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Welcome to the 13th USENIX Conference on File and Storage Technologies. This year’s conference continues the 
FAST tradition of bringing together researchers and practitioners from both industry and academia for a program  
of innovative and rigorous storage-related research. We are pleased to present a diverse set of papers on topics such 
as scaling for big data and distributed systems, erasure codes, SSD and SMR, reliability and performance, write- 
optimized systems, benchmarking and workloads, and mobile and social-networking systems. Our authors hail 
from many countries on three continents and represent academia, industry, and the open-source communities. Many 
of the submitted papers are the fruits of a collaboration among all these communities.

FAST ’15 received 130 submissions. Of these, we selected 28, for an acceptance rate of 21%. The Program Commit-
tee used a two-round online review process, and then met in person to select the final program. In the first round, 
each paper received at least three reviews. For the second round, 68 papers received at least two more reviews. The 
Program Committee discussed 54 papers in an all-day meeting on December 5, 2014, at Stony Brook University, 
New York, USA. We used Eddie Kohler’s superb HotCRP software to manage all stages of the review process, from 
submission to author notification.

As in the previous three years, we have included a category of short papers in the program. Short papers provide 
a vehicle for presenting research ideas that do not require a full-length paper to describe and evaluate. In judging 
short papers, we applied the same standards as for full-length submissions. 25 of our submissions were short papers, 
of which we accepted four. This year, we also included an option to indicate an asset release with the submission—
be it source code, traces, or other artifacts—that others in the FAST community can use and benefit from; 28 sub-
missions selected this option. Finally, we were happy to see a growing number of submissions (and accepted papers) 
from adjacent areas such as database systems and hardware.

We wish to thank the many people who contributed to this conference. First and foremost, we are grateful to all the 
authors who submitted their work to FAST ’15. We would also like to thank the attendees of FAST ’15 and future 
readers of these papers. Together with the authors, you form the FAST community and make storage research 
 vibrant and exciting. We extend our thanks to the USENIX staff, who have provided outstanding support throughout 
the planning and organizing of this conference with the highest degree of professionalism and friendliness. Most 
importantly, their behind-the-scenes work makes this conference actually happen. Our thanks go also to the mem-
bers of the FAST Steering Committee who provided invaluable advice and feedback.

Finally, we wish to thank our Program Committee for their many hours of hard work in reviewing and discussing 
the submissions, some of whom traveled half across the world for the one-day in-person PC meeting. Together with 
a few external reviewers, they wrote over 520 thoughtful and meticulous reviews; in addition, PC members contrib-
uted over 480 online comments of discussions during the reviewing rounds. HotCRP recorded over 340,000 words 
in reviews and comments. The reviewers’ reviews, and their thorough and conscientious deliberations at the PC 
meeting, contributed significantly to the quality of our decisions. Finally, we also thank several people who helped 
make the PC meeting run smoothly: student volunteer Ming Chen; the IT staff headed by Ken Gladkey; admin-
istrative and local arrangements support from Kathy Germana and Chrisitine Cesaria; and department chair Arie 
Kaufman for sponsorship.

We look forward to an interesting and enjoyable conference!

Jiri Schindler, SimpliVity
Erez Zadok, Stony Brook University
FAST ’15 Program Co-Chairs
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Abstract
Existing file systems, even the most scalable systems

that store hundreds of petabytes (or more) of data across

thousands of machines, store file metadata on a single

server or via a shared-disk architecture in order to ensure

consistency and validity of the metadata.

This paper describes a completely different approach

for the design of replicated, scalable file systems, which

leverages a high-throughput distributed database system

for metadata management. This results in improved

scalability of the metadata layer of the file system, as

file metadata can be partitioned (and replicated) across

a (shared-nothing) cluster of independent servers, and

operations on file metadata transformed into distributed

transactions.

In addition, our file system is able to support stan-

dard file system semantics—including fully linearizable

random writes by concurrent users to arbitrary byte off-

sets within the same file—across wide geographic areas.

Such high performance, fully consistent, geographically

distributed files systems do not exist today.

We demonstrate that our approach to file system de-

sign can scale to billions of files and handle hundreds of

thousands of updates and millions of reads per second—

while maintaining consistently low read latencies. Fur-

thermore, such a deployment can survive entire datacen-

ter outages with only small performance hiccups and no

loss of availability.

1 Introduction

Today’s web-scale applications store and process increas-

ingly vast amounts of data, imposing high scalability re-

quirements on cloud data storage infrastructure.

The most common mechanism for maximizing avail-

ability of data storage infrastructure is to replicate all data

†This work was done while the author was at Yale.

storage across many commodity machines within a data-

center, and then to keep hot backups of all critical system

components on standby, ready to take over in case the

main component fails.

However, natural disasters, configuration errors,

hunters, and squirrels sometimes render entire datacen-

ters unavailable for spans of time ranging from minutes to

days [13, 15]. For applications with stringent availability

requirements, replication across multiple geographically

separated datacenters is therefore essential.

For certain classes of data storage infrastructure, sig-

nificant strides have been made in providing vastly scal-

able solutions that also achieve high availability via WAN

replication. For example, replicated block stores, where

blocks are opaque, immutable, and entirely independent

objects are fairly easy to scale and replicate across data-

centers since they generally do not need to support multi-

block operations or any kind of locality of access span-

ning multiple blocks. NoSQL systems such as Cassan-

dra [12], Dynamo [8], and Riak [2] have also managed

to achieve both scale and geographical replication, albeit

through reduced replica consistency guarantees. Even

some database systems, such as the F1 system [19] which

Google built on top of Spanner [7] have managed to scal-

ably process SQL queries and ACID transactions while

replicating across datacenters.

Unfortunately, file systems have not achieved the same

level of scalable, cross-datacenter implementation. While

many distributed file systems have been developed to

scale to clusters of thousands of machines, these systems

do not provide WAN replication in a manner that allows

continuous operation in the event of a full datacenter fail-

ure due to the difficulties of providing expected file sys-

tem semantics and tools (linearizable operations, hierar-

chical access control, standard command-line tools, etc.)

across geographical distances.

1
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In addition to lacking support for geographical repli-

cation, modern file systems—even those known for

scalability—utilize a fundamentally unscalable design

for metadata management in order to avoid high syn-

chronization costs necessary to maintain traditional file

system semantics for file and directory metadata, includ-

ing hierarchical access control and linearizable writes.

Hence, while they are able to store hundreds of petabytes

of data (or more) by leveraging replicated block stores

to store the contents of files, they rely on an assumption

that the average file size is very large, while the number

of unique files and directories are comparatively small.

They therefore run into problems handling large numbers

of small files, as the system becomes bottlenecked by the

metadata management layer [20, 27].

In particular, most modern distributed file systems use

one of two synchronization mechanisms to manage meta-

data access:

• A special machine dedicated to storing and managing

all metadata. GFS, HDFS, Lustre, Gluster, Ursa Mi-

nor, Farsite, and XtreemFS are examples of file sys-

tems that take this approach [10, 21, 18, 1, 3, 4, 11].

The scalability of such systems are clearly fundamen-

tally bottlenecked by the metadata management layer.

• A shared-disk abstraction that coordinates all concur-

rent access. File systems that rely on shared disk

for synchronization include GPFS, PanFS, and xFS

[17, 26, 22]. Such systems generally replicate data

across multiple spindles for fault tolerance. However,

these typically rely on extremely low (RAID-local or

rack-local) synchronization latencies between repli-

cated disks in order to efficiently expose a unified disk

address space. Concurrent disk access by multiple

clients are synchronized by locking, introducing per-

formance limitations for hot files [17]. Introducing

WAN latency synchronization times into lock-hold

durations would significantly increase the severity of

these limitations.

In this paper, we describe the design of a distributed

file system that is substantially different from any of

the above-cited file systems. Our system is most distin-

guished by the metadata management layer which hor-

izontally partitions and replicates file system metadata

across a shared-nothing cluster of servers, spanning mul-

tiple geographic regions. File system operations that po-

tentially span multiple files or directories are transformed

into distributed transactions, and processed via a transac-

tion scheduling and replication management layer of an

extensible distributed database system in order to ensure

proper coordination of linearizable updates.

Due to the uniqueness of our design, our system, which

we call CalvinFS, has a different set of advantages and

disadvantages relative to traditional distributed file sys-

tems. In particular, our system can handle a nearly un-

limited number of files, and can support fully lineariz-

able random writes by concurrent users to arbitrary byte

offsets within a file that is consistently replicated across

wide geographic areas—neither of which is possible in

the above-cited file system designs. However, our system

is optimized for operations on single files. Multiple-file

operations require distributed transactions, and while our

underlying database system can handle such operations

at high throughput, the latency of such operations tend to

be larger than in traditional distributed file systems.

2 Background: Calvin

As described above, we horizontally partition metadata

for our file system across multiple nodes, and file oper-

ations that need to atomically edit multiple metadata el-

ements are run as distributed transactions. We extended

the Calvin database system to implement our metadata

layer, since Calvin has proven to be able to achieve con-

sistent geo-replicated and linear distributed transaction

scalability to hundreds of thousands of transactions per

second across hundreds of machines per replica, even un-

der relatively high levels of lock contention [24]. The

remainder of this section will provide a brief overview of

Calvin’s architecture and execution protocol.

A Calvin deployment consists of three main compo-

nents: a transaction request log, a storage layer, and a

scheduling layer. Each of these components provides a

clean interface and implementations that can be swapped

in and out. The log stores a global totally-ordered se-

quence of transaction requests. Each transaction request

in the log represents a read-modify-write operation on the

contents of the storage layer; the particular implementa-

tion of the storage layer plus any arguments logged with

the request define the semantics of the operation. The

scheduling layer has the job of orchestrates the (concur-

rent) execution of logged transaction requests in a man-

ner that is equivalent to a deterministic serial execution in

exactly the order they appear in the log.

For each of these three components, we describe here

the specific implementation of the component that we

used in the metadata subsystem of CalvinFS.

Log

The log implementation we used consists of a large col-

lection of “front-end” servers, an asynchronously- repli-

cated distributed block store, and a small group of “meta-

log” servers. Clients append requests to the log by send-

ing them to a front-end server, which batches it with other

incoming requests and writes the batch to the distributed

2
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block store. Once it is sufficiently replicated in the block

store (2 out of 3 replicas have acked the write, say), the

front-end server sends the batch’s unique block id to a

meta- log server. The meta-log servers, which are typ-

ically distributed across multiple datacenters, maintain

a Paxos-replicated “meta-log” containing a sequence of

block ids referencing request batches. The state of the

log at any time is considered to be the concatenation of

batches in the order specified by the “meta- log”.

Storage Layer The storage layer encapsulates all knowl-

edge about physical datastore organization and actual

transaction semantics. It consists of a collection of “stor-

age nodes”, each of which runs on a different machine

in the cluster and maintains a shard of the data. Valid

storage layer implementations must include (a) read and

write primitives that execute locally at a single node, and

(b) a placement manager that determines at which storage

nodes these primitives must be run with given input argu-

ments. Compound transaction types may also be defined

that combine read/write primitives and arbitrary deter-

ministic application logic. Each transaction request that

appears in the log corresponds to a primitive operation or

compound transaction. Primitives and transactions may

return results to clients upon completion, but their behav-

ior may not depend any inputs other than arguments that

are logged with the request and the current state of the

underlying data (as determined by read primitives) at ex-

ecution time.

The storage layer for CalvinFS metadata consists of a

multiversion key-value store at each storage node, plus

a simple consistent hashing mechanism for determin-

ing data placement. The compound transactions imple-

mented by the storage layer are described in Section 5.1.

Scheduler

Each storage node has a local scheduling layer compo-

nent (called a “scheduler”) associated with it which drives

local transaction execution.

The scheduling layer takes an unusual approach to pes-

simistic concurrency control. Traditional database sys-

tems typically schedule concurrent transaction execution

by checking the safety of each read and write performed

by a transaction immediately before that operation oc-

curs, pausing execution as needed (e.g., until an earlier

transaction releases an already-held lock on the target

record). Each Calvin scheduler, however, examines a

transaction before it begins executing at all, decides when

it is safe to execute the whole transaction based on its

read-write sets (which can be discovered automatically

or annotated by the client), and then hands the transac-

tion request to the associated storage node, which is free

to execute it with no additional oversight.

Calvin’s scheduler implementation uses a protocol

called deterministic locking, which resembles strict two-

phase locking, except that transactions are required to re-

quest all locks that they will need in their lifetimes atomi-

cally, and in the relative order in which they appear in the

log. This protocol is deadlock- free and serializable, and

furthermore ensures that execution is equivalent not only

to some serial order, but to a deterministic serial execu-

tion in log order.

All lock management is performed locally by a sched-

uler, and schedulers track lock requests only for data that

resides at the associated storage node (according to the

placement manager). When transactions access records

spanning multiple machines, Calvin forwards the entire

transaction request to all schedulers guarding relevant

storage nodes. At each participating scheduler, once the

transaction has locked all local records, the transaction

proceeds to execute using the following protocol:

1. Perform all local reads. Read all records in the

transaction’s read-set that are stored at the local stor-

age node.

2. Serve remote reads. Forward each local read result

from step 1 to every other participant.

3. Collect remote read results. Wait to receive all mes-

sages sent by other participants in step 21.

4. Execute transaction to completion. Once all read

results have been received, execute the transaction

to completion, applying writes that affect records in

the local storage node, and silently dropping writes to

data that is not stored locally (since these writes will

be applied by other participants).

Upon completion, the transaction’s locks are released

and the results are sent to the client that originally sub-

mitted the transaction request.

A key characteristic of the above protocol is the lack of

a distributed commit protocol for distributed transactions.

This is a result of the deterministic nature of process-

ing transactions—any failed node can recover its state by

loading a recent datat checkpoint and then replaying the

log deterministically. Therefore, double checking that no

node failed over the course of processing the transaction

is unnecessary. The lack of distributed commit protocol,

combined with the deadlock-free property of the schedul-

ing algorithm greatly improves the scalability of the sys-

tem and reduces latency.

1If all read results are not received within a specified timeframe,

send additional requests to participants to get the results. If there is

still no answer, also send requests to other replicas of the unresponsive

participant.
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2.1 OLLP

Certain file system operations—notably recursive moves,

renames, deletes, and permission changes on non-empty

directories—were implemented by bundling together

many built-in transactions into a single compound trans-

action. It was not always possible to annotate these com-

pound transaction requests with their full read- and write-

sets (as required by Calvin’s deterministic scheduler) at

the time the recursive operation was initiated. In these

cases, we made use of Calvin’s Optimistic Lock Loca-

tion Prediction (OLLP) mechanism [24] as we describe

further in Section 5.2.

With OLLP, an additional step is added to the trans-

action execution pipeline: all transaction requests go

through an Analyze phase before being appended to the

log. The purpose of the Analyze phase is to determine

the read- and write-sets of the transaction. Stores can im-

plement custom Analyze logic for classes of transac-

tions whose read- and write-sets can be statically com-

puted from the arguments supplied by the client, or the

Analyze function can simply do a “dry run” of the

transaction execution, but not apply any writes. In gen-

eral, this is done at no isolation, and only at a single

replica, to make it as inexpensive as possible.

Once the Analyze phase is complete, the transac-

tion is appended to the log, and it can then be scheduled

and executed to completion. However, it is possible for

a transaction’s read- and write-sets to grow between the

Analyze phase and the actual execution (called the Run

phase) due to changes in the contents of the datastore.

In this case, the worker executing the Run phase notices

that the transaction is attempting to read or write a record

that did not appear in its read- or write-set (and which

was therefore not locked by the scheduler and cannot be

safely accessed). It then aborts the transaction and re-

turns an updated read-/write-set annotation to the client,

who may then restart the transaction, this time skipping

Analyze phase.

3 CalvinFS Architecture

CalvinFS was designed for deployments in which file

data and metadata are both (a) replicated with strong con-

sistency across geographically separated datacenters and

(b) partitioned across many commodity servers within

each datacenter. CalvinFS therefore simultaneously ad-

dresses the availability and scalability challenges de-

scribed above—while providing standard, consistent file

system semantics.

We engineered CalvinFS around certain additional

goals and design principles:

Main-memory metadata store. Current metadata en-

tries for all files and directories must be stored in main-

memory across a shared-nothing cluster of machines.

Potentially many small files. The system must handle

billions distinct files.

Scalable read/write throughput. Read and write

throughput capacity must scale near-linearly and must

not depend on replication configuration.

Tolerating slow writes. High update latencies that ac-

commodate WAN round trips for the purposes of consis-

tent replication are acceptable.

Linearizable and snapshot reads. When reading a file,

clients must be able to specify one of three modes, each

with different latency costs:

• Full linearizable read. If a client requires fully lin-

earizable read semantics when reading a file, the read

may be required to go through the same log-ordering

process as any update operation.

• Very recent snapshot read. For many clients, very

low-latency reads of extremely recent file system

snapshots are preferable to higher-latency lineariz-

able reads. We specifically optimize CalvinFS for

this type of read operation, allowing for up to 400ms

of staleness. (Note that this only applies to read-

only operations. Read-modify-write operations on

metadata—such as permissions checks before writing

to a file—are always linearizable.)

• Client-specified snapshot read. Clients can also

specify explicit version/timestamp bounds on snap-

shot reads. For example, a client may choose to limit

staleness to make sure that a recent write is reflected

in a new read, even if this requires blocking until all

earlier writes are applied at the replica at which the

read is occurring. Or a client may choose to per-

form snapshot read operations at a historical times-

tamp for the purposes of auditing, restoring a backup,

or other historical analyses. Since only current meta-

data entries for each file/directory are pinned in mem-

ory at all times, it is acceptable for historical snap-

shot reads to incur additional latency when digging

up now-defunct versions of metadata entries.

Hash-partitioned metadata. Hash partitioning of file

metadata based on full file path is preferable to range-

or subtree-partitioning, because it typically provides bet-

ter load balancing and simplifies data placement track-

ing. Nonetheless, identifying the contents of a directory

should only require reading from a single metadata shard.

Optimize for single-file operations. The system should

be optimized for operations that create, delete, modify, or

4
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read one file or directory at a time2. Recursive metadata

operations such as directory copies, moves, deletes, and

owner/permission changes must be fully supported (and

should not require data block copying) but the metadata

subsystem need not be optimized for such operations.

CalvinFS stores file contents in a non-transactional dis-

tributed block store analogous to the collection of chunk

servers that make up a GFS deployment. We use our ex-

tension of Calvin described above to store all metadata,

track directory namespaces, and map logical files to the

blocks that store their contents.

Both the block store and the metadata store are repli-

cated across multiple datacenters. In our evaluation, we

used three physically separate (and geographically dis-

tant) datacenters, so our discussion below assumes this

type of deployment and refers to each full system replica

as being in its own datacenter. However, the replication

mechanisms discussed here can just as easily be used in

deployments within a single physical datacenter by divid-

ing it into multiple logical datacenters.

As with GFS and HDFS, clients access a CalvinFS de-

ployment not via kernel mounting, but via a provided

client library, which provides standard file access APIs

and file utils [10, 21]. No technical shortcoming prevents

CalvinFS from being fully mountable, but implementa-

tion of this functionality remains future work.

4 The CalvinFS Block Store

Although the main focus of our design is metadata man-

agement, certain aspects of CalvinFS’s block store affect

metadata entry format and therefore warrant discussion.

