would cause data loss for a large chunk of memory.

Even if the data has its backup in persistent storage, it

would require non-trivial time to recover the data for a

single node [14].

However, simply using PBR may cause significant

memory inefficiency. Despite an increase of the volume,

memory is still a scarce resource, especially when pro-

cessing the “big-data” applications. It was frequently re-

ported that memory bloat either significantly degraded

the performance or simply caused server crashes [4].

This is especially true for workload-sharing clusters,

where the budget for storing specific application data is

not large.

Opportunities: The need for both availability and

memory efficiency makes erasure coding a new attrac-

tive design point. The increase of CPU speed and the

CPU core counts make erasure coding suitable to be used

even in the critical path of data processing. Table 1

presents the encoding and decoding speed for different

Reed-Solomon coding scheme on a 5-node cluster with

an average CPU core (2.3 GHz Xeon E5, detailed con-

figurations in section 6.1). Both encoding and decoding

can be done at 4.24-5.52GB/s, which is several hundreds

of times compared to 20 years ago (e.g., 10MB/s [31]).

This means that an average-speed core is enough to han-

dle data transmitted through even a network link with

40Gb/s. This reveals a new opportunity to trade CPU

resources for better memory efficiency to provide high

availability.

scheme encoding speed decoding speed

RS(4,5) 5.52GB/s 5.20GB/s

RS(3,5) 5.26GB/s 4.83GB/s

RS(2,5) 4.56GB/s 4.24GB/s

Table 1: The speed of coding data with different schemes for a 5-node

cluster

Challenges: However, trivially applying erasure cod-

ing to in-memory KV-stores may result in significant per-

formance degradation and consistency issues.

The first challenge is that coding is done efficiently

only in a bulk-oriented nature. However, an update op-

eration in a KV-store may result in a number of small

updates, which would introduce notable coding opera-

tions and network traffic. For example, in Memcached,

both the hashtable and the allocation metadata need to be

modified for a set operation. For the first case, a KV pair

being inserted into a bucket will change the four point-

ers of the double linked list. Some statistics like that for

LRU replacement need to be changed as well. In the

case of a hashtable expansion or shrinking, all key/value

pairs may need to be relocated, causing a huge amount

of updates. For the allocation metadata, as Memcached

uses a slab allocator, an allocation operation commonly

changes four variables and a free operation changes six

to seven variables.

The second challenge is that a data update involves

updates to multiple parity blocks across machines. Dur-

ing data recovery, there are also multiple data blocks and

parity blocks involved. If there are concurrent updates in

progress, this may easily cause inconsistent recovery of

data.

3 DESIGN

3.1 Interface and Assumption

Cocytus is an in-memory replication scheme for

key/value stores (KV-stores) to provide high memory

efficiency and high availability with low overhead. It

assumes that a KV-store has two basic operations:

V alue ← get(Key) and set(Key, V alue), where Key
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lookup
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Data2

M1 Data1

Figure 2: Requests handled by an coding group in Cocytus, where

K=3, M=2.

and Value are arbitrary strings. According to prior large-

scale analysis on key/value stores in commercial work-

loads [1, 24], Cocytus assumes that the value size is usu-

ally much larger than the key size.

Cocytus handles only omission node failures where a

node is fail-stop and won’t taint other nodes; commission

or Byzantine failures are not considered. It also does not

consider a complete power outage that crashes the en-

tire cluster. In such cases, it assumes that there is an-

other storage layer that constantly stores data to preserve

durability [24]. Alternatively, one may leverage battery-

backed RAM like NVDIMM [37, 35] to preserve dura-

bility.

Cocytus is designed to be synchronous, i.e., a response

of a set request returned to the client guarantees that the

data has been replicated/coded and can survive node fail-

ures.

Cocytus works efficiently for read-mostly workloads,

which are typical for many commercial KV-stores [1].

For update-intensive workloads, Cocytus would use

more CPU resources due to the additional calculations

caused by the erasure coding, and achieve a similar la-

tency and throughput compared to a simple primary-

backup replication.

3.2 Architecture

Cocytus separates data from metadata and leverages a

hybrid scheme: metadata and key are replicated using

primary-backup while values are erasure coded.

One basic component of Cocytus is the coding group,

as shown in Figure 2. Each group comprises K data pro-

cesses handling requests to data blocks and M parity pro-

cesses receiving update requests from the data processes.

A get operation only involves one data node, while a

set operation updates metadata in both primary and its

backup node, and generates diffs to be patched to the par-

ity codes.

Cocytus uses sharding to partition key/value tuples

into different groups. A coding group handles a key

shard, which is further divided into P partitions in the

group. Each partition is handled by a particular data

process, which performs coding at the level of virtual

address spaces. This makes the coding operation neu-

tral to the changes of value sizes of a KV pair as long

as the address space of a data process does not change.

There is no data communication among the data pro-

cesses, which ensures fault isolation among data pro-

cesses. When a data process crashes, one parity pro-

cess immediately handles the requests for the partition

that belongs to crashed nodes and recovers the lost data,

while other data processes continuously provide services

without disruption.

Cocytus is designed to be strongly consistent, which

never loses data or recovers inconsistent data. However,

strict ordering on parity processes is not necessary for

Cocytus. For example, two data processes update their

memory at the same time, which involves two updates

on the parity processes. However, the parity processes

can execute the updates in any order as long as they are

notified that the updates have been received by all of the

parity processes. Thus, in spite of the update ordering,

the data recovered later are guaranteed to be consistent.

Section 4.1.2 will show how Cocytus achieves consistent

recovery when a failure occurs.

3.3 Separating Metadata from Data

For a typical KV-store, there are two types of important

metadata to handle requests. The first is the mapping

information, such as a (distributed) hashtable that maps

keys to their value addresses. The second one is the allo-

cation information. As discussed before, if the metadata

is erasure coded, there will be a larger number of small

updates and lengthy unavailable duration upon crashes.

Cocytus uses primary-backup replication to handle the

mapping information. In particular, the parity processes

save the metadata for all data processes in the same cod-

ing group. For the allocation information, Cocytus ap-

plies a slab-based allocation for metadata allocation. It

further relies on an additional deterministic allocator for

data such that each data process will result in the same

memory layout for values after every operation.

Interleaved layout: One issue caused by this design

is that parity processes save more metadata than those in

the data processes, which may cause memory imbalance.

Further, as parity processes only need to participate in set

operations, they may become idle for read-mostly work-

loads. In contrast, for read-write workloads, the parity

processes may become busy and may become a bottle-

neck of the KV-store.
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Figure 3: Interleaved layout of coding groups in Cocytus. The blocks

in the same row belong to one coding group.

To address these issues, Cocytus interleaves coding

groups in a cluster to balance workload and memory on

each node, as shown in Figure 3. Each node in Cocy-

tus runs both parity processes and data processes; a node

will be busy on parity processes or data processes for

update-intensive or read-mostly workload accordingly.

The interleaved layout can also benefit the recovery

process by exploiting the cluster resources instead of one

node. Because the shards on one node belong to differ-

ent groups, a single node failure leads a process failure

on each group. However, the first parity nodes of these

groups are distributed across the cluster, all nodes will

work together to do recovery.

To extend Cocytus in a large scale cluster, there are

three dimensions to consider, including the number of

data processes (K) and the number of parity processes

(M) in a coding group, as well as the number of cod-

ing groups. A larger K increases memory efficiency but

makes the parity process suffer from higher CPU pres-

sure for read-write workloads. A larger M leads to more

failures to be tolerated but decreases memory efficiency

and degrades the performance of set operations. A neu-

tral way to extend Cocytus is deploying more coding

groups.

3.4 Consistent Parity Updating with
Piggybacking

Because an erasure-coding group has multiple parity pro-

cesses, sending the update messages to such processes

needs an atomic broadcast. Otherwise, a KV-store may

result in inconsistency. For example, when a data pro-

cess has received a set request and is sending updates to

two parity processes, a failure occurs and only one parity

process has received the update message. The following

recovery might recover incorrect data due to the incon-

sistency between parities.

A natural solution to this problem is using two-phase

commit (2PC) to implement atomic broadcast. This,

however, requires two rounds of messages and doubles

the I/O operations for set requests. Cocytus addresses

this problem with a piggybacking approach. Each re-

quest is assigned with an xid, which monotonously in-

creases at each data process like a logical clock. Upon

receiving parity updates, a parity process first records the

operation in a buffer corresponding with the xid and then

immediately send acknowledgements to its data process.

After the data process receives acknowledgements from

all parity processes, the operation is considered stable in

the KV-store. The data process then updates the latest

stable xid as well as data and metadata, and sends a re-

sponse to the client. When the data process sends the

next parity update, this request piggybacks on the latest

stable xid. When receiving a piggybacked request, the

parity processes mark all operations that have smaller xid

in the corresponding buffer as READY and install the up-

dates in place sequentially. Once a failure occurs, the

corresponding requests that are not received by all parity

processes will be discarded.

4 RECOVERY

When a node crashes, Cocytus needs to reconstruct lost

data online while serving client requests. Cocytus as-

sumes that the KV-store will eventually keep its fault tol-

erance level by assigning new nodes to host the recov-

ered data. Alternatively, Cocytus can degenerate its fault

tolerance level to tolerate fewer failures. In this section,

we first describe how Cocytus recovers data in-place to

the parity node and then illustrate how Cocytus migrates

the data to recover the parity and data processes when a

crashed node reboots or a new standby node is added.

4.1 Data Recovery

Because data blocks are only updated at the last step of

handling set requests which is executed sequentially with

xid. We can regard the xid of the latest completed request

as the logical timestamp (T ) of the data block. Similarly,

there are K logical timestamps (V T [1..K]) for a parity

block, where K is the number of the data processes in the

same coding group. Each of the K logical timestamps

is the xid of the latest completed request from the corre-

sponding data process.

Suppose data processes 1 to F crash at the same time.

Cocytus chooses all alive data blocks and F parity blocks

to reconstruct the lost data blocks. Suppose the logi-

cal timestamps of data blocks are T F+1, T F+2, ..., TK

and the logical timestamps of parity blocks are V T 1,
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V T 2, ..., V T F. If V T 1 = V T 2 = ... = V T F and

V T 1[F + 1..K] = �T F+1, T F+2, ..., TK�, then theses data

blocks and parity blocks agree with formula (1). Hence,

they are consistent.

The recovery comprises two phases: preparation and

online recovery. During the preparation phase, the par-

ity processes synchronize their request buffers that cor-

respond to the failed processes. Once the preparation

phase completes, all parity blocks are consistent on the

failed processes. During online recovery, alive data pro-

cess send their data blocks with its logical timestamp,

so the parity processes can easily provide the consistent

parity blocks.

4.1.1 Preparation

Once a data process failure is detected, a correspond-

ing parity process is selected as the recovery process

to do the recovery and to provide services on behalf of

the crashed data process. The recovery process first col-

lects latest xids which correspond to failed data processes

from all parity processes. Hence, a parity process has

a latest xid for each data process because it maintains

an individual request buffer for each data process. The

minimal latest xid is then chosen as the stable xid. Re-

quests with greater xid received by the failed data process

haven’t been successfully received by all parity processes

and thus should be discarded. Then, the stable xid is sent

to all parity processes. The parity processes apply the

update requests in place of which the xid equal to or less

than the stable xid in the corresponding buffer. After that,

all parity processes are consistent in the failed data pro-

cess because their corresponding logical timestamps are

all the same with the stable xid.

The preparation phase blocks key/value requests for a

very short time. According to our evaluation, the block-

ing time is only 7ms to 13 ms even under a high work-

load.

4.1.2 Online recovery

The separation of metadata and data enables online re-

covery of key/value pairs. During recovery, the recovery

process can leverage the replicated metadata to recon-

struct lost data online to serve client requests, while us-

ing idle CPU cycles to proactively reconstruct other data.

During the online recovery, data blocks are recovered

in a granularity of 4KB, which is called a recovery unit.

According to the address, each recovery unit is assigned

an ID for the convenience of communication among pro-

cesses.

As shown in Figure 4, there are five steps in our online

recovery protocol:

• 1. To reconstruct a recovery unit, a recovery process

becomes the recovery initiator and sends messages

DP3 DP4 PP1 PP2

1

2

2
3a 3a

3a 3a

5

44

3b 3b

3b 3b

3a

4

3b

3a

4

3b

3a

3b

3a

3b

Figure 4: Online recovery when DP1 and DP2 crash in an RS(4, 6)

coding group

consisting of the recovery unit ID and a list of in-

volved recovery processes to alive data processes.

• 2. When the ith data process receives the message,

it sends the corresponding data unit to all recovery

processes along with its logical timestamp Ti.

• 3(a). When a recovery process receives the data unit

and the logical timestamp Ti, it first applies the re-

quests whose xid equals to or less than Ti in the

corresponding buffer. At this time, the ith logical

timestamp on this recovery process equals to Ti.

• 3(b). The recovery process subtracts the corre-

sponding parity unit by the received data unit with

the predefined coefficient. After the subtraction

completes, the parity unit is no longer associated

with the ith data process. It stops being updated by

the ith data process. Hence, the rest of parity units

on this recovery process are still associated with the

ith data process.

• 4. When a recovery process has received and han-

dled all data units from alive data processes, it sends

the final corresponding parity unit to the recovery

initiator, which is only associated with the failed

data processes.

• 5. When the recovery initiator has received all par-

ity units from recovery processes, it decodes them

by solving the following equation, in which the

fn1, fn2, ..., fnF indicate the numbers of F failure
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data processes and the rn1, rn2, ..., rnF indicate

the numbers of F parity processes chosen to be the

recovery processes.
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(2)

Correctness argument: Here we briefly argue the

correctness of the protocol. Because when a data block

is updated, all parity processes should have received the

corresponding update requests. Hence, in step 3(a), the

parity process must have received all required update

requests and can synchronize its corresponding logical

timestamp with the received logical timestamp. Since

the received data block and parity block have the same

logical timestamps, the received data block should be the

same as the data block which is used to construct the par-

ity block. Because a parity block is a sum of data blocks

with the individual predefined coefficients in the Vander-

monde matrix, after the subtraction in step 3(b), the par-

ity block is only constructed by the rest of data blocks.

At the beginning of step 4, the parity block is only con-

structed by the data blocks of failed data processes be-

cause the parity process has done step 3 for each alive

data process. Finally, with the help of stable xid syn-

chronization in the preparation phase, the parity blocks

received in step 5 are all consistent and should agree with

equation 2.

4.1.3 Request Handling on Recovery Process

Cocytus allows a recovery process to handle requests

during recovery. For a get request, it tries to find the

key/value pair through the backup hashtable. If it finds

the pair, the recovery process checks whether the data

blocks needed for the value have been recovered. If the

data blocks have not been recovered, the recovery pro-

cess initiates data block recovery for each data block.

After the data blocks are recovered, the recovery process

sends the response to the client with the requested value.

For a set request, the recovery process allocates a new

space for the new value with the help of the allocation

metadata in the backup. If the allocated data blocks are

not recovered, the recovery process calls the recovery

function for them. After recovery, the recovery process

handles the operation like a normal data process.

4.2 Data Migration

Data process recovery: During the data process recov-

ery, Cocytus can migrate the data from the recovery pro-

cess to a new data process. The recovery process first

sends the keys as well as the metadata of values (i.e.,

sizes and addresses) in the hashtable to the new data pro-

cess. While receiving key/value pairs, the new data pro-

cess rebuilds the hashtable and the allocation metadata.

After all key/value pairs are sent to the new data process,

the recovery process stops providing services to clients.

When metadata migration completes, the data (i.e.,

value) migration starts. At that moment, the data pro-

cess can handle the requests as done in the recovery pro-

cess. The only difference between them is that the data

process does not recover the data blocks by itself. When

data process needs to recover a data block, it sends a re-

quest to the recovery process. If the recovery process

has already recovered the data block, it sends the recov-

ered data block to the data process directly. Otherwise,

it starts a recovery procedure. After all data blocks are

migrated to the data process, the migration completes.

If either the new data process or the corresponding re-

covery process fails during data migration, both of them

should be killed. This is because having only one of them

will lead to insufficient information to provide continu-

ous services. Cocytus can treat this failure as a data pro-

cess failure.

Parity process recovery: The parity process recov-

ery is straightforward. After a parity process crashes, the

data process marks all data blocks with a miss bit for that

parity process. The data processes first send the meta-

data to the recovering parity process. Once the transfer

of metadata completes, the logical timestamps of new

parity processes are the same with the metadata it has

received. After the transfer of metadata, the data pro-

cesses migrate the data that may overlap with parity up-

date requests. Before sending a parity update request

which involves data blocks marked with a miss bit, the

data process needs to send the involved data blocks to

the new parity process. In this way, data blocks sent to

the new parity process have the same logical timestamps

with the metadata sent before. After the new parity pro-

cess receives all data blocks, the recovery completes. If

either of the data processes fails during the recovery of

the parity process, the recovery fails and Cocytus starts

to recover the failed data process.

5 IMPLEMENTATION

We first built a KV-store with Cocytus from scratch.

To understand its performance implication on real KV-

stores, we also implemented Cocytus on top of Mem-

cached 1.4.21 with the synchronous model, by adding

about 3700 SLoC to Memcached. Currently, Cocytus

only works for single-thread model and the data migra-

tion is not fully supported. To exploit multicore, Cocy-

tus can be deployed with sharding and multi-process in-

stead of multi-threading. In fact, using multi-threading

has no significant improvement for data processes which
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may suffer from unnecessary resource contention and

break data isolation. The parity processes could be im-

plemented in a multi-threaded way to distribute the high

CPU pressure under write-intensive workloads, which

we leave as future work. We use Jerasure [27] and

GF-complete [26] for the Galois-Field operations in RS-

code. Note that Cocytus is largely orthogonal with the

coding schemes; it will be our future work to apply other

network or space-efficient coding schemes [33, 28]. This

section describes some implementation issues.

Deterministic allocator: In Cocytus, the allocation

metadata is separated from data. Each data process main-

tains a memory region for data with the mmap syscall.

Each parity process also maintains an equivalent mem-

ory region for parity. To manage the data region, Cocytus

uses two AVL trees, of which one records the free space

and the other records the allocated space. The tree node

consists of the start address of a memory piece and its

length. The length is ensured to be multiples of 16 and is

used as the index of the trees. Each memory location is

stored in either of the trees. An alloc operation will find

an appropriate memory piece in the free-tree and move it

to the allocated-tree and the free operations do the oppo-

site. The trees manage the memory pieces in a way sim-

ilar to the buddy memory allocation: large blocks might

be split into small ones during alloc operations and con-

secutive pieces are merged into a larger one during free

operations. To make the splitting and merging fast, all

memory blocks are linked by a list according to the ad-

dress. Note that only the metadata is stored in the tree,

which is stored separately from the actual memory man-

aged by the allocator.

PP1 PP2

(a) without pre-alloc

PP1 PP2

(b) with pre-alloc

Figure 5: In (a), the memory allocation ordering for X and Y is dif-

ferent on PP1 and PP2. In (b), thanks to the pre-alloc, the memory

allocation ordering remains the same on different procesess.

Pre-alloc: Cocytus uses the deterministic allocator

and hashtables to ensure all metadata in each node is

consistent. Hence, Cocytus only needs to guarantee that

each process will handle the related requests in the same

order. The piggybacked two-phase commit (section 3.4)

can mostly provide such a guarantee.

One exception is shown in Figure 5(a). When a re-

covery process receives a set request with X=a, it needs

to allocate memory for the value. If the memory for the

value needs to be recovered, the recovery process first

starts the recovery for X and puts this set request into a

waiting queue. In Cocytus, the recovery is asynchronous.

Thus, the recovery process is able to handle other re-

quests before the recovery is finished. During this time

frame, another set request with Y=b comes to the recov-

ery process. The recovery process allocates memory for

it and fortunately the memory allocated has already been

recovered. Hence, the recovery process directly handles

the set request with Y=b without any recovery and sends

requests to other parity processes for fault-tolerance. As

soon as they receive the request, other processes (for ex-

ample, PP2 in the figure) allocate memory for Y and fin-

ish their work as usual. Finally, when the recovery for

X is finished, the recovery process continues to handle

the set request with X=a. It also sends fault-tolerance re-

quests to other parity processes, on which the memory

is allocated for X. Up to now, the recovery process has

allocated memory for X and Y successively. However,

on other parity processes, the memory allocation for Y

happens before that for X. This different allocation or-

dering between recovery processes and parity processes

will cause inconsistency.

Cocytus solves this problem by sending a pre-

allocation request (shown in Figure 5(b)) before each set

operation is queued due to recovery. In this way, the par-

ity processes can pre-allocate space for the queued set

requests and the ordering of memory allocation is guar-

anteed.

Recovery leader: Because when multiple recovery

processes want to recover the two equivalent blocks si-

multaneously, both of them want to start an online re-

covery protocol, which is unnecessary. To avoid this sit-

uation, Cocytus assigns a recovery leader in each group.

A recovery leader is a parity process responsible for ini-

tiating and finishing the recovery in the group. All other

parity processes in the group will send recovery requests

to the recovery leader if they need to recover data, and

the recovery leader will broadcast the result after the re-

covery is finished. A recovery leader is not absolutely

necessary but such a centralized management of recovery

can prevent the same data from being recovered multiple

times and thus reduce the network traffic. Considering

the interleaved layout of the system, the recovery leaders

are uniformly distributed on different nodes and won’t

become the bottleneck.

Short-cut Recovery for Consecutive Failures:

When there are more than one data process failures and
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the data of some failed processes are already recovered

by the recovery process, the further recovered data might

be wrong if we do not take the recovery process into con-

sideration.

In the example given in Figure 4, suppose DP1 (data

process 1) fails first and PP1 (parity process 1) becomes

a recovery process for it. After PP1 recovered a part of

data blocks, DP2 fails and PP2 becomes a recovery pro-

cess for DP2. At that moment, some data blocks on PP1

have been recovered and others haven’t. To recover a

data block on DP2, if its corresponding data block on

DP1 has been recovered, it should be recovered in the

way that involves 3 data blocks and 1 parity block, oth-

erwise it should be recovered in the way that involves 2

data blocks and 2 parity blocks. The procedures of the

two kinds of recovery are definitely different.

Primary-backup replication: To evaluate Cocytus,

we also implemented a primary-backup (PBR) replica-

tion version based on Memcached-1.4.21 with almost the

same design as Cocytus, like synchronous write, piggy-

back, except that Cocytus puts the data in a coded space

and needs to decode data after a failure occurs. We did

not directly use Repcached [17] for two reasons. One

is that Repcached only supports one slave worker. The

other one is that set operation in Repcached is asyn-

chronous and thus does not guarantee crash consistency.

6 EVALUATION

We evaluate the performance of Cocytus by comparing

it to primary-backup replication (PBR) and the vanilla

Memcached. The highlights of our evaluation results are

the followings:

• Cocytus achieves high memory efficiency: It re-

duces memory consumption by 33% to 46% for

value sizes from 1KB to 16KB when tolerating two

node failures.

• Cocytus incurs low overhead: It has similar

throughput with PBR and vanilla KV-store (i.e.,

Memcached) and incurs small increase in latency

compared to vanilla KV-store.

• Cocytus can tolerate failures as designed and re-

cover fast and gracefully: Even under two node

crashes, Cocytus can gracefully recover lost data

and handle client requests with close performance

with PBR.

6.1 Experimental Setup

Hardware and configuration: Due to our hardware

limit, we conduct all experiments on a 6-node cluster of

machines. Each machine has two 10-core 2.3GHz In-

tel Xeon E5-2650, 64GB of RAM and is connected with

10Gb network. We use 5 out of the 6 nodes to run as

servers and the remaining one as client processes.

To gain a better memory efficiency, Cocytus could use

more data processes in a coding group. However, deploy-

ing too many data processes in one group increases the

burden on parity processes, which could be a bottleneck

of the system. Because of the limitation of our cluster, we

deploy Cocytus with five interleaved EC groups which

are configured as RS(3,5) so that the system can toler-

ate two failures while maximizing the data processes.

Each group consists of three data processes and two par-

ity processes. With this deployment, each node contains

three data processes and two parity processes of different

groups.

Targets of comparison: We compare Cocytus with

PBR and vanilla Memcached. To evaluate PBR, we dis-

tribute 15 data processes among the five nodes. For each

data process, we launch 2 backup processes so that the

system can also tolerate two node failures. This deploy-

ment launches more processes (45 processes) compared

to Cocytus (25 processes), which could use more CPU

resource in some cases. We deploy the vanilla Mem-

cached by evenly distributing 15 instances among the five

nodes. In this way, the number of processes of Mem-

cached is the same as the data processes of Cocytus.

Workload: We use the YCSB [8] benchmark to gen-

erate our workloads. We generate each key by concate-

nating the a table name and an identifier, and a value is

a compressed HashMap object, which consists of mul-

tiple fields. The distribution of the key probability is

Zipfian [10], with which some keys are hot and some

keys are cold. The length of the key is usually smaller

than 16B. We also evaluate the systems with differ-

ent read/write ratios, including equal-shares (50%:50%),

read-mostly(95%:5%) and read-only (100%:0%).

Since the median of the value sizes from Face-

book [24] are 4.34KB for Region and 10.7KB for Clus-

ter, we test these caching systems with similar value

sizes. As in YCSB, a value consists of multiple fields, to

evaluate our system with various value sizes, we keep the

field number as 10 while changing the field size to make

the total value sizes be 1KB/4KB/16KB, i.e., the field

sizes are 0.1KB/0.4KB/1.6KB accordingly. To limit the

total data size to be 64GB, the item numbers for 1/4/16

KB are 64/16/1 million respectively. However, due to

the object compression, we cannot predict the real value

size received by the KV-store and the values may not be

aligned as well; Cocytus aligns the compressed values to

16 bytes to perform coding.

6.2 Memory Consumption

As shown in Figure 6, Cocytus achieves notable mem-

ory saving compared to PBR, due to the use of erasure

coding. With a 16KB value size, Cocytus achieves 46%
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Figure 6: Memory consumption of three systems with different value

sizes. Due to the compression in YCSB, the total memory cost for

different value sizes differs a little bit.

memory saving compared to PBR. With RS(3,5), the ex-

pected memory overhead of Cocytus should be 1.66X

while the actual memory overhead ranges from 1.7X to

2X. This is because replicating metadata and keys intro-

duces more memory cost, e.g., 25%, 9.5% and 4% of

all consumed memory for value sizes of 1KB, 4KB and

16KB. We believe such a cost is worthwhile for the ben-

efit of fast and online recovery.

To investigate the effect of small- and variable-sized

values, we conduct a test in which the value size follows

the Zipfian distribution over the range from 10B to 1KB.

Since it is harder to predict the total memory consump-

tion, we simply insert 100 million such items. The result

is shown as zipf in Figure 6. As expected, more items

bring more metadata (including keys) which diminishes

the benefit of Cocytus. Even so, Cocytus still achieves

20% memory saving compared to PBR.

6.3 Performance

As shown in Figure 7, Cocytus incurs little performance

overhead for read-only and read-mostly workloads and

incurs small overhead for write-intensive workload com-

pared to vanilla Memcached. Cocytus has similar latency

and throughput with PBR. The followings use some pro-

filing data to explain the data.

Small overhead of Cocytus and PBR: As the three

configurations handle get request with similar opera-

tions, the performance is similarly in this case. How-

ever, when handling set requests, Cocytus and PBR intro-

duce more operations and network traffic and thus mod-

estly higher latency and small degradation of through-

put. From the profiled CPU utilization (Table 2) and

network traffic (Memcached:540Mb/s, PBR: 2.35Gb/s,

Cocytus:2.3Gb/s, profiled during 120 clients insert data),

we found that even though PBR and Cocytus have more

CPU operations and network traffic, both of them were

not the bottleneck. Hence, multiple requests from clients

can be overlapped and pipelined. Hence, the through-

put is similar with the vanilla Memcached. Hence, both

Cocytus and PBR can trade some CPU and network re-

sources for high availability, while incurring small user-

perceived performance overhead.

Higher write latency of PBR and Cocytus: The la-

tency is higher when the read-write ratio is 95%:5%,

which is a quite strange phenomenon. The reason is that

set operations are preempted by get operations. In Co-

cytus and PBR, set operations are FIFO, while set opera-

tions and get operations are interleaved. Especially in the

read-mostly workload, the set operations tend to be pre-

empted, as set operations have longer path in PBR and

Cocytus.

Lower read latency of PBR and Cocytus: There is

an interesting phenomenon is that higher write latency

causes lower read latency for PBR and Cocytus under

update-intensive case (i.e., r:w = 50:50). This may be

because when the write latency is higher, more client

threads are waiting for the set operations at a time. How-

ever, the waiting on set operation does not block the get

operation from other client threads. Hence, the client

threads waiting on get operation could be done faster

because there would be fewer client threads that could

block this operation. As a result, the latency of get is

lower.

6.4 Recovery Efficiency

We evaluate the recovery efficiency using 1KB value size

for read-only, read-mostly and read-write workloads. We

emulate two node failures by manually killing all pro-

cesses on the node. The first node failure occurs at 60s

after the benchmark starts. And the other node failure

occurs at 100s, before the recovery of the first failure

finishes. The two throughput collapses in each of the

subfigures of Figure 8 are caused by the TCP connection

mechanism and can be used coincidentally to indicate the

time a node fails. The vertical lines indicate the time that

all the data has been recovered.

Our evaluation shows that after the first node failure,

Cocytus can repair the data at 550MB/s without client

requests. The speed could be much faster if we use more

processes. However, to achieve high availability, Cocy-

tus first does recovery for requested units and recovers

cold data when the system is idle.

As shown in Figure 8(a), Cocytus performs similarly

as PBR when the workload is read-only, which confirms

that data recovery could be done in parallel with read

requests without notable overhead. The latencies for

50%, 90%, 99% requests are 408us, 753us and 1117us

in Cocytus during recovery. Similar performance can be

achieved when the read-write ratio is 95%, as shown in

Figure 8(b). In the case with frequent set requests, as

shown in Figure 8(c), the recovery affects the through-

put of normal request handling modestly. The reason
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(g) Throughput (r:w = 95:5)
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Figure 7: Comparison of latency and throughput of the three configurations.

Read : Write
Memcached PBR Cocytus

15 processes 15 primary processes 30 backup processes 15 data processes 10 parity processes

50%:50% 231%CPUs 439%CPUs 189%CPUs 802%CPUs 255%CPUs

95%:5% 228%CPUs 234%CPUs 60%CPUs 256%CPUs 54%CPUs

100%:0% 222%CPUs 230%CPUs 21%CPUs 223%CPUs 15%CPUs

Table 2: CPU utilization for 1KB value size

is that to handle set operations Cocytus needs to allo-

cate new blocks, which usually triggers data recovery on

those blocks. Waiting for such data recovery to complete

degrades the performance. In fact, after the first node

crashes, the performance is still acceptable, since the re-

covery is relatively simpler and not all processes are in-

volved in the recovery. However, when two node failures

occur simultaneously, the performance can be affected

more notably. Fortunately, this is a very rare case and

even if it happens, Cocytus can still provide services with

reasonable performance and complete the data recovery

quickly.

To confirm the benefit of our online recovery proto-

col, we also implement a blocked version of Cocytus for

comparison. In the blocked version of Cocytus, the set

operations are delayed if there is any recovery in progress

and the get operations are not affected. From Figure 8,

we can observe that the throughput of the blocked ver-

sion collapses even when there is only one node failure

and 5% of set operations.

6.5 Different Coding Schemes

To understand the effect under different coding schemes,

we evaluate the Cocytus with RS(4,5), RS(3,5) and

RS(2,5). As shown in Figure 9, the memory consump-

tion of RS(2,5) is the largest and the one of RS(4,5) is

the least. All the three coding schemes benefit more from

larger value sizes. Their throughput is similar because

there are no bottlenecks on servers. However, the write

latency of RS(2,5) is a little bit longer since it sends more

messages to parity processes. The reason why RS(2,5)

has lower read latency should be a longer write latency

causes lower read latency (similar as the case described

previously).

7 RELATED WORK

Separation of work: The separation of metadata/key

and values is inspired by prior efforts on separation of

work. For example, Wang et al. [42] separate data from

metadata to achieve efficient Paxos-style asynchronous

replication of storage. Yin et al. [46] separate execution

from agreement to reduce execution nodes when tolerat-

ing Byzantine faults. Clement et al. [6] distinguish omis-

sion and Byzantine failures and leverage redundancy be-

tween them to reduce required replicas. In contrast,

Cocytus separates metadata/key from values to achieve

space-efficient and highly-available key/value stores.

Erasure coding: Erasure coding has been widely

adopted in storage systems in both academia and indus-

try to achieve both durability and space efficiency [15,

34, 29, 32, 23]. Generally, they provide a number of opti-

mizations that optimize the coding efficiency and recov-

ery bandwidth, like local reconstruction codes [15], Xor-

bas [32], piggyback codes [29] and lazy recovery [34].

PanFS [44] is a parallel file system that uses per-file era-

sure coding to protect files greater than 64KB, but repli-
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Figure 8: Performance of PBR and Cocytus when nodes fail. The vertical lines indicate all data blocks are recovered completely.
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Figure 9: Performance under different coding schemes

cates metadata and small files to minimize the cost of

metadata updates.

Replication: Replication is a standard approach to

fault tolerance, which may be categorized into syn-

chronous [5, 3, 39] and asynchronous [19, 2]. Mo-

jim [48] combines NVRAM and a two-tier primary-

backup replication scheme to optimize database repli-

cation. Cocytus currently leverages standard primary-

backup replication to provide availability to metadata

and key in the face of omission failures. It will be our

future work to apply other replications schemes or han-

dle commission failures.

RAMCloud [25] exploits scale of clusters to achieve

fast data recovery. Imitator [41] leverages existing ver-

tices in partitioned graphs to provide fault-tolerant graph

computation, which also leverages multiple replicas to

recover failed data in one node. However, they do not

provide online recovery such that the data being recov-

ered cannot be accessed simultaneously. In contrast, Co-

cytus does not require scale of clusters for fast recovery

but instead provide always-on data accesses, thanks to

replicating metadata and keys.

Key/value stores: There have been a considerable

number of interests in optimizing key/value stores, lever-

aging advanced hardware like RDMA [22, 36, 16, 43] or

increasing concurrency [11, 20, 21]. Cocytus is largely

orthogonal with such improvements and we believe that

Cocytus can be similarly applied to such key/value stores

to provide high availability.

8 CONCLUSION AND FUTURE WORK

Efficiency and availability are two key demanding fea-

tures for in-memory key/value stores. We have demon-

strated such a design that achieves both efficiency and

availability by building Cocytus and integrating it into

Memcached. Cocytus uses a hybrid replication scheme

by using PBR for metadata and keys while using erasure-

coding for values with large sizes. Cocytus is able to

achieve similarly normal performance with PBR and lit-

tle performance impact during recovery while achieving

much higher memory efficiency.

We plan to extend our work in several ways. First,

we plan to explore a larger cluster setting and study the

impact of other optimized coding schemes on the perfor-

mance of Cocytus. Second, we plan to investigate how

Cocytus can be applied to other in-memory stores using

NVRAM [40, 7, 45]. Finally, we plan to investigate how

to apply Cocytus to replication of in-memory databases.
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Abstract
Containerized applications are becoming increas-
ingly popular, but unfortunately, current container-
deployment methods are very slow. We develop a
new container benchmark, HelloBench, to evaluate the
startup times of 57 different containerized applications.
We use HelloBench to analyze workloads in detail, study-
ing the block I/O patterns exhibited during startup and
compressibility of container images. Our analysis shows
that pulling packages accounts for 76% of container
start time, but only 6.4% of that data is read. We use
this and other ndings to guide the design of Slacker, a
new Docker storage driver optimized for fast container
startup. Slacker is based on centralized storage that is
shared between all Docker workers and registries. Work-
ers quickly provision container storage using backend
clones and minimize startup latency by lazily fetching
container data. Slacker speeds up the median container
development cycle by 20× and deployment cycle by 5×.

1 Introduction
Isolation is a highly desirable property in cloud comput-
ing and other multi-tenant platforms [8, 14, 27, 22, 24,
34, 38, 40, 42, 49]. Without isolation, users (who are
often paying customers) must tolerate unpredictable per-
formance, crashes, and privacy violations.
Hypervisors, or virtual machine monitors (VMMs),

have traditionally been used to provide isolation for ap-
plications [12, 14, 43]. Each application is deployed
in its own virtual machine, with its own environment
and resources. Unfortunately, hypervisors need to in-
terpose on various privileged operations (e.g., page-table
lookups [7, 12]) and use roundabout techniques to infer
resource usage (e.g., ballooning [43]). The result is that
hypervisors are heavyweight, with slow boot times [50]
as well as run-time overheads [7, 12].
Containers, as driven by the popularity of Docker [25],

have recently emerged as a lightweight alternative to
hypervisor-based virtualization. Within a container, all
process resources are virtualized by the operating sys-
tem, including network ports and le-system mount
points. Containers are essentially just processes that
enjoy virtualization of all resources, not just CPU and
memory; as such, there is no intrinsic reason container
startup should be slower than normal process startup.

Unfortunately, as we will show, starting containers is
much slower in practice due to le-system provisioning
bottlenecks. Whereas initialization of network, compute,
and memory resources is relatively fast and simple (e.g.,
zeroing memory pages), a containerized application re-
quires a fully initialized le system, containing applica-
tion binaries, a complete Linux distribution, and pack-
age dependencies. Deploying a container in a Docker or
Google Borg [41] cluster typically involves signicant
copying and installation overheads. A recent study of
Google Borg revealed: “[task startup latency] is highly
variable, with the median typically about 25 s. Pack-
age installation takes about 80% of the total: one of the
known bottlenecks is contention for the local disk where
packages are written” [41].
If startup time can be improved, a number of oppor-

tunities arise: applications can scale instantly to han-
dle ash-crowd events [13], cluster schedulers can fre-
quently rebalance nodes at low cost [17, 41], software
upgrades can be rapidly deployed when a security aw
or critical bug is xed [30], and developers can interac-
tively build and test distributed applications [31].
We take a two-pronged approach to solving the

container-startup problem. First, we develop a new open-
source Docker benchmark, HelloBench, that carefully
exercises container startup. HelloBench is based on
57 different container workloads and measures the time
from when deployment begins until a container is ready
to start doing useful work (e.g., servicing web requests).
We use HelloBench and static analysis to characterize
Docker images and I/O patterns. Among other ndings,
our analysis shows that (1) copying package data ac-
counts for 76% of container startup time, (2) only 6.4%
of the copied data is actually needed for containers to
begin useful work, and (3) simple block-deduplication
across images achieves better compression rates than
gzip compression of individual images.
Second, we use our ndings to build Slacker, a new

Docker storage driver that achieves fast container distri-
bution by utilizing specialized storage-system support at
multiple layers of the stack. Specically, Slacker uses
the snapshot and clone capabilities of our backend stor-
age server (a Tintri VMstore [6]) to dramatically reduce
the cost of common Docker operations. Rather than pre-
propagate whole container images, Slacker lazily pulls
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image data as necessary, drastically reducing network
I/O. Slacker also utilizes modications we make to the
Linux kernel in order to improve cache sharing.
The result of using these techniques is a massive im-

provement in the performance of common Docker oper-
ations; image pushes become 153× faster and pulls be-
come 72× faster. Common Docker use cases involving
these operations greatly benet. For example, Slacker
achieves a 5× median speedup for container deployment
cycles and a 20× speedup for development cycles.
We also build MultiMake, a new container-based build

tool that showcases the benets of Slacker’s fast startup.
MultiMake produces 16 different binaries from the same
source code, using different containerized GCC releases.
With Slacker, MultiMake experiences a 10× speedup.
The rest of this paper is organized as follows. First,

we describe the existing Docker framework (§2). Next,
we introduce HelloBench (§3), which we use to analyze
Docker workload characteristics (§4). We use these nd-
ings to guide our design of Slacker (§5). Finally, we
evaluate Slacker (§6), present MultiMake (§7), discuss
related work (§8), and conclude (§9).

2 Docker Background
We now describe Docker’s framework (§2.1), storage in-
terface (§2.2), and default storage driver (§2.3).

2.1 Version Control for Containers
While Linux has always used virtualization to isolate
memory, cgroups [37] (Linux’s container implementa-
tion) virtualizes a broader range of resources by provid-
ing six new namespaces, for le-system mount points,
IPC queues, networking, host names, process IDs, and
user IDs [19]. Linux cgroups were rst released in
2007, but widespread container use is a more recent phe-
nomenon, coinciding with the availability of new con-
tainer management tools such as Docker (released in
2013). With Docker, a single command such as “docker
run -it ubuntu bash” will pull Ubuntu packages
from the Internet, initialize a le system with a fresh
Ubuntu installation, perform the necessary cgroup setup,
and return an interactive bash session in the environment.
This example command has several parts. First,

“ubuntu” is the name of an image. Images are read-
only copies of le-system data, and typically contain ap-
plication binaries, a Linux distribution, and other pack-
ages needed by the application. Bundling applications in
Docker images is convenient because the distributor can
select a specic set of packages (and their versions) that
will be used wherever the application is run. Second,
“run” is an operation to perform on an image; the run
operation creates an initialized root le system based on
the image to use for a new container. Other operations
include “push” (for publishing new images) and “pull”
(for fetching published images from a central location);

an image is automatically pulled if the user attempts to
run a non-local image. Third, “bash” is the program to
start within the container; the user may specify any exe-
cutable in the given image.
Docker manages image data much the same way tradi-

tional version-control systems manage code. This model
is suitable for two reasons. First, there may be differ-
ent branches of the same image (e.g., “ubuntu:latest” or
“ubuntu:12.04”). Second, images naturally build upon
one another. For example, the Ruby-on-Rails image
builds on the Rails image, which in turn builds on the
Debian image. Each of these images represent a new
commit over a previous commit; there may be additional
commits that are not tagged as runnable images. When
a container executes, it starts from a committed image,
but les may be modied; in version-control parlance,
these modications are referred to as unstaged changes.
The Docker “commit” operation turns a container and its
modications into a new read-only image. In Docker, a
layer refers to either the data of a commit or to the un-
staged changes of a container.
Docker worker machines run a local Docker daemon.

New containers and images may be created on a spe-
cic worker by sending commands to its local daemon.
Image sharing is accomplished via centralized registries
that typically run on machines in the same cluster as the
Docker workers. Images may be published with a push
from a daemon to a registry, and imagesmay be deployed
by executing pulls on a number of daemons in the clus-
ter. Only the layers not already available on the receiv-
ing end are transferred. Layers are represented as gzip-
compressed tar les over the network and on the registry
machines. Representation on daemon machines is deter-
mined by a pluggable storage driver.
2.2 Storage Driver Interface
Docker containers access storage in two ways. First,
users may mount directories on the host within a con-
tainer. For example, a user running a containerized com-
piler may mount her source directory within the con-
tainer so that the compiler can read the code les and
produce binaries in the host directory. Second, contain-
ers need access to the Docker layers used to represent
the application binaries and libraries. Docker presents a
view of this application data via a mount point that the
container uses as its root le system. Container storage
and mounting is managed by a Docker storage driver;
different drivers may choose to represent layer data in
different ways. The methods a driver must implement
are shown in Table 1 (some uninteresting functions and
arguments are not shown). All the functions take a string
“id” argument that identies the layer being manipulated.
The Get function requests that the driver mount the

layer and return a path to the mount point. The mount
point returned should contain a view of not only the “id”

2



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 183

Table 1: Docker Driver API.

Figure 1: Diff and ApplyDiff. Worker A is using Diff to
package local layers as compressed tars for a push. B is using
ApplyDiff to convert the tars back to the local format. Local
representation varies depending on the driver, as indicated by
the question marks.

layer, but of all its ancestors (e.g., les in the parent layer
of the “id” layer should be seen during a directory walk
of the mount point). Put unmounts a layer. Create

copies from a parent layer to create a new layer. If the
parent is NULL, the new layer should be empty. Docker
calls Create to (1) provision le systems for new con-
tainers, and (2) allocate layers to store data from a pull.
Diff and ApplyDiff are used during Docker push

and pull operations respectively, as shown in Figure 1.
When Docker is pushing a layer, Diff converts the layer
from the local representation to a compressed tar le con-
taining the les of the layer. ApplyDiff does the oppo-
site: given a tar le and a local layer it decompresses the
tar le over the existing layer.
Figure 2 shows the driver calls that are made when a

four-layer image (e.g., ubuntu) is run for the rst time.
Four layers are created during the image pull; two more
are created for the container itself. Layers A-D represent
the image. The Create for A takes a NULL parent, so
A is initially empty. The subsequent ApplyDiff call,
however, tells the driver to add the les from the pulled
tar to A. Layers B-D are each populated with two steps:
a copy from the parent (via Create), and the addition of
les from the tar (via ApplyDiff). After step 8, the pull
is complete, and Docker is ready to create a container.
It rst creates a read-only layer E-init, to which it adds
a few small initialization les, and then it creates E, the
le system the container will use as its root.

2.3 AUFS Driver Implementation
The AUFS storage driver is a common default for Docker
distributions. This driver is based on the AUFS le sys-
tem (Another Union File System). Union le systems do
not store data directly on disk, but rather use another le
system (e.g., ext4) as underlying storage.

Figure 2: Cold Run Example. The driver calls that are
made when a four-layer image is pulled and run are shown.
Each arrow represents a call (Create or ApplyDiff), and the
nodes to which an arrow connects indicate arguments to the
call. Thick-bordered boxes represent layers. Integers indicate
the order in which functions are called.

A union mount point provides a view of multiple di-
rectories in the underlying le system. AUFS is mounted
with a list of directory paths in the underlyingle system.
During path resolution, AUFS iterates through the list of
directories; the rst directory to contain the path being
resolved is chosen, and the inode from that directory is
used. AUFS supports specialwhiteout les to make it ap-
pear that certain les in lower layers have been deleted;
this technique is analogous to deletion markers in other
layered systems (e.g., LSM databases [29]). AUFS also
supports COW (copy-on-write) at le granularity; upon
write, les in lower layers are copied to the top layer be-
fore the write is allowed to proceed.
The AUFS driver takes advantage the AUFS le sys-

tem’s layering and copy-on-write capabilities while also
accessing the le system underlying AUFS directly. The
driver creates a new directory in the underlying le sys-
tem for each layer it stores. An ApplyDiff simple untars
the archived les into the layer’s directory. Upon a Get
call, the driver uses AUFS to create a unioned view of a
layer and its ancestors. The driver uses AUFS’s COW to
efciently copy layer data when Create is called. Un-
fortunately, as we will see, COW at le granularity has
some performance problems (§4.3).

3 HelloBench
We present HelloBench, a new benchmark designed to
exercise container startup. HelloBench directly executes
Docker commands, so pushes, pulls, and runs can be
measured independently. The benchmark consists of two
parts: (1) a collection of container images and (2) a test
harness for executing simple tasks in said containers.
The images were the latest available from the Docker
Hub library [3] as of June 1, 2015. HelloBench con-
sists of 57 images of the 72 available at the time. We
selected images that were runnable with minimal cong-
uration and do not depend on other containers. For ex-
ample, WordPress is not included because a WordPress
container depends on a separate MySQL container.
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Table 2: HelloBench Workloads. HelloBench runs 57
different container images pulled from the Docker Hub.

Table 2 lists the images used by HelloBench. We di-
vide the images into six broad categories as shown. Some
classications are somewhat subjective; for example, the
Django image contains a web server, but most would
probably consider it a web framework.
The HelloBench harness measures startup time by ei-

ther running the simplest possible task in the container
or waiting until the container reports readiness. For the
language containers, the task typically involves compil-
ing or interpreting a simple “hello world” program in the
applicable language. The Linux distro images execute
a very simple shell command, typically “echo hello”.
For long-running servers (particularly databases and web
servers), HelloBench measures the time until the con-
tainer writes an “up and ready” (or similar) message to
standard out. For particularly quiet servers, an exposed
port is polled until there is a response.
HelloBench images each consist of many layers, some

of which are shared between containers. Figure 3 shows
the relationships between layers. Across the 57 images,
there are 550 nodes and 19 roots. In some cases, a tagged
image serves as a base for other tagged images (e.g.,
“ruby” is a base for “rails”). Only one image consists of
a single layer: “alpine”, a particularly lightweight Linux
distribution. Application images are often based on non-
latest Linux distribution images (e.g., older versions of
Debian); that is why multiple images will often share a
common base that is not a solid black circle.
In order to evaluate how representative HelloBench is

of commonly used images, we counted the number of
pulls to every Docker Hub library image [3] on January
15, 2015 (7 months after the original HelloBench images
were pulled). During this time, the library grew from
72 to 94 images. Figure 4 shows pulls to the 94 im-
ages, broken down by HelloBench category. HelloBench
is representative of popular images, accounting for 86%
of all pulls. Most pulls are to Linux distribution bases
(e.g., BusyBox and Ubuntu). Databases (e.g., Redis and
MySQL) and web servers (e.g., nginx) are also popular.
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Figure 3: HelloBench Hierarchy. Each circle repre-
sents a layer. Filled circles represent layers tagged as runnable
images. Deeper layers are to the left.

4 Workload Analysis
In this section, we analyze the behavior and performance
of the HelloBench workloads, asking four questions:
how large are the container images, and howmuch of that
data is necessary for execution (§4.1)? How long does
it take to push, pull, and run the images (§4.2)? How
is image data distributed across layers, and what are the
performance implications (§4.3)? And how similar are
access patterns across different runs (§4.4)?
All performance measurements are taken from a vir-

tual machine running on an PowerEdge R720 host with
2 GHz Xeon CPUs (E5-2620). The VM is provided 8 GB
of RAM, 4 CPU cores, and a virtual disk backed by a
Tintri T620 [1]. The server and VMstore had no other
load during the experiments.
4.1 Image Data
We begin our analysis by studying the HelloBench im-
ages pulled from the Docker Hub. For each image, we
take three measurements: its compressed size, uncom-
pressed size, and the number of bytes read from the im-
age when HelloBench executes. We measure reads by
running the workloads over a block device traced with
blktrace [11]. Figure 5 shows a CDF of these three
numbers. We observe that only 20 MB of data is read
on median, but the median image is 117 MB compressed
and 329 MB uncompressed.
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category and image. The far-right gray bar represents pulls to
images in the library that are not run by HelloBench.
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Figure 5: Data Sizes (CDF). Distributions are shown for
the number of reads in the HelloBench workloads and for the
uncompressed and compressed sizes of the HelloBench images.

We break down the read and size numbers by category
in Figure 6. The largest relative waste is for distro work-
loads (30× and 85× for compressed and uncompressed
respectively), but the absolute waste is also smallest for
this category. Absolute waste is highest for the language
and web framework categories. Across all images, only
27MB is read on average; the average uncompressed im-
age is 15× larger, indicating only 6.4% of image data is
needed for container startup.
Although Docker images are much smaller when com-

pressed as gzip archives, this format is not suitable for
running containers that need to modify data. Thus, work-
ers typically store data uncompressed, which means that
compression reduces network I/O but not disk I/O. Dedu-
plication is a simple alternative to compression that is
suitable for updates. We scan HelloBench images for
redundancy between blocks of les to compute the ef-
fectiveness of deduplication. Figure 7 compares gzip
compression rates to deduplication, at both le and block
(4 KB) granularity. Bars represent rates over single im-
ages. Whereas gzip achieves rates between 2.3 and 2.7,
deduplication does poorly on a per-image basis. Dedu-
plication across all images, however, yields rates of 2.6
(le granularity) and 2.8 (block granularity).
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Figure 6: Data Sizes (By Category). Averages are shown
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tion across the set of all images.

Implications: the amount of data read during exe-
cution is much smaller than the total image size, either
compressed or uncompressed. Image data is sent over
the network compressed, then read and written to local
storage uncompressed, so overheads are high for both
network and disk. One way to decrease overheads would
be to build leaner images with fewer installed packages.
Alternatively, image data could be lazily pulled as a con-
tainer needs it. We also saw that global block-based
deduplication is an efcient way to represent image data,
even compared to gzip compression.

4.2 Operation Performance
Once built, containerized applications are often deployed
as follows: the developer pushes the application image
once to a central registry, a number of workers pull the
image, and each worker runs the application. We mea-
sure the latency of these operations with HelloBench, re-
porting CDFs in Figure 8. Median times for push, pull,
and run are 61, 16, and 0.97 seconds respectively.
Figure 9 breaks down operation times by workload

category. The pattern holds in general: runs are fast
while pushes and pulls are slow. Runs are fastest for the
distro and language categories (0.36 and 1.9 seconds re-
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Figure 8: Operation Performance (CDF). A distribu-
tion of push, pull, and run times for HelloBench are shown for
Docker with the AUFS storage driver.

0
20
40
60
80

100
120

distro db language web
server

web
fwk

other ALL

Ti
m

e 
(S

ec
on

ds
) push

pull
run

Figure 9: Operation Performance (By Category). Av-
erages are shown for each category.

spectively). The average times for push, pull, and run
are 72, 20, and 6.1 seconds respectively. Thus, 76% of
startup time will be spent on pull when starting a new
image hosted on a remote registry.

As pushes and pulls are slowest, we want to know
whether these operations are merely high latency, or
whether they are also costly in a way that limits through-
put even if multiple operations run concurrently. To
study scalability, we concurrently push and pull varying
numbers of articial images of varying sizes. Each im-
age contains a single randomly generated le. We use
articial images rather than HelloBench images in order
to create different equally-sized images. Figure 10 shows
that the total time scales roughly linearly with the num-
ber of images and image size. Thus, pushes and pulls are
not only high-latency, they consume network and disk
resources, limiting scalability.

Implications: container startup time is dominated by
pulls; 76% of the time spent on a new deployment will
be spent on the pull. Publishing images with push will
be painfully slow for programmers who are iteratively
developing their application, though this is likely a less
frequent case than multi-deployment of an already pub-
lished image. Most push work is done by the storage
driver’s Diff function, and most pull work is done by
the ApplyDiff function (§2.2). Optimizing these driver
functions would improve distribution performance.
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Figure 10: Operation Scalability. A varying number
of articial images (x-axis), each containing a random le of a
given size, are pushed or pulled simultaneously. The time until
all operations are complete is reported (y-axis).
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open system call is shown as a function of the layer depth of
the le. Right: the latency of a one-byte append is shown as a
function of the size of the le that receives the write.

4.3 Layers
Image data is typically split across a number of layers.
The AUFS driver composes the layers of an image at run-
time to provide a container a complete view of the le
system. In this section, we study the performance im-
plications of layering and the distribution of data across
layers. We start by looking at two performance prob-
lems (Figure 11) to which layered le systems are prone:
lookups to deep layers and small writes to non-top layers.
First, we create (and compose with AUFS) 16 layers,

each containing 1K empty les. Then, with a cold cache,
we randomly open 10 les from each layer, measuring
the open latency. Figure 11a shows the result (an aver-
age over 100 runs): there is a strong correlation between
layer depth and latency. Second, we create two layers,
the bottom of which contains large les of varying sizes.
We measure the latency of appending one byte to a le
stored in the bottom layer. As shown by Figure 11b, the
latency of small writes correspond to the le size (not the
write size), as AUFS does COW at le granularity. Be-
fore a le is modied, it is copied to the topmost layer, so
writing one byte can take over 20 seconds. Fortunately,
small writes to lower layers induce a one-time cost per
container; subsequent writes will be faster because the
large le will have been copied to the top layer.
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Having considered how layer depth corresponds with
performance, we now ask, how deep is data typically
stored for the HelloBench images? Figure 12 shows the
percentage of total data (in terms of number of les,
number of directories, and size in bytes) at each depth
level. The three metrics roughly correspond. Some data
is as deep as level 28, but mass is more concentrated to
the left. Over half the bytes are at depth of at least nine.
We now consider the variance in how data is dis-

tributed across layers, measuring, for each image, what
portion (in terms of bytes) is stored in the topmost layer,
bottommost layer, and whatever layer is largest. Fig-
ure 13 shows the distribution: for 79% of images, the
topmost layer contains 0% of the image data. In con-
trast, 27% of the data resides in the bottommost layer in
the median case. A majority of the data typically resides
in a single layer.
Implications: for layered le systems, data stored in

deeper layers is slower to access. Unfortunately, Docker
images tend to be deep, with at least half of le data at
depth nine or greater. Flattening layers is one technique
to avoid these performance problems; however, atten-
ing could potentially require additional copying and void
the other COW benets that layered le systems provide.
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Figure 14: Repeated I/O. The bars represent total I/O
done for the average container workload in each category. Bar
sections indicate read/write ratios. Reads that could have po-
tentially been serviced by a cache populated by previous con-
tainer execution are dark gray.

4.4 Caching
We now consider the case where the same worker runs
the same image more than once. In particular, we want
to know whether I/O from the rst execution can be used
to prepopulate a cache to avoid I/O on subsequent runs.
Towards this end, we run every HelloBench workload
twice consecutively, collecting block traces each time.
We compute the portion of reads during the second run
that could potentially benet from cache state populated
by reads during the rst run.
Figure 14 shows the reads and writes for the second

run. Reads are broken into hits and misses. For a given
block, only the rst read is counted (we want to study
the workload itself, not the characteristics of the specic
cache beneath which we collected the traces). Across
all workloads, the read/write ratio is 88/12. For distro,
database, and language workloads, the workload consists
almost completely of reads. Of the reads, 99% could po-
tentially be serviced by cached data from previous runs.
Implications: The same data is often read during dif-

ferent runs of the same image, suggesting cache sharing
will be useful when the same image is executed on the
same machine many times. In large clusters with many
containerized applications, repeated executions will be
unlikely unless container placement is highly restricted.
Also, other goals (e.g., load balancing and fault isolation)
may make colocation uncommon. However, repeated ex-
ecutions are likely common for containerized utility pro-
grams (e.g., python or gcc) and for applications running
in small clusters. Our results suggest these latter scenar-
ios would benet from cache sharing.

5 Slacker
In this section, we describe Slacker, a new Docker stor-
age driver. Our design is based on our analysis of con-
tainer workloads and ve goals: (1) make pushes and
pulls very fast, (2) introduce no slowdown for long-
running containers, (3) reuse existing storage systems
whenever possible, (4) utilize the powerful primitives

7
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Figure 15: Slacker Architecture. Most of our work was
in the gray boxes, the Slacker storage plugin. Workers and reg-
istries represent containers and images as les and snapshots
respectively on a shared Tintri VMstore server.

Figure 16: Driver Stacks. Slacker uses one ext4 le
system per container. AUFS containers share one ext4 instance.

provided by a modern storage server, and (5) make no
changes to the Docker registry or daemon except in the
storage-driver plugin (§2.2).
Figure 15 illustrates the architecture of a Docker clus-

ter running Slacker. The design is based on centralized
NFS storage, shared between all Docker daemons and
registries. Most of the data in a container is not needed
to execute the container, so Docker workers only fetch
data lazily from shared storage as needed. For NFS stor-
age, we use a Tintri VMstore server [6]. Docker images
are represented by VMstore’s read-only snapshots. Reg-
istries are no longer used as hosts for layer data, and
are instead used only as name servers that associate im-
age metadata with corresponding snapshots. Pushes and
pulls no longer involve large network transfers; instead,
these operations simply share snapshot IDs. Slacker uses
VMstore snapshot to convert a container into a share-
able image and clone to provision container storage
based on a snapshot ID pulled from the registry. In-
ternally, VMstore uses block-level COW to implement
snapshot and clone efciently.
Slacker’s design is based on our analysis of container

workloads; in particular, the following four design sub-
sections (§5.1 to §5.4) correspond to the previous four
analysis subsections (§4.1 to §4.4). We conclude by
discussing possible modications to the Docker frame-
work itself that would provide better support for non-
traditional storage drivers such as Slacker (§5.5).

5.1 Storage Layers
Our analysis revealed that only 6.4% of the data trans-
ferred by a pull is actually needed before a container can
begin useful work (§4.1). In order to avoid wasting I/O
on unused data, Slacker stores all container data on an
NFS server (a Tintri VMstore) shared by all workers;
workers lazily fetch only the data that is needed. Fig-
ure 16a illustrates the design: storage for each container
is represented as a single NFS le. Linux loopbacks
(§5.4) are used to treat each NFS le as a virtual block
device, which can be mounted and unmounted as a root
le system for a running container. Slacker formats each
NFS le as an ext4 le system.
Figure 16b compares the Slacker stack with the AUFS

stack. Although both use ext4 (or some other local le
system) as a key layer, there are three important differ-
ences. First, ext4 is backed by a network disk in Slacker,
but by a local disk with AUFS. Thus, Slacker can lazily
fetch data over the network, while AUFS must copy all
data to the local disk before container startup.
Second, AUFS does COW above ext4 at the le level

and is thus susceptible to the performance problems
faced by layered le systems (§4.3). In contrast, Slacker
layers are effectively attened at the le level. How-
ever, Slacker still benets from COW by utilizing block-
level COW implemented within VMstore (§5.2). Fur-
thermore, VMstore deduplicates identical blocks inter-
nally, providing further space savings between contain-
ers running on different Docker workers.
Third, AUFS uses different directories of a single ext4

instance as storage for containers, whereas Slacker backs
each container by a different ext4 instance. This differ-
ence presents an interesting tradeoff because each ext4
instance has its own journal. With AUFS, all containers
will share the same journal, providing greater efciency.
However, journal sharing is known to cause priority in-
version that undermines QoS guarantees [48], an impor-
tant feature of multi-tenant platforms such as Docker.
Internal fragmentation [10, Ch. 17] is another potential
problem when NFS storage is divided into many small,
non-full ext4 instances. Fortunately, VMstore les are
sparse, so Slacker does not suffer from this issue.

5.2 VMstore Integration
Earlier, we found that Docker pushes and pulls are quite
slow compared to runs (§4.2). Runs are fast because stor-
age for a new container is initialized from an image using
the COW functionality provided by AUFS. In contrast,
push and pull are slow with traditional drivers because
they require copying large layers between different ma-
chines, so AUFS’s COW functionality is not usable. Un-
like other Docker drivers, Slacker is built on shared stor-
age, so it is conceptually possible to do COW sharing
between daemons and registries.

8
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Figure 17: Push/Pull Timelines. Slacker implements
Diff and ApplyDiff with snapshot and clone operations.

Fortunately, VMstore extends its basic NFS interface
with an auxiliary REST-based API that, among other
things, includes two related COW functions, snapshot
and clone. The snapshot call creates a read-only snap-
shot of an NFS le, and clone creates an NFS le from
a snapshot. Snapshots do not appear in the NFS names-
pace, but do have unique IDs. File-level snapshot and
clone are powerful primitives that have been used to
build more efcient journaling, deduplication, and other
common storage operations [46]. In Slacker, we use
snapshot and clone to implement Diff and Apply-

Diff respectively. These driver functions are respec-
tively called by Docker push and pull operations (§2.2).
Figure 17a shows how a daemon running Slacker in-

teracts with a VMstore and Docker registry upon push.
Slacker asks VMstore to create a snapshot of the NFS
le that represents the layer. VMstore takes the snap-
shot, and returns a snapshot ID (about 50 bytes), in this
case “212”. Slacker embeds the ID in a compressed tar
le and sends it to the registry. Slacker embeds the ID
in a tar for backwards compatibility: an unmodied reg-
istry expects to receive a tar le. A pull, shown in Fig-
ure 17b, is essentially the inverse. Slacker receives a
snapshot ID from the registry, from which it can clone
NFS les for container storage. Slacker’s implementa-
tion is fast because (a) layer data is never compressed or
uncompressed, and (b) layer data never leaves the VM-
store, so only metadata is sent over the network.
The names “Diff” and “ApplyDiff” are slight mis-

nomers given Slacker’s implementation. In particular,
Diff(A, B) is supposed to return a delta from which
another daemon, which already has A, could reconstruct
B. With Slacker, layers are effectively attened at the
namespace level. Thus, instead of returning a delta,
Diff(A, B) returns a reference from which another
worker could obtain a clone of B, with or without A.
Slacker is partially compatible with other daemons

running non-Slacker drivers. When Slacker pulls a tar,
it peeks at the rst few bytes of the streamed tar be-
fore processing it. If the tar contains layer les (instead
of an embedded snapshot), Slacker falls back to simply
decompressing instead cloning. Thus, Slacker can pull
images that were pushed by other drivers, albeit slowly.
Other drivers, however, will not be able to pull Slacker
images, because they will not know how to process the
snapshot ID embedded in the tar le.

5.3 Optimizing Snapshot and Clone
Images often consist of many layers, with over half the
HelloBench data being at a depth of at least nine (§4.3).
Block-level COW has inherent performance advantages
over le-level COW for such data, as traversing block-
mapping indices (which may be attened) is simpler than
iterating over the directories of an underlyingle system.
However, deeply-layered images still pose a challenge

for Slacker. As discussed (§5.2), Slacker layers are at-
tened, so mounting any one layer will provide a complete
view of a le system that could be used by a container.
Unfortunately, the Docker framework has no notion of
attened layers. When Docker pulls an image, it fetches
all the layers, passing each to the driver with ApplyDiff.
For Slacker, the topmost layer alone is sufcient. For 28-
layer images (e.g., jetty), the extra clones are costly.
One of our goals was to work within the existing

Docker framework, so instead of modifying the frame-
work to eliminate the unnecessary driver calls, we opti-
mize them with lazy cloning. We found that the primary
cost of a pull is not the network transfer of the snap-
shot tar les, but the VMstore clone. Although clones
take a fraction of a second, performing 28 of them nega-
tively impacts latency. Thus, instead of representing ev-
ery layer as an NFS le, Slacker (when possible) repre-
sents them with a piece of local metadata that records
a snapshot ID. ApplyDiff simply sets this metadata in-
stead of immediately cloning. If at some point Docker
calls Get on that layer, Slacker will at that point perform
a real clone before the mount.
We also use the snapshot-ID metadata for snapshot

caching. In particular, Slacker implements Create,
which makes a logical copy of a layer (§2.2) with a snap-
shot immediately followed by a clone (§5.2). If many
containers are created from the same image, Createwill
be called many times on the same layer. Instead of do-
ing a snapshot for each Create, Slacker only does it the
rst time, reusing the snapshot ID subsequent times. The
snapshot cache for a layer is invalidated if the layer is
mounted (once mounted, the layer could change, making
the snapshot outdated).
The combination of snapshot caching and lazy cloning

can make Create very efcient. In particular, copying
from a layer A to layer B may only involve copying from
A’s snapshot cache entry to B’s snapshot cache entry,
with no special calls to VMstore. In Figure 2 from the
background section (§2.2), we showed the 10 Create

and ApplyDiff calls that occur for the pull and run of
a simple four-layer image. Without lazy caching and
snapshot caching, Slacker would need to perform 6 snap-
shots (one for each Create) and 10 clones (one for each
Create or ApplyDiff). With our optimizations, Slacker
only needs to do one snapshot and two clones. In step 9,
Create does a lazy clone, but Docker calls Get on the

9
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Figure 18: Loopback Bitmaps. Containers B and C are
started from the same image, A. Bitmaps track differences.

E-init layer, so a real clone must be performed. For step
10, Create must do both a snapshot and clone to pro-
duce and mount layer E as the root for a new container.

5.4 Linux Kernel Modications
Our analysis showed that multiple containers started
from the same image tend to read the same data, suggest-
ing cache sharing could be useful (§4.4). One advantage
of the AUFS driver is that COW is done above an under-
lying le system. This means that different containers
may warm and utilize the same cache state in that under-
lying le system. Slacker does COW within VMstore,
beneath the level of the local le system. This means that
two NFS les may be clones (with a few modications)
of the same snapshot, but cache state will not be shared,
because the NFS protocol is not built around the concept
of COW sharing. Cache deduplication could help save
cache space, but this would not prevent the initial I/O.
It would not be possible for deduplication to realize two
blocks are identical until both are transferred over the
network from the VMstore. In this section, we describe
our technique to achieve sharing in the Linux page cache
at the level of NFS les.
In order to achieve client-side cache sharing between

NFS les, we modify the layer immediately above the
NFS client (i.e., the loopback module) to add awareness
of VMstore snapshots and clones. In particular, we use
bitmaps to track differences between similar NFS les.
All writes to NFS les are via the loopback module,
so the loopback module can automatically update the
bitmaps to record new changes. Snapshots and clones
are initiated by the Slacker driver, so we extend the loop-
back API so that Slacker can notify the module of COW
relationships between les.
Figure 18 illustrates the techniquewith a simple exam-

ple: two containers, B and C, are started from the same
image, A. When starting the containers, Docker rst cre-
ates two init layers (B-init and C-init) from the base (A).
Docker creates a few small init les in these layers. Note
that the “m” is modied to an “x” and “y” in the init lay-
ers, and that the zeroth bits are ipped to “1” to mark the
change. Docker the creates the topmost container layers,
B and C from B-init and C-init. Slacker uses the new
loopback API to copy the B-init and C-init bitmaps to B
and C respectively. As shown, the B and C bitmaps ac-
cumulate more mutations as the containers run and write

data. Docker does not explicitly differentiate init layers
from other layers as part of the API, but Slacker can in-
fer layer type because Docker happens to use an “-init”
sufx for the names of init layers.
Now suppose that container B reads block 3. The

loopback module sees an unmodied “0” bit at position
3, indicating block 3 is the same in les B and A. Thus,
the loopback module sends the read to A instead of B,
thus populating A’s cache state. Now suppose C reads
block 3. Block 3 of C is also unmodied, so the read is
again redirected to A. Now, C can benet from the cache
state of A, which B populated with its earlier read.
Of course, for blocks where B and C differ from A, it

is important for correctness that reads are not redirected.
Suppose B reads block 1 and then C reads from block
1. In this case, B’s read will not populate the cache since
B’s data differs fromA. Similarly, suppose B reads block
2 and then C reads from block 2. In this case, C’s read
will not utilize the cache since C’s data differs from A.
5.5 Docker Framework Discussion
One our goals was to make no changes to the Docker
registry or daemon, except within the pluggable stor-
age driver. Although the storage-driver interface is quite
simple, it proved sufcient for our needs. There are,
however, a few changes to the Docker framework that
would have enabled a more elegant Slacker implementa-
tion. First, it would be useful for compatibility between
drivers if the registry could represent different layer for-
mats (§5.2). Currently, if a non-Slacker layer pulls a
layer pushed by Slacker, it will fail in an unfriendly way.
Format tracking could provide a friendly error message,
or, ideally, enable hooks for automatic format conver-
sion. Second, it would be useful to add the notion of
attened layers. In particular, if a driver could inform the
framework that a layer is at, Docker would not need to
fetch ancestor layers upon a pull. This would eliminate
our need for lazy cloning and snapshot caching (§5.3).
Third, it would be convenient if the framework explicitly
identied init layers so Slacker would not need to rely on
layer names as a hint (§5.4).

6 Evaluation
We use the same hardware for evaluation as we did for
our analysis (§4). For a fair comparison, we also use the
same VMstore for Slacker storage that we used for the
virtual disk of the VM running the AUFS experiments.
6.1 HelloBench Workloads
Earlier, we saw that with HelloBench, push and pull
times dominate while run times are very short (Figure 9).
We repeat that experiment with Slacker, presenting the
new results alongside the AUFS results in Figure 19. On
average, the push phase is 153× faster and the pull phase
is 72× faster, but the run phase is 17% slower (the AUFS
pull phase warms the cache for the run phase).

10



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 191

0
30
60
90

120
150
180
210

Ti
m

e 
(S

ec
on

ds
)

A
A

A
A

A

A A

S S S S
S

S S
distro db language web

server
web
fwk

other ALL

push
run
pull

Figure 19: AUFS vs. Slacker (Hello). Average push, run,
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Figure 20: Slacker Speedup. The ratio of AUFS-driver
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HelloBench workloads. Median and 90th-percentile speedups
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Different Docker operations are utilized in different
scenarios. One use case is the development cycle: after
each change to code, a developer pushes the application
to a registry, pulls it to multiple worker nodes, and then
runs it on the nodes. Another is the deployment cycle:
an infrequently-modied application is hosted by a reg-
istry, but occasional load bursts or rebalancing require a
pull and run on new workers. Figure 20 shows Slacker’s
speedup relative to AUFS for these two cases. For the
median workload, Slacker improves startup by 5.3× and
20× for the deployment and development cycles respec-
tively. Speedups are highly variable: nearly all work-
loads see at least modest improvement, but 10% of work-
loads improve by at least 16× and 64× for deployment
and development respectively.

6.2 Long-Running Performance
In Figure 19, we saw that while pushes and pulls are
much faster with Slacker, runs are slower. This is ex-
pected, as runs start before any data is transferred, and
binary data is only lazily transferred as needed. We now
run several long-running container experiments; our goal
is to show that once AUFS is done pulling all image data
and Slacker is done lazily loading hot image data, AUFS
and Slacker have equivalent performance.
For our evaluation, we select two databases and two

web servers. For all experiments, we execute for ve
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Figure 21: Long-Running Workloads. Left: the ratio
of Slacker’s to AUFS’s throughput is shown; startup time is in-
cluded in the average. Bars are labeled with Slacker’s average
operations/second. Right: startup delay is shown.

minutes, measuring operations per second. Each exper-
iment starts with a pull. We evaluate the PostgreSQL
database using pgbench, which is “loosely based on
TPC-B” [5]. We evaluate Redis, an in-memory database,
using a custom benchmark that gets, sets, and updates
keys with equal frequency. We evaluate the Apache web
server, using the wrk [4] benchmark to repeatedly fetch a
static page. Finally, we evaluate io.js, a JavaScript-based
web server similar to node.js, using the wrk benchmark
to repeatedly fetch a dynamic page.
Figure 21a shows the results. AUFS and Slacker

usually provide roughly equivalent performance, though
Slacker is somewhat faster for Apache. Although the
drivers are similar with regard to long-term performance,
Figure 21b shows Slacker containers start processing re-
quests 3-19× sooner than AUFS.
6.3 Caching
We have shown that Slacker provides much faster startup
times relative to AUFS (when a pull is required) and
equivalent long-term performance. One scenario where
Slacker is at a disadvantage is when the same short-
running workload is run many times on the same ma-
chine. For AUFS, the rst run will be slow (as a pull
is required), but subsequent runs will be fast because
the image data will be stored locally. Moreover, COW
is done locally, so multiple containers running from the
same start image will benet from a shared RAM cache.
Slacker, on the other hand, relies on the Tintri VM-

store to do COW on the server side. This design enables
rapid distribution, but one downside is that NFS clients
are not naturally aware of redundancies between les
without our kernel changes. We compare our modied
loopback driver (§5.4) to AUFS as a means of sharing
cache state. To do so, we run each HelloBench work-
load twice, measuring the latency of the second run (af-
ter the rst has warmed the cache). We compare AUFS
to Slacker, with and without kernel modications.
Figure 22 shows a CDF of run times for all the work-

loads with the three systems (note: these numbers were
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collected with a VM running on a ProLiant DL360p
Gen8). Although AUFS is still fastest (with median runs
of 0.67 seconds), the kernel modications signicantly
speed up Slacker. The median run time of Slacker alone
is 1.71 seconds; with kernel modications to the loop-
back module it is 0.97 seconds. Although Slacker avoids
unnecessary network I/O, the AUFS driver can directly
cache ext4 le data, whereas Slacker caches blocks be-
neath ext4, which likely introduces some overhead.

6.4 Scalability
Earlier (§4.2), we saw that AUFS scales poorly for
pushes and pulls with regard to image size and the num-
ber of images beingmanipulated concurrently. We repeat
our earlier experiment (Figure 10) with Slacker, again
creating synthetic images and pushing or pulling varying
numbers of these concurrently.
Figure 23 shows the results: image size no longer mat-

ters as it does for AUFS. Total time still correlates with
the number of images being processed simultaneously,
but the absolute times are much better; even with 32 im-
ages, push and pull times are at most about two seconds.
It is also worth noting that push times are similar to pull
times for Slacker, whereas pushes were much more ex-
pensive for AUFS. This is because AUFS uses compres-
sion for its large data transfers, and compression is typi-
cally more costly than decompression.
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Figure 24: GCC Version Testing. Left: run time of a
C program doing vector arithmetic. Each point represents per-
formance under a different GCC release, from 4.8.0 (Mar ‘13)
to 5.3 (Dec ‘15). Releases in the same series have a common
style (e.g., 4.8-series releases are solid gray). Right: perfor-
mance of MultiMake is shown for both drivers. Time is broken
into pulling the image, running the image (compiling), testing
the binaries, and deleting the images from the local daemon.

7 Case Study: MultiMake
When starting Dropbox, Drew Houston (co-founder and
CEO) found that building a widely-deployed client in-
volved a lot of “grungy operating-systemswork” to make
the code compatible with the idiosyncrasies of various
platforms [18]. For example, some bugs would only
manifest with the Swedish version of Windows XP Ser-
vice Pack 3, whereas other very similar deployments
(including the Norwegian version) would be unaffected.
One way to avoid some of these bugs is to broadly
test software in many different environments. Several
companies provide containerized integration-testing ser-
vices [33, 39], including for fast testing of web applica-
tions against dozens of releases of of Chrome, Firefox,
Internet Explorer, and other browsers [36]. Of course,
the breadth of such testing is limited by the speed at
which different test environments can be provisioned.
We demonstrate the usefulness of fast container pro-

visioning for testing with a new tool, MultiMake. Run-
ning MultiMake on a source directory builds 16 different
versions of the target binary using the last 16 GCC re-
leases. Each compiler is represented by a Docker im-
age hosted by a central registry. Comparing binaries
has many uses. For example, certain security checks
are known to be optimized away by certain compiler re-
leases [44]. MultiMake enables developers to evaluate
the robustness of such checks across GCC versions.
Another use for MultiMake is to evaluate the perfor-

mance of code snippets against different GCC versions,
which employ different optimizations. As an example,
we use MultiMake on a simple C program that does 20M
vector arithmetic operations, as follows:

for (int i=0; i<256; i++) {

a[i] = b[i] + c[i] * 3;

}

12
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Figure 24a shows the result: most recent GCC re-
leases optimize the vector operations well, but the but
the code generated by the 4.6- and 4.7-series compilers
takes about 50% longer to execute. GCC 4.8.0 produces
fast code, even though it was released before some of the
slower 4.6 and 4.7 releases, so some optimizations were
clearly not backported. Figure 24b shows that collecting
this data is 9.5× faster with Slacker (68 seconds) than
with the AUFS driver (646 seconds), as most of the time
is spent pulling with AUFS. Although all the GCC im-
ages have a common Debian base (which must only be
pulled once), the GCC installations represent most of the
data, which AUFS pulls every time. Cleanup is another
operation that is more expensive for AUFS than Slacker.
Deleting a layer in AUFS involves deleting thousands of
small ext4 les, whereas deleting a layer in Slacker in-
volves deleting one large NFS le.
The ability to rapidly run different versions of code

could benet other tools beyond MultiMake. For ex-
ample, git bisect nds the commit that introduced
a bug by doing a binary search over a range of com-
mits [23]. Alongside container-based automated build
systems [35], a bisect tool integrated with Slacker could
very quickly search over a large number of commits.

8 Related Work
Work optimizing the multi-deployment of disk images is
similar to ours, as the ext4-formatted NFS les used by
Slacker resemble virtual-disk images. Hibler et al. [16]
built Frisbee, a system that optimizes differential image
updates by using techniques based on le-system aware-
ness (e.g., Frisbee does not consider blocks that are un-
used by the le system). Wartel et al. [45] compare
multiple methods of lazily distributing virtual-machine
images from a central repository (much like a Docker
registry). Nicolae et al. [28] studied image deployment
and found “prepropagation is an expensive step, espe-
cially since only a small part of the initial VM is actu-
ally accessed.” They further built a distributed le sys-
tem for hosting virtual machine images that supports lazy
propagation of VM data. Zhe et al. [50] built Twinkle,
a cloud-based platform for web applications that is de-
signed to handle “ash crowd events.” Unfortunately,
virtual-machines tend to be heavyweight, as they note:
“virtual device creation can take a few seconds.”
Various cluster management tools provide con-

tainer scheduling, including Kubernetes [2], Google’s
Borg [41], Facebook’s Tupperware [26], Twitter’s Au-
rora [21], and Apache Mesos [17]. Slacker is comple-
mentary to these systems; fast deployment gives cluster
managers more exibility, enabling cheap migration and
ne-tuned load balancing.
A number of techniques bear resemblance to our strat-

egy for sharing cache state and reducing redundant I/O.

VMware ESX server [43] and Linux KSM [9] (Kernel
Same-pageMerging) both scan and deduplicate memory.
While this technique saves cache space, it does not pre-
vent initial I/O. Xingbo et al. [47] also observed the prob-
lem where reads to multiple nearly identical les cause
avoidable I/O. They modied btrfs to index cache pages
by disk location, thus servicing some block reads issued
by btrfs with the page cache. Sapuntzakis et al. [32] use
dirty bitmaps for VM images to identify a subset of the
virtual-disk image blocks that must be transferred during
migration. Lagar-Cavilla et al. [20] built a “VM fork”
function that rapidly creates many clones of a running
VM. Data needed by one clone is multicast to all the
clones as a means of prefetch. Slacker would likely ben-
et from similar prefetching.