Most of these decisions were made to simplify the tasks

of implementing, benchmarking, and describing the sys-

tem; other designs of scalable block stores would also

work with CalvinFS’s metadata architecture.

4.1 Variable-Size Immutable Blocks

As in many other file systems, the contents of a Calv-

inFS file are stored in a sequence of zero or more blocks.

Unlike most others, however, CalvinFS does not set a

fixed block size—blocks may be anywhere from 1 byte

to 10 megabytes. A 1-GB file may therefore legally con-

sist of anywhere from one hundred to one billion blocks,

although steps are taken to avoid the latter case.

Furthermore, blocks are completely immutable once

written. When appending data to a file, CalvinFS does

not append to the file’s final block—rather, a new block

containing the appended data (but not the original data)

is written to the block store, and the new block’s ID and

size are added to the metadata entry for the file.
2Note that this still involves many distributed transactions. For ex-

ample, creating or deleting a file also updates its parent directory.

4.2 Block Storage and Placement

Each block is assigned a globally unique ID, and is as-

signed to a block “bucket” by hashing its ID. Each bucket

is then assigned to a certain number of block servers

(analogous to GFS Chunkservers [10]) at each datacen-

ter, depending on the desired replication factor for the

system. Each block server stores its blocks in files on its

local file system.

The mapping of buckets to block servers is main-

tained in a global Paxos-replicated configuration file and

changes only when needed due to hardware failures, load

balancing, adding new machines to the cluster, and other

global configuration changes. Every CalvinFS node also

caches a copy of the bucket map. This allows any ma-

chine to quickly locate a particular block by hashing its

GUID to find the bucket, then checking the bucket map

to find what block servers store that bucket. In the event

where a configuration change causes this cached table to

return stale data, the node will fail to find the bucket at

the specified server, query the configuration manager to

update its cached table, then retry.

In the event of a machine failure, each bucket assigned

to the failed machine is reassigned to a new machine,

which copies its blocks from a non-failed server that also

stored the reassigned bucket.

To avoid excessive fragmenting, a background process

periodically scans the metadata store and compacts files

that consist of many small blocks. Once a compacted

file is asynchronously re-written to the block store using

larger blocks, the metadata is updated—as long as the file

contents haven’t changed since this compaction process

began. If that part of the file has changed, the newly writ-

ten block is discarded and the compaction process restarts

for the file.

5 CalvinFS Metadata Management

The CalvinFS metadata manager logically contains an

entry for every version (current and historical) of ev-

ery file and directory to appear in the CalvinFS deploy-

ment. The metadata store is structured as key- value store,

where each entry’s key is the absolute path of the file or

directory that it represents, and its value contains the fol-

lowing:

• Entry type. Specifies whether the entry represents a

file or a directory3.

• Permissions. CalvinFS uses a mechanism to support

POSIX hierarchical access control that avoids full file

system tree traversal when checking permissions for

3Although we see no major technical barrier to supporting linking in

CalvinFS, adding support for soft and hard links remains future work.

5



6 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

an individual file by additionally storing all ances-

tor directories’ permissions (up through the / direc-

tory) values in tree- ascending order in each metadata

entry.

• Contents. For directories, this is a list of files and

sub-directories immediately contained by the direc-

tory. For files, this is a mapping of byte ranges in the

(logical) file to byte ranges within specific (physical)

blocks in the block store. For example, if a file’s con-

tents are represented by the first 100 bytes of block

X followed by the 28 bytes starting at byte offset 100

of block Y, then the contents would be represented as

[(X, 0, 100), (Y, 100, 28)]4.

To illustrate this structure, consider a directory fs

in user calvin’s home directory, which contains

the source files for, say, an academic paper. The

calvinfs-ls util (analogous to ls -lA) yields the

following output:

$ calvinfs-ls /home/calvin/fs/

drwxr-xr-x calvin users ... figures

-rw-r--r-- calvin users ... ref.bib

-rw-r--r-- calvin users ... paper.tex

The CalvinFS metadata entry for this directory would be:

KEY:

/home/calvin/fs

VALUE:

type: directory

permissions: rwxr-xr-x calvin users

ancestor-

permissions: rwxr-xr-x calvin users

rwxr-xr-x root root

rwxr-xr-x root root

contents: figures ref.bib paper.tex

We see that the entry contains permissions for the di-

rectory, plus permissions for three ancestor directories:

/home/calvin, /home, and /, respectively. Since the

path (in the entry’s key) implicitly identifies these direc-

tories, they need not explicitly named in the value part of

the field.

Since permissions checks need not access ancestor

directory entries and the contents field names all

files and subdirectories contained in the directory, the

calvinfs-ls invocation above only needed to read

that one metadata entry. Note that unlike POSIX-style

ls -lA, however, the command above did not show the

sizes of each file. To output those, additional metadata

entries have to be read. For example, the metadata entry

for paper.tex looks like this:

4This particular example might come about by the file being cre-

ated containing 128 bytes in block Y, then having the first 100 bytes

overwritten with the contents of block X.

KEY:

/home/calvin/fs/paper.tex

VALUE:

type: file

permissions: rw-r--r-- calvin users

ancestor-

permissions: rwxr-xr-x calvin users

rwxr-xr-x calvin users

rwxr-xr-x root root

rwxr-xr-x root root

contents: 0x3A28213A 0 65536

0x6339392C 0 65536

0x7363682E 0 34061

Since paper.tex is a file rather than a directory,

its contents field contains block ids and byte offset

ranges in those blocks. We see here that paper.tex

is about 161 KB in total size, and its contents are a

concatenation of byte ranges [0,65536), [0,65536), and

[0,34061) in three specified blocks in the block store.

Storing all ancestor directories’ permissions in each

metadata entry eliminates the need for distributed per-

missions checks when accessing individual files, but

comes with a tradeoff: when modifying permissions for a

nonempty directory, the new permission information has

to be atomically propagated recursively to all descendents

of the modified directory. We discuss our protocol for

handling such large recursive operations in Section 5.2.

5.1 Metadata Storage Layer

As mentioned above, the metadata management system

in CalvinFS is an instance of Calvin with a custom stor-

age layer implementation that includes compound trans-

actions as well as primitive read/write operations. It im-

plements six transaction types:

• Read(path) returns the metadata entry for speci-

fied file or directory.

• Create{File,Dir}(path) creates a new empty

file or directory. This updates the parent directory’s

entry and inserts a new entry for the created file.

• Resize(path, size) a file. If a file grows as a

result of a resize operation, all bytes past the previous

file length are by default set to 0.

• Write(path, file offset, source,

source offset, num bytes) writes a speci-

fied number of bytes to a file, starting at a specified

offset within the file. The source data written must be

a subsequence of the contents of a block in the block

store.

• Delete(path) removes a file (or an empty direc-

tory). As with the file creation operation, the parent

directory’s entry is again modified, and the file’s entry

is removed.

6
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• Edit permissions(path, permissions)

of a file or directory, which may include changing the

owner and/or group.

Each of these operation types also takes as part of its

input the user and group IDs of the caller, and performs

the appropriate POSIX-style permissions checking be-

fore applying any changes. Any POSIX-style file system

interaction can be emulated by composing of multiple of

these six built-in operations together in a single Calvin

transaction.

Three of these six operations (read, resize, write) ac-

cess only a single metadata entry. Creating or deleting a

file or directory, however, touches two metadata entries:

the newly created file/directory and its parent directory.

Changing permissions of a directory may involve many

entries, since all descendants must be updated, as ex-

plained above. Since entries are hash-partitioned across

many metadata stores on different machines, the create,

delete, and change permissions (of a non-empty direc-

tory) operations necessarily constitute distributed trans-

actions.

Other operations, such as appending to, copying, and

renaming files are constructed by bundling together mul-

tiple built-in operations to be executed atomically.

5.2 Recursive Operations on Directories

Recursive metadata operations (e.g., copying a directory,

changing directory permissions) in CalvinFS use Calvin’s

built-in OLLP mechanism. The metadata store first runs

the transaction at no isolation in Analyze mode to dis-

cover the read set without actually applying any muta-

tions. This determines the entire collection of metadata

entries that will be affected by the recursive operation by

traversing the directory tree starting at the “root” of the

operation—the metadata entry for the directory that was

passed as the argument to the procedure.

Once the full read/write set is determined, it is added

as an annotation to the transaction request, which is re-

peated in Runmode, during which the directory tree is re-

traversed from the operation to check that the read/write

set of the operation has not grown (e.g., due to a newly

inserted file in a subtree). If the read- and write-sets

have grown between the Analyze and Run steps, OLLP

(deterministically) aborts the transaction, and restarts it

again in Run mode with an appropriately updated anno-

tation.

6 The Life of an Update

To illustrate how CalvinFS’s various components work

together in a scalable, fault-tolerant manner, we present

the end-to-end process of executing a simple operation—

creating a new file and writing a string to it:

echo "import antigravity" >/home/calvin/fly.py

The first step is for the client to submit the request to a

CalvinFS front-end—a process that runs on every Calv-

inFS server and orchestrates the actual execution of client

requests, then returns the results to the client.

Write File Data

After receiving the client request, the front-end begins by

performing the write by inserting a data block into Calv-

inFS’s block store containing the data that will be written

to the file. The first step here is to obtain a new, globally

unique 64-bit block id β from a block store server. β is

hashed to identify the bucket that the block will belong to,

and the front-end then looks up in its cached configura-

tion file the set of block servers that store that bucket, and

sends a block creation request interface node now sends

a block write request (β → import antigravity)
to each of those block servers.

Once a quorum of the participating block servers (2 out

of 3 in this case) have acknowledged to the front- end that

they have created and stored the block, the next step is to

update the metadata to reflect the newly created file.

Construct Metadata Operation

Since our system does not provide a single built-in op-

eration that both creates a file and writes to it, this op-

eration is actually a compound request specifying three

mutations that should be bundled together:

• create file /home/calvin/fly.py

• resize the file to 18 bytes.

• write β : [0,18) to byte range [0,18) of the file

Once this compound transaction request (let’s call it α)

is constructed, the front-end is ready to submit it to be

applied to the metadata store.

Append Transaction Request to Log

The first step in applying metadata mutation is for the

CalvinFS front-end to append α to the log. The Calv-

inFS front-end sends the request to a Calvin log front-

end, which appends α to its current batch of log entries,

which has some globally unique id γ . When batch γ fills

up with requests (or after a specified duration), it is writ-

ten out another asynchronously replicated block store.

Again, the log front-end waits for a majority of block

servers to acknowledge its durability, and then does two

things: (a) it submits the batch id γ to be appended to

the Paxos- replicated metalog, and (b) it goes through the

batch in order, forwarding each transaction request to all

metadata shards that will participate in its execution.

7
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Apply Update to Metadata Store

Each Calvin metadata shard is constantly receiving trans-

action requests from various Calvin log front- ends—

however it receives them in a completely unspecified or-

der. Therefore, it also reads new metalog entries as they

are successfully appended, and uses these to sort the

transaction requests coming in from all of the log front-

ends, forming the precise subsequence of the log con-

taining exactly those transactions in whose execution the

shard will participate. Now, the sequencer at each meta-

data storage shard can process requests in the correct or-

der.

Our example update α reads and modifies

two metadata records: /home/calvin and /

home/calvin/fly.py. Suppose that these are

stored on shards P and Q, respectively. Note that each

metadata shard is itself replicated multiple times—once

in each datacenter in the deployment—but since no

further communication is required between replicas to

execute α , let us focus on the instantiations of P and Q

in a single datacenter (P0 and Q0 in datacenter 0, say).

Both P0 and Q0 receive request α in its entirety

and proceed to perform their parts of it. At P0,

α requests a lock on record /home/calvin from

the local scheduler; at Q0, α requests a lock on

/home/calvin/fly.py. At each machine, α only

starts executing once it has received its local locks.

Before we walk through the execution of α at P0 and

Q0, let us first review the sequence of logical steps that

the request needs to complete:

1. Check parent directory permissions. Abort trans-

action if /home/calvin does not exist or is not

writable.

2. Update parent directory metadata. If fly.py is

not contained in /home/calvin’s contents, add it.

3. Check file permissions. If the file exists and is not a

writable file, abort the transaction.

4. Create file metadata entry. If no metadata entry ex-

ists for /home/calvin/fly.py, create one.

5. Resize file metadata entry. Update the metadata en-

try to indicate a length of 18 bytes. If it was pre-

viously longer than 18 bytes, this truncates it. If it

was previously shorter (or empty), it is extended to

18 bytes, padded with zeros.

6. Update file metadata entry’s contents.

Write β : [0,18) to the byte range [0,18) of

/home/calvin/fly.py, overwriting any

previously existing contents in that range.

Note that steps 1 and 2 involve the parent directory meta-

data entry at P0, while steps 3, 4, 5, and 6 involve only

the new file’s metadata at Q0. However, steps 4 through

6 depend on the outcome of step 1 (as well as 3), so P0

and Q0 do need to coordinate in their handling of this

mutation request. The two shards therefore proceed as

follows:
P0 Q0

Check parent dir

permissions (step 1).

Send result (OK

or ABORT) to Q0.

If result was OK,

update parent dir

metadata (step 2).

Check file permissions;

abort if not OK (step 3).

Receive parent directory

permissions check

result from P0.

If received result is OK,

perform steps 4 through 6.

Both shards begin with permissions checks (step 1 for

P0 and step 3 for β ). Suppose that both checks succeed.

Now α sends an OK result message to β . β receives the

result message, and now both shards execute the remain-

der of the operation with no further coordination.

Note that we were discussing datacenter 0’s P and

Q metadata shards. Metadata shards (P1,Q1), (P2,Q2),
etc., in other datacenters independently follow these same

steps. Since each shard deterministically processes the

same request sequence from the log, metadata state re-

mains strongly consistent: import antigravity is

written to /home/calvin/fly.py identically at every

datacenter.

7 Performance Evaluation

CalvinFS is designed to address the challenges of (a)

distributing metadata management across multiple ma-

chines, and (b) wide area replication for fault tolerance.

In exploring the scalability and performance character-

istics of CalvinFS, we therefore chose experiments that

explicitly stressed the metadata subsystem to its limits.

WAN replication. All results shown here used deploy-

ments that replicated all data and metadata three ways—

across datacenters in Oregon, Virginia, and Ireland.

Many small data blocks. In order to test the perfor-

mance of CalvinFS’s metadata store (as opposed to the

more easily scalable block storage component), we fo-

cused mainly on update-heavy workloads in which 99.9%

of files were 1KB or smaller. Obviously, most real world

file systems typically deal with much larger files; how-

ever, by experimenting on smaller files we were able to

test the ability of the metadata store to handle billions

of files while keeping the cluster size affordably small

enough for our experimental budget. Obviously, larger

files would require additional horizontal scalability of the

block store; however this is not the focus of our work.

8
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We use this setup to examine CalvinFS’s memory usage,

throughput capacity, latency, and fault tolerance.

7.1 Experimental Setup

All experiments were run on EC2 High-CPU Extra-Large

instances5. Each deployment was split equally between

AWS’s US-West (Oregon), US-East (Virginia), and EU

(Ireland) regions. Block and metadata replication factors

were set to 3, and buckets, metadata shards, and Paxos

group members were placed such that each object (meta-

data entries, log blocks, data blocks, and Paxos log and

metalog entries) would be stored once in each datacenter.

Each machine served as (a) a block server (contain-

ing 30 buckets), (b) a log front-end, and (c) a metadata

shard. In addition, one randomly selected machine from

each datacenter participated in the Paxos group for the

Calvin metalog. We ran our client load generation pro-

gram on the same machines (but it did not use any knowl-

edge about data or metadata placement when generating

requests, so very few requests could be satisfied locally,

especially in large deployments).

We ran each performance measurement on deploy-

ments of seven different sizes: 3, 6, 18, 36, 75, 150,

and 300 total machines. As mentioned above, we had

a limited budget for running experiments, so we could

not exceed 300 machines. However, we were able to

store billions of files across these 300 machines by lim-

iting the file size. Our results can be translated directly

to larger clusters that have more machines and larger files

(and therefore the same total number of files to manage).

We compare our findings directly to HDFS performance

measurements published by Yahoo researchers [20].

7.2 File Counts and Memory Usage

After creating each CalvinFS deployment, we created 10

million files per machine. File sizes ranged from 10 bytes

to 1MB, with an average size of 1kB. 90% of files con-

tained only one block, and 99.9% of files had a total size

of under 1kB. Most file names (including full directory

paths) were between 25 and 50 bytes long.

We found that total memory usage for metadata was

approximately 140 bytes per metadata entry—which is

closely comparable to the per-file metadata overhead of

HDFS [28]. Unlike HDFS, however, the metadata shards

did not store an in-memory table of block placement

data, since Calvin uses a coarser-grained bucket place-

ment mechanism instead. We would therefore expect

an HDFS-like file system deployment (with ˜1 block per

5Each EC2 High-CPU Extra-Large instance contains 7 GB of mem-

ory, 20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute

Units each with the equivalent CPU capacity of a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor), and 1690 GB of instance storage

file) to require approximately twice the amount of total

memory to store metadata (assuming the same level of

metadata replication). Of course, by partitioning meta-

data across machines, CalvinFS requires far less memory

per machine.

Our largest deployment—300 machines—held 3 bil-

lion files (and therefore 9 billion total metadata entries)

in a total of 1.3 TB of main memory. This large number

of files is far beyond what HDFS can handle [27].

7.3 Throughput Capacity

Next, we examined the throughput capacity (Figure 1)

and latency distributions (Figure 2) of reading files, writ-

ing to files, and creating files in CalvinFS deployments of

varying sizes. For each measurement, we created client

applications that issued requests to read files, create files,

and write to files—but with different frequencies. For ex-

periments on read throughput, 98% of all client requests

were reads, with 1% of operations being file creations

and 1% being writes to existing files. Similarly, for write

benchmarks, clients submitted 98% write requests, and

for append benchmarks, clients submitted 98% append

requests. For all workloads, clients chose which files to

read, write, and create using a Gaussian distribution.

Once key feature of CalvinFS is that throughput is to-

tally unaffected by WAN replication (and the latencies

of message passing between datacenters). This is be-

cause once a transaction is replicated to all datacenters by

the Calvin log component (which happens before request

execution begins), no further cross-datacenter communi-

cation is required to execute the transaction to comple-

tion. Therefore, we only experiment with the three dat-

acenter case of Oregon, Virginia, and Ireland for these

set of experiments—changing datacenter locations (or

even removing WAN replication entirely) has no effect

on throughput results. Latency, however, is affected by

the metalog Paxos agreement protocol across datacenters,

which we discuss in Section 7.4 below.

Read Throughput

For many analytical applications, extremely high read

throughput is extremely important, even if it comes at

the cost of occasionally poor latencies for reads of spe-

cific files. On the other hand, being able to rely on

consistent read latencies vastly simplifies the develop-

ment of distributed applications that face end-users. We

therefore performed two separate read throughput exper-

iments: one in which we fully saturated the system with

read requests, resulting in “flaky” latency, and one at only

partial load that yields reliable (99.9th percentile) latency

(Figures 1a and 1b). Because each datacenter stores a

full, consistent replica of all data and metadata, each read

9



10 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Figure 1: Total and per-machine read (a,b) and update

(c,d) throughput, and maximum per-file update through-

put (e), for WAN-replicated CalvinFS deployments.

request is routed only to the relevant machine(s) in the

same datacenter as the client.

Specifically, we observed that under very heavy load,

occasional background tasks such as LSM tree com-

pactions and garbage collection could cause a large num-

ber of concurrent read requests to stall, introducing oc-

casional latency spikes and some completely failed reads

that then had to be retried. Median and 90th percentile la-

tencies, however, were comparable to those observed for

the “partial load” experiments described below.

For our partial load experiments, we reduced the num-

ber of clients as far as necessary to completely remove

latency spikes. Typically running the system at 50% of

the maximum load accomplished this. For our largest de-

ployments, we had to reduce the load to about 45% of

maximum throughput to accomplish this 6.

Figures 1a and 1b) show that CalvinFS is able to

achieve linear scalability for read throughput, even as

millions of files are read per second. At machine count 3,

there is only one machine per datacenter, so all reads can

be satisfied locally, which yields very high throughput.

Starting with machine count 6, however, the probability

of at least one non-local access increases rapidly (already

at machine count 6 there is a 75% probability that either

the file metadata or the file data itself will be non-local).

We include in Figure 1a the upper bound of read re-

quest throughput for HDFS, as reported by Yahoo re-

searchers in 2010[20]. Specifically, this corresponds to

block location lookups by the NameNode. It was found

that the HDFS metadata store can serve no more than

126,119 block location lookups per second. Since read

requests involve more metadata operations than just a sin-

gle block location lookup—such as other metadata entry

lookups to check file existence, permissions, and block

IDs, not to mention possibly having to look up multiple

block locations if the file spans multiple blocks—this is

strictly an upper bound. We also assume here that the

metadata management layer is the only bottleneck for

reads, which in HDFS would certainly not be the case

for small deployments. It is fair to expect actual HDFS

read throughput to be considerably lower than the upper

bound plotted in Figure 1a.

Update Throughput

Next, we measured the total number of file creation and

append operations that each CalvinFS deployment could

perform (Figures 1c and 1d). Append throughput scaled

very nearly linearly with the number of machines in the

cluster, reaching about 40,000 appends per second with a

300- machine cluster.

However, file creation throughput scaled slightly less

smoothly. This is because each file creation operation is

implemented as a distributed transaction (since metadata

entries had to be modified for both the parent directory

and the newly-created file)—requiring coordination be-

tween metadata shards to complete. As more machines

6The problems of performance isolation between processes and mit-

igating tail latencies have been studied extensively, and many tech-

niques have been developed that could be applied to CalvinFS to safely

increase CPU utilization and improve performance, but these are out-

side the scope of this paper.
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are added, the likelihood increases that at any given time

at least one machine will “fall behind,” delaying other

machines’ progress involved in distributed transactions

accessing data at that node. This effect is similar to

that observed running TPC-C and other OLTP bench-

marks using the Calvin framework [24]. Despite slightly

sub-linear scaling, file creation capacity in CalvinFS still

scales very well overall—far better than alternatives that

do not scale metadata management across multiple ma-

chines.

We include in Figure 1c the observed HDFS through-

put upper bound of 5600 new blocks per second [20]. In

our benchmark, each file creation and write involved cre-

ating a block, then performing one or more other meta-

data updates. We therefore expect actual HDFS update

throughput of this type to be considerably lower than

5600 operations per second, but this figure serves as a

proven upper bound.

Concurrent Writes to Contended Files

Many distributed systems do not perform well when a

large number of clients concurrently attempt to write to

the same file—such as heavy traffic of simultaneous ap-

pends to a shared log file. The systems that provide the

best performance for this situation often forgo consistent

replication and strong linearizability guarantees to do so.

CalvinFS, however, supports high concurrent write

throughput to individual files without sacrificing lineariz-

ability. To demonstrate this, we performed an experiment

in which we chose one file for every three machines in

the full deployment (so 1 file for the 3-machine deploy-

ment and 100 files for the 300 machine deployment) and

had 100 independent clients per file repeatedly send re-

quests to either append data to that file or perform a ran-

dom write within the file. Figure 1e shows the resulting

per-file throughput. Small-cluster CalvinFS deployments

sustained rates of 250 writes or appends per second on

each file. Our largest deployments sustained 130 writes

or appends per second on each file.

7.4 Latency Measurements

Next, we examined the latency distribution for file read,

write, and file creation operations for deployments of 36

and 300 machines (Figures 2a and 2b). Latencies are

measured from when a client submits a request until the

operation is completed and it receives a final response.

Read Latencies

Our measurement of read latencies was taken under

“non-flaky” load, which is about half of maximum read

throughput. In all cases, read requests are served by the

nearest metadata shard and block server within the same

datacenter.

We broke reads down into three categories: (a) reads of

files that contain no data in the block store (this includes

ls operations on directories, since each directory’s con-

tents are listed in its metadata entry), reads of files that

contain a single block, and reads of multi-block files.

There are several interesting features to note in these

plots. First, in the 36-machine deployment, the median

latency to read a non-empty file is about 3ms and the

99th percentile latency is about 80ms, while at 300 ma-

chines, median latency is about 5 ms, and 99th percentile

latency is about 120ms. Although adding more machines

to a distributed system invariably introduces performance

variabilities, we deemed this a reasonable latency price

for nearly an order of magnitude of scaling.

Second, when reading zero-block files in the 36-

machine deployment (which has 12 machine per data-

center), about 1 read in 12 is extremely fast—less than

100 microseconds—because 1 in 12 metadata lookups

happen to occur on the same machine as the interface

node handling the client’s request, requiring no network

round trips. The same effect is visible for one 100th

of metadata-only reads in the 300-machine deployment

(which, likewise, has 100 machines per datacenter). LAN

round-trip times within a datacenter were 1 ms—about

the latency of most non-local metadata-only reads. Simi-

larly, 1-block reads generally incur 2 round trips, while

2+ block reads incur 3 or more. Because of the non-

uniform distribution of files read, around 85% of blocks

could be served directly from block servers’ OS memory

cache, without needing to go to disk; only 15% of 1-block

reads incur disk I/O costs; among reads of multi-block

files, the frequency of I/O latencies appearing is higher.

Although these benchmarks may not be very indicative

of real-world usage patterns for distributed file systems

(which would likely include many more large files, and

in some cases worse cache locality for reads), we chose

them to highlight the specific sources of latency that are

introduced by components other than the block store.

Therefore, one can know what to expect if a CalvinFS-

style metadata subsystem were coupled with an off-the-

shelf block store whose performance and scalability was

already well-documented for petabyte-scale data volumes

and much larger individual block sizes.

Update Latencies

Latencies for file creation and write/append requests are

dominated by WAN round-trip times. Creating a file typ-

ically incurs approximately two non-overlapping round

trip latencies: one for the log front-end to write its re-

quest batch out to a majority of datacenters, and one to

append the entry to the Paxos metalog.

Although we saw above that CalvinFS achieves more

11
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Figure 2: Latency distributions for read, write/append,

and create operations for WAN-replicated CalvinFS de-

ployments of (a) 36 machines and (b) 300 machines.

impressive throughput for writes and appends to existing

files than for file creation, the latency for writes/appends

is higher—one additional non- overlapping WAN round

trip is necessary to replicate the newly created data blocks

before requesting the metadata update.

7.5 Fault Tolerance

Since we designed CalvinFS’s WAN replication mecha-

nism with the explicit goal of high availability, we now

test our system in the presence of full datacenter fail-

ure. In our next experiment, we killed all CalvinFS

processes in the Virginia datacenter while a 36-machine

CalvinFS deployment the system was running under a

mixed read/create/write load. Specifically, we deployed

1000 clients—one third constantly reading files, one third

constantly creating new files, and one third constantly ap-

pending to files. This saturates the file system’s maxi-

mum file creation throughput capacity (which is limited

by lock contention) and represents approximately 50%

read load and 20% append load.

Figure 3 shows throughput (a) and median and 99th-

percentile latency (b) for the 30 seconds immediately pre-

ceding and following the datacenter “failure”. In order

to clearly show what effects this had on CalvinFS’s core

operation capacities, we immediately redirected all new

client requests that would have been routed to Virginia

to either Oregon or Ireland, rather than requiring clients

to wait for timeouts before resuming (which would have

“unfairly” given the system time to recover from its sud-

den involuntary reconfiguration).

We see here that total read, create, and write/append

throughput capacity is only reduced by a small amount,

Figure 3: Throughput (a) and latency (b) for the time win-

dow preceding and following a datacenter failure.

median read latency remains unchanged, and 99th-

percentile read latency only increases by about 30%. File

creation and write/append latency, however, roughly dou-

ble. The reason for this is that the non-overlapping por-

tions of WAN latencies goes from being around 100ms

(round trip between either Oregon and Virginia or Vir-

ginia and Ireland—each of which pair forms a quorum)

to nearly 200ms (round trip between Oregon and Ireland,

which now represent the only quorum). No file is at any

time unavailable for reading or writing.

In summary, we found that CalvinFS tolerated an un-

planned datacenter outage with exceptional grace.

8 Related Work

CalvinFS builds on a long history of research on the scal-

ability and reliability of distributed file systems.

We modeled certain aspects of the CalvinFS design

after GFS/HDFS. In particular, our decision to concen-

trate all metadata in the main memory of a specific meta-

data component is based on the success of this tactic in

GFS/HDFS. CalvinFS’ block store is also a simplifica-

tion of the GFS/HDFS model that uses consistent hash-

ing to simplify block metadata. Our implementation

of CalvinFS’ novel features—scalable metadata man-

agement and consistent WAN replication—was designed

12
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to illuminate a path that a GFS-/HDFS-like file system

could take towards eliminating the single metadata mas-

ter as both a scalability bottleneck and availability hazard

[10, 21, 20].

In 2009, Google released a retrospective on the scala-

bility, availability, and consistency challenges that GFS

had faced since its creation, attributing many difficul-

ties to its single-master design. The interview also de-

scribes a new distributed-master implementation of GFS

that stores metadata in Bigtable [10, 14, 6]. Since

Bigtable supports neither multi-row transactions nor syn-

chronous replication, it is unclear how (or if) this new

GFS implementation supports strongly consistent seman-

tics and linearizable file updates while maintaining high

availability—particularly in the case of machine failures

in the metadata Bigtable deployment.

The Lustre file system resembles GFS in that it uses a

single metadata server (MDS), but it does not store per-

block metadata, reducing MDS dependence in the block

creation and block-level read paths. The latest release

of Lustre allows metadata for specific directory subtrees

to be offloaded to special “secondary” MDSs for out-

ward scalability and load balancing. Lustre supports only

cluster-level data replication [18].

Tango provides an abstraction of a distributed, transac-

tional data structure backed by a replicated, flash-resident

log, and is designed for use in metadata subsystems. Like

in the CalvinFS metadata manager, a Tango deployment’s

state is uniquely determined by a single serialized log

of operation requests. Tango transactions use optimistic

concurrency control, however: they log a commit entry as

the final execution step (readers of the log are instructed

to ignore any commit entry that turns out to be preceded

by a conflicting one). To avoid high optimistic abort

rates under contention, this mechanism requires a log im-

plementation with very low append latency. Since syn-

chronous geo-replication inherently incurs high latencies,

Tango is only suited to single-datacenter deployments [5].

IBM’s GPFS distributes metadata using a shared-disk

abstraction and allows multiple machines to access it con-

currently protected by a distributed locking mechanism.

When multiple clients access the same object, however,

distributed locking mechanisms perform poorly. File sys-

tems that store metadata using shared-disk arrays depend

on low-latency network fabrics to mitigate these issues

[17].

Gluster distributes and replicates both data blocks and

file metadata entries using an elastic hashing algorithm.

However, adding replicas to a Gluster deployment signif-

icantly hinders write throughput. Furthermore, Gluster’s

implementation of copy and rename operations forces

data blocks as well as metadata to be copied between stor-

age shards, which can easily become too expensive [1].

The Ceph file system scales metadata management by

dynamically partitioning metadata by directory subtree

(and hashing “hotspot” directories across multiple meta-

data servers). Ceph is optimized for single- datacenter

deployments, however; its metadata replication mecha-

nism relies heavily on low latencies between replicas to

avoid introducing update-contention bottlenecks [25].

The Panasas File System colocates file metadata with

file data on Object-based Storage Devices (OSDs), each

of which manages (RAID-based) data replication inde-

pendently. OSDs optimize caching for high-throughput

concurrent reads. Clients cache a global mapping of file

system objects to OSDs, updates to which require global

synchronization [26].

The Ursa Minor Storage System uses subtree-

partitioning to distribute metadata but takes a different

approach to outwardly scalable metadata management:

any time an atomic operation would span multiple par-

titions, instead of using a distributed transaction, it repar-

titions the metadata data, migrating all entries that need

to be atomically updated to the same partition [3].

The Farsite file system is designed to unite a collec-

tion of “desktop” computers rather than datacenters full

of rack servers. Early versions Farsite relied on a sin-

gle metadata server, but Farsite now supports dynamic

subtree-partitioning as well, but no metadata replication

[4].

Frangipani and xFS are shared-disk distributed file sys-

tems. xFS implemented a “serverless” file system, dis-

tributing file data and metadata across a collection of

disks, using a globally replicated mapping of file system

object locations. All implementation logic is executed

by clients, using on-disk state for synchronization. Some

currently popular shared-disk-based file systems appear

to be loosely based on the xFS design [23, 22].

Panache approaches file system scalability from a dif-

ferent direction—providing scalable caching of both data

and metadata for a traditional (and less scalable) file sys-

tem. Although Panache does not provide a full replace-

ment for a file system’s metadata component, it effec-

tively removes some bottlenecks, particularly from the

read path, via partitioning and replication [9].

Like CalvinFS, Giga+ uses hash partitioning to dis-

tribute metadata for across many servers within a data-

center. However Giga+’s distributed operations are even-

tually consistent and rely on clever handling of stale

client-side state [16].
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9 Conclusions

CalvinFS deployments can scale on large clusters of com-

modity machines to store billions of files and process

hundreds of thousands of updates and millions of reads

per second—while maintaining consistently low read la-

tencies. Furthermore, CalvinFS deployments can survive

entire datacenter outages with only minor performance

consequences and no loss of availability at all.
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Abstract

Despite domain-specific digital archives are growing in
number and size, there is a lack of studies describing
their architectures and runtime characteristics. This pa-
per investigates the storage landscape of the European
Centre for Medium-Range Weather Forecasts (ECMWF)
whose storage capacity has reached 100 PB and experi-
ences an annual growth rate of about 45%. Out of this
storage, we examine a 14.8 PB user archive and a 37.9 PB
object database for metereological data over a period of
29 and 50 months, respectively.

We analzye the system’s log files to characterize traf-
fic and user behavior, metadata snapshots to identify the
current content of the storage systems, and logs of tape
libraries to investigate cartridge movements. We have
built a caching simulator to examine the efficiency of
disk caches for various cache sizes and algorithms, and
we investigate the potential of tape prefetching strategies.
While the findings of the user archive resemble previ-
ous studies on digital archives, our study of the object
database is the first one in the field of large-scale active
archives.

1 Introduction

The number and size of computing sites with domain-
specific archives has reached new heights and is still in-
creasing. Next to the ever faster compute systems, stor-
age systems are also growing in multiple dimensions
like available capacity, access frequency, and required
throughput. With the increased computing power and
new algorithms from the big data area, computations
tend to use and create more data. Here, many archives
become active in the sense that every stored datum may
be read at any point in time.

For building storage systems that meet the demands of
active archives, it is necessary to understand how today’s
systems evolved, how they work and in which direction

the development is heading. Unfortunately, only a small
number of publicly available studies exist that analyze
the storage infrastructure and characterize the stored data
as well as storage access patterns and growth patterns.
The result is a lack of representability of previous stud-
ies, as comparable studies are missing. Most of today’s
multi-petabyte storage systems follow a tape backend +
disk caching approach. While disks offer the better per-
formance and more flexibility in their access characteris-
tics, tape is still cheaper in terms of capacity. The disk-
to-tape ratio is therefore a tradeoff between price, perfor-
mance, and capacity.

Previous studies investigated traces of desktop or net-
work file systems [19, 28], internet accessible content de-
livery networks [15, 17], in-memory caches [3], or dig-
ital archives and content repositories [21, 1, 14]. The
presented study is the first analysis of an active archive –
a large-scale content repository where all data is subject
to be accessed at any time.

The contributions of this paper are an in-depth system
analysis of two archival systems from the previously un-
charted weather forecasting domain, a simulator-driven
evaluation of workload trace files to improve the disk
cache efficiency, and a feasibility evaluation of tape
prefetching strategies. The subject of our study is
the storage environment of the European Centre for
Medium-Range Weather Forecasts (ECMWF)1, which
provides medium-range global weather forecasts for up
to 15 days and seasonal forecasts for up to 12 months.
To achieve this, they utilize supercomputers2 and, as
of September 2014, storage with a capacity of 100 PB.
Next to fast HPC storage, they run two in-house devel-
oped archival systems: a general-purpose user-accessible
archive (ECFS) for file storage hosting 14.8 PB of data
and a large object database for meteorological data
(MARS) that hosts 37.9 PB of primary data consisting
of 170 billion fields. It is regarded as the world’s largest

1http://www.ecmwf.int/
2http://www.top500.org/site/47752
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archive of numerical weather prediction data. Both sys-
tems consist of multiple tape libraries with disk-based
caches in front of them. We have developed a trace-
based storage simulator for the ECFS traces to determine
the efficiency of various cache strategies and to optimize
the hit-ratio of the disk caches. Additionally, we look
into the logs of the tape libraries and the backend HPSS
system [12]. Examining logs with more than 9.5 mil-
lion tape load operations in 2012-2013, we investigate
the feasibility of tape prefetching strategies.

Our study shows that the two storage systems are used
in different ways. While the ECFS is an archive with
mostly write accesses and only a small set of actively
used data, the MARS system is read-dominant, and all
its data are subject to be read. Both systems face an ex-
ponential data increase with a compound annual growth
rate (CAGR) of about 45% over the last years and about
50% today. In total, the ECFS logs cover 29 months
of 2012-2014 and the MARS logs 50 months of 2010-
2014. These logs cover the integration of new applica-
tions, models and hardware. Especially, the additional
throughput and capacity required by a newly commis-
sioned supercomputer becomes visible at several points
and is one of the reasons for the exponential growth in
storage capacity.

2 Related Work

Large-scale storage and archival systems have been in-
vestigated for many years. Baker et al. and Rosen-
thal et al., for example, discuss the technical and non-
technical challenges for building long-term digital repos-
itories [4, 5, 24]. The technical problems include large-
scale disasters, component and media faults, and the ob-
solescence of hardware, software and formats. Further-
more, human errors, loss of data context, or misplanning
need to be considered. Rosenthal especially emphasizes
the economical aspects of long-term archives. Economic
faults, erroneous capacity planning, or the wrong use of
storage technologies can be a threat for long-term data
availability. Many previous studies help to encounter
these threats and to build reliable and successful digital
archives.

Most studies that analyze the contents or behavior of
file systems deal with workstations, general-purpose net-
work file systems, or HPC storage systems [13, 2, 19,
11, 8, 28]. They examine static file system snapshots,
request traces and operating system logs to investigate
multiple dimensions of storage systems. Meister et al.
investigated the possible impact of applied deduplication
on HPC storage [23].

Another investigated area are large-scale publicly ac-
cessible systems, their usage patterns, and the efficiency
of caching [7, 25, 15, 3, 17]. It is especially important to

understand and characterize traffic and user behavior to
build and improve caching infrastructures.