9 Conclusions
Fast startup has applications for scalable web services,
integration testing, and interactive development of dis-
tributed applications. Slacker lls a gap between two so-
lutions. Containers are inherently lightweight, but cur-
rent management systems such as Docker and Borg are
very slow at distributing images. In contrast, virtual ma-
chines are inherently heavyweight, but multi-deployment
of virtual machine images has been thoroughly studied
and optimized. Slacker provides highly efcient deploy-
ment for containers, borrowing ideas from VM image-
management, such as lazy propagation, as well as intro-
ducing new Docker-specic optimizations, such as lazy
cloning. With these techniques, Slacker speeds up the
typical deployment cycle by 5× and development cycle
by 20×. HelloBench and a snapshot [15] of the images
we use for our experiments in this paper are available
online: https://github.com/Tintri/hello-bench
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Abstract

In a data center, an IO from an application to distributed

storage traverses not only the network, but also several

software stages with diverse functionality. This set of or-

dered stages is known as the storage or IO stack. Stages

include caches, hypervisors, IO schedulers, file systems,

and device drivers. Indeed, in a typical data center, the

number of these stages is often larger than the number of

network hops to the destination. Yet, while packet rout-

ing is fundamental to networks, no notion of IO routing

exists on the storage stack. The path of an IO to an end-

point is predetermined and hard-coded. This forces IO

with different needs (e.g., requiring different caching or

replica selection) to flow through a one-size-fits-all IO

stack structure, resulting in an ossified IO stack.

This paper proposes sRoute, an architecture that pro-

vides a routing abstraction for the storage stack. sRoute

comprises a centralized control plane and “sSwitches”

on the data plane. The control plane sets the forward-

ing rules in each sSwitch to route IO requests at runtime

based on application-specific policies. A key strength of

our architecture is that it works with unmodified appli-

cations and VMs. This paper shows significant benefits

of customized IO routing to data center tenants (e.g., a

factor of ten for tail IO latency, more than 60% better

throughput for a customized replication protocol and a

factor of two in throughput for customized caching).

1 Introduction

An application’s IO stack is rich in stages providing

compute, network, and storage functionality. These

stages include guest OSes, file systems, hypervisors, net-

work appliances, and distributed storage with caches and

schedulers. Indeed, there are over 18+ types of stages

on a typical data center IO stack [53]. Furthermore,

most IO stacks support the injection of new stages with

new functionality using filter drivers common in most

OSes [18, 34, 38], or appliances over the network [48].

Controlling or programming how IOs flow through

this stack is hard if not impossible, for tenants and ser-

vice providers alike. Once an IO enters the system, the

path to its endpoint is pre-determined and static. It must

pass through all stages on the way to the endpoint. A new

stage with new functionality means a longer path with

added latency for every IO. As raw storage and network-

ing speeds improve, the length of the IO stack is increas-

ingly becoming a new bottleneck [43]. Furthermore, the

IO stack stages have narrow interfaces and operate in iso-

lation. Unlocking functionality often requires coordinat-

ing the functionality of multiple such stages. These rea-

sons lead to applications running on a general-purpose

IO stack that cannot be tuned to any of their specific

needs, or to one-off customized implementations that re-

quire application and system rewrite.

This paper’s main contribution is experimenting with

applying a well-known networking primitive, routing, to

the storage stack. IO routing provides the ability to dy-

namically change the path and destination of an IO, like

a read or write, at runtime. Control plane applications

use IO routing to provide customized data plane func-

tionality for tenants and data center services.

Consider three specific examples of how routing is

useful. In one example, a load balancing service selec-

tively routes write requests to go to less-loaded servers,

while ensuring read requests are always routed to the

latest version of the data (§5.1). In another example, a

control application provides per-tenant throughput ver-

sus latency tradeoffs for replication update propagation,

by using IO routing to set a tenant’s IO read- and write-

set at runtime (§5.2). In a third example, a control appli-

cation can route requests to per-tenant caches to maintain

cache isolation (§5.3).

IO routing is challenging because the storage stack is

stateful. Routing a write IO through one path to end-

point A and a subsequent read IO through a different

path or to a different endpoint B needs to be mindful of

application consistency needs. Another key challenge is

1
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data plane efficiency. Changing the path of an IO at run-

time requires determining where on the data plane to in-

sert sSwitches to minimize the number of times an IO tra-

verses them, as well as to minimize IO processing times.

sRoute’s approach builds on the IOFlow storage ar-

chitecture [53]. IOFlow already provides a separate

control plane for storage traffic and a logically central-

ized controller with global visibility over the data center

topology. As an analogy to networking, sRoute builds

on IOFlow just like software-defined networking (SDN)

functions build on OpenFlow [35]. IOFlow also made

a case for request routing. However, it only explored

the concept of bypassing stages along the IO path, and

did not consider the full IO routing spectrum where the

path and endpoint can also change, leading to consis-

tency concerns. This paper provides a more complete

routing abstraction.

This paper makes the following contributions:

• We propose an IO routing abstraction for the IO stack.

• sRoute provides per-IO and per-flow routing configu-

ration updates with strong semantic guarantees.

• sRoute provides an efficient control plane. It does so

by distributing the control plane logic required for IO

routing using delegate functions.

• We report on our experience in building three con-

trol applications using IO routing: tail latency control,

replica set control, and file caching control.

The results of our evaluation demonstrate that data

center tenants benefit significantly from IO stack cus-

tomization. The benefits can be provided to today’s un-

modified tenant applications and VMs. Furthermore,

writing specialized control applications is straightfor-

ward because they use a common IO routing abstraction.

2 Routing types and challenges

The data plane, or IO stack comprises all the stages an

IO request traverses from an application until it reaches

its destination. For example, a read to a file will tra-

verse a guest OS’ file system, buffer cache, scheduler,

then similar stages in the hypervisor, followed by OSes,

file systems, caches and device drivers on remote storage

servers. We define per-IO routing in this context as the

ability to control the IO’s endpoint as well as the path to

that endpoint. The first question is what the above defi-

nition means for storage semantics. A second question is

whether IO routing is a useful abstraction.

To address the first question, we looked at a large set

of storage system functionalities and distilled from them
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Figure 1: Three types of IO routing: endpoint, way-

point and scatter. p,r refer to sources such as VMs or

containers. X ,Y,Z are endpoints such as files. W rep-

resents a waypoint stage with specialized functional-

ity, for example a file cache or scheduler.

Functionality How IO routing helps

E Tail latency control Route IO to less loaded servers

Copy-on-write Route writes to new location

File versioning Route IO to right version

W Cache size guarantee Route IO to specialized cache

Deadline policies Route IO to specialized scheduler

S Maximize throughput Route reads to all replicas

Minimize latency Route writes to replica subset

Logging/Debugging Route selected IOs to loggers

Table 1: Examples of specialized functionality and

the type of IO routing (E)ndpoint, (W)aypoint and

(S)catter that enables them.

three types of IO routing that make sense semantically in

the storage stack. Figure 1 illustrates these three types.

In endpoint routing, IO from a source p to a destination

file X is routed to another destination file Y . In waypoint

routing, IOs from sources p and r to a file X are first

routed to a specialized stage W . In scatter routing, IOs

from p and r are routed to a subset of data replicas.

This paper makes the case that IO routing is a useful

abstraction. We show that many specialized functions

on the storage stack can be recast as routing problems.

Our hypothesis when we started this work was that, be-

cause routing is inherently programmable and dynamic,

we could substitute hard-coded one-off implementations

with one common routing core. Table 1 shows a diverse

set of such storage stack functionalities, categorized ac-

cording to the type of IO routing that enables them.

Endpoint routing. Routes IO from a single-source

application p to a file X to another file Y . The timing

of the routing and operation semantics is dictated by the

control logic. For example, write requests could go to the

new endpoint and reads could be controlled to go to the

old or new endpoints. Endpoint routing enables func-

tionality such as improving tail latency [14, 41], copy-

on-write [21, 42, 46], file versioning [37], and data re-

encoding [1]. These policies have in common the need

2
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for a dynamic mechanism that changes the endpoint of

new data and routes IO to the appropriate endpoint. Sec-

tion §5.1 shows how we implement tail latency control

using endpoint routing.

Waypoint routing. Routes IO from a multi-source ap-

plication {p,r} to a file X through an intermediate way-

point stage W . W could be a file cache or scheduler.

Waypoint routing enables specialized appliance process-

ing [48]. These policies need a dynamic mechanism to

inject specialized waypoint stages or appliances along

the stack and to selectively route IO to those stages. Sec-

tion §5.3 shows how we implement file cache control us-

ing waypoint routing.

Scatter routing. Scatters IO from file X to additional

endpoints Y and Z. The control logic dictates which sub-

set of endpoints to read data from and write data to. Scat-

ter routing enables specialized replication and erasure

coding policies [33, 51] These policies have in common

the need for a dynamic mechanism to choose which end-

point to write to and read from. This control enables

programmable tradeoffs around throughput and update

propagation latency. Section §5.2 shows how we imple-

ment replica set control using scatter routing.

2.1 Challenges

IO routing is challenging for several reasons:

Consistent system-wide configuration updates. IO

routing requires a control-plane mechanism for changing

the path of an IO request. The mechanism needs to co-

ordinate the forwarding rules in each sSwitch in the data

plane. Any configuration changes must not lead to sys-

tem instability, where an IO’s semantic guarantees are

violated by having it flow through an incorrect path.

Metadata consistency. IO routing allows read and

write IOs to be sent to potentially different endpoints.

Several applications benefit from this flexibility. Some

applications, however, have stricter consistency require-

ments and require, for example, that a read always fol-

low the path of a previous write. A challenge is keeping

track of the data’s latest location. Furthermore, IO rout-

ing metadata needs to coexist consistently with metadata

in the rest of the system. The guest file system, for exam-

ple, has a mapping of files to blocks and the hypervisor

has a mapping of blocks to virtual disks on an (often)

remote storage backend. The backend could be a dis-

tributed system of its own with a metadata service map-

ping files or chunks to file systems to physical drives.

File system semantics. Some file system functional-

ity (such as byte-range file locking when multiple clients

access the same file) depends on consulting file system

state to determine the success and semantics of individ-

ual IO operations. The logic and state that dictates the

semantics of these operations resides inside the file sys-

tem, at the destination endpoint of these IOs. IO routing

needs to maintain the same file system functionality and

semantics in the storage stack.

Efficiency. Providing IO stack customization requires

a different way of building specialized functionality. We

move away from an architecture that hard-codes func-

tionality on the IO stack to an architecture that dynami-

cally directs IOs to specialized stages. Any performance

overheads incurred must be minimal.

3 Design

Figure 2 shows sRoute’s architecture. It is composed of

sSwitches on the data plane, that change the route of

IOs according to forwarding rules. sSwitches are pro-

grammable through a simple API with four calls shown

in Table 2. The sSwitches forward IOs to other file desti-

nations, the controller, or to specialized stages (e.g., one

that implements a particular caching algorithm). A con-

trol plane with a logically-centralized controller speci-

fies the location of the sSwitches and inserts forwarding

rules in them. Specialized stages take an IO as an input,

perform operations on its payload and return the IO back

to the sSwitch for further forwarding.

3.1 Baseline architecture

The baseline system architecture our design builds on is

that of an enterprise data center. Each tenant is allocated

VMs or containers1 and runs arbitrary applications or

services in them. Network and storage are virtualized

and VMs are unaware of their topology and properties.

The baseline system is assumed to already have sep-

arate control and data planes and builds on the IOFlow

architecture [53]. That architecture provides support for

flow-based classification and queuing and communica-

tion of basic per-flow statistics to a controller.

3.2 Design goals

sRoute’s design targets several goals. First, we want a so-

lution that does not involve application or VM changes.

Applications have limited visibility of the data center’s

IO stack. This paper takes the view that data center

services are better positioned for IO stack customiza-

tion. These are then exposed to applications through new

1This paper’s implementation uses VMs.

3
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Figure 2: System architecture. sSwitches can route

IO within a physical machine’s IO stack and across

machines over the network.

types of service level agreements (SLA), e.g., guarantee-

ing better throughput and latency. Second, data-plane

performance overheads should be minimal. Third, the

control plane should be flexible and allow for a diverse

set of application policies.

The rest of this section focuses on the sSwitches and

the control plane interfaces to them. Section 5 focuses

on control applications. Figure 3 provides the construct

definitions used in the rest of the paper.

3.3 sSwitches on the data plane

An sSwitch is a special stage that is inserted into the

IO stack (data plane) to provide IO routing. An sS-

witch forwards IO according to rules specified by the

control plane. A forwarding rule contains two parts: an

IO header and an action or delegate function2. IO pack-

ets are matched against the IO header, and the associ-

ated delegate in the first successful rule match executes

(hence, the order of installed rules matters). In the sim-

plest form, this delegate returns a set of stages where the

IO should next be directed. For example, routing all traf-

fic from V M1 for file X on server S1 to file Y on server S2

can be represented with this rule:

1: <V M1,∗, //S1/X >→ (return < IO, //S2/Y >)

An sSwitch implements four control plane API calls

as shown in Table 2. The APIs allow the control plane

to Insert a forwarding rule, or Delete it. Rules can

be changed dynamically by two entities on the control

plane: the controller, or a control Delegate function.

As defined in Figure 3, the IO header is a tuple con-

taining the source of an IO, the operation, and the file

2The reason the second part of the rule is a function (as opposed to

simply a set of routing locations) is for control plane efficiency in some

situations, as is explained further in this section.

Insert (IOHeader, Delegate)

Creates a new fwd. rule matching the IO header,

using dynamic control delegate to look up destination

Delete (IOHeader)

Deletes all rules matching the header

Quiesce (IOHeader, Boolean)

Blocks or unblocks incoming IO matching IO header

when Boolean is true or false respectively

Drain (IOHeader)

Drains all pending IOs matching the IO header

Table 2: Control API to the sSwitch.

Rule := IOHeader → Delegate(IOHeader)
IOHeader := < Source,Operation,File >
Delegate := F(IOHeader);return{Detour}

Source := Unique Security Identifier

Operation := read|write|create|delete

File := < FileName,O f f set,Length >
Detour := < IO|IOHeader,DetourLoc >
DetourLoc := File|Stage|Controller

Stage := < HostName,DriverName >
F := Restricted code

Figure 3: Construct definitions.

affected. The source of an IO can be a process or a

VM uniquely authenticated through a security identifier.

The destination is a file in a (possibly remote) share or

directory. Building on IOFlow’s classification mecha-

nism [53] allows an sSwitch to have visibility over all the

above and other relevant IO header entries at any point in

the IO stack (without IOFlow, certain header entries such

as the source, could be lost or overwritten as IO flows

through the system).

The operation can be one of read, write, create or

delete. Wildcards and longest prefix matching can be

used to find a match on the IO header. A default match

rule sends an IO to its original destination. A detour loca-

tion could be a file (e.g., another file on a different server

from the original IO’s destination), a stage on the path

to the endpoint (example rule 1 below), or the central-

ized controller (example rule 2 below that sends the IO

header for all writes from V M2 to the controller):

1: <V M1,∗, //S1/X >→ (return < IO, //S2/C >)
2: <V M2,w,∗>→ (return < IOHeader, Controller >)

The sSwitch is responsible for transmitting the full IO

or just its header to a set of stages. The response does

not have to flow through the same path as the request, as

4
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long as it reaches the initiating source3.

Unlike in networking, the sSwitch needs to perform

more work than just forwarding. It also needs to pre-

pare the endpoint stages to accept IO, which is unique to

storage. When a rule is first installed, the sSwitch needs

to open a file connection to the endpoint stages, in an-

ticipation of IO arriving. The sSwitch needs to create

it and take care of any namespace conflicts with exist-

ing files (§4). Open and create operations are expensive

synchronous metadata operations. There is an inherent

tradeoff between lazy file creation upon the first IO arriv-

ing and file creation upon rule installation. The former

avoids unnecessarily creating files for rules that do not

have any IO matching them, but upon a match the first

IO incurs a large latency. The latter avoids the latency

but could create several empty files. The exact tradeoff

penalties depend on the file systems used. By default

this paper implements the latter, but ideally this decision

would also be programmable (but it is not so yet.)

sSwitches implement two additional control plane

APIs. A Quiesce call is used to block any further re-

quests with the same IO header from propagating fur-

ther. The implementation of this call builds on the lower-

level IOFlow API that sets the token rate on a queue [53].

Drain is called on open file handles to drain any pend-

ing IO requests downstream. Both calls are synchronous.

These calls are needed to change the path of IOs in a con-

sistent manner, as discussed in the next section.

3.4 Controller and control plane

A logically centralized controller has global visibility

over the stage topology of the data center. This topol-

ogy comprises of all physical servers, network and stor-

age components as well as the software stages within a

server. Maintaining this topology in a fault-tolerant man-

ner is already feasible today [24].

The controller is responsible for three tasks. First, it

takes a high level tenant policy and translates it into sS-

witch API calls. Second, it decides where to insert the

sSwitches and specialized stages in the IO stack to im-

plement the policy. Third, it disseminates the forwarding

rules to the sSwitches. We show these tasks step-by-step

for two simple control applications below.

The first control application directs a tenant’s IO to a

specialized file cache. This policy is part of a case study

detailed in Section 5.3. The tenant is distributed over

10 VMs on 10 different hypervisors and accesses a read-

only dataset X . The controller forwards IO from this set

3sSwitches cannot direct IO responses to sources that did not ini-

tiate the IO. Finding scenarios that need such source routing and the

mechanism for doing so is future work.

of VMs to a specialized cache C residing on a remote ma-

chine connected to the hypervisors through a fast RDMA

network. The controller knows the topology of the data

paths from each VM to C and injects sSwitches at each

hypervisor. It then programs each sSwitch as follows:

1: for i ← 1,10 do

2: Quiesce (<V Mi, *, //S1/X>, true)

3: Drain (<V Mi, *, //S1/X>)

4: Insert (<V Mi, *, //S1/X>, (return <IO, //server S2/C>))

5: Quiesce (<V Mi, *, //S1/X>, false)

The first two lines are needed to complete any IOs in-

flight. This is done so that the sSwitch does not need to

keep any extra metadata to know which IOs are on the

old path. That metadata would be needed, for example,

to route a newly arriving read request to the old path

since a previous write request might have been buffered

in an old cache on that path. The delegate in line 4 simply

returns the cache stage. The controller also injects an

sSwitch at server S2 where the specialized cache resides,

so that any requests that miss in cache are sent further to

the file system of server S1. The rule at S2 matches IOs

from C for file X and forwards them to server S1:

1: Insert (<C, *, //S1/X>, (return <IO, //S1/X>))

The second control application improves a tenant’s tail

latency and illustrates a more complex control delegate.

The policy states that queue sizes across servers should

be balanced. This policy is part of a case study detailed in

Section 5.1. When a load burst arrives at a server S1 from

a source V M1 the control application decides to tem-

porarily forward that load to a less busy server S2. The

controller can choose to insert an sSwitch in the V M1’s

hypervisor or at the storage server S1. The latter means

that IOs go to S1 as before and S1 forwards them to S2.

To avoid this extra network hop the controller chooses

the former. It then calls the following functions to insert

rules in the sSwitch:

1: Insert (<VM1, w, //S1/X>, (F(); return <IO, //S2/X>))

2: Insert (<VM1, r, //S1/X>, (return <IO, //S1/X>))

The rules specify that writes “w” are forwarded to

the new server, whereas reads “r” are still forwarded to

the old server. This application demands that reads re-

turn the latest version of the data. When subsequently

a write for the first 512KB of data arrives4, the dele-

gate function updates the read rule through function F()
whose body is shown below:

1: Delete (<VM1, r, //S1/X>)

2: Insert (<VM1, r, //S1/X,0,512KB >, (return <IO, //S2/X>))

3: Insert (<VM1, r, //S1/X>, (return <IO, //S1/X>)

Note that quiescing and draining are not needed in this

4The request’s start offset and data length are part of the IO header.
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scenario since the sSwitch is keeping the metadata nec-

essary (in the form of new rules) to route a request cor-

rectly. A subsequent read for a range between 0 and

512KB will match the rule in line 2 and will be sent to

S2. Note that sSwitch matches on byte ranges as well,

so a read for a range between 0 and 1024KB will be

now split into two reads. The sSwitch maintains enough

buffer space to coalesce the responses.

3.4.1 Delegates

The above examples showed instances of control dele-

gates. Control delegates are restricted control plane func-

tions that are installed at sSwitches for control plane ef-

ficiency. In the second example above, the path of an IO

depends on the workload. Write requests can potentially

change the location of a subsequent read. One way to

handle this would be for all requests to be sent by the sS-

witch to the controller using the following alternate rules

and delegate function:

1: Insert (<VM1, w, //S1/X>, (return <IO, Controller>))

2: Insert (<VM1, r, //S1/X>, (return <IO, Controller>))

The controller would then serialize and forward them

to the appropriate destination. Clearly, this is inefficient,

bottlenecking the IO stack at the controller. Instead, the

controller uses restricted delegate functions that make

control decisions locally at the sSwitches.

This paper assumes a non-malicious controller, how-

ever the design imposes certain functionality restrictions

on the delegates to help guard against accidental errors.

In particular, delegate functions may only call the APIs

in Table 2 and may not otherwise keep or create any other

state. They may insert or delete rules, but may not rewrite

the IO header or IO data. That is important since the IO

header contains entries such as source security descrip-

tor that are needed for file access control to work in the

rest of the system. These restrictions allow us to con-

sider the delegates as a natural extension of the central-

ized controller. Simple programming language checks

and passing the IO as read-only to the delegate enforce

these restrictions. As part of future work we intend to

explore stronger verification of control plane correctness

properties, much like similar efforts in networking [27].

3.5 Consistent rule updates

Forwarding rule updates could lead to instability in the

system. This section introduces the notion of consis-

tent rule updates. These updates preserve well-defined

storage-specific properties. Similar to networking [45]

storage has two different consistency requirements: per-

IO and per-flow.

Per-IO consistency. Per-IO consistent updates re-

quire that each IO flows either through an old set of rules

or an updated set of rules, but not through a stack that is

composed of old and new paths. The Quiesce and Drain

calls in the API in Table 2 are sufficient to provide per-IO

consistent updates.

Per-flow consistency. Many application require a

stream of IOs to behave consistently. For example, an

application might require that a read request obtains

the data from the latest previous write request. In

cases where the same source sends both requests, then

per-IO consistency also provides per-flow consistency.

However, the second request can arrive from a differ-

ent source, like a second VM in the distributed system.

In several basic scenarios, it is sufficient for the central-

ized controller to serialize forwarding rule updates. The

controller disseminates the rules to all sSwitches in two

phases. In the first phase, the controller quiesces and

drains requests going to the old paths and, in the second

phase, the controller updates the forwarding rules.

However, a key challenge are scenarios where dele-

gate functions create new rules. This complicates update

consistency since serializing these new rules through the

controller is inefficient when rules are created frequently

(e.g., for every write request). In these cases, control

applications attempt to provide all serialization through

the sSwitches themselves. They do so as follows. First,

they consult the topology map to identify points of seri-

alization along the IO path. The topology map identifies

common stages among multiple IO sources on their IO

stack. For example, if two clients are reading and writing

to the same file X , the control application has the option

of inserting two sSwitches with delegate functions close

to the two sources to direct both clients’ IOs to Y . This

option is shown in Figure 4(a). The sSwitches would

then need to use two-phase commit between themselves

to keep rules in sync, as shown in the Figure. This local-

izes updates to participating sSwitches, thus avoiding the

need for the controller to get involved.

A second option would be to insert a single sSwitch

close to X (e.g., at the storage server) that forwards IO to

Y . This option is shown in Figure 4(b). A third option

would be to insert an sSwitch at Y that forwards IO back

to X if the latest data is not on Y . This type of forward-

ing rule can be thought of as implementing backpointers.

Note that two additional sSwitches are needed close to

the source to forward all traffic, i.e., reads and writes, to

Y , however these sSwitches do not need to perform two-

phase commit. The choice between the last two options

6
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Figure 4: Three possible options for placing sSwitches

for consistent rule updates. Either can be chosen pro-

grammatically at runtime.

depends on the workload. If the control application ex-

pects that most IO will go to the new file the third option

would eliminate an extra network hop.

3.6 Fault tolerance and availability

This section analyzes new potential risks on fault toler-

ance and availability induced by our system. Data con-

tinues to be N-way replicated for fault tolerance and its

fault tolerance is the same as in the original system.

First, the controller service is new in our architecture.

The service can be replicated for availability using stan-

dard Paxos-like techniques [31]. If the controller is tem-

porarily unavailable, the implication on the rest of the

system is at worst slower performance, but correctness is

not affected. For example, IO that matches rules that re-

quire transmission to the controller will be blocked until

the controller recovers.

Second, our design introduces new metadata in the

form of forwarding rules at sSwitches. It is a design goal

to maintain all state at sSwitches as soft-state to simplify

recovery — also there are cases where sSwitches do not

have any local storage available to persist data. The con-

troller itself persists all the forwarding rules before in-

stalling them at sSwitches. The controller can choose to

replicate the forwarding rules, e.g., using 3-way replica-

tion (using storage space available to the controller —

either locally or remotely).

However, forwarding rules created at the control del-

egates pose a challenge because they need persisting.

sRoute has two options to address this challenge. The

first is for the controller to receive all delegate updates

synchronously, ensure they are persisted and then return

control to the delegate function. This option involves the

controller on the critical path. The second option (the

default) is for the delegate rules to be stored with the for-

warded IO data. A small header is prepended to each

IO containing the updated rule. On sSwitch failure, the

controller knows which servers IO has been forwarded to

and recovers all persisted forwarding rules from them.

Third, sSwitches introduce new code along the IO

stack, thus increasing its complexity. When sSwitches

are implemented in the kernel (see Section 4), an sSwitch

failure may cause the entire server to fail. We have kept

the code footprint of sSwitches small and we plan to in-

vestigate software verification techniques in the future to

guard against such failures.

3.7 Design limitations

In the course of working with sRoute we have identi-

fied several design limitations. First, sRoute currently

lacks any verification tools that could help programmers.

For example, it is possible to write incorrect control ap-

plications that route IOs to arbitrary locations, resulting

in data loss. Thus, the routing flexibility is powerful,

but unchecked. There are well-known approaches in net-

working, such as header space analysis [27], that we be-

lieve could also apply to storage, but we have not inves-

tigated them yet.

Second, we now have experience with SDN con-

trollers and SDS controllers like the one in this paper.

It would be desirable to have a control plane that un-

derstands both the network and storage. For example,

it is currently possible to get into inconsistent end-to-end

policies when the storage controller decides to send data

from server A to B while the network controller decides

to block any data from A going to B. Unifying the con-

trol plane across resources is an important area for future

work.

4 Implementation

An sSwitch is implemented partly in kernel-level and

partly in user-level. The kernel part is written in C

and its functionality is limited to partial IO classification

through longest prefix matching and forwarding within

the same server. The user-level part implements further

sub-file-range classification using hash tables. It also im-

plements forwarding IO to remote servers. An sSwitch

is a total of 25 kLOC.

Routing within a server’s IO stack. Our implemen-

tation makes use of the filter driver architecture in Win-

dows [39]. Each filter driver implements a stage in the

kernel and is uniquely identified using an altitude ID in

the IO stack. The kernel part of the sSwitch automati-

cally attaches control code to the beginning of each filter

driver processing. Bypassing a stage is done by simply

returning from the driver early. Going through a stage

means going through all the driver code.

7
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Routing across remote servers. To route an IO to

an arbitrary remote server’s stage, the kernel part of the

sSwitch first performs an upcall sending the IO to the

user-level part of the sSwitch. That part then transmits

the IO to a remote detour location using TCP or RDMA

(default) through the SMB file system protocol. On the

remote server, an sSwitch intercepts the arriving packet

and routes it to a stage within that server.

sSwitch and stage identifiers. An sSwitch is a stage

and has the same type of identifier. A stage is identified

by a server host name and a driver name. The driver

name is a tuple of <device driver name, device name,

altitude>. The altitude is an index into the set of drivers

or user-level stages attached to a device.

Other implementation details. For the case studies

in this paper, it has been sufficient to inject one sSwitch

inside the Hyper-V hypervisor in Windows and another

on the IO stack of a remote storage server just above

the NTFS file system using file system filter drivers [39].

Specialized functionality is implemented entirely in user-

level stages in C#. For example, we have implemented

a user-level cache (Section 5.3). The controller is also

implemented in user-level and communicates with both

kernel- and user-level stages through RPCs over TCP.

Routing happens on a per-file basis, at block granu-

larity. Our use cases do not employ any semantic infor-

mation about the data stored in each block. For control

applications that require such information, the function-

ality would be straightforward to implement, using mini-

port drivers, instead of filter drivers.

Applications and VMs always run unmodified on our

system. However, some applications pass several static

hints such as “write through” to the OS using hard-coded

flags. The sSwitches intercept open/create calls and

can change these flags. In particular, for specialized

caching (Section 5.3) the sSwitches disable OS caching

by specifying Write-through and No-buffering flags.

Caching is then implemented through the control appli-

cation. To avoid namespace conflict with existing files,

sRoute stores files in a reserved “sroute-folder” directory

on each server. That directory is exposed to the cluster

as an SMB share writable by internal processes only.

Implementation limitations. A current limitation of

the implementation is that sSwitches cannot intercept in-

dividual IO to memory mapped files. However, they can

intercept bulk IO that loads a file to memory and writes

pages to disk, which is sufficient for most scenarios.

Another current limitation of our implementation is

that it does not support byte-range file locking for mul-

tiple clients accessing the same file, while performing

endpoint routing. The state to support this functional-

Figure 5: Current performance range of an sSwitch.

ity is kept in the file system, at the original endpoint of

the flow. When the endpoint is changed, this state is un-

available. To support this functionality, the sSwitches

can intercept lock/unlock calls and maintain the neces-

sary state, however this is not currently implemented.

The performance range of the current implementation

of an sSwitch is illustrated in Figure 5. This through-

put includes passing an IO through both kernel and user-

level. Two scenarios are shown. In the “Only IO routed”

scenario, each IO has a routing rule but an IO’s re-

sponse is not intercepted by the sSwitch (the response

goes straight to the source). In the “Both IO and re-

sponse routed” scenario both an IO and its response are

intercepted by the sSwitch. Intercepting responses is im-

portant when the response needs to be routed to a non-

default source as well (one of our case studies for caches

in Section 5.3 requires response routing). Intercepting

an IO’s response in Windows is costly (due to interrupt

handling logic beyond the scope of this paper) and the

performance difference is a result of the OS, not of the

sSwitch. Thus the performance range for small IO is be-

tween 50,000-180,000 IOPS which makes sSwitches ap-

propriate for an IO stack that uses disk or SSD backends,

but not yet a memory-based stack.

5 Control applications

This section makes three points. First, we show that a di-

verse set of control applications can be built on top of IO

routing. Thus, we show that the programmable routing

abstraction can replace one-off hardcoded implementa-

tions. We have built and evaluated three control applica-

tions implementing tail latency control, replica set con-

trol and file cache control. These applications cover each

of the detouring types in Table 1. Second, we show that

tenants benefit significantly from the IO customization

8



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 205

���

����

�����

������

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�


	���������

���

���	��

�	�

Figure 6: Load on three Exchange server volumes

showing load imbalances.

provided by the control applications. Third, we evaluate

data and control plane performance.

Testbed. The experiments are run on a testbed with

12 servers, each with 16 Intel Xeon 2.4 GHz cores,

384 GB of RAM and Seagate Constellation 2 disks. The

servers run Windows Server 2012 R2 operating system

and can act as either Hyper-V hypervisors or as storage

servers. Each server has a 40 Gbps Mellanox ConnectX-

3 NIC supporting RDMA and connected to a Mellanox

MSX1036B-1SFR switch.

Workloads. We use three different workloads in this

section. The first is TPC-E [55] running over unmodi-

fied SQL Server 2012 R2 databases. TPC-E is a transac-

tion processing OLTP workload with small IO sizes. The

second workload is a public IO trace from an enterprise

Exchange email server [49]. The third workload is IoMe-

ter [23], which we use for controlled micro-benchmarks.

5.1 Tail latency control

Tail latency in data centers can be orders of magnitude

higher than average latency leading to application unre-

sponsiveness [14]. One of the reasons for high tail la-

tency is that IOs often arrive in bursts. Figure 6 illus-

trates this behavior in publicly available Exchange server

traces [49], showing traffic to three different volumes of

the Exchange trace. The difference in load between the

most loaded volume and the least loaded volume is two

orders of magnitude and lasts for more than 15 minutes.

Data center providers have load balancing solutions

for CPU and network traffic [19]. IO to storage on the

other hand is difficult to load balance at short timescales

because it is stateful. An IO to an overloaded server S

must go to S since it changes state there. The first control

application addresses the tail latency problem by tem-

porarily forwarding IOs from loaded servers onto less

loaded ones while ensuring that a read always accesses

the last acknowledged update. This is a type of endpoint

routing. The functionality provided is similar to Ever-

est [41] but written as a control application that decides

when and where to forward to based on global system

visibility.

The control application attempts to balance queue

sizes at each of the storage servers. To do so, for each

storage server, the controller maintains two running av-

erages based on stats it receives5: ReqAvg, and ReqRec.

ReqAvg is an exponential moving average over the last

hour. ReqRec is an average over a sliding window of one

minute, meant to capture the workload’s recent request

rate. The controller then temporarily forwards IO if:

ReqRec > αReqAvg

where α represents the relative increase in request rate

that triggers the forwarding. We evaluate the impact of

this control application on the Exchange server traces

shown in Figure 6, but first we show how we map this

scenario into forwarding rules.

There are three flows in this experiment. Three dif-

ferent VMs V Mmax, V Mmin and V Mmed on different hy-

pervisors access one of the three volumes in the trace

“Max”, “Min” and “Median”. Each volume is mapped to

a VHD file V HDmax, V HDmin and V HDmed residing on

three different servers Smax, Smin and Smed respectively.

When the controller detects imbalanced load, it forwards

write IOs from the VM accessing Smax to a temporary file

T on server Smin:

1: < ∗,w, //Smax/V HDmax >→ (F();return < IO, //Smin/T >)
2: < ∗,r, //Smax/V HDmax >→ (return < IO, //Smax/V HDmax >)

Read IOs follow the path to the most up-to-date data,

whose location is updated by the delegate function F()
as the write IOs flow through the system. We showed

how F() updates the rules in Section 3.4. Thus, the for-

warding rules always point a read to the latest version of

the data. If no writes have happened yet, all reads by

definition go to the old server V Mmax. The control

application may also place a specialized stage O in the

new path that implements an optional log-structured lay-

out that converts all writes to streaming writes by writing

them sequentially to Smin. The layout is optional since

SSDs already implement it internally and it is most use-

ful for disk-based backends6. The control application in-

5The controller uses IOFlow’s getQueueStats API [53] to gather

system-wide statistics for all control applications.
6We have also implemented a 1:1 layout that uses sparse files, but

do not describe it here due to space restrictions.

9
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Figure 7: CDF of response time for baseline system

and with IO routing.

serts a rule forwarding IO from the VM first to O (rule 1

below), and another to route from O to Smin (rule 2).

1: < ∗,∗, //Smax/V HDmax >→ (return < IO, //Smin/O >)
2: < O,∗, //Smax/V HDmax >→ (return < IO, //Smin/T )

Note that in this example data is partitioned across

VMs and no VMs share data. Hence, the delegate func-

tion in the sSwitch is the only necessary point of meta-

data serialization in system. This is a simple version

of case (a) in Figure 4 where sSwitches do not need

two-phase commit. The delegate metadata is temporary.

When the controller detects that a load spike has ended,

it triggers data reclaim. All sSwitch rules for writes are

changed to point to the original file V HDmax. Note that

read rules still point to T until new arriving writes over-

write those rules to point to V HDmax through their del-

egate functions. The controller can optionally speed up

the reclaim process by actively copying forwarded data

to its original location. When the reclaim process ends,

all rules can be deleted, the sSwitches and specialized

stage removed from the IO stack, since all data resides in

and can be accessed again from the original server Smax.

We experiment by replaying the Exchange traces using

a time-accurate trace replayer on the disk-based testbed.

We replay a 30 minute segment of the trace, capturing the

peak interval and allowing for all forwarded data to be

reclaimed. Figure 7 shows the results. IO routing results

in two orders of magnitude improvements in tail latency

for the flow to Smax. The change latency distribution for

Smin (not shown) is negligible.

Overheads. 2.8GB of data was forwarded and the

delegate functions persisted approximately 100,000 new

control plane rules with no noticeable overhead. We ex-

perimentally triggered one sSwitch failure, and measured

that it took approximately 30 seconds to recover the

rules from the storage server. The performance benefit

obtained is similar to specialized implementations [41].

The CPU overhead at the controller was less than 1%.

5.2 Replica set control

No one replication protocol fits all workloads [1, 33, 51].

Data center services tend to implement one particular

choice (e.g, primary-based serialization) and offer it to

all workloads passing through the stack (e.g., [7]). One

particularly important decision that such an implementa-

tion hard-codes is the choice of write-set and read-set for

a workload. The write-set specifies the number of servers

to contact for a write request. The size of the write-set

has implications on request latency (a larger set usually

means larger latency). The read-set specifies the number

of servers to contact for read requests. A larger read-set

usually leads to higher throughput since multiple servers

are read in parallel.

The write- and read-sets need to intersect in certain

ways to guarantee a chosen level of consistency. For

example, in primary-secondary replication, the intersec-

tion of the write- and read-sets contains just the primary

server. The primary then writes the data to a write-set

containing the secondaries. The request is completed

once a subset of the write-set has acknowledged it (the

entire write-set by default).

The replica set control application provides a config-

urable write- and read-set. It uses only scatter routing

to do so, without any specialized stages. In the next

experiment the policy at the control application speci-

fies that if the workload is read-only, then the read-set

should be all replicas. However, for correct serializa-

tion, if the workload contains writes, all requests must be

serialized through the primary, i.e., the read-set should

be just the primary replica. In this experiment, the ap-

plication consists of 10 IoMeters on 10 different hyper-

visors reading and writing to a 16GB file using 2-way

primary-based replication on the disk testbed. IoMe-

ter uses 4KB random-access requests and each IoMeter

maintains 4 requests outstanding (MPL).

The control application monitors the read:write ratio

of the workload through IOFlow and when it detects it

has been read-only for more than 30 seconds (a config-

urable parameter) it switches the read-set to be all repli-

cas. To do that, it injects sSwitches at each hypervisor

and sets up rules to forward reads to a randomly cho-

sen server Srand . This is done through a control delegate

that picks the next server at random. To make the switch

between old and new rule the controller firsts quiesces

10
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during read:write phases (a). The first write needs to block until forwarding rules are changed (b).

writes, then drains them. It then inserts the new read-set

rule (rule 1):

1: < ∗,r, //S1/X >→ (F();return < IO, //Srand/X >)
2: < ∗,w,∗>→ (return < IOHeader, Controller >)

The controller is notified of the arrival of any write

requests by the rule (2). The controller then proceeds to

revert the read-set rule, and restarts the write stream.

Figure 8 shows the results. The performance starts

high since the workload is in a read-only state. When the

first write arrives at time 25, the controller switches the

read-set to contain just the primary. In the third phase

starting at time 90, writes complete and read perfor-

mance improves since reads do not contend with writes.

In the fourth phase at time 125, the controller switches

the read-set to be both replicas, improving read perfor-

mance by 63% as seen in Figure 8(a). The tradeoff is

that the first write requests that arrive incurr a latency

overhead from being temporarily blocked while the write

is signalled to the controller, as shown in Figure 8(b).

Depending on the application performance needs, this

latency overhead can be amortized appropriately by in-

creasing the time interval before assuming the workload

is read-only. The best-case performance improvement

expected is 2x, but the application (IoMeter) has a low

MPL and does not saturate storage in this example.

Overheads. The control application changes the for-

warding rules infrequently at most every 30 seconds. In

an unoptimized implementation, a rule change translated

to 418Bytes/flow for updates (40MB for 100,000 flows).

The control application received stats every second using

302Bytes/flow for statistics (29MB/s for 100,000 flows).

The CPU overhead at the controller is negligible.

5.3 File cache control

File caches are important for performance: access to data

in the cache is more than 3 orders of magnitude faster

than to disks. A well-known problem is that data cen-

ter tenants today have no control over the location of

these caches or their policies [2, 8, 16, 50]. The only ab-

straction the data center provides to a tenant today is a

VMs’s memory size. This is inadequate in capturing all

the places in the IO stack where memory could be allo-

cated. VMs are inadequate even in providing isolation:

an aggressive application within a VM can destroy the

cache locality of another application within that VM.

Previous work [50] has explored the programmability

of caches on the IO stack, and showed that applications

and cloud providers can greatly benefit from the ability

to customize cache size, eviction and write policies, as

well as explicitly control the placement of data in caches

along the IO stack. Such explicit control can be achieved

by using filter rules [50] installed in a cache. All incom-

ing IO headers are matched against installed filter rules,

and an IO is cached if its header matches an installed

rule. However, this type of simple control only allows

IOs to be cached at some point along their fixed path

from the application to the storage server. The ability

to route IOs to arbitrary locations in the system using sS-

witches while maintaining desired consistency semantics

allows disaggregation of cache memory from the rest of

a workload’s allocated resources.

This next file cache control application provides sev-

eral IO stack customizations through waypoint routing.

We focus on one here: cache isolation among tenants.

Cache isolation in this context means that a) the con-
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Figure 9: Controller sets path of an IO through mul-

tiple cache using forwarding rules in sSwitches.

troller determines how much cache each tenant needs

and b) the sSwitches isolate one tenant’s cache from an-

other’s. sRoute controls the path of an IO. It can forward

an IO to a particular cache on the data plane. It can also

forward an IO to bypass a cache as shown in Figure 9.

The experiment uses two workloads, TPC-E and

IoMeter, competing for a storage server’s cache. The

storage backend is disks. The TPC-E workload rep-

resents queries from an SQL Server database with a

footprint of 10GB running within a VM. IoMeter is a

random-access read workload with IO sizes of 512KB.

sRoute’s policy in this example is to maximize the uti-

lization of the cache with the hit rate measured in terms

of IOPS. In the first step, all IO headers are sent to the

controller which computes their miss ratio curves using

a technique similar to SHARDS [56].

Then, the controller sets up sSwitches so that the IO

from IOMeter and from TPC-E go to different caches

CIOMeter and CT PCE with sizes provided by SHARDS re-

spectively (the caches reside at the storage server):

1: < IOMeter,∗,∗>,(return < IO,CIOMeter >)
2: < T PCE,∗,∗>,(return < IO,CT PCE >)

Figure 10 shows the performance of TPC-E when

competing with two bursts of activity from the IoMe-

ter workload, with and without sRoute. When sRoute is

enabled (Figure 10(b)), total throughput increases when

both workloads run. In contrast, with today’s caching

(Figure 10(a)) total throughput actually drops. This is

because IoMeter takes enough cache away from TPC-E

to displace its working set out of the cache. With sRoute,

total throughput improves by 57% when both workloads

run, and TPC-E’s performance improves by 2x.

Figure 10(c) shows the cache allocations output by

our control algorithm when sRoute is enabled. When-

ever IoMeter runs, the controller gives it 3/4 of the cache,

whereas TPC-E receives 1/4 of the cache, based on their

predicted miss ratio curves. This cache allocation leads

to each receiving around 40% cache hit ratio. Indeed, the
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(c) Estimated cache sizes

Figure 10: Maximizing hit rate for two tenants with

different cache miss curves.

allocation follows the miss ratio curve that denotes what

the working set of the TPC-E workload is – after this

point diminishing returns can be achieved by providing

more cache to this workload. Notice that the controller

apportions unused cache to the TPC-E workload 15 sec-

onds after the IoMeter workload goes idle.

Overheads. The control application inserted forward-

ing rules at the storage server. Rule changes were in-

frequent (the most frequent was every 30 seconds). The

control plane uses approximately 178Bytes/flow for rule

updates (17MB for 100,000 flows). The control plane

subsequently collects statistics from sSwitches and cache

stages every control interval (default is 1 second). The

statistics are around 456Bytes/flow (roughly 43MB for

100,000 flows). We believe these are reasonable control

plane overheads. When SHARD ran it consumed 100%

of two cores at the controller.
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6 Open questions

Our initial investigation on treating the storage stack like

a network provided useful insights into the pros and cons

of our approach. We briefly enumerate several open

questions that could make for interesting future work. In

Section 3.7 we already discussed two promising areas of

future work: 1) sRoute currently lacks verification tools

that could help programmers and 2) it would be interest-

ing to merge a typical SDN controller with our storage

controller into one global controller.

Related to the first area above, more experience is

needed, for example, to show whether sRoute rules from

multiple control applications can co-exist in the same

system safely. Another interesting area of exploration

relates to handling policies for storage data at rest. Cur-

rently sRoute operates on IO as it is flowing through the

system. Once the IO reaches the destination it is consid-

ered at rest. It might be advantageous for an sSwitch to

initiate itself data movement for such data at rest. That

would require new forwarding rule types and make an

sSwitch more powerful.

7 Related work

Our work is most related to software-defined networks

(SDNs) [9,13,17,25,28,44,54,58] and software-defined

storage (SDS) [2, 53]. Specifically, our work builds

directly upon the control-data decoupling enabled by

IOFlow [53], and borrows two specific primitives: classi-

fication and rate limiting based on IO headers for quiesc-

ing. IOFlow also made a case for request routing. How-

ever, it only explored the concept for bypassing stages

along the path, and did not consider the full IO routing

spectrum where the path and endpoint can also change,

leading to consistency concerns. This paper provides the

full routing abstraction.

There has been much work in providing applications

with specialized use of system resources [2, 4, 6, 16, 26].

The Exokernel architecture [16, 26] provides applica-

tions direct control over resources with minimal kernel

involvement. SPIN [6] and Vino [47] allow applica-

tions to download code into the kernel, and specialize

resource management for their needs. Another orthogo-

nal approach is to extend existing OS interfaces and pass

hints vertically along the IO stack [2–4,36]. Hints can be

passed in both directions between the application and the

system, exposing application needs and system resource

capabilities to provide a measure of specialization.

In contrast to the above approaches, this paper makes

the observation that modern IO stacks support mecha-

nisms for injecting stages with specialized functionality

(e.g., in Windows [38], FreeBSD [18] and Linux [34]).

sRoute transforms the problem of providing application

flexibility into an IO routing problem. sRoute provides a

control plane to customize an IO stack by forwarding a

tenants’ IO to the right stages without changing the ap-

plication or requiring a different OS structure.

We built three control applications on top of IO rout-

ing. The functionality provided from each has been ex-

tensively studied in isolation. For example, application-

specific file cache management has shown significant

performance benefits [8, 20, 22, 29, 32, 50, 57]. Snap-

shots, copy-on-write and file versioning all have at their

core IO routing. Hard-coded implementations can be

found in file systems like ZFS [42], WAFL [21] and

btrfs [46]. Similarly, Narayanan et al. describe an im-

plementation of load balancing through IO offloading of

write requests [40, 41]. Abd-el-malek et al. describe

a system implementation where data can be re-encoded

and placed on different servers [1]. Finally, several dis-

tributed storage systems each offer different consistency

guarantees [5, 7, 10–12, 15, 30, 33, 51, 52] .

In contrast to these specialized implementations,

sRoute offers a programmable IO routing abstraction that

allows for all this functionality to be specified and cus-

tomized at runtime.

8 Conclusion

This paper presents sRoute, an architecture that enables

an IO routing abstraction, and makes the case that it

is useful. We show that many specialized functions

on the storage stack can be recast as routing prob-

lems. Our hypothesis when we started this work was

that, because routing is inherently programmable and dy-

namic, we could substitute hard-coded one-off imple-

mentations with one common routing core. This paper

shows how sRoute can provide unmodified applications

with specialized tail latency control, replica set control

and achieve file cache isolation, all to substantial benefit.
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Abstract
Cloud providers and companies running large-scale data
centers offer near-line, cold, and archival data storage,
which trade access latency and throughput performance
for cost. These often require physical rack-scale storage
designs, e.g. Facebook/Open Compute Project (OCP)
Cold Storage or Pelican, which co-design the hardware,
mechanics, power, cooling and software to minimize
costs to support the desired workload. A consequence is
that the rack resources are restricted, requiring a software
stack that can operate within the provided resources. The
co-design makes it hard to understand the end-to-end
performance impact of relatively small physical design
changes and, worse, the software stacks are brittle to
these changes.

Flamingo supports the design of near-line HDD-based
storage racks for cloud services. It requires a physical
rack design, a set of resource constraints, and some tar-
get performance characteristics. Using these Flamingo
is able to automatically parameterize a generic storage
stack to allow it to operate on the physical rack. It is
also able to efficiently explore the performance impact of
varying the rack resources. It incorporates key principles
learned from the design and deployment of cold storage
systems. We demonstrate that Flamingo can rapidly re-
duce the time taken to design custom racks to support
near-line storage.

1 Introduction

Storage tiering has been used to minimize storage costs.
The cloud is no exception, and cloud providers are cre-
ating near-line cloud storage services optimized to sup-
port cold or archival data, for example Amazon’s Glacier
Service [2], Facebook’s Cold Data Storage [17], Google
near-line storage [19] and Microsoft’s Pelican [8]. In
contrast to online storage [16], near-line storage trades

∗Currently a PhD. student at Princeton.

data access latency and throughput for lower cost; access
latencies of multiple seconds to minutes are normal and
throughput is often lower or restricted.

To achieve the cost savings many of these near-line
storage services use custom rack-scale storage designs,
with resources such as power, cooling, network band-
width, CPU, memory and disks provisioned appropri-
ately for the expected workload. This is achieved through
co-designing the rack hardware and software together,
and systems like Pelican [8] and OCP Cold Storage [20]
have publicly demonstrated that designing custom racks
for near-line storage can result in significant cost savings.
For example, in both of these designs there is insufficient
rack-level power provisioned to allow all the hard disk
drives (HDDs) to be concurrently spinning. By implica-
tion, the rack cooling is then only provisioned to handle
the heat generated from a subset of the HDDs spinning.
The goal of the rack’s storage stack is to achieve the best
possible performance without exceeding the physical re-
source provisioning in the rack.

The most common way of managing these constrained
resources is by controlling how data is striped across
HDDs, and by ensuring the individual IO requests are
scheduled taking into account resource provisioning. In
particular, the data layout defines the set of disks for a
single IO that need to be read from or written to, and
the IO scheduler defines the set of disks that need to be
accessed for multiple IOs being concurrently performed.
Our experience building near-line storage is that, given
a well-designed storage stack, it is feasible to only re-
design the data layout and IO scheduler in the stack to
handle different rack designs and/or performance goals.
Unfortunately, it is also the case that even simple and
seemingly small design changes require a redesign of the
data layout and IO scheduler. Designing the data lay-
out and IO scheduler is challenging and time consuming
even for experts, and it is hard to know if they are achiev-
ing the best possible performance from the rack.

Flamingo is a system that we use to help automate and
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reduce the complexity of designing near-line storage. It
incorporates the many lessons learned during the design
and deployment of Pelican. Flamingo uses a generalized
storage stack that is derived from the one used in Pelican
and described in [8], and a tool chain to automatically
synthesize the configuration parameters for the storage
stack. Flamingo requires a physical rack description, a
set of resource descriptions in the form of resource con-
straints, and expected performance characteristics. Un-
der typical operation the tool chain takes a few hours
to produce the configuration parameters. Flamingo has
been used to determine the impact of and to drive design
and component changes to Pelican.

Flamingo is also able to help designers explore the
physical rack design space by automatically quantify-
ing the impact of varying the physical resource provi-
sioning in the rack. It is able to determine the minimum
increase in a resource, such as power, that would yield
a change in performance. It is also able to determine
the impact of using components with different proper-
ties, such as a new HDD with a different power profile.
In such cases, it can also evaluate how much extra perfor-
mance could be gained by reconfiguring the storage stack
to exploit that component. Flamingo can handle signif-
icantly more complexity than a human and it is able to
generate configurations and determine the likely perfor-
mance of a physical design before it is even built.

This paper is organized as follows: Section 2 intro-
duces near-line storage, Pelican and motivates the prob-
lems solved by Flamingo. Section 3 and 4 describe
Flamingo, and the core algorithms used. Section 5 shows
results, Section 6 describes related work and Section 7
concludes.

2 Background: Near-line storage

A cloud-scale storage service will consist of thousands
of storage racks. A deployed rack will be used for many
years, and then retired. Rack designs will be revised as
price points for components change or newer versions
are released. Hence, at any point in time, a small num-
ber of different storage rack designs will be deployed in
a single cloud-scale storage service. A near-line stor-
age rack will usually consist of servers and HDDs, and
each server will run an instance of a storage stack. In
online storage it is common to have 30-60 HDDs per
server, while in near-line it can be 500+ HDDs per server.
We provide a brief overview of Pelican as Flamingo uses
many of its key principles, but for the full details see [8].

Pelican A Pelican rack has 1,152 HDDs and two
servers. Each HDD is connected to a SATA 4-port mul-
tiplier, which is connected to a 4-port SATA HBA. Pel-
ican uses PCIe to connect the 72 HBAs to the server,
such that each HBA can be attached to either one of the

servers. Power and cooling are provisioned to allow only
a small fraction of the HDDs to concurrently be spinning
and ready to perform IO (active) while the other HDD
platters are spun down (standby).

HDDs are physically located in multiple physical re-
source domains: power, cooling, vibration and band-
width. A Pelican power domain contains 16 HDDs and
has sufficient power to support two HDDs transition-
ing from standby to active, with the 14 other HDDs
in standby. A Pelican cooling domain has 12 HDDs
and can provide sufficient heat dissipation to support
one HDD transitioning from standby to active and 11
in standby. These domains represent constraints im-
posed by the physical rack, and combining these two
constraints means that at most 96 HDDs can be concur-
rently active in a Pelican.

Violating physical resource constraints leads to tran-
sient failures, can increase hardware failure rates or sim-
ply decrease performance. Hence, the storage stack
needs to ensure that the operating state of the rack re-
mains within provisioned resources. Pelican handles
these constraints by first carefully managing data lay-
out. Each HDD is assigned to a group that contains 24
HDDs. The assignment is done to ensure all HDDs in a
group can be concurrently transitioned from standby to
active. Hence, at most 2 HDDs per group can be in the
same power domain. Pelican stripes a stored file across
multiple HDDs in the same group and, if required, era-
sure coding can be used. The Pelican prototype striped
a file across eighteen HDDs with fifteen data fragments
and three redundancy fragments. The mapping of HDDs
to groups, the group and stripe size and erasure coding
parameters are the data layout configuration. They are
a function of number of HDDs in the rack, the physi-
cal resource constraints, required data durability, target
throughput, and the capacity overhead. They are unique
to a particular hardware design and set of resource con-
straints. To determine them is complex and during the
original Pelican design it took many months to determine
the correct parameters.

Within the Pelican software stack the other part which
interacts closely with the physical rack and resource con-
straints is the IO scheduler. The IO scheduler determines
the order in which IO requests are serviced, and it at-
tempts to balance performance with fairness. Flamingo
uses a new IO scheduler that is configurable and we dis-
cuss this in detail in Section 3.2.

Real-world lessons Pelican makes a number of sim-
plifying assumptions. Notably, it assumes that an ac-
tive HDD uses the same resources as a HDD transition-
ing from standby to active. This makes the problem
more tractable, but can lead to resource underutilization
that results in lower performance than theoretically sup-
ported. Some elements of the Pelican software stack

2
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Figure 1: Flamingo overview.

proved to be very brittle to design changes. Subtle and
often seemingly innocuous changes to the physical rack
or components require significant redesign of the data
layout and IO scheduler. For example, during the de-
sign of Pelican changing HDDs introduced new vibra-
tion issues, and also changed the power and cooling pro-
files. These changes provided the potential to have more
HDDs to be concurrently active. However, without re-
designing the data layout and IO scheduling in Pelican
we were unable to unlock the better performance these
HDDs could offer. This also requires using HDDs that
offer similar or better properties compared to the HDDs
we designed for originally. Subtle changes can result in
resources being violated, which is often hard to detect
when they do not lead to immediate failure. Finally, the
cooling properties of a rack are a function of the ambient
temperature in the data center in which it operates. This
varies across data center designs and data center cool-
ing technologies. This means that to maximize resource
usage given a set of physical resources then a per data
center data layout and IO scheduler is required.

When building complex near-line storage systems it
is hard to accurately estimate the performance impact of
small design changes. Simplistically, adding a few ex-
tra fans will increase the fraction of HDDs that can be
concurrently active in a cooling domain, but it is hard
to understand the impact this will have on higher-level
performance metrics.

Finally, we also believe that, based on our experi-
ences with Pelican for near-line storage, the underly-
ing principle in Pelican of organizing the HDDs into
groups that can be migrated between states concurrently
is good. This allows resource conflicts to then be handled
at the group level rather than the HDD level which low-
ers complexity and increases performance. The design
of Flamingo therefore embodies this concept.

3 Flamingo

Flamingo leverages the fact that most of the Pelican stor-
age stack is generic and independent of the hardware
constraints; it uses the Pelican stack with a new config-
urable IO scheduler, and then uses offline tools to synthe-

size the data layout and IO scheduler parameterization
for a given rack design.

Flamingo also supports the co-design of the rack hard-
ware and software. Using a rack-scale event-based simu-
lator it allows potential hardware resource configurations
to be instantiated with a storage stack and then specific
workloads replayed against them to understand higher-
level performance. It also automatically explores the
design space for resource provisioning to determine the
performance impact of increasing the resources in a rack.
This information can be used to both change the physical
rack design, but also to help component manufacturers
optimize their components to yield better performance.

Figure 1 shows the two main Flamingo components:
an offline tool and a configurable storage stack. The of-
fline tool has three phases. The first takes a physical rack
description and a set of resource constraints, and itera-
tively generates new sets of resource constraints that ef-
fectively provide the potential for higher performance.
The physical rack description and a single set of resource
constraints represents a potential configuration, and re-
quires a parameterized storage stack. The second phase
then concurrently synthesizes for each unique configura-
tion the parameters required for the data layout and the
online IO scheduler. Target performance characteristics
are provided, and the goal is to synthesize the configu-
ration for the storage stack that meets or exceeds these
performance characteristics. If it can be determined in
this phase that a particular performance target cannot be
met, then a policy can be specified to either relax the per-
formance target or simply reject the configuration.

Unfortunately, not all performance targets can be ver-
ified as being met or exceeded during the second phase,
and the final phase uses an accurate rack-scale discrete
event simulator to empirically determine the expected
performance. This does a parameter sweep using syn-
thetic and real workloads evaluating micro- and macro-
level performance for each configuration point. At the
end of this offline process Flamingo has generated the
storage stack parameters for each configuration, and the
relative performance of each configuration. If the explo-
ration of multiple configurations is not required, then the
first stage can be skipped.
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Failure Domains
f ailurerate : [compname ,AFR]
f ailuredomain : [domname ,compname ,{HDDid1 ,HDDid2 , ...,HDDidN }]

Resource Domains
HDDcost : [resname , [coststandby ,costspinningup ,costspinning ]]

resourcedomain : [domname ,resname ,{HDDid1 ,HDDid2 , ...,HDDidN },dombudget ,hard|so f t]

Figure 2: The rack description and resource constraints.

Flamingo is able to perform this in less than 24 hours
for all rack configurations that we have tried. We now
describe in detail how Flamingo works, starting with the
information Flamingo requires.

3.1 Flamingo requirements

Flamingo requires a rack description that captures the
different resources and their domains, a set of resource
constraints expressed over these domains, the target per-
formance characteristics and a state machine that cap-
tures the HDD operating states and resource usage. The
rack description captures the physical properties of the
rack and the physical relationship between HDDs and re-
source domains. The set of resource constraints capture
the resource provisioning per resource domain. Given
the tight relationship between the rack description and
the resource constraints we use a single input file to cap-
ture them both, and its syntax is shown in Figure 2.

Each HDD is assigned a unique HDDid . Flamingo al-
lows an arbitrary number of HDD operating states. For
simplicity here, we use only three states: standby, spin-
ning up and active. In reality, there are several other
potential states, including multiple lower power states,
some of which keeps the platter spinning at a low RPM.
Flamingo requires a state machine showing the possible
HDD operating states and transitions between them. Op-
erating states where IO requests can be serviced need to
be explicitly identified, e.g. when the HDD is not spin-
ning, or is spinning up, the HDD is unable to service IO
requests. Operating states that can service IO requests
are referred to as active. Given the current design of
HDDs the tool supports only a single active state cur-
rently. Flamingo also needs to know which operating
states are transient, e.g. spinning up.

The rack description and the resource constraints are
expressed in terms of sets of HDDs. The rack descrip-
tion includes information about all (component) failure
domains with their associated Annualized Failure Rates
(AFR). If the AFR varies over time, then the worst case
AFR is specified. Each failure domain is expressed in
terms of the set of HDDs that would become inaccessi-
ble if the component fails. For example, if there is a tray
that connects 16 HDDs together, a tray failure will lead
to all 16 HDDs failing. So, if there are b trays then there
will be b sets each containing 16 HDDs and an AFR will

be associated with the tray.
The resource constraints are captured as resource do-

mains which are expressed as a set of HDDs and an as-
sociated resource budget. Examples of resource domains
may be power, cooling, bandwidth, and vibration. Indi-
vidual HDDs will appear in multiple resource domains.
Flamingo uses no explicit knowledge of any resource
types, it treats all resources as simply names with associ-
ated constraints. This allows new resources to be easily
incorporated within a design or arbitrarily changed. For
example, half way through the design of Pelican we real-
ized that the layout needed to handle vibration. Because
Flamingo has no knowledge of resource types, a budget
is associated with each resource domain set, and is sim-
ply a floating point number, and the unit is arbitrary. For
example, for a power resource domain the unit could be
Watts, and the original budget could be 50W. For each
resource, Flamingo also needs the resource cost for oper-
ating in each state (HDDcost ), in the case of power these
can be taken from the data sheet, e.g. spinning up may be
20W, active may be 10W and standby may be 1W. The
current cost is the sum for all HDDs for them to operate
in their current operating state. If a resource domain is
hard then the current cost must not be higher than the
budget, as this can cause long or short term failure. A
so f t resource domain can be violated, but this will im-
pact performance rather than failure rates. For each re-
source domain it is possible to set an upper bound that is
used to control the search space when exploring chang-
ing the resource provisioning. By default, when explor-
ing the design space Flamingo will look to increase a re-
source by the minimum that will allow at least one drive
to transition to a different operating state. The minimum
increase can also be specified. For example, a power do-
main may have an upper bound of 500W and a minimum
increase of 25W.

Hierarchical resource domains can easily be ex-
pressed. For example, there could be a backplane that
has 10 trays with 16 HDDs attached to it. A power do-
main can be created containing all 160 HDDs with a
power budget. Then a power domain can also be created
for each of the 10 trays. The sum of the tray budgets can
exceed the budget for the backplane, but the backplane
budget will never be exceeded.

Some resources are not necessarily additive, for ex-
ample vibration. Using resource domains and budgets
we have been able to handle these by emulating counting
semaphores. The budget is used to capture the number of
HDDs that are allowed in a particular state, and the HDD
costs are set to zero or one. Using overlapping resource
domains then also allows us to specify complex relation-
ships. One set of resource constraints could be used to
enforce that no neighboring HDDs can spin up concur-
rently, while a second one says that in a single tray only
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4 can spin up concurrently. Flamingo will enforce both
in its designs.

Finally, Flamingo also requires target performance
characteristics; in particular data durability, physical ser-
vicing window, rack deployment lifetime, lower bound
on bandwidth for file transfer, level of IO concurrency,
capacity overhead for failure resilience and a fairness
goal expressed as the trade-off in access latency versus
throughout.

Simplifying assumptions The rack description al-
lows arbitrary racks to be described. However, Flamingo
makes two assumptions about the resource domains.
First, for each resource defined every HDD in the rack
must be specified in a resourcedomain description for that
resource. For example, if power is a resource then each
HDD must appear in at least one resourcepower defini-
tion. Second, each resource domain definition for a re-
source must include the same number of HDDs and be
provisioned with the same budget. In the previous ex-
ample of a tray and backplane power domain with dif-
ferent number of HDDs, this can be simply encoded by
naming the resource domains differently, e.g. powertray
and powerbackplane. Finally, we assume that there is only
one class of storage device specified. Flamingo can sup-
port other classes of storage device beyond HDD, pro-
vided they can be expressed as having multiple operat-
ing states over different resources. Flamingo could be
extended to handle different storage device classes in the
same rack, but this would increase the state space that
Flamingo needs to handle. We believe these assumptions
are reasonable and hold for all cold storage hardware that
we are aware of, including Pelican and OCP Cold Stor-
age. They simplify the data layout and in many cases
reduce the number of inter-group constraints, improving
concurrency and reducing overhead for the IO scheduler.

3.2 Flamingo Design

We now describe three important aspects of the core
Flamingo design: the exploration of rack configurations,
the data layout and the IO scheduler configuration.

3.2.1 Exploring rack configurations

The offline tool has three phases, the first explores the de-
sign space for resource provisioning in the rack. This is
achieved by taking a configuration consisting of the rack
description and a set of resource constraints and slowly
relaxing the resource constraints. Each time a resource
constraint is relaxed a new configuration is created which
consist of the original rack description with the new set
of resource constraints.

The intuition is that, if there are q resources, then there
is a large q-dimensional space representing the set of all

configurations. However, many of these configurations
will vary resources that are not impacting the perfor-
mance and can therefore be ignored. Hence, there is a
surface being defined in the q-dimensional space of inter-
esting configurations that can impact performance, and
Flamingo is determining the configurations that lie on
that surface. This can be a large space, for example a
simple Pelican has q = 4 and, given multiple operating
states for the HDDs, the total number of potential con-
figurations is in the millions. However, the number of
useful configurations will be considerably smaller.

Flamingo achieves this by determining the bottleneck
resource for a given configuration. To calculate the
bottleneck resource Flamingo calculates the number of
HDDs in the rack (N) and, for each hard resource r,
Flamingo determines the number of HDDs in each re-
source domain set for r, (Nr), and the per-resource do-
main budget (rbudget ). Both Nr and rbudget will be the
same for all resource domain sets for r. We define
costhighest as the highest cost HDD operating state and
the lowest as costlowest . The number of HDDs, (mr), that
can be in the highest operating state in each single re-
source domain is:

mr =
⌊ rbudget − costlowestNr

costhighest − costlowest

⌋
(1)

Across the entire rack the number of HDDs, (Mr), that
can be operating in their highest cost operating state for
the resource is:

Mr = (N/Nr)×mr (2)

Flamingo generates for each resource r the value Mr.
Given two resources, say r = power and r = cooling,
then power is more restrictive than cooling if Mpower <
Mcooling. To determine the bottleneck resource, the re-
sources are ordered from most to least restrictive using
their Mr values. The most restrictive resource is the
bottleneck resource. The maximum number of HDDs
that can be concurrently in their highest cost operating
state M is then simply M = Mbottleneckresource. If there are
two or more resources with equal Mr values then it is
recorded that there are multiple bottleneck resources.

Once a bottleneck resource has been identified, the
budget associated with the bottleneck resource is in-
creased by δ . δ is the maximum of the smallest addi-
tional cost that will allow a single HDD in the bottleneck
resource domain to transition to the next highest cost op-
erating state and the specified minimum increase for the
resource domain. The budget is then increased on the
bottleneck domain by δ to create a new configuration.

If there is more than one bottleneck resource, then
a new configuration is created where exactly one re-
source is selected to be relaxed. These configurations
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are then all used independently to recursively generate
more configurations. The configuration exploration ter-
minates when M = N, in other words, represents a fully
provisioned rack or the bottleneck resource has reached
the upper bound specified for it and cannot be increased.
If the bottleneck resource cannot be increased it does not
matter if other resources could be increased, they cannot
yield better performance.

The number of configurations considered is dependent
on the number of resources and the range over which
the resources operate. Generating the configurations is
fast, taking on the order of seconds on a high end CPU.
Once all the configurations have been generated the stor-
age stack parameters need to be calculated, which can
happen in parallel for each configuration.

3.2.2 Data Layout

For each configuration Flamingo next needs to synthe-
size the data layout, and this involves two stages:

Groups and erasure coding Flamingo computes
groups of HDDs such that each HDD belongs to a sin-
gle group and there are sufficient resources across all re-
source domains to allow all the HDDs in the group to
concurrently transition to their active state. We make a
simplifying assumption that all groups are the same size,
n. A file is stored on a subset of the HDDs in a single
group, with k data and r redundant fragments generated
for each file using erasure coding [28, 12].

The first stage is to calculate the group size. Flamingo
does this by initially generating a set of candidate group
sizes. Files are stored in a single group, therefore n
should be large enough to store all fragments of a file
even in presence of HDD failures, but small enough to
maximize the number of groups that can be concurrently
spun up. Because all HDDs in a group need to be able
to spin up concurrently, �M/n� groups can be simulta-
neously activated. To maximize resource utilization, we
first enforce that M mod n = 0. For example, if M = 96
then both n = 21 and n = 24 allow the same number of
concurrently active groups: 4, but only n = 24 fulfills
96 mod n = 0. For M = 96, this restricts the possible
group sizes to n = {1, 2, 3, 4, 8, 12, 16, 24, 32, 48,
96}. We refer to this as the candidate set. If the set is
empty, then Flamingo stops processing the configuration
and generates an error.

Flamingo then determines a set of values for erasure
coding parameters k and r. The choice of values are a
function of (i) the required data durability, (ii) the com-
ponent failure rates, (iii) the storage capacity redundancy
overhead i.e., r

k+r , (iv) the interval between physically
servicing a rack, and (v) the lower bound on per-file
read or write throughput. The first four parameters are
used in a simple failure model to generate a set of pos-

sible k + r values. The fifth parameter is then used as
a threshold for values of k + r, removing combinations
that would yield too low throughput, so we look for
k×HDDbandwidth ≥ target. The result is an ordered list
consisting of k+ r pairs that provide the specified dura-
bility ranked by the storage capacity overhead ( r

k+r ). If
the set is empty, then an error is raised and Flamingo
stops processing this configuration. The same model is
also used to calculate f , an estimate of the maximum
number of HDDs expected to fail during a rack service
interval. This is calculated assuming that failure recov-
ery is performed at the rack level which can be done by
the Flamingo storage stack. However, if failure recovery
is handled at a higher level across storage racks, then f
can be configured to always be zero.

Given the candidate set of possible group sizes, the
ranked (k + r) list and f , Flamingo needs to select the
lowest value for n from the candidate set, such that k+
r + f ≤ n. This maximizes the number of concurrently
active groups and therefore the number of concurrent IO
requests that can be serviced in parallel. So, given the
previous candidate groups sizes, if the smallest value of
(k,r) = (15,3) and f = 2 then n = 24 will be selected.
If M/n is less than the specified concurrent IO request
target, Flamingo stops processing the configuration.

The Flamingo storage stack attempts to distribute the
stored data in a group uniformly across all the HDDs in
a group. When a group is accessed all n HDDs are con-
currently migrated to the new state, rather than k. The
reason to spin up k+r is to allow us to read the data when
the first k HDDs are ready to be accessed. The Flamingo
runtime spins up the entire n (e.g. k+ r+ f ) HDDs op-
portunistically, because if another request arrives for the
group we are able to service it without waiting for poten-
tially another drive to spin up.

Mapping HDDs to groups Once n has been deter-
mined, Flamingo next needs to form l, where l = N/n,
groups and assign each HDD to exactly one group. The
assignment is static, and transitioning any HDD in a
group to a new state that would violate any hard resource
constraint means the entire group cannot transition.

The assignment must also try to maximize IO request
concurrency, which means maximizing the number of
groups that can concurrently transition into active, where
the upper bound is M/n. However, ensuring a mapping
that achieves this is non-trivial because each HDD as-
signed to a group potentially conflicts with other groups
in all its domains. This will lead to inefficient data lay-
outs, in which every group conflicts with l − 1 groups,
achieving very low IO request concurrency e.g. one.

The number of possible assignments grows exponen-
tially with the number of HDDs. To make this tractable,
we use a custom designed solver that restricts the search
space and selects the best group assignment according to
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a set of performance-related characteristics and heuris-
tics. The solver exploits the observation that many re-
source domains are not composed of arbitrary HDDs but
are rather defined by their physical location in the rack.
For instance, the power domain would correspond to a
backplane. The solver derives a coordinate system that
captures this physical layout from the rack description
and assigns a d-dimensional coordinate to each HDD,
where d is the number of resource domain types.

The solver tries to form groups of HDDs that are close
to each other in the coordinate space and do not conflict
in any resource domain. It does this by initially gen-
erating different ordered vectors of the HDDs. This is
achieved by changing the starting coordinate and rank-
ing the coordinates on different dimensions. Hence, if
each HDD has an (x,y) coordinate, one ranking would be
generated by ordering on x then y and another one would
be generated ranking y then x. The ordering function is
dimension specific, so it can generate smallest to largest
on x, but for coordinates where x is equal, rank largest to
smallest on y. This generates multiple orderings of the
HDDs. For each ordered vector created Flamingo greed-
ily attempts to assign HDDs to groups, using a number of
different heuristics to control into which group the next
HDD is mapped. This is deterministic, no randomiza-
tion is used. Intuitively, this finds good assignments be-
cause the group structure exploits the physical symmetry
of the rack topology, forming sets of groups that conflict
in all domains and are independent from the rest of the
rack.

For each iteration, if the solver finds a solution where
all HDDs are successfully assigned to groups such that
all the HDDs in each group can concurrently transi-
tion operating states, then Flamingo needs to measure the
quality of each solution. The metric of importance is the
level of IO request concurrency that can be achieved by
the data layout. An efficient solution will always allow
any arbitrary selected M/n groups to be concurrently in
their highest operating state.

Even with the custom solver this metric will need to be
calculated potentially thousands of times per configura-
tion. Hence, Flamingo uses a number of fast-to-compute
heuristics. First, Flamingo determines if the groups are
symmetric. We take each resource constraint and replace
the HDD identifier in the definitions with the group iden-
tifier. For each group we then look at each resource do-
main in which it is present, and count the number of
other unique groups that are present in each. We re-
fer to these groups as conflicting groups. If, across all
groups, the cardinality of the conflicting groups is the
same, then the groups are symmetric. Each group im-
pacts the same number of other groups. Further, the ex-
pected upper bound on the number of groups that should
conflict with each group can be calculated.

Flamingo then uses a sub-sampling of the space to
check configurations, and in particular explores sam-
ple sets consisting of less than or equal to M/l groups,
checking if they can be successfully concurrently transi-
tioned. The sub-sampling also estimates a lower bound
on the number of groups that can be active (e.g. spinning)
and another group transitioned into an active state. The
expected number is determined as a function of M and
again sub-sampling is used to estimate the lower bound.
The number of samples can be varied per configuration.

If the ranking is shown to have no examples that vio-
late the expected performance for these heuristics, then
it is marked efficient and the solver stops. Otherwise,
the solver records the quality of the metrics and contin-
ues to iterate through rankings. If all rankings have been
checked and no efficient solutions found, then the solver
selects the best solution found but marks the result inef-
ficient. The output of the solver is a set of HDD to group
mappings which define the data layout.

3.2.3 IO scheduler

Once data layout is complete the IO scheduler configu-
ration needs generating. The IO scheduler in the storage
stack receives IO requests and controls the order in which
they are executed. It also controls when groups transition
states. If it has a request for a group that is currently not
active, it will ensure that the group becomes active and
then issues the request to be serviced. It has to ensure
that during operation the order in which groups transition
between states does not violate the resource constraints.
In order to do this, the IO scheduler needs to understand
the relationship between groups, and we achieve this us-
ing a set of constraints between groups. The inter-group
constraints capture the resource sharing relationships be-
tween groups, and allow the IO scheduler to determine
which groups can concurrently be spinning.

To generate these IO scheduler group constraints
Flamingo translates the resource constraints from being
HDD based to group based. Each HDD identifier in each
resource constraint is replaced with the HDD’s group
identifier and a weight, wid initially set to one. For each
resource constraint, all references to same group iden-
tifier are combined into a single entry with wid being
set to the number of references. The budget and asso-
ciated per state costs for the original resource constraints
are kept. If there are multiple group constraints which
have exactly the same groups represented, the one with
the most restrictive budget is kept. Flamingo outputs the
set of group constraints.

The online IO scheduler in the storage stack uses the
group constraints to control which groups can be spun
up. It maintains a per-group queue for IO requests that
are yet to be issued and an operating state for each group,
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Rack #HDDs #HDDs/server #domains avg. HDDs/domain
OCP 240 240 73 15
Pelican 1152 576 1111 10
Rack A 1152 576 1039 22
Rack B 1152 576 1087 11
Rack C 1152 576 1063 14
Rack D 960 480 942 9
Rack E 1920 960 1883 9

Table 1: Core properties of the seed racks.

which maps onto the HDD states, e.g. standby, spin-
ning up, and spinning. The IO scheduler also maintains
for each group constraint a balance, equal to the sum of
coststate ×wid for each group. In general, a group can
transition to a new state if, for all group constraints, the
change in balance is within the group constraint budget.

The IO scheduler is invoked each time a IO request is
received, or an IO or group state transition completes. It
needs to determine if there is a request that can be now
serviced or if a group transition needs to occur to service
queued requests.

The choice of which group or groups to transition is
a function of the per group queue depth and the current
queuing delay for the head request. There is a trade-off
between latency and throughput, there is a throughput
penalty for changing group state, but there is a latency
penalty of making requests queue for longer. The perfor-
mance characteristics specified control this trade-off. If
the IO scheduler decides that a group g needs to transi-
tion state, the IO scheduler iterates over the groups and,
using the group constraints, greedily identifies sets of
groups that could be transitioned to free the resources
to allow g to transition. If none or insufficient resources
are found, then the scheduler waits for in-flight requests
or group transitions to complete. If there are a number
of sets of groups, then the scheduler selects the groups to
transition based on their queue depth and head request
delay. When it has selected a group or groups to transi-
tion, if there are spare resources in any group constraints,
the IO scheduler is invoked again to allow further groups
to transition state.

4 Evaluation

We now evaluate the performance of Flamingo using
seven seed rack configurations, including Pelican and
the Facebook/OCP Cold Storage Design [20]. The OCP
Cold Storage Rack contains two independent servers and
16 Open Vault chassis, each filled with two trays of 15
HDDs with sufficient power and cooling to support one
active drive and 14 in standby. The tray is a vibration
domain, and each server is connected to 8 chassis using
SAS containing a combined 240 HDDs and independent

of the other server in the rack. Hence, this rack con-
figuration is a half rack consisting of a server and 240
HDDs. Details of the software stack have not been re-
leased, but a Pelican-like storage stack is needed as most
HDDs will be in standby. The other five racks are based
on other cold storage designs and we refer to them as
Rack A to Rack E. Table 1 summarizes the number of
HDDs, the number of resource domains and the average
HDDs per resource domain for each of them. All the
designs have multiple bandwidth resource domains, to
capture the bandwidth from the HDDs to the server, as
well as power, cooling and vibration domains. Racks A
to E are all credible physical hardware design points for
cold storage which vary the power, cooling, and HDD
density (hence vibration and HDD-to-server bandwidth).
We have built out Pelican and Rack D. We put no upper
bounds or increment limits on the resource domains for
any resources in any rack.

Flamingo uses a rack-scale discrete event simulator to
estimate the performance of rack with the synthesized
data layout and IO scheduler. The simulator is based
on the discrete event simulator used to evaluate Pelican,
which we have extended to support arbitrary physical
rack topologies and to use the constraint-aware IO sched-
uler described. It models HDDs, network bandwidth and
the server-to-HDD interconnect, and is configured with
mount, unmount and spin up latency distributions from
measurements of real archive class HDDs and has been
cross validated against real rack-scale storage designs
(for example the prototype Pelican [8]).

In the experiments we used a cluster of servers, each
with two Intel Xeon E5-2665 2.4Ghz processors and 128
GB of DRAM. For each configuration we do a parameter
sweep over a range of possible workload characteristics.
A sequence of client read requests for 1 GB files is gener-
ated using a Poisson process with an average arrival rate
λ = 0.0625 to 5. Beyond λ = 5 the network bandwidth
becomes the bottleneck for all racks. The read requests
are randomly distributed across all the files stored in the
rack. We simulate 24 hours, and gather statistics for the
last 12 hours when the simulation has reached a steady
state. We believe this workload allows comprehensive
comparison of the rack configurations.

4.1 Flamingo performance

First we evaluate the performance of Flamingo exploring
the resource design space and creating the configurations
from the initial rack description. For each of the seven
racks, the time to generate the derived configurations is
less than three seconds on a single server. Figure 3(a)
shows the total number of configurations derived for each
rack. Across each of the racks there is wide variance in
the number of configurations derived, 649 to 1,921. The
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Figure 3: Base performance of Flamingo.

number of configurations is a function of the resource
domains and which ones are the bottleneck resource in
each configuration. Across all racks 7,547 configurations
are created.

Figure 3(a) also shows for each rack the fraction
of configurations for which the generated data layout
was considered efficient or inefficient by Flamingo. If
Flamingo finds a configuration in which (i) all HDDs are
allocated to a group, and (ii) all HDDs in a single group
can be migrated from standby to active concurrently, it
uses the fast heuristics as described to determine if the
solution is efficient or inefficient. If these two conditions
do not hold then the configuration is marked as having
no solution, however for all 7,547 configurations a lay-
out (efficient or inefficient) was found.

Figure 3(b) shows the fraction of power, cooling and
vibration provisioned in each configuration derived from
the Pelican rack. Each point represents a configuration
and power and cooling are shown on the two axes, nor-
malized to being fully provisioned. Hence a value of
(1,1) means that the resource is sufficiently provisioned
to have all HDDs in the rack in their most resource-
consuming operating state. The vibration domain is ex-
pressed using the color of the point, again normalized
to fully provisioned. Although showing only three re-
sources, Figure 3(b) demonstrates how Flamingo tra-
verses the design space, incrementing the bottleneck re-
source each time. For each configuration we increment
the bottleneck resource by the smallest unit that will al-
low a single HDD to be in a more expensive operating
state. However, this does not necessarily mean that the
bottleneck resource changes from the previous config-
uration. In Figure 3(b) the impact of this can be seen
where there are multiple power configurations for each
step in the cooling.

Execution time Next, we consider the execution
time of Flamingo. The solver used to synthesize the data
layout and IO scheduler for each configuration runs as
an independent single threaded process for each configu-
ration. Flamingo runs one instance of the solver on each

core of each server it is run on. Figure 3(c) shows a CDF
of derived racks versus time taken to generate the data
layout and the IO scheduler configuration for each con-
figuration. The time taken is a function of the complexity
of the configuration and the number of HDDs, and for all
except those for Rack E, none takes more than 9 min-
utes. In the worst case, for a configuration derived from
Rack E it takes 3 hours and the median for this rack is 20
minutes. The time taken for Flamingo is heavily domi-
nated by the number of HDDs; as the number of HDDs
increases the size of the state space to search increases
faster then linearly. Table 1 shows Rack E has 1,920
HDDs, almost a factor of two larger than the other racks.
Our solver is deterministic and can report as it executes
both the current best found solution and the fraction of
the search space it has explored.

Once the data layout and IO scheduler parameters
have been created, Flamingo runs the simulator to esti-
mate the performance of each configuration. The time
taken by the simulator is a function of the workloads
evaluated. The workloads used in this paper allow a com-
prehensive exploration of the relative performance and
across all 7,547 configurations we observed a mean exe-
cution time of 45 minutes per configuration, with a max-
imum of 83 minutes. As with the parameter generation,
the simulations can be run concurrently.

4.2 Data layout quality
Next we quantify the quality of the data layout generated
for each configuration. Flamingo considers a layout as
efficient or inefficient, and stops searching once it finds
one it considers efficient. Analytically it is impossible
to determine if a layout is optimal at these scales, so in-
stead we use two metrics. The first metric is the num-
ber of groups that can be concurrently spun up, which is
a good indicator of performance under low load. For a
configuration we can determine the bottleneck resource,
and using that we can calculate an upper bound on the
number of groups that should be able to be concurrently
active in their highest state (m). We then generate a ran-
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Figure 4: Quality of data layout.

dom test ordering of the n groups in the configuration.
For each configuration we greedily try to spin up the first
k groups, where k = 1,2,3, ...,m. If we are able to mi-
grate the HDDs in the k groups from standby to active
concurrently without violating any resource constraints,
we remove the group at position k in the test ordering
and try again. Eventually, there are no further groups to
remove from the test ordering and k < m, or k = m. We
repeat this 250,000 times ensuring a unique ordering for
each trial and record k and normalize it to m. We refer to
this as the low load quality metric and reflects the level
of concurrency achievable under low load.

The second metric is the number of groups that can be
concurrently active and still allow an additional group to
become active. This is a good indicator of performance
under high load. We use the same process to calculate
this metric, except instead of concurrently migrating the
HDDs in all group from standby to active, we leave k−1
active and try to transition the kth group to the spinning
up state. Again, we can calculate the value of m for this
metric using the bottleneck resource. We refer to this as
the high load quality metric. If, for all 250,000 trials,
both metrics are one then the data layout is considered
good otherwise it is considered bad. These metrics are
not used by the Flamingo solver as they take many hours
to compute for each single solution, and need to be com-
puted for all the large number of solutions considered.

Table 2 compares using these metrics to the fast
heuristics used by Flamingo showing the total number of
configurations, the number of these configurations that
Flamingo said it could generate an efficient layout, and

Rack Configurations Efficient False Positive False Negative
OCP 1921 1921 0 0
Pelican 747 369 0 0
Rack A 1421 1421 0 0
Rack B 1152 1152 0 0
Rack C 973 909 361 0
Rack D 649 205 0 9
Rack E 684 135 39 39

Table 2: Quality of Flamingo’s data layout heuristics.
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Figure 5: Flamingo vs Pelican.

then the number of false positives and false negatives.
A false positive is a configuration marked efficient by
Flamingo but bad by the metrics. A false negative is
marked inefficient by Flamingo but good by the metrics.
Three racks: OCP, Rack A and Rack B, have efficient
and good layouts for all configurations.

In order to understand further the quality of inefficient
configurations, as well as the false positives and nega-
tives, Figure 4 shows a CDF of configurations versus
both quality metrics when the metrics are not one (OCP,
Rack A and Rack B omitted). The low load metric is
not 1 for only three racks, and in all cases the median is
above 0.9. Under the high load metric all solutions are
at 0.75 or higher for the four racks. This shows that even
when a rack is not efficient, the quality of the solutions
is high.

4.3 Storage performance

The last set of experiments evaluate the rack performance
when using the IO scheduler and the data layout synthe-
sized by Flamingo. First we compare how Flamingo per-
forms to a manually-designed solution. To do this we
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Figure 6: Performance of generated layouts and IO scheduler.

take the rack configuration which is equivalent to the
Pelican rack used in [8] and compare its performance
with the Flamingo generated data layout and IO sched-
uler constraints.

We first consider the time to first byte, which is the
time between a request being issued by a client and the
first data byte being sent to the client. This includes all
queuing and spin up delays. Figure 5(a) shows the time
to first byte as a function of the workload rate. Flamingo-
Pelican is using the data layout and IO scheduler config-
uration synthesized by Flamingo and Pelican is the man-
ually designed layout and IO scheduler. The time to first
byte for Pelican and Flamingo-Pelican is virtually identi-
cal across all workload rates. This is true for other prop-
erties measured by the simulator, including throughput,
which are omitted due to space constraints.

The fact that Flamingo-Pelican matches the original
performance is interesting. The data layout differs sig-
nificantly from the original Pelican layout. Figure 5(b)
shows a representation of the rack as a 3D array of HDDs
shown from the front, side and top comparing the layout
of group zero for each. Each colored square represents a
HDD, and other groups can be thought of as rotations of
this group. Flamingo groups cover different individual
resource domains compared to the original Pelican.

The next experiment explores the ability of Flamingo
to exploit the resources provisioned in each rack. Ideally,
the performance should increase as the provisioning of
the bottleneck resource increases. For each of the 7,547
configurations for the seven racks we measure the time
to first byte as a function of resource provisioning. Fig-
ure 6(a) shows the time to first byte versus the resource
provisioning. Due to lack of space, we use a single
(high) workload rate of 4 requests per second and only
show results for one randomly selected rack (Rack E).
The other racks show similar trends in the results. To
quantify the resource provisioning we use its M value
normalized by the total number of HDDs in the rack rep-
resenting a fully provisioned rack. Recall that M is the
maximum number of HDDs that can be concurrently in
their highest cost operating state, and is a function of
the bottleneck resource. While deriving configurations,

Flamingo increases the bottleneck resource budget by a
value δ which is potentially less than the cost of allow-
ing a HDD to operate in the highest cost operating state,
hence several configurations can share the same M value.

From Figure 6(a) we see that the time to first byte gen-
erally decreases as provisioning increases, meaning that
Flamingo is able to adapt to the increased resource pro-
visioning, achieving better performance with more re-
sources. The performance improvement is not mono-
tonic: in some cases, the resource provisioning increase
does not decrease the time to first byte. This happens
because Flamingo attempts to optimize for general per-
formance across multiple metrics, rather than just time
to first byte. Figure 6(a) also shows that the decrease
in time to first byte is not linear as the provisioning is
increased. When resources are scarce, even a slight in-
crease in provisioning leads to significantly better perfor-
mance. For example, increasing the provisioning from
0.06 to 0.1 leads to a time to first byte decreased by
nearly 80% on average for Rack E. We observe this trend
for all seven racks, meaning relatively low provisioned
racks can achieve a performance close to fully provi-
sioned ones. Intuitively, this happens because for the
given workload, resource provisioning within the rack is
not necessarily the bottleneck. At some point, the perfor-
mance becomes limited by external factors such as the
bandwidth from the rack to the data center fabric (in this
case 40 Gbps). Notably, the exact benefit of increasing
resources is very different for each initial rack descrip-
tion, e.g. for Rack A, the time to first byte decreases by
80% only when resource provisioning reaches 0.68.

To illustrate this further we use a low workload rate of
0.0625 requests per second. Figure 6(b) shows the time
to first byte versus the resource provisioning for Rack E.
For this low workload rate, the IO scheduler is unable
to do extensive batching of requests and needs to fre-
quently transition between groups. The rack bandwidth
is not the bottleneck and the IO scheduler can benefit
from more resources in the rack to increase concurrency
of group transitioning. As a result, the time to first byte
decreases almost linearly as provisioning increases. Re-
source provisioning depends on multiple factors internal
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and external to the rack. Tools like Flamingo provide
great benefit when co-designing a rack and storage stack
for a particular workload.

The final experiment evaluates the benefit for the
IO scheduler to dynamically manage the available re-
sources. Pelican made the simplifying assumption that
HDDs could have two states; standby and active. This
leaves some resources unused which means that it will
be able to keep fewer groups concurrently active, but has
the benefit of being much simpler and we refer to this
as a conservative IO scheduler. Allowing an arbitrary
number of states with differentiated costs requires the IO
scheduler to track transitions between each state for all
HDDs, and ensuring that budgets will not be violated by
each transition to a new state. We compare the conser-
vative and the Flamingo schedulers using the OCP rack.
For this default configuration power is the bottleneck re-
source, with sufficient provisioning to allow two groups
to spin up concurrently. Figure 6(c) shows the through-
put as a function of the workload rate. For workloads
with higher request rates of 2 or more requests/second,
the Flamingo IO scheduler outperforms the conservative
one. It does this because, at the higher loads, it can keep
more groups concurrently spinning; it is able to keep up
to three groups concurrently spinning as opposed to two
for the conservative scheduler, allowing one more re-
quests to be processed in parallel. For lower workload
rates, the performance is dominated by the number of
groups that can spin up concurrently as the IO sched-
uler needs to frequently transition between groups, so
the Flamingo IO scheduler offers no additional perfor-
mance. It should be noted that if the HDDs can oper-
ate in lower power RPM states which offer faster transi-
tioning to active, the benefit of the finer-grained resource
management in the Flamingo IO scheduler would enable
increased performance for all workload rates.

5 Related Work

Flamingo addresses the challenges of designing rack-
scale systems for near-line storage. To reduce costs
physical resources are typically constrained. The stor-
age stack needs to maximize performance without vio-
lating the constraints making data layout and IO schedul-
ing key. In contrast, traditional storage is provisioned for
peak performance. There have been proposals for sys-
tems like MAID [10], as well as other power efficient
storage systems [22, 18, 4, 24, 32], that allow idle disks
to spin down. Data layout and mechanisms to handle
spun down disks is important in all their designs. Perga-
mum [22] used NVRAM to handle meta-data and other
small writes, effectively providing a write-back cache
used when the disks are spun down. Hibernator [32]
supports low RPM disk modes and dynamically deter-

mines the proportion of disks in each mode in function of
the workload. Rabbit [4], Sierra [24] and PARAID [27]
achieve power-proportionality through careful data lay-
out schemes, but in these systems fine-grained provision-
ing of physical resources is not done at design time.

There has been work on automatic configuration of
RAID storage [21, 30, 29, 3, 1, 6, 7], for example to de-
sign RAID configuration that meet workload availability
requirements [3, 1, 6, 9]. These use a solver that takes
declarative specifications of workload requirements and
device capabilities, formulates constraint representation
of each design problem, and uses optimization tech-
niques to explore the search space of possible solutions
computing the best RAID level for each logical unit of
data on disk. Designs often include an online data mi-
gration policy between RAID levels [30, 7]. Flamingo
is designed to optimize the physical resource utilization
in the rack, working at a larger scale and explicitly han-
dling a large number of constrained resources.

Tools to manage the design and administration of en-
terprise [26, 5], cluster [15] and wide-area [13] storage
that optimize for data availability, durability and capital
cost as primary metrics offline but do not consider fine-
grained resource management or online IO scheduling.

Flamingo provides quantitative answers to questions
about hypothetical workload or resource changes and
their impact on performance. This is similar to prior
work [25, 23, 11]. For example, [23] evaluates different
storage provisioning schemes, which helps understand-
ing trade-offs. In contrast, Flamingo complements the
analysis by creating the data layout and IO scheduling
policies for each configuration.

More generally, [14] proposes automatically generat-
ing data layout for data-parallel languages. Remy [31],
given network characteristics and transport protocol tar-
gets, synthesizes a network congestion control algorithm.
Flamingo has the same high-level goal: to make systems
less brittle.

6 Conclusion

Flamingo is designed to simplify the development of
rack-scale near-line storage. Flamingo has two high-
level goals: first to synthesize the data layout and IO
scheduler parameters for a generic storage stack for
cloud near-line storage racks. The second aspect is that
Flamingo supports the co-design of rack hardware and
software, by allowing an efficient exploration of the im-
pact of varying the resources provisioned within the rack.

Acknowledgments We would like to thank Aaron
Ogus, the reviewers and our shepherd Mustafa Uysal for
their feedback.

12



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 225

References

[1] ALVAREZ, G. A., BOROWSKY, E., GO, S.,
ROMER, T. H., BECKER-SZENDY, R., GOLDING,
R., MERCHANT, A., SPASOJEVIC, M., VEITCH,
A., AND WILKES, J. Minerva: An automated re-
source provisioning tool for large-scale storage sys-
tems. ACM Trans. Comput. Syst. 19, 4 (Nov. 2001),
483–518.

[2] Amazon glacier. http://aws.amazon.com/

glacier/, August 2012.

[3] AMIRI, K., AND WILKES, J. Automatic De-
sign of Storage Systems To Meet Availability Re-
quirements. Tech. Rep. HPL-SSP-96-17, Com-
puter Systems Laboratory, Hewlett-Packard Labo-
ratories, August 1996.

[4] AMUR, H., CIPAR, J., GUPTA, V., GANGER,
G. R., KOZUCH, M. A., AND SCHWAN, K. Ro-
bust and Flexible Power-proportional Storage. In
Proceedings of the 1st ACM Symposium on Cloud
Computing (2010), SoCC ’10.

[5] ANDERSON, E., HOBBS, M., KEETON, K.,
SPENCE, S., UYSAL, M., AND VEITCH, A. C.
Hippodrome: Running circles around storage ad-
ministration. In FAST (2002), vol. 2, pp. 175–188.

[6] ANDERSON, E., SPENCE, S., SWAMINATHAN,
R., KALLAHALLA, M., AND WANG, Q. Quickly
Finding Near-optimal Storage Designs. ACM
Trans. Comput. Syst. 23, 4 (Nov. 2005), 337–374.

[7] ANDERSON, E., SWAMINATHAN, R., VEITCH,
A. C., ALVAREZ, G. A., AND WILKES, J. Se-
lecting raid levels for disk arrays. In FAST (2002),
vol. 2, Citeseer, pp. 189–201.

[8] BALAKRISHNAN, S., BLACK, R., DONNELLY,
A., ENGLAND, P., GLASS, A., HARPER, D.,
LEGTCHENKO, S., OGUS, A., PETERSON, E.,
AND ROWSTRON, A. Pelican: A Building Block
for Exascale Cold Data Storage. In OSDI (Oct.
2014).

[9] BOROWSKY, E., GOLDING, R., MERCHANT, A.,
SCHREIER, L., SHRIVER, E., SPASOJEVIC, M.,
AND WILKES, J. Using attribute-managed storage
to achieve qos. In Building QoS into distributed
systems. Springer, 1997, pp. 203–206.

[10] COLARELLI, D., AND GRUNWALD, D. Massive
arrays of idle disks for storage archives. In Pro-
ceedings of the 2002 ACM/IEEE Conference on Su-
percomputing (2002), SC ’02, IEEE Computer So-
ciety Press, pp. 1–11.

[11] EL MALEK, M. A., II, W. V. C., CRANOR, C.,
GANGER, G. R., HENDRICKS, J., KLOSTERMAN,
A. J., MESNIER, M., PRASAD, M., SALMON,
O., SAMBASIVAN, R. R., SINNAMOHIDEEN, S.,
STRUNK, J. D., THERESKA, E., WACHS, M.,
AND WYLIE, J. J. Early Experiences on the Jour-
ney Towards Self-* Storage. IEEE Data Eng. Bul-
letin 29 (2006).

[12] HUANG, C., SIMITCI, H., XU, Y., OGUS, A.,
CALDER, B., GOPALAN, P., LI, J., YEKHANIN,
S., ET AL. Erasure coding in windows azure stor-
age.

[13] KEETON, K., SANTOS, C. A., BEYER, D.,
CHASE, J. S., AND WILKES, J. Designing for dis-
asters. In FAST (2004), vol. 4, pp. 59–62.

[14] KENNEDY, K., AND KREMER, U. Automatic Data
Layout for Distributed-memory Machines. ACM
Trans. Program. Lang. Syst. 20, 4 (July 1998), 869–
916.

[15] MADHYASTHA, H. V., MCCULLOUGH, J.,
PORTER, G., KAPOOR, R., SAVAGE, S., SNO-
EREN, A. C., AND VAHDAT, A. scc: cluster stor-
age provisioning informed by application charac-
teristics and slas. In FAST (2012), p. 23.

[16] MARCH, A. Storage pod 4.0: Direct wire
drives - faster, simpler, and less expensive.
http://blog.backblaze.com/2014/03/19/

backblaze-storage-pod-4/, March 2014.

[17] MORGAN, T. P. Facebook loads up innovative
cold storage datacenter. http://tinyurl.com/

mtc95ve, October 2013.

[18] NARAYANAN, D., DONNELLY, A., AND ROW-
STRON, A. Write off-loading: Practical power
management for enterprise storage. Trans. Storage
4, 3 (Nov. 2008), 10:1–10:23.

[19] NEWSON, P. Whitepaper: Google cloud storage
nearline. https://cloud.google.com/files/

GoogleCloudStorageNearline.pdf, March
2015.

[20] OPEN COMPUTE STORAGE. http://www.

opencompute.org/projects/storage/.

[21] PATTERSON, D. A., GIBSON, G., AND KATZ,
R. H. A Case for Redundant Arrays of Inexpen-
sive Disks (RAID). In Proceedings of the 1988
ACM SIGMOD International Conference on Man-
agement of Data (New York, NY, USA, 1988),
SIGMOD ’88, ACM.

13



226 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

[22] STORER, M. W., GREENAN, K. M., MILLER,
E. L., AND VORUGANTI, K. Pergamum: Re-
placing Tape with Energy Efficient, Reliable, Disk-
based Archival Storage. In Proceedings of the 6th
USENIX Conference on File and Storage Technolo-
gies (2008), FAST’08.

[23] STRUNK, J. D., THERESKA, E., FALOUTSOS, C.,
AND GANGER, G. R. Using utility to provision
storage systems. In FAST (2008), vol. 8, pp. 1–16.

[24] THERESKA, E., DONNELLY, A., AND
NARAYANAN, D. Sierra: Practical power-
proportionality for data center storage. In
Proceedings of the Sixth Conference on Computer
Systems (2011), EuroSys ’11.

[25] THERESKA, E., NARAYANAN, D., AND GANGER,
G. R. Towards Self-predicting Systems: What if
You Could Ask “What-if”? Knowl. Eng. Rev. 21, 3
(Sept. 2006), 261–267.

[26] WARD, J., O’SULLIVAN, M., SHAHOUMIAN, T.,
AND WILKES, J. Appia: Automatic storage area
network fabric design. In FAST (2002), vol. 2,
p. 15.

[27] WEDDLE, C., OLDHAM, M., QIAN, J., WANG,
A.-I. A., REIHER, P., AND KUENNING, G.
Paraid: A gear-shifting power-aware raid. ACM
Transactions on Storage (TOS) 3, 3 (2007), 13.

[28] WICKER, S. B., AND BHARGAVA, V. K. Reed-
Solomon codes and their applications. John Wiley
& Sons, 1999.

[29] WILKES, J. Traveling to Rome: A Retrospective
on the Journey. SIGOPS Oper. Syst. Rev. 43, 1 (Jan.
2009), 10–15.

[30] WILKES, J., GOLDING, R., STAELIN, C., AND
SULLIVAN, T. The HP AutoRAID Hierarchical
Storage System. ACM Trans. Comput. Syst. 14, 1
(Feb. 1996), 108–136.

[31] WINSTEIN, K., AND BALAKRISHNAN, H. TCP
Ex Machina: Computer-generated Congestion
Control. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM (2013), SIG-
COMM ’13.

[32] ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEE-
TON, K., AND WILKES, J. Hibernator: help-
ing disk arrays sleep through the winter. In ACM
SIGOPS Operating Systems Review (2005), vol. 39,
ACM, pp. 177–190.

14



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 227

PCAP: Performance-Aware Power Capping for the Disk Drive in the Cloud

Mohammed G. Khatib and Zvonimir Bandic
WDC Research

{mohammed.khatib,zvonimir.bandic}@hgst.com

Abstract

Power efficiency is pressing in today’s cloud systems.
Datacenter architects are responding with various strate-
gies, including capping the power available to comput-
ing systems. Throttling bandwidth has been proposed to
cap the power usage of the disk drive. This work revis-
its throttling and addresses its shortcomings. We show
that, contrary to the common belief, the disk’s power us-
age does not always increase as the disk’s throughput in-
creases. Furthermore, throttling unnecessarily sacrifices
I/O response times by idling the disk. We propose a tech-
nique that resizes the queues of the disk to cap its power.
Resizing queues not only imposes no delays on servicing
requests, but also enables performance differentiation.

We present the design and implementation of PCAP,
an agile performance-aware power capping system for
the disk drive. PCAP dynamically resizes the disk’s
queues to cap power. It operates in two performance-
aware modes, throughput and tail-latency, making it vi-
able for cloud systems with service-level differentiation.
We evaluate PCAP for different workloads and disk
drives. Our experiments show that PCAP reduces power
by up to 22%. Further, under PCAP, 60% of the re-
quests observe service times below 100 ms compared to
just 10% under throttling. PCAP also reduces worst-
case latency by 50% and increases throughput by 32%
relative to throttling.

1 Introduction

The widespread adoption of on-line services has been fu-
eling the demand for more and denser datacenters. The
design of such warehouse-sized computing systems [12]
is not at all trivial. Architects have to deal not only
with computing, storage and networking equipment, but
also with cooling and power infrastructures [13]. In fact,
power and energy are first-order concerns for architects
as new high-performing hardware is likely to require

more power, while the cost of hardware has remained
stable. With these trends continuing, Barroso [11] ar-
gues that the cost of the energy to operate a server during
its lifetime could surpass the cost of the hardware itself.

Power is more concerning since the cost of building
a datacenter is mainly dictated by the costs of its power
infrastructure. These costs typically range between $10
and $20 per deployed Watt of peak critical power [29].
Hence, a datacenter with a provisioned 10 MW peak
power capacity costs $100M to $200M (excluding cool-
ing and ancillary costs), a significant amount of money.
Contrast the $10/W building cost with an average of
$0.80/Watt-hour for electricity in the U.S. Still, while en-
ergy costs vary with the usage of the datacenter, building
costs are fixed and based on the peak power capacity.
Consequently, it becomes very important to fully utilize
a datacenter’s power capacity. If a facility is operated at
85% of its maximum capacity, the cost of building the
facility surpasses the energy costs for ten years of opera-
tion [29].

Recent studies have addressed maximizing the power
utilization in datacenters [26, 36]. Researchers have
characterized the power usage at different levels in the
datacenter (e.g., machine and cluster) and investigated
power provisioning strategies. One especially promis-
ing strategy is power over-subscription [12], that over-
subscribes a datacenter with more machines (and thus
more work) to ensure near 100% power utilization. The
incentive to fully utilize the power budget is, however,
offset by the risk of overloading the power trains and in-
frastructure of the datacenter. Such overloading could
result in long service downtimes (due to power outages)
and/or costly contractual fines (due to service agreement
violations). To prevent overloading, power capping tech-
niques are deployed as a safety mechanism, thus allow-
ing maximum utilization while preventing costly penal-
ties.

Power capping is a mechanism that ensures that the
power drawn by a datacenter stays below a predefined
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power limit or cap. At the core of power capping is
a monitoring loop, which takes in power readings, and
computes the amount of power capping needed. Capping
itself is done in a variety of techniques depending on the
scale and type of the hardware component under ques-
tion. On a datacenter level, capping is an aggregate num-
ber that trickles down to clusters, racks, machines and
components. Suspending low-priority tasks in a cluster
and adapting the clock frequency of a CPU component
are two example techniques.

This work focuses on capping the power usage of the
storage component of the datacenter. We address the 3.5-
inch high-capacity enterprise hard disk drives (HDDs)
common in today’s cloud deployments. This paper tack-
les the question of: How can the HDD power consump-
tion be capped in a performance-aware manner?

To this end, we revisit the throttling technique pro-
posed for power capping [40] and address its shortcom-
ings in a new technique we propose. We show that throt-
tling unnecessarily sacrifices timing performance to cap
power. Throttling limits disk throughput by stopping ser-
vicing and delaying all outstanding requests. It is pred-
icated on the assumption that low throughputs result in
less power usage by the disk. Our power measurements
reveal that, contrary to the common belief, the power us-
age of the disk does not always increase with the increase
in throughput but declines for high throughputs. We find
no strict positive correlation between the power usage
and the throughput of the disk.

To enable power capping for the disk drive, we pro-
pose a technique that resizes the I/O queues. We show
that resizing queues not only reduces the impact on per-
formance, unlike throttling, but also enables two differ-
ent performance-oriented operation modes: throughput
and tail-latency. This is important given the various ser-
vices offered by today’s datacenters. For instance, web
search is sensitive to latency, whereas Map-reduce is
throughput-oriented [22, 35]. By I/O queues we mean
both the disk’s queue as well as its respective OS queue.
We investigate the interplay between both queues and
their influence on the disk’s power usage.

We present PCAP, an agile performance-aware power
capping system for the disk drive. PCAP dynamically
adapts the queues of a disk drive to cap its power. It per-
forms power capping in two different operation modes:
throughput and tail-latency. Under PCAP, 60% of the
requests exhibit latencies less than 100 ms as opposed to
just 10% under throttling. Also, PCAP reduces worst-
case latency by 50% and increases throughput by 32%
compared to throttling. PCAP has three goals:
1. Agile power capping that reacts quickly to workload
variations to prevent power overshooting as well as per-
formance degradation.
2. Graceful power control to prevent oscillations in

power and better adhere to service level agreements.
3. Maximized disk performance for enhanced perfor-
mance of applications.

This paper makes the following contributions:
• Revisiting the throttling technique for HDDs and
studying the throughput–power relationship (section 4).
• Investigating the impact of the HDD’s and OS queues
on the HDD’s power and performance (section 5).
• Designing and evaluating the PCAP system that is ag-
ile, graceful, and performance-aware (section 6).

This paper is structured as follows. The next section
offers a brief refresher of the basics of HDDs. Sec-
tion 3 evaluates the merit of power capping for HDDs
and presents our experimental setup. Section 4 revisits
throttling and its impact on power. Section 5 investigates
the influence of the queue size on HDD’s power con-
sumption. Section 6 presents the design of PCAP and
Section 7 evaluates it. Section 8 studies PCAP for dif-
ferent workloads. Section 9 discusses related work and
Section 10 concludes.

2 Background

2.1 Power capping vs. Energy efficiency
This work focuses on power capping to maximize the
utilization in the datacenter, where peak power predom-
inates costs of ownership. We do not address energy ef-
ficiency, where machines are powered down in underuti-
lized datacenters to save energy. While the latter received
ample attention in the literature [43, 44, 45, 48, 41], the
former received relatively little [40, 26, 36].

Addressing power capping, we measure power dissi-
pation. Power is the rate at which electricity is con-
sumed. It is measured at an instant in time as Watts (W).
To contrast, energy is a total quantity and is power inte-
grated over time. It is measured as Wh (Watt-hour), or
joules. We focus on power usage here.

2.2 HDD power capping
The active read/write mode of the HDD is of a primary
interest for power capping. This is because the HDD
draws most of the power in the active mode (e.g., com-
pare 11 W during activity to 6 W during idleness). Also,
in cloud systems, HDDs spend most of the time in the
active mode [17]. Generally speaking, power capping
may transition the HDD between the active mode and
one or more of its low power modes to reduce the average
power drawn in a period of time. Throttling for instance
transitions the disk between the active and idle modes.
This transitioning comes at a performance penalty, which
scales with the depth and frequency the low-power mode
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being visited. In contrast, in this work we avoid tran-
sitioning between power modes and propose the adjust-
ment of the queue size to achieve power capping for the
disk drive in the active mode.

2.3 HDD’s IOQ and NCQ queues
Any block storage device, that is managed by an Operat-
ing System (OS), has a respective queue as a part of the
OS [14]. The queue serves as space for the I/O scheduler
to reorder I/O requests for increased throughputs. For
example, the Linux OS maintains a queue depth of 128
requests by default (in the current Ubuntu distributions).
Requests are reordered to optimize for sequentiality on
the HDD. The queue size is adjustable with a minimum
size of 4. We refer to this queue as IOQ in this work.

NCQ stands for Native Command Queuing [5]. It is
an extension to the Serial ATA protocol that allows the
HDD to internally optimize the order in which requests
are serviced. For instance, the HDD may reorder re-
quests depending on its rotational positioning in order
to serve all of them with fewer rotations and thus less
time. NCQ typically ranges from 1 to 32, where NCQ=1
means disabled NCQ.

2.4 Scope of this work
We focus on the storage component of the datacen-
ter. Making storage power-aware enables better over-
all power provisioning and capping. The share in
power consumption due to storage varies. For exam-
ple, in storage-heavy systems, such as the HGST Active
Archive System [3], 80% of the power is due to the 600
HDDs it hosts, whereas in a computing-heavy system,
such as the Dell PowerEdge R720 Server, 5-10%. We
propose a technique to cap power at the disk level. Other
techniques exist that may operate at different levels. We
envision our technique complementing other techniques
to achieve datacenter-wide power capping. Our tech-
nique has potentially wide applicability, since it (1) has
no influence on data availability, (2) works under heavy
workloads (i.e., no idle periods), (3) has no impact on
HDD reliability, and (4) enables fine-tuned Watt-order
capping. It offers three key properties: sensitive to per-
formance, non-invasive to the I/O software stack, and
simple to understand and implement (see Section 6).

3 The case for HDD power capping

In this section, we address a merit question: How much
power can be saved by power capping the HDD?

To this end, we quantify the range of power an HDD
draws when servicing requests, called dynamic power.
We discuss the setup we prepared for our studies first.

3.1 Hardware setup

We chose a JBOD setup (Just a Bunch of Disks) to host
a set of HDDs, which are exercised and their power
is measured. The JBOD setup consists of a Dell Pow-
erEdge R720 Server connected via LSI 9207-8e HBA to
a Supermicro JBOD. It holds 16 3.5” SATA HDDs. We
selected HGST Ultrastar 7K4000 of 4 TB capacity [2],
commonly found in cloud storage systems today.

Besides the HGST Ultrastar 7K4000, we have ob-
tained a sample HDD from two other HDD vendors.
We selected a Seagate 4TB HDD [6] and a WD 4TB
HDD [8]. All disks have the same capacity and num-
ber of platters, since they share the same storage density
(i.e., same generation). We use different disks to ensure
the commonality of our observations as well as the appli-
cability of our techniques across different vendors, gen-
erations and technologies.

We profile power using WattsUp .NET power me-
ters [7]. We use one meter for the JBOD and another for
the server. We interpose between the power supply and
the mains. Since the JBOD is dual corded for high avail-
ability, we connect both to an electric strip which in turn
goes into the power meter. The meters are connected via
USB to the server, on which we collect power read-outs
for later analysis. The meters sample power once per
second. This rate should be enough for power capping,
since capping is performed on higher time scales [12].

3.2 Software

Our server runs a 64-bit 12.02 Ubuntu Server distribu-
tion with the 3.0.8 Linux kernel. No OS data were stored
on the disks in the JBODs. Instead, we used a separate
disk for that purpose, which is housed in the server it-
self. Unless pointed out otherwise, the default settings
of the I/O stack were kept intact. For example, the file
systems on our disks (XFS in this case) were formatted
with the default settings. The I/O scheduler was kept at
the deadline default scheduler.

We used existing Linux utilities and implemented our
own when needed. Utilities were used to generate work-
loads and collect logs of timing performance and power.
We installed a WattsUp utility that communicates with
the power meter and logs power read-outs. As for bench-
marking, we use the FIO benchmark [10] to generate
different workloads. We use FIO for design space ex-
ploration. To generate real workloads, we use Mon-
goDB [4]. Because the usage of a benchmark varies de-
pending on the goal of the experiment, we defer talk-
ing about the setup to each individual discussion of our
studies. For timing performance profiling, we use the
iostat Linux utility and benchmark-specific statistics.
The collected performance and power logs are then fed
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Figure 1: The dynamic and static power components
measured for the four sample HDDs
to a custom-built Python program for analysis. Unless
otherwise mentioned, we always collect measurements
on the application level for end-to-end performance.

3.3 HDD’s dynamic power
We measured the dynamic power for the four differ-
ent types of HDD we have; the static power was iso-
lated in separate measurements with no I/O load. Using
FIO, we generated sequential and random workloads to
measure the maximum power for each individual HDD.
Under sequential workloads, the maximum power cor-
responds to the maximum attainable throughput, which
is approximately 170 MB/s. In contrast, the maximum
power under random workloads is attained by ensuring
maximum seek distance between consecutive requests
(Section 4). Figure 1 shows HDD’s power broken down
into static and dynamic components. The static compo-
nent is related to the spindle and the electronics, whereas
the dynamic component is related to the head arm and
read/write channel. Across all HDDs, the figure shows
that the dynamic power ranges up to 4 W and 5 W under
sequential and random workloads, respectively. Hence,
for our JBOD system, which can hold up to 24 HDDs,
power capping exhibits a range up to 96 W and 120 W,
respectively. As such, HDDs enjoy a sizable dynamic
power range for power capping to conserve power.

4 HDD’s throughput throttling

Throttling has been proposed as a technique to cap
HDD’s power [40]. This section investigates the rela-
tionship between the power and throughput in HDDs.
We implemented a kernel module that enables us to throt-
tle throughput under sequential as well as random work-
loads, called dm-throttle. The module is based
on the device-mapper layer of the Linux kernel and is
700 lines of C code. It accepts as an input the de-
sired throughput cap in KB per second or IOs per sec-
ond for sequential and random workloads, respectively.
The throughput cap can be modified at run-time via the
/proc/ file system, where statistics are accessed too.

We set up two instances of FIO to generate sequential

(a) Sequential (b) Random

Figure 2: The power–throughput relationship under se-
quential and random workloads

and random workloads for 40 and 50 minutes, respec-
tively. We used multiple threads in the random workload
generation to attain maximum disk throughput. During
the run of each FIO instance, we varied the throttling
throughput of dm-throttle and measured the power
and the effective throughput. Throughput was throt-
tled at several points (6.25, 12.5, 25, 50, 75, 100, 150,
200 MB/s) for sequential workloads, and (10−100, 150,
200 IOPS) for random workloads. In these experiments,
we used one HDD from the 16 (identical) HDDs. We
singled out its power after subtracting the idle power of
the JBOD (incl. power supplies, fans and adapters).

Figures 2a and 2b show the throughput–power re-
lationship under sequential and random workloads, re-
spectively. Figure 2a shows that the HDD draws more
power (the black curve) as throughput increases (the gray
curve). The HDD draws 8 W of power at the maximum
throughput (170 MB/s). And its power range, that scales
with the throughput, is 7−8 W. Another 0.6 W is added
to the dynamic range due to channel activity when exer-
cising the disk with some workload. This effect can be
seen in Figure 2a during the second four minutes of the
experiment. In separate measurements, we found that an
additional 1 W of power is drained when the heads are
loaded to counteract the drag. As such, the total dynamic
range for such disks is 5.5−8 W, which is in agreement
with the figures for HDD-C in Figure 1a.

Figure 2b shows that under random workloads power
increases with the throughput up to a certain point, 90
IOPS in this case. After that, power starts decreasing for
higher throughputs with a noticeable drop at the maxi-
mum throughput of 200 IOPS, thanks to better schedul-
ing in the disk (see the next section). The figure high-
lights the fact that different throughputs can be attained
for the same amount of power drawn. Also, the dy-
namic power range is wider under random workloads
compared to sequential workloads, between 7− 10.5 W
versus 7− 8 W (excluding the power due to channel ac-
tivity and head positioning). As such the effective power
ranges for our JBOD are up to 24 W and 84 W under
sequential and random workloads, respectively.

Summarizing, we make two key observations that
guide the rest of this work:
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Observation 1: HDDs exhibit a dynamic power range
that is wider under random workloads compared to se-
quential workloads.

Observation 2: HDDs can offer different throughputs
and service times for an equivalent amount of power un-
der random workloads.

The two observations lead us to investigate a power-
capping technique under random workloads (Observa-
tion 1) that is performance-aware (Observation 2). We
focus on random workloads in the rest of this paper. If
required, power-capping by throttling should be a suffi-
cient technique for sequential workloads, thanks to the
positive correlation between power and throughput un-
der sequential workloads. Next, we investigate the rea-
son for the decline in the HDD’s power consumption at
high throughputs, which motivates the choice for using
the queue size to control power.

5 Power–Queue relationship

This section explains the dynamics of the HDD’s head
arm. We motivate our choice for the queue size to control
power. We then investigate the influence of the queue
size on the HDD’s power, throughput, and service time.

5.1 Causality

Under random workloads, the HDD’s head moves across
the surface of the platters to service requests from dif-
ferent locations. The head motion is characterized as
random, since the head spends most of the time seek-
ing instead of accessing bits (compare 5 ms seek time
to 0.04 ms 4 KB read time). Moving the head dissipates
power by its VCM (voice-coil motor). Depending on
the physical distance separating any two consecutive re-
quests, the head may need to accelerate and subsequently
decelerate. Acceleration and deceleration require a rela-
tively large amount of power (similar to accelerating a
car from standstill). A few (random) requests have a
long physical distance in between, requiring accelera-
tion and deceleration. Conversely, the more the requests
dispatched to the disk, the shorter the separating dis-
tance and thus the less the power due to reduced accel-
eration, if any. At higher loads more requests are dis-
patched to the disk simultaneously, allowing the disk to
better schedule and reduce distances and thus accelera-
tions resulting in less power. In Figure 2b, the disk con-
sumes less power at low throughputs (< 90 IOPS) too
but for a different reason. At low throughputs, the disk
is underutilized and spends more than 45% of the time
in the idle power mode, resulting in power savings that
outweigh the increase in power due to (occasional) ac-
celerations.

5.2 Characterizing the relationship

This section studies both the IOQ (scheduler) queue and
the NCQ queue described in Section 2.3. We investigate
their interplay and influence on power and performance.
We seek to answer the following two questions:
1. For a fixed NCQ queue size, what is the relation-
ship between the IOQ queue size and the HDD’s power,
throughput and service time?

2. For a fixed IOQ queue size, what is the relation-
ship between the NCQ queue size and the HDD’s power,
throughput and service time?

Methodology We studied a single HDD in our JBOD
system from Section 3.1. We carried out two sets of ex-
periments to confirm trends: once with FIO and another
with MongoDB [4]. We generated random 4KB requests
with FIO using aiolib. We used enough threads to
mimic real systems with multiple outstanding requests.
For the MongoDB setup, we stored 100 databases on
the disk, each of which is approximately 10 GB in size.
The files of every two consecutive databases (e.g., 1-st
and 2-nd) were separated by a 10-GB dummy file on the
disk, so that 2.4 TB was consumed from our 4 TB HDD.
The disk was formatted with the XFS file system using
the default settings. We used YCSB [19] to exercise 10
databases, the 10-th, 20-th, 30-th, up to the 100-th. One
YCSB instance of 10 threads was used per database to in-
crease throughput. We benchmarked for different queue
sizes. The IOQ queue was varied in the range (4, 8, 16,
32, 64, 128), whereas the range for the NCQ queue was
(1, 2, 4, 8, 16, 32). To resize a queue to a value, say
SIZE, we used the following commands:

• IOQ queue: echo SIZE > /sys/block/sdc/
queue/nr requests

• NCQ queue: hdparm -Q SIZE /dev/sdc

Results Figure 3a shows HDD’s power versus the
size of the IOQ queue. Power decreases as the IOQ
queue size increases. A large IOQ queue enables bet-
ter scheduling and thus reduces randomness in requests
arriving to the disk (which in turn reduces accelerations).
A trend exists where power reduction exhibits diminish-
ing returns at large queues, since only the power due to
the head’s VCM is affected, whereas other static power
components remain intact (Amdahl’s law). The figure
confirms the same trend for different sizes of the NCQ
queue, but at different power levels.

Figure 3b shows HDD’s power versus the size of the
NCQ queue. Unlike for the IOQ queue, two opposing
trends exist. In fact, the size of the IOQ queue plays a
major role here. We can explain the figure by observing
trends at small and large IOQ queue sizes (e.g., 4 and
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Figure 3: The influence of the queue size for both IOQ and NCQ on the HDD’s power, throughput and service time

32, respectively). At small sizes, power decreases as the
NCQ queue size increases, because the requests arriv-
ing at the disk sill exhibit randomness, leaving room for
better scheduling by NCQ. Recall that better scheduling
reduces acceleration and thus leads to lower power con-
sumption. Conversely, at large sizes of the IOQ queue,
power increases as the NCQ queue size increases, since
randomness is already reduced by the I/O scheduler and
thus even higher throughputs are attained at large NCQ
queue sizes (200 IOPS versus 100 IOPS on the bottom
curve of Figure 3c). High throughputs involve more
channel activity, which draws more power.

As for the timing performance, Figure 3c shows the
relationship between throughput, in IOPS, and the NCQ
queue size. Expectedly, throughput increases at large
queues, since more time is spent on accessing bits rather
than seeking. We observed similar trends for throughput
versus the IOQ queue. We do not show it for space rea-
sons. One observation is that the HDD’s throughput is
mainly limited by the IOQ size. That is, increasing NCQ
beyond IOQ size does not result in increased throughput,
since NCQ scheduling is limited by the number of re-
quests it sees at a time, which is in turn bounded by the
IOQ size.

Figure 3d shows the relationship between the HDD
service time, measured by iostat, and the NCQ queue
size. Surprisingly, the service time decreases for large
NCQ queue sizes, although larger queuing delays are in-
curred. This suggests that the saving in rotational posi-
tioning time due to NCQ scheduling outweighs the queu-
ing delay of large queues. This improvement is more pro-
nounced for large numbers of arriving requests as shown
by the top curve in the figure for an IOQ size of 128.
Conversely but expectedly, we observed a linear increase
in service time as the IOQ queue size increases. We do
not show it for space reasons.

Summarizing, HDD power decreases with the in-
crease in the size of the IOQ (scheduler) queue. Both
throughput and service time expectedly increase. On the
other hand, while throughput increases with the increase
of the NCQ queue size, power and service time have un-
usual trends. We make two new observations:

Observation 3: The power drawn by the HDD ex-

hibits opposing trends with respect to the NCQ queue
size. These trends are influenced by the size of the IOQ
scheduler queue.

Observation 4: The HDD’s service time decreases
with the increase in the size of the NCQ queue, thanks
to improved in-disk scheduling.

The interplay between the two queues leads to the fol-
lowing observation:

Observation 5: The HDD’s dynamic power range can
be fully navigated by varying the sizes of the NCQ and
I/O scheduler queues.

6 PCAP design

In a dynamic datacenter environment, where power re-
quirements and workloads change constantly, a control
system is required. Such a system ensures compliance to
power caps when power is constrained and enables better
performance when more power is available. We present
the design of PCAP and techniques to make it graceful,
agile and performance-aware. PCAP’s design is based
on the observations made previously.

6.1 Base design

At its core, PCAP has a control loop that triggers ev-
ery period, T . It computes the running average of the
power readings over the past T time units and decides on
the amount of power capping needed. PCAP is a propor-
tional controller. To attain better performance and ensure
stability, we improve upon the basic proportional con-
troller in four ways. (1) PCAP increases and decreases
power using models derived from the observations of
Section 5. (2) It uses different gains when increasing and
decreasing power. (3) PCAP bounds the ranges of its
control signals (i.e., queue sizes) and (4) employs a hys-
teresis around its target output to prevent oscillations due
to measurement errors. Power is increased or decreased
by adjusting the size of the IOQ and NCQ queues grad-
ually, one step per period. Queue adjustment is based on
the relationships investigated in Section 5.2. PCAP uses
two factors, αup and αdn, to increase power (or allow
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Figure 4: Power capping with PCAP and the corresponding queue sizes for the (a & b) base and (c & d) agile designs

better performance) and to decrease power, respectively.
We use two factors, since the decrease in power must
be done aggressively to avoid penalties, whereas the in-
crease in power is done incrementally and cautiously.
Consequently, αdn is greater than αup. Based on either
factor, the queue size is adjusted proportionally to how
far the target power, Pt , is from the current power, Pc. We
use the following equations to calculate the change in the
queue size, ΔQ, to enable graceful control:

ΔQIOQ =
|Pt −Pc|
ΔPIOQ

·2αdn (1)

ΔQNCQ =
|Pt −Pc|
ΔPNCQ

·αdn (2)

ΔPIOQ and ΔPNCQ are the maximum change in power
attainable by varying the IOQ and NCQ queues, respec-
tively. We multiply αdn by 2 for the IOQ to attain mea-
surable changes in power. Changing queue sizes to al-
low for power increase follows Equations 1 and 2 after
replacing αdn with αup. To account for measurement er-
rors and reduce oscillations, an error margin of ε is tol-
erated around the target power. That is no further power-
capping actions are taken, if the current power is within
a range of [-ε , +ε] of the target power. For our experi-
ments, we settled on the settings for PCAP’s parameters
shown in Table 1. These are, however, configurable de-
pending on the conditions of the datacenter as well as its
operation goals.

We implemented a prototype of PCAP in Python. It is
300 lines of code. PCAP runs in the background. New

Table 1: PCAP’s parameters and their settings

Parameter Setting Description

T 5 s control loop period
αup 2 factor used for power increase
αdn 8 factor used for power decrease
ε 0.2 W control tolerance factor

ΔPIOQ 2 W max power change with IOQ queue
ΔPNCQ 2 W max power change with NCQ queue

[QL
IOQ,Q

U
IOQ] [4,32] IOQ queue range

[QL
NCQ,Q

U
NCQ] [1,8] NCQ queue range

Qρ
IOQ 128 IOQ setting for maximizing throughput

Qρ
NCQ 32 NCQ setting for maximizing throughput

power targets, if any, are echoed into a text file which
PCAP reads in at the beginning of every period, T . After
that, it executes the control loop explained before until
the target power is attained. Figure 4a shows the activity
of PCAP on a single HDD over a 45-minute period of
time. The figure shows three curves, the target power cap
(dashed), the instantaneous power (solid), and the 1-min
average power (dotted). We generate a random workload
for the entire period. Initially, we leave the disk idle for
5 minutes and then generate a workload with no power-
capping for another 5 minutes. The HDD draws approx-
imately 8 W and 11 W, respectively. At minute 10, the
power cap is set to 9 W and PCAP adjusts queues to re-
duce HDD’s power by 2 W to below 9 W. At minute 15,
the power cap is again lowered to 8.5 W and PCAP low-
ers power accordingly. At minute 20, PCAP is unable
to lower the power below 7.5 W, since it is outside the
dynamic range of the HDD. We keep capping power at
different levels for the rest of the experiment and PCAP
reacts accordingly. Figure 4b shows the change in the
queue sizes to attain power-capping.

The figure shows a delay at minute 25 in responding
to raising the power cap from 7.5 W to 10.5 W. We study
this sluggishness in the next section. Datacenter opera-
tors may by more interested in long-term smoothed aver-
ages for which contractual agreements may be in place.
For example, the 1-minute power curve in the figure in-
hibits oscillations, unlike the instantaneous power curve,
so that power violations should be of no concern in this
case. We discuss performance in Section 6.3.

6.2 Agile capping

The oval in Figure 4a highlights an inefficiency in the
base design of PCAP. It manifests as delays in increas-
ing power when the power cap is lifted up. This ineffi-
ciency results in low throughputs and long service times,
since queues take some time to adjust accordingly as
shown at minute 25, calling for better agility.

We examined the cause of the delay in adjusting queue
sizes. Figure 4b shows that the IOQ queue reached high
sizes during the tracking of the previous very low power
target (7.5 W). This is because the base design keeps in-
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Figure 5: Throughput and service time under the throughput and tail-latency performance modes of PCAP

creasing the size of the IOQ queue until the power tar-
get is reached. In this particular case, IOQ queue size
reached 219. Similarly, the NCQ queue can increase sig-
nificantly. Later, when new and higher power targets are
set as in minute 25, PCAP takes long time to reduce the
queue size to low values since this happens gradually.
The sluggishness results in a relatively long time period
of lost performance.

To improve agility, we leverage an observation made
from Figure 3a namely, power exhibits diminishing re-
turns at high queue sizes, so that their respective power
savings are marginal. As such, we introduce upper
bounds on the sizes of both queues, QU

IOQ and QU
NCQ.

The bounds limit the increase in queue sizes and enable
shorter times to navigate queue ranges. Similarly, we in-
troduce lower bounds. Figure 4c shows the performance
of PCAP with bounds. Thanks to its queue-depth bound-
ing, PCAP avoids infinitely and hopelessly attempting to
cap power. Figure 4d confirms that the queue sizes never
exceed the bounds. The bounds are shown in Table 1
and were set with values of the knees of the curves of
Figures 3a and 3b. Figure 4c confirms PCAP’s agility.

6.3 Performance awareness

Resizing queues impacts the performance of the HDD.
We distinguish between two types of timing perfor-
mance: (1) throughput and (2) tail-latency. In the
throughput mode, PCAP attempts to increase throughput
while adhering to the power cap. This mode enhances
the average latency. In the tail-latency mode, PCAP at-
tempts to reduce the high-percentiles latencies or alter-
natively shorten the tail of the latency distribution. In
practice, the designer can set performance targets along
the power target to reach compromises between the two.

As discussed in Section 5.2, throughput increases
by increasing the size of both IOQ and NCQ queues.
Power decreases with the increase in the IOQ queue size,
whereas it increases for large NCQ queue sizes as shown
in Figure 3c. PCAP uses models of these relationships
to increase throughput while capping power. In con-
trast, the tail-latency decreases (i.e., high-percentile la-

tencies decrease) for small IOQ queue sizes and large
NCQ queues as shown in Figure 3d. We also incorpo-
rate models of this relationships in PCAP to reduce tail
latencies while capping power.

The solution for agility of the previous section is
in conflict with maximizing throughput (in PCAP’s
throughput mode). This is because the low upper bound
on the size of both queues limits the maximum attained
throughput. Compare 150 IOPS at (NCQ=8, IOQ=32) to
200 IOPS at (NCQ=32, IOQ=128) in Figure 3c, a 25%
potential loss in throughput. To prevent this loss, we re-
designed PCAP such that when it reaches the “agility”
upper bounds, it snaps to predefined queue settings to
maximize throughput in the throughput mode. The cor-
responding queue parameters are Qρ

IOQ and Qρ
NCQ (see

Table 1). Similarly, PCAP snaps back from these set-
tings to the upper bounds in the downtrend. That way,
agility is still preserved while throughput is maximized.
This scheme has no effect in the tail-latency mode, since
small queues are required.

Figures 5a and 5b show the throughput of a sin-
gle HDD when running PCAP in the throughput and
tail-latency modes, respectively. Throughputs up to
200 IOPS are attained in the throughput mode, which is
higher than the 140-IOPS maximum throughput attained
in the tail-latency mode. The high throughput comes at
the cost of long response times, resulting in a long tail in
the distribution of the response time as Figure 5c shows.
The figure plots the corresponding cumulative distribu-
tion function for the response time measured at the client
side for both PCAP’s modes. Tail-latency attains shorter
maximum latencies, compare 1.3 s to 2.7 s maximum la-
tency. Further, 60% of the requests observe latencies
shorter than 100 ms in the tail-latency mode as opposed
to just 20% in the throughput mode. We discuss the curve
corresponding to throttling in Section 7.1.

7 PCAP’s performance

This section compares PCAP to throttling and then stud-
ies the influence on I/O concurrency on PCAP’s ability
to cap power.
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(a) Power capping by throttling (b) Throughput under throttling

Figure 6: Using throttling to cap (a) HDD’s power usage,
while (b) maximizing throughput

7.1 PCAP versus throttling

Both queue resizing and throughput throttling can be
used for capping power as evidenced in Figures 5a and
2a, respectively. Section 5.1 presented a qualitative argu-
ment as for why to use queue resizing to control power.
This section presents a quantitative argument. We com-
pare the timing performance of the HDD when its power
is capped by either queue resizing (i.e., PCAP) or throt-
tling. Precisely, we answer the question of: For the same
power cap, how do the throughput and the service time
compare under throttling and PCAP?

We repeated the same experiments of Section 6.3
while throttling the throughput (see Figure 2a) to cap
the power within the desired levels. We used our
dm-throttle module for throttling to reproduce Fig-
ure 4c. To take advantage of the HDD’s low power con-
sumption at high throughputs (Figure 2a), we used throt-
tling only for power caps strictly below 9.5 W (which
corresponds to the power drained at maximum through-
puts). For higher power caps, we disabled throttling
to maximize the performance of the disk. As such,
dm-throttle was used to cap power selectively while
avoiding hurting performance whenever possible, hence
offering the best-case performance of throttling.

Figure 6a shows the power consumption of the HDD.
Throttling keeps the power below the power cap, which
is shown in dashed black. The power curve separates
from the power cap by a large margin during some pe-
riods, such as minutes 25–30 and 40–45. These peri-
ods correspond to power capping with no throttling de-
ployed, since the power cap is above 9.5 W. Figure 6b
shows the throughput of the disk over the time period
of the experiment. It confirms maximum throughputs
around 185 IOPS during periods of no throttling. Com-
paring Figure 6b to Figures 5a and 5b we can visu-
ally see that throttling attains lower throughputs than
the throughput mode of PCAP, whereas it outperforms
the tail-latency mode of PCAP. While throttling attains
an average of 117 IOPS, PCAP attains 154 IOPS (32%
more) and 102 IOPS (15% less) in the throughput and
tail-latency modes, respectively. Figure 5c shows the
cumulative distribution of the response time for the re-

quests of the previous experiment. Overall, throttling at-
tains worse latency than the two performance modes of
PCAP. Just 10% of the requests exhibit latencies under
100 ms, whereas the maximum latency is 2.5 s. This is
however expected, since throttling delays requests and
maintains default queue settings that are deep and op-
timized towards throughput. By treating response time
and throughput differently, PCAP outperforms throttling
on both performance goals. 60% of the requests exhibit
response times below 100 ms and an increase of 32% in
throughput is attainable with PCAP.

PCAP relies on concurrency in I/O requests to attain
capping as we shall see next.

7.2 Influence of concurrency on PCAP
We carried out two sets of experiments to study PCAP’s
performance on a single HDD. In the first set, we var-
ied the number of concurrent threads, while maximizing
the load per thread so that the HDD utilization is 100%
all the time. In the second set, we fixed the number of
threads and varied the load per thread to attain different
utilization levels.

Our goal is to study the relationship between the ef-
fective queue size (i.e., the actual number of outstanding
requests at any time instance) and PCAP ability to cap
the HDD’s power. In the first experiment, since utiliza-
tion is maximized the effective queue size matches the
number of threads. In the second experiment, the effec-
tive queue size varies, since the load varies.

Maximized load In the first experiment, we varied the
number of threads in the range (1, 2, 4, 8, 16, 32, 64,
128). We ran PCAP in the throughput mode and in the
tail-latency mode, and chose different power caps. Fig-
ure 7a shows the average power measured over the pe-
riod of the experiment for each setting. The figure shows
that for a few threads the average power is 10.7 W, far
above the power targets (8 W and 9 W). That is PCAP
cannot cap power at concurrency levels below 4 threads
(i.e., queue sizes under 4), since little opportunity ex-
ists for reordering requests and saving power. At con-
currency levels above 4, the two curves start declining
and departing from each other. This signifies that PCAP
starts achieving some capping but cannot attain the target
cap (i.e., no perfect capping). Finally, it attains the 9 W
cap at 32 threads, whereas the 8 W cap is attained at 64.

We repeated the same experiment while running
PCAP in the tail-latency mode. We studied for three
power targets including 10 W, since the HDD enjoys
larger dynamic range for small queues. We observed the
same trend of attaining capping at higher concurrency
levels. The power caps were attained at smaller num-
ber of threads compared to the case with the throughput
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(a) Maximized load (b) Varied load

Figure 7: The influence of I/O concurrency on PCAP’s
performance in capping power for a single HDD

mode. For example, 9 W and 8 W were attained with as
little as 16 (vs. 32) and 32 (vs. 64) threads, respectively.
In addition, for the higher power target of 10 W, PCAP
attains the cap starting from 2 threads.

Varied load In this experiment, we pushed load to the
HDD progressively while fixing the number of threads.
We used 32 threads to ensure power capping with PCAP.
Without capping, the load varies between 32 IOPS to
200 IOPS. Figure 7b plots the average measured power
versus the utilization level reported by iostat. The
figure shows that the power is lower than both targets at
low utilization, since the HDD spends a sizable fraction
of time idling, thanks to the low load. Observe in such a
scenario, throttling is happening “naturally”. At higher
utilizations, PCAP perfectly caps the power to below
9 W, whereas the 8 W cap is violated for utilization levels
between 40–95%. To explain these results, we examined
the effective queue size (from iostat) versus utiliza-
tion. We found that the overshooting over 8 W is due to
queue sizes below 16, where PCAP cannot achieve per-
fect capping (see Figure 7a). At higher utilization lev-
els, large queues build up which allows PCAP to restore
power to below (or close to) the target as shown for 9 W.

Discussion In summary, PCAP attains perfect power
capping for high concurrency levels, whereas reductions
in power usage are possible for lower levels. The effec-
tive concurrency for perfect capping tends to increase as
the desired power cap decreases. We find that PCAP
becomes effective starting from 32 threads. We also
find that PCAP is ineffective below 4. We believe this
should not be an immediate concern to the applicability
of PCAP, since real systems are usually multi-threaded
for performance reasons. As such, chances that little con-
currency appears in practice are little. That said, throt-
tling can be used in such cases.

8 Putting it all together

This section evaluates PCAP’s performance under dif-
ferent workloads. Then, we evaluate it when capping
power at the system level for an array of HDDs.

Figure 8: The increase in execution time for a 500 MB
batch job for different power caps

8.1 PCAP under batch workloads
This section studies the impact of power capping by
PCAP on the performance. We assume a batch job that
reads data chunks from random locations on a single
HDD. The HDD always reads at its maximum through-
put and reads a total of 500 MB. We investigate the total
execution time of the job when capping the HDD power
at different levels. Since the job is batch, where through-
put is important, we run PCAP in the throughput mode.
And we vary the power cap in the range [8-9] W with a
step of 0.25 W. We study the tail-latency mode later.

Figure 8 plots the execution time of the batch job
versus the power cap. We normalize the figure to the
case without power capping, where the average power is
9.2 W and the total execution time is 10.5 minutes. The
figure shows that the execution time increases by 33%
when capping at 13% (8 W), which is the maximum at-
tainable cap. Also, the figure highlights a nonlinear re-
lationship between the power cap and performance. For
example, the increase in response time between power
caps 2% and 5% is larger than that between 5% and 8%
(16% vs. 2%). We confirmed this relationship by re-
peating the experiments and also examining the effec-
tive throughput of the application. We found that the
throughput is 195 IOPS at 2% and drops to 167 IOPS
and 165 IOPS at 5% and 8%, respectively. We study for
bursty workloads next.

8.2 PCAP under bursty workloads
This section studies PCAP under workloads that vary
in intensity and exhibit trough as well as bursty periods.
This experiment seeks primarily to show that the increase
in a job’s execution time due to power capping (as shown
in the previous section), can be absorbed in the subse-
quent trough periods. As such, long execution times do
not necessarily always manifest. Still, power is capped.

We searched for real traces to replay but were chal-
lenged with two issues. The first issues was scaling the
address space to reflect the growth in disk capacity. The
second issue was scaling the arrival times. We obtained
Microsoft traces [37] and implemented a replay tool. Al-
though these traces confirm the randomness in the I/O
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(a) Throughput vs. time (b) Throughput breakdown

Figure 9: (a) PCAP performance under bursty work-
loads. The increase in execution time is absorbed, thanks
to the trough periods. (b) Throughput is reduced due to
capping and workload components share the cut.

pattern, we found that the address space is in the range
of 256 GB (vs. our 4 TB HDDs). More importantly, we
found that the traces were taken from a mostly-idle sys-
tem, so that high power is not an issue but energy ef-
ficiency (see Section 2.1) for which indeed some tech-
niques were proposed such as write offloading [37]. For
example, we needed to scale traces by a factor up to 100
in order to see I/O activity, which in turn was not realistic
because the inherent burstiness of the trace disappeared.
We resorted to emulating a real workload.

Our workload is 55-minute long and consists of three
parts. The first part is a constant part which continuously
pushes load to the underlying HDD at a rate of 64 IOPS.
The second and third parts are bursts which read 40 MB
and 20 MB worth of random data, respectively. They are
repeated 3 times throughout the workload separated by
trough periods, each is 10-minute long. The third burst
always starts 5 minutes after the second one. We repeated
the experiment 4 times for different power caps: no cap,
9 W, 8.5 W, and 8 W. PCAP runs in the throughput mode.

Figure 9a shows the throughput in IOPS for the entire
experiment. We show for the two extreme power set-
tings: no cap and 8.0 W to keep the figure readable. Two
observations can be made. First, the throughput during
bursts decreases for power-capped scenarios, whereas it
remains unaffected otherwise since the actual power is
below the cap. The reduced throughput results in longer
times to finish the burst jobs, which are perfectly ab-
sorbed in the subsequent trough periods. Secondly, both
capping scenarios finish at the exact time of 55 minute.
Note that in cases were no trough periods exist, longer
execution times cannot be hidden and the discussion re-
duces to that of the previous section.

Figure 9b shows the split of the HDD’s throughput
across the three workload components. We show the
split for the four power-capping settings. The throughput
drops from 190 IOPS to 170 IOPS. The two bursty parts
share the cut in throughput, 11% and 17%, respectively.

In summary, power capping impacts the performance
of the HDD. In real scenarios, where the total execution

time matters, a system like PCAP can incorporate per-
formance as a target to optimize for while performing
power capping. The resultant increase in response time
manifests in high intensity workloads such as batch jobs,
whereas it decreases in varying workloads.

8.3 PCAP/S: System-level power capping

This section demonstrates the application of power cap-
ping on larger scales with multiple HDDs. We present
PCAP/S, PCAP for a system of HDDs.

PCAP/S builds on PCAP. It borrows the main control
loop of PCAP and works with multiple HDDs. PCAP/S
elects HDDs for power capping in a performance-aware
way. To mimic real systems, we assume that HDDs are
split into tiers, which represent different service level ob-
jectives (SLOs) as in service-oriented datacenters [35, 1]
for instance. PCAP/S’ power capping policy splits into
two parts: (1) JBOD-level and (2) HDD-level. We chose
for a priority-based strategy for the JBOD-level policy.
It elects HDDs from the lower-priority tiers first when
power must be reduced, whereas higher-priority tiers are
elected first when more power is available. HDDs within
the same tier are treated equally with regards to power in-
crease or decrease. This policy strives to reduce perfor-
mance penalty for higher-priority tiers. The HDD-level
part, on the other hand, is exactly that of Section 6, which
resizes queues to attain power capping per HDD.

We studied power capping for the array of HDDs for
our JBOD from Section 3.1. We split the 16 HDDs in
each JBOD into three different tiers. The first tier enjoys
the best performance. Both Tier 1 and Tier 2 contain
5 HDDs each, whereas Tier 3 has 6. The JBOD itself
consumes 80 W of power when unloaded (i.e., contains
no HDDs). We set PCAP/S’ period, T = 10 s and error
margin, ε = 1 W.

We applied random workloads generated by FIO to
the three tiers over a 55-minute period of time. Differ-
ent power caps were used: (200, 190, 185, 170, 195,
150, 150, 180, 205 W.) PCAP/S was run in the latency
mode. Figure 10a shows the total power differentiated
into three tiers. Power capping starts at minute 10 with
a power cap of 200 W (excl. the static power). PCAP/S
reduces the power below the cap by reducing the con-
sumption of Tier 3, the lowest-priority tier. At minute 20,
however, the power cap is set at 185 W, which is larger
than the maximum saving attainable by Tier 3. There-
fore, Tier 2 takes a cut in power here too, but at a lesser
degree than Tier 3. At minute 25, the power cap is set at
170 W, and Tiers 1–3 contribute to the reduction. When
power is raised later at minute 30, Tier 1 regains its max-
imum power budget, whereas Tier 3 still observes a cut
in power. At minute 35, a relatively very low power cap
of 150 W is set, which is beyond the capping capability
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(a) PCAP for multiple HDDs (b) Response-time distribution

Figure 10: Using PCAP/S to (a) cap the power usage of
our JBOD for (b) three tiers of performance

of PCAP/S. Here, PCAP/S does its best by maximizing
the reduction on all the tiers, while being off by 10 W. As
such, it caps power by up to 22% in this particular case.

Figure 10b shows the distribution of the service time
for the three workloads applied on the three tiers, re-
spectively. It shows that 80% of the requests observe
latencies less than 104, 151, and 172 milliseconds on the
three tiers, respectively. Also, 80%, 70% and 55% ob-
serve latencies under 100 ms, respectively. Thanks to the
priority-based JBOD-level policy, higher-priority tiers
suffer less performance penalties.

8.4 Discussion
PCAP works under mixed workloads as well as under
random workloads observing the fact that mixed work-
loads result in a random pattern on the disk. The capping
percentage will be affected as detailed in the experiments
in Section 7.2. As for pure sequential workloads throt-
tling can be used. Extending PCAP to detect sequen-
tial patterns and use our dm-throttle from Section 4
should be straightforward.

Queue resizing by PCAP is based on observations in-
herent to the fundamental architecture of the HDD (Sec-
tion 5.1) as opposed to specifics of an HDD model or
brand. Therefore, we expect that no per-device calibra-
tion is needed but perhaps per family of devices; regu-
lar versus Helium HDDs. Figure 1 confirms the similar-
ity of the dynamic power range for contemporary HDDs
from different vendors.

9 Related Work

Numerous studies have addressed the power and energy
efficiency of IT systems. Some studies focus on mo-
bile systems [32, 33, 46], while others focus on data-
centers. The latter studies look into energy efficiency as
well as power controllability and accountability. Energy-
efficiency studies closely examine power management
approaches for processors [35, 39, 25], memory [23, 25]
and the disk drive. Approaches for the disk drive
include power cycling [20, 24, 45, 48, 15], dynamic

RPM [27, 15], buffering and scheduling [18, 31], and
the acoustic seek mode [16]. Other studies addressed
modeling the energy consumption of the disk drive for
holistic system efficiency [28, 9, 46, 47]. Newer tech-
nologies were also investigated. Researchers looked into
newer technologies, such as SSDs to reduce data move-
ment costs using their energy-efficient computation [42].

Recently, power has received increased attention in an
attempt to reduce running and infrastructure costs [36,
26, 38, 34, 30]. Some authors investigated power ac-
counting on a per-virtual machine [30, 38, 41]. Other
authors proposed techniques for power capping for the
processor [34, 33] and the main memory [21]. As for the
disk drive, the throughput-throttling technique [40] and
the acoustic seek mode [16] were proposed. While throt-
tling works under sequential workloads, it incurs large
performance penalties for random workloads. Likewise,
acoustic seeks result in slow seeks, which impacts per-
formance too.

This work complements the previous work and pro-
pose queue resizing to cap the disk drive’s power con-
sumption under random and mixed workloads. We inves-
tigated the relationship between the queue size and the
power usage of the disk drive. We showed that queues
can be resized to cap power yet in a performance-aware
manner. We designed PCAP based on key observations
of the queue–power relationship. PCAP is capable of
capping for single- and multi-HDD systems. We made
the case for PCAP’s superiority over throttling.

10 Summary

We presented a technique to cap the power usage of 3.5-
inch disk drives. The technique is based on queue resiz-
ing. We presented PCAP, an agile system to cap power
for the disk drive. We evaluated PCAP performance on a
system of 16 disks. We showed that PCAP outperforms
throttling. In our experiments, 60% of the requests ex-
hibit response times below 100 ms and an increase of
32% in throughput is attainable with PCAP. We also
showed that PCAP caps power for tiered storage systems
and offers performance-differentiation on larger scales.
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ABSTRACT

Copy-on-write virtual disks (e.g., qcow2 images) pro-

vide many useful features like snapshot, de-duplication,

and full-disk encryption. However, our study uncovers

that they introduce additional metadata for block orga-

nization and notably more disk sync operations (e.g.,

more than 3X for qcow2 and 4X for VMDK images).

To mitigate such sync amplification, we propose three

optimizations, namely per virtual disk internal journal-

ing, dual-mode journaling, and adaptive-preallocation,

which eliminate the extra sync operations while preserv-

ing those features in a consistent way. Our evaluation

shows that the three optimizations result in up to 110%

performance speedup for varmail and 50% for TPCC.

1 INTRODUCTION

One major benefit of virtualization in the cloud environ-

ment is the convenience of using image files as virtual

disks for virtual machines. For example, by using the

copy-on-write (CoW) feature provided by virtual disks

in the qcow2 format, a cloud administrator can provide

an image file as a read-only base file, and then overlay

small files atop the base file for virtual machines [16].

This can significantly ease tasks like VM deployment,

backup, and snapshot, and bring features such as image

size growing, data de-duplication [7, 9], and full-disk en-

cryption. Thus, CoW virtual disks have been widely used

in major cloud infrastructures like OpenStack.

However, the convenience also comes at a cost. We

observe that with such features being enabled, the per-

formance of some I/O intensive workloads may degrade

notably. For example, running varmail on virtual disks

with the qcow2 format only gets half the throughput of

running on the raw formats. Our analysis reveals that the

major reason is a dramatic increase of sync operations

(i.e., sync amplification ) under qcow2, which is more

than 3X compared to the raw format.

The extra sync operations are used to keep the consis-

tency of the virtual disk. A CoW image (e.g., qcow2)

contains much additional metadata for block organiza-

tion, such as the mapping from virtual block numbers to

physical block numbers, which should be kept consistent

∗‡Corresponding authors

to prevent data loss or even disk corruption. Thus, the

qcow2 manager heavily uses the fdatasync system call to

ensure the order of disk writes. This, however, causes

notable performance slowdown as a sync operation is

expensive [17, 1]. Further, since a sync operation trig-

gers disk flushes that force all data in the write cache to

be written to the disk [25], it reduces the effectiveness

of the write cache in I/O scheduling and write absorp-

tion. For SSD, sync operations can result in additional

writes and subsequent garbage collection. Our evalua-

tion shows that SSD has a 76% performance speedup for

random write workload after disabling write cache flush-

ing. A workload with frequent syncs may also interfere

with other concurrent tasks. Our experiment shows that

sequential writes suffer from 54.5% performance slow-

down if another application calls fdatasync every 10 mil-

liseconds. Besides, we found that other virtual disk for-

mats like VMDK share similar sync amplification issues.

One way to mitigate the sync amplification problem is

disabling the sync operations. For example, the Virtual-

Box (version 4.3.10) just ignores the guest sync requests

for high performance [23]. Besides, VMware Work-

station (version 11) provides an option to enable write

cache [24], which ignores guest sync operations as well.

This, however, is at the risk of data inconsistency or even

corruption upon crashes [6].

To enjoy the rich features of CoW virtual disks with

low overhead, this paper describes three optimizations,

per virtual disk internal journaling, dual-mode journal-

ing and adaptive preallocation, to mitigate sync amplifi-

cation while preserving metadata consistency.

Per virtual disk journaling leverages the journaling

mechanism to guarantee the consistency of virtual disks.

Qcow2 requires multiple syncs to enforce ordering,

which is too strong according to our observation. To

address this issue, we implement an internal journal for

each virtual disk, where metadata/data updates are first

logged in a transaction, which needs only one sync oper-

ation to put them to disk consistently. Such a journaling

mechanism, however, requires data to be written twice,

which is a waste of disk bandwidth. We further introduce

dual-mode journaling which monitors each modification

to the virtual disk and only logs metadata (i.e., reference

table, lookup table) when there is no data overwriting.



242 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Adaptive preallocation allocates extra blocks for a vir-

tual disk image when the disk is growing. The preallo-

cated blocks can be used directly in the following expan-

sion of virtual disks. This saves the image manager from

requesting the host file system for more free blocks, and

thus avoids extra flush operations.

We have implemented the optimizations for qcow2 in

QEMU-2.1.2. Our optimizations result in up to 50% per-

formance speedup for varmail and 30% speedup for tpcc

for a mixture of different workloads. When we run var-

mail and tpcc with a random workload, they can achieve

110% and 50% speedup, respectively.

2 BACKGROUND AND MOTIVATION

We use the qcow2 format as an example to describe the

organization of a VM image and the causes of sync am-

plification.

2.1 The qcow2 Format

A qcow2 virtual disk contains an image header, a two-

level lookup table, a reference table, and data clusters, as

shown in Figure 1. The image header resembles the su-

perblock of a file system, which contains the basic infor-

mation of the image file such as the base address of the

lookup table and the reference table. The image file is

organized at the granularity of cluster, and the size of the

cluster is stored in the image header. The lookup table

is used for address translation. A virtual block address

(VBA) a in the guest VM is split into three parts, i.e.,

a=(a1, a2, a3): a1 is used as the L1 table’s index to locate

the corresponding L2 table; a2 is used as the L2 table’s

index to locate the corresponding data cluster; a3 is the

offset in the data cluster. The reference table is used to

track each cluster used by snapshots. The refcount in ref-

erence table is set to 1 for a newly allocated cluster, and

its value grows when more snapshots use the cluster.

Data 
Cluster

Data 
Cluster

L2 Table Addr
Cluster Addr

L1 Table L2 Table

L2 Table

Reference 
Table

a1 a2 a3

Image Header

Guest (Virtual) Block Address

Figure 1: The orginization of qcow2 disk format.

The process of writing some new data to a virtual disk

includes following steps:

1© Look up the L1 table to get the offset of the L2

table. 2© If the L2 table is not allocated, then set the cor-

responding reference table entry to allocate a cluster for

the L2 table, and initialize the new L2 table. 3© Update

the L1 table entry to point to the new L2 table if a new

L2 table is allocated. 4© Set the reference table to allo-

cate a cluster for data. 5© Write the data to the new data

cluster. 6© Update the L2 table entry to point to the new

data cluster.

Note that, each step in the whole appending process

should not be reordered; otherwise, it may cause meta-

data inconsistency.

2.2 Sync Amplification

The organization of qcow2 format requires extra efforts

to retain crash consistency such that the dependencies be-

tween the metadata and data are respected. For example,

a data cluster should be flushed to disk before updating

the lookup table; otherwise, the entry in the lookup ta-

ble may point to some garbage data. The reference table

should be updated before updating the lookup table; oth-

erwise, the lookup table may point to some unallocated

data cluster.

We use two simple benchmarks in QEMU-2.1.2 to

compare the number of sync operations in the guest VM

and the host: 1) “overwrite benchmark”, which allocates

blocks in advance in the disk image (i.e., the qcow2 im-

age size remains the same before and after the test); 2)

“append benchmark”, which allocates new blocks in the

disk image during the test (i.e., the image size increases

after the test). The test writes 64KB data and calls fdata-

sync every 50 iterations. We find that the virtual disks

introduce more than 3X sync operations for qcow2 and

4X for VMDK images, as shown in Figure 2.
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As shown in Figure 3, a fdatasync of the user appli-

cation can cause a transaction commit in the file system.

This requires two flushes (in guest VM) to preserve its

atomicity, which are then translated into two set of writes

in QEMU. The first write puts the data and the journal

metadata of the VM to the virtual disk, which in the worst

case, causes its size to grow.

To grow the virtual disk in QEMU, a data block must

be allocated, and the corresponding reference table block

should be set strictly before other operations. This neces-

sitates the first flush. After that, the L2 data block must

be updated strictly before the remaining operations. This

necessitates the second flush. (In some extreme cases

where the L1 data block should be updated as well, it in-

troduces even more flushes). The third flush is used to

update the base image’s reference table. When creating
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a new image based on the base image, the refcount in the

reference table of the base image will be increased by

one to indicate that another image uses the base image’s

data. When updating the new image, qcow2 will copy

data from the base image to a new place and do updates.

The new image will use the COW data and will not ac-

cess the old data in the base image, so the refcount in the

base image should be decreased by one. The third flush

is used to make the reference table of the base image

durable. The fourth flush is introduced solely because

of the suboptimal implementation in QEMU. The sec-

ond write is the same as the first one, which needs four

flushes. Consequently, we need around eight flushes for

one guest fdatasync at most.
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Figure 3: Illustration of sync amplification: it shows how the number

of sync operations increases after the user issues fdatasync. The fdata-

sync with red color is necessary to impose the write ordering, while

fdatasync with gray color are solely because of the flawed implemen-

tation of qcow2. JM is for journal of metadata, JC is for journal of

commit block, Re f is for reference table, L2 is for L2 lookup table.

2.3 Other Virtual Disk Formats

Other virtual disks have a similar structure to qcow2 vir-

tual disk. They have an image header to describe the

basic information of the virtual disk, a block map ta-

ble to translate virtual block address to physical block

address, and many data blocks to store the guest VM’s

data. For example, the grain directory and grain table

in the VMDK consist of a two-level table to do address

translation. The VMDK also keeps two copies of the

grain directories and grain tables on disk to improve the

virtual disk’s resilience. FVD [22] even has a bitmap

for the copy-on-read feature. In summary, the organiza-

tion of virtual disks will translate one update operation

in the guest into several update operations in the host.

Besides, the virtual disks should carefully schedule the

update order to preserve crash consistency, which intro-

duces more sync operations. Actually, our evaluation

shows that VMDK has more severe sync amplification

than qcow2, as shown in Figure 2.

3 OPTIMIZATIONS

3.1 Per Virtual Disk Internal Journaling

According to our analysis, we found that the cause of the

extra sync operations is the overly-constrained semantics

imposed during the modification of virtual disks. This is

because the underlying file system cannot preserve the

internal consistency of a virtual disk, in which certain

data serves as metadata to support the rich features. As

a result, the virtual disk has to impose strong ordering

while being updated for the sake of crash consistency.

Based on this observation, we designed a per virtual

disk internal journaling mechanism. As the name sug-

gests, each virtual disk maintains an independent and

internal journal, residing in a preallocated space of the

virtual disk to which the journal belongs. The per vir-

tual disk internal journal works in a manner similar to

the normal file system journal, with the exception that

it only logs the modification of the content of a single

virtual disk.

On a virtual disk update, the metadata (e.g., reference

table and lookup table) as well as the changed data are

first logged into the preallocated virtual disk journaling

area, which is treated as a transaction. At the end of

this update, the journal commit block of a virtual disk

is appended to the end of the transaction, indicating this

transaction is committed. If any failures occur before the

commit block is made durable, the whole transaction is

canceled, and the virtual disk is still in a consistent state.

We also leverage the checksum mechanism: by calculat-

ing a checksum of all the blocks in the transaction, we

reduce the number of flushes to one per transaction.

Like other journaling mechanisms, we should install

the modifications logged in the journal to their home

place, i.e., checkpoint. To improve the performance of

checkpoint, we delay the checkpoint process for batch-

ing and write absorbing. After a checkpoint, the area

took up by this transaction can be reclaimed and reused

in the future.

The per virtual disk journaling relaxes the original

overly-constrained ordering requirement to an all-or-

nothing manner, which reduces the number of flushes

while retaining crash consistency.
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Dual-Mode Journaling: Journaling mechanism re-

quires logged data to be written twice. This, under cer-

tain circumstances, severely degrades performance due

to wasted disk bandwidth. To this end, we apply an op-

timization similar to Prabhakaran et al. [18] and Shen

et al. [21]. This optimization, namely dual-mode jour-

naling, drives the per virtual disk internal journaling to

dynamically adapt between two modes according to the

virtual disk’s access pattern. Specifically, it only logs all

the data when there is an overwriting of the original data;

otherwise, only metadata (reference table and lookup ta-

ble) is journaled.