There exist only a few publicly available archival
traces [20] and analyses of recent archives. Madden et
al. wrote a technical report on the user behavior in the
NCAR archival system over a three year period from
2008 to 2010 [21]. They also started an investigation
of namespace locality of user sessions. Frank et al. com-
pare the logs of an NCAR system to a previous study of
the system from 1992 [14]. In the interval, the read-to-
write ratio on the system changed from 2:1 to 1:2 which
indicates that archives are becoming increasingly write-
only. From the traces it was also derived that 30% of the
requests have a latency to first byte of more than three
minutes. In order to improve the latency, the authors sug-
gest large disk caches that permanently hold the small
files. The most comprehensive study was conducted by
Adams et al. [1] who examined multiple public and sci-
entific long-term data repositories for their content and
workload behavior. Especially for the scientific LANL
and NCAR repositories, disks play an increasingly im-
portant role, which becomes visible by comparing the
1:262 disk-to-tape ratio at NCAR in 1993 with the 1:3.3
ratio at LANL in 2010.

Previous studies document the rise of disk drives, used
either as a complement to or as a replacement for tape in
large-scale archival scenarios. Colarelli and Grunwald,
for example, argue for the replacement of tape archives
by large disk arrays that are switched off when not in
use [10]. This idea was refined in the Pergamum system
by Storer et al., a distributed system of powered-down
disks for archival workloads [26]. Grawinkel et al. pro-
posed a high-density MAID system optimized for “write
once, read sometimes” workloads [16]. Today, large-
scale archival systems are in production that primarily
build on disk technology, like the Internet Archive [18].

3 Background

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) is an independent intergovernmental or-
ganization supported by 20 European member states and
14 co-operating states. The center was established in
1975 and hosts one of the largest supercomputer com-
plexes in Europe. Storage for the computation environ-
ments is driven by HPC storage systems and two large
archival systems developed in-house, namely ECFS and
MARS, that will be investigated in this paper. Today
the center hosts a combined storage capacity of about
100 PB. This includes the HPC storage and backups. All
files of the archival system are stored on tape, and impor-
tant files are stored to a second tape copy.

ECFS is used as a general-purpose archival system
and accessible for users of the ECMWF compute envi-

2
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ronment. In September 2014 it stored 137 million files
with a total size of 14.8 PB. The system provides 0.34 PB
of disk caches so that the disk-to-tape ratio is 1:43. All
data is written to a disk cache first before it is migrated
to tape.

FDB
Field cache

ECFS 
ClientsECFS 

ClientsECFS 
Clients

MARS 
ClientsMARS 

ClientsMARS 
Clients

Off Site 
Backup

Mars Server
Disk Cache

Disk
Cache

HPSS

Figure 1: Abstract overview of storage environment.

MARS is an object store for meteorological data with
a database-like API. A custom query language is used to
specify a list of relevant fields. The system assembles
these fields into a package and stores it on a target stor-
age system so that it can be accessed from the HPC sys-
tems. To reduce the metadata overhead and keep the file
backend manageable on tape, fields are stored in append-
able files. A dedicated database allocates and maps fields
to offset-length pairs on files. New, recently, and often
used fields are staged and cached in a dedicated field
database (FDB), which is the primary target for queries.
If the FDB does not contain a field, the MARS servers
are queried. MARS manages its own disk cache. In case
of a cache miss, the required files are loaded from tape.
All MARS servers for all projects provide a total of 1 PB
of disk cache which results in a 1:38 disk-to-tape ratio.
The FDBs are stored on the HPC storage systems con-
nected to the supercomputers and can grow to multiple
PB. In September 2014 MARS stored 54 PB of primary
data consisting of 170 billion fields in 11 million files.
Additionally, the system uses 800 GB of metadata. Each
day, 200 million new fields are added.

Figure 1 provides a high level overview of the stor-
age environment, which is implemented around the High
Performance Storage System3 (HPSS) that provides the
disk caches for ECFS and manages the tape resources
for both ECFS and MARS. Tape is considered to be the
final destination for data. Every cached file has a copy
on tape. In contrast to ECFS, MARS manages its own
disk caches outside of HPSS. The ECMWF runs multi-
ple project-specific MARS databases that are mapped to
individual storage pools in the HPSS system. In the fol-
lowing, we will treat ECFS and MARS as two different
storage systems.

3http://www.hpss-collaboration.org/

3.1 Available Log Files

This work analyzes log files and database snapshots
provided by ECMWF. All log files were obfuscated
by replacing user information and each part of a file’s
path by a hash sum, except file extensions. No user
information can be revealed, but access patterns and file
localities are preserved. We developed a set of python
scripts to obfuscate, sanitize, and pack the raw source
data. The following analysis is based on compressed log
files from multiple ECFS, MARS, and HPSS servers.
The gathered and investigated files are:
ECFS access trace: Timestamps, user id, path, size of
GET, PUT, DELETE, RENAME requests. 2012/01/02 -
2014/05/21.
ECFS / HPSS database snapshot: Metadata
snapshot of ECFS on tape. Owner, size, cre-
ation/read/modification date, paths of files. Snapshot of
2014/09/05.
MARS feedback logs: MARS client requests
(ARCHIVE, RETRIEVE, DELETE). Timestamps,
user, query parameters, execution time, archived or
retrieved bytes and fields. 2010/01/01-2014/02/27.
MARS / HPSS database snapshot: Metadata snap-
shot of MARS files on tape. Owner, size, cre-
ation/read/modification date, paths of files. Snapshot of
2014/09/06.
HPSS WHPSS logs / robot mount logs: Timestamps,
tape ids, information on full usage lifecycle from
access request till cartridges are put back to the library.
2012/01/01 - 2013/12/31.

The traces and tools used are publicly available as out-
lined in Section 9.

4 ECFS User Archive

Users of the ECMWF compute environment use ECFS
as an intermediate and long-term storage for general pur-
pose data. New and recently retrieved files are stored
in disk pools and are migrated to the tape storage by
HPSS. Files are categorized by their size and are spread
to six pools with different capacities and properties. The
ranges as well as the number and size of stored files are
listed in Table 1. Though tape is considered as the pri-
mary storage, files of the Tiny class are primarily stored
on mirrored disks and only backed up to tape. Therefore,
to read tiny files, tape is never used. In ECFS, no files
are updated in place, but a file may be overwritten.

4.1 Metadata Snapshot Analysis

In contrast to the trace files that only yield data being
accessed within the investigated time frame, the HPSS

3
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Group From To (incl.) Count Used Capacity
Tiny 0 512 KB 36.0 mil. 4.4 TB
Small 512 KB 1 MB 9.1 mil. 6.3 TB
Medium 1 MB 8 MB 29.5 mil. 101 TB
Large 8 MB 48 MB 30.0 mil. 585 TB
Huge 48 MB 1 GB 29.7 mil. 6.2 PB
Enormous 1 GB ∞ 3.1 mil. 8 PB

Table 1: File size categorization. Count and capacity re-
fer to Sept. 2014.

database snapshot gives a full view on all stored files on
2014/09/05.

File system stats
Total #files 137.5 mil.
Total used capacity 14.8 PB
Largest file size 32 GB
#Directories 5.5 mil.
Max files per directory 0.43 mil.
#Files never read from tape 101.3 mil. (11.3 PB)

Most common file types
by file count by used capacity

unknown (27.8232%) unknown (39.3306%)
.gz (20.4319%) .tar (21.2699%)
.tar (7.8015%) .gz (12.4954%)
.nc (7.6312%) .nc (7.8819%)
.grib2 (1.9438%) .lfi (2.2399%)
.raw (1.7284%) .pp (1.0087%)
.txt (1.5095%) .sfx (0.9327%)
.Z (1.4862%) .grb (0.8471%)
.bufr (1.4451%) .grib (0.3977%)
.grb (1.4402%) .bz2 (0.3083%)

Table 2: Statistics on ECFS tape storage.

The summary in Table 2 presents a total of 137.5 mil-
lion files that are stored in 5.5 million directories and use
14.8 PB of capacity. The table also presents the most
common file types by count and occupied capacity. Next
to the unknown files that do not yield an extension on
their file names, packed, compressed, and weather do-
main specific files are highly represented. Figure 2 shows
a histogram of the most common file sizes. The sys-
tem stores a large amount of files between 0 bytes and
1 KB, but else visually follows a Gaussian distribution
that peaks at 8-16 MB.

The database excerpt also contains the creation, modi-
fication, and read timestamps of files. These timestamps
mark the access times of a file on the tape drives and
do therefore not reflect the access times of cached files.
Files of the Tiny group (see Table 1), for example, are
fully cached on disk and never retrieved from tape. The
file system statistics of Table 2 show 101.3 million files
that were never read from tape. These files were only
uploaded or modified. If they were accessed, they were
read from the HPSS’ disk cache.

The upper graph of Figure 3 visualizes the absolute
number of existing files at a particular point in time and
the number of files that were unread or unmodified since

Figure 2: Histogram of stored ECFS files sizes.

Figure 3: Top: Total number of existing files with
amounts of unmodified and unread files since the point
in time. Bottom: Fraction of unread or unmodified files
relative to existing files.

that date. An unaccessed file was neither read nor modi-
fied and an existing never read file has no read time stamp
and was therefore created and possibly updated only. The
lower graph presents the fractions relative to the existing
number of files to delineate the behavior over time. Since
2012/01 60 million new files were created. With the be-
ginning of 2013, the new supercomputer becomes visible
as more files are created and the graph steepens. In gen-
eral, the number of existing files follows an exponential
growth. The number of unmodified files closely follows
the number of unaccessed files. This means that most of
the last actions on files were modifications, which also
includes the initial creation, and not reads. In the last
year (2013/07 - 2014/07), the amount of never read files
slightly grew from 68% to 73%, while the number of un-
read files shrank from 27% to 25%. In 2013/07 about
90% of the data stored on tape were neither read nor
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modified. This value changes by looking back an addi-
tional year till 2012/07 which covers the introduction of
the new supercomputer. About 64% of the files existing
at that point in time were not accessed until 2014/07.

4.2 Workload Characterization

For the time period from 2012/01/01 to 2014/05/20 a full
trace of all ECFS operations has been investigated. Ta-
ble 3 summarizes the key metrics.

Total GET requests 38.5 mil.
Total GET bytes 7.24 PB
Total PUT requests 78.3 mil.
Total PUT bytes 11.83 PB
Total DEL requests 4.2 mil.
Total RENAME requests 6.4 mil.
Total different files 73.4 mil.
Total different dirs 6.2 mil.
#Files with PUT 66.2 mil.
#Files with GET 12.2 mil.
Cache hit ratio by requests 86.7%
Cache hit ratio by bytes 45.9%

Table 3: Characterization of ECFS workload 2012/01/02
- 2014/05/21.

During the observed timespan, a total of 38.5 mil-
lion GET requests were executed on 12.3 million unique
files, a total of 78.3 million PUT requests on 66.2 mil-
lion unique files were counted, and 4.2 million files were
deleted from ECFS. As there are more unique written
files than PUT requests, some files were updated or over-
written. In comparison to the NCAR analysis [14] where
30% of the stored files were read during the 29 month
observation timespan, ECFS saw reads on 12.3 million
distinct files which is 9% of the total corpus.

We analyzed the number of PUT and GET requests
and their respective traffic based on the ECFS file size
categories of Table 1. Figure 4 breaks down these met-
rics on a monthly basis. Until 2013/03, the system has a
balanced throughput of 200-300 TB PUT and GET traf-
fic per month with slightly prevailing write traffic. With
the introduction of the new computer in the first quarter
of 2013, the amount of written data doubles both, traffic-
and request-wise, while the retrieval rates and volume
merely rise.

Figure 5 visualizes the hotness of files during the ob-
served timespan. As the analysis in Section 4.1 shows,
the system contains a lot of data that have not been ac-
cessed within this time frame or were just uploaded with-
out being retrieved again.

The main argument that is underlined by the plot is
that in total 50% of all GET requests hit less than 5%
of the stored files. This argument is supported by the
overall 86.7% disk cache hit ratio with a disk-to-tape
ratio of 1:43. The cached requests are responsible for

Figure 5: Top: CDF over file GET requests per file per
size group.
Bottom: Zoomed to most frequently retrieved 3 %.

45.9% of the retrieved bytes, which leads to the assump-
tion that most small reads can be satisfied by the cache
and mostly larger files are retrieved from tape. The later
cache analysis in Figure 15 (see Section 7) visualizes the
cache hit ratios observed from the ECMWF traces for
the different file size categories. While Tiny files achieve
100%, only 60% of the Huge and 50% of the Enormous
file retrieval requests are served from disk.

4.3 User Session Analysis

For every request in the trace, the user id and the host that
executed the command are known. A user id can be used
by all sorts of processes running on multiple systems at
the same time. The trace reveals 1,190 unique user ids
and 2,647 unique hostnames. As presented in Table 3,
a total of 11.8 PB of data have been written and 7.2 PB
have been retrieved from the archive. Figure 6 visualizes
how the bytes and requests are distributed to the iden-
tified users. The plot shows that only 850 users wrote
data while 1,075 users retrieved data. Furthermore, only
a small fraction of less than 100 users make up more than
90% of the traffic.

We gathered all commands issued by a user id from
the same hostname and create clusters of executed re-
quests that occurred within close succession. If the time
between two requests is longer than the window, they
are clustered into different groups. We call all requests
within such a group a user session. Figure 7 presents
the number of actions per identified user session for a
growing time window based on the methodology used
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Figure 4: Total requests per month

Key P05 P50 mean (+-95%) P95 P99 Count
#Sessions per user id 1 35 2,276.76 (± 1,006.85) 7,315 28,861 1,190
#Sessions per user id@host 1 4 92.70 (± 7.50) 352 1,512 29,227
Total #Actions 2 7 47.04 (± 0.69) 126 579 2,709,343
GET Requests per session 1 4 35.55 (± 0.78) 108 571 1,083,067
ReGET requests per session 1 2 31.98 (± 3.66) 99 442 132,515
PUT Requests per session 1 5 34.43 (± 0.44) 97 373 2,274,645
Dirs with GETs 1 2 8.15 (± 0.16) 21 96 1,083,067
Dirs with PUTs 1 2 6.06 (± 0.07) 14 71 2,274,645
Retrieved files per directory 1 1.78 10.05 (± 0.23) 30 149.75 1,083,067
Archived files per directory 1 2 7.44 (± 0.12) 27 74 2,274,645
Retrieved MBytes 0.56 192.13 7,172.91 (± 221.74) 17,150.69 86,444.15 1,083,067
Archived MBytes 0.02 206.04 5,591.52 (± 94.84) 19,588.74 64,995.07 2,272,399
Session lifetime in s 0 154 2,601.60 (± 21.13) 9,295 38,456 2,709,343
Gap between sessions 120 250 896.26 (± 11.70) 3,070 3,500 29,227

Table 4: ECFS user session analysis. A total of 2,709,343 sessions were identified.

Figure 6: Summed up traffic for GET and PUT requests
per unique user id

by Madden et al. [21]. In contrast to Madden’s approach,
the graph does not show a plateau that would charac-
terize a typical session. Therefore, we used a machine
learning approach over all actions of each user to iden-
tify a window size that produces the most stable clus-
ters for that user. For the 1,190 users, we identified a
total of 2,709,343 sessions and Table 4 presents statistics
over some key performance points. As for all following

Figure 7: Mean actions per user sessions for growing
window sizes.

statistics, we present the 5, 50, 95 and 99 percentiles, a
mean with a 95% confidence interval and the count of
occurrences of the performance points. The statistics for
a metric like GET requests per session is only counted if
the session had at least one GET request. A write only
session would not be counted here.

The results underline the trend shown in Figure 6.
A small fraction of users is very active which becomes
visible in the high differences of the P50 and P95 per-
centiles of multiple performance points. Also the vol-
ume in terms of requests and transferred bytes follows
this trend, where a small fraction of sessions dominate
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the workload. The session lifetime considers the time
from the beginning of the first until the end of the last
action within a user session. Many sessions consist of a
single action that is executed within a second or less. On
the other hand, we observe sessions longer than 10 hours
for the P99 which are most probably regular operations
like cron jobs for backups.

The trace file yields full obfuscated paths of accessed
files. Therefore, we investigated the locality of accesses
within a session. If a session retrieved files, on average
36 GET requests were issued which accessed 8 directo-
ries with about 10 files per directory. If a session also
archived data, on average 34 files were uploaded to 6
different directories with about 7 files per directory. As
observed in the study by Adams et al. [1], we also see
user sessions that re-retrieve the same file within the life-
time of the session, which occurred in 132,515 of the
1,083,067 sessions with GET requests. Out of the total
38.5 million GET requests, 11% (4.2 million) were re-
retrievals of files within a user session.

5 MARS Database

The Meteorological Archival and Retrieval System
(MARS) is the main repository of meteorological data
at ECMWF. It contains petabytes of operational and re-
search data, as well as data from special projects. In con-
trast to the ECFS, where files are identified by a unique
path, MARS hosts billions of metereological fields that
cannot be directly addressed by a user, but are the result
of a query. The available log files of the MARS system
contain all parameters of the queries and the number and
source of the returned fields, but do not allow to iden-
tify the exact keys of the accessed fields. Therefore, this
analysis cannot investigate the hotness of fields or files,
but can only characterize the observed traffic.

MARS is based on a 3-tier storage architecture with
the FDB as the first, the MARS servers’ disk caches as
the second and the HPSS tapes as the third layer. All
fields in MARS are eventually persisted to the files in the
HPSS tape backend, but requests are primarily served by
the FDB and the MARS servers. The system also ap-
plies domain specific knowledge to improve the cache
hit rates. For example, if files or full tapes are identi-
fied as hot, they can be manually loaded and locked to
the MARS servers’ disk caches. Currently 250 TB are
reserved for this manual cache optimization.

5.1 Metadata Snapshot Analysis
The following analysis investigates an HPSS database
snapshot of all MARS files on tape from the 2014/09/04.
Table 5 presents a summary of the findings. Compared
to ECFS, MARS stores a significantly smaller amount

of files that use a larger total capacity of 37.9 PB. When
the snapshot was taken, a total of 7.8 million of the 9.7
million stored files were never read from tape.

File system stats
Total #files 9.7 mil.
Total used capacity 37.9 PB
Largest file size 1.34 TB
#Directories 555,799
Max files per directory 38,375
#Files never read from tape 7.9 mil. (24.9 PB)

Table 5: Statistics on MARS’ tape storage.

Similar to ECFS, the histogram of the file sizes in Fig-
ure 8 resembles a Gaussian distribution, yet with a higher
average file size and a higher maximum at 128-256 MB.
The size of the largest file stored is 1.34 TB.

Figure 8: Histogram of files sizes

The visualization of creation, modification, and read
times in Figure 9 follows the schematic described in Sec-
tion 4.1. Again, the upper graph visualizes the absolute
number of existing files at a particular point in time and
the number files that have not been modified or read since
that date. The lower graph presents the fractions relative
to the existing number of files. The high rate of unac-
cessed files and a modification rate close to 100% shows
that files are predominantly created, rarely updated and
only read sometimes from the HPSS tape backend. The
lower graph shows that up to 80% of the files on tape
were written, but never read again. This behavior either
indicates a cold storage or a strong caching infrastruc-
ture. In contrast to the ECFS analysis (see Figure 3), the
introduction of the new supercomputer in Q1/2013 is not
visible in Figure 9. Though Figure 10 shows a significant
change of daily written fields and bytes, the file creation
rate on the HPSS system does not change. This is be-
cause new fields are aggregated at the FDB and MARS
server levels that are written as a file which then appears
as a new file in HPSS. The assumption is that the average
size of newly created files grows over time.
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Figure 9: Top: Total number of existing files with
amounts of unmodified and unread files since the point
in time. Bottom: Fraction of unread or unmodified files
relative to existing files.