It should be noted that dual-mode journaling differs

from prior work [21, 18] in that it leverages different

journaling mode for a single file, and thus it does not

cause any inconsistency issues discussed in [21]. This

is because our journaling mechanism only deals with a

single file while prior work [21, 18] needs to deal with a

complete file system. The two modes used are described

as follows.

No-data Journaling Mode: Instead of writing the

data into the journaling, the no-data journaling mode

simply calculates a checksum of the data and puts only

the checksum into the journal. The data is written to the

“home” place. The process is shown in Figure 4-b.

The Overwriting Problem and Full Journaling

Mode: The no-data journaling mode, however, can ren-

der the recovery process inconsistent upon data overwrit-

ing. This is because the correctness of recovery relies

on the checksum of the blocks in the transaction, which

does not necessarily reside in the journaling area since

no-data mode journaling does not log data blocks. The

content of those data blocks can be arbitrarily affected by

the following overwriting operations; the whose check-

sum, of course, can be different from the time when it

was committed.

Consequently, if a transaction is not fully check-

pointed when its following transaction aborts, and at the

same time the data of the previous transaction is partially

overwritten, the recovery process will erroneously con-

sider the already committed transaction as a broken one.

Therefore, if a disk write transaction needs to overwrite

the data which has not been checkpointed, the system

will switch to full-mode journaling and put the entire

data into the journal, as shown in Figure 4-c.

Crash Recovery: During crash recovery, we scan

the journal to find the first transaction that has not been

checkpointed. Then, we calculate the checksum of the

journal data and other related data in this transaction.

If the calculated checksum is the same as the checksum

recorded in the current journal transaction, we apply the

logged modifications for the data and metadata to their

home place and do recovery for the next transaction. It

the two checksums are not equal, it means that the trans-

action is not completely written, and we reach the end

of the journal. We abort the transaction and finish crash

recovery.

Other Implementation Issues: The current subop-

timal implementation of qcow2 image format involves

some unnecessary sync operations (as shown in grey

boxes in Figure 3). We just remove these sync operations

without affecting the consistency.

With the above operations, we can reduce the number

of syncs to one for each flush request from the guest VM.

In another word, if the guest OS issues a flush operation,

there will be only one sync on the host.

3.2 Adaptive Preallocation

We further diagnose the behavior of the host file system

when handling guest VM’s sync requests, and find that

the actual number of disk flushes are usually more than

the number of sync requests. This is because, if a write

from the guest VM increases the size of its image file,

the host file system will trigger a journal commit, which

flushes the disk twice, the first for the data and the second

for the journal commit block.

More specifically, Linux provides three syscalls

(msync, fsync, fdatasync) for the sync operations. The

fsync transfers all modified in-memory data in the file re-

ferred to by the file descriptor (fd) to the disk. The fdata-

sync is similar to fsync, but it does not flush metadata

unless that metadata is needed in order to allow a sub-

sequent data retrieval to be correctly handled (i.e., the

file size). The msync is used for memory-mapped I/O. In

qcow2, it uses fdatasync to make data persistent on the

disk. Thus, if a guest VM’s sync request does not in-

crease the disk image’s size, there will be only one flush

operation for the data; but if the image size changes, the

host file system will commit a transaction and cause an

extra disk flush.

We leverage an adaptive preallocation approach to re-

ducing the number of journal commits in the host. When

the size of the image file needs to grow, we append more

blocks than those actually required. A future virtual disk

write operation which originally extends the image file

can now be transformed into an “overwrite” operation.

In this case, fdatasync will not force a journal commit in

the host, which can reduce the latency of sync operation.

Specifically, we compare the position of the write op-

eration with the image size. If the position of the write

operation exceeds the image size, we will do the preallo-

cation. Currently, the size of preallocated space is 1MB.

4 EVALUATION

We implemented the optimizations in QEMU-2.1.2,

which comprise 1300 LoC. This section presents our

evaluation of the optimized qcow2 from two aspects:

consistency and performance.
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We conducted the experiments on a machine with a

4-core Intel Xeon E3-1230 V2 CPU (3.3GHz) and 8GB

memory. We use 1 TB WDC HDD and 120G Samsung

850 EVO SSD as the underlying storage devices. The

host OS is Ubuntu 14.04; the guest OS is Ubuntu 12.04.

Both guest and host use the ext4 file system. We use

KVM [10] and configure each VM with 1 VCPU, 2GB

memory, and 10GB disk. The cache mode of each VM

is writeback, which is the default setting. It has good

performance while being safe as long as the guest VM

correctly flushes necessary disk caches [20].

4.1 Consistency

To validate the consistency properties, we implement a

trace record and replay framework. We run a test work-

load in the guest and record the write operations and sync

operations in the host. Then, we randomly choose a sync

operation in the trace and replay all the I/O operations

above this sync operation on a backup image (the im-

age is a copy of the guest image before running the test

workload). After that, we choose some write operations

between this sync and the next sync operation, and ap-

ply these writes to the backup image Finally, we use the

qemu-img tool to check the consistency of virtual disk

image.

We record two traces, one for the append workload

and the other for append + overwrite workload. In the

append workload, we append 64k data and then call

fdatasync in the VM. In the append + overwrite work-

load, we append 64k data, call fdatasync, overwrite the

64k data and then call fdatasync. We simulated 200 crash

scenarios for each workload. We divide data in the vir-

tual disk image into four types: guest data, metadata

(i.e., Lookup table), journal data (i.e., the journal record

for metadata’s modification) and journal commit block.

The 200 crash scenarios for each workload contain all

four types of data loss. The result shows that optimized

qcow2 can recover correctly and get a consistent state for

all test cases.

4.2 Performance

We first present the performance of synchronous over-

write and append workloads. For overwrite workload,

we generate a base image and allocate space in advance,

then overlay a small image atop the base image. For ap-

pend workload, we do the experiment directly on a newly

allocated image. We also run the Filebench [15] and

TPCC [4] workload. Filebench’s varmail simulates a

mail server workload and will frequently call sync oper-

ations. TPCC simulates a complete environment where

a population of terminal operators executes against a

database. We run the experiments under three configu-

rations. For the first configuration (raw), we only boot

one VM and run the tests. For the second configuration

(seq), we boot two VMs, one for the experiments and the

other is doing sequential I/O all the time. For the third

configuration (ran), we also have two VMs, one for the

experiments and the other is doing random I/O all the

time.
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Figure 5: Micro-benchmark result on 2 storage media. Each separate

optimization as well as the overall result is showed. “ori” refers to the

original system; “flaw” refers to the system which removes unneces-

sary sync operations caused by qcow2 flawed implementation; “pre”

refers to the adaptive prealloacation; “jou” refers to the per virtual

disk internal journal; “opt” refers to the overall result.
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Figure 6: Macro-benchmark on 2 storage media.

Figure 5 and Figure 6 show the performance results

on both HDD (hard disk driver) and SSD. For overwrite

workload, our system improves the throughput by 200%

for disk and 100% for SSD. For varmail, our system

achieves 110% speedup when running varmail together

with a random workload on HDD. The performance gain

for varmail on SSD is about 50% when running varmail

together with a sequential workload.

Figure 7 compares the TPCC transaction latency be-

tween our system and the original system. The results

show that our system has lower latency, and the latency

even decreased by 40% when TPCC is running together

with a random workload.
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Figure 7: Latency for TPCC.
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Figure 8: Evaluation for multiple VMs.

We also evaluate the multiple VM configurations. We

run four VMs with varmail, TPCC, fileserver and web-

server workloads respectively. Varmail and TPCC work-

loads issue syncs frequently, while fileserver and web-

server have fewer sync operations.

Figure 8 shows the evaluation results for multiple VMs

test. On HDD, the performance of varmail and tpcc im-

proves 50% and 34%, respectively. On SSD, the per-

formance gain is 30% and 20%, respectively. Besides,

fileserver and webserver on the optimized system have

similar performance to those on the original system. This

is because fileserver and webserver have few sync oper-

ations and do not update qcow2 metadata frequently.
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Figure 9: ”Sync write” means calling fdatasync after each write op-

eration; “Direct write” means opening the file with O DIRECT flag;

”2M cluster” means the cluster size is 2M; The cluster size for ”ori”

and ”opt” is 64k.

Qcow2, VMDK and VDI support big clusters (1MB

or more). Big clusters decrease the frequency of meta-

data operations and can mitigate the sync amplification.

Figure 9 shows using big clusters may mitigate sync am-

plification as our approach for the sync write workload.

However, it results in 50% performance degradation for

the direct write workload. This is because bigger clusters

increase the cost of allocating a new cluster [8]. Besides,

bigger clusters reduce the compactness of sparse files. In

contrast, our optimizations mitigate sync amplification

without such side effects.

5 RELATED WORK

Reducing sync operations has been intensively studied

[1, 2, 21, 18, 12, 17]. For example, adaptive journal-

ing [21, 18] is a common approach to reducing journal-

ing incurred sync operations. OptFS [1] advocates sepa-

ration of durability and ordering and split the sync oper-

ation into dsync and osync for file systems accordingly.

However, it requires the underlying device to provide

asynchronous durability notification interface. Our work

focuses on the virtual disk image format and is transpar-

ent to the guest VM. NoFS [2] eliminates all the ordering

points and uses the backpointer to maintain crash consis-

tency; but it is hard to implement atomic operations, such

as rename. Xsyncfs [17] also aimed to improve sync per-

formance. It delays sync operations until an external ob-

server reads corresponding data. By delaying the sync

operations, there is more space for I/O scheduler to batch

and absorb write operations.

Improving file system performance for the virtual ma-

chine is also a hot research topic [11, 14, 22, 19]. Le [11]

analyzed the performance of nested file systems in vir-

tual machines. Li [14] proposed to accelerate guest

VM’s sync operation by saving the syncing data in host

memory and returning directly without writing to disk.

FVD [22] is a high-performance virtual disk format.

It supports many features, such as copy-on-read and

prefetching. QED [19] is designed to avoid some of the

pitfalls of qcow2 and is expected to be more performant

than qcow2. All these work did not address the sync am-

plification problem.

Our work leverages several prior techniques such as

checksum [3, 5] and pre-allocation [13], but applies them

to solve a new problem.

6 CONCLUSION

This paper uncovered the sync amplification problem of

copy-on-write virtual disks. It then described three opti-

mizations to minimize sync operations while preserving

crash consistency. The evaluation showed that the opti-

mizations notably boost some I/O intensive workloads.
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Abstract
Testing distributed systems is challenging due to mul-
tiple sources of nondeterminism. Conventional testing
techniques, such as unit, integration and stress testing,
are ineffective in preventing serious but subtle bugs from
reaching production. Formal techniques, such as TLA+,
can only verify high-level specifications of systems at the
level of logic-based models, and fall short of checking
the actual executable code. In this paper, we present a
new methodology for testing distributed systems. Our
approach applies advanced systematic testing techniques
to thoroughly check that the executable code adheres
to its high-level specifications, which significantly im-
proves coverage of important system behaviors.

Our methodology has been applied to three distributed
storage systems in the Microsoft Azure cloud computing
platform. In the process, numerous bugs were identified,
reproduced, confirmed and fixed. These bugs required a
subtle combination of concurrency and failures, making
them extremely difficult to find with conventional testing
techniques. An important advantage of our approach is
that a bug is uncovered in a small setting and witnessed
by a full system trace, which dramatically increases the
productivity of debugging.

1 Introduction

Distributed systems are notoriously hard to design, im-
plement and test [6, 31, 20, 27, 35]. This challenge is due
to many sources of nondeterminism [7, 23, 32], such as
unexpected node failures, the asynchronous interaction
between system components, data losses due to unreli-
able communication channels, the use of multithreaded
code to exploit multicore machines, and interaction with
clients. All these sources of nondeterminism can easily
create Heisenbugs [16, 38], corner-case bugs that are dif-
ficult to detect, diagnose and fix. These bugs might hide

1Part of the work was done while interning at Microsoft.

inside a code path that can only be triggered by a spe-
cific interleaving of concurrent events and only manifest
under extremely rare conditions [16, 38], but the conse-
quences can be catastrophic [1, 44].

Developers of production distributed systems use
many testing techniques, such as unit testing, integra-
tion testing, stress testing, and fault injection. In spite of
extensive use of these testing methods, many bugs that
arise from subtle combinations of concurrency and fail-
ure events are missed during testing and get exposed only
in production. However, allowing serious bugs to reach
production can cost organizations a lot of money [42] and
lead to customer dissatisfaction [1, 44].

We interviewed technical leaders and senior managers
in Microsoft Azure regarding the top problems in dis-
tributed system development. The consensus was that
one of the most critical problems today is how to improve
testing coverage so that bugs can be uncovered during
testing and not in production. The need for better testing
techniques is not specific to Microsoft; other companies,
such as Amazon and Google, have acknowledged [7, 39]
that testing methodologies have to improve to be able to
reason about the correctness of increasingly more com-
plex distributed systems that are used in production.

Recently, the Amazon Web Services (AWS) team used
formal methods “to prevent serious but subtle bugs from
reaching production” [39]. The gist of their approach
is to extract the high-level logic from a production sys-
tem, represent this logic as specifications in the expres-
sive TLA+ [29] language, and finally verify the specifi-
cations using a model checker. While highly effective,
as demonstrated by its use in AWS, this approach falls
short of “verifying that executable code correctly imple-
ments the high-level specification”’ [39], and the AWS
team admits that it is “not aware of any such tools that
can handle distributed systems as large and complex as
those being built at Amazon” [39].

We have found that checking high-level specifications
is necessary but not sufficient, due to the gap between
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the specification and the executable code. Our goal is to
bridge this gap. We propose a new methodology that
validates high-level specifications directly on the exe-
cutable code. Our methodology is different from prior
approaches that required developers to either switch to an
unfamiliar domain specific language [25, 10], or manu-
ally annotate and instrument their code [45]. Instead, we
allow developers to systematically test production code
by writing test harnesses in C#, a mainstream program-
ming language. This significantly lowered the accep-
tance barrier for adoption by the Microsoft Azure team.

Our testing methodology is based on P# [9], an exten-
sion of C# that provides support for modeling, specifica-
tion, and systematic testing of distributed systems written
in the Microsoft .NET framework. To use P# for testing,
the programmer has to augment the original system with
three artifacts: a model of the nondeterministic execution
environment of the system; a test harness that drives the
system towards interesting behaviors; and safety or live-
ness specifications. P# then systematically exercises the
test harness and validates program behaviors against the
provided specifications.

The original P# paper [9] discussed language design
issues and data race detection for programs written in P#,
whereas this work focuses on using P# to test three dis-
tributed storage systems inside Microsoft: Azure Storage
vNext; Live Table Migration; and Azure Service Fabric.
We uncovered numerous bugs in these systems, includ-
ing a subtle liveness bug that only intermittently man-
ifested during stress testing for months without being
fixed. Our testing approach uncovered this bug in a very
small setting, which made it easy for developers to ex-
amine traces, identify, and fix the problem.

To summarize, our contributions are as follows:

• We present a new methodology for modeling, spec-
ifying properties of correctness, and systematically
testing real distributed systems with P#.

• We discuss our experience of using P# to test three
distributed storage systems built on top of Microsoft
Azure, finding subtle bugs that could not be found
with traditional testing techniques.

• We evaluate the cost and benefits of using our ap-
proach, and show that P# can detect bugs in a small
setting and with easy to understand traces.

2 Testing Distributed Systems with P#

The goal of our work is to find bugs in distributed sys-
tems before they reach production. Typical distributed
systems consist of multiple components that interact with
each other via message passing. If messages—or unex-
pected failures and timeouts—are not handled properly,

they can lead to subtle bugs. To expose these bugs, we
use P# [9], an extension of the C# language that provides:
(i) language support for specifying properties of correct-
ness, and modeling the environment of distributed sys-
tems written in .NET; and (ii) a systematic testing engine
that can explore interleavings between distributed events,
such as the nondeterministic order of message deliveries,
client requests, failures and timeouts.

Modeling using P# involves three core activities. First,
the developer must modify the original system so that
messages are not sent through the real network, but
are instead dispatched through the PSharp.Send(...)

method. Such modification does not need to be invasive,
as it can be performed using virtual method dispatch, a
C# language feature widely used for testing. Second, the
developer must write a P# test harness that drives the
system towards interesting behaviors by nondeterminis-
tically triggering various events (see §2.3). The harness
is essentially a model of the environment of the system.
The purpose of these first two activities is to explicitly
declare all sources of nondeterminism in the system us-
ing P#. Finally, the developer must specify the crite-
ria for correctness of an execution of the system-under-
test. Specifications in P# can encode either safety or live-
ness [28] properties (see §2.4 and §2.5).

During testing, the P# runtime is aware of all sources
of nondeterminism that were declared during modeling,
and exploits this knowledge to create a scheduling point
each time a nondeterministic choice has to be taken. The
P# testing engine will serialize (in a single-box) the sys-
tem, and repeatedly execute it from start to completion,
each time exploring a potentially different set of nonde-
terministic choices, until it either reaches a user-supplied
bound (e.g. in number of executions or time), or it hits a
safety or liveness property violation. This testing process
is fully automatic and has no false-positives (assuming an
accurate test harness). After a bug is discovered, P# gen-
erates a trace that represents the buggy schedule, which
can then be replayed to reproduce the bug. In contrast to
logs typically generated during production, the P# trace
provides a global order of all communication events, and
thus is easier to debug.

Due to the highly asynchronous nature of distributed
systems, the number of possible states that these sys-
tems can reach is exponentially large. Tools such as
MODIST [48] and dBug [45] focus on testing unmodi-
fied distributed systems, but this can easily lead to state-
space explosion when trying to exhaustively explore the
entire state-space of a production-scale distributed stor-
age system, such as the Azure Storage vNext. On the
other hand, techniques such as TLA+ [29] have been
successfully used in industry to verify specifications of
complex distributed systems [39], but they are unable to
verify the actual implementation.

2
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receive msg {
  case ReplReq:
    // Store received data
    store(message.Val);
  case Timeout:
    // Send server the log
    // upon timeout
    this.Server.send(Sync,
      this.Id, this.Log);
}

ClientServer Storage Node

Timer

receive msg {
  case ClientReq:
    this.Data = message.Val;
    // Replicate data to all nodes
    foreach (sn in this.Nodes)
      sn.send(ReplReq, this.Data);
  case Sync:
    Node node = message.Id;
    Log log = message.Log;
    doSync(node, log);
}

while (hasNextRequest()) {
  this.Server.send(ClientReq,
    this.DataToReplicate);
  receive(Ack); // Wait for ack
}

// Send timeout to node when 
// countdown reaches 0
if (this.Countdown == 0)
  this.SN.send(Timeout);

doSync (Node sn, Log log) {
    // If the storage log is not
    // up-to-date, replicate
    if (!isUpToDate(log))
      sn.send(ReplReq, this.Data);
    else {
      this.NumReplicas++;
      if (this.NumReplicas == 3)
        this.Client.send(Ack);
    }
}

Figure 1: Pseudocode of a simple distributed storage system that replicates data sent by a client.

In this work, we are proposing a solution between the
above two extremes: test the real implementation of one
or more components against a modeled in P# environ-
ment. The benefit of our approach is that it can detect
bugs in the actual implementation by exploring a much
reduced state-space. Note that testing with P# does not
come for free; developers have to invest effort and time
into building a test harness using P#. However, develop-
ers already spend significant time in building test suites
for distributed systems prior to deployment. The P# ap-
proach augments this effort; by investing time in model-
ing the environment, it offers dividends by finding more
bugs (see §6). In principle, our methodology is not spe-
cific to P# and the .NET framework, and can be used
in combination with any other programming framework
that has equivalent capabilities.

2.1 The P# programming model

P# programs consist of multiple state machines that com-
municate with each other asynchronously by exchanging
events. In the case of distributed systems, P# events can
be used to model regular messages between system com-
ponents, failures or timeouts. A P# machine declaration
is similar to a C# class declaration, but a machine also
contains an event queue, and one or more states. Each
state can register actions to handle incoming events.

P# machines run concurrently with each other, each
executing an event handling loop that dequeues the next
event from the queue and handles it by invoking the reg-
istered action. An action might transition the machine
to a new state, create a new machine, send an event to a
machine, access a field or call a method. In P#, a send
operation is non-blocking; the event is simply enqueued
into the queue of the target machine, which will dequeue
and handle the event concurrently. All this functionality
is provided in a lightweight runtime library, built on top
of Microsoft’s Task Parallel Library [33].

2.2 An example distributed system

Figure 1 presents the pseudocode of a simple distributed
storage system that was contrived for the purposes of ex-

plaining our testing methodology. The system consists
of a client, a server and three storage nodes (SNs). The
client sends the server a ClientReq message that con-
tains data to be replicated, and then waits to get an ac-
knowledgement before sending the next request. When
the server receives ClientReq, it first stores the data lo-
cally (in the Data field), and then broadcasts a ReplReq
message to all SNs. When an SN receives ReplReq, it
handles the message by storing the received data locally
(using the store method). Each SN has a timer installed,
which sends periodic Timeout messages. Upon receiv-
ing Timeout, an SN sends a Sync message to the server
that contains the storage log. The server handles Sync by
calling the isUpToDate method to check if the SN log is
up-to-date. If it is not, the server sends a repeat ReplReq
message to the outdated SN. If the SN log is up-to-date,
then the server increments a replica counter by one. Fi-
nally, when there are three replicas available, the server
sends an Ack message to the client.

There are two bugs in the above example. The first
bug is that the server does not keep track of unique repli-
cas. The replica counter increments upon each up-to-
date Sync, even if the syncing SN is already considered
a replica. This means that the server might send Ack

when fewer than three replicas exist, which is erroneous
behavior. The second bug is that the server does not re-
set the replica counter to 0 upon sending an Ack. This
means that when the client sends another ClientReq, it
will never receive Ack, and thus block indefinitely.

2.3 Modeling the example system

To systematically test the example of Figure 1, the devel-
oper must first create a P# test harness, and then specify
the correctness properties of the system. Figure 2 illus-
trates a test harness that can find the two bugs discussed
in §2.2. Each box in the figure represents a concurrently
running P# machine, while an arrow represents an event
being sent from one machine to another. We use three
types of boxes: (i) a box with rounded corners and thick
border denotes a real component wrapped inside a P#
machine; (ii) a box with thin border denotes a modeled

3
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Modeled 
Storage Node

Modeled 
Storage Node

Modeled 
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Figure 2: P# test harness for the Figure 1 example.

component in P#; and (iii) a box with dashed border de-
notes a special P# machine used for safety or liveness
checking (see §2.4 and §2.5).

We do not model the server component since we want
to test its actual implementation. The server is wrapped
inside a P# machine, which is responsible for: (i) send-
ing events via the PSharp.Send(...) method, instead
of the real network; and (ii) delivering received events to
the wrapped component. We model the SNs so that they
store data in memory rather than on disk (which could be
inefficient during testing). We also model the client so
that it can drive the system by repeatedly sending a non-
deterministically generated ClientReq, and then wait-
ing for an Ack message. Finally, we model the timer so
that P# takes control of all time-related nondeterminism
in the system. This allows the P# runtime to control when
a Timeout event will be sent to the SNs during testing,
and systematically explore different schedules.

P# uses object-oriented language features such as in-
terfaces and virtual method dispatch to connect the real
code with the modeled code. Developers in industry are
used to working with such features, and heavily employ
them in testing production systems. In our experience,
this significantly lowers the bar for engineering teams in-
side Microsoft to embrace P# for testing.

In §2.4 and §2.5, we discuss how safety and liveness
specifications can be expressed in P# to check if the ex-
ample system is correct. The details of how P# was used
to model and test real distributed storage systems in Mi-
crosoft are covered in §3, §4 and §5. Interested readers
can also refer to the P# GitHub repository2 to find a man-
ual and samples (e.g. Paxos [30] and Raft [40]).

2.4 Specifying safety properties in P#
Safety property specifications generalize the notion of
source code assertions; a safety violation is a finite trace
leading to an erroneous state. P# supports the usual as-
sertions for specifying safety properties that are local to
a P# machine, and also provides a way to specify global
assertions by using a safety monitor [10], a special P#
machine that can receive, but not send, events.

2https://github.com/p-org/PSharp

A safety monitor maintains local state that is modi-
fied in response to events received from ordinary (non-
monitor) machines. This local state is used to maintain a
history of the computation that is relevant to the property
being specified. An erroneous global behavior is flagged
via an assertion on the private state of the safety mon-
itor. Thus, a monitor cleanly separates instrumentation
state required for specification (inside the monitor) from
program state (outside the monitor).

The first bug in the example of §2.2 is a safety bug.
To find it, the developer can write a safety monitor (see
Figure 2) that contains a map from unique SN ids to a
Boolean value, which denotes if the SN is a replica or
not. Each time an SN replicates the latest data, it noti-
fies the monitor to update the map. Each time the server
issues an Ack, it also notifies the monitor. If the mon-
itor detects that an Ack was sent without three replicas
actually existing, a safety violation is triggered.

2.5 Specifying liveness properties in P#

Liveness property specifications generalize nontermina-
tion; a liveness violation is an infinite trace that exhibits
lack of progress. Typically, a liveness property is spec-
ified via a temporal logic formula [41, 29]. We take a
different approach and allow the developers to write a
liveness monitor [10]. Similar to a safety monitor, a live-
ness monitor can receive, but not send, events.

A liveness monitor contains two special types of
states: hot and cold. A hot state denotes a point in the
execution where progress is required but has not hap-
pened yet; e.g. a node has failed but a new one has not
launched yet. A liveness monitor enters a hot state when
it is notified that the system must make progress. The
liveness monitor leaves the hot state and enters the cold
state when it is notified that the system has progressed.
An infinite execution is erroneous if the liveness mon-
itor is in the hot state for an infinitely long period of
time. Our liveness monitors can encode arbitrary tem-
poral logic properties.

A liveness violation is witnessed by an infinite exe-
cution in which all concurrently executing P# machines
are fairly scheduled. Since it is impossible to generate
an infinite execution by executing a program for a finite
amount of time, our implementation of liveness check-
ing in P# approximates an infinite execution using sev-
eral heuristics. In this work, we consider an execution
longer than a large user-supplied bound as an “infinite”
execution [25, 37]. Note that checking for fairness is not
relevant when using this heuristic, due to our pragmatic
use of a large bound.

The second bug in the example of §2.2 is a liveness
bug. To detect it, the developer can write a liveness mon-
itor (see Figure 2) that transitions from a hot state, which
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Figure 3: Top-level components for extent management
in Microsoft Azure Storage vNext.

denotes that the client sent a ClientReq and waits for
an Ack, to a cold state, which denotes that the server has
sent an Ack in response to the last ClientReq. Each time
a server receives a ClientReq, it notifies the monitor to
transition to the hot state. Each time the server issues an
Ack, it notifies the monitor to transition to the cold state.
If the monitor is in a hot state when the bounded infinite
execution terminates, a liveness violation is triggered.

3 Case Study: Azure Storage vNext

Microsoft Azure Storage is a cloud storage system that
provides customers the ability to store seemingly limit-
less amounts of data. It has grown from tens of petabytes
in 2010 to exabytes in 2015, with the total number of
objects stored exceeding 60 trillion [17].

Azure Storage vNext is the next generation storage
system currently being developed for Microsoft Azure,
where the primary design target is to scale the storage
capacity by more than 100×. Similar to the current sys-
tem, vNext employs containers, called extents, to store
data. Extents can be several gigabytes each, consisting
of many data blocks, and are replicated over multiple
Extent Nodes (ENs). However, in contrast to the current
system, which uses a Paxos-based, centralized mapping
from extents to ENs [5], vNext achieves scalability by
using a distributed mapping. In vNext, extents are di-
vided into partitions, with each partition managed by a
lightweight Extent Manager (ExtMgr). This partitioning
is illustrated in Figure 3.

One of the responsibilities of an ExtMgr is to ensure
that every managed extent maintains enough replicas in
the system. To achieve this, an ExtMgr receives frequent
periodic heartbeat messages from every EN that it man-
ages. EN failure is detected by missing heartbeats. An
ExtMgr also receives less frequent, but still periodic, syn-
chronization reports from every EN. The sync reports list
all the extents (and associated metadata) stored on the
EN. Based on these two types of messages, an ExtMgr
identifies which ENs have failed, and which extents are
affected by the failure and are missing replicas as a re-

Extent 
Manager
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Testing
Driver

Modeled 
Extent Node Modeled 

Extent Node

Modeled 
Extent Node

(real vNext code)
Repair MonitorModeled 

Timer

Figure 4: Real Extent Manager with its P# test harness
(each box represents one P# machine).

sult. The ExtMgr then schedules tasks to repair the af-
fected extents and distributes the tasks to the remaining
ENs. The ENs then repair the extents from the existing
replicas and lazily update the ExtMgr via their next pe-
riodic sync reports. All the communications between an
ExtMgr and the ENs occur via network engines installed
in each component of vNext (see Figure 3).

To ensure correctness, the developers of vNext have
instrumented extensive, multiple levels of testing:

1. Unit testing, in which emulated heartbeats and sync
reports are sent to an ExtMgr. These tests check that
the messages are processed as expected.

2. Integration testing, in which an ExtMgr is launched
together with multiple ENs. An EN failure is subse-
quently injected. These tests check that the affected
extents are eventually repaired.

3. Stress testing, in which an ExtMgr is launched to-
gether with multiple ENs and many extents. The
test keeps repeating the following process: injects
an EN failure, launches a new EN and checks that
the affected extents are eventually repaired.

Despite the extensive testing efforts, the vNext develop-
ers were plagued for months by an elusive bug in the
ExtMgr logic. All the unit test suites and integration test
suites successfully passed on each test run. However, the
stress test suite failed from time to time after very long
executions; in these cases, certain replicas of some ex-
tents failed without subsequently being repaired.

This bug proved difficult to identify, reproduce and
troubleshoot. First, an extent never being repaired is not
a property that can be easily checked. Second, the bug
appeared to manifest only in very long executions. Fi-
nally, by the time that the bug did manifest, very long
execution traces had been collected, which made manual
inspection tedious and ineffective.

To uncover the elusive extent repair bug in Azure Stor-
age vNext, its developers wrote a test harness using P#.
The developers expected that it was more likely for the
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// wrapping the target vNext component in a P# machine
class ExtentManagerMachine : Machine {
private ExtentManager ExtMgr; // real vNext code

void Init() {
ExtMgr = new ExtentManager();
ExtMgr.NetEngine = new ModelNetEngine(); // model network
ExtMgr.DisableTimer(); // disable internal timer

}

[OnEvent(ExtentNodeMessageEvent, DeliverMessage)]
void DeliverMessage(ExtentNodeMessage msg) {
// relay messages from Extent Node to Extent Manager
ExtMgr.ProcessMessage(msg);

}

[OnEvent(TimerTickEvent, ProcessExtentRepair)]
void ProcessExtentRepair() {
// extent repair loop driven by external timer
ExtMgr.ProcessEvent(new ExtentRepairEvent());

}
}

Figure 5: The real Extent Manager is wrapped inside the
ExtentManager P# machine.

bug to occur in the ExtMgr logic, rather than in the EN
logic. Hence, they focused on testing the real ExtMgr
using modeled ENs. The test harness for vNext consists
of the following P# machines (as shown in Figure 4):

ExtentManager acts as a thin wrapper machine for the
real ExtMgr component in vNext (see §3.1).

ExtentNode is a simple model of an EN (see §3.2).

Timer exploits the nondeterministic choice generation
available in P# to model timeouts (see §3.3).

TestingDriver is responsible for driving testing scenar-
ios, relaying messages between machines, and in-
jecting failures (see §3.4).

RepairMonitor collects EN-related state to check if the
desired liveness property is satisfied (see §3.5).

3.1 The ExtentManager machine
The real ExtMgr in vNext, which is our system-under-
test, is wrapped inside the ExtentManager machine, as
illustrated in the code snippet of Figure 5.

Real Extent Manager. The real ExtMgr (see Fig-
ure 6) contains two data structures: ExtentCenter and
ExtentNodeMap. The ExtentCenter maps extents to
their hosting ENs. It is updated upon receiving a periodic
sync report from an EN. Recall that a sync report from a
particular EN lists all the extents stored at the EN. Its pur-
pose is to update the ExtMgr’s possibly out-of-date view
of the EN with the ground truth. The ExtentNodeMap

maps ENs to their latest heartbeat times.
ExtMgr internally runs a periodic EN expiration loop

that is responsible for removing ENs that have been
missing heartbeats for an extended period of time, as

Extent Manager
ExtentCenter

(extent → EN locations)
updated upon SyncReport

ExtentNodeMap
(EN → last Heartbeat)

updated upon Heartbeat

RepairRequest to
ENs (on demand)

EN Expiration Loop
- remove expired ENs
  from ExtentNodeMap
- delete extents from
  ExtentCenter

SyncReport from
ENs (every 5 min)

Heartbeat from
ENs (every 5 sec)

Extent Repair Loop
- examine all extents in
  ExtentCenter
- schedule repair of
  extents

Figure 6: Internal components of the real Extent Man-
ager in Microsoft Azure Storage vNext.

// network interface in vNext
class NetworkEngine {
public virtual void SendMessage(Socket s, Message msg);

}

// modeled engine for intercepting Extent Manager messages
class ModelNetEngine : NetworkEngine {
public override void SendMessage(Socket s, Message msg) {
// intercept and relay Extent Manager messages
PSharp.Send(TestingDriver, new ExtMgrMsgEvent(), s, msg);

}
}

Figure 7: Modeled vNext network engine.

well as cleaning up the corresponding extent records in
ExtentCenter. In addition, ExtMgr runs a periodic ex-
tent repair loop that examines all the ExtentCenter

records, identifies extents with missing replicas, sched-
ules extent repair tasks and sends them to the ENs.

Intercepting network messages. The real ExtMgr
uses a network engine to asynchronously send messages
to ENs. The P# test harness models the original network
engine in vNext by overriding the original implementa-
tion. The modeled network engine (see Figure 7) inter-
cepts all outbound messages from the ExtMgr, and in-
vokes PSharp.Send(...) to asynchronously relay the
messages to TestingDriver machine, which is respon-
sible for dispatching the messages to the corresponding
ENs. This modeled network engine replaces the real net-
work engine in the wrapped ExtMgr (see Figure 5).

Intercepting all network messages and dispatching
them through P# is important for two reasons. First, it
allows P# to systematically explore the interleavings be-
tween asynchronous event handlers in the system. Sec-
ond, the modeled network engine could leverage the sup-
port for controlled nondeterministic choices in P#, and
choose to drop the messages in a nondeterministic fash-
ion, in case emulating message loss is desirable (not
shown in this example).

Messages coming from ExtentNode machines do not
go through the modeled network engine; they are in-
stead delivered to the ExtentManager machine and trig-
ger an action that invokes the messages on the wrapped
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// modeling Extent Node in P#
class ExtentNodeMachine : Machine {
// leverage real vNext component whenever appropriate
private ExtentNode.ExtentCenter ExtCtr;

[OnEvent(ExtentCopyResponseEvent, ProcessCopyResponse)]
void ProcessCopyResponse(ExtentCopyResponse response) {
// extent copy response from source replica
if (IsCopySucceeded(response)) {
var rec = GetExtentRecord(response);
ExtCtr.AddOrUpdate(rec); // update ExtentCenter

}
}

// extent node sync logic
[OnEvent(TimerTickEvent, ProcessExtentNodeSync)]
void ProcessExtentNodeSync() {
var sync = ExtCtr.GetSyncReport(); // prepare sync report
PSharp.Send(ExtentManagerMachine,
new ExtentNodeMessageEvent(), sync);

}

// extent node failure logic
[OnEvent(FailureEvent, ProcessFailure)]
void ProcessFailure() {
// notifies the monitor that this EN failed
PSharp.Notify<RepairMonitor>(new ENFailedEvent(), this);
PSharp.Halt(); // terminate this P# machine

}
}

Figure 8: Code snippet of the modeled EN.

ExtMgr with ExtMgr.ProcessMessage (see Figure 5).
The benefit of this approach is that the real ExtMgr can
be tested without modifying the original communication-
related code; the ExtMgr is simply unaware of the P# test
harness and behaves as if it is running in a real distributed
environment and communicating with real ENs.

3.2 The ExtentNode machine
The ExtentNode machine is a simplified version of the
original EN. The machine omits most of the complex de-
tails of a real EN, and only models the necessary logic for
testing. This modeled logic includes: repairing an extent
from its replica, and sending sync reports and heartbeat
messages periodically to ExtentManager.

The P# test harness leverages components of the real
vNext system whenever it is appropriate. For example,
ExtentNode re-uses the ExtentCenter data structure,
which is used inside a real EN for extent bookkeeping.
In the modeled extent repair logic, ExtentNode takes
action upon receiving an extent repair request from the
ExtentManager machine. It sends a copy request to a
source ExtentNode machine where a replica is stored.
After receiving an ExtentCopyRespEvent event from
the source machine, it updates the ExtentCenter, as il-
lustrated in Figure 8.

In the modeled EN sync logic, the machine is driven
by an external timer modeled in P# (see §3.3). It prepares
a sync report with extCtr.GetSyncReport(...), and
then asynchronously sends the report to ExtentManager
using PSharp.Send(...). The ExtentNode machine
also includes failure-related logic (see §3.4).

// modeling timer expiration in P#
class Timer : Machine {
Machine Target; // target machine

[OnEvent(RepeatedEvent, GenerateTimerTick)]
void GenerateTimerTick() {
// nondeterministic choice controlled by P#
if (PSharp.Nondet())
PSharp.Send(Target, new TimerTickEvent());

PSharp.Send(this, new RepeatedEvent()); // loop
}

}

Figure 9: Modeling timer expiration using P#.

// machine for driving testing scenarios in vNext
class TestingDriver : Machine {
private HashSet<Machine> ExtentNodes; // EN machines

void InjectNodeFailure() {
// nondeterministically choose an EN using P#
var node = (Machine)PSharp.Nondet(ExtentNodes);
// fail chosen EN
PSharp.Send(node, new FailureEvent());

}
}

Figure 10: Code snippet of the TestingDriver machine.

3.3 The Timer machine

System correctness should not hinge on the frequency of
any individual timer. Hence, it makes sense to delegate
all nondeterminism due to timing-related events to P#.
To achieve this, all the timers inside ExtMgr are disabled
(see Figure 5), and the EN expiration loop and the extent
repair loop are driven instead by timers modeled in P#,
an approach also used in previous work [10].3 Similarly,
ExtentNode machines do not have internal timers either.
Their periodic heartbeats and sync reports are also driven
by timers modeled in P#.

Figure 9 shows the Timer machine in the test har-
ness. Timer invokes the P# method Nondet(), which
generates a nondeterministic choice controlled by the P#
runtime. Using Nondet() allows the machine to non-
deterministically send a timeout event to its target (the
ExtentManager or ExtentNode machines). The P#
testing engine has the freedom to schedule arbitrary in-
terleavings between these timeout events and all other
regular system events.

3.4 The TestingDriver machine

The TestingDriver machine drives two testing scenar-
ios. In the first scenario, TestingDriver launches one
ExtentManager and three ExtentNode machines, with
a single extent on one of the ENs. It then waits for the
extent to be replicated at the remaining ENs. In the sec-
ond testing scenario, TestingDriver fails one of the

3We had to make a minor change to the real ExtMgr code to facil-
itate modeling: we added the DisableTimer method, which disables
the real ExtMgr timer so that it can be replaced with the P# timer.
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ExtentNode machines and launches a new one. It then
waits for the extent to be repaired on the newly launched
ExtentNode machine.

Figure 10 illustrates how TestingDriver leverages
P# to inject nondeterministic failures. It uses Nondet()
to nondeterministically choose an ExtentNode machine,
and then sends a FailureEvent to the chosen machine
to emulate an EN failure. As shown in the earlier Fig-
ure 8, the chosen ExtentNode machine processes the
FailureEvent, notifies the liveness monitor of its fail-
ure (see §3.5) and terminates itself by invoking the P#
method Halt(). P# not only enumerates interleavings
of asynchronous event handlers, but also the values re-
turned by calls to Nondet(), thus enumerating different
failure scenarios.

3.5 The RepairMonitor liveness monitor
RepairMonitor is a P# liveness monitor (see §2.5) that
transitions between a cold and a hot state. Whenever an
EN fails, the monitor is notified with an ENFailedEvent
event. As soon as the number of extent replicas falls be-
low a specified target (three replicas in the current P#
test harness), the monitor transitions into the hot repair-
ing state, waiting for all missing replicas to be repaired.
Whenever an extent replica is repaired, RepairMonitor
is notified with an ExtentRepairedEvent event. When
the replica number reaches again the target, the monitor
transitions into the cold repaired state, as illustrated in
the code snippet of Figure 11.

In the extent repair testing scenarios, RepairMonitor
checks that it should always eventually end up in the
cold state. Otherwise, RepairMonitor is stuck in the
hot state for infinitely long. This indicates that the corre-
sponding execution sequence results in an extent replica
never being repaired, which is a liveness bug.

3.6 Liveness Bug in Azure Storage vNext
It took less than ten seconds for the P# testing engine to
report the first occurrence of a liveness bug in vNext (see
§6). Upon examining the debug trace, the developers of
vNext were able to quickly confirm the bug.

The original P# trace did not include sufficient details
to allow the developers to identify the root cause of the
problem. Fortunately, running the test harness took very
little time, so the developers were able to quickly iterate
and add more refined debugging outputs in each itera-
tion. After several iterations, the developers were able to
pinpoint the exact culprit and immediately propose a so-
lution for fixing the bug. Once the proposed solution was
implemented, the developers ran the test harness again.
No bugs were found during 100,000 executions, a pro-
cess that only took a few minutes.

class RepairMonitor : Monitor {
private HashSet<Machine> ExtentNodesWithReplica;

// cold state: repaired
cold state Repaired {
[OnEvent(ENFailedEvent, ProcessENFailure)]
void ProcessENFailure(ExtentNodeMachine en) {

ExtentNodesWithReplica.Remove(en);
if (ReplicaCount < Harness.REPLICA_COUNT_TARGET)
jumpto Repairing;

}
}

// hot state: repairing
hot state Repairing {
[OnEvent(ExtentRepairedEvent, ProcessRepairCompletion)]
void ProcessRepairCompletion(ExtentNodeMachine en) {
ExtentNodesWithReplica.Add(en);
if (ReplicaCount == Harness.REPLICA_COUNT_TARGET)
jumpto Repaired;

}
}

}

Figure 11: The RepairMonitor liveness monitor.

The liveness bug occurs in the second testing sce-
nario, where the TestingDriver machine fails one of
the ExtentNode machines and launches a new one.
RepairMonitor transitions to the hot repairing state and
is stuck in the state for infinitely long.

The following is one particular execution sequence re-
sulting in this liveness bug: (i) EN0 fails and is detected
by the EN expiration loop; (ii) EN0 is removed from
ExtentNodeMap; (iii) ExtentCenter is updated and the
replica count drops from 3 (which is the target) to 2; (iv)
ExtMgr receives a sync report from EN0; (v) the extent
center is updated and the replica count increases again
from 2 to 3. This is problematic since the replica count
is equal to the target, which means that the extent re-
pair loop will never schedule any repair task. At the
same time, there are only two true replicas in the sys-
tem, which is one less than the target. This execution
sequence leads to one missing replica; repeating this pro-
cess two more times would result in all replicas missing,
but ExtMgr would still think that all replicas are healthy.
If released to production, this bug would have caused a
very serious incident of customer data unavailability.

The culprit is in step (iv), where ExtMgr receives a
sync report from EN0 after deleting the EN. This inter-
leaving is exposed quickly by P#’s testing engine that has
the control to arbitrarily interleave events. It may also oc-
cur, albeit much less frequently, during stress testing due
to messages being delayed in the network. This explains
why the bug only occurs from time to time during stress
testing and requires long executions to manifest. In con-
trast, P# allows the bug to manifest quickly, the develop-
ers to iterate rapidly, the culprit to be identified promptly,
and the fix to be tested effectively and thoroughly, all of
which have the potential to vastly increase the productiv-
ity of distributed storage system development.
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4 Case Study: Live Table Migration

Live Table Migration (MigratingTable) is a library de-
signed to transparently migrate a key-value data set be-
tween two Microsoft Azure tables [24] (called the old
table and the new table, or collectively the backend ta-
bles) while an application is accessing this data set. The
MigratingTable testing effort differs from the vNext ef-
fort in two significant ways: the P# test harness was de-
veloped along with the system rather than later; and it
checks complete compliance with an interface specifica-
tion rather than just a single liveness property. Indeed,
the P# test caught bugs throughout the development pro-
cess (see §6).

During migration, each application process creates its
own MigratingTable instance (MT) that refers to the
same backend tables (BTs). The application performs
all data access via the MT, which provides an interface
named IChainTable similar to that of an Azure table
(the MT assumes that the BTs provide the same inter-
face via an adapter). A migrator job moves the data in
the background. In the meantime, each logical read and
write operation issued to an MT is implemented via a se-
quence of backend operations on the BTs according to a
custom protocol. The protocol is designed to guarantee
that the output of the logical operations complies with
the IChainTable specification, as if all the operations
were performed on a single virtual table (VT). The goal
of using P# was to systematically test this property.

There are two main challenges behind testing Migrat-
ingTable: (i) the system is highly concurrent; and (ii) the
logical operations accept many parameters that affect the
behavior in different ways. The developers could have
chosen specific input sequences, but they were not confi-
dent that these sequences would cover the combinations
of parameters that might trigger bugs. Instead, they used
the P# Nondet() method to choose all of the parame-
ters independently within certain limits. They issued the
same operations to the MTs and to a reference table (RT)
running a reference implementation of the IChainTable
specification, and compared the output. This reference
implementation was reused for the BTs, since the goal
was not to test the real Azure tables.

The complete test environment is shown in Figure 12.
It consists of a Tables machine, which contains the BTs
and RT, and serializes all operations on these tables; a set
of Service machines that contain identically configured
MTs; and a Migrator machine that performs the back-
ground migration. Each Service machine issues a ran-
dom sequence of logical operations to its MT, which per-
forms the backend operations on the BTs via P# events.
The developers instrumented the MTs to report the lin-
earization point of each logical operation, i.e., the time at
which it takes effect on the VT, so the test harness could
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New Table
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Tables Machine
Migrator Machine

Service Machines

Master Migr.Table

Migrate

...

Migr.Table

P# controlled
random R/W,

compare results
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Point Reporting

Figure 12: The test environment of MigratingTable (each
box with a dotted line represents one P# machine).

perform the operation on the RT at the same time. (More
precisely, after processing each backend operation, the
Tables machine enters a P# state that blocks all further
work until the MT reports whether the backend operation
was the linearization point and, if so, the logical opera-
tion has been completed on the RT. This way, the rest of
the system never observes the RT to be out of sync with
the VT.) For further implementation details of Migrat-
ingTable and its test harness, we refer the reader to the
source code repository [36].

5 Case Study: Azure Service Fabric

Azure Service Fabric (or Fabric for short) is a platform
and API for creating reliable services that execute on a
cluster of machines. The developer writes a service that
receives requests (e.g. HTTP requests from a client) and
mutates its state based on these requests. To make a user
service reliable, Fabric launches several replicas of the
service, where each replica runs as a separate process on
a different node in the cluster. One replica is selected
to be the primary which serves client requests; the re-
maining replicas are secondaries. The primary forwards
state-mutating operations to the secondaries so that all
replicas eventually have the same state. If the primary
fails, Fabric elects one of the secondaries to be the new
primary, and then launches a new secondary, which will
receive a copy of the state of the new primary in order
to “catch up” with the other secondaries. Fabric services
are complex asynchronous and distributed applications,
and are thus challenging to test.

Our primary goal was to create a P# model of Fabric
(where all the Fabric asynchrony is captured and con-
trolled by the P# runtime) to allow thorough testing of
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Fabric services. The model was written once to include
all behaviors of Fabric, including simulating failures and
recovery, so that it can be reused repeatedly to test many
Fabric services. This was the largest modeling exercise
among the case studies, but the cost was amortized across
testing multiple services. This is analogous to prior
work on device driver verification [2], where the cost of
developing a model of the Windows kernel was amor-
tized across testing multiple device drivers. Note that we
model the lowest Fabric API layer (Fabric.dll), which
is currently not documented for use externally; we target
internally-developed services that use this API.

Using P# was very helpful in debugging the model it-
self. To systematically test the model, we wrote a simple
service in P# that runs on our P# Fabric model. We tested
a scenario where the primary replica fails at some nonde-
terministic point. One bug that we found occurred when
the primary failed as a new secondary was about to re-
ceive a copy of the state; the secondary was then elected
to be the new primary and yet, because the secondary
stopped waiting for a copy of the state, it was then “pro-
moted” to be an active secondary (one that has caught
up with the other secondaries). This caused an assertion
failure in our model, because only a secondary can be
promoted to an active secondary, which allowed us to
detect and fix this incorrect behavior.

The main system that we tested using our P# Fabric
model is CScale [12], a big data stream processing sys-
tem. Supporting CScale required significant additions
to the model, making it much more feature-complete.
CScale chains multiple Fabric services, which commu-
nicate via remote procedure calls (RPCs). To close the
system, we modeled RPCs using PSharp.Send(...).
Thus, we converted a distributed system that uses both
Fabric and its own network communication protocol into
a closed, single-process system. A key challenge in our
work was to thoroughly test CScale despite the fact that
it uses various synchronous and asynchronous APIs be-
sides RPCs. This work is still in-progress. However, we
were able to find a NullReferenceException bug in
CScale by running it against our Fabric model. The bug
has been communicated to the developers of CScale, but
we are still awaiting a confirmation.

6 Quantifying the Cost of Using P#

We report our experience of applying P# on the three case
studies discussed in this paper. We aim to answer the
following two questions:

1. How much human effort was spent in modeling the
environment of a distributed system using P#?

2. How much computational time was spent in system-
atically testing a distributed system using P#?

System P# Test Harness

System-under-test #LoC #B #LoC #M #ST #AH

vNext Extent Manager 19,775 1 684 5 11 17
MigratingTable 2,267 11 2,275 3 5 10
Fabric User Service 31,959 1� 6,534 13 21 87

Table 1: Statistics from modeling the environment of the
three Microsoft Azure-based systems under test. The (�)
denotes “awaiting confirmation”.

6.1 Cost of environment modeling

Environment modeling is a core activity of using P#. It
is required for closing a system to make it amenable to
systematic testing. Table 1 presents program statistics
for the three case studies. The columns under “System”
refer to the real system-under-test, while the columns un-
der “P# Test Harness” refer to the test harness written in
P#. We report: lines of code for the system-under-test
(#LoC); number of bugs found in the system-under-test
(#B); lines of P# code for the test harness (#LoC); num-
ber of machines (#M); number of state transitions (#ST);
and number of action handlers (#AH).

Modeling the environment of the Extent Manager in
the Azure Storage vNext system required approximately
two person weeks of part-time developing. The P# test
harness for this system is the smallest (in lines of code)
from the three case studies. This was because this mod-
eling exercise aimed to reproduce the particular liveness
bug that was haunting the developers of vNext.

Developing both MigratingTable and its P# test har-
ness took approximately five person weeks. The harness
was developed in parallel with the actual system. This
differs from the other two case studies, where the model-
ing activity occurred independently and after the devel-
opment process.

Modeling Fabric required approximately five person
months, an effort undertaken by the authors of P#. In
contrast the other two systems discussed in this paper
were modeled and tested by their corresponding devel-
opers. Although modeling Fabric required a significant
amount of time, it is a one-time effort, which only needs
incremental refinement with each release.

6.2 Cost of systematic testing

Using P# we managed to uncover 8 serious bugs in our
case studies. As discussed earlier in the paper, these bugs
were hard to find with traditional testing techniques, but
P# managed to uncover and reproduce them in a small
setting. According to the developers, the P# traces were
useful, as it allowed them to understand the bugs and fix
them in a timely manner. After all the discovered bugs
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P# Random Scheduler P# Priority-based Scheduler

CS Bug Identifier BF? Time to bug (s) #NDC BF? Time to bug (s) #NDC

1 ExtentNodeLivenessViolation � 10.56 9,000 � 10.77 9,000

2 QueryAtomicFilterShadowing � 157.22 165 � 350.46 108
2 QueryStreamedLock � 2,121.45 181 � 6.58 220
2 QueryStreamedBackUpNewStream � - - � 5.95 232
2 DeleteNoLeaveTombstonesEtag � - - � 4.69 272
2 DeletePrimaryKey � 2.72 168 � 2.37 171
2 EnsurePartitionSwitchedFromPopulated � 25.17 85 � 1.57 136
2 TombstoneOutputETag � 8.25 305 � 3.40 242

2 QueryStreamedFilterShadowing � 0.55 79 � 0.41 79
∗2 MigrateSkipPreferOld � - - � 1.13 115
∗2 MigrateSkipUseNewWithTombstones � - - � 1.16 120
∗2 InsertBehindMigrator � 0.32 47 � 0.31 47

Table 2: Results from running the P# random and priority-based systematic testing schedulers for 100,000 executions.
We report: whether the bug was found (BF?) (� means it was found, � means it was found only using a custom test
case, and � means it was not found); time in seconds to find the bug (Time to Bug); and number of nondeterministic
choices made in the first execution that found the bug (#NDC).

were fixed, we added flags to allow them to be individu-
ally re-introduced, for purposes of evaluation.

Table 2 presents the results from running the P# sys-
tematic testing engine on each case study with a re-
introduced bug. The CS column shows which case study
corresponds to each bug: “1” is for the Azure Storage
vNext; and “2” is for MigratingTable. We do not include
the Fabric case study, as we are awaiting confirmation of
the found bug (see §5). We performed all experiments
on a 2.50GHz Intel Core i5-4300U CPU with 8GB RAM
running Windows 10 Pro 64-bit. We configured the P#
systematic testing engine to perform 100,000 executions.
All reported times are in seconds.

We implemented two different schedulers that are re-
sponsible for choosing the next P# machine to execute in
each scheduling point: a random scheduler, which ran-
domly chooses a machine from a list of enabled4 ma-
chines; and a randomized priority-based [4] scheduler,
which always schedules the highest priority enabled ma-
chine (these priorities change at random points during
execution, based on a random distribution). We decided
to use these two schedulers, because random schedul-
ing has proven to be efficient for finding concurrency
bugs [43, 9]. The random seed for the schedulers was
generated using the current system time. The priority-
based scheduler was configured with a budget of 2 ran-
dom machine priority change switches per execution.

For the vNext case study, both schedulers were able to
reproduce the ExtentNodeLivenessViolation bug within
11 seconds. The reason that the number of nondetermin-
istic choices made in the buggy execution is much higher

4A P# machine is considered enabled when it has at least one event
in its queue waiting to be dequeued and handled.

than the rest of the bugs is that ExtentNodeLivenessVi-
olation is a liveness bug: as discussed in §2.5 we leave
the program to run for a long time before checking if the
liveness property holds.

For the MigratingTable case study, we evaluated the
P# test harness of §4 on eleven bugs, including eight
organic bugs that actually occurred in development and
three notional bugs (denoted by ∗), which are other code
changes that we deemed interesting ways of making the
system incorrect. The harness found seven of the organic
bugs, which are listed first in Table 2. The remaining
four bugs (marked �) were not caught with our default
test harness in the 100,000 executions. We believe this is
because the inputs and schedules that trigger them are too
rare in the used distribution. To confirm this, we wrote
a custom test case for each bug with a specific input that
triggers it and were able to quickly reproduce the bugs;
the table shows the results of these runs. Note that the
random scheduler only managed to trigger seven of the
MigratingTable bugs; we had to use the priority-based
scheduler to trigger the remaining four bugs.

The QueryStreamedBackUpNewStream bug in Mi-
gratingTable, which was found using P#, stands out be-
cause it reflects a type of oversight that can easily occur
as systems evolve. This bug is in the implementation
of a streaming read from the virtual table, which should
return a stream of all rows in the table sorted by key.
The essential implementation idea is to perform stream-
ing reads from both backend tables and merge the results.
According to the IChainTable specification, each row
read from a stream may reflect the state of the table at
any time between when the stream was started and the
row was read. The developers sketched a proof that the
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merging process would preserve this property as long as
the migrator was only copying rows from the old table
to the new table. But when support was added for the
migrator to delete the rows from the old table after copy-
ing, it became possible for the backend streams to see
the deletion of a row from the old table but not its inser-
tion into the new table, even though the insertion happens
first, and the row would be missed.

The P# test discovered the above bug in a matter of
seconds. The MigratingTable developers spent just 10
minutes analyzing the trace to diagnose what was hap-
pening, although admittedly, this was after they added
MigratingTable-specific trace information and had sev-
eral days of experience analyzing traces. Out of the box,
P# traces include only machine- and event-level infor-
mation, but it is easy to add application-specific infor-
mation, and we did so in all of our case studies.

7 Related Work

Most related to our work are model checking [15] and
systematic concurrency testing [38, 11, 43], two power-
ful techniques that have been widely used in the past for
finding Heisenbugs in the actual implementation of dis-
tributed systems [25, 48, 47, 18, 21, 45, 19, 31].

State-of-the-art model checkers, such as MODIST [48]
and dBug [45], typically focus on testing entire, often
unmodified, distributed systems, an approach that easily
leads to state-space explosion. DEMETER [21], built on
top of MODIST, aims to reduce the state-space when ex-
ploring unmodified distributed systems. DEMETER ex-
plores individual components of a large system in iso-
lation, and then dynamically extracts interface behavior
between components to perform a global exploration. In
contrast, we try to offer a more pragmatic approach for
handling state-space explosion. We first partially model
a distributed system using P#. Then, we systematically
test the actual implementation of each system component
against its P# test harness. Our approach aims to enhance
unit and integration testing, techniques widely used in
production, where only individual or a small number of
components are tested at each time.

SAMC [31] offers a way of incorporating application-
specific information during systematic testing to reduce
the set of interleavings that the tool has to explore. Such
techniques based on partial-order reduction [14, 13] are
complementary to our approach: P# could use them to
reduce the exploration state-space. Likewise, other tools
can use language technology like P# to write models and
reduce the complexity of the system-under-test.

MACEMC [25] is a model checker for distributed sys-
tems written in the MACE [26] language. The focus of
MACEMC is to find liveness property violations using
an algorithm based on bounded random walk, combined

with heuristics. Because MACEMC can only test systems
written in MACE, it cannot be easily used in an industrial
setting. In contrast, P# can be applied on legacy code
written in C#, a mainstream language.

Formal methods have been successfully used in indus-
try to verify the correctness of distributed protocols. A
notable example is the use of TLA+ [29] by the Amazon
Web Services team [39]. TLA+ is an expressive formal
specification language that can be used to design and ver-
ify concurrent programs via model checking. A limita-
tion of TLA+, as well as other similar specification lan-
guages, is that they are applied on a model of the system
and not the actual system. Even if the model is verified,
the gap between the real-world implementation and the
verified model is still significant, so implementation bugs
are still a realistic concern.

More recent formal approaches include the Verdi [46]
and IronFleet [22] frameworks. In Verdi, developers can
write and verify distributed systems in Coq [3]. After
the system has been successfully verified, Verdi trans-
lates the Coq code to OCaml, which can be then com-
piled for execution. Verdi does not currently support de-
tecting liveness property violations, an important class of
bugs in distributed systems. In IronFleet, developers can
build a distributed system using the Dafny [34] language
and program verifier. Dafny verifies system correctness
using the Z3 [8] SMT solver, and finally compiles the
verified system to a .NET executable. In contrast, P#
performs bounded testing on a system already written in
.NET, which in our experience lowers the bar for adop-
tion by engineering teams.

8 Conclusion

We presented a new methodology for testing distributed
systems. Our approach involves using P#, an extension
of the C# language that provides advanced modeling,
specification and systematic testing capabilities. We re-
ported experience on applying P# on three distributed
storage systems inside Microsoft. Using P#, the devel-
opers of these systems found, reproduced, confirmed and
fixed numerous bugs.
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Abstract

We study storage performance in over 450,000 disks

and 4,000 SSDs over 87 days for an overall total of 857

million (disk) and 7 million (SSD) drive hours. We find

that storage performance instability is not uncommon:

0.2% of the time, a disk is more than 2x slower than

its peer drives in the same RAID group (and 0.6% for

SSD). As a consequence, disk and SSD-based RAIDs ex-

perience at least one slow drive (i.e., storage tail) 1.5%

and 2.2% of the time. To understand the root causes, we

correlate slowdowns with other metrics (workload I/O

rate and size, drive event, age, and model). Overall,

we find that the primary cause of slowdowns are the in-

ternal characteristics and idiosyncrasies of modern disk

and SSD drives. We observe that storage tails can ad-

versely impact RAID performance, motivating the design

of tail-tolerant RAID. To the best of our knowledge, this

work is the most extensive documentation of storage per-

formance instability in the field.

1 Introduction

Storage, the home of Big Data, has grown enormously

over the past decade [21]. This year Seagate projects to

ship more than 240 exabytes of disk drives [20], SSD

market has doubled in recent years [32], and data stored

in the cloud has also multiplied almost exponentially ev-

ery year [10]. In a world of continuous collection and

analysis of Big Data, storage performance is critical for

many applications. Modern applications particularly de-

mand low and predictable response times, giving rise to

stringent performance SLOs such as “99.9% of all re-

quests must be answered within 300ms” [15, 48]. Per-

formance instability that produces milliseconds of delay

lead to violations of such SLOs, degrading user experi-

ence and impacting revenues negatively [11, 35, 44].

A growing body of literature studies the general prob-

lem of performance instability in large-scale systems,

specifically calling out the impact of stragglers on tail

latencies [7, 13, 14, 34, 45, 50, 52, 54, 56]. Strag-

glers often arise from contention for shared local re-

sources (e.g., CPU, memory) and global resources (e.g.,

network switches, back-end storage), background dae-

mons, scheduling, power limits and energy management,

and many others. These studies are mostly performed at

server, network, or remote (cloud) storage levels.

To date, we find no systematic, large-scale studies of

performance instability in storage devices such as disks

and SSDs. Yet, mounting anecdotal evidence of disk and

SSD performance instability in the field continue to ap-

pear in various forums (§2). Such ad-hoc information is

unable to answer quantitatively key questions about drive

performance instability, questions such as: How much

slowdown do drives exhibit? How often does slowdown

occur? How widespread is it? Does slowdown have tem-

poral behavior? How long can slowdown persist? What

are the potential root causes? What is the impact of tail

latencies from slow drives to the RAID layer? Answers

to these questions could inform a wealth of storage sys-

tems research and design.

To answer these questions, we have performed the

largest empirical analysis of storage performance insta-

bility. Collecting hourly performance logs from cus-

tomer deployments of 458,482 disks and 4,069 SSDs

spanning on average 87 day periods, we have amassed

a dataset that covers 857 million hours of disk and 7 mil-

lion hours of SSD field performance data.

Uniquely, our data includes drive-RAID relationships,

which allows us to compare the performance of each

drive (Di) to that of peer drives in the same RAID group

(i = 1..N ). The RAID and file system architecture in

our study (§3.1) expects that the performance of every

drive (specifically, hourly average latency Li) is similar

to peer drives in the same RAID group.

Our primary metric, drive slowdown ratio (Si), the

fraction of a drive’s latency (Li) over the median latency

of the RAID group (median(L1..N)), captures deviation

from the assumption of homogeneous drive performance.

Assuming that most workloads are balanced across all

the data drives, a normal drive should not be much slower

than the other drives. Therefore, we define “slow” (un-

stable) drive hour when Si ≥ 2 (and “stable” the other-

wise). Throughout the paper, we use 2x and occasionally

1.5x slowdown threshold to classify drives as slow.
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In the following segment, we briefly summarize the

findings from our large-scale analysis.

(i) Slowdown occurrences (§4.1.1): Disks and SSDs are

slow (Si ≥ 2) for 0.22% and 0.58% of drive hours in our

study. With a tighter Si ≥ 1.5 threshold, disks and SSDs

are slow for 0.69% and 1.27% of disk hours respectively.

Consequently, stable latencies at 99.9th percentile are

hard to achieve in today’s storage drives. Slowdowns

can also be extreme (i.e., long tails); we observe several

slowdown incidents as large as 2-4 orders of magnitude.

(ii) Tail hours and RAID degradation (§4.1.2): A slow

drive can often make an entire RAID perform poorly.

The observed instability causes RAIDs to suffer 1.5%

and 2.2% of RAID hours with at least one slow drive (i.e.,

“tail hours”). Using 1.5x slowdown threshold, the num-

bers are 4.6% and 4.8%. As a consequent, stable laten-

cies at 99th percentile (or 96th with 1.5x threshold) are

impossible to guarantee in current RAID deployments.

Workload performance (especially full-stripe balanced

workload) will suffer as a consequence of RAID tails.

In our dataset, we observe that RAID throughput can de-

grade during stable to tail hours (§4.4.1).

(iii) Slowdown temporal behavior and extent (§4.1.3,

§4.1.4): We find that slowdown often persists; 40% and

35% of slow disks and SSDs respectively remain unsta-

ble for more than one hour. Slowdown periods exhibit

temporal locality; 90% of disk and 85% of SSD slow-

downs occur on the same day of the previous occurrence.

Finally, slowdown is widespread in the drive population;

our study shows 26% of disks and 29% of SSDs have

experienced at least one slowdown occurrence.

(iv) Workload analysis (§4.2): Drive slowdowns are of-

ten blamed on unbalanced workloads (e.g., a drive is bus-

ier than others). Our findings refute this, showing that

more than 95% of slowdown periods cannot be attributed

to I/O size or rate imbalance.

(v) “The fault is (likely) in our drives”: We find that

older disks exhibit more slowdowns (§4.3.2) and MLC

flash drives exhibit more slowdowns than SLC drives

(§4.3.3). Overall, evidence suggests that most slow-

downs are caused by internal characteristics of modern

disk and SSD drives.

In summary, drive performance instability means the

homogeneous performance assumption of traditional

RAID is no longer accurate. Drive slowdowns can

appear at different times, persist, disappear, and recur

again. Their occurrence is “silent”—not accompanied

by observable drive events (§4.3.1). Most importantly,

workload imbalance is not a major root cause (§4.2).

Replacing slow drives is not a popular solution (§4.4.2-

§4.4.3), mainly because slowdowns are often transient

and drive replacement is expensive in terms of hardware

and RAID rebuild costs.

(vi) The need for tail-tolerant RAID: All of the reasons

above point out that file and RAID systems are now faced

with more responsibilities. Not only must they handle

well-known faults such as latent sector errors and cor-

ruptions, now they must mask storage tail latencies as

well. Therefore, there is an opportunity to create “tail

tolerant” RAID that can mask storage tail latencies on-

line in deployment.

In the following sections, we present further motiva-

tion (§2), our methodology (§3), the main results (§4), an

opportunity assessment of tail-tolerant RAID (§5), dis-

cussion (§6), related work (§7) and conclusion (§8).

2 Motivational Anecdotes

Our work is highly motivated by the mounting anecdotes

of performance instability at the drive level. In the past

several years, we have collected facts and anecdotal ev-

idence of storage “limpware” [16, 26] from literature,

online forums supported by various storage companies,

and conversations with large-scale datacenter operators

as well as product teams. We found many reports of stor-

age performance problems due to various faults, com-

plexities and idiosyncrasies of modern storage devices,

as we briefly summarize below.

Disk: Magnetic disk drives can experience perfor-

mance faults from various root causes such as mechan-

ical wearout (e.g., weak head [1]), sector re-reads due

to media failures such as corruptions and sector er-

rors [2], overheat from broken cooling fans [3], gunk

spilling from actuator assembly and accumulating on

disk head [4], firmware bugs [41], RAID controller de-

fects [16, 47], and vibration from bad disk drive packag-

ing, missing screws, earthquakes, and constant “noise”

in data centers [17, 29]. All these problems can reduce

disk bandwidth by 10-80% and increase latency by sec-

onds. While the problems above can be considered as

performance “faults”, current generation of disks begin

to induce performance instability “by default” (e.g., with

adaptive zoning and Shingled-Magnetic Recording tech-

nologies [5, 18, 33]).

SSD: The pressure to increase flash density translates to

more internal SSD complexities that can induce perfor-

mance instability. For example, SSD garbage collection,

a well-known culprit, can increase latency by a factor

of 100 [13]. Programming MLC cells to different states

(e.g., 0 vs. 3) may require different numbers of itera-

tions due to different voltage thresholds [51]. The notion

of “fast” and “slow” pages exists within an SSD; pro-

gramming a slow page can be 5-8x slower compared to
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Figure 1: Stable and slow drives in a RAID group.

Disk SSD

RAID groups 38,029 572

Data drives per group 3-26 3-22

Data drives 458,482 4,069

Duration (days) 1-1470 1-94

Drive hours 857,183,442 7,481,055

Slow drive hours (§4.1.1) 1,885,804 43,016

Slow drive hours (%) 0.22 0.58

RAID hours 72,046,373 1,072,690

Tail hours (§4.1.2) 1,109,514 23,964

Tail hours (%) 1.54 2.23

Table 1: Dataset summary.

programming fast page [23]. As device wears out, break-

down of gate oxide will allow charge moves across gate

easily, resulting in faster programming (10-50%), but

also higher chance of corruption [22]. ECC correction,

read disturb, and read retry are also factors of instability

[19]. Finally, SSD firmware bugs can cause significant

performance faults (e.g., 300% bandwidth degradation in

a Samsung firmware problem [49]).

Although the facts and anecdotes above are crucial,

they do not provide empirical evidence that can guide

the design of future storage systems. The key questions

we raised in the introduction (slowdown magnitude, fre-

quency, scope, temporal behavior, root causes, impacts,

etc.) are still left unanswered. For this reason, we initi-

ated this large-scale study.

3 Methodology

In this section, we describe the RAID systems in our

study (§3.1), the dataset (§3.2), and the metrics we use

to investigate performance instability (§3.3). The overall

methodology is illustrated in Figure 1.

3.1 RAID Architecture

RAID group: Figure 1 provides a simple illustration of

a RAID group. We study disk- and SSD-based RAID

groups. In each group, disk or SSD devices are directly

attached to a proprietary RAID controller. All the disk

or SSD devices within a RAID group are homogeneous
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Figure 2: RAID width and dataset duration.

(same model, size, speed, etc.); deployment age can vary

but most of them are the same.

RAID and file system design: The RAID layer splits

each RAID request to per-drive I/Os. The size of a

per-drive I/O (a square block in Figure 1) can vary from

4 to 256 KB; the storage stack breaks large I/Os to

smaller I/Os with a maximum size of the processor cache

size. Above the RAID layer runs a proprietary file sys-

tem (not shown) that is highly tuned in a way that makes

most of the RAID I/O requests cover the full stripe; most

of the time the drives observe balanced workload.

RAID configuration: The RAID systems in our study

use small chunk sizes (e.g., 4 KB). More than 95% of the

RAID groups use a custom version of RAID-6 where the

parity blocks are not rotated; the parity blocks live in two

separate drives (P and Q drives as shown in Figure 1).

The other 4% use RAID-0 and 1% use RAID-4. We only

select RAID groups that have at least three data drives

(D1..DN where N ≥ 3 in Figure 1), mainly to allow us

measure the relative slowdown compared to the median

latency. Our dataset contains RAID groups with 3-26

data drives per group. Figure 2a shows the RAID width

distribution (only data drives); wide RAID (e.g., more

than 8 data drives) is popular.

3.2 About the Dataset

Scale of dataset: A summary of our dataset is shown in

Table 1. Our dataset contains 38,029 disk and 572 SSD

groups within deployment duration of 87 days on average

(Figure 2b). This gives us 72 and 1 million disk and SSD

RAID hours to analyze respectively. When broken down

to individual drives, our dataset contains 458,482 disks

and 4069 SSDs. In total, we analyze 857 million and 7

million disk and SSD drive hours respectively.

Data collection: The performance and event logs we an-

alyze come from production systems at customer sites.

When the deployed RAID systems “call home”, an auto-

support system collects hourly performance metrics such

as: average I/O latency, average latency per block, and

number of I/Os and blocks received every hour. All these

metrics are collected at the RAID layer. For each of
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Label Definition

Measured metrics:

N Number of data drives in a RAID group

Di Drive number within a RAID group; i = 1..N
Li Hourly average I/O latency observed at Di

Derived metrics:

Lmed Median latency; Lmed = Median of(L1..N )

Si Latency slowdown of Di compared to the median;

Si = Li/Lmed

T k The k-th largest slowdown (“k-th longest tail”);

T 1
= Max of (S1..N ),

T 2
= 2nd Max of (S1..N ), and so on

Stable A stable drive hour is when Si < 2

Slow A slow drive hour is when Si ≥ 2

Tail A tail hour implies a RAID hour with Ti ≥ 2

Table 2: Primary metrics. The table presents the metrics

used in our analysis. The distribution of N is shown in Figure

2a. Li, Si and T k are explained in Section 3.3.

these metrics, the system separates read and write met-

rics. In addition to performance information, the system

also records drive events such as response timeout, drive

not spinning, unplug/replug events.

3.3 Metrics

Below, we first describe the metrics that are measured

by the RAID systems and recorded in the auto-support

system. Then, we present the metrics that we derived

for measuring tail latencies (slowdowns). Some of the

important metrics are summarized in Table 2.

3.3.1 Measured Metrics

Data drives (N ): This symbol represents the number of

data drives in a RAID group. Our study only includes

data drives mainly because read operations only involve

data drives in our RAID-6 with non-rotating parity. Par-

ity drives can be studied as well, but we leave that for

future work. In terms of write operations, the RAID

small-write problem is negligible due to the file system

optimizations (§3.1).

Per-drive hourly average I/O latency (Li): Of all the

metrics available from the auto-support system, we at

the end only use the hourly average I/O latency (Li) ob-

served by every data drive (Di) in every RAID group

(i=1..N ), as illustrated in Figure 1. We initially ana-

lyzed “throughput” metrics as well, but because the sup-

port system does not record per-IO throughput average,

we cannot make an accurate throughput analysis based

on hourly average I/O sizes and latencies.

Other metrics: We also use other metrics such as per-

drive hourly average I/O rate (Ri) and size (Zi), time

of day, drive age, model, and events (replacements, un-

Stable Slow
toSlow

backToStable

slowPersistnormal

Figure 3: Conceptual drive slowdown model.

plug/replug, etc.), which we correlate with slowdown

metrics to analyze root causes and impacts.

3.3.2 Derived Metrics

Slowdown (Si): To measure tail latencies, RAID is a

perfect target because it allows us to measure the relative

slowdown of a drive compared to the other drives in the

same group. Therefore, as illustrated in Figure 1, for

every hour, we first measure the median group latency

Lmed from L1..N and then measure the hourly slowdown

of a drive (Si) by comparing its latency with the median

latency (Li/Lmed). The total number of Si is essentially

the “#drive hours” in Table 1. Our measurement of Si

is reasonably accurate because most of the workload is

balanced across the data drives and the average latencies

(Li) are based on per-drive I/Os whose size variance is

small (see §3.1).

Stable vs. slow drive hours: Assuming that most

workload is balanced across all the data drives, a “sta-

ble” drive should not be much slower than other drives.

Thus, we use a slowdown threshold of 2x to differenti-

ate slow drive hours (Si ≥ 2) and stable hours (Si < 2).

We believe 2x slowdown threshold is tolerant enough,

but conversations with several practitioners suggest that

a conservative 1.5x threshold will also be interesting.

Thus, in some of our findings, we show additional results

using 1.5x slowdown threshold.

Conceptually, drives appear to behave similar to a sim-

ple Markov model in Figure 3. In a given hour, a drive

can be stable or slow. In the next hour, the drive can stay

in the same or transition to the other condition.

Tails (T k): For every hourly S1..N , we derive the k-th

largest slowdown represented as T k. In this study, we

only record the three largest slowdowns (T 1, T 2 and T 3).

T 1 represents the “longest tail” in a given RAID hour, as

illustrated in Figure 1. The total number of T 1 is the

“#RAID hours” in Table 1. The differences among T k

values will provide hints to the potential benefits of tail-

tolerant RAID.

Tail hours: A “tail hour” implies a RAID hour that ob-

serves T 1≥2 (i.e., the RAID group observes at least one

slow drive in that hour). This metric is important for full-

stripe balanced workload where the performance will

follow the longest tail (i.e., the entire RAID slows down

at the rate of T 1).
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Figure 4: Slowdown (Si) and Tail (T k) distributions

(§4.1.1-§4.1.2). The figures show distributions of disk (top)

and SSD (bottom) hourly slowdowns (Si), including the three

longest tails (T 1−3) as defined in Table 2. The y-axis range

is different in each figure and the x-axis is in log2 scale. We

plot two gray vertical lines representing 1.5x and 2x slowdown

thresholds. Important slowdown-percentile intersections are

listed in Table 3.

From the above metrics, we can further measure other

metrics such as slowdown intervals, extents, and repe-

titions. Overall, we have performed an in-depth anal-

ysis of all the measured and derived metrics. In many

cases, due to space constraints, we aggregate some re-

sults whenever the sub-analysis does not show different

behaviors. For example, we merge read and write slow-

downs as I/O slowdown. In some graphs, we break down

the slowdowns (e.g., to 2-4x, 4-8x, 8-16x) if their char-

acterizations are different.

4 Results

We now present the results of our study in four sets

of analysis: slowdown and tail distributions and char-

acteristics (§4.1), correlations between slowdowns and

workload-related metrics (§4.2) and other available met-

rics (§4.3), and post-slowdown analysis (§4.4).

4.1 Slowdown Distributions and

Characteristics

In this section, we present slowdown and tail distribu-

tions and their basic characteristics such as temporal be-

haviors and the extent of the problem.

(a)

Y: 90th 95 99 99.9 99.99 99.999

Slowdown (Si) at Yth percentile

Disk 1.1x 1.2 1.4 2.7 9 30

SSD 1.1x 1.2 1.7 3.1 10 39

Greatest slowdown (T 1) at Yth percentile

Disk 1.3x 1.5 2.4 9 29 229

SSD 1.3x 1.5 2.5 20 37 65

(b)

X: 1.2x 1.5x 2x 4x

Percentile at Si=X

Disk 97.0th 99.3 99.78 99.96

SSD 95.9th 98.7 99.42 99.92

Percentile at T 1=X

Disk 83.3th 95.4 98.50 99.72

SSD 87.0th 95.2 97.77 99.67

Table 3: Slowdown and percentile intersections. The

table shows several detailed points in Figure 4. Table (a) de-

tails slowdown values at specific percentiles. Table (b) details

percentile values at specific slowdown ratios.

4.1.1 Slowdown (Si) Distribution

We first take all Si values and plot their distribution as

shown by the thick (blue) line in Figure 4 (steeper lines

imply more stability). Table 3 details some of the slow-

down and percentile intersections.

Finding #1: Storage performance instability is not un-

common. Figure 4 and Table 3b show that there exists

0.22% and 0.58% of drive hours (99.8th and 99.4th per-

centiles) where some disks and SSDs exhibit at least 2x

slowdown (Si ≥ 2). With a more conservative 1.5x slow-

down threshold, the percentiles are 99.3th and 98.7th for

disk and SSD respectively. These observations imply

that user demands of stable latencies at 99.9th percentile

[15, 46, 54] (or 99th with 1.5x threshold) are not met by

current storage devices.

Disk and SSD slowdowns can be high in few cases.

Table 3a shows that at four and five nines, slowdowns

reach ≥9x and ≥30x respectively. In some of the worst

cases, 3- and 4-digit disk slowdowns occurred in 2461

and 124 hours respectively, and 3-digit SSD slowdowns

in 10 hours.

4.1.2 Tail (T k) Distribution

We next plot the distributions of the three longest tails

(T 1−3) in Figure 4. Table 3 details several T 1 values at

specific percentiles.

Finding #2: Storage tails appear at a significant rate.

The T 1 line in Figure 4 shows that there are 1.54% and

2.23% “tail hours” (i.e., RAID hours with at least one

slow drive). With a conservative 1.5x threshold, the per-

centiles are 95.4th and 95.2th for disk and SSD respec-

tively. These numbers are alarming for full-stripe work-

load because the whole RAID will appear to be slow if

one drive is slow. For such workload, stable latencies at
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Figure 5: Temporal behavior (§4.1.3). The figures show

(a) the CDF of slowdown intervals (#hours until a slow drive

becomes stable) and (b) the CDF of slowdown inter-arrival

rates (#hours between two slowdown occurrences).

99th percentile (or 96th with 1.5x threshold) cannot be

guaranteed by current RAID deployments.

The differences between the three longest tails shed

light on possible performance improvement from tail-

tolerant RAID. If we reconstruct the late data from the

slowest drive by reading from a parity drive, we can cut

the longest tail. This is under an assumption that drive

slowdowns are independent and thus reading from the

parity drive can be faster. If two parity blocks are avail-

able (e.g., in RAID-6), then tail-tolerant RAID can read

two parity blocks to cut the last two tails.

Finding #3: Tail-tolerant RAID has a significant po-

tential to increase performance stability. The T 1 and T 2

values at x=2 in Figure 4a suggests the opportunity to

reduce disk tail hours from 1.5% to 0.6% if the longest

tail can be cut, and furthermore to 0.3% (T 3) if the two

longest tails can be cut. Similarly, Figure 4b shows that

SSD tail hours can be reduced from 2.2% to 1.4%, and

furthermore to 0.8% with tail-tolerant RAID.

The T 1 line in Figure 4b shows several vertical steps

(e.g., about 0.6% of T 1 values are exactly 2.0). To un-

derstand this, we analyze Si values that are exactly 1.5x,

2.0x, and 3.0x. We find that they account for 0.4% of

the entire SSD hours and their corresponding hourly and

median latencies (Li and Lmed) are exactly multiples of

250 µs. We are currently investigating this further with

the product groups to understand why some of the de-

ployed SSDs behave that way.

4.1.3 Temporal Behavior

To study slowdown temporal behaviors, we first measure

the slowdown interval (how many consecutive hours a

slowdown persists). Figure 5a plots the distribution of

slowdown intervals.

Finding #4: Slowdown can persist over several hours.

Figure 5a shows that 40% of slow disks do not go back

to stable within the next hour (and 35% for SSD). Fur-

thermore, slowdown can also persist for a long time. For

example, 13% and 3% of slow disks and SSDs stay slow

for 8 hours or more respectively.
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Figure 6: Slowdown extent (§4.1.4). Figure (a) shows

the fraction of all drives that have experienced at least one oc-

currence of X-time slowdown ratio as plotted on the x-axis; the

y-axis is in log10 scale. Figure (b) shows the fraction of slow

drives that has exhibited at least X slowdown occurrences.

Next, we measure the inter-arrival period of slow-

down occurrences from the perspective of each slow

drive. Figure 5b shows the fraction of slowdown occur-

rences that arrive within X hours of the preceding slow-

down; the arrival rates are binned by hour.

Finding #5: Slowdown has a high temporal local-

ity. Figure 5b shows that 90% and 85% of disk and

SSD slowdown occurrences from the same drive happen

within the same day of the previous occurrence respec-

tively. The two findings above suggest that history-based

tail mitigation strategies can be a fitting solution; a slow-

down occurrence should be leveraged as a good indicator

for the possibility of near-future slowdowns.

4.1.4 Slowdown Extent

We now characterize the slowdown extent (i.e., fraction

of drives that have experienced slowdowns) in two ways.

First, Figure 6a plots the fraction of all drives that have

exhibited at least one occurrence of at least X-time slow-

down ratio as plotted on the x-axis.

Finding #6: A large extent of drive population has ex-

perienced slowdowns at different rates. Figure 6a depicts

that 26% and 29% of disk and SSD drives have exhibited

≥2x slowdowns at least one time in their lifetimes re-

spectively. The fraction is also relatively significant for

large slowdowns. For example, 1.6% and 2.5% of disk

and SSD populations have experienced≥16x slowdowns

at least one time.

Next, we take only the population of slow drives (26%

and 29% of the disk and SSD population) and plot the

fraction of slow drives that has exhibited at least X slow-

down occurrences, as shown in Figure 6b.

Finding #7: Few slow drives experience a large num-

ber of slowdown repetitions. Figure 6b shows that that

around 6% and 5% of slow disks and SSDs exhibit at

least 100 slowdown occurrences respectively. The ma-

jority of slow drives only incur few slowdown repeti-

tions. For example, 62% and 70% of slow disks and

SSDs exhibit only less than 5 slowdown occurrences re-
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Figure 7: CDF of size and rate imbalance (§4.2). Fig-

ure (a) plots the rate imbalance distribution (RIi) within the

population of slow drive hours (Si ≥ 2). A rate imbalance of X

implies that the slow drive serves X times more I/Os, as plotted

in the x-axis. Reversely, Figure (b) plots the slowdown distribu-

tion (Si) within the population of rate-imbalanced drive hours

(RIi ≥ 2). Figures (c) and (d) correlate slowdown and size

imbalance in the same way as Figures (a) and (b).

spectively. We emphasize that frequency of slowdown

occurrences above are only within the time duration of

87 days on average (§3.2).

4.2 Workload Analysis

The previous section presents the basic characteristics

of drive slowdowns. We now explore the possible root

causes, starting with workload analysis. Drive slow-

downs are often attributed to unbalanced workload (e.g.,

a drive is busier than other drives). We had a hypothesis

that such is not the case in our study due to the storage

stack optimization (§3.2). To explore our hypothesis, we

correlate slowdown with two workload-related metrics:

size and rate imbalance.

4.2.1 Slowdown vs. Rate Imbalance

We first measure the hourly I/O count for every drive

(Ri), the median (Rmed), and the rate imbalance (RIi =
Ri/Rmed); this method is similar to the way we measure

Si in Table 2. If workload is to blame for slowdowns,

then we should observe a high correlation between slow-

down (Si) and rate imbalance (Ri). That is, slowdowns

happen in conjunction with rate imbalance, for example,

Si ≥ 2 happens during Ri ≥ 2.

Figure 7a shows the rate imbalance distribution (RIi)

only within the population of slow drive hours. A rate im-

balance of X (on the x-axis) implies that the slow drive

serves X times more I/Os. The figure reveals that only

5% of slow drive hours happen when the drive receives

2x more I/Os than the peer drives. 95% of the slow-

downs happen in the absence of rate imbalance (the rate-

imbalance distribution is mostly aligned at x=1).

To strengthen our conjecture that rate imbalance is not

a factor, we perform a reverse analysis. To recap, Figure

7a essentially shows how often slowdowns are caused by

rate imbalance. We now ask the reverse: how often does

rate imbalance cause slowdowns? The answer is shown

in Figure 7b; it shows the slowdown distribution (Si)

only within the population of “overly” rate-imbalanced

drive hours (RIi ≥ 2). Interestingly, rate imbalance has

negligible effect on slowdowns; only 1% and 5% of rate-

imbalanced disk and SSD hours experience slowdowns.

From these two analyses, we conclude that rate imbal-

ance is not a major root cause of slowdown.

4.2.2 Slowdown vs. Size Imbalance

Next, we correlate slowdown with size imbalance. Sim-

ilar to the method above, we measure the hourly aver-

age I/O size for every drive (Zi), the median (Zmed),

and the size imbalance (ZIi = Zi/Zmed). Figure 7c

plots the size imbalance distribution (ZIi) only within

the population of slow drive hours. A size imbalance

of X implies that the slow drive serves X times larger

I/O size. The size-imbalance distribution is very much

aligned at x=1. Only 2.5% and 1.1% of slow disks and

SSDs receive 2x larger I/O size than the peer drives in

their group. Reversely, Figure 7d shows that only 0.1%

and 0.2% of size-imbalanced disk and SSD hours expe-

rience more than 2x slowdowns.

Finding #8: Slowdowns are independent of I/O rate

and size imbalance. As elaborated above, the large ma-

jority of slowdown occurrences (more than 95%) cannot

be attributed to workload (I/O size or rate) imbalance.

4.3 Other Correlations

As workload imbalance is not a major root cause of

slowdowns, we now attempt to find other possible root

causes by correlating slowdowns with other metrics such

as drive events, age, model and time of day.

4.3.1 Drive Event

Slowdown is often considered as a “silent” fault that

needs to be monitored continuously. Thus, we ask: are

there any explicit events surfacing near slowdown occur-

rences? To answer this, we collect drive events from our

auto-support system.

Finding #9: Slowdown is a “silent” performance

fault. A large majority of slowdowns are not accom-

panied with any explicit drive events. Out of the mil-

lions slow drive hours, we only observe hundreds of
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Figure 8: Drive age (§4.3.2). The figures plot the slow-

down distribution across different (a) disk and (b) SSD ages.

Each line represents a specific age by year. Each figure legend

is sorted from the left-most to right-most lines.

drive events. However, when specific drive events hap-

pen (specifically, “disk is not spinning” and “disk is not

responding”), 90% of the cases lead to slowdown occur-

rences. We rarely see storage timeouts (e.g., SCSI time-

out) because timeout values are typically set coarsely

(e.g., 60 seconds). Since typical latency ranges from tens

of microseconds to few milliseconds, a slowdown must

be five orders of magnitude to hit a timeout. Thus, to de-

tect tail latencies, storage performance should be moni-

tored continuously.

4.3.2 Drive Age

Next, we analyze if drive age matters to performance

stability. We break the the slowdown distribution (Si)

by different ages (i.e., how long the drive has been de-

ployed) as shown in Figure 8.

For disks, the bold lines in Figure 8a clearly show that

older disks experience more slowdowns. Interestingly,

the population of older disks is small in our dataset and

yet we can easily observe slowdown prevalence within

this small population (the population of 6-10 year-old

disks ranges from 0.02-3% while 1-5 year-old disks

ranges from 8-33%). In the worst case, the 8th year, the

95th percentile already reaches 2.3x slowdown. The 9th

year (0.11% of the population) seems to be an outlier.

Performance instability from disk aging due to mechani-

cal wear-out is a possibility (§2).

For SSD, we do not observe a clear pattern. Although

Figure 8b seemingly shows that young SSDs experience

more slowdowns than older drives, it is hard to make

such as a conclusion because of the small old-SSD popu-

lation (3-4 year-old SSDs only make up 16% of the pop-

ulation while the 1-2 year-old is 83%).

Finding #10: Older disks tend to exhibit more slow-

downs. For SSDs, no high degree of correlation can be

made between slowdown and drive age.

4.3.3 Drive Model

We now correlate slowdown with drive model. Not all of

our customers upload the model of the drives they use.
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Figure 9: SSD models (§4.3.3). The figure plots the slow-

down distribution across different SSD models and vendors.

Only 70% and 86% of customer disks and SSDs have

model information. Thus, our analysis in this section is

based on partial population.

We begin by correlating SSD model and slowdown.

The SSD literature highlights the pressure to increase

density, which leads to internal idiosyncrasies that can

induce performance instability. Thus, it is interesting to

know the impact of different flash cell levels to SSD per-

formance stability.

Finding #11: SLC slightly outperforms MLC drives in

terms of performance stability. As shown in Figure 9,

at 1.5x slowdown threshold, MLC drives only reaches

98.2th percentile while SLC reaches 99.5th percentile.

However, at 2x slowdown threshold, the distribution is

only separated by 0.1%. As MLC exhibits less perfor-

mance stability than SLC, future comparisons with TLC

drives will be interesting.

Our dataset contains about 60:40 ratio of SLC vs.

MLC drives. All the SLC drives come from one vendor,

but the MLC drives come from two vendors with 90:10

population ratio. This allows us to compare vendors.

Finding #12: SSD vendors seem to matter. As shown

by the two thin lines in Figure 9, one of the vendors (the

10% MLC population) has much less stability compared

to the other one. This is interesting because the insta-

bility is clearly observable even within a small popula-

tion. At 1.5x threshold, this vendor’s MLC drives already

reach 94.3thpercentile (out of the scope of Figure 9).

For disks, we use different model parameters such as

storage capacity, RPM, and SAN interfaces (SATA, SAS,

or Fibre Channel). However, we do not see any strong

correlation.

4.3.4 Time of Day

We also perform an analysis based on time of day to iden-

tify if night-time background jobs such as disk scrubbing

cause slowdowns. We find that slowdowns are uniformly

distributed throughout the day and night.
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Figure 10: RAID I/O degradation (§4.4.1). The figures

contrast the distributions of RIO degradation between stable-

to-stable and stable-to-tail transitions.

4.4 Post-Slowdown Analysis

We now perform a post-mortem analysis: what hap-

pens after slowdown occurrences? We analyze this from

two angles: RAID performance degradation and un-

plug/replug events.

4.4.1 RAID Performance Degradation

A slow drive has the potential to degrade the performance

of the entire RAID, especially for full-stripe workload

common in the studied RAID systems (§3.1), it is reason-

able to make the following hypothesis: during the hour

when a drive slows down, the RAID aggregate through-

put will drop as the workload’s intensity will be throttled

by the slow drive. Currently, we do not have access to

throughput metrics at the file system or application lev-

els, and even if we do, connecting metrics from different

levels will not be trivial. We leave cross-level analysis

as future work, but meanwhile, given this constraint, we

perform the following analysis to explore our hypothesis.

We derive a new metric, RIO (hourly RAID I/O count),

which is the aggregate number of I/Os per hour from all

the data drives in every RAID hour. Then, we derive

RIO degradation (RAID throughput degradation) as the

ratio RIOlastHour to RIOcurrentHour. If the degradation

is larger than one, it means the RAID group serves less

I/Os than the previous hour.

Next, we distinguish stable-to-stable and stable-to-tail

transitions. Stable RAID hour means all the drives are

stable (Si < 2). Tail RAID hour implies at least one of

the drives is slow. In stable-to-stable transitions, RIO

degradation can naturally happen as workload “cools

down”. Thus, we first plot the distribution of stable-to-

stable RIO degradation, shown by the solid blue line in

Figure 10. We then select only the stable-to-tail transi-

tions and plot the RIO degradation distribution, shown

by the dashed red line in Figure 10.

Finding #13: A slow drive can significantly degrade

the performance of the entire RAID. Figure 10 depicts

a big gap of RAID I/O degradation between stable-to-

stable and stable-to-tail transitions. In SSD-based RAID,

the degradation impact is quite severe. Figure 10b for
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Figure 11: Unplug/replug events (§4.4.2-§4.4.3). The

figures show the relationships between slowdown occurrences

and unplug/replug events. The top and bottom figures show the

distribution of “wait-hour” and “recur-hour” respectively.

example shows that only 12% of stable-to-stable transi-

tions observe ≥2x RIO degradation (likely from work-

load cooling down). However, in stable-to-slow transi-

tions, there is 23% more chance (the vertical gap at x=2)

that RIO degrades by more than 2x. In disk-based RAID,

RIO degradation is also felt with 7% more chance. This

finding shows the real possibilities of workload through-

put being degraded and stable drives being under-utilized

during tail hours, which again motivates the need for tail-

tolerant RAID.

We note that RAID degradation is felt more if user re-

quests are casually dependent; RIO degradation only af-

fects I/Os that are waiting for the completion of previous

I/Os. Furthermore, since our dataset is based on hourly

average latencies, there is no sufficient information that

shows every I/O is delayed at the same slowdown rate.

We believe these are the reasons why we do not see a

complete collapse of RIO degradation.

4.4.2 Unplug Events

When a drive slows down, the administrator might un-

plug the drive (e.g., for offline diagnosis) and later replug

the drive. Unplug/replug is a manual administrator’s pro-

cess, but such events are logged in our auto-support sys-

tem. To analyze unplug patterns, we define wait-hour

as the number of hours between a slowdown occurrence

and a subsequent unplug event; if a slowdown persists

in consecutive hours, we only take the first slow hour.

Figures 11a-b show the wait-hour distribution within the

population of slow disks and SSDs respectively.

Finding #14: Unplug events are common. Figures

11a-b show that within a day, around 4% and 8% of slow



272 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

(≥2x) disks and SSDs are unplugged respectively. For

“mild” slowdowns (1.5-2x), the numbers are 3% and 6%.

Figure 11a also shows a pattern where disks with more

severe slowdowns are unplugged at higher rates; this pat-

tern does not show up in SSD.

4.4.3 Replug Events

We first would like to note that unplug is not the same

as drive replacement; a replacement implies an unplug

without replug. With this, we raise two questions: What

is the replug rate? Do replugged drives exhibit fur-

ther slowdowns? To analyze the latter, we define recur-

hour as the number of hours between a replug event

and the next slowdown occurrence. Figures 11c-d show

the recur-hour distribution within the population of slow

disks and SSDs respectively.

Finding #15: Replug rate is high and slowdowns still

recur after replug events. In our dataset, customers re-

plug 89% and 100% of disks and SSDs that they un-

plugged respectively (not shown in figures). Figures

11c-d answer the second question, showing that 18%

and 35% of replugged disks and SSDs exhibit another

slowdown within a day. This finding points out that

administrators are reluctant to completely replace slow

drives, likely because slowdowns are transient (not all

slowdowns appear in consecutive hours) and thus can-

not be reproduced in offline diagnosis and furthermore

the cost of drive replacement can be unnecessarily ex-

pensive. Yet, as slowdown can recur, there is a need for

online tail mitigation approaches.

In terms of unplug-replug duration, 54% of unplugged

disks are replugged within 2 hours and 90% within 10

hours. For SSD, 61% are replugged within 2 hours and

97% within 10 hours.

4.5 Summary

It is now evident that storage performance instability at

the drive level is not uncommon. One of our major find-

ings is the little correlation between performance insta-

bility and workload imbalance. One major analysis chal-

lenge is the “silent” nature of slowdowns; they are not

accompanied by explicit drive events, and therefore, pin-

pointing the root cause of each slowdown occurrence is

still an open problem. However, in terms of the over-

all findings, our conversations with product teams and

vendors [4] confirm that many instances of drive perfor-

mance faults are caused by drive anomalies; there are

strong connections between our findings and some of the

anecdotal evidence we gathered (§2). As RAID deploy-

ments can suffer from storage tails, we next discuss the

concept of tail-tolerant RAID.

5 Tail-Tolerant RAID

With drive performance instability, RAID performance

is in jeopardy. When a request is striped across many

drives, the request cannot finish until all the individual

I/Os complete (Figure 1); the request latency will follow

the tail latency. As request throughput degrades, stable

drives become under-utilized. Tail-tolerant RAID is one

solution to the problem and it brings two advantages.

First, slow drives are masked. This is a simple goal

but crucial for several reasons: stringent SLOs require

stability at high percentiles (e.g., 99% or even 99.9%

[15, 45, 48, 52]); slow drives, if not masked, can cre-

ate cascades of performance failures to applications [16];

and drive slowdowns can falsely signal applications to

back off, especially in systems that treat slowdowns as

hints of overload [24].

Second, tail-tolerant RAID is a cheaper solution than

drive replacements, especially in the context of transient

slowdowns (§4.1.3) and high replug rates by administra-

tors (§4.4.3). Unnecessary replacements might be unde-

sirable due to the hardware cost and the expensive RAID

re-building process as as drive capacity increases.

Given these advantages, we performed an opportu-

nity assessment of tail-tolerant strategies at the RAID

level. We emphasize that the main focus of this paper

is the large-scale analysis of storage tails; the initial ex-

ploration of tail-tolerant RAID in this section is only to

assess the benefits of such an approach.

5.1 Tail-Tolerant Strategies

We explore three tail-tolerant strategies: reactive, proac-

tive, and adaptive. They are analogous to popular ap-

proaches in parallel distributed computing such as spec-

ulative execution [14] and hedging/cloning [6, 13]. To

mimic our RAID systems (§3.2), we currently focus on

tail tolerance for RAID-6 with non-rotating parity (Fig-

ure 1 and §3.1). We name our prototype ToleRAID, for

simplicity of reference.

Currently, we only focus on full-stripe read workload

where ToleRAID can cut “read tails” in the following

ways. In normal reads, the two parity drives are unused

(if no errors), and thus can be leveraged to mask up to

two slow data drives. For example, if one data drive is

slow, ToleRAID can issue an extra read to one parity

drive and rebuild the “late” data.

Reactive: A simple strategy is reactive. If a drive

(or two) has not returned the data for ST x (slowdown

threshold) longer than the median latency, reactive will

perform an extra read (or two) to the parity drive(s). Re-

active strategy should be enabled by default in order to

cut extremely long tails. It is also good for mostly stable

environment where slowdowns are rare. A small ST will

create more extra reads and a large ST will respond late
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to tails. We set ST = 2 in our evaluation, which means

we still need to wait for roughly an additional 1x median

latency to complete the I/O (a total slowdown of 3x in

our case). While reactive strategies work well in clus-

ter computing (e.g., speculative execution for medium-

long jobs), they can react too late for small I/O latencies

(e.g., hundreds of microseconds). Therefore, we explore

proactive and adaptive approaches.

Proactive: This approach performs extra reads to the

parity drives concurrently with the original I/Os. The

number of extra reads can be one (P drive) or two (P

and Q); we name them PROACTIVE1 and PROACTIVE2

respectively. Proactive works well to cut short tails (near

the slowdown threshold); as discussed above, reactive

depends on ST and can be a little bit too late. The down-

side of proactive strategy is the extra read traffic.

Adaptive: This approach is a middle point between the

two strategies above. Adaptive by default runs the re-

active approach. When the reactive policy is triggered

repeatedly for SR times (slowdown repeats) on the same

drive, then ToleRAID becomes proactive until the slow-

down of the offending drive is less than ST . If two

drives are persistently slow, then ToleRAID runs PROAC-

TIVE2. Adaptive is appropriate for instability that comes

from persistent and periodic interferences such as back-

ground SSD GC, SMR log cleaning, or I/O contention

from multi-tenancy.

5.2 Evaluation

Our user-level ToleRAID prototype stripes each RAID

request into 4-KB chunks (§3.2), merge consecutive per-

drive chunks, and submit them as direct I/Os. We in-

sert a delay-injection layer that emulates I/O slowdowns.

Our prototype takes two inputs: block-level trace and

slowdown distribution. Below, we show ToleRAID re-

sults from running a block trace from Hadoop Word-

count benchmark, which contains mostly big reads. We

perform the experiments on 8-drive RAID running IBM

500GB SATA-600 7.2K disk drives.

We use two slowdown distributions: (1) Rare distribu-

tion, which is uniformly sampled from our disk dataset

(Figure 4a). Here, tails (T 1) are rare (1.5%) but long tails

exist (Table 3). (2) Periodic distribution, based on our

study of Amazon EC2 ephemeral SSDs (not shown due

to space constraints). In this study, we rent SSD nodes

and found a case where one of the locally-attached SSDs

periodically exhibited 5x read slowdowns that lasted for

3-6 minutes and repeated every 2-3 hours (2.3% instabil-

ity period on average).

Figure 12 shows the pros and cons of the four policies

using the two different distributions. In all cases, PROAC-

TIVE1 and PROACTIVE2 always incur roughly 16.7% and

33.3% extra reads. In Figure 12a, REACTIVE can cut
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Figure 12: ToleRAID evaluation. The figures show

the pros and cons of various ToleRAID strategies based on two

slowdown distributions: (a) Rare and (b) Periodic. The figures

plot the T 1 distribution (i.e., the RAID slowdown). T 1 is es-

sentially based on the longest tail latency among the necessary

blocks that each policy needs to wait for.

long tails and ensure RAID only slows down by at most

3x, while only introducing 0.5% I/O overhead. PROAC-

TIVE2, compared to PROACTIVE1, gives slight benefits

(e.g., 1.8x vs. 2.3x at 99th percentile). Note also that

PROACTIVE1 does not use REACTIVE, and thus PROAC-

TIVE1 loses to REACTIVE within the 0.1% chance where

two disks are slow at the same time. ADAPTIVE does

not show more benefits in non-persistent scenarios. Fig-

ure 12b shows that in periodic distribution with persistent

slowdowns, ADAPTIVE works best; it cuts long tails but

only incurs 2.3% I/O overhead.

Overall, ToleRAID shows potential benefits. In sepa-

rate experiments, we have also measured Linux Software

RAID degradation in the presence of storage tails (with

dmsetup delay utilities). We are integrating ToleRAID

to Linux Software RAID and extending it to cover more

policies and scenarios (partial reads, writes, etc.).

6 Discussions

We hope our work will spur a set of interesting future

research directions for the larger storage community to

address. We discuss this in the context of performance-

log analysis and tail mitigations.

Enhanced data collection: The first limitation of our

dataset is the hourly aggregation, preventing us from

performing micro analysis. Monitoring and capturing

fine-grained data points will incur high computation and

storage overhead. However, during problematic peri-

ods, future monitoring systems should capture detailed

data. Our ToleRAID evaluation hints that realistic slow-

down distributions are a crucial element in benchmark-

ing tail-tolerant policies. More distribution benchmarks

are needed to shape the tail-tolerant RAID research area.

The second limitation is the absence of other metrics that

can be linked to slowdowns (e.g., heat and vibration lev-

els). Similarly, future monitoring systems can include

such metrics.
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Our current SSD dataset is two orders of magnitude

smaller than the disk dataset. As SSD becomes the

front-end storage in datacenters, larger and longer stud-

ies of SSD performance instability is needed. Similarly,

denser SMR disk drives will replace old generation disks

[5, 18]. Performance studies of SSD-based and SMR-

based RAID will be valuable, especially for understand-

ing the ramifications of internal SSD garbage-collection

and SMR cleaning to the overall RAID performance.

Further analyses: Correlating slowdowns to latent sec-

tor errors, corruptions, drive failures (e.g., from SMART

logs), and application performance would be interesting

future work. One challenge we had was that not all ven-

dors consistently use SMART and report drive errors. In

this paper, we use median values to measure tail laten-

cies and slowdowns similar to other work [13, 34, 52].

We do so because using median values will not hide the

severity of long tails. Using median is exaggerating if

(N-1)/2 of the drives have significantly higher latencies

than the rest; however, we did not observe such cases.

Finally, we mainly use 2x slowdown threshold, and oc-

casionally show results from a more conservative 1.5x

threshold. Further analyses based on average latency val-

ues and different threshold levels are possible.

Tail mitigations: We believe the design space of tail-

tolerant RAID is vast considering different forms of

RAID (RAID-5/6/10, etc.), different types of erasure

coding [38], various slowdown distributions in the field,

and diverse user SLA expectations. In our initial assess-

ment, ToleRAID uses a black-box approach, but there

are other opportunities to cut tails “at the source” with

transparent interactions between devices and the RAID

layer. In special cases such as materials trapped between

disk head and platter (which will be more prevalent in

“slim” drives with low heights), the file system or RAID

layer can inject random I/Os to “sweep” the dust off. In

summary, each root cause can be mitigated with specific

strategies. The process of identifying all possible root

causes of performance instability should be continued for

future mitigation designs.

7 Related Work

Large-scale storage studies at the same scale as ours were

conducted for analysis of whole-disk failures [37, 40],

latent sector errors [8, 36], and sector corruptions [9].

Many of these studies were started based on anecdotal

evidence of storage faults. Today, as these studies had

provided real empirical evidence, it is a common expec-

tation that storage devices exhibit such faults. Likewise,

our study will provide the same significance of contribu-

tion, but in the context of performance faults.

Krevat et al. [33] demonstrate that disks are like

“snowflakes” (same model can have 5-14% throughput

variance); they only analyze throughput metrics on 70

drives with simple microbenchmarks. To the best of our

knowledge, our work is the first to conduct a large-scale

performance instability analysis at the drive level.

Storage performance variability is typically addressed

in the context of storage QoS (e.g., mClock [25], PARDA

[24], Pisces [42]) and more recently in cloud storage ser-

vices (e.g., C3 [45], CosTLO [52]). Other recent work

reduces performance variability at the file system (e.g.,

Chopper [30]), I/O scheduler (e.g., split-level schedul-

ing [55]), and SSD layers (e.g., Purity [12], Flash on

Rails [43]). Different than ours, these sets of work do

not specifically target drive-level tail latencies.

Finally, as mentioned before, reactive, proactive and

adaptive tail-tolerant strategies are lessons learned from

the distributed cluster computing (e.g., MapReduce [14],

dolly [6], Mantri [7], KMN [50]) and distributed storage

systems (e.g., Windows Azure Storage [31], RobuSTore

[53]). The applications of these high-level strategies in

the context of RAID will significantly differ.

8 Conclusion

We have “transformed” anecdotes of storage perfor-

mance instability into large-scale empirical evidence.

Our analysis so far is solely based on last generation

drives (few years in deployment). With trends in disk and

SSD technology (e.g., SMR disks, TLC flash devices),

the worst might be yet to come; performance instability

can be more prevalent in the future, and our findings are

perhaps just the beginning. File and RAID systems are

now faced with more responsibilities. Not only must they

handle known storage faults such as latent sector errors

and corruptions [9, 27, 28, 39], but also now they must

mask drive tail latencies as well. Lessons can be learned

from the distributed computing community where a large

body of work has been born since the issue of tail laten-

cies became a spotlight a decade ago [14]. Similarly, we

hope “the tail at store” will spur exciting new research

directions within the storage community.
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Abstract
Estimating the deduplication ratio of a very large
dataset is both extremely useful, but genuinely
very hard to perform. In this work we present a
new method for accurately estimating deduplica-
tion benefits that runs 3X to 15X faster than the
state of the art to date. The level of improve-
ment depends on the data itself and on the storage
media that it resides on. The technique is based
on breakthrough theoretical work by Valiant and
Valiant from 2011, that give a provably accurate
method for estimating various measures while see-
ing only a fraction of the data. However, for the use
case of deduplication estimation, putting this theory
into practice runs into significant obstacles. In this
work, we find solutions and novel techniques to en-
able the use of this new and exciting approach. Our
contributions include a novel approach for gauging
the estimation accuracy, techniques to run it with
low memory consumption, a method to evaluate the
combined compression and deduplication ratio, and
ways to perform the actual sampling in real storage
systems in order to actually reap benefits from these
algorithms. We evaluated our work on a number of
real world datasets.

1 Introduction
1.1 Deduplication and Estimation
After years of flourishing in the world of back-
ups, deduplication has taken center stage and is
now positioned as a key technology for primary
storage. With the rise of all-flash storage systems
that have both higher cost and much better random
read performance than rotating disks, deduplication
and data reduction in general, makes more sense
than ever. Combined with the popularity of modern
virtual environments and their high repetitiveness,
consolidating duplicate data reaps very large bene-
fits for such high-end storage systems. This trend
is bound to continue with new storage class memo-
ries looming, that are expected to have even better
random access and higher cost per GB than flash.

This paper is about an important yet extremely
hard question – How to estimate the deduplication
benefits of a given dataset? Potential customers
need this information in order to make informed
decisions on whether high-end storage with dedu-
plication is worthwhile for them. Even more so, the

question of sizing and capacity planning is deeply
tied to the deduplication effectiveness expected on
the specific data. Indeed, all vendors of deduplica-
tion solutions have faced this question and unfortu-
nately there are no easy solutions.

1.2 The hardness of Deduplication Es-
timation and State of the Art

The difficulty stems from the fact that deduplication
is a global property and as such requires searching
across large amounts of data. In fact, there are the-
oretical proofs that this problem is hard [12] and
more precisely, that in order to get an accurate esti-
mation one is required to read a large fraction of the
data from disk. In contrast, compression is a local
procedure and therefore the compression estimation
problem can be solved very efficiently [11].

As a result, the existing solutions in the market
take one of two approaches: The first is simply to
give an educated guess based on prior knowledge
and based on information about the workload at
hand. For example: Virtual Desktop Infrastructure
(VDI) environments were reported (e.g. [1]) to give
an average 0.16 deduplication ratio (a 1:6 reduc-
tion). However in reality, depending on the specific
environment, the results can vary all the way be-
tween a 0.5 to a 0.02 deduplication ratio (between
1:2 and 1:50). As such, using such vague estimation
for sizing is highly inaccurate.

The other approach is a full scan of the data at
hand. In practice, a typical user runs a full scan on
as much data as possible and gets an accurate es-
timation, but only for the data that was scanned.
This method is not without challenges, since eval-
uating the deduplication ratio of a scanned dataset
requires a large amount of memory and disk opera-
tions, typically much higher than would be allowed
for an estimation scan. As a result, research on the
topic [12, 19] has focused on getting accurate esti-
mations with low memory requirement, while still
reading all data from disk (and computing hashes
on all of the data).

In this work we study the ability to estimate
deduplication while not reading the entire dataset.

1.3 Distinct Elements Counting
The problem of estimating deduplication has sur-
faced in the past few years with the popularity of



278 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

the technology. However, this problem is directly
linked to a long standing problem in computer sci-
ence, that of estimating the number of distinct el-
ements in a large set or population. With motiva-
tions ranging from Biology (estimating the number
of species) to Data Bases (distinct values in a ta-
ble/column), the problem received much attention.
There is a long list of heuristic statistical estima-
tors (e.g. [4, 9, 10]), but these do not have tight
guarantees on their accuracy and mostly target sets
that have a relatively low number of distinct ele-
ments. Their empirical tests perform very poorly
on distributions with a long tail (distributions in
which a large fraction of the data has low duplica-
tion counts) which is the common case with dedu-
plication. Figure 1 shows examples of how inaccu-
rate heuristic estimations can be on a real dataset.
It also shows how far the deduplication ratio of the
sample can be from that of the entire dataset.

Figure 1: An example of the failure of current sampling
approaches: Each graph depicts a deduplication ratio es-
timate as a function of the sampling percent. The points
are an average over 100 random samples of the same
percent. We see that simply looking at the ratio on the
sample gives a very pessimistic estimation while the esti-
mator from [4] is always too optimistic in this example.

This empirical difficulty is also supported by the-
oretical lower bounds [16] proving that an accurate
estimation would require scanning a large fraction
of the data. As a result, a large bulk of the work on
distinct elements focused on low-memory estima-
tion on data streams (including a long list of studies
starting from [7] and culminating in [14]). These
estimation methods require a full scan of the data
and form the foundation for the low-memory scans
for deduplication estimation mentioned in the pre-
vious section.

In 2011, in a breakthrough paper, Valiant and
Valiant [17] showed that at least Ω( n

logn ) of the
data must be inspected and more over, that there is a
matching upper bound. Namely, they showed a the-
oretical algorithm that achieves provable accuracy
if at least O( n

log n ) of the elements are examined.

Subsequently, a variation on this algorithm was also
implemented by the same authors [18]. Note that
the Valiants work, titled “Estimating the unseen” is
more general than just distinct elements estimation
and can be used to estimate other measures such as
the Entropy of the data (which was the focus in the
second paper [18]).

This new ”Unseen” algorithm is the starting
point of our work in which we attempt to deploy
it for deduplication estimation.

1.4 Our Work
More often than not, moving between theory and
practice is not straightforward and this was defi-
nitely the case for estimating deduplication. In this
work we tackle many challenges that arise when
trying to successfully employ this new technique in
a practical setting. For starters, it is not clear that
performing random sampling at a small granular-
ity has much benefit over a full sequential scan in
a HDD based system. But there are a number of
deeper issues that need to be tackled in order to ac-
tually benefit from the new approach. Following is
an overview of the main topics and our solutions:

Understanding the estimation accuracy. The
proofs of accuracy of the Unseen algorithm are the-
oretic and asymptotic in nature and simply do not
translate to concrete real world numbers. Moreover,
they provide a worst case analysis and do not give
any guarantee for datasets that are easier to analyze.
So there is no real way to know how much data to
sample and what fraction is actually sufficient. In
this work we present a novel method to gauge the
accuracy of the algorithm. Rather than return an
estimation, our technique outputs a range in which
the actual result is expected to lie. This is practical
in many ways, and specifically allows for a gradual
execution: first take a small sample and evaluate its
results and if the range is too large, then continue by
increasing the sample size. While our tests indicate
that a 15% sample is sufficient for a good estimation
on all workloads, some real life workloads reach a
good enough estimation with a sample as small as
3% or even less. Using our method, one can stop
early when reaching a sufficiently tight estimation.

The memory consumption of the algorithm. In
real systems, being able to perform the estimation
with a small memory footprint and without addi-
tional disk IOs is highly desirable, and in some
cases a must. The problem is that simply running
the Unseen algorithm as prescribed requires map-
ping and counting all of the distinct chunks in the
sample. In the use case of deduplication this num-
ber can be extremely large, on the same order of
magnitude as the number of chunks in the entire
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dataset. Note that low memory usage also benefits
in lower communication bandwidth when the esti-
mation is performed in a distributed system.

Existing solutions for low-memory estimation of
distinct elements cannot be combined in a straight-
forward manner with the Unseen algorithm. Rather,
they require some modifications and a careful com-
bination. We present two such approaches: one
with tighter accuracy, and a second that loses more
estimation tightness but is better for distributed and
adaptive settings. In both cases the overall algo-
rithm can run with as little as 10MBs of memory.
Combining deduplication and compression.
Many of the systems deploying deduplication also
use compression to supplement the data reduction.
It was shown in multiple works that this combina-
tion is very useful in order to achieve improved data
reduction for all workloads [5, 13, 15]. A natural
approach to estimating the combined benefits is to
estimate each one separately and multiply the ratios
for both. However, this will only produce correct
results when the deduplication effectiveness and
compression effectiveness are independent, which
in some cases is not true. We present a method to in-
tegrate compression into the Unseen algorithm and
show that it yields accurate results.

How to perform the sampling? As stated above,
performing straightforward sampling at a small
granularity (e.g. 4KB) is extremely costly in HDD
based systems (in some scenarios, sampling as little
as 2% may already take more than a full scan). In-
stead we resort to sampling at large “super-chunks”
(of 1MB) and performing reads in a sorted fashion.
Such sampling runs significantly faster than a full
scan and this is the main source of our time gains.

Equally as important, we show that our methods
can be tuned to give correct and reliable estimations
under this restriction (at the cost of a slightly looser
estimation range). We also suggest an overall sam-
pling strategy that requires low memory, produces
sorted non-repeating reads and can be run in grad-
ual fashion (e.g. if we want to first read a 5% sam-
ple and then enlarge the sample to a 10% one).

Summary of our results. In summary, we design
and evaluate a new method for estimating dedupli-
cation ratios in large datasets. Our strategy uti-
lizes less than 10MBs of RAM space, can be dis-
tributed, and can accurately estimate the joint ben-
efits of compression and deduplication (as well as
their separate benefits). The resulting estimation is
presented as a range in which the actual ratio is ex-
pected to reside (rather than a single number). This
allows for a gradual mode of estimation, where one
can sample a small fraction, evaluate it and con-
tinue sampling if the resulting range is too loose.

Note that the execution time of the actual estima-
tion algorithms is negligible vs. the time that it
takes to scan the data, so being able to stop with a
small sampling fraction is paramount to achieving
an overall time improvement.

We evaluate the method on a number of real life
workloads and validate its high accuracy. Overall
our method achieves at least a 3X time improve-
ment over the state of the art scans. The time
improvement varies according to the data and the
medium on which data is stored, and can reach time
improvements of 15X and more.

2 Background and the Core algorithm
2.1 Preliminaries and Background
Deduplication is performed on data chunks of size
that depends on the system at hand. In this paper we
consider fixed size chunks of 4KB, a popular choice
since it matches the underlying page size in many
environments. However the results can be easily
generalized to different chunking sizes and meth-
ods. Note that variable-sized chunking can be han-
dled in our framework but adds complexity espe-
cially with respect to the actual sampling of chunks.

As is customary in deduplication, we represent
the data chunks by a hash value of the data (we
use the SHA1 hash function). Deduplication occurs
when two chunks have the same hash value.

Denote the dataset at hand by S and view it
as consisting of N data chunks (namely N hash
values). The dataset is made up from D distinct
chunks, where the ith element appears ni times in
the dataset. This means that

∑D
i=1 ni = N .

Our ultimate target is to come up with an esti-
mation of the value D, or equivalently of the ratio
r = D

N . Note that throughout the paper we use
the convention where data reduction (deduplication
or compression) is a ratio between in [0, 1] where
lower is better. Namely, ratio 1.0 means no reduc-
tion at all and 0.03 means that the data is reduced
to 3% of its original size (97% saving).

When discussing the sampling, we will consider
a sample of size K out of the entire dataset of N
chunks. The corresponding sampling rate is de-
noted by p = K

N (for brevity, we usually present
p in percentage rather than a fraction). We denote
by Sp the random sample of fraction p from S.

A key concept for this work that is what we term
a Duplication Frequency Histogram (DFH) that is
defined next (note that in [17] this was termed the
“fingerprint” of the dataset).

Definition 1. A Duplication Frequency His-
togram (DFH) of a dataset S is a histogram x =
{x1, x2, ...} in which the value xi is the number of
distinct chunks that appeared exactly i times in S.
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For example, the DFH of a dataset consisting of
N distinct elements will have x1 = N and zero
elsewhere. An equal sized dataset where all ele-
ments appear exactly twice will have a DFH with
x2 = N

2 and zero elsewhere. Note that for a legal
DFH it must hold that

∑
i xi · i = N and more-

over that
∑

i xi = D. The length of a DFH is set
by the highest non-zero xi. In other words it is the
frequency of the most popular chunk in the dataset.
The same definition of DFH holds also when dis-
cussing a sample rather than entire dataset.

The approach of the Unseen algorithm is to es-
timate the DFH of a dataset and from it devise an
estimation of the deduplication.

2.2 The Unseen Algorithm
In this section we give a high level presentation of
the core Unseen algorithm. The input of the algo-
rithm is a DFH y of the observed sample Sp and
from it the algorithm finds an estimation x̂ of the
DFH of the entire dataset S. At a high level, the
algorithm finds a DFH x̂ on the full set that serves
as the ”best explanation” to the observed DFH y on
the sample.

As a preliminary step, for a DFH x′ on the dataset
S define the expected DFH y′ on a random p sam-
ple of S. In the expected DFH each entry is ex-
actly the statistical expectancy of this value in a ran-
dom p sample. Namely y′i is the expected number
of chunks that appear exactly i times in a random
p fraction sample. For fixed p this expected DFH
can be computed given x′ via a linear transforma-
tion and can be presented by a matrix Ap such that
y′ = Ap · x′.

The main idea in the Unseen algorithm is to find
an x′ that minimizes a distance measure between
the expected DFH y′ and the observed DFH y. The
distance measure used is a normalized L1 Norm
(normalized by the values of the observed y). We
use the following notation for the exact measure be-
ing used:

Δp(x
′, y) =

∑
i

1√
yi + 1

|yi − (Ap · x′)i| .

The algorithm uses Linear Programming for the
minimization and is outlined in Algorithm 1.

The actual algorithm is a bit more complicated
due to two main issues: 1) this methodology is
suited for estimating the duplication frequencies of
unpopular chunks. The very popular chunks can be
estimated in a straightforward manner (an element
with a high count c is expected to appear approx-
imately p · c times in the sample). So the DFH is
first broken into the easy part for straightforward
estimation and the hard part for estimation via Al-
gorithm 1. 2) Solving a Linear program with too

Algorithm 1: Unseen Core
Input: Sample DFH y, fraction p, total size N
Output: Estimated deduplication ratio r̂
/* Prepare expected DFH transformation*/

Ap ← prepareExpectedA(p);

Linear program:
Find x′ that minimizes: Δp(x

′, y)
Under constraints: /* x′ is a legal DFH */∑

i x
′
i · i = N and ∀i x′

i ≥ 0

return r̂ =
∑

i x
′
i

N

many variables is impractical, so instead of solving
for a full DFH x, a sparser mesh of values is used
(meaning that not all duplication values are allowed
in x). This relaxation is acceptable since this level
of inaccuracy has very little influence for high fre-
quency counts. It is also crucial to make the running
time of the LP low and basically negligible with re-
spect to the scan time.

The matrix Ap is computed by a combination
of binomial probabilities. The calculation changes
significantly if the sampling is done with repetition
(as was used in [18]) vs. without repetition. We re-
fer the reader to [18] for more details on the core
algorithm.

3 From Theory to Practice
In this section we present our work to actually
deploying the Unseen estimation method for real
world deduplication estimation. Throughout the
section we demonstrate the validity of our results
using tests on a single dataset. This is done for
clarity of the exposition and only serves as a repre-
sentative of the results that where tested across all
our workloads. The dataset is the Linux Hypervisor
data (see Table 1 in Section 4) that was also used in
Figure 1. The entire scope of results on all work-
loads appears in the evaluation section (Section 4).

3.1 Gauging the Accuracy
We tested the core Unseen algorithm on real life
workloads and it has impressive results, and in gen-
eral it thoroughly outperforms some of the estima-
tors in the literature. The overall impression is that
a 15% sample is sufficient for accurate estimation.
On the other hand the accuracy level varies greatly
from one workload to the next, and often the esti-
mation obtained from 5% or even less is sufficient
for all practical purposes. See example in Figure 2.

So the question remains: how to interpret the es-
timation result and when have we sampled enough?
To address these questions we devise a new ap-
proach that returns a range of plausible deduplica-
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Figure 2: The figure depicts sampling trials at each of the
following sample percentages 1%, 2%, 5%, 7.5%, 10%.
15% and 20%. For each percentage we show the results
of Unseen on 30 independent samples. The results are
very noisy at first, for example, on the 1% samples they
range from ∼ 0.17 all the way to ∼ 0.67. But we see a
nice convergence starting at 7.5%. The problem is that
seeing just a single sample and not 30, gives little indica-
tion about the accuracy and convergence.

tion ratios rather than a single estimation number.
In a nut shell, the idea is that rather than give the
DFH that is the ”best explanation” to the observed
y, we test all the DFHs that are a ”reasonable ex-
planation” of y and identify the range of possible
duplication in these plausible DFHs.

Technically, define criteria for all plausible solu-
tions x′ that can explain an observed sample DFH
y. Of all these plausible solutions we find the ones
which give minimal deduplication ratio and max-
imal deduplication ratio. In practice, we add two
additional linear programs to the first initial opti-
mization. The first linear program helps in identi-
fying the neighborhood of plausible solutions. The
second and third linear programs find the two lim-
its to the plausible range. In these linear programs
we replace the optimization on the distance mea-
sure with an optimization on the number of distinct
chunks. The method is outlined in Algorithm 2.

Note that in [18] there is also a use of a second
linear program for entropy estimation, but this is
done for a different purpose (implementing a sort
of Occam’s razor).

Why does it work? We next describe the intu-
ition behind our solution: Consider the distribu-
tion of Δp(x, y) for a fixed x and under random y
(random y means a DFH of a randomly chose p-
sample). Suppose that we knew the expectancy
E(Δp) and standard deviation σ of Δp. Then given
an observed y, we expect, with very high probabil-
ity, that the only plausible source DFHs x′ are such
that Δp(x

′, y) is close to E(Δp) (within α · σ for
some slackness variable α). This set of plausible x′

can be fairly large, but all we really care to learn

Algorithm 2: Unseen Range
Input: Sample DFH y, fraction p, total size N,

slackness α (default α = 0.5)
Output: Deduplication ratio range [r, r]

/* Prepare expected DFH transformation*/
Ap ← prepareExpectedA(p);

1st Linear program:
Find x′ that minimizes: Δp(x

′, y)
Under constraints: /* x′ is a legal DFH */∑

i x
′
i · i = N and ∀i x′

i ≥ 0

For the resulting x′ compute: Opt = Δp(x
′, y)

2nd Linear program:
Find x that minimizes:

∑
i xi

Under constraints:
∑

i xi · i = N and ∀i xi ≥ 0 and
Δp(x, y) < Opt+ α

√
Opt

3rd Linear program:
Find x that maximizes:

∑
i xi

Under constraints:
∑

i xi · i = N and ∀i xi ≥ 0 and
Δp(x, y) < Opt+ α

√
Opt

return [r =
∑

i xi

N , r =
∑

i xi

N ]

about it is its boundaries in terms of deduplication
ratio. The second and third linear programs find out
of this set of plausible DFHs the ones with the best
and worst deduplication ratios .

The problem is that we do not know how to
cleanly compute the expectancy and standard de-
viation of Δp, so we use the first linear program
to give us a single value within the plausible range.
We use this result to estimate the expectancy and
standard deviation and give bounds on the range of
plausible DFHs.

Setting the slackness parameter.. The main tool
that we have in order to fine tune the plausible so-
lutions set is the slackness parameter α. A small
α will result in a tighter estimation range, yet risks
having the actual ratio fall outside of the range. Our
choice of slackness parameter is heuristic and tai-
lored to the desired level of confidence. The choices
of this parameter throughout the paper are made by
thorough testing across all of our datasets and the
various sample sizes. Our evaluations show that
a slackness of α = 0.5 is sufficient and one can
choose a slightly larger number for playing it safe.
A possible approach is to use two different levels of
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slackness and present a “likely range” along with a
“safe range”.

In Figure 3 we see an evaluation of the range
method. We see that our upper and lower bounds
give an excellent estimation of the range of possible
results that the plain Unseen algorithm would have
produced on random samples of the given fraction.

Figure 3: This figure depicts the same test as in Fig-
ure 2, but adds the range algorithm results. This gives
a much clearer view – For example, one can deduce that
the deduplication ratio is better than 50% already at a
5% sample and that the range has converged significantly
at this point, and is very tight already at 10%.

An interesting note is that unlike many statistical
estimation in which the actual result has a high like-
lihood to be at the center of the range, in our case
all values in the range can be equally likely.

Evaluating methods via average range tightness.
The range approach is also handy in comparing the
success of various techniques. We can evaluate the
average range size of two different methods and
choose the one that gives tighter average range size
using same sample percentage. For example we
compare running the algorithm when the sampling
is with repetitions (this was the approach taken in
[18]) versus taking the sample without repetitions.
As mentioned in Section 2.2, this entails a differ-
ent computation of the matrix Ap. Not surprisingly,
taking samples without repetitions is more success-
ful, as seen in Figure 4. This is intuitive since rep-
etitions reduce the amount of information collected
in a sample. Note that sampling without repetition
is conceptually simpler since it can be done in a to-
tally stateless manner (see Section 3.4). Since the
results in Figure 4 were consistent with other work-
loads, we focus our attention from here on solely on
the no repetition paradigm.

3.2 Running with Low Memory
Running the estimation with a 15% sample requires
the creation of a DFH for the entire sample, which
in turn requires keeping tab on the duplication fre-
quencies of all distinct elements in the sample.

Figure 4: An average range size comparison of sampling
with repetitions vs. without repetitions. For each sam-
pling percentage the averages are computed over 100
samples. Other than the 1% sample which is bad to begin
with, the no repetition sampling is consistently better.

Much like the case of full scans, this quickly be-
comes an obstacle in actually deploying the algo-
rithm. For example, in our largest test data set,
that would mean keeping tab on approximately 200
Million distinct chunks, which under very strict as-
sumptions would require on the order of 10GBs of
RAM, unless one is willing to settle for slow disk
IOs instead of RAM operations. Moreover, in a
distributed setting it would require moving GBs of
data between nodes. Such high resource consump-
tion may be feasible in a dedicated system, but not
for actually determining deduplication ratios in the
field, possibly at a customer’s site and on the cus-
tomers own servers.

We present two approaches in order to handle
this issue, both allowing the algorithm to run with
as little as 10MBs of RAM. The first achieves rel-
atively tight estimations (comparable to the high
memory algorithms). The second produces some-
what looser estimations but is more flexible to us-
age in distributed or dynamic settings.

The base sample approach. This approach fol-
lows the low-memory technique of [12] and uses
it to estimate the DFH using low memory. In this
method we add an additional base step so the pro-
cess is as follows:

1. Base sample: Sample C chunks from the data
set (C is a “constant” – a relatively small num-
ber, independent of the database size). Note
that we allow the same hash value to appear
more than once in the base sample.

2. Sample and maintain low-memory chunk
histogram: Sample a p fraction of the chunks
and iterate over all the chunks in the sample.
Record a histogram (duplication counts) for all
the chunks in the base sample (and ignore the
rest). Denote by cj the duplication count of the
jth chunk in the base sample (j ∈ {1, ..., C}).
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3. Extrapolate DFH: Generate an estimated
DFH for the sample as follows:

∀i, yi = |{j|cj = i}|
i

pN

C
.

In words, use the number of chunks in the base
sample that had count i, extrapolated to the en-
tire sample.

The crux is that the low-memory chunk his-
togram can produce a good approximation to the
DFH. This is because the base sample was repre-
sentative of the distribution of chunks in the en-
tire dataset. In our tests we used a base sample
of size C = 50, 000 which amounts to less than
10MBs of memory consumption. The method does,
however, add another estimation step to the process
and this adds noise to the overall result. To cope
with it we need to increase the slackness parameter
in the Range Unseen algorithm (from α = 0.5 to
α = 2.5). As a result, the estimation range suffers
a slight increase, but the overall performance is still
very good as seen in Figure 5.

Figure 5: The graph depicts the average upper and lower
bounds that are given by the algorithm when using the
base sample method. Each point is the average over 100
different samples, and the error bars depict the maximum
and minimum values over the 100 tests.

The only shortcoming of this approach is that the
dataset to be studied needs to be set in advance,
otherwise the base sample will not cover all of it.
In terms of distribution and parallel execution, the
base sample stage needs to be finished and finalized
before running the actual sampling phase which is
the predominant part of the work (this main phase
can then be easily parallelized). To overcome this
we present a second approach, that is more dynamic
and amenable to parallelism yet less tight.

A streaming approach. This method uses tech-
niques from streaming algorithms geared towards
distinct elements evaluation with low memory. In
order to mesh with the Unseen method the basic
technique needs to be slightly modified and collect
frequency counts that were otherwise redundant.

The core principles, however, remain the same: A
small (constant size) sample of distinct chunks is
taken uniformly over the distinct chunks in the sam-
ple. Note that such a sampling disregards the popu-
larity of a specific hash value, and so the most pop-
ular chunks will likely not be part of the sample.
As a result, this method cannot estimate the sam-
ple DFH correctly but rather takes a different ap-
proach. Distinct chunk sampling can be done using
several techniques (e.g. [2, 8]). We use here the
technique of [2] where only the C chunks that have
the highest hash values (when ordered lexicograph-
ically) are considered in the sample. The algorithm
is then as follows:

1. Sample and maintain low-memory chunk
histogram: Sample a p fraction of the chunks
and iterate over all the chunks in the sample.
Maintain a histogram only of chunks that have
one of the C highest hash values:

• If the hash is in the top C, increase its
counter.

• If it is smaller than all the C currently in
the histogram then ignore it.

• Otherwise, add it to the histogram and
discard the lowest of the current C
hashes.

Denote by δ the fraction of the hash domain
that was covered by the C samples. Namely,
if the hashes are calibrated to be numbers in
the range [0, 1] then δ is the distance between
1 and the lowest hash in the top-C histogram.

2. Run Unseen: Generate a DFH solely of the
C top hashes and run the Range Unseen al-
gorithm. But rather than output ratios, output
a range estimation on the number of distinct
chunks. Denote this output range by [d, d].

3. Extrapolation to full sample: Output estima-
tion range [r = d

δ·N , r = d
δ·N ].

Unlike the base sample method, the streaming
approach does not attempt to estimate the DFH of
the p-sample. Instead, it uses an exact DFH of a
small δ fraction of the hash domain. The Unseen
algorithm then serves as a mean of estimating the
actual number of distinct hashes in this δ sized por-
tion of the hash domain. The result is then extrapo-
lated from the number of distinct chunks in a small
hash domain, to the number of hashes in the entire
domain. This relies on the fact that hashes should
be evenly distributed over the entire range, and a δ
fraction of the domain should hold approximately a
δ portion of the distinct hashes.

The problem here is that the Unseen algorithm
runs on a substantially smaller fraction of the data
than originally. Recall that it was shown in [18]
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that accuracy is achieved at a sample fraction of
O( 1

logN ) and therefore we expect the accuracy to
be better when N is larger. Indeed, when limit-
ing the input of Unseen to such a small domain (in
some of our tests the domain is reduced by a factor
of more than 20, 000) then the tightness of the es-
timation suffers. Figure 6 shows an example of the
estimation achieved with this method.

Figure 6: The graph depicts the average upper and lower
bounds that are given by the algorithm with the streaming
model as a function of sample percentage. Each point
is the average over 100 different samples, and the error
bars depict the maximum and minimum values over the
100 tests.

In Figure 7 we compare the tightness of the
estimation achieved by the two low-memory ap-
proaches. Both methods give looser results than
the full fledged method, but the base sampling tech-
nique is significantly tighter.

Figure 7: An average range size comparison of the two
low-memory methods (and compared to the full memory
algorithm). We see that the base method achieves tighter
estimation ranges, especially for the higher and more
meaningful percentages.

On the flip side, the streaming approach is much
simpler to use in parallel environments where each
node can run his sample independently and at the
end all results are merged and a single Unseen exe-
cution is run. Another benefit is that one can run an
estimation on a certain set of volumes and store the
low-memory histogram. Then, at a later stage, new

volumes can be scanned and merged with the exist-
ing results to get an updated estimation. Although
the streaming approach requires a larger sample in
order to reach the same level of accuracy, there are
scenarios where the base sample method cannot be
used and this method can serve as a good fallback
option.

3.3 Estimating Combined Compres-
sion and Deduplication

Deduplication, more often than not, is used in con-
junction with compression. The typical usage is to
first apply deduplication and then store the actual
chunks in compressed fashion. Thus the challenge
of sizing a system must take into account compres-
sion as well as deduplication. The obvious solution
to estimating the combination of the two techniques
is by estimating each one separately and then look-
ing at their multiplied effect. While this practice has
its merits (e.g. see [6]), it is often imprecise. The
reason is that in some workloads there is a correla-
tion between the duplication level of a chunk and
its average compression ratio (e.g. see Figure 8).

We next describe a method of integrating com-
pression into the Unseen algorithm that results in
accurate estimations of this combination.

The basic principle is to replace the DFH by a
compression weighted DFH. Rather than having
xi hold the number of chunks that appeared i times,
we define it as the size (in chunks) that it takes to
store the chunks with reference count i. Or in other
words, multiply each count in the regular DFH by
the average compression ratio of chunks with the
specific duplication count.

The problem is that this is no longer a legal DFH
and in particular it no longer holds that

∑
i

xi · i = N.

Instead, it holds that
∑
i

xi · i = CR ·N

where CR is the average compression ratio over the
entire dataset (plain compression without dedupli-
cation). Luckily, the average compression ratio can
be estimated extremely well with a small random
sample of the data.

The high level algorithm is then as follows:

1. Compute a DFH {y1, y2, ...} on the observed
sample, but also compute {CR1,CR2, ...}
where CRi is the average compression ratio for
all chunks that had reference count i. Denote
by z = {y1 · CR1, y2 · CR2, ...} the compres-
sion weighted DFH of the sample.
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2. Compute CR, the average compression ratio
on the dataset. This can be done using a very
small random sample (which can be part of the
already sampled data).

3. Run the Unseen method where the optimiza-
tion is for Δp(x, z) (rather than Δ(x, y)p) and
under the constraint that

∑
i xi · i = CR ·N .

Figure 8 shows the success of this method on the
same dataset and contrasts it to the naive approach
of looking at deduplication and compression inde-
pendently.

Figure 8: The graph depicts the average upper and lower
bounds that are given by the algorithm with compression.
Each point is based on 100 different samples. The naive
ratio is derived by multiplying independent compression
and deduplication ratios.

Note that estimating CR can also be done ef-
ficiently and effectively under our two models of
low-memory execution: In the base sample method,
taking the average compression ratio on the base
chunks only is sufficient. So compression needs to
be computed only in the initial small base sample
phase. In the streaming case, things are a bit more
complicated, but in a nutshell, the average CR for
the chunks in the fraction of hashes at hand is esti-
mated as the weighted average of the compression
ratios of the chunks in the top C hashes, were the
weight is their reference counts (a chunk that ap-
peared twice is given double the weight).

3.4 How to Sample in the Real World

Thus far we have avoided the question of how to ac-
tually sample chunks from the dataset, yet our sam-
pling has a long list of requirements:

• Sample uniformly at random over the entire
(possibly distributed) dataset.

• Sample without repetitions.
• Use low memory for the actual sampling.
• We want the option to do a gradual sample,

e.g., first sample a small percent, evaluate it,
and then add more samples if needed (without
repeating old samples).

• Above all, we need this to be substantially
faster than running a full scan (otherwise there
is no gain). Recall that the scan time domi-
nates the running time (the time to solve the
linear programs is negligible).

The last requirement is the trickiest of them all, es-
pecially if the storage medium is based on rotating
disks (HDDs). If the data lies on a storage system
that supports fast short random reads (flash or solid
state drive based systems), then sampling is much
faster than a full sequential scan. The problem is
that in HDDs there is a massive drop-off from the
performance of sequential reads to that of small ran-
dom reads.

There are some ways to mitigate this drop off:
sorting the reads in ascending order is helpful, but
mainly reading at larger chunks than 4KB, where
1MB seems the tipping point. In Figure 9 we see
measurements on the time it takes to sample a frac-
tion of the data vs. the time a full scan would take.
While it is very hard to gain anything by sampling
at 4KB chunks, there are significant time savings
in sampling at 1MBs, and for instance, sampling a
15% fraction of the data is 3X faster than a full scan
(this is assuming sorted 1MB reads).

Figure 9: The graph depicts the time it takes to sample
different percentages at different chunk sizes with respect
to a full scan. We see that sampling at 4K is extremely
slow, and while 64K is better, one has to climb up to 1MB
to get decent savings. Going higher than 1MB shows lit-
tle improvement. The tests where run on an Intel Xeon
E5440 @ 2.83GHz CPU with a 300GB Hitachi GST Ul-
trastar 15K rpm HDD.

Accuracy with 1MB reads? The main question is
then: does our methodology work with 1MB reads?
Clearly, estimating deduplication at a 1MB granu-
larity is not a viable solution since deduplication ra-
tios can change drastically with the chunk size. In-
stead we read super-chunks of 1MB and break them
into 4KB chunks and use these correlated chunks
for our sample. The main concern here is that
the fact that samples are not independent will form
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Name Description Size Deduplication
Ratio

Deduplication +
Compression

VM Repository A large repository of VMs used by a development unit. This
is a VMWare environment with a mixture of Linux and Win-
dows VMs.

8TB 0.3788 0.2134

Linux Hypervisor Backend store for Linux VMs of a KVM Hypervisor. The
VMs belong to a research unit.

370 GB 0.4499 0.08292

Windows Hypervi-
sor

Backend store for Windows VMs of a KVM Hypervisor. The
VMs belong to a research unit.

750 GB 0.7761 0.4167

VDI A VDI benchmark environment containing 50 Windows VMs
generated by VMWare’s ViewPlanner tool

770 GB 0.029 0.0087

DB An Oracle Data Base containing data from a TPCC bench-
mark

1.2TB 0.37884 0.21341

Cloud Store A research unit’s private cloud storage. Includes both user
data and VM images.

3.3TB 0.26171 –

Table 1: Data generation approaches for several widely adopted benchmarks in various storage domains.

high correlations between the reference counts of
the various chunks in the sample. For example, in
many deduplication friendly environments, the rep-
etitions are quite long, and a repetition of a single
chunk often entails a repetition of the entire super-
chunk (and vice-versa, a non repetition of a single
chunk could mean high probability of no repetitions
in the super-chunk).

The good news is that due to linearity of expecta-
tions, the expected DFH should not change by sam-
pling at a large super-chunk. On the other hand the
variance can grow significantly. As before, we con-
trol this by increasing the slackness parameter α to
allow a larger scope of plausible solutions to be ex-
amined. In our tests we raise the slackness from
α = 0.5 to α = 2.0 and if combined with the base
sample it is raised to α = 3.5. Our tests show
that this is sufficient to handle the increased vari-
ance, even in workloads where we know that there
are extremely high correlations in the repetitions.
Figure 10 shows the algorithm result when read-
ing with 1MB super-chunks and with the increased
slackness.

Figure 10: The graph depicts the average upper and
lower bounds that are given by the algorithm when read-
ing at 1MB super-chunks. Each point is based on 100
different samples.

How to sample? We next present our sampling
strategy that fulfills all of the requirements listed
above with the additional requirement to generate
sorted reads of a configurable chunk size. The pro-

cess iterates over all chunk IDs in the system and
computes a fast hash function on the chunk ID (the
ID has to be a unique identifier, e.g. volume name
and chunk offset). The hash can be a very efficient
function like CRC (we use a simple linear function
modulo a large number). This hash value is then
used to determine if the chunk is in the current sam-
ple or not. The simple algorithm is outlined in Al-
gorithm 3.

Algorithm 3: Simple Sample
Input: Fraction bounds p0, p1, Total chunks M
Output: Sample S(p1−p0)

for j ∈ [M ] do
q ←− FastHash(j)
/* FastHash outputs a number in [0, 1) */
if p0 ≤ q < p1 then

Add jth chunk to sample

This simple technique fulfills all of the require-
ments that we listed above. It can be easily par-
allelized and in fact there is no limitation on the
enumeration order. However, within each disk, if
one iterates in ascending order then the reads will
come out sorted, as required. It is nearly stateless,
one only need to remember the current index j and
the input parameters. In order to run a gradual sam-
ple, for example, a first sample of 1% and then add
another 5% – run it first with p0 = 0, p1 = 0.01
and then again with p0 = 0.01, p1 = 0.06. The
fast hash is only required to be sufficiently random
(any pairwise independent hash would suffice [3])
and there is no need for a heavy full-fledged cryp-
tographic hash like SHA1. As a result, the main
loop can be extremely fast, and our tests show that
the overhead of the iteration and hash is negligible
(less than 0.5% of the time that it takes to sample a
1% fraction of the dataset). Note that the result is a
sample of fraction approximately (p1 − p0) which
is sufficient for all practical means.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 287

4 Evaluation

4.1 Implementation and Test Data
We implemented the core techniques in Matlab and
evaluated the implementation on data from a variety
of real life datasets that are customary to enterprise
storage systems. The different datasets are listed in
Table 1 along with their data reduction ratios. It was
paramount to tests datasets from a variety of dedu-
plication and compression ratios in order to vali-
date that our techniques are accurate for all ranges.
Note that in our datasets we remove all zero chunks
since identifying the fraction of zero chunks is an
easy task and the main challenge is estimating the
deduplication ratio on the rest of the data.

For each of the datasets we generated between
30-100 independent random samples for each sam-
ple percentage and for each of the relevant sampling
strategy being deployed (e.g., with or without repe-
titions/ at 1MB super-chunks). These samples serve
as the base for verifying our methods and fine tun-
ing the slackness parameter.

4.2 Results
Range sizes as function of dataset. The most
glaring phenomena that we observe while testing
the technique over multiple datasets is the big dis-
crepancy in the size of the estimation ranges for
different datasets. The most defining factor was
the data reduction ratio at hand. It turns out that
deduplication ratios that are close to 1

2 are in gen-
eral harder to approximate accurately and require a
larger sample fraction in order to get a tight estima-
tion. Highly dedupable data and data with no du-
plication, on the other hand tend to converge very
quickly and using our method, one can get a very
good read within the first 1-2% of sampled data.
Figure 12 shows this phenomena clearly.

Note that the addition of compression ratios in
the mix has a different effect and it basically re-
duces the range by a roughly a constant factor that
is tied to the compression benefits. For example, for
the Windows Hypervisor data the combine dedupli-
cation and compression ratio is 0.41, an area where
the estimation is hardest. But the convergence seen
by the algorithm is significantly better – it is sim-
ilar to what is seen for deduplication (0.77 ratio)
with a roughly constant reduction factor. See ex-
ample in Figure 13. According to the other dataset
we observe that this reduction factor is more signif-
icant when the compression ratio is better (as seen
in other datasets).

The accumulated effect on estimation tightness.
In this work we present two main techniques that
are critical enablers for the technology but reduce

Figure 12: The graph depicts the effect that the dedupli-
cation ratio has on the tightness of our estimation method
(based on the 6 different datasets and their various dedu-
plication ratios). Each line stands for a specific sample
percent and charts the average range size as a function
of the deduplication ratio. We see that while the bottom
lines of 10% and more are good across all deduplication
ratios, the top lines of 1-5% are more like a “Boa di-
gesting an Elephant” – behave very well at the edges but
balloon in the middle.

Figure 13: A comparison of the estimation range sizes
achieved on the Windows Hypervisor data. We see a con-
stant and significantly tighter estimation when compres-
sion is involved. This phenomena holds for all datasets.

the tightness of the initial estimation. The accu-
mulated effect on the tightness of estimation by us-
ing the combination of these techniques is shown in
Figure 14. It is interesting to note that combining
the two techniques has a smaller negative effect on
the tightness than the sum of their separate effects.

Putting it all together. Throughout the paper we
evaluated the effect of each of our innovations sepa-
rately and sometimes understanding joint effects. In
this section we aim to put all of our techniques to-
gether and show a functional result. The final con-
struction runs the Range Unseen algorithm, with
the Base Sample low-memory technique while sam-
pling at 1MB super-chunks. We test both estimating
deduplication only and estimation with compres-
sion. Each test consists of a single gradual execu-
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Figure 11: Execution of the full real life setting algorithm on the various datasets. This is a gradual run of the low-
memory, 1MB read algorithm, with and without compression. Note that some of the tests reach very tight results with a
3% sample and can thus achieve a much improved running time.

Figure 14: A comparison of the estimation range sizes
achieved with various work methods: The basic method,
the method with sampling at 1MB, using the base sam-
ple low-memory technique and the combination of both
the base sample and 1MB sampling. There is a steady
decline in tightness when moving from one to the next.
This is shown on two different datasets with very differ-
ent deduplication ratios.

tion starting from 1% all the way through 20% at
small intervals of 1%. The results are depicted in
Figure 11.

There are two main conclusions from the results
in Figure 11. One is that the method actually works
and produces accurate and useful results. The sec-
ond is the great variance between the different runs
and the fact that some runs can end well short of
a 5% sample. As mentioned in the previous para-
graph, this is mostly related to the deduplication
and compression ratios involved. But the bottom
line is that we can calibrate this into the expected
time it takes to run the estimation. In the worst
case, one would have to run read at least 15% of
the data, which leads to a time improvement of ap-
proximately 3X in HDD systems (see Section 3.4).
On the other hand, we have tests that can end with a
sample of 2-3% and yield a time saving of 15-20X
over a full scan. The time improvement can be even
more significant in cases where the data resides on
SSDs and if the hash computation is a bottle neck
in the system.

5 Concluding remarks

Our work introduced new advanced algorithms into
the world of deduplication estimation. The main
challenges were to make these techniques actually
applicable and worthwhile in a real world scenario.
We believe we have succeeded in proving the value
of this approach, which can be used to replace full
scans used today.
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Abstract

Flash storage is commonplace on mobile devices,
sensors, and cloud servers. I/O deduplication is ben-
eficial for saving the storage space and reducing ex-
pensive Flash writes. This paper presents a new ap-
proach, called OrderMergeDedup, that deduplicates stor-
age writes while realizing failure-consistency, efficiency,
and persistence at the same time. We devise a soft
updates-style metadata write ordering that maintains
storage data consistency without consistency-induced
additional I/O. We further explore opportunities of I/O
delay and merging to reduce the metadata I/O writes. We
evaluate our Linux device mapper-based implementation
using several mobile and server workloads—package in-
stallation and update, BBench web browsing, vehicle
counting, Hadoop, and Yahoo Cloud Serving Bench-
mark. Results show that OrderMergeDedup can realize
18–63% write reduction on workloads that exhibit 23–
73% write content duplication. It has significantly less
metadata write overhead than alternative I/O shadowing-
based deduplication. Our approach has a slight impact on
the application latency and may even improve the perfor-
mance due to reduced I/O load.

1 Introduction

I/O deduplication [4, 7, 17, 20, 21, 23] has been widely
employed to save storage space and I/O load. I/O dedu-
plication is beneficial for storage servers in data centers,
as well as for personal devices and field-deployed sens-
ing systems. Flash writes on smartphones and tablets
may occur during package installation or through the
frequent use of SQLite transactions [11, 19]. In cyber-
physical systems, high volumes of data may be captured
by field-deployed cameras and stored / processed for ap-
plications like intelligent transportation [22].

A deduplication system maintains metadata such as
logical to physical block mapping, physical block ref-
erence counters, block fingerprints, etc. Such metadata
and data structures must remain consistent on storage af-
ter system failures. It is further essential to persist writes
in a prompt manner to satisfy the storage durability se-
mantics. On Flash storage, I/O deduplication must also
minimize the expensive Flash writes resulted from meta-
data management. This paper presents a new I/O dedu-

plication mechanism that meets these goals.
Specifically, we order the deduplication metadata and

data writes carefully so that any fail-stop failure produces
no other data inconsistency (on durable storage) than un-
collected garbage. This approach is, in concept, simi-
lar to soft updates-based file system design [6]. It is ef-
ficient by not requiring additional I/O traffic for main-
taining consistency (in contrast to logging / journaling or
shadowing-based I/O atomicity). While the original file
system soft updates suffer from dependency cycles and
rollbacks [18], the relatively simple structure of dedupli-
cated storage allows us to recognize and remove all pos-
sible dependency cycles with no impact on performance.

The metadata I/O overhead can be further reduced
by merging multiple logical writes that share common
deduplication metadata blocks. In particular, we some-
times delay I/O operations in anticipation for metadata
I/O merging opportunities in the near future. Anticipa-
tory I/O delay and merging may prolong responses to the
user if the delayed I/O is waited on due to the data persis-
tence semantics. We show that the performance impact
is slight when the delay is limited to a short duration. It
may even improve the application latency due to reduced
I/O load. With failure-consistent I/O ordering and an-
ticipatory merging, we name our deduplication approach
OrderMergeDedup.

We have implemented our OrderMergeDedup ap-
proach in Linux 3.14.29 kernel as a custom device map-
per target. Our prototype system runs on an Intel Atom-
based tablet computer and an Intel Xeon server machine.
We have experimentally evaluated our system using a
range of mobile and server workloads.

Data consistency over failures was not ignored in prior
deduplication systems. iDedup [20] relied on a non-
volatile RAM to stage writes (in a log-structured fashion)
that can survive system failures. Other systems [4,7] uti-
lized supercapacitors or batteries to allow continued data
maintenance after power failures. Our deduplication ap-
proach does not assume the availability of such hardware
aids. Venti [17] provided consistency checking and re-
pair tools that can recover from failures at a significant
cost in time. dedupv1 [13] maintained a redo log to re-
cover from failures but redo logging incurs the cost of
additional writes (even at the absence of failures). Most
recently, Dmdedup [21] supported data consistency after
failures through I/O shadowing, which incurs the cost of

1
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additional index block writes. It achieved efficiency by
delaying and batch-flushing a large number of metadata
updates but such delayed batching is hindered by syn-
chronous writes in some applications and databases.

2 Design of OrderMergeDedup

I/O deduplication eliminates duplicate writes in the
I/O stream. We capture all write I/O blocks at the de-
vice layer for deduplication. With a fixed-sized chunking
approach, each 4 KB incoming data block is intercepted
and a hashed fingerprint is computed from its content.
This fingerprint is looked up against the fingerprints of
existing storage blocks to identify duplicates.

A deduplication system maintains additional metadata
information. Specifically, a logical-to-physical block
mapping directs a logical block access (with its logical
address) to its physical content on storage. For each
physical block, the associated reference counter records
the number of logical blocks mapped to it, and the finger-
print is computed to facilitate the block content match-
ing. A write request received by a deduplication sys-
tem can result in a series of physical writes to both the
block data and metadata. For deduplication metadata
management, it is challenging to realize (1) failure con-
sistency—data / metadata writes must be carefully per-
formed to enable fast, consistent recovery after failures;
(2) efficiency—the additional I/O cost incurred by meta-
data writes should not significantly diminish deduplica-
tion I/O saving; (3) persistence—the deduplication layer
should not prematurely return an I/O write in violation of
persistence semantics.

2.1 I/O Ordering for Failure-Consistency

File and storage systems [6, 9] have recognized the
importance of atomic I/O to support consistent failure-
recovery. Existing techniques include journaling, shad-
owing [1, 9], and soft updates [6]. In journaling, an
atomic I/O operation is recorded in a redo log before
writing to the file system. A failure after a partial write
can be recovered at system restart by running the redo
log. In shadowing, writes to existing files are handled in a
copy-on-write fashion to temporary shadow blocks. The
final commit is realized through one atomic I/O write to a
file index block that points to updated shadow data/index
blocks. Index blocks (potentially at multiple hierarchy
levels) must be re-written to create a complete shadow.
Both journaling and shadowing require additional write
I/O to achieve failure consistency of durable data.

The soft updates approach [6] carefully orders writes
in file system operations such that any mid-operation
failure always leaves the file system structure in a consis-
tent state (except for possible space leaking on temporar-

ily written blocks). While it requires no I/O overhead
during normal operations, rollbacks may be necessary
to resolve cyclic dependencies in the block commit or-
der. Seltzer et al. [18] showed that such rollbacks some-
times led to poor soft updates performance on the UNIX
Fast File System. Due to relatively simple semantics of
a deduplicated storage (compared to a file system), we
show that a careful design of all deduplication I/O paths
can efficiently resolve possible dependency cycles. We
next present our soft updates-style deduplication design.

A unique aspect of our design is that our physical
block reference counter counts logical block references
as well as a reference from the physical block’s finger-
print. Consequently the reclamation of block fingerprint
does not have to occur together with the removal of the
last logic block referencing the physical block. Separat-
ing them into two failure-consistent transactions makes
each less complex and reduces the probability of cycli-
cally dependent write ordering. It also allows fingerprint
reclamation to be delayed—e.g., performed offline peri-
odically. Lazy fingerprint reclamation may improve per-
formance since the same data rewritten after a period of
non-existence may still be deduplicated. Such scenario
has been shown to happen in certain workloads [16].

Specifically, we maintain the following ordering be-
tween I/O operations during deduplication.

1. The physical data block should always be persisted
before being linked with the logical address or the
computed fingerprint. A failure recovery may leave
some data block inaccessible, but will never lead to
any logical address or fingerprint that points to in-
correct content.

2. For reference counters, we guarantee that when a
sudden failure occurs, the only possibly resulted in-
consistency is higher-than-actual reference counters
for some physical blocks. A higher-than-actual ref-
erence counter may produce garbage (that can be re-
claimed asynchronously) while a lower-than-actual
reference counter could lead to the serious dam-
age of premature block deletion. To achieve this
goal, a new linkage that points to a physical block
from some logical address or fingerprint must be
preceded by the increment of the physical block’s
reference counter, and the corresponding unlinking
operations must precede the decrement of the phys-
ical block’s reference counter.

3. Meanwhile, the update of the logical-to-physical
block mapping and fingerprints can be processed in
parallel since there is no failure-consistent depen-
dency between them.

Figure 1 illustrates our complete soft updates-style write
ordering in different write conditions.
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Figure 1: Failure-consistent deduplication write order-
ing at different write conditions (new write / overwrite,
duplicate identified or not, etc.). Solid arrows indicate
ordering of writes. The dashed arrow in each case shows
when a completion signal is sent to client. Note that a
new physical block’ reference counter begins at two—
one reference from the first logical block and the other
from the fingerprint.

A block metadata entry is much smaller than the block
itself (e.g., we use the 64-bit address for physical block
indexing and the 8-bit reference counter 1). The I/O cost
can be reduced when multiple metadata writes that fall
into the same metadata block are merged into one I/O op-
eration. Merging opportunities arise for metadata writes
as long as they are not subject to any ordering constraint.

While the metadata write merging presents apparent
benefit for I/O reduction, the merging may create addi-
tional write ordering constraints and lead to cyclic de-
pendencies or deadlocks. For example, for cases 3 and
4 in Figure 1, if the reference counters for new block
Pdup /Pnew and old block Pold are on the same meta-
data block, then the merging of their reference counter
updates would cause a deadlock. No metadata write
merging is allowed for such situation.

Cyclic dependencies prevent metadata write merging
for cost saving and also complicate the implementation.
We resolve this issue by delaying the non-critical meta-
data updates involved in the cyclic dependencies. A non-
critical update is the write operation that the client com-
pletion signal does not depend on, particularly for the
same example above, the decrement of Pold’s reference
counter and the follow-up work in cases 3 and 4 of Fig-
ure 1. A delay of those operations until their associated
dependencies are cleared simply eliminates the cyclic de-

1A reference counter overflow will lead to the allocation of another
new physical block to hold the same block content. Later writes with
such content will be mapped to the new block.

pendencies. Since the delayed action is not on the critical
path of I/O completion, client I/O response will not be af-
fected. Fortunately, under our soft updates-style dedupli-
cation metadata management, all the potential deadlocks
can be resolved in this way.

2.2 Metadata I/O Merging for Efficiency

As mentioned, substantial I/O cost reduction may re-
sult from the merging of multiple metadata writes that
fall into the same metadata block. We may enhance the
opportunities of metadata I/O merging by delaying meta-
data update I/O operations so their chances of merging
with future metadata writes increase. We explore several
opportunities of such I/O delay.

Weak persistence Our deduplication system supports
two persistence models with varying performance trade-
offs. Specifically, a strong persistence model faith-
fully preserves the persistence support of the underlying
device—an I/O operation is returned by the deduplica-
tion layer only after all corresponding physical I/O oper-
ations are returned from the device. On the other hand, a
weak persistence model performs writes asynchronously
under which a write is returned early while the corre-
sponding physical I/O operations can be delayed to the
next flush or Force Unit Access (FUA)-flagged request.

Under weak persistence, I/O operations can be de-
layed aggressively to present metadata I/O merging op-
portunities. Such delays, however, may be hindered by
synchronous writes in some applications and databases.

Non-critical I/O delay and merging The example in
Section 2.1 shows the removal of cyclic dependencies
through the delay of some non-critical metadata updates.
In fact, those updates can be free if the delay lasts long
enough to merge with future metadata writes that reside
on the same metadata block. Moreover, this applies to all
the non-critical metadata writes. Specifically, besides the
example mentioned in Section 2.1, we also aggressively
delay the operations of fingerprint insertion for P /Pnew
in cases 2 and 4 of Figure 1. A sudden system failure
may leave some of the reference counters to be higher
than actual values, resulting in unreclaimed garbage, or
lose some fingerprints for the physical block deduplica-
tion chances, but no other serious inconsistency occurs.

Anticipatory I/O delay and merging Two metadata
writes to the same physical block will generally re-
sult in separate device commits if the interval between
their executions is longer than the typical cycle upon
which a deduplication system writes to the physical de-
vice. If such interval is small, it may be beneficial
to impose a short idle time to the physical device (by

3
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stop issuing writes to it) to generate more opportuni-
ties of metadata write merging. This is reminiscent of
the I/O anticipation scheduling which was proposed as
a performance-enhancing seek-reduction technique for
mechanical disks [10]. In our case, we temporarily idle
the physical device in anticipation of soon-arriving desir-
able requests for metadata update merging with the exist-
ing one.