5.2 Workload Characterization
We present the analysis of the MARS feedback logs over
the timespan 2010/01/01-2014/02/27 that quantifies user
requests and the resulting traffic. Figure 10 visualizes
the daily throughput in bytes and requests. Again, the in-
troduction of the new compute environment in Q1/2013
becomes visible in elevated throughput rates. The old en-
vironment can be characterized by a constant daily read
rate of 40-50 TB (100-120 million fields) and 15-20 TB
(about 50 million fields) of written data. With the new
computer, the read rate doubles, but the write rate nearly
increases threefoldly. During the peak throughput rate in
2013/01 both old and new supercomputers were running.

Figure 10: Throughput and number of accessed fields.

Table 6 presents some key characteristics of the con-
sidered 50 months. A total of 1.2 billion read requests
were executed that fetched 269 billion fields which

Total retrieved bytes (fields) 91.6 PB (269 bil.)
- from FDB bytes (fields) 54.2 PB (212 bil.)
- from MARS/disk bytes (fields) 29.4 PB (43.3 bil.)
- from HPSS/tape bytes (fields) 8 PB (13.3 bil.)

Total retrieve requests 1.2 bil.
- including FDB 992 mil. (85.3 %)
- from FDB only 938.9 mil. (80.7%)
- including MARS/disk 204.9 mil. (17.6%)
- from MARS/disk only 151.3 mil. (13%)
- including HPSS/tape 25.3 mil. (2.2%)
- from HPSS/tape only 16 mil. (1.4%)

Total archive requests 115 mil.
Total archived bytes (fields) 35.9 PB (114.7 bil.)

Table 6: Characterization of MARS workload
2010/01/01-2014/02/27.

accounted for 91.6 PB of data, while 115 million re-
quests created 114.7 billion new fields which account for
35.9 PB data. The logs breakdown each request into the
number of fields, their summed up sizes and source of the
returned fields. In total, 80.7% of all requests can be fully
served by the field database (FDB), 17.6% of the requests
also require data from the MARS server’s disk drives and
only 2.2% of the requests include data from tapes. 1.4%
of the retrieve requests are fully served from tape with-
out any cached data from disk. Considering the number
of retrieved fields, MARS achieves a 95.1% cache hit ra-
tio with a 1:38 disk-to-tape ratio on the MARS servers
and a similar but not concretizable ratio on the FDB.

Figure 11 characterizes the most active user ids in
terms of retrieved and archived bytes and the according
requests. It shows that the number of users who created
content is significantly smaller than the number of users
who retrieved data. A huge amount of traffic was actu-
ally generated by only two user ids. Some ids are shared
by multi-purpose users, behind which multiple real user
ids hide. Therefore, these very active users have to be
considered as outliers.

Figure 11: Traffic per unique user id.

6 Tape Mount Logs

Both ECFS and MARS use a HPSS powered tape archive
as the final destination and primary copy of files. De-
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spite the strong caching infrastructure, the tape robots
are heavily used. Figure 12 illustrates the life cycle of

Library Drive Mounted Volume Mounted

load mount

unmountunload

Figure 12: Tape states

one tape use in a simplified state diagram. To read data,
a request is sent to the HPSS system that loads the tape
into a drive. The tape is mounted as a volume and can be
accessed. After a fixed timespan or on request, the vol-
ume is unmounted, but the tape can remain in the drive. If
the tape is requested again while still being loaded, it can
be remounted, or in the worst case reloaded into another
drive. Eventually the tape is unloaded from the drive and
put back to the library. Each tape has a unique identifier
that indicates its type (STK T10k-B/C/D) and is assigned
to ECFS or a MARS project. We use the identifiers to
track the usage of the cartridges and map them to either
ECFS or MARS. During the complete log period we saw
a total of 231 different drive identifiers and 9,594 unique
tape ids for ECFS and 23,118 for MARS.

Tape mount frequencies
System #Tapes P05 P25 P50 mean (+-95%) P95 P99
MARS 23,118 0 2 46 291.22 (± 9.70) 1,106 3,351
ECFS 9,594 1 12 85 296.64 (± 11.18) 1,408 2,470

Tape mount latencies in seconds
System #Mounts P05 P25 P50 mean (+-95%) P95 P99
MARS 6,730,218 26 30 35 54.35 (± 0.06) 155 262
ECFS 2,845,154 25 28 32 48.19 (± 0.07) 138 257

Table 7: Tape mount statistics

Figure 13 presents the access frequencies of tapes.
Sorted by the most often accessed tapes, the total num-
ber of loads is summed up. The graph shows that MARS
is accountable for 6.7 million and ECFS for 2.8 mil-
lion tape loads. The right graph of the figure compares
MARS and ECFS and reveals a similar distribution pat-
tern. About 20% of all tapes are accountable for 80% of
all mounts and more than 50% of the tapes are accessed
in less than 5% of the loads.

Next we investigate the behavior of the tape system

Figure 13: CDF over load requests per tape cartridge.
Left: Absolute. Right: Normalized.
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Figure 14: Mount Details for ECFS and MARS

over time. Both, the robot mount logs and the WHPSS
logs were used for the analysis. Unfortunately, 6 days
of the WHPSS logs were erroneous. We used the logs
to feed finite state machines to track the cartridge states.
Table 7 presents statistics of the time till a requested tape
is available for work (volume mounted) and the number
of load requests.

The ratio of 6.7 million MARS loads to the 2.8 mil-
lion ECFS loads perfectly reflects the ratio of the stored
data of 35.9 PB to 14.8 PB. The tape load times for the
two categories are very similar, which leads to the as-
sumption of equal or shared hardware in the backend.
Although the median waiting time is only 35 (32) sec-
onds, the mean is much higher due to some very long
waiting times. More than 5% of all tape loads take more
than 2 minutes and 1% of the loads take longer than 4
minutes.

Figure 14 visualizes the HPSS behavior for ECFS and
MARS over time. The graphs show more volume mounts
than tape loads, which shows the fraction of remounts
without tape movements. The bottom of the graphs
present the number of tape reloads and volume remounts
within 60 and 300 seconds. A tape reload 60s means
that after the tape was unloaded, within 60 seconds an-
other mount request was issued. Over the observed time
frame ECFS and MARS show a total of 21% of reloads
within 60 seconds and 39% of reloads within 300 sec-
onds. The significant finding is that in total 14.8% of all
loaded tapes were unloaded from another drive less than
60 seconds ago.
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Time slot (s) MARS ECFS
(0, 60] 73.922 8,740

(60, 120] 48,580 8,270
(120, 300] 107,276 23,126
(300, 600] 129,861 31,145

(0, 600] 359,639 71,281
(600, 1200] 189,691 46,792

(1200, 1800] 146,249 36,733
total success 695,569 154,806

[0, -1800] 849,229 162,965
(1800, fail] 8,061,777 1,364,171

Positive hit rate in % 7.24 9.20
Neutral hit rate in % 8.84 9.69

Total misses in % 83.92 81,11

Table 8: Prefetching hits based on the correlation
analysis

6.1 Tape Prefetching
The average loading time could be improved by prefetch-
ing the tapes which are likely to be read next. In order to
identify such tapes, we performed a correlation analysis
on the tape mount logs using the Pearson correlation. In
the following we describe the procedure and estimate the
potential for improvement.

For any combination of two tapes x and y with a corre-
lation coefficient of at least 0.8, we analyzed all load re-
quests of x and measured the time difference until y was
requested. Assuming the system would prefetch y once
it sees a request for x, then this delay indicates the time y
occupies a drive until it is requested. Table 8 shows the
number of load requests within different time slots for
the ECFS and MARS tapes.

We consider access delays of more than 1,800 seconds
as prefetching failures, because with a high probability
the tape would be evicted before being accessed. Fur-
thermore, the interval [0, -1,800] shows the number of
operations that did not result in a hit, but saw a load of y
within the preceding 30 minutes. This is the case if x and
y are requested at the same time, if y is already loaded
or y was requested prior to x. In this case x would be
the prefetching result of y’s load request and therefore,
should not issue a prefetching event itself. This time
slot neither generates any profit, nor induces any costs,
which is why we call these events neutral hit and do not
consider them as misses. Misses are load requests of x
that never see a corresponding load event of y during the
following 1,800 seconds.

The MARS and ECFS logs show a total of 695,569
and 154,806 prefetching hits which on average would
have resulted in a hit every 74 seconds. Considering
the mean latency of 54.35 and 48.19 seconds per load
request, the latency of these operations would have ac-
cumulated to 1.20 and 0.24 years and could be saved by
prefetching. The total load request latency of all load
operation of the two projects is 11.60 and 4.35 years, re-

spectively. The above mentioned reduction of 1.20 and
0.24 years could reduce these by 10.3% and 5.5%. This
is a theoretical upper limit, since the 9.4 million misses
would nearly double the amount of tape loads and clearly
is unsuitable.

To design a prefetching strategy, possible candidates
have to be identified. Furthermore, it has to be verified
that the robots and drives have enough spare resources to
process the prefetching load operations without impair-
ing operational use. The logs show an average of 546.33
(± 3.65) load operations per hour and during the busiest
5% of hours, more than 894 operations were performed.
During the peak 1% utilization, more than 1,046 load op-
erations were executed per hour. In the absence of such
peak loads, the robots should be able to handle additional
loads induced by prefetching misses. Finally, prefetching
would not be applicable if the drives are constantly busy.
We consider a drive to be idle if a tape is loaded but not
mounted. Since mounted tapes are always loaded, the
ratio of the volume mount time to the tape loaded time
is a good metric for the drives utilization. We calculated
this ratio for every hour of the observed time frame and
on average see that tapes are accessed 82% of the time
they are loaded. For the 0.01 and 0.99 percentiles we see
a usage of 65% and 94%, respectively. This shows that
the drives are highly utilized, but offer idle time to apply
prefetching strategies.

7 Cache Simulation

Using a newly designed cache evaluation environment,
different cache eviction strategies have been analyzed
running the ECFS trace files (which were described in
Section 4.2). We reuse the file size categorization of
Table 1 and investigate the cache efficiency for differ-
ent caching strategies and cache sizes. All GET, PUT,
DEL, RENAME operations of the trace are replayed to
a simulator that mimics a simple disk cache. A GET re-
quest on a non-existent file triggers a cache miss and the
file is loaded to the cache. Also all PUT requests load
the file into the cache, which might lead to an eviction.
We evaluate the following cache eviction strategies using
the ECFS traces that cover a timespan from 2012/01 till
2014/05 and are visualized in Figure 4.

LRU Data is evicted on a Least-Recently-Used strategy.

MRU Data is evicted on a Most-Recently-Used strategy.

FIFO Queue based eviction.

RANDOM A random cache entry is chosen for evic-
tion. The presented graphs show the average results
over 10 runs.
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ARC Adaptive Replacement Cache that keeps track of
both frequently and recently used files with an evic-
tion history [22].

Bélády Adaption of the Bélády algorithm [6] which
evicts those files that will not be needed for the
longest time in the future. This algorithm would
only be optimal if all files had the same size, but
nevertheless we use this almost perfect cache as a
baseline. The construction of an optimal cache is
NP hard [9].

The results are visualized in Figure 15. For every file
size category used at ECMWF (see Table 1) we present
a graph that analyzes the cache hit ratio for the different
caching strategies and multiple cache sizes. The last row
shows the relative difference for a single combined cache
for all files against the combined hit ratio over the sum
of all hits and misses of the 6 subcaches. Its capacity
steps are the sum of the same step of the other six caches.
A negative result means that a single huge cache has a
better hit ratio in terms of requests. We used the full year
of 2012 to warm up the caches and present the total cache
hit ratio for the period from 2013/01 to 2014/05.

Only the ECMWF baseline for Tiny files achieves a
100% hit ratio, as all files are always held on disk. The
first GET request on a file that had no previous PUT re-
quest in the observed trace will result in a cache miss.
Therefore, our results cannot reach 100%. The rightmost
capacity of the graphs present a cache with unlimited size
which never evict files because it can hold all of them.
Therefore, this point presents the theoretical maximum
cache hit ratio for the observed time frame.

The graphs show that strategies like MRU and FIFO
are not usable at all. Only for very large caches, they
yield an acceptable hit ratio. Due to the high number
of re-GET requests, the most recently used files should
be cached and not evicted, which explains the bad hit
rates for MRU. Also the FIFO reveals a bad performance
because it neglects the popularity of files. The constant
writes of new files will evict files independent of their
usage patterns.

While MRU and FIFO show a harmful behavior for
cache efficiency, the Random strategy provides an unop-
timized baseline. The LRU strategy accommodates the
observations of the user sessions and the hot files pre-
sented in Figure 5 as it does not evict recently used files.
The ARC cache competes as an improved LRU and in
general slightly outperforms the LRU strategy.

The Bélády provides the best results, but as a theoret-
ical construct that requires knowledge of the future we
can only use it as an upper limit. Even for small cache
sizes, this strategy often reaches the maximum hit ratio.
This observation creates the assumption that an anticipa-
tory eviction strategy that learns from the past might out-
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Figure 15: ECFS cache hit ratio evaluation. 2012 is used
for cache warm up. Ratios are measured for 2013/2014.
Horizontal red line marks ECMWF’s hit ratio.
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perform the other strategies. Domain knowledge as ob-
servable from the user sessions presented in Section 4.3
is available and could be fed to the caches.

Interestingly, the analysis of a big combined cache re-
veals that up to a cache size of about 2 PB, the single big
instance in all cases provides a better hit rate. For a total
cache size larger than 2 PB, the 6 subcaches provide bet-
ter results for all cache strategies. All visualized hit ratios
follow an upward trend for more capacity. The simulator
can help to identify the achievable improvement of the
hit ratio for extra cache capacity.

8 Discussion & Conclusion

This work analyzed log files and database snapshots to
understand the behavior of ECFS and MARS, the two
main archival systems at ECMWF, including the tape li-
braries that form the storage backbone of the two sys-
tems. The ECFS system resembles a typical archive and
our findings underline the characterizations of previously
studied systems [1, 21]. We analyzed the caching infras-
tructure of ECFS and provide a model and simulator to
compare caches with different strategies and capacities.
While ECMWF uses a lot of domain-specific knowledge
which cannot be described algorithmically, we used the
simulator to test basic strategies. It turned out that the
Adaptive Replacement Cache (ARC) which evicts the
least recently used and least frequently used files from
the cache performs best. This conforms to our observa-
tion that files are often retrieved again after a short while
(usually in the same user session). Coupling our test re-
sults with the knowledge of ECMWF will help in the fu-
ture to further improve their cache hit rates.

Unlike ECFS, MARS opens the uncharted category of
active archives that has not been thoroughly investigated
until now. The object database uses a three-tiered archi-
tecture and a custom query language. All stored fields
are subject to be read by computational models or exper-
iments at any time. The investigated log files do not pro-
vide all the information necessary to fully characterize
the user traffic. It is, for example, not possible to deduce
the exact fields returned, although we know the queries.
Nevertheless, it was possible to roughly describe the traf-
fic and to assess the cache efficiency and the usage of the
tape backend.

For ECFS, we saw read accesses on only 9% of the
file corpus with a disk cache hit ratio of 86.7% during
the observed timespan. Only 26,3% of the files on tape
were ever read. The MARS logs do not reveal deeper in-
formation about which files and fields were accessed, but
show that 95.1% of the requested fields were served from
disk caches where only 2.2% of all requests included ac-
cesses to one or multiple tapes. Despite of this strong
caching infrastructure, we have observed more than 9.5

million tape loads over a period of two years with 5% of
the tapes being loaded more than 1,000 times.

The archival system’s latency is not the primary bot-
tleneck for the computations, as most operations run in
batch and wait until the requested data is available. Nev-
ertheless, since extensive queries that involve tapes can
take several minutes, hours or even days, it is worth-
while to improve the average loading time of the tapes.
Although the system is already well-configured, the 60
second tape reload rate of 14.8% and the prefetching
analysis expose further potential for optimization.

The quality of weather forecasts constantly improves
due to faster computers and improved computational
models. At the same time, the requirements for storage
infrastructure grow as well. Kryder’s Law states that the
areal density of bits on disk platters roughly doubles ev-
ery two years [27]. While this was true for the last three
decades, Rosenthal et al. forecast that the improvements
in storage cost per bit for disk and tape will be much
slower [24]. ECMWF faced a CAGR of 45% over the
last years, which lately increased to 53% with the latest
supercomputer. While this growth was maintainable with
a constant budget during the last years, it might lead to
the economical threats for long-term digital storage de-
scribed by Baker et al. [5]. The consequence has to be an
adjustment of scenario planning or implementing means
to grow slower.

Due to a lack of studies, it is difficult to compare or
generalize our results to other archival storage environ-
ments. Nevertheless, we believe that they are also rel-
evant for other existing or future systems and that they
can help to make the right design decisions. The reason
is the observation that many large systems share at least
some essential properties like the small read-to-write ra-
tio and the overall architecture combining a large tape
library with a relatively small disk-based cache. We de-
veloped a generic, extensible set of tools that can be ap-
plied to analyze workloads of archives and data centers.
The cache simulation, for instance, helps to evaluate new
caching strategies and to explore the impact of different
eviction strategies and cache bucket sizes.

9 Closing Remarks

We are very grateful to the European Centre for Medium-
Range Weather Forecasts for the opportunity to browse
and analyze their log files and to share their valuable
knowledge on building large scale archival systems.

The analyzed traces are stored at ECMWF and will be
made available upon individual requests. The cache sim-
ulator, part of the scripts, and links to the trace files are
available at https://github.com/zdvresearch/fast15-paper-
extras.
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Efficient Intra-Operating System Protection Against Harmful DMAs

Moshe Malka Nadav Amit Dan Tsafrir
Technion – Israel Institute of Technology

Abstract
Operating systems can defend themselves against mis-

behaving I/O devices and drivers by employing intra-OS
protection. With “strict” intra-OS protection, the OS uses
the IOMMU to map each DMA buffer immediately before
the DMA occurs and to unmap it immediately after. Strict
protection is costly due to IOMMU-related hardware over-
heads, motivating “deferred” intra-OS protection, which
trades off some safety for performance.

We investigate the Linux intra-OS protection mapping
layer and discover that hardware overheads are not exclu-
sively to blame for its high cost. Rather, the cost is am-
plified by the I/O virtual address (IOVA) allocator, which
regularly induces linear complexity. We find that the na-
ture of IOVA allocation requests is inherently simple and
constrained due to the manner by which I/O devices are
used, allowing us to deliver constant time complexity with
a compact, easy-to-implement optimization. Our optimiza-
tion improves the throughput of standard benchmarks by
up to 5.5x. It delivers strict protection with performance
comparable to that of the baseline deferred protection.

To generalize our case that OSes drive the IOMMU
with suboptimal software, we additionally investigate the
FreeBSD mapping layer and obtain similar findings.