Anticipatory I/O delay and merging may gain high
benefits under a high density of write requests because a
short anticipatory device idle period would produce high
degree of merging. On the other hand, a light load af-
fords little merging opportunity so that anticipatory de-
vice idling only prolongs the I/O response latency. To
maximize the benefit of anticipatory I/O delay and merg-
ing, we apply a simple heuristic hint as the guidance—
the frequency of incoming write requests received by the
deduplication system. Intuitively, if the idling period can
cover more than one incoming write request, a metadata
write merging is likely to happen. We only enable the
anticipatory I/O delay and merging under this situation.

3 Implementation

We have implemented our deduplication mechanism at
the generic operating system block device layer to enable
transparent full-device deduplication for software appli-
cations. Specifically, our mechanism is implemented in
Linux 3.14.29 kernel as a custom device mapper target.
Our implementation follows the basic block read / write
interfaces for deduplication checks in the open-source
Dmdedup [21] framework.

Duplicates of 4 KB I/O blocks are identified through
their hashed fingerprints. We use the widely adopted
SHA-1 cryptographic hash algorithm to produce 160-bit
(20-byte) block fingerprints. The SHA-1 hashes are col-
lision resistant [14] and we deem two blocks as dupli-
cates if they have matching fingerprints without perform-
ing a full block comparison. This is a widely-accepted
practice in data deduplication [4, 15, 17, 23] since the
chance of hash collision between two different blocks is
negligible—less than the error rate of memory and net-
work transfer. A hash table is maintained to organize fin-
gerprints in memory. We partition the fingerprint value
space into N segments according to the total number of
physical data blocks, and for each fingerprint f , map it
to the corresponding segment (f mod N ).

For simplicity, we organize metadata blocks on stor-
age as linear tables. A possible future enhancement is
to use a radix-tree structure. The radix tree hierarchical
writes could be incorporated into our failure-consistent
write ordering without introducing cyclic dependencies.

File systems maintain redundant durable copies of
critical information such as the superblock for reliability.

For Ext4 file systems, multiple copies of the superblock
and block group descriptors are kept across the file sys-
tem while the main copy resides at the first a few blocks.
Deduplicating these blocks could harm such reliability-
oriented redundancy measure. We adopt a simple ap-
proach to prevent the deduplication of the main copy
of the critical file system information (with recognizable
block addresses). Specifically, we do not keep their fin-
gerprints in the cache for deduplication; we do not at-
tempt to deduplicate a write to such a block either. A
possible future enhancement is to assist such decisions
based on hints directly passed from the file system [12].

In our implementation, we delay the non-critical meta-
data writes for 30 seconds after their failure-consistent
dependencies are cleared (during this period they may
be merged with other incoming metadata updates resid-
ing on the same metadata block). We choose the 1-
millisecond idling period for the anticipatory I/O delay
and merging which is at the same magnitude as the Flash
write latency of our experimental platforms. Our dedu-
plication system is configured with the weak persistence
model by default. For better balance between perfor-
mance and persistence, we periodically commit the de-
layed metadata writes (besides the synchronous flush or
FUA-flagged requests and non-critical metadata writes)
to the physical device every 1 second. This is the same
setup supported by other device mapper targets in Linux
(e.g., dm-cache). When data durability is critical, our
deduplication system also supports the strong persistence
model described in Section 2.2. Our evaluation will
cover both models.

4 Evaluation

We evaluate the effectiveness of our proposed dedu-
plication systems on mobile and server workloads. We
will compare I/O saving and impact on application per-
formance under several deduplication approaches. We
will also assess the deduplication-resulted storage space
saving and impact on mobile energy usage.

4.1 Evaluation Setup

Mobile system evaluation setup Our mobile exper-
iments run on an Asus Transformer Book T100 tablet.
It contains a 1.33 GHz quad-core Atom (x86) Z3740
processor and 2 GB memory. We deploy the Ubuntu
12.04 Linux distribution with 3.14.29 kernel. The tablet
has an internal 64 GB Flash storage with the following
random read / write latency (in mSecs)—

4KB 8KB 16KB 32KB 64KB 128KB
Read 0.27 0.32 0.40 0.63 0.89 1.45
Write 2.91 2.86 4.33 4.96 7.64 11.60

We use the following mobile application workloads—
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Advanced Packaging Tool (APT) is a software pack-
age installation and maintenance tool on Linux. We
study two common package management scenarios via
the apt-get command: 1) the global package index up-
date (sudo apt-get update) and 2) the installation
of Firefox (sudo apt-get install firefox). We
evaluate these workloads under a Ubuntu 12.04 chroot

environment to facilitate the capture of I/O through-
out the root directory. To minimize the noises such
as network latencies, we set up the complete Ubuntu
12.04 software repository and pre-download the neces-
sary packages outside the chroot jail. The package in-
dex update and installation workloads exhibit 23% and
30% write content duplication respectively.

BBench [8] is a smartphone benchmarking tool to as-
sess a web-browser’s performance. We run BBench un-
der Firefox 40.0.3 with its provided workloads which in-
clude some of the most popular and complex sites on
the web. The same setup of Ubuntu 12.04 chroot en-
vironment (as above) is used along with the BBench web
sites workloads located outside the jail. The workload
exhibits 73% write duplication.

A field sensor-based vehicle counting application that
monitors the number and frequency of passing vehicles
can help detect the traffic volume, congestion level, and
abnormal traffic patterns. Our application leverages the
Canny edge detector algorithm [3] from the OpenCV
computer vision library. It observes the moving vehi-
cles and records the frames at the time when those vehi-
cles enter the monitored zones. Nearby images in a data
stream are often substantially similar, and exhibit block-
level redundancy under JPEG/JFIF-style image formats
that split an image into multiple sub-regions and en-
code each separately. We use the pre-collected California
highway video streams (at 10 frames per second) from
the publicly accessible Caltrans live traffic data [2]. The
workload exhibits 27% write duplication.

Server system evaluation setup Our server experi-
ments run on a dual-socket machine where each socket
contains an Intel Xeon E5-2620 v3 “Haswell” processor.
We deploy the Fedora 20 Linux distribution with 3.14.29
kernel. We perform I/O on a Samsung 850 Pro SSD
(256GB) with the following I/O latency (in mSecs)—

4KB 8KB 16KB 32KB 64KB 128KB
Read 0.12 0.13 0.15 0.18 0.28 0.45
Write 4.70 4.96 5.45 6.13 7.18 7.35

We use the following server / cloud workloads—
Hadoop software library is a framework to use sim-

ple programming models for large data sets process-
ing across computers, each offering local computa-
tion and storage. We apply the regular expression
match of “dedup[a-z]*” via Hadoop to all files in the
Documentation directory of Linux 3.14.29 kernel re-

lease. The workload exhibits 55% write duplication on
Hadoop’s temporary files.

Yahoo Cloud Serving Benchmark (YCSB) [5] is a
benchmarking framework for could evaluation. It par-
ticularly focuses on the online read / write access-based
web serving systems. We perform the YCSB-0.5.0 client
under MongoDB-3.2 database. Server load is generated
based on the provided workloada of YCSB. We tune
the parameters of recordcount and operationcount

to 100 and 20,000 respectively, and set fieldlength to
8 KB. The workload exhibits 24% write duplication.

4.2 Evaluation on Deduplication Performance

We compare the total volume of Flash I/O writes (in-
cluding the original application write data and our dedu-
plication metadata, in the 4 KB unit) and application per-
formance (execution latency) between the following sys-
tem setups—1) the original system that does not sup-
port I/O deduplication; 2) I/O shadowing-based Dmd-
edup [21]; 3) our deduplication system with failure-
consistent I/O ordering; our further optimizations of 4)
non-critical I/O delay and merging and 5) anticipatory
I/O delay and merging. Traces are acquired at the stor-
age device layer to compare the write volumes sent to the
storage device under different system setups.

This section evaluates the deduplication performance
under a weak persistence model—device writes are per-
formed asynchronously in batches for high efficiency; a
write batch is issued at the arrival of a flush or FUA-
flagged request, or issued every second at the absence of
any flush or FUA-flagged request. We also adapt Dmd-
edup to follow this pattern. The performance of support-
ing strong persistence is reported in the next section.

Figure 2 (A) illustrates the results of normalized Flash
I/O write volumes under different system conditions.
The blue line in the figure indicates the ideal-case dedu-
plication ratio that can only be realized without any dedu-
plication metadata writes. We use the original execution
without deduplication as the basis. Dmdedup achieves
7–33% I/O savings for package update / installation, Ve-
hicle counting, Hadoop, and YCSB, but adds 7% I/O
writes for BBench. In comparison, our deduplication
system with failure-consistent I/O ordering reduces the
Flash writes by 17–59% for all the workload cases.
The optimization of non-critical I/O delay and merging
brings slight benefits (up to 2%) except for the BBench
case where 8% additional saving on Flash I/O writes
is reached. The optimization of anticipatory I/O de-
lay and merging further increases the I/O saving up to
another 6% for all the workloads. Overall, we save
18–63% Flash I/O writes compared to the original non-
deduplicated case. These results are very close to the
ideal-case deduplication ratios for these workloads.
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Figure 2: Flash I/O write volume and application performance of different I/O deduplication approaches. The perfor-
mance in each case is normalized to that under the original (non-deduplicated) execution.
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Figure 3: Flash I/O write volume and application performance when supporting strong I/O persistence. The perfor-
mance in each case is normalized to that under the original (non-deduplicated) execution.

We also evaluate the application performance impact
due to deduplication. Figure 2 (B) shows application
execution latencies under the same system setups as
above. We use the original execution without dedupli-
cation as the basis. While Dmdedup has small impact
(less than 5% of performance overhead) to the workloads
of BBench, Vehicle counting, Hadoop, and YCSB, it in-
creases the costs to 1.2× and 1.8× for package update
and installation respectively. In comparison, our dedu-
plication system, either with or without optimizations,
only imposes moderate overhead to the package installa-
tion case (around 11–15%). The impacts to other work-
loads’ performance are small (less than 5%) and in some
cases we actually achieve slight performance improve-
ment (around 1–6%).

4.3 Evaluation under Strong Persistence

We evaluate the performance of our deduplication sys-
tem between the similar system setups as Section 4.2,
but with the support of strong persistence model—an
I/O operation is returned by the deduplication layer only
after all corresponding physical I/O operations are re-
turned from the device. Dmdedup is configured accord-
ingly with the single-write transaction size—the corre-
sponding data / metadata updates are committed after ev-
ery write operation [21].

Figure 3 (A) illustrates the results of normalized Flash
I/O write volumes under different system conditions. We
use the original execution without deduplication as the
basis. Dmdedup adds large overhead for all the work-
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loads from 5× to 12×. In comparison, our deduplication
system with failure-consistent I/O ordering reduces the
Flash writes by 5–18% for package update / installation
and vehicle counting. Meanwhile, it adds 5% I/O vol-
umes for BBench while such overhead becomes large for
Hadoop and YCSB (around 41–71%). The optimization
of non-critical I/O delay and merging brings slight ben-
efits (up to 3%) except for the BBench case where 11%
additional saving on Flash I/O writes is reached. The op-
timization of anticipatory I/O delay and merging exhibits
significant benefit for all the workloads under the strong
persistence model. Specifically, enabling it brings up to
63% additional saving on Flash I/O writes. Overall, we
save 15–51% Flash I/O writes compared to the original
non-deduplicated case.

Figure 3 (B) shows application execution latencies un-
der the same system setups as above. We use the original
execution without deduplication as the basis. Dmdedup
adds large overhead for package update / installation and
YCSB from 4× to 24× while the performance impact is
small for other workloads (less than 4%). In compari-
son, our deduplication system, either with or without op-
timizations, only imposes large overhead to the package
installation case (around 37–42%). The impacts to other
workloads’ performance are small (less than 4%).

4.4 Evaluation on Storage Space Saving

We compare the space usage between the non-
deduplicated system and our deduplication system. Un-
der the non-deduplicated execution, we directly calcu-
late the occupied blocks during the workload running.
For our deduplication system, the space usage is ob-
tained by putting together the following items— 1) the
space for physical blocks written along with the cor-
responding physical block metadata (reference counters
and fingerprints); 2) the space for logical block meta-
data (logical-to-physical block mapping) for the occu-
pied logical blocks. The table below shows that the
workload executions exhibit strong deduplication space
saving—

Workload Space usage Saving
Original Dedup

Update 168.8 MB 131.5 MB 22%
Install 137.9 MB 98.9 MB 28%
BBench 11.0 MB 4.8 MB 56%
Vehicle 12.8 MB 9.4 MB 27%
Hadoop 80.0 MB 39.8 MB 50%
YCSB 800.6 MB 618.5 MB 23%

4.5 Evaluation on Mobile Energy Usage

We assess the energy impact of our deduplication
system on mobile platforms. The energy usage of a
workload is the product of its power consumption and

runtime. The runtime is normally the application la-
tency, except in the case of our vehicle counting work-
load where the application operates at a fixed frame-per-
second rate and therefore its runtime is not affected by
the frame processing latency. We compare the power us-
age, runtime difference, and energy usage between the
original (non-deduplicated) system and our deduplica-
tion system—

Workload Power (Watts) Runtime Energy
Orig. Dedup impact impact

Update 6.35 6.41 -3.6% -3%
Install 6.03 6.06 +10.5% +11%
BBench 6.10 6.15 +1.1% +2%
Vehicle 6.70 6.70 0.0% 0%

Results show that our deduplication mechanism adds
11% energy usage for package installation, mostly due
to the increase of runtime. The energy impact is no more
than 2% in the other three workloads. The energy usage
even decreases by 3% for package index update primarily
due to a reduction in runtime.

5 Conclusion

This paper presents a new I/O mechanism, called
OrderMergeDedup, that deduplicates writes to the pri-
mary Flash storage with failure-consistency and high ef-
ficiency. We devise a soft updates-style metadata write
ordering that maintains data / metadata consistency over
failures (without consistency-induced additional I/O) on
the storage. We further use anticipatory I/O delay and
merging to reduce the metadata I/O writes. We have
made a prototype implementation at the Linux device
mapper layer and experimented with a range of mobile
and server workloads.

Results show that OrderMergeDedup is highly
effective—realizing 18–63% write reduction on work-
loads that exhibit 23–73% write content duplication. We
also save up to 56% in space usage. The anticipatory
I/O delay optimization is particularly effective to in-
crease metadata merging opportunities when supporting
the strong I/O persistence model. OrderMergeDedup has
a slight impact on the application latency and mobile en-
ergy. It may even improve the application performance
due to reduced I/O load.
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Abstract
Flash caching has emerged as a promising solution to the

scalability problems of storage systems by using fast flash
memory devices as the cache for slower primary storage. But
its adoption faces serious obstacles due to the limited ca-
pacity and endurance of flash devices. This paper presents
CacheDedup, a solution that addresses these limitations using
in-line deduplication. First, it proposes a novel architecture
that integrates the caching of data and deduplication meta-
data (source addresses and fingerprints of the data) and effi-
ciently manages these two components. Second, it proposes
duplication-aware cache replacement algorithms (D-LRU, D-
ARC) to optimize both cache performance and endurance.
The paper presents a rigorous analysis of the algorithms to
prove that they do not waste valuable cache space and that
they are efficient in time and space usage. The paper also
includes an experimental evaluation using real-world traces,
which confirms that CacheDedup substantially improves I/O
performance (up to 20% reduction in miss ratio and 51% in
latency) and flash endurance (up to 89% reduction in writes
sent to the cache device) compared to traditional cache man-
agement. It also shows that the proposed architecture and al-
gorithms can be extended to support the combination of com-
pression and deduplication for flash caching and improve its
performance and endurance.

1 Introduction
Flash caching employs flash-memory-based storage as a
caching layer between the DRAM-based main memory and
HDD-based primary storage in a typical I/O stack of a stor-
age system to exploit the locality inherent in the I/Os at this
layer and improve the performance of applications. It has
received much attention in recent years [7, 5, 2, 23], which
can be attributed to two important reasons. First, as the level
of consolidation—in terms of both the number of workloads
consolidated to a single host and the number of hosts con-
solidated to a single storage system—continues to grow in
typical computing systems such as data centers and clouds,
the scalability of the storage system becomes a serious issue.
Second, the high performance of flash-memory-based storage
devices has made flash caching a promising option to address
this scalability issue: it can reduce the load on the primary
storage and improve workload performance by servicing I/Os
using cached data.

There are however several key limitations to effective
caching with flash memories. First, with the increasing data
intensity of modern workloads and the number of consoli-
dated workloads in the system, the demands on cache ca-
pacity have skyrocketed compared to the limited capacity of
commodity flash devices. Second, since flash memories wear
out with writes, the use of flash for caching aggravates the en-
durance issue, because both the writes inherent in the work-
load and the reads that miss the cache induce wear-out.

This paper presents CacheDedup, an in-line flash cache
deduplication solution to address the aforementioned obsta-
cles. First, deduplication reduces the cache footprint of work-
loads, thereby allowing the cache to better store their work-
ing sets and reduce capacity misses. Second, deduplication
reduces the number of necessary cache insertions caused by
compulsory misses and capacity misses, thereby reducing
flash memory wear-out and enhancing cache durability. Al-
though deduplication has been studied for a variety of stor-
age systems including flash-based primary storage, this paper
addresses the unique challenges in integrating deduplication
with caching in an efficient and holistic manner.

Efficient cache deduplication requires seamless integration
of caching and deduplication management. To address this
need, CacheDedup embodies a novel architecture that inte-
grates the caching of data and deduplication metadata—the
source addresses and fingerprints of the data, using a sepa-
rate Data Cache and Metadata Cache. This design solves two
key issues. First, it allows CacheDedup to bound the space
usage of metadata, making it flexible enough to be deployed
either on the client side or the server side of a storage sys-
tem, and implemented either in software or in hardware. Sec-
ond, it enables the optimization of caching historical source
addresses and fingerprints in the Metadata Cache after their
data is evicted from the Data Cache. These historical dedu-
plication metadata allow CacheDedup to quickly recognize
duplication using the cached fingerprints and produce cache
hits when these source addresses are referenced again.

Based on this architecture, we further study duplication-
aware cache replacement algorithms that can exploit dedu-
plication to improve flash cache performance and endurance.
First, we present D-LRU, a duplication-aware version of LRU
which can be efficiently implemented by enforcing an LRU
policy on both the Data and Metadata Caches. Second, we
present D-ARC, a duplication-aware version of ARC that ex-
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ploits the scan-resistant ability of ARC to further improve
cache performance and endurance. For both algorithms, we
also prove theoretically that they do not lead to wastage in the
Data and Metadata caches and can efficiently use their space.

CacheDedup is implemented atop block device virtualiza-
tion [5], and can be transparently deployed on existing stor-
age systems. We evaluate it using real-world traces, includ-
ing the FIU traces [18] and our own traces collected from
a set of Hadoop VMs. The results show that CacheDedup
substantially outperforms traditional cache replacement algo-
rithms (LRU and ARC) by reducing the cache miss ratio by
up to 20%, I/O latency by 51%, and the writes sent to flash
memories by 89%. It can effectively deduplicate data both
within a workload and across multiple workloads that share
the cache. We also measure the overhead of CacheDedup
using the fio benchmark [1], which shows that the through-
put overhead is negligible and the latency overhead from fin-
gerprinting can be overlapped with concurrent I/O operations
and dominated by the hit ratio gain from deduplication. In
terms of space overhead, CacheDedup needs < 4% of the
flash cache to store the deduplication metadata in order for
our algorithms to achieve peak performance.

CacheDedup is among the first to study duplication-aware
cache management for cache deduplication. Compared to
the related work, which also considered data reduction tech-
niques for server-side flash caching [19], we show that our ap-
proach can be naturally extended to support both duplication-
and compression-aware cache management and that it can im-
prove the read hit ratio by 12.56%. Our approach is not spe-
cific to flash-based caches—it leverages only flash devices’
faster speed compared to HDDs and larger capacity com-
pared to DRAMs. Therefore, it is also applicable to other
non-volatile memory technologies used as a caching layer be-
tween DRAMs and the slower secondary storage. While the
new technologies may have better endurance, they are likely
to have quite limited capacity compared to NAND flash, and
will still benefit greatly from CacheDedup, which can sub-
stantially reduce both cache footprint and writes sent to cache
device.

The rest of the paper is organized as follow: Section 2 ex-
plains the background; Section 3 presents the architectural
design of CacheDedup; Section 4 describes the duplication-
aware cache management algorithms; Section 5 presents the
evaluation results; Section 6 examines the related work; and
Section 7 concludes the paper.

2 Background and Motivations
Need of Integrated Flash Cache Deduplication. The emer-
gence of flash-memory-based storage has greatly catalyzed
the adoption of flash caching at both the client side and server
side of a network storage system [7, 5, 2]. However, flash
caches still face serious capacity and endurance limitations.
Given the increasingly data-intensive workloads and increas-
ing level of storage consolidation, the size of commodity flash

devices is quite limited. The use of flash for caching also
aggravates the wear-out problem of flash devices, because
not only the writes from the workloads cause wear-out, but
also all the reads that are inserted into the cache due to cache
misses.

Deduplication is a technique for eliminating duplicate
copies of data and has been used to reduce the data footprint
for primary storage [12, 15] and backup and archival stor-
age [27, 22]. It often uses a collision-resistant cryptographic
hash function [4, 28] to identify the content of a data block
and discover duplicate ones [27, 18, 8]. Deduplication has the
potential to solve the above challenges faced by flash caching.
By reducing the data footprint, it allows the flash cache to
more effectively capture the locality of I/O workloads and
improve the performance. By eliminating the caching of du-
plicate data, it also reduces the number of writes to the flash
device and the corresponding wear-out.

Although one can take existing flash caching and dedu-
plication solutions and stack them together to realize cache
deduplication, the lack of integration will lead to inefficien-
cies in both layers. On one hand, it is infeasible to stack a
caching layer upon a deduplication layer because the former
would not be able to exploit the space reduction achieved by
the latter. On the other hand, there are also serious limitations
to simply stacking a deduplication layer upon a caching layer.
First, the deduplication layer has to manage the fingerprints
for the entire primary storage, and may make fingerprint-
management decisions that are detrimental to the cache, e.g.,
evicting fingerprints belonging to data with good locality and
causing duplicate copies in the cache. Second, the caching
layer cannot exploit knowledge of data duplication to improve
cache management. In contrast, CacheDedup employs an in-
tegrated design to optimize the use of deduplication for flash
caching for both performance and endurance.

The recent work Nitro [19] studied the use of both dedupli-
cation and compression for server-side flash caches. Cache-
Dedup is complementary to Nitro in its new architecture and
algorithms for duplication-aware cache management. More-
over, our approach can be applied to make the cache man-
agement aware of both compression and deduplication and
improve such a solution that uses both techniques. A quanti-
tative comparison to Nitro is presented in Section 5.6.

Deduplication can be performed in-line—in the I/O path—
or offline. CacheDedup does in-line deduplication to prevent
any duplicate block from entering the cache, thereby achiev-
ing the greatest reduction of data footprint and wear-out. Our
results show that the overhead introduced by CacheDedup is
small. Deduplication can be done at the granularity of fixed-
size chunks or content-defined variable-size chunks, where
the latter can achieve greater space reduction but at a higher
cost. CacheDedup chooses deduplication at the granularity of
cache blocks, which fits the structure of flash caches and fa-
cilitates the design of duplication-aware cache replacement.
Our results also confirm that a good level of data reduction
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Figure 1: Architecture of CacheDedup

can be achieved with fixed-size cache deduplication.

Need for Deduplication-aware Cache Management. There
exists a number of cache replacement schemes. In particular,
the widely used LRU algorithm is designed to exploit tem-
poral locality by always evicting the least-recently used entry
in the cache. Theoretically, it has been shown to have the
best guarantees in terms of its worst-case performance [30].
But it is not “scan resistant”, i.e., items accessed only once
could occupy the cache and reduce the space available for
items that are accessed repeatedly. ARC [21] is an adaptive
algorithm that considers both recency and frequency in cache
replacement. It is “scan resistant” and shown to offer better
performance for many real-world workloads.

However, cache replacement algorithms typically focus on
maximizing the hit ratio, and disregard any issues related to
the lifespan and wear-and-tear of the hardware device, which
are unfortunately crucial to flash-based caches. Attempts to
reduce writes by bypassing the cache invariably affect the hit
ratio adversely. The challenge is to find the “sweet spot” be-
tween keeping hit ratios close to the optimum and lowering
the number of write operations to the device. CacheDedup
addresses this challenge with its duplication-aware cache re-
placement algorithms, designed by optimizing LRU and ARC
and enabled by an integrated deduplication and cache man-
agement architecture.

3 Architecture
3.1 Integrated Caching and Deduplication

CacheDedup seamlessly integrates the management of cache
and deduplication and redesigns the key data structures re-
quired for these two functionalities. A traditional cache needs
to manage the mappings from the source addresses of blocks
on the primary storage to the cache addresses of blocks on
the cache device. A deduplication layer needs to track the
fingerprints of the data blocks in order to identify duplicate
blocks. There are several unique problems caused by the in-
tegration of caching and deduplication to the design of these
data structures.

First, unlike a traditional cache, the number of source-to-

cache address mappings in CacheDedup is not bounded by
the size of the cache, because with deduplication, there is
now a many-to-one relationship between these two address
spaces. Second, even though the number of fingerprints that a
cache has to track is bounded by the cache size, there is an im-
portant reason for CacheDedup to track fingerprints for data
beyond what is currently stored in the cache. Specifically,
it is beneficial to keep historical fingerprints for the blocks
that have already been evicted from the cache, so that when
these blocks are requested again, CacheDedup does not have
to fetch them from the primary storage in order to determine
whether they are duplicates of the currently cached blocks.
Such an optimization is especially important when CacheDe-
dup is employed as a client-side cache because it can reduce
costly network accesses. However, fingerprint storage still
needs to abide by the limit on CacheDedup’s space usage.

To address these issues, we propose a new Metadata Cache
data structure to cache source addresses and their fingerprints.
This design allows us to solve the management of these meta-
data as a cache replacement problem and consider it sepa-
rately from the Data Cache that stores data blocks (Figure 1).
The Metadata Cache contains two key data structures. The
source address index maps a source addess of the primary
storage to a fingerprint in the Metadata Cache. Every cached
source address is associated with a cached fingerprint, and
because of deduplication, multiple source addresses may be
mapped to the same fingerprint. The fingerprint store maps
fingerprints to block addresses in the Data Cache. It also con-
tains historical fingerprints whose corresponding blocks are
not currently stored in the Data Cache. When the data block
pointed to by a historical fingerprint is brought back to the
Data Cache, all the source addresses mapped to this finger-
print can generate cache hits when they are referenced again.
Each fingerprint has a reference count to indicate the number
of source blocks that contain the same data. When it drops to
zero, the fingerprint is removed from the Metadata Cache.

The decoupled Metadata Cache and Data Cache provide
separate control “knobs” for our duplication-aware algo-
rithms to optimize the cache management (Section 4). The
algorithms limit the metadata space usage by applying their
replacement policies to the Metadata Cache and exploiting
the cached historical fingerprints to opportunistically improve
read performance. Both caches can be persistently stored on
a flash device to tolerate failures as discussed in Section 3.3.
Moreover, our architecture enables the flash space to be flex-
ibly partitioned between the two caches. For a given Data
Cache size, the minimum Metadata Cache size is the required
space for storing the metadata of all the cached data. Our
evaluation using real-world traces in Section 5 shows that
the “minimum” size is small enough to not be an issue in
practice. More importantly, the Metadata Cache can be ex-
panded by taking away some space from the Data Cache to
store more historical fingerprints and potentially improve the
performance. This tradeoff is studied in Section 5.4.
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3.2 Operations

Based on the architecture discussed above, the general oper-
ations of CacheDedup are as follows. The necessary cache
replacement is governed by the duplication-aware algorithms
presented in Section 4.

Read. A read that finds its source block address in the Meta-
data Cache with a fingerprint pointing to a Data Cache block
is a hit in the Data Cache. Otherwise, it is a miss. Note
that the read may match a historical fingerprint in the Meta-
data Cache which does not map to any data block in the Data
Cache, and it is still a miss. Upon a miss, the requested data
block is fetched from the primary storage and, if it is not a du-
plicate of any existing cached data block, it is inserted into the
Data Cache. The corresponding source address and finger-
print are inserted into the Metadata Cache if necessary. If the
fingerprint already exists in the Metadata Cache, it is then “re-
vived” by pointing to the new Data Cache block, and all the
historical source addresses that point to this fingerprint are
also “revived” because they can generate hits when accessed
again.

Write. The steps differ by the various write policies that
CacheDedup supports:

1. Write invalidate—the requested source address and the
cached data for this address are invalidated in the Meta-
data and Data Caches if they exist. The write goes di-
rectly to the primary storage.

2. Write through—the write is stored in cache and at the
same time submitted to the primary storage. The source
address and fingerprint are inserted into the Metadata
Cache if they are not already there. If the data contained
in the write matches an existing cached block, no change
needs to be made to the Data Cache, while the reference
count of its fingerprint is incremented by one. If the pre-
vious data of this block is already in the Data Cache,
the reference count of the previous fingerprint is decre-
mented by one.

3. Write back—the write is stored only in the cache and
submitted to the primary storage later, when the block is
evicted or when the total amount of dirty data exceeds
a predefined threshold. The steps are identical to the
write-through policy except that the write is not imme-
diately submitted to the primary storage.

3.3 Fault Tolerance

The nonvolatile nature of flash storage allows the cached data
to persist when the host of the cache crashes, but to recover
the cached data, their metadata also needs to be stored per-
sistently. If the goal is to avoid data loss, only the source-to-
cache address mappings for the locally modified data from
using the write-back policy must be persistent. CacheDe-
dup synchronously commits both the metadata and data to
the cache device to ensure consistency. If the goal is to avoid

warmup after the host restarts, the entire Metadata Cache, in-
cluding the source block index and fingerprints, is made per-
sistent. The time overhead of making the Metadata Cache
persistent is not as significant as its space overhead on the
flash device, because the metadata for clean blocks can be
written in batches and asynchronously. For both fault toler-
ance goals, the Metadata Cache is also kept in main mem-
ory to speed up cache operations, and its memory usage is
bounded. Finally, if the goal is to tolerate flash device fail-
ures, additional mechanisms [26] need to be employed. We
can also leverage related work [17] to provide better consis-
tency for flash caching.

3.4 Deployment

CacheDedup can be deployed at both the client side and
server side of a storage system: client-side CacheDedup can
more directly improve application performance by hiding the
high network I/O latency, whereas server-side CacheDedup
can use the I/Os from multiple clients to achieve a higher
level of data reduction. When CacheDedup is used by multi-
ple clients that share data, a cache coherence protocol is re-
quired to ensure that each client has a consistent view of the
shared data. Although it is not the focus of this paper, Cache-
Dedup can straightforwardly extend well-studied cache co-
herence protocols [13, 24] to synchronize both the data in
the Data Cache and the fingerprints in the Metadata Cache,
thereby ensuring consistency across the clients.

While the discussions in this paper focus on a software-
based implementation of CacheDedup, its design allows it to
be incorporated into the flash translation layer of specialized
flash devices [29, 25]. The space requirement is bounded by
the Metadata Cache size, and the computational complexity
is also limited (Section 4), making CacheDedup affordable
for modern flash hardware.

The discussions in the paper also assume the deployment
of CacheDedup at the block-I/O level, but its design is largely
applicable to the caching of filesystem-level reads and writes,
which requires only changing the Metadata Cache to track
(file handle, offset) tuples instead of source block addresses.

4 Algorithms
In this section we present two duplication-aware cache re-
placement algorithms. Both are enabled by the integrated
cache and deduplication management framework described
above. We first define some symbols (Table 1).

• Data Cache, D, stores the contents of up to d dedupli-
cated data blocks, indexed by their fingerprints.

• Metadata Cache, M, holds a set of up to m source ad-
dresses and corresponding fingerprints, a function f that
maps a source address to the fingerprint of its data block,
and a function h that maps a fingerprint to the location of
the corresponding data block in D. We denote the com-
position of f and h by the function h� that maps a source
address to the location of the corresponding data block.
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Symbol Definition
D Data Cache
d Total number of data blocks in the Data Cache
M MetaData Cache
m Total number of source addresses in M
pi A source address in M
gi A fingerprint in fingerprint store
ai The content of a data block in D

f (pi) Function that maps a source address to a
fingerprint

h(gi) Function that maps a fingerprint to a data block
h�(pi) Function that maps a source address to a data

block
Table 1: Variable definitions

Thus, for a source address x in M, f (x) is its fingerprint,
and h�(x) = h( f (x)) is the corresponding data block in D. If
f (x) = f (y) and x �= y, then x and y contain duplicate data. If
f (x) = g, we will refer to x as an inverse map or one of the ad-
dresses of fingerprint g. If we have a source address in M for
which the corresponding data is absent from D, we call it an
orphaned address; if we have a block in D for which the map-
ping information is not available in M, then it is an orphaned
data block. Instead of strictly disallowing orphaned addresses
and data, we will require our algorithms to comply with the
no-wastage policy, which states that the cache replacement
algorithms are required to not have orphaned addresses and
orphaned data blocks simultaneously. The no-wastage pol-
icy is important because “wastage” implies suboptimal use of
the cache, i.e., instead of bringing in other useful items into
cache, we are storing items in cache with incomplete infor-
mation that would surely result in a miss if requested.

In the rest of this section, we describe the algorithms and
analyze their no-wastage property and complexity. Note
that the size of data structures required by the algorithms is
bounded by the space required to store up to m source ad-
dresses and fingerprints; therefore, we omit the space com-
plexity analysis.

4.1 D-LRU

4.1.1 Algorithm

We present D-LRU (pronounced “dollar-you”), a duplication-
aware variant of LRU. The pseudocode (Algorithm 1) con-
sists of two separate LRU policies being enforced first on
the Metadata Cache (M) and then on the Data Cache (D).
INSERT-USING-LRU(x,A,n) inserts x in list A (with capac-
ity n) only if it is not already in A, in which case the LRU
item is evicted to make room for it.

4.1.2 Analysis

The algorithm of D-LRU is rather simple, but our analysis
shows that it is also quite powerful as it allows efficient use
of both the Metadata and Data Caches with no wastage. We

Algorithm 1: D-LRU pseudocode
REMARKS: D is indexed by f (x) and M is indexed by x
INPUT: The request stream x1,x2, . . . ,xt , . . .
INITIALIZATION: Set D = /0, M = /0
for every t ≥ 1 and any xt do

INSERT-USING-LRU(xt ,M,m)
INSERT-USING-LRU( f (xt),D,d)

start the analysis with several useful observations. The first
is that no duplicate addresses are inserted into M and no du-
plicate data blocks are inserted into D. However, every new
address does result in an entry in M, even if it corresponds to
a duplicate data block.

To discuss more observations, we introduce the following
notation. Let {p1, . . . , pm} be the source addresses in the
Metadata Cache M, ordered so that p1 is the LRU entry and
pm the MRU entry. Let {g1, . . . ,gn} be the corresponding fin-
gerprints stored in the fingerprint store. Let {a1,a2, . . . ,ad}
be the Data Cache contents, ordered so that a1 is the LRU en-
try and ad the MRU entry. For any data block a, let maxM(a)
be the position in the Metadata Cache of its most recently
accessed source address. In other words, for any a ∈ D,
maxM(a) = max{i|h( f (pi)) = a ∧ pi ∈ M}, if a is not an
orphan, and 0 otherwise. Next we observe that the order in
D is the same as the order of their most recently accessed
addresses. Finally, any orphans in D must occupy contigu-
ous positions at the bottom of the DataCache LRU list. Any
orphans in M need not be in contiguous positions but must
occupy positions that are lower than maxM(a1), where a1 is
the LRU item in D.

To prove that D-LRU does indeed comply with the no-
wastage policy, we propose the following invariants.

P1: If ∃a ∈ D s.t. maxM(a) = 0, then ∀q ∈ M,h�(q) ∈ D.
P2: If ∃q ∈ M s.t. h�(q) /∈ D, then ∀a ∈ D,maxM(a)> 0.

Simply put, invariant P1 states that if there are orphaned
data items in D, there are no orphaned addresses in M. In-
variant P2 states the converse. When p is the only entry in
M, then p ∈ M and h�(p) ∈ D. The invariants hold. We then
need to show that if these two invariants hold after serving
a set of requests (inductive hypothesis), then it continues to
hold after processing one more request. Let the next request
be for source address x and fingerprint f (x). We list the base
case and then one of three cases must occur before the new
request is processed.

CASE 1: x ∈ M and h( f (x)) ∈ D. D-LRU performs no evic-
tions and the contents of the Metadata and Data Caches re-
main unchanged, as do the invariants.

CASE 2: x∈M and h( f (x)) /∈D. In this case D-LRU evicts an
item from D to bring back the data h( f (x)) for the orphaned
address x. Using the inductive hypothesis, and the fact that
x ∈ M is orphaned, we know that no orphaned items exist in
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Figure 2: Architecture of D-ARC

D. Since D-LRU does not evict any entry from M, no new
orphans will be created in D, leaving the invariants true.
CASE 3: x /∈ M. In this case, D-LRU evicts p1 and adds x as
the new MRU in M. Also, if h( f (x)) /∈ D, then D-LRU will
evict a1 and add h( f (x)) as MRU in D. Two possible cases
apply for the analysis of this situation.
CASE 3.1: If there is at least one orphaned data item in D
(and none in M) prior to processing the new request, then
since all orphans in D are at the bottom, its LRU item a1 is an
orphan. Thus, the eviction of a1 cannot create any orphans in
M, and thus the invariants will hold.
CASE 3.2: If there are no orphans in D and x /∈ M, we have
two cases. First, if h( f (x)) /∈ D, the algorithm must evict the
LRU items from both M and D. If maxM(a1) > 1 then the
eviction of p1 will leave no orphans. If maxM(a1) = 1 then
p1 is the only address in M that maps to a1 and since both
will get evicted, no new orphans are created in the process.
Second, if h( f (x)) ∈ D, the algorithm only evicts p1 from
M. If maxM(a1) > 1 then the eviction of p1 will not leave
orphans in D. If maxM(a1) = 1 then the eviction of p1 makes
a1 an orphan. But because there can be no orphan addresses
occupying positions lower than p1 in M, the invariants still
hold.

Thus, D-LRU complies with the no-wastage policy.

Complexity. D-LRU can service every request in O(1) time
because the LRU queues are implemented as doubly linked
lists and the elements in the lists are also indexed to be able
to access in constant time. Evicting an element or moving it
to the MRU position can also be done in constant time.

4.2 D-ARC

4.2.1 Algorithm

Next we present a duplication-aware cache management al-
gorithm, D-ARC, that is based on ARC [21], which is a major
advance over LRU because of its scan-resistant nature. Simi-
larly, the algorithm of D-ARC is more complex than D-LRU.

We start with a brief description of ARC. ARC assumes
a Data Cache of size C. It uses four LRU lists, T1, T2, B1,
and B2 to store metadata, i.e., cached source addresses, with
total size 2C. The key idea is to preserve information on fre-
quently accessed data in T2 and to let information on “scan”
data (single-access data) pass through T1. Together, the size

of T1 and T2 cannot exceed C. When a new data block is added
to the cache, its corresponding metadata is added to T1, and
it is moved to T2 only when that address is referenced again.
The relative sizes of the two lists, T1 and T2, are controlled by
an adaptive parameter p. The algorithm strives to maintain
the size of T1 at p. When an item is evicted from T1 or T2, its
data is also removed from the cache. ARC uses B1 and B2 to
save metadata evicted from T1 and T2, respectively. Together
they store an additional C metadata items, which help moni-
tor the workload characteristics. When a source address from
B1 or B2 is referenced, it is brought back into T2, but triggers
an adjustment of the adaptive parameter p.

Our ARC-inspired duplication-aware cache replacement
algorithm is named D-ARC. The idea behind it is to main-
tain a duplication-free Data Cache D of maximum size C,
and to use an ARC-based replacement scheme in the Meta-
data Cache M. If evictions are needed in D, only data blocks
with no mappings in T1 ∪T2 are chosen for eviction. Figure 2
illustrates the architecture of D-ARC. The corresponding fin-
gerprints are stored in the fingerprint store, which is omitted
for clarity.

The first major difference from ARC is that the total size of
T1 and T2 is not fixed and will vary depending on the duplica-
tion in the workload. If the workload has no duplicate blocks,
then M will hold at most C source addresses, each mapped to
a unique block in D, just as with the original ARC. In the pres-
ence of duplicates, D-ARC allows the total size of T1 and T2
to grow up to C+X , in order to store X more source addresses
whose data duplicates the existing ones. A single block in D
may be mapped from multiple source addresses in T1 and T2.
X is a parameter that can be tuned by a system administrator
to bound the size of M to store up to 2C +X items (source
address/fingerprint pairs).

Second, when source addresses are evicted from T1 or T2
and moved into B1 or B2, as dictated by the ARC algorithm,
D-ARC saves their fingerprints and data to opportunistically
improve the performance of future references to these ad-
dresses. Moreover, D-ARC employs an additional LRU list
B3 to save source addresses (and their fingerprints) evicted
from B1 and B2, as long as the lists T1, T2, and B3 together
store less than C+X mappings. In essence, B3 makes use of
the space left available by T1 and T2. When a hit occurs in B3,
it is inserted into the MRU position of T1, but does not affect
the value of p. A future request to a source address retained
in B1 ∪B2 ∪B3 may result in a hit in D-ARC if its fingerprint
shows that the data is in D. In contrast, any item found in B1
or B2 always results in a miss in the original ARC.

Third, when eviction is necessary in the Data Cache, D-
ARC chooses an item with no mappings in T1 ∪ T2. If no
such data item is available, then items are evicted from T1∪T2
using the original ARC algorithm until such a data block is
found. Note that at most X +1 items are evicted from T1 ∪T2
in the process.

The D-ARC pseudocode is shown in Algorithms 2 and
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Algorithm 2: D-ARC(C, X) pseudocode
INPUT: The request stream x1,x2, . . . ,xt , . . .
PROCESSREQUEST ()

if xi ∈ T1 ∪T2 then
Move xi to MRU position on T2

if xi ∈ B1 ∪B2 then
Increase p, if xi ∈ B1; else Decrease p.
if h�(xi) /∈ D then

INSERTINDATACACHE()
CHECKMETADATACACHE()
Move xi to MRU position in T2

if xi ∈ B3 then
if h�(xi) /∈ D then

INSERTINDATACACHE()
Move xi to MRU position in T1

if xi /∈ T1 ∪T2 ∪B1 ∪B2 ∪B3 then
if h�(xi) /∈ D then

INSERTINDATACACHE()
CHECKMETADATACACHE()
Move xi to MRU position in T1

3. In the main program (PROCESSREQUEST), we have four
cases, of which only the third (xi ∈ B3) is not present in ARC.
In each of the other cases, we have at most two independent
operations—one to insert into the Data Cache (if needed) and
second to insert into the Metadata Cache (if needed). In IN-
SERTINDATACACHE, an appropriate victim to evict from D
is one with no references in T1 ∪ T2. However, to find such
a victim, several items may have to be deleted from M, as
indicated by the while loop. In CHECKMETADATACACHE,
if T1 ∪ T2 ∪ B3 exceeds C + X , an item from B3 is always
evicted, possibly after moving something from T1 ∪B1 ∪B2
(as achieved in MANAGEMETADATACACHE). Finally, RE-
PLACEINMETADATACACHE is similar to the REPLACE oper-
ation in original ARC and creates space for the new metadata
item to be placed.

4.2.2 Analysis

To show that D-ARC complies with the no-wastage policy,
we show that no orphans are created in the metadata contents
of T1 ∪ T2. (The B lists store historical metadata by design
as they do in ARC, so we exclude them from the analysis.)
On one hand, if a duplicated item is requested, it does not
change the Data Cache, and therefore cannot create orphans
in T1 ∪ T2. On the other hand, every time a non-duplicated
item is requested, it results in an insert into the Data Cache,
causing some item to be evicted. As per the algorithms, the
only evictions that are allowed involve items that have no
source addresses in T1 ∪T2. If one exists, we are done and no
orphans are created in the Metadata Cache by this insertion.
If none exists, we “clear” items from T1 ∪T2 until we find an
item in the Data Cache with no source address in T1 ∪T2, and

Algorithm 3: D-ARC(C, X) subroutines

Subroutine INSERTINDATACACHE()
while no “victim” in D with no references in
T1 ∪T2 do

MANAGEMETADATACACHE()
replace LRU “victim” in D with h�(xi)

Subroutine CHECKMETADATACACHE()
if |T1|+ |T2|+ |B3|=C+X then

if |B3|= 0 then
MANAGEMETADATACACHE()

evict LRU item from B3

Subroutine MANAGEMETADATACACHE()
if |T1|+ |B1| ≥C then

if |T1|<C then
move LRU from B1 to B3
REPLACEINMETADATACACHE()

else
if |B1|> 0 then

move LRU from B1 to B3
move LRU from T1 to B1

else
move LRU from T1 to B3

else
if |B1|+ |B2| ≥C then

move LRU from B2 to B3
REPLACEINMETADATACACHE()

Subroutine REPLACEINMETADATACACHE()
if |T1|> 0∧ (|T1|> p∨ (xi ∈ B2 ∧|T1|= p))
then

move LRU from T1 to B1

else
move LRU from T2 to B2

then that item becomes the victim to be evicted. This vic-
tim cannot create an orphan in the Metadata Cache because
of the way it is identified. Thus, D-ARC complies with the
no-wastage policy.

Complexity. The ARC-based insert to the Metadata Cache
can be performed by D-ARC in constant time. However,
an insert into the Data Cache may trigger repeated deletions
from T1 ∪T2, which cannot be done in constant time. In fact,
if |T1|+ |T2|=C+δ , for some number δ ≤ X , then at most δ
evictions are needed for this operation. However, in order to
have reached C+δ elements there must have been δ requests
serviced in the past for which there were no evictions. So the
amortized cost of each D-ARC request is still O(1).

5 Evaluation
5.1 Methodology

Implementation: We created a practical prototype in Linux
kernel space, based on block device virtualization [10]. It
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Figure 3: Miss ratio from WebVM

Name Total I/Os Working Write-to Unique
I/Os (GB) Set (GB) -read ratio Data (GB)

WebVM 54.5 2.1 3.6 23.4
Homes 67.3 5.9 31.5 44.4
Mail 1741 57.1 8.1 171.3

Hadoop 23.6 14.4 0.4 3.7

Table 2: Trace statistics

can be deployed as a drop-in solution on existing systems
that run Linux (including hypervisors that use the Linux I/O
stack [6, 3]). It appears as a virtual block device to the appli-
cations/VMs if deployed on the client side, or to the storage
services (e.g., iSCSI, NFS) if deployed on the server side.

Storage setup: We evaluated the real I/O performance of
CacheDedup as the client-side flash cache for an iSCSI-based
storage system, a widely used network storage protocol. The
client and server each runs on a node with two six-core
2.4GHz Xeon CPUs and 24GB of RAM. The client uses a
120GB MLC SATA SSD as the cache, and the server uses a
1TB 7.2K RPM SAS disk as the target. Both nodes run Linux
with kernel 3.2.20.

Traces: For our evaluation, we replayed the FIU traces [18].
These traces were collected from a VM hosting the depart-
mental websites for webmail and online course management
(WebVM), a file server used by a research group (Homes),
and a departmental mail server (Mail). To study the support
for concurrent workloads, we also collected traces (Hadoop)
from a set of Hadoop VMs used to run MapReduce course
projects. The characteristics of these traces are summarized
in Table 2 where every I/O is of 4KB size. The working set
size of a trace is calculated by counting the number of unique
addresses of the I/Os in the trace and then multiplying it by
the I/O size.

Metrics: We use the following metrics to compare the differ-
ent cache-management approaches.

1) Miss ratio: We report both read miss ratio and write miss
ratio, which are the numbers of reads and writes, respectively,
over the total number of I/Os received by the cache. When the
write-through policy is used, the read miss ratio is more im-
portant because writes always have to be performed on both
cache and primary storage [11]. When the write-back policy
is used, writes that hit the cache are absorbed by the cache,
but the misses cause writes to the primary storage (when they
are evicted). Therefore, the write miss ratio has a significant
impact on the primary storage’s I/O load and the performance
of read misses [17, 5]. Therefore, we focus on the results
from the write-back policy where the read miss ratio is also
meaningful for the write-through policy. We omit the results
from the write-invalidate policy which performs poorly for
the write-intensive traces, although the deduplication-aware
approaches still make substantial improvements as for the
other two write policies.

2) I/O latency/throughput: To understand how the improve-
ment in cache hits translates to application-perceived perfor-
mance, we measure the latency of I/Os from replaying the
traces on the storage system described above. To evaluate the
overhead of CacheDeup, we measure both the I/O latency and
throughput using an I/O benchmark, fio [1].

3) Writes to flash ratio: Without assuming knowledge of a
flash device’s internal garbage collection algorithm, we use
the percentage of writes sent to the flash device, w.r.t. the
total number of I/Os received by the cache manager, as an
indirect metric of wear-out.

Cache configurations: We compare several different cache
management approaches: 1) LRU (without deduplication); 2)
ARC (without deduplication); 3) D-LRU; 4) D-ARC. To com-
pare to the related work Nitro [19], we also created CD-ARC,
a new ARC-based cache management approach that is aware
of both duplication and compressibility.

For all the approaches that we considered, we show the
results from the fault-tolerance configuration that keeps the
entire metadata persistent (as discussed in Section 3.3). The
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Figure 4: Miss ratio from Homes and Mail

 0

 20

 40

 60

 80

 100

 120

 140

WebVM Homes Mail

T
im

e
 (

u
s
)

LRU
D-LRU

ARC
D-ARC

Figure 5: I/O latency from WebVM, Homes,
and Mail with a cache size that is 40% of their
respective WSS

same size of flash storage is used to store both data and meta-
data, so the comparison is fair. As discussed in Section 3.1,
the Data Cache size can be traded for storing more histori-
cal fingerprints in the Metadata Cache as an optimization in
the duplication-aware approaches. This tradeoff is studied in
Section 5.4. In the other experiments, the Metadata Cache
size is fixed at its minimum size (which is under 1% and 3%
of the Data Cache size for D-LRU and D-ARC, respectively)
plus an additional 2% taken from the Data Cache.

5.2 Performance

We evaluate the cache performance for each trace with dif-
ferent total cache sizes that are chosen at 20%, 40%, 60%,
and 80% of its total working set size (WSS), which is listed
in Table 2. Figure 3 compares the miss ratios of the WebVM
trace. Results reveal that the duplication-aware approaches,
D-LRU and D-ARC, outperform the alternatives by a signif-
icant margin for most cache sizes in terms of both read miss
ratio and write miss ratio. Comparing the total miss ratio, D-
LRU reduces it by up to 20% and D-ARC by up to 19.6%.
Comparing LRU and ARC, ARC excels at small cache sizes,
which is leveraged by D-ARC to also outperform D-LRU.
For example, when the cache size is 20% of the trace’s WSS,
D-ARC has about 5% lower total miss ratio than D-LRU.

As discussed in Section 3, keeping historical source ad-
dresses and fingerprints in the Metadata Cache can help im-
prove the hit ratio, because when the data block that a histor-
ical fingerprint maps to is brought back to the Data Cache, all
the source addresses that map to this fingerprint can generate
hits when they are referenced again. To quantify this benefit,
we also measured the percentage of read hits that are gener-
ated by the historical metadata. For WebVM with a cache size
that is 20% of its WSS, 83.25% of the read hits are produced
by the historical metadata, which confirms the effectiveness
of this optimization made by CacheDedup.

For the Homes and Mail traces, we show only the total miss
ratio results to save space (Figure 4). Because the Mail trace
is much more intensive than the other traces, we also show
the results from the cache size that is 10% of its total WSS.
Overall, D-ARC has the lowest total miss ratio, followed by

D-LRU. D-ARC reduces the miss ratio by up to 5.4% and 3%
compared to LRU and ARC, respectively in Homes and up to
2% and 1% in Mail. Compared to D-LRU, it reduces misses
by up to 2.71% and 0.94% in Homes and Mail, respectively.

Figure 5 shows the average I/O latency from replaying the
three traces with a cache size of 40% of their respective WSS.
D-LRU and D-ARC deliver similar performance and reduce
the latency by 47% and 42% compared to LRU and ARC,
respectively for WebVM, 8% and 6% for Homes, and 48%
and 51% for Mail. The improvement for Homes is smaller
because of its much higher write-to-read ratio; the difference
between a write hit and write miss is small when the storage
server is not saturated. Note that the latency here does not
include the fingerprinting time, which is < 20μs per finger-
print, since the fingerprints are taken directly from the traces.
But we cannot simply add this latency to the results here be-
cause many cache hits do not require fingerprinting. Instead,
we evaluate this overhead in Section 5.7 using a benchmark.

5.3 Endurance

The results in Figure 6 confirm that the two duplication-aware
approaches can substantially improve flash cache endurance
by reducing writes sent to the flash device by up to 54%, 33%,
and 89% for the WebVM, Homes, and Mail traces, respec-
tively, compared to the traditional approaches. The difference
between D-LRU and D-ARC is small. This interesting obser-
vation suggests that the scan-resistant nature of ARC does not
help as much on endurance as it does on hit ratio. It is also
noticeable that the flash write ratio decreases with increasing
cache size, but the difference is small for Homes and Mail
and for WebVM after the cache size exceeds 40% of its WSS.
This can be attributed to two opposite trends: 1) an increasing
hit ratio reduces cache replacements and the corresponding
flash writes; 2) but when write hits bring new data into the
cache they still cause flash writes, which is quite common for
these traces.

5.4 Sensitivity Study

We used the Mail trace to evaluate the impact of partitioning
the shared flash cache space between the Data Cache and the

9



310 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

 40

 50

 60

 70

 80

 90

 100

20% 40% 60% 80%

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(a) WebVM

 60

 65

 70

 75

 80

 85

 90

 95

 100

20% 40% 60% 80%

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(b) Homes

 0

 20

 40

 60

 80

 100

10% 20% 40% 60% 80%

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Cache size (Percentage of WSS)

LRU

D-LRU

ARC

D-ARC

(c) Mail
Figure 6: Writes to flash ratio

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 7.2

 150  300  450  600  750  900 1050 1200

T
o

ta
l 
M

is
s
 R

a
ti
o

 (
%

)

Metadata Cache Size (MB)

D-LRU

D-ARC

(a) Total miss ratio

 14.4

 14.5

 14.6

 14.7

 14.8

 14.9

 15

 15.1

 15.2

 150  300  450  600  750  900 1050 1200

W
ri
te

 t
o

 F
la

s
h

 R
a

ti
o

 (
%

)

Metadata Cache Size (MB)

D-LRU

D-ARC

(b) Writes to flash ratio
Figure 7: D-LRU and D-ARC with varying Metadata/Data
Cache space sharing for Mail
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Figure 8: Results from concurrent Hadoop
traces

Metadata Cache for the duplication-aware approaches. As
discussed in Section 3.1, for a given Data Cache size, the
minimum Metadata Cache size is what is required to store
all the metadata of the cache data. But the Metadata Cache
can take a small amount of extra space from the Data Cache
for storing historical metadata and potentially improving per-
formance. In this sensitivity study, we consider a cache size
of 11GB which is 20% of Mail’s WSS, and evaluate D-LRU
and D-ARC while increasing the Metadata Cache size (and
decreasing the Data Cache size accordingly). The results in
Figure 7 show that both total miss ratio and wear-out initially
improve with a growing Metadata Cache size. The starting
points in the figure are the minimum Metadata Cache sizes
for D-LRU and D-ARC (129MB for D-LRU and 341MB for
D-ARC). Just by giving up 2% of the Data Cache space to
hold more metadata (240MB of total Metadata Cache size for
D-LRU and 450MB for D-ARC), the total miss ratio falls by
0.73% and 0.55% in D-LRU and D-ARC respectively, and
the writes-to-flash ratio falls by 0.33% and 0.51%. The per-
formance however starts to decay after having given up more
than 3% of the Data Cache space, where the detrimental ef-
fect caused by having less data blocks starts to outweigh the
benefit of being able to keep more historical metadata.

5.5 Concurrent Workloads

Next we evaluate CacheDedup’s ability in handling concur-
rent workloads that share the flash cache and performing
deduplication across them. We collected a set of VM I/O
traces from a course where students conducted MapReduce
programming projects using Hadoop. Each student group was
given three datanode VMs and we picked three groups with
substantial I/Os to replay. All the VMs were cloned from the
same templates so we expect a good amount of duplicate I/Os
to the Linux and Hadoop data. But the students worked on
their projects independently so the I/Os are not identical. The
statistics of these VM traces are listed as Hadoop in Table 2.

We replayed the last three days before the project submis-
sion deadline of these nine datanode VM traces concurrently,
during which the I/Os are most intensive. The flash cache
that they shared has a capacity of 40% of their total working
set size. Figure 8 compares the performance of D-LRU and
D-ARC to LRU and ARC. Overall, DLRU and DARC lower
the miss ratio by 11% and the I/O latency by 12% while re-
ducing the writes sent to the cache device by 81%. Notice
that the reduction in flash write ratio is much higher than the
reduction in miss ratio because, owing to the use of dedupli-
cation, a cache miss does not cause a write to the cache if the
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requested data is a duplicate to the existing cached data.

5.6 Compression- and Duplication-aware Cache Man-
agement

Compression can be employed in addition to deduplication to
further reduce the volume of data written to cache and im-
prove cache performance and endurance. The recent work
Nitro [19] was the first to combine these two techniques. It
performs first deduplication and then compression on the data
blocks. The compressed, variable-length data chunks (named
extents) are packed into fixed-size blocks, named Write-Evict
Units (WEU), and stored in cache. Cache replacement uses
LRU at the granularity of WEUs. The size of a WEU is
made the same as the flash device’s erase block size to reduce
garbage collection (GC) overhead. The fingerprints are man-
aged using LRU separately from data replacement. If the pri-
mary storage also employs deduplication, Nitro can prefetch
the fingerprints for identifying duplicates in future accesses.

CacheDedup is complementary to Nitro. On one hand, it
can use the concept of WEU to manage compressed data in
cache and reduce the flash device’s internal GC overhead. On
the other hand, CacheDedup can improve Nitro with its inte-
grated cache management to reduce cache wastage and im-
prove its performance and endurance. To prove this point, we
created a version of D-ARC that is also compression-aware,
named CD-ARC. It is still based on the integrated Metadata
and Data Cache management architecture of CacheDedup.
The main differences from D-ARC are that 1) the Data Cache
stores WEUs; 2) the fingerprints in the Metadata Cache point
to the extents in the WEUs; and 3) replacement in the Data
Cache preferably uses a WEU with no mappings in T1 ∪T2.

We compare CD-ARC to a Nitro implementation without
fingerprint prefetching because prefetching is an orthogonal
technique that can be used by both approaches. But we extend
Nitro to also cache historical fingerprints, so the comparison
is fair. We also set the same limits on the two algorithms’
data cache capacity and metadata space usage. We present
the results from a 2MB WEU size with a compression ra-
tio of 2 and 4, and report the read miss ratios in Figure 9
for the WebVM trace. CD-ARC improves the read hit ratio
by up to 12.56% compared to Nitro. This improvement can
be largely attributed to CD-ARC’s scan-resistant and adap-
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tive properties inherited from ARC, which is possible only
because of the integrated cache and deduplication design of
our approach.

Although compression can further reduce a workload’s
cache footprint and wear-out, it also adds additional over-
head. Moreover, for a write-intensive workload which has
a large number of updates, the use of compression also intro-
duces wastage, because the updated data cannot be written in
place in the cache. For example, for WebVM with a cache
size that is 20% of its WSS and a compression ratio of 2,
CD-ARC achieves only 8% higher read hit ratio, because in
average 46% of the cache capacity is occupied by invalid data
caused by updates.

5.7 Overhead

Finally, we used an I/O benchmark fio [1] to measure Cache-
Dedup’s overhead compared to a stand-alone caching layer
that does not use deduplication. The benchmark issued ran-
dom reads or writes with no data duplication, so the results
reveal the worst-case performance of CacheDedup. Direct
I/O is used to bypass the main memory cache. First, we used
a single fio thread with 1GB of random I/Os. Figure 10 shows
that D-LRU and D-ARC adds a 10−20μs latency to LRU and
ARC for writes and for reads when the cache is cold, which
is mainly the overhead of creating the fingerprint.

Although this fingerprinting overhead is considerable, in
typical workloads, concurrent I/Os’ fingerprinting operations
can be overlapped by their I/Os and become insignificant in
the overall performance. To demonstrate this, in the next ex-
periment, we used eight concurrent fio threads each issuing
512MB of I/Os to evaluate the throughput overhead. Fig-
ure 11 shows that CacheDedup does not have significant over-
head in terms of throughput. Moreover, CacheDedup’s hit
ratio gain and the corresponding performance improvement
(as shown in the previous experiments) will significantly out-
weigh the fingerprinting overhead.

6 Related Work
A variety of research and commercial solutions have shown
the effectiveness of flash caching for improving the perfor-
mance of storage systems [7, 2, 5]. Compared to traditional
main-memory-based caching, flash caching differs in its rel-
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Figure 11: FIO throughput with 8 concurrent threads

atively larger capacity and ability to store data persistently.
Therefore, related work revisited several key design deci-
sions for flash caching [11, 5]. In particular, it has been
observed that write-through caching can provide good per-
formance when the writes are submitted asynchronously to
the backend storage, whereas write-back caching can reduce
the I/O load on the backend and further improve the perfor-
mance. The solution proposed here, CacheDedup, supports
both write policies. Related work on the allocation of shared
cache capacity among concurrent workloads [23, 20] is also
complementary to CacheDedup’s support for reducing each
workload’s footprint through in-line deduplication.

Deduplication has been commonly used to reduce the data
footprint in order to save the bandwidth needed for data trans-
fer and the capacity needed for data storage. Related solu-
tions have been proposed to apply deduplication at different
levels of a storage hierarchy, including backup and archival
storage [27, 22], primary storage [12, 15], and main mem-
ory [33]. The wear-out issue of flash devices has motivated
several flash deduplication studies [8, 9, 16] which show that
it is a viable solution to improving endurance. Compared to
these related efforts, CacheDedup addresses the unique chal-
lenges presented by caching. First, caching needs to process
both reads and writes, while for primary storage only writes
create new data and need to be considered. Second, the man-
agement of deduplication cannot be dissociated from cache
management issues if localities have to be captured.

As discussed in Section 2, although a solution that sim-
ply stacks a standalone deduplication layer upon a standa-
lone caching layer could also work, it would have a much
higher metadata space overhead because both layers have
to maintain the source block addresses, and the deduplica-
tion layer also has to manage the fingerprints for the entire
source device. Moreover, such simple stacking cannot sup-
port a more sophisticated cache replacement algorithm such
as ARC, which is made possible in D-ARC because of its
integrated cache and deduplication management.

Nitro [19] is a closely related work which combines dedu-
plication and compression to manage a flash cache employed
at the server-side of a network file system. As discussed in
Section 5.6, CacheDedup is complementary to Nitro in that
our proposed architecture and algorithms can be incorporated

to create a compression- and duplication-aware caching solu-
tion with further improved cache hit ratio and endurance.

As small random writes can decrease the throughput and
device lifespan of a flash cache, related work RIPQ [32] pro-
posed several techniques to address this problem, including
aggregating the small random writes, which is similar to the
WEU technique of Nitro, and our CD-ARC. It is also con-
ceivable to apply WEU to D-LRU and D-ARC to aggregate
small writes in order to sustain cache throughput and further
improve flash endurance.

Related work studied cache admission policies to reduce
flash wear-out [34, 14]. By not caching data with weak tem-
poral locality, they showed improvements in endurance. Suei
et al. [31] created a device-level cache partition design to dis-
tribute frequently-updated data into different erase blocks and
lower the chances of blocks to be worn-out soon. These solu-
tions are complementary to CacheDedup’s focus on optimiz-
ing the use of deduplication for improving endurance.

7 Conclusions

This paper presents CacheDedup, a first study on integrat-
ing deduplication with flash caching using duplication-aware
cache management. The novelties lie in a new architectural
design that seamlessly integrates the caching of metadata and
data, and new cache replacement algorithms D-LRU and D-
ARC that allow the optimization for both performance and
endurance. The paper offers an in-depth study of these algo-
rithms with both theoretical analysis and experimental eval-
uation, which proves their no-cache-wastage property and
shows the improvement on cache hit ratio, I/O latency, and
the amount of writes sent to the cache device.

Between the two algorithms, D-ARC achieves the best per-
formance, and D-LRU is attractive because of its simplicity.
Both are efficient in terms of time and space usage. Cache-
Dedup is a versatile framework for enabling various algo-
rithms, including one (CD-ARC) that improves the use of
compression with deduplication. As its design is not specific
to flash devices, we believe that the CacheDedup approach
can be also applied to new non-volatile memory technologies
and improve their performance and endurance when used for
caching.
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Abstract

Block-layer data deduplication allows file systems
and applications to reap the benefits of deduplication
without requiring per-system or per-application modi-
fications. However, important information about data
context (e.g., data vs. metadata writes) is lost at the
block layer. Passing such context to the block layer can
help improve deduplication performance and reliability.
We implemented a hinting interface in an open-source
block-layer deduplication system, dmdedup, that passes
relevant context to the block layer, and evaluated two
hints, NODEDUP and PREFETCH. To allow upper stor-
age layers to pass hints based on the available context,
we modified the VFS and file system layers to expose
a hinting interface to user applications. We show that
passing the NODEDUP hint speeds up applications by up
to 5.3× on modern machines because the overhead of
deduplication is avoided when it is unlikely to be bene-
ficial. We also show that the PREFETCH hint accelerates
applications up to 1.8× by caching hashes for data that
is likely to be accessed soon.

1 Introduction
The amount of data that organizations store is growing
rapidly [3]. Decreases in hard drive and SSD prices do
not compensate for this growth; as a result companies
are spending more and more on storage [26]. One tech-
nique to reduce storage costs is deduplication, which al-
lows sites to store less raw data. At its core, deduplica-
tion systematically replaces duplicate data chunks with
references. For many real-world datasets, deduplication
significantly reduces raw storage usage [10, 19, 22].

Deduplication can be implemented at several layers
in the storage stack. Most existing solutions are built
into file systems [4,28,32] because they have enough in-
formation to deduplicate efficiently without jeopardizing
reliability. For example, file sizes, metadata, and on-disk
layout are known to the file system; often file systems
are aware of the processes and users that perform I/O.
This information can be leveraged to avoid deduplicat-
ing certain blocks (e.g., metadata), or to prefetch dedup
metadata (e.g., for blocks likely to be accessed together).

An alternative is to add deduplication to the block
layer, which provides a simple read/write interface. Be-
cause of this simplicity, adding features to the block
layer is easier than changing file systems. This observa-

tion is equally applicable to systems that work directly
at the block layer, such as databases and object stores.

However, a block-level deduplication system is un-
aware of the context of the data it operates on. A typ-
ical I/O request contains only the operation type (read or
write), size, and offset, without attached semantics such
as the difference between metadata and user data. Dedu-
plicating metadata can (1) harm reliability [25], e.g., be-
cause many file systems intentionally save several copies
of critical data such as superblocks, and (2) waste com-
putational resources because typical metadata (inode ta-
bles, directory entries, etc.) exhibits low redundancy.
In particular, in-line deduplication is expensive because
forming chunks (fixed or variable-length), hash calcu-
lation, and hash searches are performed before writing
data to disk; it is undesirable to expend resources on data
that may not benefit from deduplication.

To allow block-layer deduplication to take context
into account, we propose an interface that allows file sys-
tems and applications to provide simple hints about the
context in which the deduplication is being performed.
Such hints require only minor file system changes, mak-
ing them practical to add to existing, mature file systems.
We implemented two hints: NODEDUP and PREFETCH,
which we found useful in a wide range of cases.

To evaluate the potential benefits of hints, we used
an open-source block-layer deduplication system, dmd-
edup [34]. Dmdedup is meant for in-line primary-
storage deduplication and is implemented as a stack-
able block device in the Linux kernel. We evaluated our
hints under a variety of workloads and mixes of unique
vs. deduplicable data. Our results demonstrate that by
not deduplicating data that is likely to be unique, the
NODEDUP hint can speed up applications by as much as
5.3× over vanilla Dmdedup. We also show that by pre-
loading hashes for data that is likely to be deduplicated
soon, the PREFETCH hint can speed up applications by
as much as 1.8× over vanilla Dmdedup.

2 Background
Context recovery. Previous research has addressed
the semantic gap between the block layer and a file sys-
tem and has demonstrated that restoring all or part of
the context can substantially improve block-level perfor-
mance and reliability [2,18,29–31,36]. We build on this
observation by recovering partial file system and appli-
cation context to improve block-level deduplication.

1
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Context recovery can be achieved either by introspec-
tion or via hinting. Introspection relies on block-layer
intelligence to infer file-system or application opera-
tions. The benefit of introspection is that it does not
require any file-system changes; the disadvantage is that
a successful implementation can be difficult [33, 35].
In contrast, hinting asks higher layers to provide small
amounts of extra information to the deduplication sys-
tem. Although file systems and perhaps applications
must be changed, the necessary revisions are small com-
pared to the benefits. Furthermore, application changes
can be minimized by interposing a library that can de-
duce hints from information such as the file or program
name, file format, etc. In this work, we use hinting to
recover context at the block layer.

Dmdedup. We used an open-source block-layer dedu-
plication system, dmdedup [34], to evaluate the benefits
of hints. Dmdedup uses fixed-size chunking and relies
on Linux’s crypto API for hashing. It can use one of
two metadata back ends: inram and cowbtree; the
former stores the metadata only in RAM (if it is battery-
backed), and the latter writes it durably to disk. Others
also proposed a soft-update based metadata backend [5].

Figure 1 depicts dmdedup’s main components and its
position in a typical setup. Dmdedup rests on top of
physical block devices (e.g., disk drives, RAIDs, SSDs),
or other logical devices (e.g., dm-crypt for encryption).
It typically requires two block devices to operate: one a
data device that stores actual user data, and a metadata
device that keeps track of the organizational information
(e.g., the hash index). In our experiments, we used an
HDD for data and SSD for metadata. Placing metadata
on an SSD makes sense because it is much smaller than
the data itself—often less than 1% of the data—but is
critical enough to require low-latency access. To up-
per layers, dmdedup provides a conventional read/write
block interface. Normally, every write to a dmdedup in-
stance is hashed and checked against all existing data;
if a duplicate is detected, the corresponding metadata
is updated and no data is written. New non-duplicate
content is passed to the data device and tracked in the
metadata. Since only one instance of a given block is
stored, multiple files may be affected if it gets corrupted.
Therefore, dmdedup can be run over RAID or a replica-
tion system to minimize the risk of data loss.

Internally, dmdedup has five components (Figure 1):
(1) the deduplication logic that chunks data, computes
hashes, and coordinates other components; (2) a hash
index that tracks the hashes and locations of all currently
stored chunks; (3) a mapping between Logical Block
Numbers (LBNs) visible to the upper layers and the
Physical Block Numbers (PBNs) where the actual data
is stored; (4) a space manager that tracks space on the

Dmdedup Block Device

Application

File System

Deduplication logic

Hash
Index

LBN
Mapping

Space Manager

Chunk Store

Data DeviceMetadata Device

Figure 1: Dmdedup high-level design.

Ext2 Ext3 Ext4 Nilfs2
% of writes that are metadata 11.6 28.0 18.9 12.1
% of unique metadata writes 98.5 57.6 61.2 75.0

Table 1: Percentage of metadata writes and unique metadata
in different file systems.

data device, maintains reference counts, allocates new
blocks, and reclaims unreferenced data; and (5) a chunk
store that saves user data to the data device.

3 Potential Hints
Bypass deduplication. Some writes are known a pri-
ori to be likely to be unique. Applications might gener-
ate data that should not or cannot be deduplicated. For
example, some applications write random, compressed,
or encrypted data; others write complex formats (e.g.,
virtual disk images) with internal metadata that tends to
be unique [8]. HPC simulations often generate massive
checkpoints with unique data, and high-resolution sen-
sors produce unique data streams.

Attempting to deduplicate unique writes wastes CPU
time on hash computation and I/O bandwidth on main-
taining the hash index. Unique hashes also increase the
index size, requiring more RAM space and bandwidth
for lookup, insertion, and garbage collection.

Most file system metadata is unique—e.g., inodes
(which have varying timestamps and block pointers), di-
rectory entries, and indirect blocks. Table 1 shows the
percentage of 4KB metadata writes (unique and over-
all) for several file systems, using Filebench’s [7] File-
server workload adjusted to write 4KB blocks instead of
1KB (so as to match the deduplication system’s chunk
size). About 12–28% of the total writes across all file
systems were metadata; in all cases at least 57% of the
metadata was unique. Ext3 and Ext4 have more meta-
data duplicates than Ext2 and Nilfs2 (43% vs. 1–25%), a
phenomenon caused by journaling: Ext4 initially writes
metadata blocks to the journal and then writes the same
blocks to their proper location on the disk.

Metadata writes are more important to overall system
performance than data writes because the former are of-
ten synchronous. Adding extra deduplication overhead
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might increase the latency of those critical metadata
writes. Avoiding excessive metadata deduplication also
helps reliability because many file systems store redun-
dant copies of their metadata (e.g., Ext2/3/4 keeps mul-
tiple superblocks; ZFS explicitly duplicates metadata to
avoid corruption). Deduplicating those copies would ob-
viate this feature. Likewise, file system journals enhance
reliability, so deduplicating their blocks might be coun-
terproductive. A deduplicated journal would also lose
sequentiality, which could harm performance.

In summary, if a block-level deduplication system can
know when it is unwise to deduplicate a write, it can op-
timize its performance and reliability. We implemented
a NODEDUP hint that informs our system that a corre-
sponding request should not be deduplicated.

Prefetch hashes. When a deduplication system knows
what data is about to be written, it can prefetch the cor-
responding hashes from the index, accelerating future
data writes by reducing lookup delays. For example, a
copying process first reads source data and then writes it
back. If a deduplication system can identify that behav-
ior at read time, it can prefetch the corresponding hash
entries from the index to speed up the write path. We
implemented this hint and refer to it as PREFETCH. An-
other interesting use case for this hint is segment clean-
ing in log-structured file systems (e.g., Nilfs2) that mi-
grate data between segments during garbage collection.

Bypass compression. Some deduplication systems
compress chunks to save further space. However, if
a file is already compressed (easily determined), addi-
tional compression consumes CPU time with no benefit.

Cluster hashes. Files that reside in the same directory
tend to be accessed together [12]. In a multi-user en-
vironment, a specific user’s working set is normally far
smaller than the whole file system tree [13]. Based on
file ownership or on which directories contain files, a
deduplication system could group hashes in the index
and pre-load the cache more efficiently.

Partitioned hash index. Partitioning the hash index
based on incoming chunk properties is a popular tech-
nique for improving deduplication performance [1]. The
chance of finding a duplicate in files of the same type is
higher than across all files, so one could define partitions
using, for example, file extensions.

Intelligent chunking. Knowing file boundaries allows
a deduplication system to efficiently chunk data. Certain
large files (e.g., tarballs) contain many small ones. Pass-
ing information about content boundaries to the block
layer would enable higher deduplication ratios [15].

Hint Flow

File System

Application

device−mapper

Block Layer

Data Flow

Metadata Device Data Device

dmdedup

Figure 2: Flow of hints across the storage layers.

4 Design and Implementation
To allow the block layer to be aware of context, we de-
signed a system that lets hints flow from higher to lower
layers in the storage stack. Applications and file systems
can then communicate important information about their
data to lower layers. The red arrows in Figure 2 show
how hints are passed to the block layer. We have imple-
mented two important hints: NODEDUP and PREFETCH.

Nodedup. Since deduplication uses computational re-
sources and may increase latency, it should only be per-
formed when there is a potential benefit. The NODEDUP
hint instructs the block layer not to deduplicate a par-
ticular chunk (block) on writes. It has two use cases:
(1) unique data: there is no point in wasting resources
on deduplicating data that is unlikely to have duplicates,
such as sensor or encrypted data; (2) reliability: main-
taining multiple copies of certain blocks may be neces-
sary, e.g., superblock replicas in many file systems.

Prefetch. One of the most time-consuming operations
in a deduplication system is hash lookup, because it of-
ten requires extra I/O operations. Worse, hashes are ran-
domly distributed by their very nature. Hence, looking
up a hash often requires random I/O, which is the slow-
est operation in most storage systems. Also, as previous
studies have shown [38], it is impractical to keep all the
hashes in memory because the hash index is far too large.

The PREFETCH hint is used to inform the deduplica-
tion system of I/O operations that are likely to gener-
ate further duplicates (e.g., during a file copy) so that
their hashes can be prefetched and cached to minimize
random accesses. This hint can be set on the read
path for applications that expect to access the same data
again. (Note that reads normally only need to access the
LBN→PBN index, bypassing the hash index.)

4.1 Implementation
To add support for hints, we modified various parts of
the storage stack. The generic changes to support prop-
agation of hints from higher levels to the block layer
modified about 77 lines of code in the kernel. We also
modified the OPEN system call to take two new flags,
O NODEDUP and O PREFETCH. User-space applications
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can use these flags to pass hints to the underlying dedu-
plication block device. If the block layer does not sup-
port the flags, they are ignored. Applications that re-
quire redundancy or have a small number of duplicates
can pass the O NODEDUP hint when opening for write.
Similarly, applications that are aware of popular data
blocks, or that know some data will be accessed again,
can pass O PREFETCH when opening for read. Hashes
of the blocks being read can then be prefetched, so that
on a later write they can be found in the prefetch cache.

We modified dmdedup to support the NODEDUP and
PREFETCH hints by adding and changing about 741
LoC. In dmdedup, if a request has the NODEDUP flag
set, we skip lookups and updates in the hash index. In-
stead, we add an entry only to the LBN→PBN mapping.
The read path needs no changes to support NODEDUP.

On the read path in dmdedup, the LBN→PBN map is
consulted to find whether the given location is known,
but no hash calculation is normally necessary because
a previous write would have already added the block to
the hash→PBN map. If a request has the PREFETCH hint
set on the read path then dmdedup hashes the data after
it is read and puts the corresponding hash→PBN tuple
in a prefetch cache. Upon writes, our code saves exe-
cution time by checking the cache before searching the
metadata backend. When a hash is found in the prefetch
cache, it is evicted, since after the copy there is little rea-
son to believe that it will be used again soon.

We also modified some specific file systems to pass
the NODEDUP hint for their metadata and also pass the
OPEN flags to the block layer if set. For Linux’s Nilfs2,
we changed about 371 kernel LoC to mark its metadata
with hints and propagate them, along with the OPEN
flags, from the upper levels to the block layer. Similar
changes to Ext4 changed 16 lines of code; in Ext3 we
modified 6 lines (which also added support for Ext2).
The Ext2/3/4 changes were small because we were able
to leverage the (newer) REQ META flag being set on the
file system metadata to decide whether to deduplicate
based on data type. The rest of the metadata-related hints
are inferred; we identify journal writes from the process
name, jbd2.

5 Evaluation
Experimental Setup. In our experiments we used a
Dell PowerEdge R710, equipped with an Intel Xeon
E5540 2.4GHz 4-core CPU and 24GB of RAM. The
machine ran Ubuntu Linux 14.04 x86 64, upgraded to a
Linux 3.17.0 kernel. We used an Intel DC S3700 series
200GB SSD as the dmdedup metadata device and a Sea-
gate Savvio 15K.2 146GB disk drive for the data. Both
drives were connected to the host using Dell’s PERC 6/i
controller. Although the SSD is large, in all our experi-
ments we used 1.5GB or less for dmdedup metadata.

We ran all experiments at least three times and en-
sured that standard deviations were less than 5% of the
mean. To ensure that all dirty data reached stable media
in the micro-workload experiments, we called sync at
the end of each run and then unmounted the file system;
our time measurements include these two steps.

For all experiments we used dmdedup’s cowbtree
transactional metadata backend, since it helps avoid in-
consistent metadata states on crashes. Cowbtree allows
users to specify different metadata cache sizes; we used
sizes of 1%, 2%, 5%, and 10% of the deduplication
metadata for each experiment. These ratios are typi-
cal in real deduplication systems. Dmdedup also allows
users to specify the granularity at which they want to
flush metadata. We ran all experiments with two set-
tings: flush metadata on every write, or flush after every
1,000 writes. In our results we focus on the latter case
because it is a more realistic setting. Flushing after every
write is like using the O SYNC flag for every operation
and is uncommon in real systems; we used that setting to
achieve a worst-case estimate. Dmdedup also flushes its
metadata when it receives any flush request from the lay-
ers above. Thus, dmdedup’s data persistency semantics
are the same as those of a regular block device.

5.1 Experiments
We evaluated the NODEDUP and PREFETCH hints for
four file systems: Ext2, Ext3, Ext4, and Nilfs2. Ext2 is a
traditional FFS-like file system that updates metadata in
place; Ext3 adds journaling and Ext4 further adds extent
support. Nilfs2 is a log-structured file system: it sequen-
tializes all writes and has a garbage-collection phase to
remove redundant blocks. We show results only for Ext4
and Nilfs2, because we obtained similar results from the
other file systems. In all cases we found that the perfor-
mance of Nilfs2 is lower than that of Ext4; others have
seen similar trends [27].