1 Introduction

The role that the I/O memory management unit (IOMMU)
plays for I/O devices is similar to the role that the regular
memory management unit (MMU) plays for processes.
Processes typically access the memory using virtual ad-
dresses translated to physical addresses by the MMU.
Likewise, I/O devices commonly access the memory via
direct memory access operations (DMAs) associated with
I/O virtual addresses (IOVAs), which are translated to
physical addresses by the IOMMU. Both hardware units
are implemented similarly with a page table hierarchy that
the operating system (OS) maintains and the hardware
walks upon an (IO)TLB miss.

The IOMMU can provide inter- and intra-OS protec-
tion [4, 44, 54, 57, 59]. Inter protection is applicable in
virtual setups. It allows for “direct I/O”, where the host as-
signs a device directly to a guest virtual machine (VM) for
its exclusive use, largely removing itself from the guest’s
I/O path and thus improving its performance [27, 42]. In

this mode, the VM directly programs device DMAs using
its notion of (guest) “physical” addresses. The host uses
the IOMMU to redirect these accesses to where the VM
memory truly resides, thus protecting its own memory
and the memory of the other VMs. With inter protec-
tion, IOVAs are mapped to physical memory locations
infrequently, only upon such events as VM creation and
migration, and host management operations such as mem-
ory swapping, deduplication, and NUMA migration. Such
mappings are therefore denoted persistent or static [57].

Intra-OS protection allows the OS to defend against er-
rant/malicious devices and buggy drivers, which account
for most OS failures [19, 49]. Drivers/devices can initi-
ate/perform DMAs to arbitrary memory locations, and
IOMMUs allow OSes to protect themselves by restrict-
ing these DMAs to specific physical memory locations.
Intra-OS protection is applicable in: (1) non-virtual setups
where the OS has direct control over the IOMMU, and in
(2) virtual setups where IOMMU functionality is exposed
to VMs via paravirtualization [12, 42, 48, 57], full emula-
tion [4], or, recently, hardware support for nested IOMMU
translation [2, 36]. In this mode, IOVA (un)mappings are
frequent and occur within the I/O critical path. The OS
programs DMAs using IOVAs rather than physical ad-
dresses, such that each DMA is preceded and followed by
the mapping and unmapping of the associated IOVA to
the physical address it represents [38, 46]. For this reason,
such mappings are denoted single-use or dynamic [16].
The context of this paper is intra-OS protection (§2).

To do its job, the intra-OS protection mapping layer
must allocate IOVA values: integer ranges that serve as
page identifiers. IOVA allocation is similar to regular
memory allocation. But it is different enough to merit
its own allocator (§3). One key difference is that regular
allocators dedicate much effort to preserving locality and
to combating fragmentation, whereas the IOVA allocator
disallows locality and enjoys a naturally “unfragmented”
workload. This difference makes the IOVA allocator 1–2
orders of magnitude smaller in terms of lines of code.

Another difference is that, by default, the IOVA subsys-
tem trades off some safety for performance. It delays the
completion of IOVA deallocations while letting the OS
believe that the deallocations have been processed. Specif-
ically, freeing an IOVA implies purging it from the IOTLB
such that the associated physical buffer is no longer acces-
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sible to the I/O device. But invalidating IOTLB entries is
a costly, slow operation. So the IOVA subsystem opts for
batching the invalidations until enough accumulate and
then invalidating all the IOTLB en masse, thus reducing
the amortized price. This default mode is called deferred
protection. Users can turn it off at boot time by instructing
the kernel to use strict protection.

The activity that stresses the IOVA mapping layer is
associated with I/O devices that employ ring buffers in
order to communicate with their OS drivers in a producer-
consumer manner. A ring is a cyclic array whose entries
correspond to DMA requests that the driver initiates and
the device fulfills. Ring entries contain IOVAs that the
mapping layer allocates/frees before/after the associated
DMAs are processed by the device. We carefully analyze
the performance of the IOVA mapping layer and find that
its allocation scheme is efficient despite its simplicity, but
only if the device is associated with a single ring (§4).

Devices, however, often employ more rings, in which
case our analysis indicates that the IOVA allocator se-
riously degrades the performance (§5). We study this
deficiency and find that its root cause is a pathology we
call long-lasting ring interference. The pathology occurs
when I/O asynchrony prompts an event that causes the
allocator to migrate an IOVA from one ring to another,
henceforth repetitively destroying the contiguity of the
ring’s I/O space upon which the allocator relies for effi-
ciency. We conjecture that this harmful effect remained
hidden thus far because of the well-known slowness asso-
ciated with manipulating the IOMMU. The hardware took
most of the blame for the high price of intra-OS protection
even though software is equally guilty, as it turns out, in
both OSes that we checked (Linux and FreeBSD).

We address the problem by adding the Efficient IOVA
allocatoR (EIOVAR) optimization to the kernel’s mapping
subsystem (§6). EIOVAR exploits the fact that its workload
is (1) exclusively comprised of power-of-two allocations,
and is (2) ring-induced, so the difference D between the
cumulative number of allocation and deallocation requests
at any given time is proportional to the ring size, which
is relatively small. EIOVAR is accordingly a simple, thin
layer on top of the baseline IOVA allocator that proxies all
(de)allocations. It caches all freed ranges and reuses them
to quickly satisfy subsequent allocations. It is successful
because the requests are similar. It is frugal with memory
because D is small. And it is compact (implementation-
wise) because it consists of an array of freelists with a bit
of minimal logic. EIOVAR entirely eliminates the baseline
allocator’s aforementioned reliance on I/O space contigu-
ity, ensuring all (de)allocations are efficient.

We evaluate the performance of EIOVAR using dif-
ferent I/O devices (§7). On average, EIOVAR satisfies
(de)allocations in about 100 cycles. It improves the
throughput of Netperf, Apache, and Memcached bench-

marks by up to 5.50x and 1.71x for strict and deferred
protection, respectively, and it reduces the CPU consump-
tion by up to 0.53x. Interestingly, EIOVAR delivers strict
protection with performance that is similar to that of the
baseline system when employing deferred protection.

Accelerating allocation (of IOVAs in our case) using
freelists is a well-known technique commonly utilized by
memory allocators [13, 14, 15, 29, 40, 53, 55] (§8). Our
additional contributions are: identifying that the perfor-
mance of the IOMMU mapping layer can be dramatically
improved by employing this technique across the OSes we
tested and thus refuting the common wisdom that the poor
performance is largely due to the hardware slowness; care-
fully studying the IOMMU mapping layer workload; find-
ing that it is very “well behaved”; which ensures that even
our simplistic EIOVAR freelist provides fast, constant-time
IOVA allocation while remaining compact in size (§9).

2 Intra-OS Protection

DMA refers to the ability of I/O devices to read from
or write to the main memory without CPU involvement.
It is a heavily used mechanism, as it frees the CPU to
continue to do work between the time it programs the
DMA until the time the associated data is sent or received.
As noted, drivers of devices that stress the IOVA mapping
layer initiate DMA operations via a ring buffer, which is
a circular array in main memory that constitutes a shared
data structure between the driver and its device. Each
entry in the ring contains a DMA descriptor, specifying
the address(es) and size(s) of the corresponding target
buffer(s); the I/O device will write/read the data to/from
the latter, at which point it will trigger an interrupt to let
the OS know that the DMA has completed. (Interrupts are
coalesced if their rate is high.) I/O device are commonly
associated with more than one ring, e.g., a receive ring
denoted Rx for DMA read operations, and a transmit ring
denoted Tx for DMA write operations.

In the past, I/O devices used physical addresses in order
to access main memory, namely, each DMA descriptor
contained a physical address of its target buffer. Such
unmediated DMA activity directed at the memory makes
the system vulnerable to rogue devices performing errant
or malicious DMAs [9, 17, 38, 58], or to buggy drivers
that might program their devices to overwrite any part of
the system memory [8, 30, 42, 49, 56]. Subsequently, all
major chip vendors introduced IOMMUs [2, 7, 34, 36],
alleviating the problem as follows.

The OS associates each DMA target buffer with some
IOVA, used instead of the physical address when filling
out the associated ring descriptor. The I/O device is obliv-
ious to the change, processing the DMA as if the IOVA
was a physical memory address. The IOMMU then trans-
lates the IOVA, routing the operation to the appropriate
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Figure 1: IOVA translation using the Intel IOMMU.

memory location. Figure 1 depicts the translation pro-
cess of the Intel IOMMU used in this paper. The PCI
protocol dictates that each DMA operation is associated
with a 16 bit request identifier comprised of a bus-device-
function triplet unique to the corresponding I/O device.
The IOMMU uses the 8 bit bus number to index the root
table, retrieving the physical address of the context ta-
ble. It then indexes the latter using the device-function
8 bit concatenation, yielding the physical location of the
root of the page table hierarchy that houses the device’s
IOVA translations. Similarly to the MMU, the IOMMU
accelerates translations using an IOTLB.

The functionality of the IOMMU is equivalent to that
of the regular MMU. It permits IOVA memory accesses
to go through only if the OS previously inserted matching
translations. The OS can thus protect itself by allowing
a device to access a target buffer just before the corre-
sponding DMA occurs (add mapping), and by revoking
access just after (remove mapping), exerting fine-grained
control over what portions of memory may be used in
I/O transactions at any given time. This state-of-the-art
strategy of IOMMU-based protection was termed intra-
OS protection by Willmann et al. [57].It is recommended
by hardware vendors [31, 38], and it is used by operating
systems [6, 16, 35, 45]. For example, the DMA API of
Linux—which we use in this study—notes that “DMA
addresses should be mapped only for the time they are
actually used and unmapped after the DMA transfer” [46].

3 IOVA vs. Memory Allocation

The task of generating IOVAs—namely, the actual inte-
ger numbers that the OS assigns to descriptors and the
devices then use—is similar to regular memory allocation.
But it is sufficiently different to merit its own allocator,
because it optimizes for different objectives, and because
it is required to make different tradeoffs, as follows.

Locality Memory allocators spend much effort in trying
to (re)allocate memory chunks in a way that maximizes
reuse of TLB entries and cached content. The IOVA map-

ping layer of the OS does the opposite. The numbers it
allocates correspond to whole pages, and they are not
allowed to stay warm in hardware caches in between al-
locations. Rather, they must be purged from the IOTLB
and from the page table hierarchy immediately after the
DMA completes. Moreover, while purging an IOVA, the
mapping layer must flush each cache line that it modifies
in the hierarchy, as the IOMMU and CPU do not reside
in the same coherence domain.1

Fragmentation Memory allocators invest much effort
in combating fragmentation, attempting to eliminate un-
used memory “holes” and utilize the memory they have
before requesting the system for more. As we further dis-
cuss in §5–§6, it is trivial for the IOVA mapping layer to
avoid fragmentation due to the simple workload that it ser-
vices, which exclusively consists of requests whose size
is a power of two number of pages. The IOMMU driver
rounds up all IOVA range requests to 2 j for two reasons.
First, because IOTLB invalidation of 2 j ranges is faster
[36, 39]. And second, because the allocated IOVA range
does not correspond to 2 j pages of real memory. Rather
it merely corresponds to to a pair of integers marking the
beginning and end of the range. Namely, the IOMMU
driver maps only the physical pages it was given, but it re-
serves a bigger IOVA range so as to make the subsequent
associated IOTLB invalidation speedier. It can thus afford
to be “wasteful”. (In our experiments, the value of j was
overwhelmingly 0. Namely, the allocated IOVA ranges
almost always consist of one page only.)

Complexity Simplicity and compactness matter and
are valued within the kernel. Not having to worry about
locality and fragmentation while enjoying a simple work-
load, the mapping layer allocation scheme is significantly
simpler than regular memory allocators. In Linux, it is
comprised of only a few hundred lines of codes instead
of thousands [40, 41] or tens of thousands [13, 32].

Safety & Performance Assume a thread T0 frees a
memory chunk M, and then another thread T1 allocates
memory. A memory allocator may give M to T1, but only
after it processes the free of T0. Namely, it would never
allow T0 and T1 to use M together. Conversely, the IOVA
mapping layer purposely allows T0 (the device) and T1
(the OS) to access M simultaneously for a short period of
time. The reason: invalidation of IOTLB entries is costly
[4, 57]. Therefore, by default, the mapping layer trades off
safety for performance by (1) accumulating up to W un-
processed ’free’ operations and only then (2) freeing those
W IOVAs and (3) invalidating the entire IOTLB en masse.
Consequently, target buffers are actively being used by
the OS while the device might still access them through

1Intel IOMMU specification documents a capability bit that indicates
whether the IOMMU and CPU coherence could be turned on [36], but
we do not own such hardware and believe it is not yet common.
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stale IOTLB entries. This weakened safety mode is called
deferred protection. Users can instead employ strict pro-
tection—which processes invalidations immediately—by
setting a kernel command line parameter.

Metadata Memory allocators typically use the memory
that their clients (de)allocate to store their metadata. For
example, by inlining the size of an allocated area just
before the pointer that is returned to the client. Or by
using linked lists of free objects whose “next” pointers
are kept within the areas the comprise the lists. The IOVA
mapping layer cannot do that, because the IOVAs that
it invents are pointers to memory that is used by some
other entity (the device or the OS). An IOVA is just an
additional identifier for a page, which the mapping layer
does not own.

Pointer Values Memory allocators running on 64-bit
machines typically use native 64-bit pointers. The IOVA
mapping layer prefers to use 32-bit IOVAs, as utilizing 64-
bit addresses for DMA would force a slower, dual address
cycle on the PCI bus [16].

4 Supposed O(1) Complexity of Baseline

In accordance to §3, the allocation scheme employed by
the Linux/x86 IOVA mapping layer is different than, and
independent of, the regular kernel memory allocation sub-
system. The underlying data structure of the IOVA al-
locator is the generic Linux kernel red-black tree. The
elements of the tree are ranges. A range is a pair of inte-
ger numbers [L,H] that represent a sequence of currently
allocated I/O virtual page numbers L,L+1, ...,H −1,H,
such that L ≤ H stand for “low” and “high”, respectively.
Ranges are pairwise disjoint, namely, given two ranges
[L1,H1] �= [L2,H2], then either H1 < L2 or H2 < L1.

Newly requested IOVA integers are allocated by scan-
ning the tree right-to-left from the highest possible value
downwards towards zero in search for a gap that can
accommodate the requested range size. The allocation
scheme attempts and—as we will later see—ordinarily
succeeds to allocate the new range from within the highest
gap available in the tree.

The allocator begins to scan the tree from a cache node
that it maintains, denoted C. The allocator iterates from C
through the ranges in a descending manner until a suitable
gap is found. C is maintained such that it usually points
to a range that is higher than (to the right of) the highest
free gap, as follows. When (1) a range R is freed and C
currently points to a range lower than R, then C is updated
to point to R’s successor. And (2) when a new range Q is
allocated, then C is updated to point to Q; if Q was the
highest free gap prior to its allocation, then C still points
higher than the highest free gap after this allocation.

Figure 2 lists the pseudo code of the IOVA allocation

struct range_t {int lo, hi;};

range_t alloc_iova(rbtree_t t, int rngsiz) {

range_t new_range;
rbnode_t right = t.cache;
rbnode_t left = rb_prev( right );

while(right.range.lo - left.range.hi <= rngsiz)
right = left;
left = rb_prev( left );

new_range.hi = right.lo - 1;
new_range.lo = right.lo - rngsiz;
t.cache = rb_insert( t, new_range );

return new_range;
}

void free_iova(rbtree_t t, rbnode_t d) {
if( d.range.lo >= t.cache.range.lo )

t.cache = rb_next( d );
rb_erase( t, d );

}

Figure 2: Pseudo code of the baseline IOVA allocation scheme.
The functions rb_next and rb_prev return the successor and
predecessor of the node they receive, respectively.

scheme as was just described. Clearly, the algorithm’s
worst case complexity is linear due to the ’while’ loop
that scans previously allocated ranges beginning at the
cache node C. But when factoring in the actual workload
that this algorithm services, the situation is not so bleak:
the complexity turns out to actually be constant rather
than linear (at least conceptually).

Recall that the workload is commonly induced by a cir-
cular ring buffer, whereby IOVAs of DMA target buffers
are allocated and freed in a repeated, cyclic manner. Con-
sider, for example, an Ethernet NIC with a Rx ring of
size n, ready to receive packets. Assume the NIC initially
allocates n target buffers, each big enough to hold one
packet (1500 bytes). The NIC then maps the buffers to
n newly allocated, consecutive IOVAs with which it pop-
ulates the ring descriptors. Assume that the IOVAs are
n,n− 1, ...,2,1. (The series is descending as IOVAs are
allocated from highest to lowest.) The first mapped IOVA
is n, so the NIC stores the first received packet in the
memory pointed to by n, and it triggers an interrupt to let
the OS know that it needs to handle the packet.

Upon handling the interrupt, the OS first unmaps the
corresponding IOVA, purging it from the IOTLB and
IOMMU page table to prevent the device from accessing
the associated target buffer (assuming strict protection).
The unmap frees IOVA=n, thus updating C to point to
n’s successor in the red-black tree (free_iova in Figure 2).
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The OS then immediately re-arms the ring descriptor for
future packets, allocating a new target buffer and associat-
ing it with a newly allocated IOVA. The latter will be n,
and it will be allocated in constant time, as C points to n’s
immediate successor (alloc_iova in Figure 2). The same
scenario will cyclically repeat itself for n−1,n−2, ...,1
and then again n, ...,1 and so on as long as the NIC is
operational.

Our soon to be described experiments across multiple
devices and workloads indicate that the above description
is fairly accurate. IOVA allocations requests are over-
whelmingly for one page ranges (H = L), and the freed
IOVAs are indeed re-allocated shortly after being freed,
enabling, in principle, the allocator in Figure 2 to operate
in constant time as described. But the algorithm succeeds
to operate in this ideal manner only for some bounded
time. We find that, inevitably, an event occurs and ruins
this ideality thereafter.

5 Long-Lasting Ring Interference

The above O(1) algorithm description assumes there ex-
ists only one ring in the I/O virtual address space. In
reality, however, there are often two or more, for example,
the Rx and Tx receive and transmit rings. Nonetheless,
even when servicing multiple rings, the IOVA allocator
provides constant time allocation in many cases, so long
as each ring’s free_iova is immediately followed by a
matching alloc_iova for the same ring (the common case).
Allocating for one ring and then another indeed causes
linear IOVA searches due to how the cache node C is
maintained. But large bursts of I/O activity flowing in one
direction still enjoy constant allocation time.

The aforementioned event that forever eliminates the
allocator’s ability to accommodate large I/O bursts with
constant time occurs when a free-allocate pair of one
ring is interleaved with that of another. Then, an IOVA
from one ring is mapped to another, ruining the contigu-
ity of the ring’s I/O virtual address. Henceforth, every
cycle of n allocations would involve one linear search
prompted whenever the noncontiguous IOVA is freed and
reallocated. We call this pathology long-lasting ring in-
terference and note that its harmful effect increases as
additional inter-ring free-allocate interleavings occur.

Table 1 illustrates the pathology. Assume that a server
mostly receives data and occasionally transmits. Sup-
pose that Rx activity triggers a Rx.free_iova(L) of ad-
dress L (1). Typically, this action would be followed by
Rx.alloc_iova, which would then return L (2). But some-
times a Tx operation sneaks in between. If this Tx op-
eration is Tx.free_iova(H) such that H > L (3), then the
allocator would update the cache node C to point to H’s
successor (4). The next Rx.alloc_iova would be satisfied by
H (5), but then the subsequent Rx.alloc_iova would have

operation without Tx with Tx
return C C return C C
value before after value before after

Rx.free(L=151) (1) 152 152 152 152
Tx.free(H=300) (3) 152 (4) 301
Rx.alloc (2) 151 152 151 (5) 300 301 300
Rx.free(150) 151 151 300 (6) 300
Rx.alloc 150 151 150 (7) 151 300 151

Table 1: Illustrating why Rx-Tx interferences cause linearity,
following the baseline allocation algorithm detailed in Figure 2.
(Assume that all addresses are initially allocated.)
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Figure 3: The length of each alloc_iova search loop in a 40K
(sub)sequence of alloc_iova calls performed by one Netperf run.
One Rx-Tx interference leads to regular linearity.

to iterate through the tree from H (6) to L (7), inducing a
linear overhead. Notably, once H is mapped for Rx, the
pathology is repeated every time H is (de)allocated. This
repetitiveness is experimentally demonstrated in Figure
3, showing the per-allocation number of rb_prev invoca-
tions. The calls are invoked in the loop in alloc_iova while
searching for a free IOVA.

We show below that the implications of long-lasting
ring interference can be dreadful in terms of performance.
How, then, is it possible that such a deficiency is over-
looked? We contend that the reason is twofold. The first is
that commodity I/O devices were slow enough in the past
such that IOVA allocation linearity did not matter. The
second reason is the fact that using the IOMMU hardware
is slow and incurs a high price, motivating the deferred
protection safety/performance tradeoff. Being that slow,
the hardware served as a scapegoat, wrongfully held ac-
countable for most of the overhead penalty and masking
the fact that software is equally to blame.

6 The EIOVAR Optimization

Suffering from frequent linear allocations, the baseline
IOVA allocator is ill-suited for high-throughput I/O de-
vices that are capable of performing millions of I/O trans-
actions per second. It is too slow. One could proclaim
that this is just another case of a special-purpose allo-
cator proved inferior to a general-purpose allocator and
argue that the latter should be favored over the former
despite the notable differences between the two as listed
in §4. We contend, however, that the simple, repetitive,
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and inherently ring-induced nature of the workload can
be adequately served by the existing simplistic allocator—
with only a small, minor change—such that the modified
version is able to consistently support fast (de)allocations.

We propose the EIOVAR optimization (Efficient IOVA
allocatoR), which rests of the following observation. I/O
devices that stress the intra-OS protection mapping layer
are not like processes, in that the size of their virtual
address spaces is relatively small, inherently bounded
by the size of their rings. A typical ring size n is a few
hundreds or a few thousands of entries. The number of
per-device virtual page addresses that the IOVA alloca-
tor must simultaneously support is proportional to the
ring size, which means it is likewise bounded and rel-
atively small. Moreover, unlike “regular” memory allo-
cators, the IOVA mapping layer does not allocate real
memory pages. Rather, it allocates integer identifiers for
those pages. Thus, it is reasonable to keep O(n) of these
identifiers alive under the hood for quick (de)allocation,
without really (de)allocating them (in the traditional, mal-
loc sense of (de)allocation).

In numerous experiments with multiple devices and
workloads, the maximal number of per-device different
IOVAs we have observed is 12K. More relevant is that,
across all experiments, the maximal number of previously-
allocated-but-now-free IOVAs has never exceeded 668
(and was 155 on average). Additionally, as noted ear-
lier, the allocated IOVA ranges have a power of two
size H −L+1 = 2 j, where j is overwhelmingly 0. EIO-
VAR leverages these workload characteristic to efficiently
cache freed IOVAs so as to satisfy future allocations
quickly, similarly to what regular memory allocators do
when allocating real memory [13, 14, 15, 29, 40, 53, 55].

EIOVAR is a thin layer that masks the red-black tree, re-
sorting to using it only when EIOVAR cannot fulfill IOVA
allocation on its own using previously freed elements.
When configured to have enough capacity, all tree alloca-
tions that EIOVAR is unable to mask are assured to be fast
and occur in constant time.

EIOVAR’s main data structure is a one-dimensional ar-
ray called “the freelist”, or f for short. The array consists
of M linked lists of IOVA ranges. Lists are empty upon
initialization. When an IOVA range [L,H] whose size
is H −L+1 = 2 j is freed, instead of actually freeing it,
EIOVAR adds it to the head of the linked list of the corre-
sponding exponent, namely, to f [ j]. Because most ranges
are comprised of one page (H = L), most ranges end up
in the f [0] list after they are freed. The upper bound on
the size of the ranges supported by EIOVAR is 2M+12 bytes
(assuming 212 = 4KB pages), as EIOVAR allocates page
numbers. Thus, M = 28 is enough, allowing for up to a
terabyte range.

EIOVAR allocation performs the reverse operation of
freeing. When a range whose exponent is j is being al-

located, EIOVAR removes the head of the f [ j] linked list
in order to satisfy the allocation request. EIOVAR resorts
to utilizing the baseline red-black tree only if a suitable
range is not found in the freelist.

When no limit is imposed on the freelist, after a very
short while, all EIOVAR (de)allocation operations are sat-
isfied by f due to the inherently limited size of the ring-
induced workload. All freelist (de)allocations are per-
formed in constant time, taking 50-150 cycles per opera-
tion. Initial allocations that EIOVAR satisfies by resorting
to the baseline tree are likewise done in constant time,
because the freelist is limitless and so the tree never ob-
serves deallocations, which means its cache node C al-
ways points to its smallest, leftmost node (Figure 2).

We would like to make sure that the freelist is compact
and is not effectively leaking memory. To bound the size
of the freelist, EIOVAR has a parameter k that serves as f ’s
maximal capacity of freed IOVAs. We use the EIOVARk
notation to express this limit, with k = ∞ indicating no up-
per bound. We demonstrate that setting k to be a relatively
small number is equivalent to setting it to ∞, because the
number of previously-allocated-but-now-free IOVAs is
constrained by the size of the corresponding ring. Con-
sequently, we can be certain that the freelist of EIOVAR∞

is a compact. At the same time, k = ∞ guarantees that
(de)allocations are always satisfied in constant time.

6.1 EIOVAR with Strict Protection

To understand the behavior and effect of EIOVAR, we
begin by analyzing five EIOVARk variants as compared
to the baseline under strict protection, where IOVAs are
(de)allocated immediately before and after the associated
DMAs. We use the standard Netperf stream benchmark
that maximizes throughput on one TCP connection. We
initially restart the NIC interface for each allocation vari-
ant (thus clearing IOVA structures), and then we execute
the benchmark iteratively. The exact experimental setup
is described in §7. The results are shown in Figure 4.

Figure 4a shows that the throughput of all EIOVAR vari-
ants is similar and is 20%–60% better than the baseline.
The baseline gradually decreases except for the last itera-
tion. Figure 4b highlights why even EIOVAR1 is sufficient
to provide the observed benefit. It plots the rate of IOVA
allocations that are satisfied by the freelist, showing that
k = 1 is enough to satisfy nearly all allocations. This re-
sult indicates that each call to free_iova is followed by
alloc_iova, such that the IOVA freed by the former is re-
turned by the latter, coinciding with the ideal scenario
outlined in §4. Figure 4c supports this observation by
depicting the average size of the freelist. The average of
EIOVAR1 is inevitably 0.5, as every allocation and deal-
location contributes to the average 1 and 0 respectively.
Larger k values are similar, with an average of 2.5 be-
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Figure 6: Cycles breakdown of unmap with Netperf/strict.

cause of two additional (de)allocation that are performed
when Netperf starts running and that remain in the freel-
ist thereafter. Figure 4d shows the average length of the
’while’ loop from Figure 2, which searches for the next
free IOVA. It depicts a rough mirror image of Figure 4a,
indicating throughput is tightly negatively correlated with
the traversal length.

Figure 5 (left) shows the time it takes the baseline
to map an IOVA, separating allocation from the other
activities. Whereas the latter remains constant, the former
exhibits a trend identical to Figure 4d. Conversely, the
alloc_iova time of EIOVAR (Figure 5, right) is negligible
across the board. EIOVAR is immune to long-lasting ring
interface, as interfering transactions are absorbed by the
freelist and reused in constant time.

6.2 EIOVAR with Deferred Protection

Figure 6 is similar to Figure 5, but it pertains to the unmap
operation rather than to map. It shows that the duration of

free_iova remains stable across iterations with both EIO-
VAR and the baseline. EIOVAR deallocation is still faster
as it is performed in constant time whereas the baseline
is logarithmic. But most of the overhead is not due to
free_iova. Rather, it is due to the costly invalidation that
purges the IOVA from the IOTLB to protect the corre-
sponding target buffer. This is the aforementioned hard-
ware overhead that motivated deferred protection, which
amortizes the cost by delaying invalidations until enough
IOVAs are accumulated and then processing all of them
together. As noted, deferring the invalidations trades off
safety for performance, because the relevant memory is
accessible by the device even though it is already used by
the kernel for other purposes.

Figure 7 compares between the baseline and the EIO-
VAR variants under deferred protection. Interestingly, the
resulting throughput divides the variants into two, with
EIOVAR512 and EIOVAR∞ above 6Gbps and all the rest at
around 4Gbps (Figure 7a). We again observe a strong neg-
ative correlation between the throughput and the length of
the search to find the next free IOVA (Figure 7a vs. 7d).

In contrast to the strict setup (Figure 4), here we see that
EIOVAR variants with smaller k values roughly perform as
bad as the baseline. This finding is somewhat surprising,
because, e.g., 25% of the allocations of EIOVAR64 are satis-
fied by the freelist (Figure 7b), which should presumably
improve its performance over the baseline. A finding that
helps explain this result is noticing that the average size
of the EIOVAR64 freelist is 32 (Figure 7c), even though
it is allowed to hold up to k = 64 elements. Notice that
EIOVAR∞ holds around 128 elements on average, so we
know there are enough deallocations to fully populate the
EIOVAR64 freelist. One might therefore expect that the
latter would be fully utilized, but it is not.

The average size of the EIOVAR64 freelist is 50% of its
capacity due to the following reason. Deferred invalida-
tions are aggregated until a high-water mark W (kernel
parameter) is reached, and then all the W addresses are
deallocated in bulk.2 When k <W , the freelist fills up to

2They cannot be freed before they are purged from the IOTLB, or
else they could be re-allocated, which would be a bug since their stale
mappings might reside in the IOTLB and point to somewhere else.
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Figure 7: Netperf TCP stream iteratively executed under deferred protection. The x axis shows the iteration number.

Figure 8: Under deferred protection, EIOVARk eliminates
costly linear searches when k exceeds the high-water mark W .

hold k elements, which become k−1 after the subsequent
allocation, and then k− 2 after the next allocation, and
so on until zero is reached, yielding an average size of

1
k+1 Σk

j=0 j ≈ k/2 as our measurements show.
Importantly, when k <W , EIOVARk is unable to absorb

all the W consecutive deallocations. The remaining W −k
deallocations are thus freed by the baseline free_iova.
Thus, only k of the W subsequent allocation are satisfied
by the freelist, and the remaining W −k are serviced by the
baseline alloc_iova. The baseline free_iova and alloc_iova
are therefore regularly invoked in an uncoordinated way
despite the freelist. As described in §5, the interplay be-
tween these two routines eventually causes long-lasting
ring interference that induces repeated linear searches. In
contrast, when k is big enough (≥W ), the freelist has suf-
ficient capacity to absorb all W deallocations, which are
then used to satisfy the subsequent W allocations and thus
secure the conditions for preventing the harmful effect.

Figure 8 demonstrates this threshold behavior, depict-
ing the throughput as a function of the maximal freel-
ist size k. Increasingly bigger k slowly improves perfor-
mance, as more—but not yet all—allocations are served
by the freelist. When k reaches W = 250, the freelist is
finally big enough, and the throughput suddenly increases
by 26%. Figure 9 provides further insight into this result.
It shows the per-allocation length of the loop within al-
loc_iova that iterates through the red-black tree in search
for the next free IOVA (similarly to Figure 3). The sub-
graphs correspond to 3 points from Figure 8 with k values
64, 240, and 250. We see that the smaller k (left) yields
longer searches relative to the bigger k (middle), and that
the length of the search becomes zero when k =W (right).
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Figure 9: Length of the alloc_iova search loop under the
EIOVARk deferred protection regime for three k values when
running Netperf TCP Stream. Bigger capacity implies that
the searches become shorter on average. Big enough capacity
(k ≥W = 250) eliminates the searches altogether.

7 Evaluation

Experimental Setup We implement EIOVAR in the
Linux kernel, and we experimentally compare its perfor-
mance against the baseline IOVA allocation. In an effort
to attain more general results, we conducted the evalua-
tion using two setups involving two different NICs with
two corresponding different device drivers that generate
different workloads for the IOVA allocation layer.

The Mellanox setup consists of two identical Dell Pow-
erEdge R210 II Rack Servers that communicate through
Mellanox ConnectX3 40Gbps NICs. The NICs are con-
nected back to back configured to use Ethernet. One ma-
chine is the server and the other is a workload generator
client. Each machine has 8GB 1333MHz memory and a
single-socket 4-core Intel Xeon E3-1220 CPU running at
3.10GHz. The chipset is Intel C202, which supports VT-d,
Intel’s Virtualization Technology that provides IOMMU
functionality. We configure the server to utilize one core
only, and we turn off all power optimizations—sleep states
(C-states) and dynamic voltage and frequency scaling
(DVFS)—to avoid reporting artifacts caused by nondeter-
ministic events. The two machines run Ubuntu 12.04 and
utilize the Linux 3.4.64 kernel.

The Broadcom setup is similar, with the difference that:
the two R210 machines communicate through Broadcom
NetXtreme II BCM57810 10GbE NICs (connected via a
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CAT7 10GBASE-T cable for fast Ethernet); have 16GB
memory; and run the Linux 3.11.0 kernel.

The drivers of the Mellanox and Broadcom NICs dif-
fer in many respects. Notably, the Mellanox driver uses
more ring buffers and allocates more IOVAs (we observed
around 12K addresses for Mellanox and 3K for Broad-
com). In particular, the Mellanox driver uses two buffers
per packet and hence two IOVAs, whereas the Broadcom
driver allocates only one buffer and thus only one IOVA.

Benchmarks We use the following benchmarks to drive
our experiments. Netperf TCP stream [37] is a standard
tool to measure networking throughput. It attempts to
maximize the amount of data sent over one TCP connec-
tion, simulating an I/O-intensive workload. This is the
benchmark used when studying long-lasting ring interfer-
ence (§5) and the impact of k on EIOVARk (§6). We use
the default 16KB message size unless otherwise stated.

Netperf UDP RR (request-response) is the second
canonical configuration of Netperf. It models a latency
sensitive workload by repeatedly sending a single byte
and waiting for a matching single byte response. The la-
tency is then calculated as the inverse of the observed
number of transactions per second.

Apache [23, 24] is a HTTP web server. We drive it
with ApacheBench [5] (a.k.a. “ab”), a workload generator
distributed with Apache. ApacheBench assess the num-
ber of concurrent requests per second that the server is
capable of handling by requesting a static page of a given
size from within several concurrent threads. We run it on
the client machine configured to generate 100 concurrent
requests. We use two instances of the benchmark to re-
quest a smaller (1KB) and a bigger (1MB) file. Logging
is disabled to avoid disk write overheads.

Memcached [25] is an in-memory key-value storage
server. It is used, e.g., by websites for caching results of
slow database queries, thus improving the sites’ overall
performance. We run Memslap [1] (part of the libmem-
cached client library) on the client machine, generating
requests and measuring the completion rate. By default,
Memslap generates a random workload comprised of 90%
get and 10% set operations. Unless otherwise stated, Mem-
slap is set to use 16 concurrent requests.

Methodology Before running each benchmark, we shut
down and bring up the interface of the NIC using the
ifconfig utility, such that the IOVA allocation is redone
from scratch using a clean tree, clearing the impact of
previous harmful long-lasting ring interferences. We then
iteratively run the benchmark 150 times, such that indi-
vidual runs are configured to take about 20 seconds. We
present the corresponding results, on average.

Results Figure 10 shows the resulting average perfor-
mance for the Mellanox (top) and Broadcom (bottom)
setups. Higher numbers indicate better throughput in all

cases but for Netperf RR, which depicts latency (inverse
of throughput). The corresponding normalized values—
specifying relative improvement—are shown in the first
part of Table 2. Here, for consistency, the normalized
throughput is shown for all benchmarks including RR.

Mellanox Setup We first examine the results of the
Mellanox setup (left of Table 2). In the topmost part, we
see that EIOVAR yields throughput 1.07–4.58x better than
the baseline, and that improvements are more pronounced
under strict protection. The second part of the table shows
that the improved performance of EIOVAR is due to re-
ducing the average IOVA allocation time by 1–2 orders
of magnitude, from up to 50K cycles to around 100–200.
EIOVAR further reduces the average IOVA deallocation
time by about 75%–85%, from around 250–550 cycles to
around 65–85 (4th part of the table).

As expected, the duration of the IOVA allocation rou-
tine is tightly correlated to the length of the search loop
within this routine, such that a longer loop implies a longer
duration (3rd part of Table 2). Notice, however, that there
is not necessarily such a direct correspondence between
EIOVAR’s throughput improvement (1st part of table) and
the associated IOVA allocation overhead (2nd part). The
reason: latency sensitive applications are less affected by
the allocation overhead, because other components in their
I/O paths have higher relative weights. For example, un-
der strict protection, the latency sensitive Netperf RR has
higher allocation overhead as compared to the throughput
sensitive Netperf Stream (10,269 cycles vs. 7,656, respec-
tively), yet the throughput improvement of RR is smaller
(1.27x vs. 2.37x). Similarly, the IOVA allocation over-
head of Apache/1KB is higher than that of Apache/1MB
(49,981 cycles vs. 17,776), yet its throughput improve-
ment is lower (2.35x vs. 3.65x).

While there is not necessarily a direct connection be-
tween throughput and allocation overheads when exam-
ining strict safety only, the connection becomes apparent
when comparing strict to deferred protection. Clearly, the
benefit of EIOVAR in terms of throughput is greater under
strict protection because the associated baseline alloca-
tion overheads are higher than that of deferred protection
(7K–50K cycles for strict vs. 2K–3K for deferred).

Broadcom Setup Let us now examine the results of the
Broadcom setup (right of Table 2). Strict EIOVAR yields
throughput that is 1.07–2.35x better than the baseline.
Deferred EIOVAR, on the other hand, only improves the
throughput by up to 10%, and, in the case of Netperf
Stream and Apache/1MB, it offers no improvement. Thus,
while still significant, throughput improvements in this
setup are less pronounced. The reason for this difference is
twofold. First, as noted above, the driver of the Mellanox
NIC utilizes more rings and more IOVAs, increasing the
load on the IOVA allocation layer relative to the Broad-
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Figure 10: The performance of baseline vs. EIOVAR allocation, under strict and deferred protection regimes for the Mellanox (top)
and Broadcom (bottom) setups. Except for in the case of Netperf RR, higher values indicated better performance. Error bars depict
the standard deviation (sometimes too small to be seen).

com driver and generating more opportunities for ring
interference. This difference is evident when comparing
the duration of alloc_iova in the two setups, which is sig-
nificantly lower in the Broadcom case. In particular, the
average allocation time in the Mellanox setup across all
benchmarks and protection regimes is about 15K cycles,
whereas it is only about 3K cycles in the Broadcom setup.