NODEDUP hint. To show the effectiveness of
application-layer hints, we added the NODEDUP hint as
an open flag on dd’s write path. We then created a 4GB
file with unique data, testing with the hint both on and
off. This experiment shows the benefit of the NODEDUP
hint on a system where unique data is being written (i.e.,
where deduplication is not useful), or where reliability
considerations trump deduplicating. This hint might not
be as helpful in workloads that produce many dupli-
cates. Figure 3 shows the benefit of the NODEDUP hint
for Ext4 and Nilfs2 when metadata was flushed every
1,000 writes; results for other file systems were similar.
We found that the NODEDUP hint decreased unique-data
write times by 2.2–5.3×. Flushing dmdedup’s metadata
after every write reduced the benefit of the NODEDUP
hint, since the I/O overhead was high, but we still
observed improvements of 1.3–1.6×.
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Figure 3: Performance of using dd to create a 4GB file with unique content, both with and without the NODEDUP hint, for different
file systems. The X axis lists the metadata cache size used by dmdedup, in both absolute values and as a percentage of the total
metadata required by the workload. Dmdedup metadata was flushed after every 1,000 writes. Lower is better.
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Figure 4: Performance of using dd to copy a 1GB file, both with and without the PREFETCH hint, for different file systems. The X
axis lists the metadata cache size used by dmdedup, in both absolute values and as a percentage of the total metadata required by
workload. Dmdedup metadata was flushed after every 1,000 writes. Lower is better.

PREFETCH hint. To evaluate the PREFETCH hint we
modified dd to use the O PREFETCH open flag on the
read path so that writes could benefit from caching
hashes. We then used the modified dd to repeatedly
copy a 1GB file with unique content within a single file
system. We used unique content so that we could mea-
sure the worst-case performance where no deduplication
can happen, and to ensure that the prefetch cache was
heavily used. We also performed studies on a locally
collected dataset of the hashes of the home directories of
a small research group. We analyzed the hashes to learn
how many duplicate blocks are seen within a file using
4KB chunk sizes, and found that 99% of the files had
unique chunks. Thus testing the PREFETCH hint with
unique content makes sense. For all four file systems,
the results were similar because most file systems man-
age single-file data-intensive workloads similarly. Fig-
ure 4 shows results for Ext4 and Nilfs2. When flushing
dmdedup’s metadata every 1,000 writes, the reduction
in copy time compared to the no-hint configuration was
1.2–1.8×. When we flushed the metadata after every
write, the copy times ranged from 16% worse to 16%
better. The improvement from hints was less significant
here because the overhead of flushing was higher than
the benefit obtained from prefetching the hashes.

Not suprisingly, the effectiveness of PREFETCH hint
depends on the deduplication ratio. For example, when
we changed the deduplication ratio to 8:1 in the above
experiment, the copy times ranged from 9% worse to
55% better depending on file system type and dmdedup
settings.

Macro workload. We modified Filebench to gener-
ate data in the form of a given duplicate distribution
instead of arbitrary data. We then ran Filebench’s
Fileserverworkload, modified to write 4KB blocks,
to assess the benefit of setting the NODEDUP hint for:
(1) file metadata writes, where we mark the metadata
blocks and the journal writes with this hint, and (2) file
data writes along with the metadata writes. We used a
unique-write workload to show the benefits of applying
the NODEDUP hint for applications writing unique data.
Figure 5 shows the maximal benefit of setting the NO-
DEDUP hint on for file metadata writes alone, and for
data and metadata writes. We ran Filebench, with the
all-unique writes being flushed after 1,000 writes. When
setting the NODEDUP hint only for metadata writes, we
saw an increase in throughput of 1–10%. When we set
the hint for both data and metadata writes, we saw an
improvement in throughput of 1.1–1.2× for Ext4, and
3.5–4.5× for Nilfs2. When we set the NODEDUP hint
for metadata only, we observed an increase in perfor-
mance but a decrease in deduplication. As calculated
from Table 1, about 7.3% of all writes in Ext4 and 3.0%
of all writes in Nilfs2 are duplicated file-system meta-
data writes. Dmdedup would save extra space by dedu-
plicating these writes if the NODEDUP hint was not set.
In other words, the hint trades higher throughput and re-
liability for a lower deduplication ratio.

We also ran a similar experiment (not shown for
brevity) where Filebench generated data with a dedup
ratio of 4:1 (3 duplicate blocks for every unique one).
We set the NODEDUP hint for metadata writes only (be-
cause Filebench generated unique data on a per-write ba-
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Figure 5: Throughput obtained using Filebench’s Fileserver workload modified to write all-unique content, for different file
systems. Throughput is shown with the NODEDUP hint off (no-hint); with the hint on for file system metadata only (md-hint-on);
and with the hint on for both file system metadata and data (data+md-hint on). The X axis lists the dmdedup metadata cache size,
in both absolute values and as a percentage of an estimate of the total metadata required by the workload. Dmdedup metadata
was flushed after every 1,000 writes. Higher is better.

sis whereas our hint works on a per-file basis), and com-
pared this to the case where the NODEDUP hint was off.
We saw a modest improvement in throughput, ranging
from 4–7% for Ext4 and 6–10% for Nilfs2.

6 Related Work
The semantic divide between the block layer and file sys-
tems has been addressed previously [2,6,29–31] and has
received growing attention because of the widespread
use of virtualization and the cloud, which places storage
further away from applications [9, 11, 17, 23, 24, 35].

An important approach to secondary storage is AD-
MAD, which performs application-aware file chunking
before deduplicating a backup [16]. This is similar to
our hints interface, which can be easily extended to pass
application-aware chunk-boundary information.

Many researchers have proposed techniques to
prefetch fingerprints and accelerate deduplication filter-
ing [14, 37, 38]. While these techniques could be added
to dmdedup in the future, our current focus is on provid-
ing semantic hints from higher layers, which we believe
is an effective complementary method for accelerating
performance. In addition, some of these past techniques
rely on workload-specific data patterns (e.g., backups)
that might not be beneficial in general-purpose in-line
primary-storage deduplication systems.

Studies of memory deduplication in virtualized envi-
ronments [20, 21] show a benefit of closing the seman-
tic gap caused by multiple virtualization layers. There,
memory is scanned by the host OS to identify and merge
duplicate pages. Such scanning is expensive, misses
short-lived pages, and is slow to identify longer-lived
duplicates. However, these studies found that pages in
the guest’s unified buffer cache are good sharing can-
didates, so marking requests from the guest OS with a
dedup hint can help to quickly identify potential dupli-
cates. This approach is specific to memory deduplication
and may not apply to storage systems where we identify
duplicates before writing to the disk.

Lastly, others have demonstrated a loss of potential
deduplication opportunities caused by intermixing meta-
data and data [15], showing that having hints to avoid

unnecessary deduplication might be beneficial.

7 Conclusions and Future Work
Deduplication at the block layer has two main advan-
tages: (1) allowing any file system and application to
benefit from deduplication, and (2) ease of implemen-
tation [34]. Unfortunately, application and file system
context is lost at the block layer, which can harm dedu-
plication’s effectiveness. However, by adding simple
yet powerful hints, we were able to provide the miss-
ing semantics to the block layer, allowing the dedup sys-
tem to improve performance and possibly also reliabil-
ity. Our experiments show that adding the NODEDUP
hint to applications like dd can improve performance by
up to 5.3× when copying unique data, since we avoid
the overhead of deduplication for data that is unlikely
to have duplicates. This hint can be extended to other
applications, such as those that compress or encrypt.
Adding the PREFETCH hint to applications like dd im-
proved copying time by as much as 1.8× because we
cache the hashes and do not need to access the metadata
device to fetch them on the write path. Adding hints to
macro workloads like Filebench’s Fileserver work-
load improved throughput by as much as 4.5×. Another
important note is that the effectiveness of hints depends
on both the overhead added by the deduplication system,
the nature of the data being written (e.g., deduplication
ratio), and the workload, so all factors need to be con-
sidered when choosing to use hints.

Future work. Because of the success of our initial ex-
periments, we intend to add hint support to other file sys-
tems, such as Btrfs and XFS. We also plan to implement
other hints, discussed in Section 3, to provide richer con-
text to the block layer, along with support to pass addi-
tional information (e.g. inode numbers) that can be used
to enhance hints. We also plan to add the PREFETCH hint
to Nilfs2 for segment cleaning.
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Abstract

Fast non-volatile memories (NVMs) will soon appear on

the processor memory bus alongside DRAM. The result-

ing hybrid memory systems will provide software with sub-

microsecond, high-bandwidth access to persistent data, but

managing, accessing, and maintaining consistency for data

stored in NVM raises a host of challenges. Existing file sys-

tems built for spinning or solid-state disks introduce software

overheads that would obscure the performance that NVMs

should provide, but proposed file systems for NVMs either in-

cur similar overheads or fail to provide the strong consistency

guarantees that applications require.

We present NOVA, a file system designed to maximize

performance on hybrid memory systems while providing

strong consistency guarantees. NOVA adapts conventional

log-structured file system techniques to exploit the fast ran-

dom access that NVMs provide. In particular, it maintains

separate logs for each inode to improve concurrency, and

stores file data outside the log to minimize log size and re-

duce garbage collection costs. NOVA’s logs provide meta-

data, data, and mmap atomicity and focus on simplicity and

reliability, keeping complex metadata structures in DRAM

to accelerate lookup operations. Experimental results show

that in write-intensive workloads, NOVA provides 22% to

216× throughput improvement compared to state-of-the-art

file systems, and 3.1× to 13.5× improvement compared to

file systems that provide equally strong data consistency guar-

antees.

1. Introduction

Emerging non-volatile memory (NVM) technologies such

as spin-torque transfer, phase change, resistive memories [2,

28, 52] and Intel and Micron’s 3D XPoint [1] technology

promise to revolutionize I/O performance. Researchers have

proposed several approaches to integrating NVMs into com-

puter systems [11, 13, 19, 31, 36, 41, 58, 67], and the most

exciting proposals place NVMs on the processor’s mem-

ory bus alongside conventional DRAM, leading to hybrid

volatile/non-volatile main memory systems [4, 51, 72, 78].

Combining faster, volatile DRAM with slightly slower, denser

non-volatile main memories (NVMMs) offers the possibility

of storage systems that combine the best characteristics of

both technologies.

Hybrid DRAM/NVMM storage systems present a host of

opportunities and challenges for system designers. These sys-

tems need to minimize software overhead if they are to fully

exploit NVMM’s high performance and efficiently support

more flexible access patterns, and at the same time they must

provide the strong consistency guarantees that applications

require and respect the limitations of emerging memories

(e.g., limited program cycles).

Conventional file systems are not suitable for hybrid mem-

ory systems because they are built for the performance char-

acteristics of disks (spinning or solid state) and rely on disks’

consistency guarantees (e.g., that sector updates are atomic)

for correctness [47]. Hybrid memory systems differ from

conventional storage systems on both counts: NVMMs pro-

vide vastly improved performance over disks while DRAM

provides even better performance, albeit without persistence.

And memory provides different consistency guarantees (e.g.,

64-bit atomic stores) from disks.

Providing strong consistency guarantees is particularly

challenging for memory-based file systems because main-

taining data consistency in NVMM can be costly. Modern

CPU and memory systems may reorder stores to memory to

improve performance, breaking consistency in case of system

failure. To compensate, the file system needs to explicitly

flush data from the CPU’s caches to enforce orderings, adding

significant overhead and squandering the improved perfor-

mance that NVMM can provide [6, 76].

Overcoming these problems is critical since many applica-

tions rely on atomic file system operations to ensure their own

correctness. Existing mainstream file systems use journaling,

shadow paging, or log-structuring techniques to provide atom-

icity. However, journaling wastes bandwidth by doubling the

number of writes to the storage device, and shadow paging

file systems require a cascade of updates from the affected

leaf nodes to the root. Implementing either technique imposes

strict ordering requirements that reduce performance.

Log-structured file systems (LFSs) [55] group small ran-

dom write requests into a larger sequential write that hard

disks and NAND flash-based solid state drives (SSDs) can

process efficiently. However, conventional LFSs rely on the

availability of contiguous free regions, and maintaining those

regions requires expensive garbage collection operations. As

a result, recent research [59] shows that LFSs perform worse

than journaling file systems on NVMM.
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To overcome all these limitations, we present the NOn-

Volatile memory Accelerated (NOVA) log-structured file sys-

tem. NOVA adapts conventional log-structured file system

techniques to exploit the fast random access provided by hy-

brid memory systems. This allows NOVA to support massive

concurrency, reduce log size, and minimize garbage collec-

tion costs while providing strong consistency guarantees for

conventional file operations and mmap-based load/store ac-

cesses.

Several aspects of NOVA set it apart from previous log-

structured file systems. NOVA assigns each inode a separate

log to maximize concurrency during normal operation and

recovery. NOVA stores the logs as linked lists, so they do not

need to be contiguous in memory, and it uses atomic updates

to a log’s tail pointer to provide atomic log append. For

operations that span multiple inodes, NOVA uses lightweight

journaling.

NOVA does not log data, so the recovery process only

needs to scan a small fraction of the NVMM. This also al-

lows NOVA to immediately reclaim pages when they become

stale, significantly reducing garbage collection overhead and

allowing NOVA to sustain good performance even when the

file system is nearly full.

In describing NOVA, this paper makes the following con-

tributions:

• It extends existing log-structured file system techniques to

exploit the characteristics of hybrid memory systems.

• It describes atomic mmap, a simplified interface for expos-

ing NVMM directly to applications with a strong consis-

tency guarantee.

• It demonstrates that NOVA outperforms existing journal-

ing, shadow paging, and log-structured file systems run-

ning on hybrid memory systems.

• It shows that NOVA provides these benefits across a range

of proposed NVMM technologies.

We evaluate NOVA using a collection of micro- and macro-

benchmarks on a hardware-based NVMM emulator. We find

that NOVA is significantly faster than existing file systems

in a wide range of applications and outperforms file systems

that provide the same data consistency guarantees by between

3.1× and 13.5× in write-intensive workloads. We also mea-

sure garbage collection and recovery overheads, and we find

that NOVA provides stable performance under high NVMM

utilization levels and fast recovery in case of system failure.

The remainder of the paper is organized as follows. Sec-

tion 2 describes NVMMs, the challenges they present, and

related work on NVMM file system design. Section 3 gives

a overview of NOVA architecture and Section 4 describes

the implementation in detail. Section 5 evaluates NOVA, and

Section 6 concludes.

2. Background

NOVA targets memory systems that include emerging non-

volatile memory technologies along with DRAM. This sec-

tion first provides a brief survey of NVM technologies and the

opportunities and challenges they present to system design-

ers. Then, we discuss how other file systems have provided

atomic operations and consistency guarantees. Finally, we

discuss previous work on NVMM file systems.

2.1. Non-volatile memory technologies

Emerging non-volatile memory technologies, such as

spin-torque transfer RAM (STT-RAM) [28, 42], phase

change memory (PCM) [10, 18, 29, 52], resistive RAM

(ReRAM) [22, 62], and 3D XPoint memory technology [1],

promise to provide fast, non-volatile, byte-addressable memo-

ries. Suzuki et al. [63] provides a survey of these technologies

and their evolution over time.

These memories have different strengths and weaknesses

that make them useful in different parts of the memory hierar-

chy. STT-RAM can meet or surpass DRAM’s latency and it

may eventually appear in on-chip, last-level caches [77], but

its large cell size limits capacity and its feasibility as a DRAM

replacement. PCM and ReRAM are denser than DRAM, and

may enable very large, non-volatile main memories. How-

ever, their relatively long latencies make it unlikely that they

will fully replace DRAM as main memory. The 3D XPoint

memory technology recently announced by Intel and Micron

is rumored to be one of these and to offer performance up

to 1,000 times faster than NAND flash [1]. It will appear in

both SSDs and on the processor memory bus. As a result, we

expect to see hybrid volatile/non-volatile memory hierarchies

become common in large systems.

2.2. Challenges for NVMM software

NVMM technologies present several challenges to file sys-

tem designers. The most critical of these focus on balancing

the memories’ performance against software overheads, en-

forcing ordering among updates to ensure consistency, and

providing atomic updates.

Performance The low latencies of NVMMs alters the

trade-offs between hardware and software latency. In con-

ventional storage systems, the latency of slow storage de-

vices (e.g., disks) dominates access latency, so software ef-

ficiency is not critical. Previous work has shown that with

fast NVMM, software costs can quickly dominate memory

latency, squandering the performance that NVMMs could

provide [7, 12, 68, 74].

Since NVMM memories offer low latency and will be on

the processor’s memory bus, software should be able to access

them directly via loads and stores. Recent NVMM-based file
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systems [21, 71, 73] bypass the DRAM page cache and access

NVMM directly using a technique called Direct Access (DAX)

or eXecute In Place (XIP), avoiding extra copies between

NVMM and DRAM in the storage stack. NOVA is a DAX

file system and we expect that all NVMM file systems will

provide these (or similar) features. We describe currently

available DAX file systems in Section 2.4.

Write reordering Modern processors and their caching

hierarchies may reorder store operations to improve perfor-

mance. The CPU’s memory consistency protocol makes guar-

antees about the ordering of memory updates, but existing

models (with the exception of research proposals [20, 46]) do

not provide guarantees on when updates will reach NVMMs.

As a result, a power failure may leave the data in an inconsis-

tent state.

NVMM-aware software can avoid this by explicitly flush-

ing caches and issuing memory barriers to enforce write

ordering. The x86 architecture provides the clflush in-

struction to flush a CPU cacheline, but clflush is strictly

ordered and needlessly invalidates the cacheline, incurring a

significant performance penalty [6, 76]. Also, clflush only

sends data to the memory controller; it does not guarantee

the data will reach memory. Memory barriers such as Intel’s

mfence instruction enforce order on memory operations be-

fore and after the barrier, but mfence only guarantees all

CPUs have the same view of the memory. It does not impose

any constraints on the order of data writebacks to NVMM.

Intel has proposed new instructions that fix these prob-

lems, including clflushopt (a more efficient version of

clflush), clwb (to explicitly write back a cache line with-

out invalidating it) and PCOMMIT (to force stores out to

NVMM) [26, 79]. NOVA is built with these instructions

in mind. In our evaluation we use a hardware NVMM emu-

lation system that approximates the performance impacts of

these instructions.

Atomicity POSIX-style file system semantics require

many operations to be atomic (i.e., to execute in an “all or

nothing” fashion). For example, the POSIX rename re-

quires that if the operation fails, neither the file with the old

name nor the file with the new name shall be changed or

created [53]. Renaming a file is a metadata-only operation,

but some atomic updates apply to both file system metadata

and data. For instance, appending to a file atomically updates

the file data and changes the file’s length and modification

time. Many applications rely on atomic file system operations

for their own correctness.

Storage devices typically provide only rudimentary guaran-

tees about atomicity. Disks provide atomic sector writes and

processors guarantee only that 8-byte (or smaller), aligned

stores are atomic. To build the more complex atomic up-

dates that file systems require, programmers must use more

complex techniques.

2.3. Building complex atomic operations

Existing file systems use a variety of techniques like journal-

ing, shadow paging, or log-structuring to provide atomicity

guarantees. These work in different ways and incur different

types of overheads.

Journaling Journaling (or write-ahead logging) is widely

used in journaling file systems [24, 27, 32, 71] and

databases [39, 43] to ensure atomicity. A journaling system

records all updates to a journal before applying them and, in

case of power failure, replays the journal to restore the system

to a consistent state. Journaling requires writing data twice:

once to the log and once to the target location, and to im-

prove performance journaling file systems usually only jour-

nal metadata. Recent work has proposed back pointers [17]

and decoupling ordering from durability [16] to reduce the

overhead of journaling.

Shadow paging Several file systems use a copy-on-write

mechanism called shadow paging [20, 8, 25, 54]. Shadow

paging file systems rely heavily on their tree structure to

provide atomicity. Rather than modifying data in-place during

a write, shadow paging writes a new copy of the affected

page(s) to an empty portion of the storage device. Then, it

splices the new pages into the file system tree by updating

the nodes between the pages and root. The resulting cascade

of updates is potentially expensive.

Log-structuring Log-structured file systems (LFSs) [55,

60] were originally designed to exploit hard disk drives’ high

performance on sequential accesses. LFSs buffer random

writes in memory and convert them into larger, sequential

writes to the disk, making the best of hard disks’ strengths.

Although LFS is an elegant idea, implementing it effi-

ciently is complex, because LFSs rely on writing sequentially

to contiguous free regions of the disk. To ensure a consistent

supply of such regions, LFSs constantly clean and compact

the log to reclaim space occupied by stale data.

Log cleaning adds overhead and degrades the performance

of LFSs [3, 61]. To reduce cleaning overhead, some LFS

designs separate hot and cold data and apply different clean-

ing policies to each [69, 70]. SSDs also perform best under

sequential workloads [9, 14], so LFS techniques have been

applied to SSD file systems as well. SFS [38] classifies file

blocks based on their update likelihood, and writes blocks

with similar “hotness” into the same log segment to reduce

cleaning overhead. F2FS [30] uses multi-head logging, writes

metadata and data to separate logs, and writes new data di-

rectly to free space in dirty segments at high disk utilization

to avoid frequent garbage collection.
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RAMCloud [44] is a DRAM-based storage system that

keeps all its data in DRAM to service reads and maintains

a persistent version on hard drives. RAMCloud applies log

structure to both DRAM and disk: It allocates DRAM in a

log-structured way, achieving higher DRAM utilization than

other memory allocators [56], and stores the back up data in

logs on disk.

2.4. File systems for NVMM

Several groups have designed NVMM-based file systems that

address some of the issues described in Section 2.2 by apply-

ing one or more of the techniques discussed in Section 2.3,

but none meet all the requirements that modern applications

place on file systems.

BPFS [20] is a shadow paging file system that provides

metadata and data consistency. BPFS proposes a hardware

mechanism to enforce store durability and ordering. BPFS

uses short-circuit shadow paging to reduce shadow paging

overheads in common cases, but certain operations that span

a large portion of the file system tree (e.g., a move between

directories) can still incur large overheads.

PMFS [21, 49] is a lightweight DAX file system that by-

passes the block layer and file system page cache to improve

performance. PMFS uses journaling for metadata updates. It

performs writes in-place, so they are not atomic.

Ext4-DAX [71] extends Ext4 with DAX capabilities to

directly access NVMM, and uses journaling to guarantee

metadata update atomicity. The normal (non-DAX) Ext4 file

system has a data-journal mode to provide data atomicity.

Ext4-DAX does not support this mode, so data updates are

not atomic.

SCMFS [73] utilizes the operating system’s virtual mem-

ory management module and maps files to large contigu-

ous virtual address regions, making file accesses simple and

lightweight. SCMFS does not provide any consistency guar-

antee of metadata or data.

Aerie [66] implements the file system interface and func-

tionality in user space to provide low-latency access to data

in NVMM. It has an optimization that improves performance

by relaxing POSIX semantics. Aerie journals metadata but

does not support data atomicity or mmap operation.

3. NOVA Design Overview

NOVA is a log-structured, POSIX file system that builds on

the strengths of LFS and adapts them to take advantage of

hybrid memory systems. Because it targets a different storage

technology, NOVA looks very different from conventional

log-structured file systems that are built to maximize disk

bandwidth.

We designed NOVA based on three observations. First,

logs that support atomic updates are easy to implement cor-

rectly in NVMM, but they are not efficient for search oper-

ations (e.g., directory lookup and random-access within a

file). Conversely, data structures that support fast search (e.g.,

tree structures) are more difficult to implement correctly and

efficiently in NVMM [15, 40, 65, 75]. Second, the complex-

ity of cleaning logs stems primarily from the need to supply

contiguous free regions of storage, but this is not necessary

in NVMM, because random access is cheap. Third, using

a single log makes sense for disks (where there is a single

disk head and improving spatial locality is paramount), but

it limits concurrency. Since NVMMs support fast, highly

concurrent random accesses, using multiple logs does not

negatively impact performance.

Based on these observations, we made the following design

decisions in NOVA.

Keep logs in NVMM and indexes in DRAM. NOVA

keeps log and file data in NVMM and builds radix trees [35]

in DRAM to quickly perform search operations, making the

in-NVMM data structures simple and efficient. We use a

radix tree because there is a mature, well-tested, widely-used

implementation in the Linux kernel. The leaves of the radix

tree point to entries in the log which in turn point to file data.

Give each inode its own log. Each inode in NOVA has

its own log, allowing concurrent updates across files without

synchronization. This structure allows for high concurrency

both in file access and during recovery, since NOVA can

replay multiple logs simultaneously. NOVA also guarantees

that the number of valid log entries is small (on the order of

the number of extents in the file), which ensures that scanning

the log is fast.

Use logging and lightweight journaling for complex

atomic updates. NOVA is log-structured because this

provides cheaper atomic updates than journaling and shadow

paging. To atomically write data to a log, NOVA first ap-

pends data to the log and then atomically updates the log

tail to commit the updates, thus avoiding both the duplicate

writes overhead of journaling file systems and the cascading

update costs of shadow paging systems.

Some directory operations, such as a move between direc-

tories, span multiple inodes and NOVA uses journaling to

atomically update multiple logs. NOVA first writes data at the

end of each inode’s log, and then journals the log tail updates

to update them atomically. NOVA journaling is lightweight

since it only involves log tails (as opposed to file data or

metadata) and no POSIX file operation operates on more than

four inodes.

Implement the log as a singly linked list. The locality

benefits of sequential logs are less important in NVMM-based

storage, so NOVA uses a linked list of 4 KB NVMM pages

to hold the log and stores the next page pointer in the end of
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each log page.

Allowing for non-sequential log storage provides three

advantages. First, allocating log space is easy since NOVA

does not need to allocate large, contiguous regions for the

log. Second, NOVA can perform log cleaning at fine-grained,

page-size granularity. Third, reclaiming log pages that con-

tain only stale entries requires just a few pointer assignments.

Do not log file data. The inode logs in NOVA do not

contain file data. Instead, NOVA uses copy-on-write for

modified pages and appends metadata about the write to the

log. The metadata describe the update and point to the data

pages. Section 4.4 describes file write operation in more

detail.

Using copy-on-write for file data is useful for several rea-

sons. First, it results in a shorter log, accelerating the recovery

process. Second, it makes garbage collection simpler and

more efficient, since NOVA never has to copy file data out of

the log to reclaim a log page. Third, reclaiming stale pages

and allocating new data pages are both easy, since they just

require adding and removing pages from in-DRAM free lists.

Fourth, since it can reclaim stale data pages immediately,

NOVA can sustain performance even under heavy write loads

and high NVMM utilization levels.

The next section describes the implementation of NOVA

in more detail.

4. Implementing NOVA

We have implemented NOVA in the Linux kernel version

4.0. NOVA uses the existing NVMM hooks in the kernel

and has passed the Linux POSIX file system test suite [50].

The source code is available on GitHub: https://github.com/

NVSL/NOVA. In this section we first describe the overall

file system layout and its atomicity and write ordering mecha-

nisms. Then, we describe how NOVA performs atomic direc-

tory, file, and mmap operations. Finally we discuss garbage

collection, recovery, and memory protection in NOVA.

4.1. NVMM data structures and space management

Figure 1 shows the high-level layout of NOVA data structures

in a region of NVMM it manages. NOVA divides the NVMM

into four parts: the superblock and recovery inode, the inode

tables, the journals, and log/data pages. The superblock

contains global file system information, the recovery inode

stores recovery information that accelerates NOVA remount

after a clean shutdown (see Section 4.7), the inode tables

contain inodes, the journals provide atomicity to directory

operations, and the remaining area contains NVMM log and

data pages. We designed NOVA with scalability in mind:

NOVA maintains an inode table, journal, and NVMM free

page list at each CPU to avoid global locking and scalability

  Head Tail

Committed log entry Uncommitted log entry

Inode log

Inode

DRAM

NVMM

CPU 1

Journal

Free list

Inode table

CPU 2

Journal

Free list

Inode table

CPU 3

Journal

Free list

Inode table

CPU 4

Journal

Free list

Inode table
  

Super

block

Recovery 

inode

Figure 1: NOVA data structure layout. NOVA has per-CPU free

lists, journals and inode tables to ensure good scalability. Each

inode has a separate log consisting of a singly linked list of 4 KB log

pages; the tail pointer in the inode points to the latest committed

entry in the log.

bottlenecks.

Inode table NOVA initializes each inode table as a 2 MB

block array of inodes. Each NOVA inode is aligned on 128-

byte boundary, so that given the inode number NOVA can

easily locate the target inode. NOVA assigns new inodes to

each inode table in a round-robin order, so that inodes are

evenly distributed among inode tables. If the inode table

is full, NOVA extends it by building a linked list of 2 MB

sub-tables. To reduce the inode table size, each NOVA inode

contains a valid bit and NOVA reuses invalid inodes for new

files and directories. Per-CPU inode tables avoid the inode

allocation contention and allow for parallel scanning in failure

recovery.

A NOVA inode contains pointers to the head and tail of its

log. The log is a linked list of 4 KB pages, and the tail always

points to the latest committed log entry. NOVA scans the log

from head to tail to rebuild the DRAM data structures when

the system accesses the inode for the first time.

Journal A NOVA journal is a 4 KB circular buffer and

NOVA manages each journal with a <enqueue, dequeue>

pointer pair. To coordinate updates that across multiple in-

odes, NOVA first appends log entries to each log, and then

starts a transaction by appending all the affected log tails to

the current CPU’s journal enqueue, and updates the enqueue

pointer. After propagating the updates to the target log tails,

NOVA updates the dequeue equal to enqueue to commit the

transaction. For a create operation, NOVA journals the

directory’s log tail pointer and new inode’s valid bit. During

power failure recovery, NOVA checks each journal and rolls

back any updates between the journal’s dequeue and enqueue.

NOVA only allows one open transaction at a time on each

core and per-CPU journals allow for concurrent transactions.

For each directory operation, the kernel’s virtual file system
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(VFS) layer locks all the affected inodes, so concurrent trans-

actions never modify the same inode.

NVMM space management To make NVMM allocation

and deallocation fast, NOVA divides NVMM into pools, one

per CPU, and keeps lists of free NVMM pages in DRAM.

If no pages are available in the current CPU’s pool, NOVA

allocates pages from the largest pool, and uses per-pool locks

to provide protection. This allocation scheme is similar to

scalable memory allocators like Hoard [5]. To reduce the

allocator size, NOVA uses a red-black tree to keep the free

list sorted by address, allowing for efficient merging and

providing O(logn) deallocation. To improve performance,

NOVA does not store the allocator state in NVMM during

operation. On a normal shutdown, it records the allocator

state to the recovery inode’s log and restores the allocator

state by scanning the all the inodes’ logs in case of a power

failure.

NOVA allocates log space aggressively to avoid the need

to frequently resize the log. Initially, an inode’s log contains

one page. When the log exhausts the available space, NOVA

allocates sufficient new pages to double the log space and

appends them to the log. If the log length is above a given

threshold, NOVA appends a fixed number of pages each time.

4.2. Atomicity and enforcing write ordering

NOVA provides fast atomicity for metadata, data, and mmap

updates using a technique that combines log structuring and

journaling. This technique uses three mechanisms.

64-bit atomic updates Modern processors support 64-bit

atomic writes for volatile memory and NOVA assumes that

64-bit writes to NVMM will be atomic as well. NOVA uses

64-bit in-place writes to directly modify metadata for some

operations (e.g., the file’s atime for reads) and uses them to

commit updates to the log by updating the inode’s log tail

pointer.

Logging NOVA uses the inode’s log to record operations

that modify a single inode. These include operations such

as write, msync and chmod. The logs are independent of

one another.

Lightweight journaling For directory operations that re-

quire changes to multiple inodes (e.g., create, unlink

and rename), NOVA uses lightweight journaling to provide

atomicity. At any time, the data in any NOVA journal are

small—no more than 64 bytes: The most complex POSIX

rename operation involves up to four inodes, and NOVA

only needs 16 bytes to journal each inode: 8 bytes for the

address of the log tail pointer and 8 bytes for the value.

Enforcing write ordering NOVA relies on three write or-

dering rules to ensure consistency. First, it commits data

new_tail = append_to_log(inode->tail, entry);

// writes back the log entry cachelines

clwb(inode->tail, entry->length);

sfence(); // orders subsequent PCOMMIT

PCOMMIT(); // commits entry to NVMM

sfence(); // orders subsequent store

inode->tail = new_tail;

Figure 2: Pseudocode for enforcing write ordering. NOVA

commits the log entry to NVMM strictly before updating the log

tail pointer. The persistency of the tail update is not shown in the

figure.

and log entries to NVMM before updating the log tail. Sec-

ond, it commits journal data to NVMM before propagating

the updates. Third, it commits new versions of data pages

to NVMM before recycling the stale versions. If NOVA is

running on a system that supports clflushopt, clwb and

PCOMMIT instructions, it uses the code in Figure 2 to enforce

the write ordering.

First, the code appends the entry to the log. Then it flushes

the affected cache lines with clwb. Next, it issues a sfence

and a PCOMMIT instruction to force all previous updates to

the NVMM controller. A second sfence prevents the tail

update from occurring before the PCOMMIT. The write-back

and commit of the tail update are not shown in the figure.

If the platform does not support the new instructions,

NOVA uses movntq, a non-temporal move instruction that

bypasses the CPU cache hierarchy to perform direct writes to

NVMM and uses a combination of clflush and sfence

to enforce the write ordering.

4.3. Directory operations

NOVA pays close attention to directory operations because

they have a large impact on application performance [37, 33,

64]. NOVA includes optimizations for all the major directory

operations, including link, symlink and rename.

NOVA directories comprise two parts: the log of the direc-

tory’s inode in NVMM and a radix tree in DRAM. Figure 3

shows the relationship between these components. The di-

rectory’s log holds two kinds of entries: directory entries

(dentry) and inode update entries. Dentries include the name

of the child file/directory, its inode number, and timestamp.

NOVA uses the timestamp to atomically update the directory

inode’s mtime and ctime with the operation. NOVA appends

a dentry to the log when it creates, deletes, or renames a file

or subdirectory under that directory. A dentry for a delete

operation has its inode number set to zero to distinguish it

from a create dentry.

NOVA adds inode update entries to the directory’s log

to record updates to the directory’s inode (e.g., for chmod

and chown). These operations modify multiple fields of the

inode, and the inode update entry provides atomicity.
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foo , 0foo , 10 bar , 20 chmod

Create dentry Inode updateDelete dentry

Figure 3: NOVA directory structure. Dentry is shown in <name,

inode_number> format. To create a file, NOVA first appends the

dentry to the directory’s log (step 1), updates the log tail as part of

a transaction (step 2), and updates the radix tree (step 3).

To speed up dentry lookups, NOVA keeps a radix tree

in DRAM for each directory inode. The key is the hash

value of the dentry name, and each leaf node points to the

corresponding dentry in the log. The radix tree makes search

efficient even for large directories. Below, we use file creation

and deletion to illustrate these principles.

Creating a file Figure 3 illustrates the creation of file zoo

in a directory that already contains file bar. The directory has

recently undergone a chmod operation and used to contain

another file, foo. The log entries for those operations are

visible in the figure. NOVA first selects and initializes an

unused inode in the inode table for zoo, and appends a create

dentry of zoo to the directory’s log. Then, NOVA uses the

current CPU’s journal to atomically update the directory’s

log tail and set the valid bit of the new inode. Finally NOVA

adds the file to the directory’s radix tree in DRAM.

Deleting a file In Linux, deleting a file requires two up-

dates: The first decrements the link count of the file’s inode,

and the second removes the file from the enclosing directory.

NOVA first appends a delete dentry log entry to the directory

inode’s log and an inode update entry to the file inode’s log

and then uses the journaling mechanism to atomically up-

date both log tails. Finally it propagates the changes to the

directory’s radix tree in DRAM.

4.4. Atomic file operations

The NOVA file structure uses logging to provide metadata

and data atomicity with low overhead, and it uses copy-on-

write for file data to reduce the log size and make garbage

collection simple and efficient. Figure 4 shows the structure

of a NOVA file. The file inode’s log records metadata changes,

and each file has a radix tree in DRAM to locate data in the

file by the file offset.

A file inode’s log contains two kinds of log entries: inode

update entries and file write entries that describe file write

File log

DRAM

NVMM

root

Data 0

<0, 1>

File radix tree

Step 3Old tail New tail

0 1 2 3

Data 1 Data 2

<2, 2>

Data 2 Data 3

Step 1

Step 2

<1, 2>

Step 4

Step 5

File write entry Data page

Figure 4: NOVA file structure. An 8 KB (i.e., 2-page) write to

page two (<2, 2>) of a file requires five steps. NOVA first writes a

copy of the data to new pages (step 1) and appends the file write

entry (step 2). Then it updates the log tail (step 3) and the radix

tree (step 4). Finally, NOVA returns the old version of the data to

the allocator (step 5).

operations and point to data pages the write modified. File

write entries also include timestamp and file size, so that

write operations atomically update the file’s metadata. The

DRAM radix tree maps file offsets to file write entries.

If the write is large, NOVA may not be able to describe it

with a single write entry. If NOVA cannot find a large enough

set of contiguous pages, it breaks the write into multiple

write entries and appends them all to the log to satisfy the

request. To maintain atomicity, NOVA commits all the entries

with a single update to the log tail pointer.

For a read operation, NOVA updates the file inode’s ac-

cess time with a 64-bit atomic write, locates the required page

using the file’s radix tree, and copies the data from NVMM

to the user buffer.

Figure 4 illustrates a write operation. The notation <file

pgoff, num pages> denotes the page offset and number of

pages a write affects. The first two entries in the log de-

scribe two writes, <0, 1> and <1, 2>, of 4 KB and 8 KB

(i.e., 1 and 2 pages), respectively. A third, 8 KB write, <2,

2>, is in flight.

To perform the <2, 2> write, NOVA fills data pages

and then appends the <2, 2> entry to the file’s inode log.

Then NOVA atomically updates the log tail to commit the

write, and updates the radix tree in DRAM, so that offset “2”

points to the new entry. The NVMM page that holds the old

contents of page 2 returns to the free list immediately. During

the operation, a per-inode lock protects the log and the radix

tree from concurrent updates. When the write system call

returns, all the updates are persistent in NVMM.
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4.5. Atomic mmap

DAX file systems allow applications to access NVMM di-

rectly via load and store instructions by mapping the physical

NVMM file data pages into the application’s address space.

This DAX-mmap exposes the NVMM’s raw performance to

the applications and is likely to be a critical interface in the

future.

While DAX-mmap bypasses the file system page cache

and avoids paging overheads, it presents challenges for pro-

grammers. DAX-mmap provides raw NVMM so the only

atomicity mechanisms available to the programmer are the

64-bit writes, fences, and cache flush instructions that the

processor provides. Using these primitives to build robust

non-volatile data structures is very difficult [19, 67, 34], and

expecting programmers to do so will likely limit the useful-

ness of direct-mapped NVMM.

To address this problem, NOVA proposes a direct

NVMM access model with stronger consistency called

atomic-mmap. When an application uses atomic-mmap

to map a file into its address space, NOVA allocates replica

pages from NVMM, copies the file data to the replica pages,

and then maps the replicas into the address space. When the

application calls msync on the replica pages, NOVA handles

it as a write request described in the previous section, uses

movntq operation to copy the data from replica pages to

data pages directly, and commits the changes atomically.

Since NOVA uses copy-on-write for file data and reclaims

stale data pages immediately, it does not support DAX-mmap.

Atomic-mmap has higher overhead than DAX-mmap but

provides stronger consistency guarantee. The normal DRAM

mmap is not atomic because the operating system might ea-

gerly write back a subset of dirty pages to the file system,

leaving the file data inconsistent in event of a system fail-

ure [45]. NOVA could support atomic mmap in DRAM by

preventing the operating system from flushing dirty pages,

but we leave this feature as future work.

4.6. Garbage collection

NOVA’s logs are linked lists and contain only metadata, mak-

ing garbage collection simple and efficient. This structure

also frees NOVA from the need to constantly move data to

maintain a supply of contiguous free regions.

NOVA handles garbage collection for stale data pages and

stale log entries separately. NOVA collects stale data pages

immediately during write operations (see Section 4.4).

Cleaning inode logs is more complex. A log entry is dead

in NOVA if it is not the last entry in the log (because the

last entry records the inode’s latest ctime) and any of the

following conditions is met:

• A file write entry is dead, if it does not refer to valid data

pages.

Head

Tail

1 2 3 4

Head(a)

1 2 3 4

Head(b)

1 3 4

5

Valid log entry Invalid log entry

Figure 5: NOVA log cleaning. The linked list structure of log

provides simple and efficient garbage collection. Fast GC reclaims

invalid log pages by deleting them from the linked list (a), while

thorough GC copies live log entries to a new version of the log (b).

• An inode update that modifies metadata (e.g., mode or

mtime) is dead, if a later inode update modifies the same

piece of metadata.

• A dentry update is dead, if it is marked invalid.

NOVA mark dentries invalid in certain cases. For instance,

file creation adds a create dentry to the log. Deleting the

file adds a delete dentry, and it also marks the create dentry

as invalid. (If the NOVA garbage collector reclaimed the

delete dentry but left the create dentry, the file would seem to

reappear.)

These rules determine which log entries are alive and dead,

and NOVA uses two different garbage collection (GC) tech-

niques to reclaim dead entries.

Fast GC Fast GC emphasizes speed over thoroughness

and it does not require any copying. NOVA uses it to quickly

reclaim space when it extends an inode’s log. If all the entries

in a log page are dead, fast GC reclaims it by deleting the page

from the log’s linked list. Figure 5(a) shows an example of

fast log garbage collection. Originally the log has four pages

and page 2 contains only dead log entries. NOVA atomically

updates the next page pointer of page 1 to point to page 3 and

frees page 2.

Thorough GC During the fast GC log scan, NOVA tallies

the space that live log entries occupy. If the live entries

account for less than 50% of the log space, NOVA applies

thorough GC after fast GC finishes, copies live entries into a

new, compacted version of the log, updates the DRAM data

structure to point to the new log, then atomically replaces the

old log with the new one, and finally reclaims the old log.

Figure 5(b) illustrates thorough GC after fast GC is com-

plete. NOVA allocates a new log page 5, and copies valid log

entries in page 1 and 3 into it. Then, NOVA links page 5 to

page 4 to create a new log and replace the old one. NOVA
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does not copy the live entries in page 4 to avoid updating the

log tail, so that NOVA can atomically replace the old log by

updating the log head pointer.

4.7. Shutdown and Recovery

When NOVA mounts the file system, it reconstructs the in-

DRAM data structures it needs. Since applications may ac-

cess only a portion of the inodes while the file system is

running, NOVA adopts a policy called lazy rebuild to reduce

the recovery time: It postpones rebuilding the radix tree and

the inode until the system accesses the inode for the first

time. This policy accelerates the recovery process and re-

duces DRAM consumption. As a result, during remount

NOVA only needs to reconstruct the NVMM free page lists.

The algorithm NOVA uses to recover the free lists is different

for “clean” shutdowns than for system failures.

Recovery after a normal shutdown On a clean unmount,

NOVA stores the NVMM page allocator state in the recovery

inode’s log and restores the allocator during the subsequent

remount. Since NOVA does not scan any inode logs in this

case, the recovery process is very fast: Our measurement

shows that NOVA can remount a 50 GB file system in 1.2

milliseconds.

Recovery after a failure In case of a unclean dismount

(e.g., system crash), NOVA must rebuild the NVMM allocator

information by scanning the inode logs. NOVA log scanning

is fast because of two design decisions. First, per-CPU inode

tables and per-inode logs allow for vast parallelism in log

recovery. Second, since the logs do not contain data pages,

they tend to be short. The number of live log entries in an

inode log is roughly the number of extents in the file. As

a result, NOVA only needs to scan a small fraction of the

NVMM during recovery. The NOVA failure recovery consists

of two steps:

First, NOVA checks each journal and rolls back any uncom-

mitted transactions to restore the file system to a consistent

state.

Second, NOVA starts a recovery thread on each CPU and

scans the inode tables in parallel, performing log scanning

for every valid inode in the inode table. NOVA use different

recovery mechanisms for directory inodes and file inodes:

For a directory inode, NOVA scans the log’s linked list to

enumerate the pages it occupies, but it does not inspect the

log’s contents. For a file inode, NOVA reads the write entries

in the log to enumerate the data pages.

During the recovery scan NOVA builds a bitmap of oc-

cupied pages, and rebuilds the allocator based on the result.

After this process completes, the file system is ready to accept

new requests.

4.8. NVMM Protection

Since the kernel maps NVMM into its address space dur-

ing NOVA mount, the NVMM is susceptible to corruption

by errant stores from the kernel. To protect the file system

and prevent permanent corruption of the NVMM from stray

writes, NOVA must make sure it is the only system software

that accesses the NVMM.

NOVA uses the same protection mechanism that PMFS

does. Upon mount, the whole NVMM region is mapped as

read-only. Whenever NOVA needs to write to the NVMM

pages, it opens a write window by disabling the processor’s

write protect control (CR0.WP). When CR0.WP is clear, ker-

nel software running on ring 0 can write to pages marked

read-only in the kernel address space. After the NVMM write

completes, NOVA resets CR0.WP to close the write window.

CR0.WP is not saved across interrupts so NOVA disables lo-

cal interrupts during the write window. Opening and closing

the write window does not require modifying the page tables

or the TLB, so it is inexpensive.

5. Evaluation

In this section we evaluate the performance of NOVA and

answer the following questions:

• How does NOVA perform against state-of-the-art file sys-

tems built for disks, SSDs, and NVMM?

• What kind of operations benefit most from NOVA?

• How do underlying NVMM characteristics affect NOVA

performance?

• How efficient is NOVA garbage collection compared to

other approaches?

• How expensive is NOVA recovery?

We first describe the experimental setup and then evaluate

NOVA with micro- and macro-benchmarks.

5.1. Experimental setup

To emulate different types of NVMM and study their ef-

fects on NVMM file systems, we use the Intel Persistent

Memory Emulation Platform (PMEP) [21]. PMEP is a dual-

socket Intel Xeon processor-based platform with special CPU

microcode and firmware. The processors on PMEP run at

2.6 GHz with 8 cores and 4 DDR3 channels. The BIOS marks

the DRAM memory on channels 2 and 3 as emulated NVMM.

PMEP supports configurable latencies and bandwidth for the

emulated NVMM, allowing us to explore NOVA’s perfor-

mance on a variety of future memory technologies. PMEP

emulates clflushopt, clwb, and PCOMMIT instructions

with processor microcode.

In our tests we configure the PMEP with 32 GB of DRAM

and 64 GB of NVMM. To emulate different NVMM tech-

nologies, we choose two configurations for PMEP’s mem-
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NVMM
Read

latency
Write bandwidth

clwb

latency

PCOMMIT

latency

STT-RAM 100 ns Full DRAM 40 ns 200 ns

PCM 300 ns 1/8 DRAM 40 ns 500 ns

Table 1: NVMM emulation characteristics. STT-RAM emulates

fast NVMs that have access latency and bandwidth close to DRAM,

and PCM emulates NVMs that are slower than DRAM.

ory emulation system (Table 1): For STT-RAM we use the

same read latency and bandwidth as DRAM, and configure

PCOMMIT to take 200 ns; For PCM we use 300 ns for the read

latency and reduce the write bandwidth to 1/8th of DRAM,

and PCOMMIT takes 500 ns.

We evaluate NOVA on Linux kernel 4.0 against seven file

systems: Two of these, PMFS and Ext4-DAX are the only

available open source NVMM file systems that we know

of. Both of them journal metadata and perform in-place

updates for file data. Two others, NILFS2 and F2FS are log-

structured file systems designed for HDD and flash-based

storage, respectively. We also compare to Ext4 in default

mode (Ext4) and in data journal mode (Ext4-data) which

provides data atomicity. Finally, we compare to Btrfs [54], a

state-of-the-art copy-on-write Linux file system. Except for

Ext4-DAX and Ext4-data, all the file systems are mounted

with default options. Btrfs and Ext4-data are the only two file

systems in the group that provide the same, strong consistency

guarantees as NOVA.

PMFS and NOVA manage NVMM directly and do not

require a block device interface. For the other file systems,

we use the Intel persistent memory driver [48] to emulate

NVMM-based ramdisk-like device. The driver does not pro-

vide any protection from stray kernel stores, so we disable

the CR0.WP protection in PMFS and NOVA in the tests to

make the comparison fair. We add clwb and PCOMMIT

instructions to flush data where necessary in each file system.

5.2. Microbenchmarks

We use a single-thread micro-benchmark to evaluate the la-

tency of basic file system operations. The benchmark creates

10,000 files, makes sixteen 4 KB appends to each file, calls

fsync to persist the files, and finally deletes them.

Figures 6(a) and 6(b) show the results on STT-RAM and

PCM, respectively. The latency of fsync is amortized across

the append operations. NOVA provides the lowest latency

for each operation, outperforms other file systems by between

35% and 17×, and improves the append performance by

7.3× and 6.7× compared to Ext4-data and Btrfs respectively.

PMFS is closest to NOVA in terms of append and delete

performance. NILFS2 performs poorly on create oper-

ations, suggesting that naively using log-structured, disk-

oriented file systems on NVMM is unwise.

Workload
Average

file size

I/O size

(r/w)
Threads

R/W

ratio

# of files

Small/Large

Fileserver 128 KB 16 KB/16 KB 50 1:2 100K/400K

Webproxy 32 KB 1 MB/16 KB 50 5:1 100K/1M

Webserver 64 KB 1 MB/8 KB 50 10:1 100K/500K

Varmail 32 KB 1 MB/16 KB 50 1:1 100K/1M

Table 2: Filebench workload characteristics. The selected four

workloads have different read/write ratios and access patterns.

NOVA is more sensitive to NVMM performance than the

other file systems because NOVA’s software overheads are

lower, and so overall performance more directly reflects the

underlying memory performance. Figure 6(c) shows the

latency breakdown of NOVA file operations on STT-RAM

and PCM. For create and append operations, NOVA only

accounts for 21%–28% of the total latency. On PCM the

NOVA delete latency increases by 76% because NOVA

reads the inode log to free data and log blocks and PCM

has higher read latency. For the create operation, the

VFS layer accounts for 49% of the latency on average. The

memory copy from the user buffer to NVMM consumes 51%

of the append execution time on STT-RAM, suggesting that

the POSIX interface may be the performance bottleneck on

high speed memory devices.

5.3. Macrobenchmarks

We select four Filebench [23] workloads—fileserver,

webproxy, webserver and varmail—to evaluate the

application-level performance of NOVA. Table 2 summarizes

the characteristics of the workloads. For each workload we

test two dataset sizes by changing the number of files. The

small dataset will fit entirely in DRAM, allowing file systems

that use the DRAM page cache to cache the entire dataset.

The large dataset is too large to fit in DRAM, so the page

cache is less useful. We run each test five times and report

the average. Figure 7 shows the Filebench throughput with

different NVMM technologies and data set sizes.

In the fileserver workload, NOVA outperforms other file

systems by between 1.8× and 16.6× on STT-RAM, and be-

tween 22% and 9.1× on PCM for the large dataset. NOVA

outperforms Ext4-data by 11.4× and Btrfs by 13.5× on

STT-RAM, while providing the same consistency guaran-

tees. NOVA on STT-RAM delivers twice the throughput

compared to PCM, because of PCM’s lower write bandwidth.

PMFS performance drops by 80% between the small and

large datasets, indicating its poor scalability.

Webproxy is a read-intensive workload. For the small

dataset, NOVA performs similarly to Ext4 and Ext4-DAX,

and 2.1× faster than Ext4-data. For the large workload,

NOVA performs between 36% and 53% better than F2FS

and Ext4-DAX. PMFS performs directory lookup by linearly

searching the directory entries, and NILFS2’s directory lock
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Figure 6: File system operation latency on different NVMM configurations. The single-thread benchmark performs create, append

and delete operations on a large number of files.

Figure 7: Filebench throughput with different file system patterns and dataset sizes on STT-RAM and PCM. Each workload has

two dataset sizes so that the small one can fit in DRAM entirely while the large one cannot. The standard deviation is less than 5% of the

value.

design is not scalable [57], so their performance suffers since

webproxy puts all the test files in one large directory.

Webserver is a read-dominated workload and does not

involve any directory operations. As a result, non-DAX file

systems benefit significantly from the DRAM page cache and

the workload size has a large impact on performance. Since

STT-RAM has the same latency as DRAM, small workload

performance is roughly the same for all the file systems with

NOVA enjoying a small advantage. On the large data set,

NOVA performs 10% better on average than Ext4-DAX and

PMFS, and 63% better on average than non-DAX file systems.

On PCM, NOVA’s performance is about the same as the

other DAX file systems. For the small dataset, non-DAX file

systems are 33% faster on average due to DRAM caching.

However, for the large dataset, NOVA’s performance remains

stable while non-DAX performance drops by 60%.

Varmail emulates an email server with a large number

of small files and involves both read and write opera-

tions. NOVA outperforms Btrfs by 11.1× and Ext4-data

by 3.1× on average, and outperforms the other file systems

by between 2.2× and 216×, demonstrating its capabilities

in write-intensive workloads and its good scalability with

large directories. NILFS2 and PMFS still suffer from poor

directory operation performance.
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Duration 10s 30s 120s 600s 3600s

NILFS2 Fail Fail Fail Fail Fail

F2FS 37,979 23,193 18,240 Fail Fail

NOVA 222,337 222,229 220,158 209,454 205,347

# GC pages

Fast 0 255 17,385 159,406 1,170,611

Thorough 102 2,120 9,633 27,292 72,727

Table 3: Performance of a full file system. The test runs a 30 GB

fileserver workload under 95% NVMM utilization with different dura-

tions, and reports the results in operations per second. The bottom

three rows show the number of pages that NOVA garbage collector

reclaimed in the test.

Overall, NOVA achieves the best performance in almost

all cases and provides data consistency guarantees that are

as strong or stronger than the other file systems. The perfor-

mance advantages of NOVA are largest on write-intensive

workloads with large number of files.

5.4. Garbage collection efficiency

NOVA resolves the issue that many LFSs suffer from, i.e.

they have performance problems under heavy write loads,

especially when the file system is nearly full. NOVA reduces

the log cleaning overhead by reclaiming stale data pages

immediately, keeping log sizes small, and making garbage

collection of those logs efficient.

To evaluate the efficiency of NOVA garbage collection

when NVMM is scarce, we run a 30 GB write-intensive

fileserver workload under 95% NVMM utilization for dif-

ferent durations, and compare with the other log-structured

file systems, NILFS2 and F2FS. We run the test with PMEP

configured to emulate STT-RAM.

Table 3 shows the result. NILFS2 could not finish the

10-second test due to garbage collection inefficiencies. F2FS

fails after running for 158 seconds, and the throughput drops

by 52% between the 10s and 120s tests due to log cleaning

overhead. In contrast, NOVA outperforms F2FS by 5.8× and

successfully runs for the full hour. NOVA’s throughput also

remains stable, dropping by less than 8% between the 10s

and one-hour tests.

The bottom half of Table 3 shows the number of pages that

NOVA garbage collector reclaimed. On the 30s test fast GC

reclaims 11% of the stale log pages. With running time rises,

fast GC becomes more efficient and is responsible for 94% of

reclaimed pages in the one-hour test. The result shows that in

long-term running, the simple and low-overhead fast GC is

efficient enough to reclaim the majority of stale log pages.

5.5. Recovery overhead

NOVA uses DRAM to maintain the NVMM free page lists

that it must rebuild when it mounts a file system. NOVA ac-

celerates the recovery by rebuilding inode information lazily,

Dataset File size Number of files Dataset size I/O size

Videoserver 128 MB 400 50 GB 1 MB

Fileserver 1 MB 50,000 50 GB 64 KB

Mailserver 128 KB 400,000 50 GB 16 KB

Table 4: Recovery workload characteristics. The number of

files and typical I/O size both affect NOVA’s recovery performance.

Dataset Videoserver Fileserver Mailserver

STTRAM-normal 156 µs 313 µs 918 µs

PCM-normal 311 µs 660 µs 1197 µs

STTRAM-failure 37 ms 39 ms 72 ms

PCM-failure 43 ms 50 ms 116 ms

Table 5: NOVA recovery time on different scenarios. NOVA is

able to recover 50 GB data in 116ms in case of power failure.

keeping the logs short, and performing log scanning in paral-

lel.

To measure the recovery overhead, we use the three work-

loads in Table 4. Each workload represents a different use

case for the file systems: Videoserver contains a few large

files accessed with large-size requests, mailserver includes

a large number of small files and the request size is small,

fileserver is in between. For each workload, we measure the

cost of mounting after a normal shutdown and after a power

failure.

Table 5 summarizes the results. With a normal shutdown,

NOVA recovers the file system in 1.2 ms, as NOVA does not

need to scan the inode logs. After a power failure, NOVA

recovery time increases with the number of inodes (because

the number of logs increases) and as the I/O operations that

created the files become smaller (because file logs become

longer as files become fragmented). Recovery runs faster on

STT-RAM than on PCM because NOVA reads the logs to

reconstruct the NVMM free page lists, and PCM has higher

read latency than STT-RAM. On both PCM and STT-RAM,

NOVA is able to recover 50 GB data in 116ms, achieving

failure recovery bandwidth higher than 400 GB/s.

6. Conclusion

We have implemented and described NOVA, a log-structured

file system designed for hybrid volatile/non-volatile main

memories. NOVA extends ideas of LFS to leverage NVMM,

yielding a simpler, high-performance file system that sup-

ports fast and efficient garbage collection and quick recovery

from system failures. Our measurements show that NOVA

outperforms existing NVMM file systems by a wide mar-

gin on a wide range of applications while providing stronger

consistency and atomicity guarantees.
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and Z. Bandić. DC Express: Shortest Latency Protocol for

Reading Phase Change Memory over PCI Express. In Pro-

ceedings of the 12th USENIX Conference on File and Storage

Technologies, FAST ’14, pages 309–315, Santa Clara, CA,

2014. USENIX.

[69] J. Wang and Y. Hu. WOLF-A Novel Reordering Write Buffer

to Boost the Performance of Log-Structured File Systems.

In Proceedings of the 1st USENIX Conference on File and

Storage Technologies, FAST ’02, pages 47–60, Monterey, CA,

2002. USENIX.

[70] W. Wang, Y. Zhao, and R. Bunt. HyLog: A High Performance

Approach to Managing Disk Layout. In Proceedings of the

3rd USENIX Conference on File and Storage Technologies,

volume 4 of FAST ’04, pages 145–158, San Francisco, CA,

2004. USENIX.

[71] M. Wilcox. Add support for NV-DIMMs to ext4. https:

//lwn.net/Articles/613384/.

[72] M. Wu and W. Zwaenepoel. eNVy: A Non-volatile, Main



338 14th USENIX Conference on File and Storage Technologies (FAST ’16) USENIX Association

Memory Storage System. In Proceedings of the Sixth Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS-VI, pages 86–

97, New York, NY, USA, 1994. ACM.

[73] X. Wu and A. L. N. Reddy. SCMFS: A File System for

Storage Class Memory. In Proceedings of 2011 International

Conference for High Performance Computing, Networking,

Storage and Analysis, SC ’11, pages 39:1–39:11, New York,

NY, USA, 2011. ACM.

[74] J. Yang, D. B. Minturn, and F. Hady. When poll is better than

interrupt. In Proceedings of the 10th USENIX Conference on

File and Storage Technologies, FAST ’12, pages 3–3, Berkeley,

CA, USA, 2012. USENIX.

[75] J. Yang, Q. Wei, C. Chen, C. Wang, K. L. Yong, and B. He.

NV-Tree: Reducing Consistency Cost for NVM-based Single

Level Systems. In 13th USENIX Conference on File and

Storage Technologies, FAST ’15, pages 167–181, Santa Clara,

CA, Feb. 2015. USENIX Association.

[76] Y. Zhang and S. Swanson. A Study of Application Perfor-

mance with Non-Volatile Main Memory. In Proceedings of

the 2015 IEEE Symposium on Mass Storage Systems and

Technologies (MSST’15), 2015.

[77] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:

Closing the Performance Gap Between Systems With and

Without Persistence Support. In Proceedings of the 46th

Annual IEEE/ACM International Symposium on Microarchi-

tecture, MICRO-46, pages 421–432, New York, NY, USA,

2013. ACM.

[78] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and

energy efficient main memory using phase change memory

technology. In ISCA ’09: Proceedings of the 36th Annual

International Symposium on Computer Architecture, pages

14–23, New York, NY, USA, 2009. ACM.

[79] R. Zwisler. Add support for new persistent memory instruc-

tions. https://lwn.net/Articles/619851/.



USENIX Association  14th USENIX Conference on File and Storage Technologies (FAST ’16) 339

Application-Managed Flash

Sungjin Lee, Ming Liu, Sangwoo Jun, Shuotao Xu, Jihong Kim∗ and Arvind

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
∗Department of Computer Science and Engineering, Seoul National University

Abstract

In flash storage, an FTL is a complex piece of code that

resides completely inside the storage device and is pro-

vided by the manufacturer. Its principal virtue is provid-

ing interoperability with conventional HDDs. However,

this virtue is also its biggest impediment in reaching the

full performance of the underlying flash storage. We pro-

pose to refactor the flash storage architecture so that it

relies on a new block I/O interface which does not per-

mit overwriting of data without intervening erasures.We

demonstrate how high-level applications, in particular

file systems, can deal with this restriction efficiently by

employing append-only segments. This refactoring dra-

matically reduces flash management overhead and im-

proves performance of applications, such as file systems

and databases, by permitting them to directly manage

flash storage. Our experiments on a machine with the

new block I/O interface show that DRAM in the flash

controller is reduced by 128X and the performance of the

file system improves by 80% over conventional SSDs.

1 Introduction

NAND flash SSDs have become the preferred storage de-

vice in both consumer electronics and datacenters. Flash

has superior random access characteristics to speed up

many applications and consumes less power than HDDs.

Thanks to Moore’s law and advanced manufacturing

technologies like 3D NAND [27], the use of flash-based

devices is likely to keep rising over the next decade.

SSDs employ a flash translation layer (FTL) to pro-

vide an I/O abstraction of a generic block device so that

HDDs can be replaced by SSDs without the software be-

ing aware of flash characteristics. An FTL is a complex

piece of software because it must manage the overwriting

restrictions, wear- leveling and bad-block management.

Implementing these management tasks requires sig-

nificant hardware resources in the flash controller. In

particular, tasks like address remapping and garbage

collection require large amounts of DRAM and pow-

erful CPUs (e.g., a 1 GHz quad-core CPU with 1 GB

DRAM [19, 48, 45]). The FTL makes important deci-

sions affecting storage performance and lifetime, with-

out any awareness of the high-level application, and con-

sequently the resulting performance is often subopti-

mal [15, 28, 9, 17]. Moreover, the FTL works as a black

box – its inner-workings are hidden behind a block I/O

layer, which makes the behavior of flash storage unpre-

dictable for higher-level applications, for example, unex-

pected invocation of garbage collection [14] and swap-

in/out of mapping entries [44, 23].

Another serious drawback of the FTL approach is the

duplication of functionality between the FTL and the

host. Many host applications already manage underlying

storage to avoid in-place updates for several reasons such

as better performance, efficient versioning, data consis-

tency and so on. Log-structured or copy-on-write file

systems always append new data to the device, mostly

avoiding in-place updates [47, 20, 46, 31, 33, 50]. Simi-

lar log-structured systems are used in the database com-

munity [49, 1, 5]. The LSM-Tree is also a well known

data structure based on a log-structured approach [42, 12,

2, 6]. Since the FTL is not aware of this avoidance of

overwriting, it employs its own log-structured technique

to manage flash. Running log-structured applications on

top of a log-structured FTL wastes hardware resource

and incurs extra I/Os. This double logging problem is

also reported by empirical studies conducted by indus-

try [53].

In this paper, we present a different approach to man-

aging flash storage, which is called an Application-

Managed Flash (AMF). As its name implies, AMF

moves the intelligence of flash management from the de-

vice to applications, which can be file systems, databases

and user applications, leaving only essential manage-

ment parts on the device side. For various applications

to easily use AMF, we define a new block I/O inter-
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face which does not support overwrites of data unless

they were explicitly deallocated (i.e., an attempt to over-

write data without a proper deallocation generates an er-

ror). This dramatically simplifies the management bur-

den inside the device because fine-grained remapping

and garbage collection do not have to be done in the

device. The application using the flash device is com-

pletely responsible for avoiding in-place updates and is-

suing trim commands to indicate that the data has been

deallocated and the device can erase and reuse the as-

sociated flash blocks. This direct flash management by

applications has several advantages. For example, it can

(i) efficiently schedule both regular and cleaning I/Os

(e.g., copying and compacting) based on the states of the

processes; (ii) accurately separate hot and cold data ac-

cording to its properties (e.g., metadata versus data); and

(iii) directly map objects (e.g., files) to physical locations

without maintaining a huge mapping table.

In AMF, the device responsibility is reduced to provid-

ing error-free storage accesses and efficient parallelism

support to exploit multiple storage chips on buses or

channels. The device also keeps track of bad blocks

and performs wear-leveling. It is preferable to do these

operations in the device because they depend upon the

specific circuit designs and manufacturing process of the

device. Understandably, device manufacturers are reluc-

tant to disclose such details. In our system, management

tasks in the device are performed at the block granular-

ity as opposed to the page granularity, therefore mapping

tables required are considerably smaller.

One may think that avoiding in-place updates places

too much burden on applications or users. However, this

is not the case because many applications that use HDDs

already employ append-only strategies as we pointed out

earlier, and these are our target applications. For such ap-

plications, the only additional burden in using our inter-

face is to avoid rare in-place updates. Moreover, forcing

host applications to write data sequentially is not an ex-

treme constraint either. For example, shingled magnetic

recording (SMR) HDDs have already adopted a similar

approach for the management of overlapped sectors [11].

To demonstrate the advantages of AMF, we used an

open FPGA-based flash platform, BlueDBM [25, 36],

as our testbed which provides error-free accesses to raw

flash chips. We implemented a new lightweight FTL

called an Application-managed FTL (AFTL) to support

our block I/O interface. For our case study with ap-

plications, we have selected a file system because it

is the most common application to access flash stor-

age. We have implemented a new Application-managed

Log-structured File-System (ALFS). The architecture of

ALFS is exactly the same as the conventional LFS, ex-

cept that it appends the metadata as opposed to updat-

ing it in-place. It should be noted that applying AMF

Figure 1: An AMF block I/O abstraction: It shows two logical

segments (logical segments 0 and 1) and two corresponding

physical ones on the device side (physical segments 0 and 1). A

logical segment is composed of 16 sectors which are statically

mapped to flash pages. A physical segment is organized with

four flash blocks belonging to four channels and one way.

is not limited to a file system only. Many real world

applications can benefit from AMF. For example, key-

value stores based on LSM-Trees (e.g., LevelDB [12]

and RocksDB [2]), logical volume managers combined

with CoW file systems (e.g., WAFL [20] and Btrfs [46])

and log-structured databases (e.g., RethinkDB [1]) are

candidate applications for AMF.

Our experiments show that AMF improves I/O per-

formance and storage lifetime by up to 80% and 38%,

respectively, over file systems implemented on conven-

tional FTLs. The DRAM requirement for the FTL was

reduced by a factor of 128 because of the new inter-

face while the additional host-side resources (DRAM

and CPU cycles) required by AMF were minor.

This paper is organized as follows: Section 2 ex-

plains our new block I/O interface. Sections 3 and 4

describe AMF. Section 5 evaluates AMF with various

benchmarks. Section 6 reviews related work. Section

7 concludes with a summary and future directions.

2 AMF Block I/O Interface

Figure 1 depicts the block I/O abstraction of AMF, show-

ing both logical and physical layouts. The block I/O in-

terface of AMF is based on conventional block I/O – it

exposes a linear array of fixed size blocks or sectors (e.g.,

4 KB), which are accessed by three I/O primitives, READ,

WRITE and TRIM. To distinguish a logical block from a

flash block, we call it a sector in the remainder of this

paper. Continuous sectors are grouped into a larger ex-

tent (e.g., several MB), called a segment.
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A segment is allocated when the first write is per-

formed and its size grows implicitly as more writes are

performed. A segment is deallocated by issuing a TRIM

command. Therefore, TRIM is always conducted in the

unit of a segment. A sector of a segment can be read once

it has been written. However, a sector can be written only

once; an overwrite generates an error. To avoid this over-

write problem, the host software should write the sectors

of a segment in an append-only manner, starting from the

lowest sector address. This sector can be reused after the

segment it belongs to has been deallocated by TRIM.

A segment exposed to upper layers is called a logical

segment, while its corresponding physical form is called

a physical segment. Segmentation is a well known con-

cept in many systems. In particular, with log-structured

systems, a logical segment is used as the unit of free

space allocation, where new data is sequentially ap-

pended and free space is reclaimed later. A physical seg-

ment on the storage device side is optimized for such a

sequential access by software. In Figure 1, a physical

segment is composed of a group of blocks spread among

different channels and ways, and sectors within a logi-

cal segment are statically mapped to flash pages within

a physical one. This mapping ensures the maximum

bandwidth of the device when data is read or written se-

quentially. It also provides predictable performance un-

affected by the firmware’s behavior.

Our block I/O interface expects the device controller

to take the responsibility for managing bad-blocks and

wear-leveling so that all the segments seen by upper lay-

ers are error-free. There are two main reasons for our

decision. First, it makes the development of systems

and applications easier since bad-block management and

wear-leveling are relatively simple to implement at the

device level and do not require significant resources.

Second, the lifetime of NAND devices can be managed

more effectively at lower levels where device-level in-

formation is available. Besides P/E cycles, the lifetime

of NAND devices are affected by factors such as recov-

ery effects [13] and bit error rates [43]; SSD vendors

take these factors into consideration in wear-leveling and

bad-block management. This information is proprietary

and confidential – for example, some vendors do not re-

veal even P/E cycles on datasheets. Hiding these vendor

and device-specific issues inside the flash controller also

makes the host software vendor independent.

Compatibility Issue: Our block I/O interface main-

tains good compatibility with existing block I/O subsys-

tems – the same set of I/O primitives with fixed size sec-

tors (i.e., READ, WRITE and TRIM). The only new restric-

tions introduced by the AMF block I/O interface are (i)

non-rewritable sectors before being trimmed, (ii) a lin-

ear array of sectors grouped to form a segment and (iii)

the unit of a TRIM operation. Note that a segment size

is easily shared by both applications and devices through

interfaces like S.M.A.R.T and procfs. In our Linux im-

plementation, for example, the existing block I/O layer

is not changed at all. This allows us to convert existing

software to run on AMF in an easy manner.

The architecture of AFTL is similar to block or

segment-level FTLs and requires minimal functions for

flash management, thus SSD vendors can easily build

AMF devices by removing useless functions from their

devices. For better compatibility with conventional sys-

tems, SSD vendors can enhance their SSD products to

support two different modes: device-managed flash and

application-managed flash. This allows us to choose the

proper mode according to requirements. The addition of

AFTL to existing SSDs may not require much efforts and

hardware resources because of its simplicity.

3 AMF Log-structured File System

In this section, we explain our experience with the design

and implementation of ALFS. We implement ALFS in

the Linux 3.13 kernel based on an F2FS file system [33].

Optimizing or enhancing the fundamental LFS design is

not a goal of this study. For that reason, most of the data

structures and modules of F2FS are left unchanged. In-

stead, we focus on two design aspects: (i) where in-place

updates occur in F2FS and (ii) how to modify F2FS for

the AMF block I/O interface. The detailed implementa-

tion of F2FS is different from other LFSs [38, 31], but

its fundamental design concept is the same as its ances-

tor, Sprite LFS [47]. For the sake of simplicity and gen-

erality, we explain the high-level design of ALFS using

general terms found in Sprite LFS.

3.1 File Layout and Operations

Figure 2 shows the logical segments of ALFS, along

with the corresponding physical segments in AFTL. All

user files, directories and inodes, including any modifica-

tions/updates, are appended to free space in logical seg-

ments, called data segments. ALFS maintains an inode

map to keep track of inodes scattered across the storage

space. The inode map is stored in reserved logical seg-

ments, called inode-map segments. ALFS also maintains

check-points that point to the inode map and keep the

consistent state of the file system. A check-point is writ-

ten periodically or when a flush command (e.g., fsync)

is issued. Logical segments reserved for check-points are

called check-point segments.

ALFS always performs out-of-place updates even for

the check-point and the inode-map because of the re-

quirements of the AMF block I/O interface. Hence, their

locations are not fixed. This makes it difficult to find the
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Figure 2: The upper figure illustrates the logical layout of

ALFS. There is an initial check-point CP(v1). Four files are

appended to data segments along with their inodes in the fol-

lowing order: A, B, C and D. Then, an inode map IM#0 is

written which points to the locations of the inodes of the files.

Finally, the check-point CP(v2) is written to check-point seg-

ments. The bottom figure shows the physical segments corre-

sponding to the logical segments. The data layout of a logical

segment perfectly aligns with its physical segment.

latest check-point and the locations of inodes in inode-

map segments after mounting or power failure. Next,

we explain how ALFS manages check-point segments

for quick mount and recovery, and show how it handles

inode-map segments for fast searches of inodes.

3.2 Check-Point Segment

The management of check-point segments is straightfor-

ward. ALFS reserves two fixed logical segments #1 and

#2 for check-points. (Note: a logical segment #0 is re-

served for a superblock). Figure 3 shows an example

of check-point management. ALFS appends new check-

points with incremental version numbers using the avail-

able free space. If free space in segments is exhausted,

the segment containing only old check-point versions is

selected as a victim for erasure (see Figure 3(a)). The lat-

est check-point is still kept in the other segment. ALFS

sends TRIM commands to invalidate and free the vic-

tim (see Figure 3(b)). Then, it switches to the freed

segment and keeps writing new check-points (see Fig-

ure 3(c)). Even though ALFS uses the same logical seg-

ments repeatedly, it will not unevenly wear out flash be-

cause AFTL performs wear-leveling.

When ALFS is remounted, it reads all the check-point

segments from AFTL. It finds the latest check-point by

comparing version numbers. This brute force search

is efficient because ALFS maintains only two segments

for check-pointing, regardless of storage capacity. Since

segments are organized to maximize I/O throughput, this

search utilizes full bandwidth and mount time is short.

Figure 3: Check-point segment handling

3.3 Inode-Map Segment

The management of inode-map segments is more com-

plicated. The inode map size is decided by the maximum

number of inodes (i.e., files) and is proportional to stor-

age capacity. If the storage capacity is 1 TB and the min-

imum file size is 4 KB, 228 files can be created. If each

entry of the inode map is 8 B (4 B for an inode number

and 4 B for its location in a data segment), then the inode

map size is 2 GB (= 8 B×228). Because of its large size,

ALFS divides the inode map into 4 KB blocks, called

inode-map blocks. There are 524,288 4-KB inode-map

blocks for the inode map of 2 GB, each of which contains

the mapping of 512 inodes (see Table 1). For example,

IM#0 in Figure 2 is an inode-map block.

ALFS always appends inode-map blocks to free space,

so the latest inode-map blocks are scattered across inode-

map segments. To identify the latest valid inode-map

blocks and to quickly find the locations of inodes, we

need to develop another scheme.

Inode-Map Block Management: Figure 4 illustrates

how ALFS manages inode-map blocks. To quickly find

the locations of inodes, ALFS maintains a table for

inode-map blocks (TIMB) in main memory. TIMB con-

sists of 4 B entries that point to inode-map blocks in

inode-map segments. Given an inode number, ALFS

finds its inode-map block by looking up TIMB. It then

obtains the location of the inode from that inode-map

block. The TIMB size is 2 MB for 524,288 inode-

map blocks (= 4 B×524,288), so it is small enough

to be kept in the host DRAM. The in-memory TIMB

should be stored persistently; otherwise, ALFS has to

scan all inode-map segments to construct the TIMB dur-

Data structure Unit size Count Storage

Inode-map block 4 KB 524K Flash (inode-map segs)

In-memory TIMB 2 MB 1 DRAM

TIMB block 4 KB 512 Flash (inode-map segs)

TIMB-blocks list 2 KB 1 Flash (a check-point)

Table 1: An example of data structures sizes and locations

with a 1 TB SSD. Their actual sizes vary depending on ALFS

implementation (e.g., an inode-map size) and storage capacity.
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Figure 4: To find an inode, ALFS first looks up in-memory

TIMB to find the location of inode-map blocks that points to the

inode in flash. Each 4 KB TIMB block indicates 1,024 inode-

map blocks in inode-map segments (e.g., TIMB#0 points to

IM#0∼IM#1023 in flash). Since each inode-map block points

to 512 inodes, TIMB#0 block indicates inodes ranging from 0-

524,288 in flash. If ALFS searches for an inode whose number

is 1023, it looks up TIMB#0 in the in-memory TIMB ( 1©) and

finds the location of IM#1 that points to 512∼1023 inodes ( 2©).

Finally, the inode 1023 can be read from a data segment ( 3©).

Note that the latest check-point points to all of the physical lo-

cations of TIMB blocks in flash.

ing mount. ALFS divides the TIMB into 4 KB blocks

(TIMB blocks) and keeps track of dirty TIMB blocks that

hold newly updated entries. ALFS appends dirty TIMB

blocks to free space in inode-map segments just before a

check-point is written.

TIMB blocks themselves are also stored in non-fixed

locations. To build the in-memory TIMB and to safely

keep it against power failures, a list of all the physical

locations of TIMB blocks (TIMB-blocks list) is written

to check-point segments together with the latest check-

point. Since the size of the in-memory TIMB is 2 MB,

the number of TIMB blocks is 512 (= 2 MB/4 KB). If 4

B is large enough to point to locations of TIMB blocks,

the TIMB-blocks list is 2 KB (= 4 B×512). The actual

size of check-point data is hundred bytes (e.g., 193 bytes

in F2FS), so a check-point with a TIMB-block list can be

written together to a 4 KB sector without extra writes.

Remount Process: The in-memory TIMB should be

reloaded properly whenever ALFS is mounted again.

ALFS first reads the latest check-point as we described in

the previous subsection. Using a TIMB-blocks list in the

check-point, ALFS reads all of the TIMB blocks from

inode-map segments and builds the TIMB in the host

DRAM. The time taken to build the TIMB is negligible

because of its small size (e.g., 2 MB for 1 TB storage).

Up-to-date TIMB blocks and inode-map blocks are

written to inode-map segments before a new check-point

is written to NAND flash. If the check-point is success-

fully written, ALFS returns to the consistent state after

power failures by reading the latest check-point. All the

TIMB blocks and inode-map blocks belonging to an in-

complete check-point are regarded as obsolete data. The

recovery process of ALFS is the same as the remount

process since it is based on LFS [47].

Garbage Collection: When free space in inode-

map segments is almost used up, ALFS should perform

garbage collection. In the current implementation, the

least-recently-written inode-map segment is selected as

a victim. All valid inode-map blocks in the victim are

copied to a free inode-map segment that has already

been reserved for garbage collection. Since some of

inode-map blocks are moved to the new segment, the in-

memory TIMB should also be updated to point to their

new locations accordingly. Newly updated TIMB blocks

are appended to the new segment, and the check-point

listing TIMB blocks is written to the check-point seg-

ment. Finally, the victim segment is invalidated by a

TRIM command and becomes a free inode-map segment.

To reduce live data copies, ALFS increases the number

of inode-map segments such that their total size is larger

than the actual inode-map size. This wastes file-system

space but greatly improves garbage collection efficiency

because it facilitates inode-map blocks to have more in-

valid data prior to being selected as a victim. ALFS fur-

ther improves garbage collection efficiency by separating

inode-map blocks (i.e., hot data) in inode-map segments

from data segments (i.e., cold data). Currently, ALFS al-

locates inode-maps segments which are four times larger

than its original size (e.g., 8 GB if the inode map size is 2

GB). The space wasted by extra segments is small (e.g.,

0.68% = 7 GB / 1 TB).

All of the I/O operations required to manage inode-

map blocks are extra overheads that are not present in the

conventional LFS. Those extra I/Os account for a small

portion, which is less than 0.2% of the total I/Os.

3.4 Data Segment

ALFS manages data segments exactly the same way as in

the conventional LFS – it buffers file data, directories and

inodes in DRAM and writes them all at once when their

total size reaches a data segment size. This buffering is

advantageous for ALFS to make use of the full band-

width of AFTL. ALFS performs segment cleaning when

free data segments are nearly exhausted. The procedure

of segment cleaning is illustrated in Figure 5.

Besides issuing TRIM commands after segment clean-

ing, we have not changed anything in F2FS for manage-

ment of data segments because F2FS already manages

data segments in an append-only manner. This is a good

example of how easily AMF can be used by other log-

structured systems. It also allows us to automatically

borrow advanced cleaning features from F2FS [33] with-

out any significant effort.
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Figure 5: Writes and garbage collection of ALFS with AFTL: (a) Four new files E, B, F and G are written to data segment 1.

The file B is a new version. ALFS appends IM#0 to the inode-map segment because it points to the locations of the files. A new

check-point CP(v3) is appended. (b) Free space in ALFS is nearly exhausted, so ALFS triggers garbage collection. ALFS copies

the files A, C and D to data segment 2. Since data segment 0 has only invalid data, ALFS sends TRIM commands to AFTL, making

it free. Finally, AFTL erases physical segment 2. There are 3 page copies and 2 block erasures for garbage collection.

Figure 6: Writes and garbage collection of LFS with FTL: FTL sequentially writes all the sectors to NAND flash using a mapping

table. (a) The files E, B, F, and G are appended to free pages. IM#0 and CP are overwritten in the same locations in LFS. FTL maps

them to free pages, invaliding old versions. (b) FTL decides to perform garbage collection. It copies flash pages for A, D and E to

free pages and gets 3 free blocks (Blocks 0, 2, 3). (c) LFS is unaware of FTL, so it also triggers garbage collection to create free

space. It moves the files A, C and D to free space and sends TRIM commands. For garbage collection, there are 6 page copies and

3 block erasures. The files A and D are moved uselessly by FTL because they are discarded by LFS later.

3.5 Comparison with Conventional LFS

In this section, we compare the behavior of ALFS with a

conventional LFS that runs on top of a traditional FTL.

For the same set of operations, Figure 5 illustrates the

behaviors of ALFS, while Figure 6 shows those of the

conventional LFS with the FTL. For the sake of simplic-

ity, we assume that ALFS and LFS have the same file-

system layout. The sizes of a sector and a flash page are

assumed to be the same. LFS keeps check-points and an

inode-map in a fixed location and updates them by over-

writing new data.1 On the storage device side, LFS runs

the page-level FTL that maps logical sectors to any phys-

ical pages in NAND flash. In AFTL, a physical segment

is composed of two flash blocks. AFTL just erases flash

blocks containing only obsolete pages.

Figures 5 and 6 demonstrate how efficiently ALFS

manages NAND flash compared to LFS with the FTL.

LFS incurs a larger number of page copies for garbage

collection than ALFS. This inefficiency is caused by (i)

in-place updates to check-point and inode-map regions

1This is somewhat different depending on the design of LFS. Sprite

LFS overwrites data in a check-point region only [47], while NILFS

writes segment summary blocks in an in-place-update fashion [31].

F2FS overwrites both a check-point and an inode map [33]. Since

ALFS is based on F2FS, we use the design of F2FS as an example.

by LFS. Whenever overwrites occur, the FTL has to map

up-to-date data to new free space, invalidating its old ver-

sion that must be reclaimed by the FTL later (see Blocks

0, 2, 3 in Figure 6(a)). Other versions of LFS that over-

write only check-points (e.g., Sprite LFS) also have the

same problem. (ii) The second is unaligned logging by

both LFS and the FTL which results in data from differ-

ent segments being mixed up in the same flash blocks. To

lessen FTL-level garbage collection costs, LFS discards

the entire logical segment (i.e., data segment 0) after

cleaning, but it unintentionally creates dirty blocks that

potentially cause page copies in the future (see Blocks 6

and 7 in Figure 6(c)).

In ALFS, in-place updates are never issued to the de-

vice and the data layout of a logical segment perfectly

aligns with a corresponding physical segment. Thus, the

problems with LFS do not occur in ALFS.

4 AMF Flash Translation Layer (AFTL)

In this section, we explain the design and implementa-

tion of AFTL. We implement AFTL in a device driver be-

cause our SSD prototype does not have a processor, but it

can be implemented in the device if a processor is avail-
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Figure 7: An example of how AFTL handles writes: There

are four channels and one way in AFTL, and each block is com-

posed of two pages. A physical segment has 8 pages. When a

write request comes, AFTL gets a logical segment number (i.e.,

100 = 801/8) using the logical sector number. It then looks up

the segment-map table to find a flash block mapped to the logi-

cal segment. In this example, the logical block ‘801’ is mapped

to ‘Block 0’ in ‘Channel #1’. Finally, AFTL writes the data to

a corresponding page offset in the mapped block.

able. The architecture of AFTL is similar to a simpli-

fied version of the block-level FTL [4], except that AFTL

does not need to run address remapping to avoid in-place

updates, nor does it need to perform garbage collection.

For the sake of clarity, we focus on describing the mini-

mum requirements for AFTL implementation rather than

explaining how to improve existing FTLs to support the

new block I/O interface.

Wear-Leveling and Bad-Block Management: As

discussed in Section 2, sectors in a logical segment

are statically mapped to flash pages. For wear-leveling

and bad-block management, AFTL only needs a small

segment-map table that maps a logical segment to a phys-

ical segment. Each table entry contains the physical loca-

tions of flash blocks mapped to a logical segment along

with a status flag (STAT). Each entry in the table points to

blocks of a logical segment that is striped across channels

and ways. STAT indicates Free, Used or Invalid.

Figure 7 shows how AFTL handles write requests. If

any physical blocks are not mapped yet (i.e., STAT is

Free or Invalid), AFTL builds the physical segment by

allocating new flash blocks. A bad block is not selected.

AFTL picks up the least worn-out free blocks in the cor-

responding channel/way. To preserve flash lifetime and

reliability, AFTL can perform static wear-leveling that

exchanges the most worn-out segments with the least

worn-out ones [7]. If there are previously allocated flash

blocks (i.e., STAT is Invalid), they are erased. If a logical

segment is already mapped (i.e., STAT is Used), AFTL

writes the data to the fixed location in the physical seg-

ment. ALFS informs AFTL via TRIM commands that

the physical segments have only obsolete data. Then,

AFTL can figure out which blocks are out-of-date. Upon

Figure 8: An example of how AFTL handles write requests

when ALFS appends data to two segments A and B simultane-

ously: Numbers inside rectangles indicate a file-system sector

address. ALFS sequentially writes data to segments A and B,

but write requests arrive at AFTL in a random order (i.e., 0,

8, 1, ...). They are sorted in multiple I/O queues according to

their destined channels and are written to physical segments in

a way of fully utilizing four channels. If a single queue with

FIFO scheduling is used, the sector ‘1’ is delayed until ‘0’ and

‘8’ are sent to flash blocks ‘0’ and ‘4’ through the channel 0.

receiving the TRIM command, AFTL invalidates that

segment by changing its STAT to Invalid. Invalid seg-

ments are erased on demand or in background later.

I/O Queueing: AFTL employs per-channel/way I/O

queues combined with a FIFO I/O scheduler. This mul-

tiple I/O queueing is effective in handling multiple write

streams. ALFS allocates several segments and writes

multiple data streams to different segments at the same

time. For example, a check-point is often written to

check-point segments while user files are being written to

data segments. Even if individual write streams are sent

to segments sequentially, multiple write streams arriving

at AFTL could be mixed together and be random I/Os,

which degrades I/O parallelism. Figure 8 shows how

AFTL handles random writes using multiple queues.

This management of multiple write streams in AMF is

more efficient than conventional approaches like multi-

streamed SSDs [28]. In multi-streamed SSDs, the num-

ber of segments that can be opened for an individual

write stream is specified at the configuration time. There

is no such a limitation in AMF; ALFS opens as many

logical segments as needed to write multiple streams. All

the data are automatically separated to different physical

segments according to the segment-level mapping. This

enables applications to more efficiently separate data ac-

cording to their properties.

Write skews do not occur for any channel or way in

arnold
Sticky Note
Marked set by arnold
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Capacity
Block-level Hybrid Page-level AMF

FTL FTL FTL AFTL ALFS

512 GB 4 MB 96 MB 512 MB 4 MB 5.3 MB

1 TB 8 MB 186 MB 1 GB 8 MB 10.8 MB

Table 2: A summary of memory requirements

AFTL. This is because ALFS allocates and writes data

in the unit of a segment, distributing all the write re-

quests to channels and ways uniformly. Moreover, since

FTL garbage collection is never invoked in AFTL, I/O

scheduling between normal I/Os and GC I/Os is not re-

quired. Consequently, simple multiple I/O queueing is

efficient enough to offer good performance, and complex

firmware algorithms like load-balancing [8] and out-of-

ordering [39, 16] are not required in AFTL.

5 Experimental Results

We begin our analysis by looking at memory require-

ments for AFTL and ALFS, comparing against com-

monly used FTL schemes. We then evaluate the perfor-

mance of AMF using micro-benchmarks to understand

its behavior under various I/O access patterns. We bench-

mark AMF using realistic applications that have more

complex I/O access patterns. Finally, we measure life-

time, I/O latency and CPU utilization of the system.

5.1 Memory Requirements

We compare the mapping table sizes of AFTL with three

FTL schemes: block-level, hybrid and page-level FTLs.

Block-level FTL uses a flash block (512 KB) as the unit

of mapping. Because of its low performance, it is rarely

used in production SSDs. Page-level FTL performs map-

ping on flash pages (4-16KB). Hybrid FTL is a combi-

nation of block-level and page-level FTLs – while the

block-level mapping is used to manage the storage space

offered to end-users, the page-level mapping is used for

an over-provisioning area. For the hybrid FTL, 15% of

the total capacity is used as the over-provisioning area.

AFTL maintains the segment-map table pointing to flash

blocks for wear-leveling and bad-block management.

Table 2 lists the mapping table sizes of 512 GB and 1

TB SSDs. For the 512 GB SSD, the mapping table sizes

are 4 MB, 96 MB, 512 MB and 4 MB for block-level, hy-

brid, page-level FTLs and AFTL, respectively. The map-

ping table sizes increase in proportional to the storage

capacity – when the capacity is 1 TB, block-level, hy-

brid, page-level FTLs and AFTL require 8 MB, 62 MB,

1 GB and 8 MB memory, respectively. AFTL maintains a

smaller mapping table than the page-level FTL, enabling

us to keep all mapping entries in DRAM even for the 1

TB SSD. Table 2 shows the host DRAM requirement for

Category Workload Description

File System
FIO A synthetic I/O workload generator

Postmark A small and metadata intensive workload

Database

Non-Trans A non-transactional DB workload

OLTP An OLTP workload

TPC-C A TPC-C workload

Hadoop

DFSIO A HDFS I/O throughput test application

TeraSort A data sorting application

WordCount A word count application

Table 3: A summary of benchmarks

ALFS, including tables for inode-map blocks (TIMB) as

well as other data structures. As listed in the table, ALFS

requires a tiny amount of host DRAM.

5.2 Benchmark Setup

To understand the effectiveness of AMF, we compared

it with two file systems, EXT4 and F2FS [33], run-

ning on top of two different FTL schemes, page-level

FTL (PFTL) and DFTL [14]. They are denoted by

EXT4+PFTL, EXT4+DFTL, F2FS+PFTL, and F2FS+DFTL,

respectively.

PFTL was based on pure page-level mapping that

maintained all the mapping entries in DRAM. In prac-

tice, the mapping table was too large to be kept in

DRAM. To address this, DFTL stored all the mapping

entries in flash, keeping only popular ones in DRAM.

While DFTL reduced the DRAM requirement, it in-

curred extra I/Os to read/write mapping entries from/to

NAND flash. We set the DRAM size so that the map-

ping table size of DFTL was 20% of PFTL. Since DFTL

is based on the LRU-based replacement policy, 20% hot

entries of the mapping table were kept in DRAM. For

both PFTL and DFTL, greedy garbage collection was

used, and an over-provisioning area was set to 15% of

the storage capacity. The over-provisioning area was not

necessary for AFTL because it did not perform garbage

collection. For all the FTLs, the same dynamic wear-

leveling algorithm was used, which allocated youngest

blocks for writing incoming data.

For EXT4, a default journaling mode was used and

the discard option was enabled to use TRIM commands.

For F2FS, the segment size was always set to 2 MB

which was the default size. For ALFS, the segment size

was set to 16 MB which was equal to the physical seg-

ment size. ALFS allocated 4x larger inode-map seg-

ments than its original size. For both F2FS and ALFS,

5% of file-system space was used as an over-provisioning

area which was the default value.

5.3 Performance Analysis

We evaluated AMF using 8 different workloads (see Ta-

ble 3), spanning 3 categories: file-system, DBMS and
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Figure 9: Experimental results with FIO

Hadoop. To understand the behaviors of AMF under

various file-system operations, we conducted a series of

experiments using two well known file system bench-

marks, FIO [3] and Postmark [30]. We also evaluated

AMF using response time sensitive database workloads:

Non-Trans, OLTP and TPC-C. Finally, we assessed AMF

with Hadoop applications from HiBench [21], HFSIO,

TeraSort and WordCount, which required high I/O

throughput for batch processing.

For performance measurements, we focused on an-

alyzing the effect of extra I/Os by the FTL on per-

formance specifically caused by garbage collection and

swap-in/out of mapping entries. There were no ex-

tra I/Os from wear-leveling since dynamic wear-leveling

was used. EXT4, F2FS and AMF all performed differ-

ently from the perspective of garbage collection. Since

EXT4 is a journaling file system, only the FTL in the

storage device performed garbage collection. In F2FS,

both F2FS and the FTL did garbage collection. In AMF,

only ALFS performed garbage collection. There were

no extra swapping I/Os in PFTL and AFTL for fetch-

ing/evicting mapping entries from/to flash because their

tables were always kept in DRAM. Only DFTL incurred

extra I/Os to manage in-flash mapping entries. Note that

our implementation of PFTL and DFTL might be differ-

ent from that of commercial FTLs. Two technical issues

related to PFTL and DFTL (i.e., cleaning and swapping

costs), however, are well known and common problems.

For this reason, our results are reasonable enough to un-

derstand the benefits of AMF on resolving such prob-

lems.

Our experiments were conducted under the same host

and flash device setups. The host system was Intel’s

EXT4+ EXT4+ F2FS+ F2FS+
AMF

PFTL DFTL PFTL DFTL

FTL FTL FS FTL FS FTL FS

FIO(SW) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FIO(RW) 1.41 1.45 1.35 1.82 1.34 2.18 1.38

Postmark(L) 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Postmark(H) 1.12 1.35 1.17 2.23 1.18 2.89 1.16

Non-Trans 1.97 2.00 1.58 2.90 1.59 2.97 1.59

OLTP 1.45 1.46 1.23 1.78 1.23 1.79 1.24

TPC-C 2.33 2.21 1.81 2.80 1.82 5.45 1.87

DFSIO 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TeraSort 1.0 1.0 1.0 1.0 1.0 1.0 1.0

WordCount 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Write amplification factors (WAF). For F2FS, we dis-

play WAF values for both the file system (FS) and the FTL. In

FIO, the WAF values for the read-only workloads FIO (RR) and

FIO (SR) are not included.

Xeon server with 24 1.6 GHz cores and 24 GB DRAM.

The SSD prototype had 8 channels and 4 ways with

512 GB of NAND flash, composed of 128 4 KB pages

per block. The raw performance of our SSD was 240K

IOPS (930 MB/s) and 67K IOPS (260 MB/s) for reads

and writes, respectively. To quickly emulate aged SSDs

where garbage collection occurs, we set the storage ca-

pacity to 16 GB. This was a feasible setup because SSD

performance was mostly decided by I/O characteristics

(e.g., data locality and I/O patterns), not by storage ca-

pacity. The host DRAM was set to 1.5 GB to ensure that

requests were not entirely served from the page cache.

5.3.1 File System Benchmarks

FIO: We evaluate sequential and random read/write per-

formance using the FIO benchmark. FIO first writes a

10 GB file and performs sequential-reads (SR), random-

reads (RR), sequential-writes (SW) and random-writes

(RW) on it separately. We use a libaio I/O engine, 128

io-depth, and a 4 KB block, and 8 jobs run simultane-

ously. Except for them, default parameters are used.

Figure 9 shows our experimental results. For SR and

SW, EXT4+PFTL, F2FS+PFTL and AMF show excellent

performance. For sequential I/O patterns, extra live page

copies for garbage collection do not occur (see Table 4).

Moreover, since all the mapping entries are always kept

in DRAM, there are no overheads to manage in-flash

mapping entries. Note that these performance numbers

are higher than the maximum performance of our SSD

prototype due to the buffering effect of FIO.

EXT4+DFTL and F2FS+DFTL show slower perfor-

mance than the others for SR and SW. This is caused by

extra I/Os required to read/write mapping entries from/to

NAND flash. In our measurements, only about 10% of

them are missing in the in-memory mapping table, but

its effect on performance is not trivial. When a mapping

entry is missing, the FTL has to read it from flash and to
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Figure 10: Experimental results with Postmark

evict an in-memory entry if it is dirty. While the FTL is

doing this task, an incoming request has to be suspended.

Moreover, it is difficult to fully utilize I/O parallelism

when reading in-flash mapping entries because their lo-

cations were previously decided when they were evicted.

The performance degradation due to missing entries

becomes worse with random-reads (RR) patterns be-

cause of their low hit ratio in the in-memory map-

ping table – about 67% of mapping entries are missing.

For this reason, EXT4+DFTL and F2FS+DFTL show slow

performance for RR. On the other hand, EXT4+PFTL,

F2FS+PFTL and AMF exhibit good performance.

RW incurs many extra copies for garbage collection

because of its random-writes patterns. AMF outperforms

all the other schemes, exhibiting the highest I/O through-

put and the lowest write amplification factor (WAF) (see

Table 4). EXT4+PFTL shows slightly lower performance

than AMF, but its performance is similar to that of AMF.

In particular, F2FS+PFTL shows lower performance than

AMF and EXT4+PFTL. This is because of duplicate stor-

age management by F2FS and the FTL. F2FS has a sim-

ilar WAF value as AMF, performing segment cleaning ef-

ficiently. However, extra writes for segment cleaning are

sent to the FTL and trigger additional garbage collection

at the FTL level, which results in extra page copies.2

2The segment size could affect performance of F2FS – F2FS shows

better performance when its segment size is equal to the physical seg-

ment (16 MB). However, F2FS still suffers from the duplicate manage-

ment problem, so it exhibits worse performance than AMF, regardless

of the segment size. For this reason, we exclude results with various

EXT4 and F2FS with DFTL show worse performance

than those with PFTL because of extra I/Os for in-flash

mapping-entries management.

Postmark: After the assessments of AMF with var-

ious I/O patterns, we evaluate AMF with Postmark,

which is a small I/O and metadata intensive work-

load. To understand how garbage collection affects

overall performance, we perform our evaluations with

two different scenarios, light and heavy, denoted by

Postmark(L) and Postmark(H). They each simulate

situations where a storage space utilization is low (40%)

and high (80%) – for Postmark(L), 15K files are cre-

ated; for Postmark(H), 30K files are created. For both

cases, file sizes are 5K-512KB and 60K transactions run.

Figure 10 shows experimental results. F2FS+PFTL

shows the best performance with the light workload,

where few live page copies occur for garbage collec-

tion (except for block erasures) because of the low uti-

lization of the storage space. EXT4+PFTL and AMF show

fairly good performance as well. For the heavy workload

where many live page copies are observed, AMF achieves

the best performance. On the other hand, the perfor-

mance of F2FS+PFTL deteriorates significantly because

of the duplicate management problem. F2FS and EXT4

with DFTL perform worse because of overheads caused

by in-flash mapping-entries management.

From the experimental results with Postmark, we

also confirm that extra I/Os required to manage inode-

map segments do not badly affect overall performance.

Postmark generates many metadata updates, which re-

quires lots of inode changes. Compared with other

benchmarks, Postmark issues more I/O traffic to inode-

map segments, but it accounts for only about 1% of the

total I/Os. Therefore, its effect on performance is negli-

gible. We will analyze it in detail Section 5.5.

5.3.2 Application Benchmarks

Database Application: We compare the performance

of AMF using DBMS benchmarks. MySQL 5.5 with

an Innodb storage engine is selected. Default parame-

ters are used for both MySQL and Innodb. Non-Trans

is used to evaluate performance with different types of

queries: Select, Update (Key), Update (NoKey), Insert

and Delete. The non-transactional mode of a SysBench

benchmark is used to generate individual queries [32].

OLTP is an I/O intensive online transaction processing

(OLTP) workload generated by the SysBench tool. For

both Non-Trans and OLTP, 40 million table entries are

created and 6 threads run simultaneously. TPC-C is a

well-known OLTP workload. We run TPC-C on 14 ware-

houses with 16 clients each for 1,200 seconds.

segment sizes and use the default segment size (2 MB).
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Figure 11: Experimental results with database apps.

Figure 11 shows the number of transactions performed

under the different configurations. AMF outperforms all

other schemes. Compared with the micro-benchmarks,

database applications incur higher garbage collection

overheads because of complicated I/O patterns. As listed

in Table 4, AMF shows lower WAFs than EXT4+PFTL and

EXT4+DFTL thanks to more advanced cleaning features

borrowed from F2FS. F2FS+PFTL and F2FS+DFTL show

similar file-system-level WAFs as AMF, but because of

high garbage collection costs at the FTL level, they ex-

hibit lower performance than AMF. The state-of-the-art

FTLs used by SSD vendors maybe work better with more

advanced features, but it comes at the price of more hard-

ware resources and design complexity. In that sense, this

result shows how efficiently and cost-effectively flash

can be managed by the application.

Hadoop Application: We show measured execution

times of Hadoop applications in Figure 12. Hadoop

applications run on top of the Hadoop Distributed File

System (HDFS) which manages distributed files in large

clusters. HDFS does not directly manage physical stor-

age devices. Instead, it runs on top of regular local disk

file systems, such as EXT4, which deal with local files.

HDFS always creates/deletes large files (e.g., 128 MB)

on the disk file system to efficiently handle large data

sets and to leverage maximum I/O throughput from se-

quentially accessing these files.

This file management of HDFS is well-suited for

NAND flash. A large file is sequentially written across

multiple flash blocks, and these flash blocks are inval-
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Figure 12: Experimental results with Hadoop apps.

idated together when the file is removed from HDFS.

Therefore, FTL garbage collection is done by simply

erasing flash blocks without any live page copies. More-

over, because of its sequential access patterns, the effect

of missing mapping entries on performance is not sig-

nificant. This is the reason why all five storage config-

urations show similar performance for Hadoop applica-

tions. The results also indicate that existing flash storage

is excessively over-designed. With the exception of error

management and coarse-grain mapping, almost all stor-

age management modules currently implemented in the

storage device are not strictly necessary for Hadoop.

5.4 Lifetime Analysis

We analyze the lifetime of the flash storage for 10 dif-

ferent write workloads. We estimate expected flash life-

time using the number of block erasures performed by

the workloads since NAND chips are rated for a limited

number of program/erase cycles. As shown in Figure 13,

AMF incurs 38% fewer erase operations overall compared

to F2FS+DFTL.

5.5 Detailed Analysis

We also analyze the inode-map management overheads,

CPU utilizations and I/O latencies.

Inode-map Management Overheads: I/O operations
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Figure 14: Inode-map management overheads analysis

required to manage inode-map segments in ALFS are

extra overheads. Figure 14(a) shows the percentage of

TIMB writes to flash storage. We exclude read-only

workloads. TIMB writes account for a small proportion

of the total writes. Moreover, the number of dirty TIMB

blocks written together with a new check-point is small –

2.6 TIMB blocks are written, on average, when a check-

point is written. Figure 14(b) illustrates how many ex-

tra copies occur for garbage collection in inode-map seg-

ments. Even though there are minor differences among

the benchmarks, overall extra data copies for inode-map

segments are insignificant compared to the total number

of copies performed in the file system.

Host CPU/DRAM Utilization: We measure the CPU

utilization of AMF while running Postmark(H), and

compare it with those of EXT4+PFTL and F2FS+PFTL. As

depicted in Figure 15, the CPU utilization of AMF is simi-

lar to the others. AMF does not employ any additional lay-

ers or complicated algorithms to manage NAND flash.

Only existing file-system modules (F2FS) are slightly

modified to support our block I/O interface. As a result,

extra CPU cycles required for AMF are negligible.
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Figure 16: Write latency (µsec)

Host DRAM used by AMF is trivial. AMF with 16 GB

flash requires 180 KB more DRAM than F2FS. Almost

all of host DRAM is used to keep AMF-specific data

structures (e.g., in-memory TIMB). The host DRAM re-

quirement increases in proportion to the storage capacity,

but, as shown in Table 1, it is small enough even for a

large SSD (e.g., 10.8 MB for a 1 TB SSD).

I/O Latency: We measure I/O response times of three

different FTLs, AMF, PFTL and DFTL, while running

Postmark(H). We particularly measure write latencies

that are badly affected by both garbage collection and

missing mapping entries. As shown in Figure 16, AMF

has the shortest I/O response times with small fluctua-

tions since only block erasures are conducted inside the

FTL. On the other hand, PFTL and DFTL incur large

fluctuations on response times because of FTL garbage

collection and in-flash mapping-entries management.

6 Related Work

FTL Improvement with Enhanced Interfaces: Deliv-

ering system-level information to the FTL with extended

I/O interfaces has received attention because of its ad-

vantage in device-level optimization [15, 28, 9, 17]. For

example, file access patterns of applications [15] and

multi-streaming information [28] are useful in separating

data to reduce cleaning costs. Some techniques go one

step further by offloading part or all of the file-system

functions onto the device (e.g., file creations or the file-

system itself) [29, 35, 54]. The FTL can exploit rich file-

system information and/or effectively combine its inter-

nal operations with the file system for better flash man-

agement. The common problem with those approaches

is that they require more hardware resources and greater

design complexity. In AMF, host software directly man-

ages flash devices, so the exploitation of system-level in-

formation can be easily made without additional inter-

faces or offloading host functions to the device.
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Direct Flash Management without FTL: Flash file

systems (FFS) [52, 37] and NoFTL [18] are designed

to directly handle raw NAND chips through NAND-

specific interfaces [51, 22]. Since there is no extra layer,

it works efficiently with NAND flash with smaller mem-

ory and less CPUs power. Designing/optimizing systems

for various vendor-specific storage architectures, how-

ever, is in fact difficult. The internal storage architec-

tures and NAND properties are both complex to manage

and specific for each vendor and semiconductor-process

technology. Vendors are also reluctant to divulge the in-

ternal architecture of their devices. The decrease in relia-

bility of NAND flash is another problem – this unreliable

NAND can be more effectively managed inside the stor-

age device where detailed physical information is avail-

able [13, 43]. For this reason, FFS is rarely used these

days except in small embedded systems. AMF has the

same advantages as FFS and NoFTL, however, by hid-

ing internal storage architectures and unreliable NAND

behind the block I/O interface, AMF eliminates all the

concerns about architectural differences and reliability.

Host-Managed Flash: Host-based FTLs like

DFS [24, 26, 41] are different from this study in that

they just move the FTL to a device driver layer from

storage firmware. If log-structured systems like LFS run

on top of the device driver with the FTL, two different

software layers (i.e., LFS and the FTL in the device

driver) run their own garbage collection. As a result,

host-based FTLs still have the same problems that the

conventional FTL-based storage has.

A software defined flash (SDF) [40] exposes each flash

channel to upper layers as individual devices with NAND

I/O primitives (e.g., block erasure). Host applications are

connected to channels each through a custom interface.

In spite of the limited performance of a single channel, it

achieves high aggregate throughput by running multiple

applications in parallel. SDF is similar to our study in

that it minimizes the functionality of the device and al-

lows applications to directly manage the device. This ap-

proach, however, is suitable for special environments like

the datacenter where aggregate I/O throughput is impor-

tant and applications can easily access specialized hard-

ware through custom interfaces. AMF is more general –

because of compatibility with the existing I/O stacks, if

modules that cause overwrites are modified to avoid it,

any application can run on AMF.

REDO [34] shows that the efficient integration of a

file system and a flash device offers great performance

improvement. However, it does not consider important

technical issues, such as metadata management affecting

performance and data integrity, efficient exploitation of

multiple channels, and I/O queueing. REDO is based on

a simulation study, so it is difficult to know its feasibility

and impact in real world systems and applications.

7 Conclusion

In this paper, we proposed the Application-Managed

Flash (AMF) architecture. AMF was based on a new

block I/O interface exposing flash storage as append-

only segments, while hiding unreliable NAND devices

and vendor-specific details. Using our new block I/O in-

terface, we developed a file system (ALFS) and a storage

device with a new FTL (AFTL). Our evaluation showed

that AMF outperformed conventional file systems with

the page-level FTL, both in term of performance and life-

time, while using significantly less resources.

The idea of AMF can be extended to various sys-

tems, in particular, log-structured systems. Many DBMS

engines manage storage devices in an LFS-like man-

ner [49, 1, 6], so we expect that AMF can be eas-

ily adapted to them. A storage virtualization platform

could be a good target application where log-structured

or CoW file systems [20] coupled with a volume man-

ager [10] manage storage devices with its own indirec-

tion layer. A key-value store based on log-structured

merge-trees is also a good target application [42, 12, 2].

According to the concept of AMF, we are currently de-

veloping a new key-value store to build cost-effective and

high-performance distributed object storage.
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Abstract

Host-side flash caching has emerged as a promising so-

lution to the scalability problem of virtual machine (VM)

storage in cloud computing systems, but it still faces se-

rious limitations in capacity and endurance. This pa-

per presents CloudCache, an on-demand cache manage-

ment solution to meet VM cache demands and minimize

cache wear-out. First, to support on-demand cache allo-

cation, the paper proposes a new cache demand model,

Reuse Working Set (RWS), to capture only the data with

good temporal locality, and uses the RWS size (RWSS)

to model a workload’s cache demand. By predicting the

RWSS online and admitting only RWS into the cache,

CloudCache satisfies the workload’s actual cache de-

mand and minimizes the induced wear-out. Second, to

handle situations where a cache is insufficient for the

VMs’ demands, the paper proposes a dynamic cache mi-

gration approach to balance cache load across hosts by

live migrating cached data along with the VMs. It in-

cludes both on-demand migration of dirty data and back-

ground migration of RWS to optimize the performance

of the migrating VM. It also supports rate limiting on the

cache data transfer to limit the impact to the co-hosted

VMs. Finally, the paper presents comprehensive exper-

imental evaluations using real-world traces to demon-

strate the effectiveness of CloudCache.

1 Introduction

Host-side flash caching employs flash-memory-based

storage on a virtual machine (VM) host as the cache for

its remote storage to exploit the data access locality and

improve the VM performance. It has received much at-

tention in recent years [10, 1, 14, 7], which can be at-

tributed to two important reasons. First, as the level of

consolidation continues to grow in cloud computing sys-

tems, the scalability of shared VM storage servers be-

comes a serious issue. Second, the emergence of flash-

memory-based storage has made flash caching a promis-

ing option to address this IO scalability issue, because

accessing a local flash cache is substantially faster than

accessing the remote storage across the network.

However, due to the capacity and cost constraints of

flash devices, the amount of flash cache that can be em-

ployed on a host is much limited compared to the dataset

sizes of the VMs, particularly considering the increasing

data intensity of the workloads and increasing number

of workloads consolidated to the host via virtualization.

Therefore, to fulfill the potential of flash caching, it is

important to allocate the shared cache capacity among

the competing VMs according to their actual demands.

Moreover, flash devices wear out by writes and face se-

rious endurance issues, which are in fact aggravated by

the use for caching because both the writes inherent in

the workload and the reads that miss the cache induce

wear-out [33, 15]. Therefore, the cache management also

needs to be careful not to admit data that are not useful to

workload performance and only damage the endurance.

We propose CloudCache to address the above issues

in flash caching through on-demand cache management.

Specifically, it answers two challenging questions. First,

how to allocate a flash cache to VMs according to their

cache demands? Flash cache workloads depend heav-

ily on the dynamics in the upper layers of the IO stack

and are often unfeasible to profile offline. The classic

working set model studied for processor and memory

cache management can be applied online, but it does

not consider the reuse behavior of accesses and may

admit data that are detrimental to performance and en-

durance. To address this challenge, we propose a new

cache demand model, Reuse Working Set (RWS), to cap-

ture the data that have good temporal locality and are

essential to the workload’s cache hit ratio, and use the

RWS size (RWSS), to represent the workload’s cache de-

mand. Based on this model, we further use prediction

methods to estimate a workload’s cache demand online

and use new cache admission policies to admit only the

RWS into cache, thereby delivering a good performance

to the workload while minimizing the wear-out. Cloud-

1
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Cache is then able to allocate the shared cache capacity

to the VMs according to their actual cache demands.

The second question is how to handle situations where

the VMs’ cache demands exceed the flash cache’s capac-

ity. Due to the dynamic nature of cloud workloads, such

cache overload situations are bound to happen in practice

and VMs will not be able to get their desired cache capac-

ity. To solve this problem, we propose a dynamic cache

migration approach to balance cache load across hosts

by live migrating the cached data along with the VMs. It

uses both on-demand migration of dirty data to provide

zero downtime to the migrating VM, and background mi-

gration of RWS to quickly warmup the cache for the VM,

thereby minimizing its performance impact. Meanwhile,

it can also limit the data transfer rate for cache migration

to limit the impact to other co-hosted VMs.

We provide a practical implementation of CloudCache

based on block-level virtualization [13]. It can be seam-

lessly deployed onto existing cloud systems as a drop-

in solution and transparently provide caching and on-

demand cache management. We evaluate it using a set

of long-term traces collected from real-world cloud sys-

tems [7]. The results show that RWSS-based cache allo-

cation can substantially reduce cache usage and wear-out

at the cost of only small performance loss in the worst

case. Compared to the WSS-based cache allocation, the

RWSS-based method reduces a workload’s cache usage

by up to 76%, lowers the amount of writes sent to cache

device by up to 37%, while delivering the same IO la-

tency performance. Compared to the case where the VM

can use the entire cache, the RWSS-based method saves

even more cache usage while delivering an IO latency

that is only 1% slower at most. The results also show

that the proposed dynamic cache migration reduces the

VM’s IO latency by 93% compared to no cache migra-

tion, and causes at most 21% slowdown to the co-hosted

VMs during the migration. Combining these two pro-

posed approaches, CloudCache is able to improve the av-

erage hit ratio of 12 concurrent VMs by 28% and reduce

their average 90th percentile IO latency by 27%, com-

pared to the case without cache allocation.

To the best of our knowledge, CloudCache is the first

to propose the RWSS model for capturing a workload’s

cache demand from the data with good locality and for

guiding the flash cache allocation to achieve both good

performance and endurance. It is also the first to propose

dynamic cache migration for balancing the load across

distributed flash caches and with optimizations to mini-

mize the impact of cache data transfer. While the discus-

sion in the paper focuses on flash-memory-based caches,

we believe that the general CloudCache approach is also

applicable to new nonvolatile memory (NVM) technolo-

gies (e.g., PCM, 3D Xpoint) which will likely be used as

a cache layer, instead of replacing DRAM, in the storage

hierarchy and will still need on-demand cache allocation

to address its limited capacity (similarly to or less than

flash) and endurance (maybe less severe than flash).

The rest of the paper is organized as follows: Section

2 and Section 3 present the motivations and architecture

of CloudCache, Section 4 and Section 5 describe the on-

demand cache allocation and dynamic cache migration

approaches, Section 6 discusses the integration of these

two approaches, Section 7 examines the related work,

and Section 8 concludes the paper.

2 Motivations

The emergence of flash-memory-based storage has

greatly catalyzed the adoption of a new flash-based

caching layer between DRAM-based main memory and

HDD-based primary storage [10, 1, 7, 24]. It has the

potential to solve the severe scalability issue that highly

consolidated systems such as public and private cloud

computing systems are facing. These systems often use

shared network storage [20, 5] to store VM images for

the distributed VM hosts, in order to improve resource

utilization and facilitate VM management (including live

VM migration [11, 25]). The availability of a flash cache

on a VM host can accelerate the VM data accesses using

data cached on the local flash device, which are much

faster than accessing the hard-disk-based storage across

network. Even with the increasing adoption of flash de-

vices as primary storage, the diversity of flash technolo-

gies allows the use of a faster and smaller flash device

(e.g., single-level cell flash) as the cache for a slower but

larger flash device (e.g., multi-level cell flash) used as

primary storage.

To fulfill the potential of flash caching, it is crucial

to employ on-demand cache management, i.e., allocat-

ing shared cache capacity among competing workloads

based on their demands. The capacity of a commodity

flash device is typically much smaller than the dataset

size of the VMs on a single host. How the VMs share

the limited cache capacity is critical to not only their per-

formance but also the flash device endurance. On one

hand, if a workload’s necessary data cannot be effec-

tively cached, it experiences orders of magnitude higher

latency to fetch the missed data from the storage server

and at the same time slows down the server from servic-

ing the other workloads. On the other hand, if a workload

occupies the cache with unnecessary data, it wastes the

valuable cache capacity and compromises other work-

loads that need the space. Unlike in CPU allocation

where a workload cannot use more than it needs, an ac-

tive cache workload can occupy all the allocated space

beyond its actual demand, thereby hurting both the per-

formance of other workloads and the endurance of flash

device.

S-CAVE [22] and vCacheShare [24] studied how to

2
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Figure 1: Architecture of CloudCache

optimize flash cache allocation according to a certain cri-

teria (e.g., a utility function), but they cannot estimate the

workloads’ actual cache demands and thus cannot meet

such demands for meeting their desired performance.

HEC [33] and LARC [15] studied cache admission poli-

cies to reduce the wear-out damage caused by data with

weak temporal locality, but they did not address the

cache allocation problem. Bhagwat et al. studied how

to allow a migrated VM to access the cache on its previ-

ous host [9], but they did not consider the performance

impact to the VMs. There are related works studying

other orthogonal aspects of flash caching, including write

policies [17], deduplication/compression [21], and other

design issues [14, 7]. A detailed examination of related

work is presented in Section 7.

3 Architecture

CloudCache supports on-demand cache management

based on a typical flash caching architecture illustrated

in Figure 1. The VM hosts share a network storage

for storing the VM disks, accessed through SAN or IP

SAN [20, 5]. Every host employs a flash cache, shared

by the local VMs, and every VM’s access to its remote

disk goes through this cache. CloudCache provides on-

demand allocation of a flash cache to its local VMs and

dynamic VM and cache migration across hosts to meet

the cache demands of the VMs. Although our discus-

sions in this paper focus on block-level VM storage and

caching, our approaches also work for network file sys-

tem based VM storage, where CloudCache will manage

the allocation and migration for caching a VM disk file

in the same fashion as caching a VM’s block device. A

VM disk is rarely write-shared by multiple hosts, but if it

does happen, CloudCache needs to employ a cache con-

sistency protocol [26], which is beyond the scope of this

paper.

CloudCache supports different write caching policies:

(1) Write-invalidate: The write invalidates the cached

block and is submitted to the storage server; (2) Write-

through: The write updates both the cache and the stor-

age server; (3) Write-back: The write is stored in the

cache immediately but is submitted to the storage server

Trace Time (days) Total IO (GB) WSS (GB) Write (%)

Webserver 281 2,247 110 51

Moodle 161 17,364 223 13

Fileserver 152 57,887 1037 22

Table 1: Trace statistics

later when it is evicted or when the total amount of

dirty data in the cache exceeds a predefined threshold.

The write-invalidate policy performs poorly for write-

intensive workloads. The write-through policy’s perfor-

mance is close to write-back when the write is submit-

ted to the storage server asynchronously and the server’s

load is light [14]; otherwise, it can be substantially worse

than the write-back policy [7]. Our proposed approaches

work for all these policies, but our discussions focus on

the write-back policy due to limited space for our presen-

tation. The reliability and consistency of delayed writes

in write-back caching are orthogonal issues to this pa-

per’s focus, and CloudCache can leverage the existing

solutions (e.g., [17]) to address them.

In the next few sections, we introduce the two compo-

nents of CloudCache, on-demand cache allocation and

dynamic cache migration. As we describe the designs,

we will also present experimental results as supporting

evidence. We consider a set of block-level IO traces [7]

collected from a departmental private cloud as represen-

tative workloads. The characteristics of the traces are

summarized in Table 1. These traces allow us to study

long-term cache behavior, in addition to the commonly

used traces [4] which are only week-long.

4 On-demand Cache Allocation

CloudCache addresses two key questions about on-

demand cache allocation. First, how to model the cache

demand of a workload? A cloud workload includes IOs

with different levels of temporal locality which affect the

cache hit ratio differently. A good cache demand model

should be able to capture the IOs that are truly impor-

tant to the workload’s performance in order to maximize

the performance while minimizing cache utilization and

flash wear-out. Second, how to use the cache demand

model to allocate cache and admit data into cache? We

need to predict the workload’s cache demand accurately

online in order to guide cache allocation, and admit only

the useful data into cache so that the allocation does not

get overflown. In this section, we present the Cloud-

Cache’s solutions to these two questions.

4.1 RWS-based Cache Demand Model

Working Set (WS) is a classic model often used to es-

timate the cache demand of a workload. The working

set W S(t,T) at time t is defined as the set of distinct

(address-wise) data blocks referenced by the workload

during a time interval [t −T, t] [12]. This definition uses

3
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Figure 2: RWS analysis using different values of N

the principle of locality to form an estimate of the set of

blocks that the workload will access next and should be

kept in the cache. The Working Set Size (WSS) can be

used to estimate the cache demand of the workload.

Although it is straightforward to use WSS to estimate

a VM’s flash cache demand, a serious limitation of this

approach is that it does not differentiate the level of tem-

poral locality of the data in the WS. Unfortunately, data

with weak temporal locality, e.g., long bursts of sequen-

tial accesses, are abundant at the flash cache layer, as

they can be found in many types of cloud workloads,

e.g., when the guest system in a VM performs a weekly

backup operation. Caching these data is of little benefit

to the application’s performance, since their next reuses

are too far into the future. Allowing these data to be

cached is in fact detrimental to the cache performance,

as they evict data blocks that have better temporal local-

ity and are more important to the workload performance.

Moreover, they cause unnecessary wear-out to the flash

device with little performance gain in return.

To address the limitation of the WS model, we pro-

pose a new cache-demand model, Reuse Working Set,

RWSN(t,T ), which is defined as the set of distinct

(address-wise) data blocks that a workload has reused at

least N times during a time interval [t −T, t]. Compared

to the WS model, RWS captures only the data blocks

with a temporal locality that will benefit the workload’s

cache hit ratio. When N = 0 RWS reduces to WS. We

then propose to use Reuse Working Set Size (RWSS) as

the estimate of the workload’s cache demand. Because

RWSS disregards low-locality data, it has the potential

to more accurately capture the workload’s actual cache

demand, and reduce the cache pollution and unnecessary

wear-out caused by such data references.

To confirm the effectiveness of the RWS model, we

analyze the MSR Cambridge traces [4] with different val-

ues of N and evaluate the impact on cache hit ratio, cache

usage—the number of cached blocks vs. the number of

IOs received by cache, and flash write ratio—the num-

ber of writes sent to cache device vs. the number of IOs

received by cache. We assume that a data block is ad-

mitted into the cache only after it has been accessed N

times, i.e., we cache only the workload’s RWSN . Fig-

ure 2 shows the distribution of these metrics from the 36

MSR traces using box plots with whiskers showing the

quartiles. Increasing N from 0, when we cache the WS,

to 1, when we cache the RWS1, the median hit ratio is re-

duced by 8%, but the median cache usage is reduced by

82%, and the amount of flash writes is reduced by 19%.

This trend continues as we further increase N.

These results confirm the effectiveness of using RWSS

to estimate cache demand—it is able to substantially re-

duce a workload’s cache usage and its induced wear-out

at a small cost of hit ratio. A system administrator can

balance performance against cache usage and endurance

by choosing the appropriate N for the RWS model. In

general, N = 1 or 2 gives the best tradeoff between these

objectives. (Similar observations can be made for the

traces listed in Table 1.) In the rest of this paper, we use N

= 1 for RWSS-based cache allocation. Moreover, when

considering a cloud usage scenario where a shared cache

cannot fit the working-sets of all the workloads, using the

RWS model to allocate cache capacity can achieve bet-

ter performance because it prevents the low-locality data

from flushing the useful data out of the cache.

In order to measure the RWSS of a workload, we need

to determine the appropriate time window to observe the

workload. There are two relevant questions here. First,

how to track the window? In the original definition of

process WS [12], the window is set with respect to the

process time, i.e., the number of accesses made by the

process, instead of real time. However, it is difficult to

use the number of accesses as the window to measure a

VM’s WS or RWSS at the flash cache layer, because the

VM can go idle for a long period of time and never fill up

its window, causing the previously allocated cache space

to be underutilized. Therefore, we use real-time-based

window to observe a workload’s RWSS.

The second question is how to decide the size of the

time window. If the window is set too small, the ob-

served RWS cannot capture the workload’s current local-

ity, and the measured RWSS underestimates the work-

load’s cache demand. If the window is set too large,

it may include the past localities that are not part of

the workload’s current behavior, and the overestimated

RWSS will waste cache space and cause unnecessary

wear-out. Our solution to this problem is to profile the

workload for a period of time, and simulate the cache

hit ratio when we allocate space to the workload based

on its RWSS measured using different sizes of windows.

We then choose the window at the “knee point” of this

4
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Figure 3: Time window analysis for the Moodle trace

hit ratio vs. window size model, i.e., the point where the

hit ratio starts to flatten out. This profiling can be per-

formed periodically, e.g., bi-weekly or monthly, to adjust

the choice of window size online.

We present an example of estimating the window size

using two weeks of the Moodle trace. Figure 3 shows

that the hit ratio increases rapidly as the window size in-

creases initially. After the 24-hour window size, it starts

to flatten out, while the observed RWSS continues to in-

crease. Therefore, we choose between 24 to 48 hours as

the window size for measuring the RWSS of this work-

load, because a larger window size will not get enough

gain in hit ratio to justify the further increase in the work-

load’s cache usage, if we allocate the cache based on the

observed RWSS. In case of workloads for which the hit

ratio keeps growing slowly with increasing window size

but without showing an obvious knee point, the window

size should be set to a small value because it will not af-

fect the hit ratio much but can save cache space for other

workloads with clear knee points.

4.2 Online Cache Demand Prediction
The success of RWSS-based cache allocation also de-

pends on whether we can accurately predict the cache

demand of the next time window based on the RWSS val-

ues observed from the previous windows. To address this

problem, we consider the classic exponential smoothing

and double exponential smoothing methods. The former

requires a smoothing parameter α , and the latter requires

an additional trending parameter β . The values of these

parameters can have a significant impact on the predic-

tion accuracy. We address this issue by using the self-

tuning versions of these prediction models, which esti-

mate these parameters based on the error between the

predicted and observed RWSS values.

To further improve the robustness of the RWSS pre-

diction, we devise filtering techniques which can dampen

the impact of outliers in the observed RWSS values when

predicting RWSS. If the currently observed RWSS is λ
times greater than the average of the previous n observed

values (including the current one), this value is replaced

with the average. For example, n is set to 20 and λ is set

to 5 in our experiments. In this way, an outlier’s impact
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Figure 4: RWSS-based cache demand prediction

in the prediction is mitigated.

Figure 4 shows an example of the RWSS prediction

for three weeks of the Webserver trace. The recurring

peaks in the observed WSS in Figure 4a are produced

by a weekly backup task performed by the VM, which

cause the predicted WSS in Figure 4b to be substantially

inflated. In comparison, the RWSS model automatically

filters out these backup IOs and the predicted RWSS is

only 26% of the WSS on average for the whole trace.

The filtering technique further smooths out several out-

liers (e.g., between Day 4 and 5) which are caused by

occasional bursts of IOs that do not reflect the general

trend of the workload.

4.3 Cache Allocation and Admission

Based on the cache demands estimated using the RWSS

model and prediction methods, the cache allocation to

the concurrent VMs is adjusted accordingly at the start

of every new time window—the smallest window used

to estimate the RWSS of all the VMs. The allocation

of cache capacity should not incur costly data copying

or flushing. Hence, we consider replacement-time en-

forcement of cache allocation, which does not physically

partition the cache across VMs. Instead, it enforces log-

ical partitioning at replacement time: a VM that has not

used up its allocated share takes its space back by replac-

ing a block from VMs that have exceeded their shares.

Moreover, if the cache is not full, the spare capacity can

be allocated to the VMs proportionally to their predicted

RWSSes or left idle to reduce wear-out.

The RWSS-based cache allocation approach also re-

quires an RWSS-based cache admission policy that ad-

mits only reused data blocks into the cache; otherwise,

the entire WS will be admitted into the cache space allo-

cated based on RWSS and evict useful data. To enforce

this cache admission policy, CloudCache uses a small

5
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portion of the main memory as the staging area for ref-

erenced addresses, a common strategy for implementing

cache admission [33, 15]. A block is admitted into the

cache only after it has been accessed N times, no matter

whether they are reads or writes. The size of the staging

area is bounded and when it gets full the staged addresses

are evicted using LRU. We refer to this approach of stag-

ing only addresses in main memory as address staging.

CloudCache also considers a data staging strategy for

cache admission, which stores both the addresses and

data of candidate blocks in the staging area and manages

them using LRU. Because main memory is not persis-

tent, so more precisely, only the data returned by read

requests are staged in memory, but for writes only their

addresses are staged. This strategy can reduce the misses

for read accesses by serving them from the staging area

before they are admitted into the cache. The tradeoff is

that because a data block is much larger than an address

(8B address per 4KB data), for the same staging area,

data staging can track much less references than address

staging and may miss data with good temporal locality.

To address the limitations of address staging and data

staging and combine their advantages, CloudCache con-

siders a third hybrid staging strategy in which the stag-

ing area is divided to store addresses and data, and the

address and data partitions are managed using LRU sep-

arately. This strategy has the potential to reduce the read

misses for blocks with small reuse distances by using

data staging and admitting the blocks with relative larger

reuse distances by using address staging.

4.4 Evaluation
The rest of this section presents an evaluation of

the RWSS-based on-demand cache allocation approach.

CloudCache is created upon block-level virtualization by

providing virtual block devices to VMs and transparently

caching their data accesses to remote block devices ac-

cessed across the network (Figure 1). It includes a ker-

nel module that implements the virtual block devices,

monitors VM IOs, and enforces cache allocation and ad-

mission, and a user-space component that measures and

predicts RWSS and determines the cache shares for the

VMs. The kernel module stores the recently observed

IOs in a small circular buffer for the user-space compo-

nent to use, while the latter informs the former about the

cache allocation decisions. The current implementation

of CloudCache is based on Linux and it can be seam-

lessly deployed as a drop-in solution on Linux-based en-

vironments including VM systems that use Linux-based

IO stack [8, 2]. We have also created a user-level cache

simulator of CloudCache to facilitate the cache hit ratio

and flash write ratio analysis, but we use only the real

implementation for measuring real-time performance.

The traces described in Section 3 are replayed on a real

iSCSI-based storage system. One node from a compute
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Figure 5: Prediction accuracy

cluster is set up as the storage server and the others as the

clients. Each node has two six-core 2.4GHz Xeon CPUs

and 24GB of RAM. Each client node is equipped with

the CloudCache modules, as part of the Dom0 kernel,

and flash devices (Intel 120GB MLC SATA-interface) to

provide caching to the hosted Xen VMs. The server node

runs the IET iSCSI server to export the logical volumes

stored on a 1TB 7.2K RPM hard disk to the clients via a

Gigabit Ethernet. The clients run Xen 4.1 to host VMs,

and each VM is configured with 1 vCPU and 2GB RAM

and runs kernel 2.6.32. The RWSS window size for the

Webserver, Moodle, and Fileserver traces are 48, 24, and

12 hours, respectively. Each VM’s cache share is man-

aged using LRU internally, although other replacement

policies are also possible.

4.4.1 Prediction Accuracy

In the first set of experiments we evaluate the differ-

ent RWSS prediction methods considered in Section 4.2:

(1) Exp fixed, exponential smoothing with α = 0.3, (2)

Exp self, a self-tuning version of exponential smooth-

ing, (3) DExp fixed, double-exponential smoothing with

α = 0.3 and β = 0.3, (4) DExp self, a self-tuning version

of double-exponential smoothing, and (5) Last value, a

simple method that uses the last observed RWSS value

as predicted value for the new window.

Figure 5 compares the different prediction methods

using three metrics: (1) hit ratio, (2) cache alloca-

tion, and (3) prediction error—the absolute value of the

difference between the predicted RWSS and observed

RWSS divided by the observed RWSS. Prediction error

affects both of the other two metrics—under-prediction

increases cache misses and over-prediction uses more

cache. The figure shows the average values of these met-

rics across all the time windows of the entire 9-month

Webserver trace.

The results show that the difference in hit ratio is small

among the different prediction methods but is consider-

able in cache allocation. The last value method has the

highest prediction error, which confirms the need of pre-

diction techniques. The exponential smoothing methods

have the lowest prediction errors, and Exp Self is more

preferable because it automatically trains its parameter.

We believe that more advanced prediction methods are

possible to further improve the prediction accuracy and

6
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our solution can be extended to run multiple prediction

methods at the same time and choose the best one at run-

time. But this simple smoothing-based method can al-

ready produce good results, as shown in the following

experiments which all use Exp Self to predict cache de-

mand.

4.4.2 Staging Strategies

In the second set of experiments, we evaluate Cloud-

Cache’s staging strategies. First, we study the impact of

the staging area size. In general, it should be decided ac-

cording to the number of VMs consolidated to the same

cache and the IO intensity of their workloads. There-

fore, our approach is to set the total staging area size as

a percentage, e.g., between 0.1% and 1%, of the flash

cache size, and allocate the staging area to the workloads

proportionally to their flash cache allocation. Figure 6a

gives an example of how the staging area allocation af-

fects the Webserver workload’s hit ratio when using ad-

dress staging. The results from data staging are similar.

In the rest of the paper, we always use 256MB as the total

staging area size for RWSS-based cache allocation. Note

that we need 24B of the staging space for tracking each

address, and an additional 4KB if its corresponding data

is also staged.

Next we compare the address, data, and hybrid stag-

ing (with a 1:7 ratio between address and data staging

space) strategies with the same staging area size in Fig-

ure 6b. Data staging achieves a better read hit ratio than

address staging by 67% for the Webserver trace but it

loses to address staging by 9% for Moodle. These results

confirm our discussion in Section 4.3 about the trade-

off between these strategies. In comparison, the hybrid

staging combines the benefits of these two and is con-

sistently the best for all traces. We have tested different

ratios for hybrid staging, and our results show that the

hit ratio difference is small (<1%). But a larger address

staging area tracks a longer history and admits more data

into the cache, which results in more cache usage and

flash writes. Therefore, in the rest of this paper, we al-

ways use hybrid staging with 1:7 ratio between address

and data staging space for RWSS-based allocation.

We also compare to the related work High Endurance

Cache (HEC) [33] which used two cache admission tech-

niques to address flash cache wear-out and are closely

related to our staging strategies. HEC’s Touch Count

(TC) technique uses an in-memory bitmap to track all

the cache blocks (by default 4MB) and admit only reused

blocks into cache. In comparison, CloudCache tracks

only a small number of recently accessed addresses to

limit the memory usage and prevent blocks accessed too

long ago from being admitted into cache. HEC’s Selec-

tive Sequential Rejection (SSEQR) technique tracks the

sequentiality of accesses and rejects long sequences (by

default any longer-than-4MB sequence). In comparison,

CloudCache uses the staging area to automatically filter

out long scan sequences.

Because HEC did not consider on-demand cache allo-

cation, we implemented it by using TC to predict cache

demand and using both TC and SSEQR to enforce cache

admission. Figures 7 shows the comparison using the

different traces, which reveals that on average HEC al-

locates up to 3.7x more cache than our RWSS-based

method and causes up to 29.2% higher flash write ratio—

the number of writes sent to cache device vs. the number

of IOs received by cache. In return, it achieves only up

to 6.4% higher hit ratio. The larger cache allocation in

HEC is because it considers all the historical accesses

when counting reuses, whereas the RWSS method con-

siders only the reuses occurred in the recent history—the

previous window. (If we were able to apply the same

cache allocation given by the RWSS method while us-

ing HEC’s cache admission method, we would achieve

a much lower hit ratio, e.g., 68% lower for Moodle, and

still a higher flash write ratio, e.g., 69% higher for Moo-

dle.) The result also confirms that the RWSS method is

able to automatically reject scan sequences (e.g., it re-

jects on average 90% of the IOs during the backup pe-

riods), whereas HEC needs to explicitly detect scan se-

quences using a fixed threshold.

4.4.3 WSS vs. RWSS-based Cache Allocation

In the third set of experiments, we compare RWSS-

based to WSS-based cache allocation using the same pre-

diction method, exponential smoothing with self-tuning.

In both cases, the cache allocation is strictly enforced,

and at the start of each window, the workload’s extra

cache usage beyond its new allocation is immediately

dropped. This setting produces the worst-case result for

on-demand cache allocation, because in practice Cloud-

7
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Figure 9: VM IO latency comparison

Cache allows a workload to use spare capacity beyond

its allocation and its extra cache usage is gradually re-

claimed via replacement-time enforcement. We also in-

clude the case where the workload can use up the entire

cache as a baseline (No Allocation), where the cache is

large enough to hold the entire working set and does not

require any replacement.

Figure 8 shows the comparison among these different

approaches. For RWSS, we consider two different val-

ues for the N in RWSN , as described in Section 4.1. In

addition, we also compare to the related cache admission

method, LARC [15], which dynamically changes the size

of the staging area according to the current hit ratio—a

higher hit ratio reduces the staging area size. Like HEC,

LARC also does not provide on-demand allocation, so

we implemented it by using the number of reused ad-

dresses to predict cache demand and using LARC for

cache admission.

RWSS1 achieves a hit ratio that is only 9.1% lower than

No Allocation and 4% lower than WSS, but reduces the

workload’s cache usage substantially by up to 98% com-

pared to No Allocation and 76% compared to WSS, and

reduces the flash write ratio by up to 6% compared to No

Allocation and 37% compared to WSS. (The cache allo-

cation of RWSS and LARC is less than 4GB for Web-

server and Fileserver and thus barely visible in the fig-

ure). No Allocation has slightly lower flash write ratio

than RWSS1 for Moodle and Fileserver only because it

does not incur cache replacement, as it is allowed to oc-

cupy as much cache space as possible, which is not a

realistic scenario for cloud environments. Compared to

LARC, RWSS1 achieves up to 3% higher hit ratio and still

reduces cache usage by up to 3% and the flash writes

by up to 18%, while using 580MB less staging area on

average. Comparing the two different configurations of

RWSS, RWSS2 reduces cache usage by up to 9% and

flash writes by up to 18%, at the cost of 4% lower hit

ratio, which confirms the tradeoff of choosing different

values of N in our proposed RWS model.

To evaluate how much performance loss the hit ratio

reduction will cause, we replay the traces and measure

their IO latencies. We consider a one-month portion of

the Webserver and Moodle traces. They were replayed

on the real VM storage and caching setup specified in

Section 4.4. We compare the different cache manage-

ment methods in terms of 95th percentile IO latency.

Figure 9 shows that the RWSS-based method delivers the

similar performance as the alternatives (only 1% slower

than No Allocation for Moodle) while using much less

cache and causing more writes to the cache device as

shown in the previous results.

The results confirm that our proposed RWSS-based

cache allocation can indeed substantially reduce a work-

load’s cache usage and the corresponding wear-out at

only a small performance cost. In real usage scenarios

our performance overhead would be much smaller be-

cause a workload’s extra cache allocation does not have

to be dropped immediately when a new time window

starts and can still provide hits while being gradually re-

placed by the other workloads. Moreover, because the

WSS-based method requires much higher cache alloca-

tions for the same workloads, cloud providers have to

either provision much larger caches, which incurs more

monetary cost, or leave the caches oversubscribed, which

leads to bad performance as the low-locality data are ad-

mitted into the cache and flush out the useful data.

5 Dynamic Cache Migration

The on-demand cache allocation approach discussed in

the previous section allows CloudCache to estimate the

cache demands of workloads online and dynamically al-

locate the shared capacity to them. To handle scenarios

where the cache capacity is insufficient to meet all the

demands, this section presents the dynamic cache migra-

tion approach to balance the cache load across different

hosts by dynamically migrating a workload’s cached data

along with its VM. It also considers techniques to opti-

mize the performance for the migrating VM as well as

minimize the impact to the others during the migration.

5.1 Live Cache Migration

Live VM migration allows a workload to be transpar-

ently migrated among physical hosts while running in its

VM [11, 25]. In CloudCache, we propose to use live

8
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VM migration to balance the load on the flash caches

of VM hosts—when a host’s cache capacity becomes in-

sufficient to meet the local VMs’ total cache demands (as

estimated by their predicted RWSSes), some VMs can be

migrated to other hosts that have spare cache capacity to

meet their cache demands.

VM-migration-based cache load balancing presents

two challenges. First, the migrating VM’s dirty cache

data on the migration source host must be synchronized

to the destination host before they can be accessed again

by the VM. A naive way is to flush all the dirty data to the

remote storage server for the migrating VM. Depending

on the amount of dirty data and the available IO band-

width, the flushing can be time consuming, and the VM

cannot resume its activity until the flushing finishes. The

flushing will also cause a surge in the storage server’s IO

load and affect the performance of the other VMs sharing

the server. Second, the migrating VM needs to warm up

the cache on the destination host, which may also take a

long time, and it will experience substantial performance

degradation till the cache is warmed up [14, 7].

To address these challenges, CloudCache’s dynamic

cache migration approach uses a combination of reactive

and proactive migration techniques:

On-Demand Migration: When the migrated VM ac-

cesses a block that is dirty in the source host’s cache, its

local cache forwards the request to the source host and

fetches the data from there, instead of the remote storage

server. The metadata of the dirty blocks, i.e., their logical

block addresses, on the source host are transferred along

with VM migration, so the destination host’s local cache

is aware of which blocks are dirty on the source host.

Because the size of these metadata is small (e.g., 8B per

4KB data), the metadata transfer time is often negligible.

It is done before the VM is activated on the destination,

so the VM can immediately use the cache on the destina-

tion host.

Background Migration: In addition to reactively ser-

vicing requests from the migrated VM, the source host’s

cache also proactively transfers the VM’s cached data—

its RWS—to the destination host. The transfer is done in

background to mitigate the impact to the other VMs on

the source host. This background migration allows the

destination host to quickly warm up its local cache and

improve the performance of the migrated VM. It also al-

lows the source host to quickly reduce its cache load and

improve the performance of its remaining VMs. Bene-

fiting from the RWSS-based cache allocation and admis-

sion, the data that need to be transferred in background

contain only the VM’s RWS which is much smaller than

the WS, as shown in the previous section’s results. More-

over, when transferring the RWS, the blocks are sent in

the decreasing order of their recency so the data that are

most likely to used next are transferred earliest.

Figure 10: Architecture of dynamic cache migration

On-demand migration allows the migrated VM to ac-

cess its dirty blocks quickly, but it is inefficient for trans-

ferring many blocks. Background migration can trans-

fer bulk data efficiently but it may not be able to serve

the current requests that the migrated VM is waiting for.

Therefore, the combination of these two migration strate-

gies can optimize the performance of the VM. Figure

10 illustrates how CloudCache performs cache migra-

tion. When a VM is live-migrated from Host A to Host

B, to keep data consistent while avoiding the need to

flush dirty data, the cached metadata of dirty blocks are

transferred to Host B. Once the VM live migration com-

pletes, the VM is activated on Host B and its local flash

cache can immediately service its requests. By using the

transferred metadata, the cache on Host B can determine

whether a block is dirty or not and where it is currently

located. If a dirty block is still on Host A, a request is

sent to fetch it on demand. At the same time, Host A also

sends the RWS of the migrated VM in background. As

the cached blocks are moved from Host A to Host B, ei-

ther on-demand or in background, Host A vacates their

cache space and makes it available to the other VMs.

The CloudCache module on each host handles both

the operations of local cache and the operations of cache

migration. It employs a multithreaded design to handle

these different operations with good concurrency. Syn-

chronization among the threads is needed to ensure con-

sistency of data. In particular, when the destination host

requests a block on demand, it is possible that the source

host also transfers this block in background, at the same

time. The destination host will discard the second copy

that it receives, because it already has a copy in the lo-

cal cache and it may have already overwritten it. As

an optimization, a write that aligns to the cache block

boundaries can be stored directly in the destination host’s

cache, without fetching its previous copy from the source

host. In this case, the later migrated copy of this block

is also discarded. The migrating VM needs to keep the

same device name for its disk, which is the virtual block

device presented by CloudCache’s block-level virtualiza-

tion. CloudCache assigns unique names to the virtual

block devices based on the unique IDs of the VMs in the

cloud system. Before migration, the mapping from the

9
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virtual block device to physical device (e.g., the iSCSI

device) is created on the destination host, and after mi-

gration, the counterpart on the source host is removed.

5.2 Migration Rate Limiting

While the combination of on-demand and background

migrations can optimize the performance of a migrating

VM, the impact to the other VMs on the source and des-

tination hosts also needs to be considered. Cache migra-

tion requires reads on the source host’s cache and writes

to the destination host’s cache, which can slow down the

cache IOs from the other co-hosted VMs. It also requires

network bandwidth, in addition to the bandwidth already

consumed by VM memory migration (part of the live

VM migration [11, 25]), and affects the network IO per-

formance of the other VMs.

In order to control the level of performance interfer-

ence to co-hosted VMs, CloudCache is able to limit the

transfer rate for cache migration. Given the rate limit, it

enforces the maximum number of data blocks that can

be transferred from the source host to the destination

host every period of time (e.g., 100ms), including both

on-demand migration and background migration. Once

the limit is hit, the migration thread will sleep and wait

till the next period to continue the data transfer. If on-

demand requests arrive during the sleep time, they will be

delayed and served immediately after the thread wakes

up. The rate can be set based on factors including the

priority of the VMs and the RWSS of the migrating VM.

CloudCache allows a system administrator to tune the

rate in order to minimize the cache migration impact to

the co-hosted VMs and still migrate the RWS fast enough

to satisfy the cache demands.

5.3 Evaluation

We evaluate the performance of CloudCache’s dynamic

cache migration using the same testbed described in Sec-

tion 4.4. Dynamic cache migration is implemented in

the CloudCache kernel module described in Section 4.4.

It exposes a command-line interface which is integrated

with virt-manager [3] for coordinating VM migration

with cache migration. We focus on a day-long portion of

the Moodle and Webserver traces. The Moodle one-day

trace is read-intensive which makes 15% of its cached

data dirty (about 5GB), and the Webserver one-day trace

is write-intensive which makes 85% of its cached data

dirty (about 1GB).

We consider four different approaches: (1) No Cache

Migration: the cached data on the source host are not

migrated with the VM; (2) On-demand: only the on-

demand cache migration is used to transfer dirty blocks

requested by the migrated VM; (3) On-demand + BG

Dirty: in addition to on-demand cache migration, back-

ground migration is used to transfer only the dirty blocks

of the migrated VM; (4) On-demand + BG RWS: both

0

1

2

3

No
Cache

Migration

On
demand

On
demand

+ BG
Dirty

On
demand

+ BG
RWS

Latency (sec)
90

th
 percentile

(a) Moodle

 0

 6

 12

 18

No
Cache

Migration

On
demand

On
demand

+ BG
Dirty

On
demand

+ BG
RWS

Latency (msec) 90
th

 percentile

(b) Webserver

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 0  5  10  15  20  25  30

Time (minutes)

Average Latency (sec)

No Cache Migration
On-Demand

On-demand + BG Dirty
On-demand + BG RWS

On-demand + BG WS

(c) The migrating VM’s performance (average IO latency per

minute) for Moodle. The migration starts at the 5th minute.

Figure 11: Migration strategies

on-demand migration of dirty blocks and background

migration of RWS are used. In this experiment, we as-

sume that the cache migration can use the entire 1Gbps

network bandwidth, and we study the impact of rate lim-

iting in the next experiment. For on-demand cache mi-

gration, it takes 0.3s to transfer the metadata for the Moo-

dle workload and 0.05s for the Webserver workload.

Figure 11a shows that for the Moodle workload, on-

demand cache migration decreases the 90th percentile la-

tency by 33% and the addition of background migration

of dirty data decreases it by 35%, compared to No Cache

Migration. However, the most significant improvement

comes from the use of both on-demand migration of dirty

data and background migration of the entire RWS, which

reduces the latency by 64%. The reason is that this work-

load is read-intensive and reuses a large amount of clean

data; background migration of RWS allows the workload

to access these data from the fast, local flash cache, in-

stead of paying the long network latency for accessing

the remote storage.

For the Webserver workload, because its RWS is

mostly dirty, the difference among the three cache migra-

tion strategies is smaller than the Moodle workload (Fig-

ure 11b). Compared to the No Cache Migration case,

they reduce the 90th percentile latency by 91.1% with

on-demand migration of dirty data, and by 92.6% with

the addition of background migration of RWS.

Note that the above results for the No Cache Migration

case do not include the time that the migrated VM has to

wait for its dirty data to be flushed from the source host

to the remote storage before it can resume running again,

which is about 54 seconds for the Moodle workload and

12 seconds for the Webserver workload, assuming it can

use all the bandwidths of the network and storage server.

10
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Figure 12: Impact of different cache migration rate

In comparison, the VM has zero downtime when using

our dynamic cache migration.

Figure 11c shows how the migrating VM’s perfor-

mance varies over time in this Moodle experiment so we

can observe the real-time performance of the different

migration strategies. The peaks in On-demand and On-

demand + BG Dirty are caused by bursts of on-demand

transfer of clean data blocks requested by the migrated

VM. We believe that we can further optimize our proto-

type implementation to avoid such spikes in latency.

In Figure 11c, we also compare our approach to an

alternative cache migration implementation (On-demand

+ BG WS) which migrates the VM’s entire working set

without the benefit of our proposed RWS model. Us-

ing the same Moodle trace, at the time of migration, its

RWSS is 32GB and WSS is 42GB. As a result, migrat-

ing the WS takes twice the time of migrating only the

RWS (6mins vs. 3mins) and causes a higher IO latency

overhead too (71% higher in 90th percentile latency).

In the next experiment, we evaluate the performance

impact of rate limiting the cache migration. In addition

to the migrating VM, we run another IO-intensive VM

on both the source and destination hosts, which replays

a different day-long portion of the Webserver trace. We

measure the performance of all the VMs when the cache

migration rate is set at 40MB/s and 100MB/s and com-

pare to their normal performance when there is no VM

or cache migration. Figure 12 shows that the impact to

the co-hosted VMs’ 90th percentile IO latency is below

16% and 21% for the 40MB/s and 100MB/s rate respec-

tively. Note that this is assuming that the co-hosted VMs

already have enough cache space, so in reality, their per-

formance would actually be much improved by using the

cache space vacated from the migrating VM. Meanwhile,

the faster migration rate reduces the migrating VM’s 90th

percentile IO latency by 6%. Therefore, the lower rate is

good enough for the migrating VM because the most re-

cently used data are migrated first, and it is more prefer-

able for its lower impact to the co-hosted VMs.

6 Putting Everything Together

The previous two sections described and evaluated the

RWSS-based on-demand cache allocation and dynamic

cache migration approaches separately. In this section,
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Figure 13: Cache usages of 12 concurrent VMs

we present how to use them together to realize on-

demand cache management for multiple VM hosts. Con-

sider the flash cache on a single host. If its capacity is

sufficient to satisfy the predicted cache demands for all

the local VMs, it is simply allocated to the VMs accord-

ing to their demands. The spare capacity is distributed

to the VMs proportionally to their demands, or left idle

to minimize wear-out. If the cache capacity is not suf-

ficient, then cache migration needs to be considered in

order to satisfy the demands of all the VMs.

When considering the use of cache migration, there

are three key questions that need to be answered, when

to migrate, which VM to migrate, and which host to mi-

grate it to? To answer the first question, CloudCache

reserves a certain percentage (e.g., 10%) of the cache

capacity as a buffer to absorb the occasional surges in

cache demands, and it starts a migration when the to-

tal cache demand exceeds the 90% threshold for several

consecutive RWSS windows (e.g., three times). This ap-

proach prevents the fluctuations in cache workloads from

triggering unnecessary cache migrations which affect the

VMs’ performance and the system’s stability.

To answer the second and third questions, Cloud-

Cache’s current strategy is to minimize the imbalance of

cache load among the hosts in the system. The host that

requires cache migration queries every other host’s cur-
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rent cache load. It then evaluates all the possible migra-

tion plans of moving one of its local VMs to a host that

can accommodate the VM’s RWS under the 90% thresh-

old. It then chooses the plan that minimizes the variance

of the hosts’ cache load distribution.

We use a real experiment to illustrate the use of our ap-

proaches for meeting the cache demands of dynamically

changing workloads. We consider two VM hosts each

with 64GB of flash cache. Host A ran 12 VMs, and Host

B ran three VMs, concurrently. Each VM replayed a dif-

ferent 10-day portion of the Webserver trace. The cache

allocation was adjusted every 2 days on both hosts. The

first time window is the warm-up phase during which the

VMs were given equal allocation of the cache capacity.

Afterwards, the cache was allocated to the VMs propor-

tionally to their estimated RWSSes. Moreover, a VM

could take more than its share if there was idle capac-

ity from the other VMs’ shares because our approach is

work-conserving. The experiment was done on the real

VM storage and caching setup specified in Section 4.4.

Figure 13a shows how the cache space is distributed

among the VMs on Host A when (a) there is no cache

allocation, (b) on-demand cache allocation but without

cache migration, and (c) on-demand cache allocation

with dynamic cache migration. Comparing (a) and (b),

we can see how our RWSS-based on-demand allocation

improves the fairness among the competing VMs. For

example, between Days 4 and 8, VMs 6, 7, 8 dominated

the cache space in (a), but in (b), every VM got a fair

share of the cache space proportionally to their estimated

RWSSes. Notice that VMs 7 and 8 were allocated much

less in (b) than what they got in (a), which is an evidence

of how the RWS-based cache demand model filtered out

the VMs’ low-locality data and kept only those that are

useful to their performance. As a result, comparing the

average performance of all 12 VMs across the entire ex-

periment, (b) is better than (a) by 17% in terms of hit

ratio and 13% in terms of 90th percentile IO latency.

In (c) dynamic cache migration was enabled in ad-

dition to on-demand cache allocation. After the total

demand—the sum of the 12 VMs’ RWSSes—exceeded

the threshold for three consecutive windows, Cloud-

Cache initiated cache migration on Day 8 and chose to

move VM 11, the one with the largest predicted RWSS

at that time, and its cached data to Host B. As VM 11’s

RWS was moved to Host B, the remaining 11 VMs took

over the whole cache on Host A, proportionally to their

estimated RWSSes. As a result, comparing the average

performance of all 12 VMs after Day 8, (c) is better than

(b) by 49% in terms of hit ratio and 24% in terms of

90th percentile IO latency. Across the entire experiment,

it outperforms (a) by 28% in hit ratio and 27% in 90th

percentile IO latency, and outperforms (b) by 10% in hit

ratio and 16% in 90th percentile IO latency.

Although this experiment involved only two VM hosts

and the migration of only one VM, the above results are

still representative for the migration of any VM and its

cache data between two hosts in a large cloud computing

environment. But we understand in such a large environ-

ment, more intelligence is required to make the optimal

VM migration decisions. There is a good amount of re-

lated work (e.g., [31, 32]) on using VM migration to bal-

ance load on CPUs and main memory and to optimize

performance, energy consumption, etc. CloudCache is

the first to consider on-demand flash cache management

across multiple hosts, and it can be well integrated into

these related solutions to support the holistic manage-

ment of different resources and optimization for various

objectives. We leave this to our future work because the

focus of this paper is on the key mechanisms for on-

demand cache management, i.e., on-demand cache al-

location and dynamic cache migration, which are miss-

ing in existing flash cache management solutions and are

non-trivial to accomplish.

7 Related Work

There are several related flash cache management so-

lutions. S-CAVE [22] considers the number of reused

blocks when estimating a VM’s cache demand, and al-

locates cache using several heuristics. vCacheShare [24]

allocates a read-only cache by maximizing a unity func-

tion that captures a VM’s disk latency, read-to-write ra-

tio, estimated cache hit ratio, and reuse rate of the al-

located cache capacity. Centaur [18] uses MRC and la-

tency curves to allocate cache to VMs according to their

QoS targets. However, these solutions admit all refer-

enced data into cache, including those with weak tempo-

ral locality, and can cause unnecessary cache usage and

wear-out. Moreover, none of them considers dynamic

cache migration for meeting the demands when a cache

is overloaded. These problems are addressed by Cloud-

Cache’s on-demand cache allocation and dynamic cache

migration approaches.

HEC and LARC studied cache admission policies to

filter out data with weak temporal locality and reduce

the flash wear-out [33, 15]. However, they do not con-

sider the problem of how to allocate shared cache ca-

pacity to concurrent workloads, which is addressed by

CloudCache. Moreover, our RWSS-based approach is

able to more effectively filter out data with no reuses and

achieve good reduction in cache footprint and wear-out,

as shown in Section 4.4.

Bhagwat et al. studied how to allow a migrated VM

to request data from the cache on its previous host [9],

in the same fashion as the on-demand cache migration

proposed in this paper. However, as shown in Sec-

tion 5.3, without our proposed background cache migra-

tion, on-demand migration alone cannot ensure good per-
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formance for the migrated VM. It also has a long-lasting,

negative impact on the source host in terms of both per-

formance interference and cache utilization. When the

migrated VM’s data are evicted on the source host, the

performance becomes even worse because a request has

to be forwarded by the source host to the primary stor-

age. VMware’s vSphere flash read cache [6] also sup-

ports background cache migration. Although its details

are unknown, without our proposed RWS model, a simi-

lar solution would have to migrate the VM’s entire cache

footprint. As shown in Section 5.3, this requires longer

migration time and causes higher impact to performance.

In comparison, CloudCache considers the combination

of on-demand migration and background migration and

is able to minimize the performance impact to both the

migrated VM and the other co-hosted VMs.

In the context of processor and memory cache man-

agement, ARC addresses the cache pollution from scan

sequences by keeping such data in a separate list (T1)

and preventing them from flooding the list (T2) of data

with reuses [23]. However, data in T1 still occupy cache

space and cause wear-out. Moreover, it does not pro-

vide answers to how to allocate shared cache space to

concurrent workloads. Related work [19] proposed the

model of effective reuse set size to capture the nec-

essary cache capacity for preventing non-reusable data

from evicting reusable data, but it assumes that all data

have to be admitted into the cache. There are also re-

lated works on processor and memory cache allocations.

For example, miss-rate curve (MRC) can be built to cap-

ture the relationship between a workload’s cache hit ra-

tio and its cache sizes, and used to guide cache alloca-

tion [27, 34, 28, 29, 30]. Process migration was also con-

sidered for balancing processor cache load on a multi-

core system [16].

Compared to these processor and memory caching

works, flash cache management presents a different set

of challenges. Low-locality data are detrimental to not

only a flash cache’s performance but also its lifetime,

which unfortunately are abundant at the flash cache layer.

While VM migration can be used to migrate workloads

across hosts, the large amount of cached data cannot be

simply flushed or easily shipped over. CloudCache is

designed to address these unique challenges by using

RWSS to allocate cache to only data with good local-

ity and by providing dynamic cache migration with tech-

niques to minimize its impact to VM performance.

8 Conclusions and Future Work

Flash caching has great potential to address the storage

bottleneck and improve VM performance for cloud com-

puting systems. Allocating the limited cache capacity

to concurrent VMs according to their demands is key to

making efficient use of flash cache and optimizing VM

performance. Moreover, flash devices have serious en-

durance issues, whereas weak-temporal-locality data are

abundant at the flash cache layer, which hurt not only the

cache performance but also its lifetime. Therefore, on-

demand management of flash caches requires fundamen-

tal rethinking on how to estimate VMs’ cache demands

and how to provision space to meet their demands.

This paper presents CloudCache, an on-demand cache

management solution to these problems. First, it em-

ploys a new cache demand model, Reuse Working Set

(RWS), to capture the data with good temporal locality,

allocate cache space according to the predicted Reuse

Working Set Size (RWSS), and admit only the RWS

into the allocated space. Second, to handle cache over-

load situations, CloudCache takes a new cache migra-

tion approach which live-migrates a VM with its cached

data to meet the cache demands of the VMs. Exten-

sive evaluations based on real-world traces confirm that

the RWSS-based cache allocation approach can achieve

good cache hit ratio and IO latency for a VM while sub-

stantially reducing its cache usage and flash wear-out.

It also confirms that the dynamic cache migration ap-

proach can transparently balance cache load across hosts

with small impact to the migrating VM and the other co-

hosted VMs.

CloudCache provides a solid framework for our future

work in several directions. First, we plan to use flash sim-

ulators and open-controller devices to monitor the actual

Program/Erase cycles and provide more accurate mea-

surement of our solution’s impact on flash device wear-

out. Second, when the aggregate cache capacity from all

VM hosts is not sufficient, CloudCache has to allocate

cache proportionally to the VMs’ RWSSes. We plan to

investigate a more advanced solution which maps each

VM’s cache allocation to its performance and optimizes

the allocation by maximizing the overall performance of

all VMs. Third, although our experiments confirm that

flash cache allocation has a significant impact on applica-

tion performance, the allocation of other resources, e.g.,

CPU cycles and memory capacity, is also important. We

expect to integrate existing CPU and memory manage-

ment techniques with CloudCache to provide a holistic

cloud resource management solution. Finally, while the

discussion in this paper focuses on flash-memory-based

caching, CloudCache’s general approach is also applica-

ble to emerging NVM devices, which we plan to evaluate

when they become available.
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