The second reason for the less pronounced improve-
ments in the Broadcom setup is that the Broadcom
NIC imposes a 10 Gbps upper bound on the bandwidth,
which is reached in some of the benchmarks. Specifically,
the aforementioned Netperf Stream and Apache/1MB—
which exhibit no throughput improvement under deferred
EIOVAR—hit this limit. These benchmarks are already
capable of obtaining line rate (maximal throughput) in the
baseline/deferred configuration, so the lack of throughput
improvement in their case should come as no surprise.
Importantly, when evaluating I/O performance in a set-
ting whereby the I/O channel is saturated, the interesting
evaluation metric ceases to be throughput and becomes
CPU usage. Namely, the question becomes which system
is capable of achieving line rate using fewer CPU cycles.
The bottom/right part of Table 2 shows that EIOVAR is
indeed the more performant alternative, using 21% less
CPU cycles in the case of the said Netperf Stream and
Apache/1MB under deferred protection. (In the Mellanox
setup, it is the CPU which is saturated in all cases but the
latency sensitive Netperf RR.)

Deferred Baseline vs. Strict EIOVAR We explained
above that deferred protection trades off safety to get
better performance. We now note that, by Figure 10, the
performance attained by EIOVAR when strict protection
is employed is similar to the performance of the baseline
configuration that uses deferred protection (the default in
Linux). Specifically, in the Mellanox setup, on average,
strict EIOVAR achieves 5% higher throughput than the

deferred baseline, and in the Broadcom setup EIOVAR
achieves 3% lower throughput. Namely, if strict EIOVAR
is made the default, it will simultaneously deliver similar
performance and better protection as compared to the
current default configuration.

Different Message Sizes The default configuration
of Netperf Stream utilizes a 16KB message size, which
is big enough to optimize throughput. Our next experi-
ment systematically explores the performance tradeoffs
when utilizing smaller message sizes. Such messages can
overwhelm the CPU and thus reduce the throughput. An-
other issue that might negatively affect the throughput of
small packets is the maximal number of packets per sec-
ond (PPS), which NICs commonly impose in conjunction
with an upper bound on the throughput. (For example,
the specification of our Broadcom NIC lists a maximal
rate of 5.7 million PPS [33], and a rigorous experimental
evaluation of this NIC reports that a single port in it is
capable of delivering less than half that much [21].)

Figure 11 shows the throughput (top) and consumed
CPU (bottom) as a function of message size for strict
(left) and deferred safety (right) using the Netperf Stream
benchmark in the Broadcom setup. With a 64B message
size, the PPS limit dominates the throughput in all four
configurations. Strict/baseline saturates the CPU with a
message size as small as 256B; from that point on it
achieves the same throughput (4Gbps), because the CPU
remains its bottleneck. The other three configurations
enjoy a gradually increasing throughput until line rate is
reached. However, to achieve the same level of throughput,
strict/EIOVAR requires more CPU than deferred/baseline,
which in turn requires more CPU than deferred/EIOVAR.

Concurrency We next experiment concurrent I/O
streams, as concurrency amplifies the harmful long-lasting
ring interference. Figure 12 depicts the results of running
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Mellanox protect benchmark baseline EiovaR diff
throughput strict Netperf stream 1.00 2.37 +137%
(normalized) Netperf RR 1.00 1.27 +27%

Apache 1MB 1.00 3.65 +265%
Apache 1KB 1.00 2.35 +135%
Memcached 1.00 4.58 +358%

defer Netperf stream 1.00 1.71 +71%
Netperf RR 1.00 1.07 +7%
Apache 1MB 1.00 1.21 +21%
Apache 1KB 1.00 1.11 +11%
Memcached 1.00 1.25 +25%

alloc strict Netperf stream 7656 88 -99%
(cycles) Netperf RR 10269 175 -98%

Apache 1MB 17776 128 -99%
Apache 1KB 49981 204 -100%
Memcached 50606 151 -100%

defer Netperf stream 2202 103 -95%
Netperf RR 2360 183 -92%
Apache 1MB 2085 130 -94%
Apache 1KB 2642 206 -92%
Memcached 3040 171 -94%

search strict Netperf stream 153 0 -100%
(length) Netperf RR 206 0 -100%

Apache 1MB 381 0 -100%
Apache 1KB 1078 0 -100%
Memcached 893 0 -100%

defer Netperf stream 32 0 -100%
Netperf RR 32 0 -100%
Apache 1MB 30 0 -100%
Apache 1KB 33 0 -100%
Memcached 33 0 -100%

dealloc / free strict Netperf stream 289 66 -77%
(cycles) Netperf RR 446 87 -81%

Apache 1MB 360 70 -81%
Apache 1KB 565 85 -85%
Memcached 525 73 -86%

defer Netperf stream 273 65 -76%
Netperf RR 242 66 -73%
Apache 1MB 278 65 -76%
Apache 1KB 300 66 -78%
Memcached 334 65 -80%

cpu strict Netperf stream 100 100 +0%
(%) Netperf RR 32 29 -8%

Apache 1MB 100 99 -0%
Apache 1KB 99 98 -1%
Memcached 100 100 +0%

defer Netperf stream 100 100 +0%
Netperf RR 30 29 -5%
Apache 1MB 99 99 -0%
Apache 1KB 98 98 -0%
Memcached 100 100 +0%

Broadcom protect benchmark baseline EiovaR diff
throughput strict Netperf stream 1.00 2.35 +135%
(normalized) Netperf RR 1.00 1.07 +7%

Apache 1MB 1.00 1.22 +22%
Apache 1KB 1.00 1.16 +16%
Memcached 1.00 1.40 +40%

defer Netperf stream 1.00 1.00 +0%
Netperf RR 1.00 1.02 +2%
Apache 1MB 1.00 1.00 +0%
Apache 1KB 1.00 1.10 +10%
Memcached 1.00 1.05 +5%

alloc strict Netperf stream 14878 70 -100%
(cycles) Netperf RR 3359 100 -97%

Apache 1MB 1469 74 -95%
Apache 1KB 2527 116 -95%
Memcached 5797 110 -98%

defer Netperf stream 1108 96 -91%
Netperf RR 1029 118 -89%
Apache 1MB 833 88 -89%
Apache 1KB 1104 133 -88%
Memcached 1021 130 -87%

search strict Netperf stream 345 0 -100%
(length) Netperf RR 68 0 -100%

Apache 1MB 27 0 -100%
Apache 1KB 39 0 -100%
Memcached 128 0 -100%

defer Netperf stream 13 0 -100%
Netperf RR 9 0 -100%
Apache 1MB 9 0 -100%
Apache 1KB 9 0 -100%
Memcached 9 0 -100%

dealloc / free strict Netperf stream 294 47 -84%
(cycles) Netperf RR 282 48 -83%

Apache 1MB 250 50 -80%
Apache 1KB 425 52 -88%
Memcached 342 47 -86%

defer Netperf stream 268 47 -82%
Netperf RR 273 47 -83%
Apache 1MB 234 47 -80%
Apache 1KB 279 47 -83%
Memcached 276 47 -83%

cpu strict Netperf stream 100 53 -49%
(%) Netperf RR 13 12 -12%

Apache 1MB 99 99 -0%
Apache 1KB 98 98 -0%
Memcached 99 95 -4%

defer Netperf stream 55 44 -21%
Netperf RR 12 11 -7%
Apache 1MB 91 72 -21%
Apache 1KB 98 98 -0%
Memcached 93 92 -2%

Table 2: Summary of the results obtained with the Mellanox setup (left) and the Broadcom setup (right).

Memcached in the Mellanox setup with an increasing
number of clients. The left sub-graph reveals that the
baseline allocation hampers scalability, whereas EIOVAR
allows the benchmark to scale such that it is up to 5.5x
more performant than the baseline (with 32 clients). The
right sub-graphs highlights why, showing that the baseline
IOVA allocation becomes costlier proportionally to the
number of clients, whereas EIOVAR allocation remains
negligible across the board.

FreeBSD We hypothesize that, like Linux, other OSes
drive the IOMMU with suboptimal software, likely due
to the perception that the IOMMU hardware is slow, pos-
sibly combined with the fact that I/O devices that are fast
enough to significantly suffer from the consequences have
become prevalent fairly recently. We test this hypothesis
by studying the IOMMU mapping layer of FreeBSD. Our
hypothesis coincides with the announcement of IOMMU
support being added to FreeBSD, which says that “it
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Figure 12: Impact of increased concurrency on Memcached in
the Mellanox setup. EIOVAR allows the performance to scale.

is known that IOMMU adds overhead due to the map-
ping and unmapping for each I/O [and therefore it is] not
plan[ned] to enable [the] IOMMU by default” [10].

We find that, similarly to Linux, FreeBSD uses a red-
black tree for IOVA space management. Although it does
not employ the problematic cached node optimization, the
relevant source code can call fall back to a linear iteration
through the tree nodes upon allocation. The comment
preceding the linear iteration acknowledges that “this falls
back to linear iteration over the free space in the high
region”; however, the comment further notes that the said
“high regions are almost unused” [26].

Using DTrace, the dynamic tracing tool [28], we pro-
filed the IOVA mapping layer of FreeBSD while running
the Netperf TCP stream benchmark. We measured each
function along the call stack in a separate run, because
multiple probe points affected the perceived results. Ta-
ble 3 show the outcome, indicating that the FreeBSD
IOMMU mapping layer overheads are larger than those of
baseline Linux (compare with left of Figures 5–6). Specif-
ically, whereas FreeBSD IOVA allocation is comparable

map unmap
iova 1,103 2,178
all the rest 8,557 13,825
total 9,660 16,003

Table 3: FreeBSD IOMMU mapping layer overheads in cycles.
(Compare with Linux’s overheads in Figures 5–6.)

to that of Linux, IOVA freeing takes an order of magnitude
longer, and the (un)mapping is 4–5x slower altogether.

Our profiling reveals some of the root causes for these
overheads. The aforementioned linear iteration remained
inactive, as promised. But IOVA allocation turned out
to nevertheless require the traversal of 11 red-black tree
nodes on average. And the tree was rebalanced in almost
every deallocation, introducing an overhead that is con-
siderably higher than that of baseline Linux.

In addition to its inefficient IOVA (de)allocation,
FreeBSD makes several suboptimal implementation
choices that significantly slow down its mapping layer as
compared to Linux. For instance, when a page within the
IOMMU page table hierarchy is no longer in use, Linux
usually does not reclaim it, rightfully assuming that it is
likely to get reused soon. Conversely, FreeBSD does re-
claim such pages, thereby reducing the memory footprint
somewhat at the cost of increased CPU overheads.

The most wasteful unoptimized FreeBSD code we ob-
served relates to synchronizing the I/O page table hier-
archy between the IOMMU and the CPU. Upon every
unmapping (ctx_unmap_buf_locked), FreeBSD flushes all
the cachelines of the corresponding page table, although
merely flushing the affected page table entries (PTEs)
would have been enough. We applied the latter optimiza-
tion to the FreeBSD unmap code and thus shortened it by
∼10K cycles on average, which improved the throughput
of Netperf from 530 to 935 Mbps (1.76x higher).3

Consequently, in according to our hypothesis, we find
that the FreeBSD mapping layer consists of suboptimal
code that allows for easy optimizations that dramatically
boost performance, possibly due to the perception that
IOMMU hardware overheads are inherently high.

8 Related Work

Several studies recognized the poor performance associ-
ated with using the IOMMU [4, 12, 18, 44, 50, 57, 59].
Willmann et al. suggested to alleviate IOMMU overheads
somewhat via “shared mappings”, creating only one map-
ping for buffers that happen to reside on the same page
instead of associating each of them with a different IOVA
[57]. Amit et al. proposed to use “optimistic teardown”,

3We confirmed this optimization with the relevant FreeBSD main-
tainer [11] and committed a patch that will be included in the next
FreeBSD release [3].
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whereby unmappings are delayed for a few milliseconds
in the hope they will get immediately reused, creating a
riskier policy than deferred protection that is more per-
formant [4]. They also proposed to transparently offload
the (un)mapping activity to computational cores differ-
ent than the ones that perform the I/O. These approaches
leave the original, unoptimized code intact and therefore
EIOVAR is complementary to them.

Tomonori suggested to manage the IOVA space us-
ing bitmaps instead of trees, reporting an improvement
in performance of 9% [50, 51]. Cascardo showed that
performance is greatly improved if the driver of the
I/O device can be modified to perform much fewer
(un)mappings [18]. In a followup work, we proposed
to redesign the IOMMU hardware to directly support
the ring-induced workload and thus provide strict safety
within 0.77–1.00x the throughput, 1.00–1.04x the latency,
and 1.00–1.22x the CPU consumption of a system without
an IOMMU [44].

Using freelists to speed up object allocation—as in EIO-
VAR—is a standard technique among memory allocators
[13, 14, 15, 29, 40, 53, 55]. We discuss the contributes of
this paper relative to such allocators in the next section.

9 Discussion, Conclusions, Future Work

Clements et al. made the case that implementations of OS
kernels can be made scalable if they are designed before-
hand such that their system calls commute, contending
that “this rule aids developers in building more scalable
software” [20]. Conversely, Linus Torvalds proclaimed
that “Linux is evolution, not intelligent design” [22], likely
more accurately reflecting the manner by which OSes are
built, typically using the simplest implementation until
experience proves that this is the wrong way to go.

When implementing new kernel functionality, a linear
algorithm is often favored as being the simplest. For ex-
ample, such was the case with the original linear Linux
scheduler, which survived a decade [47]. And such is still
the case with vmalloc, which is the internal Linux ker-
nel function that is responsible for allocating virtually
contiguous memory [52] (as opposed to kmalloc, which
allocates physically contiguous memory). The pro of fa-
voring linearity is simplicity. The con is that it might
hinder performance when assumptions change.

The Intel/Linux IOVA allocation algorithm admittedly
models the vmalloc algorithm [43]. From examining the
source code, we see that both use a red-black tree for
storing address ranges; both cache the location of the last
freed range; and both use the cache as the starting point
for subsequent allocations, traversing the tree elements in
search for a large enough hole. We are not aware of work-
loads that utilize vmalloc whose performance noticeably
degrades as a consequence. We demonstrate, however, that

I/O intensive workloads suffer greatly form the linearity
of IOVA allocation, which is induced by the “long-term
ring interference” pathology that we characterize.

We conjecture that this deficiency exists because the
IOMMU has been falsely perceived as the main respon-
sible party for the significant overheads of intra-OS pro-
tection, and possibly because I/O devices fast enough to
be noticeably affected have become widespread only in
the last few years. We support our conjecture with experi-
mental data from both Linux and FreeBSD.

We employ the compact EIOVAR optimization that prox-
ies IOVA (de)allocations, resorting to the underlying red-
black tree only if EIOVAR is unable to satisfy requests with
its freelist. EIOVAR makes the baseline allocator orders of
magnitude faster, improving the performance of common
benchmarks by up to 5.5x.

Using freed object caches for fast allocation similarly to
EIOVAR’s freelist is not new. It is a standard technique em-
ployed by memory allocators [13, 14, 15, 29, 40, 53, 55].
Our contribution lies not in inventing the technique but
rather: in (1) noticing it is applicable to, and substantially
improves the performance of, the IOMMU mapping layer,
which goes against the common wisdom that the slow-
ness of this layer is due to the slowness of the hardware;
in (2) carefully characterizing the workload experienced
by the mapping layer; and in (3) finding that the work-
load characteristics allow for even the most basic/minimal
freelist mechanism to deliver high performance, since
(3.1) allocation requests exclusively consist of rounded up
power-of-two areas that accelerate IOTLB invalidations
without wasting real memory, and since (3.2) the freelist
population size is inherently constrained by the relatively
small size of the associated ring, so it can be used without
worrying that the population of the previously-allocated-
but-now-free IOVAs would explode.

EIOVAR eliminates one serious bottleneck of the
IOMMU mapping layer. But we suspect that other bot-
tlenecks exist, notably in relation to its locking regime,
which affects subsystems different than the IOVA alloca-
tor and might hinder scalability. In the future, we therefore
intend to study how the mapping layer scales as core-
count increases. Another interesting question we intend
to study is whether it is possible, and how hard is it, to
exploit the window of vulnerability inherent to deferred
protection as compared to strict protection.
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Abstract

Graph analysis performs many random reads and writes,
thus, these workloads are typically performed in mem-
ory. Traditionally, analyzing large graphs requires a clus-
ter of machines so the aggregate memory exceeds the
graph size. We demonstrate that a multicore server can
process graphs with billions of vertices and hundreds of
billions of edges, utilizing commodity SSDs with min-
imal performance loss. We do so by implementing a
graph-processing engine on top of a user-space SSD
file system designed for high IOPS and extreme paral-
lelism. Our semi-external memory graph engine called
FlashGraph stores vertex state in memory and edge lists
on SSDs. It hides latency by overlapping computation
with I/O. To save I/O bandwidth, FlashGraph only ac-
cesses edge lists requested by applications from SSDs;
to increase I/O throughput and reduce CPU overhead for
I/O, it conservatively merges I/O requests. These de-
signs maximize performance for applications with dif-
ferent I/O characteristics. FlashGraph exposes a gen-
eral and flexible vertex-centric programming interface
that can express a wide variety of graph algorithms and
their optimizations. We demonstrate that FlashGraph in
semi-external memory performs many algorithms with
performance up to 80% of its in-memory implementa-
tion and significantly outperforms PowerGraph, a popu-
lar distributed in-memory graph engine.

1 Introduction

Large-scale graph analysis has emerged as a fundamental
computing pattern in both academia and industry. This
has resulted in specialized software ecosystems for scal-
able graph computing in the cloud with applications to
web structure and social networking [10, 20], machine
learning [18], and network analysis [22]. The graphs are
massive: Facebook’s social graph has billions of vertices
and today’s web graphs are much larger.

The workloads from graph analysis present great chal-
lenges to system designers. Algorithms that perform
edge traversals on graphs induce many small, random
I/Os, because edges encode non-local structure among
vertices and many real-world graphs exhibit a power-law
distribution on the degree of vertices. As a result, graphs
cannot be clustered or partitioned effectively [17] to lo-
calize access. While good partitions may be important
for performance [8], leading systems partition natural
graphs randomly [11].

Graph processing engines have converged on a design
that (i) stores graph partitions in the aggregate memory
of a cluster, (ii) encodes algorithms as parallel programs
against the vertices of the graph, and (iii) uses either
distributed shared memory [18, 11] or message passing
[20, 10, 24] to communicate between non-local vertices.
Placing data in memory reduces access latency when
compared to disk drives. Network performance, required
for communication between graph partitions, emerges as
the bottleneck and graph engines require fast networks to
realize good performance.

Recent work has turned back to processing graphs
from disk drives on a single machine [16, 23] to achieve
scalability without excessive hardware. These engines
are optimized for the sequential performance of magnetic
disk drives; they eliminate random I/O by scanning the
entire graph dataset. This strategy can be wasteful for al-
gorithms that access only small fractions of data during
each iteration. For example, breadth-first search, a build-
ing block for many graph applications, only processes
vertices in a frontier. PageRank [7] starts processing all
vertices in a graph, but as the algorithm progresses, it
narrows to a small subset of active vertices. There is
a huge performance gap between these systems and in-
memory processing.

We present FlashGraph, a semi-external memory
graph-processing engine that meets or exceeds the per-
formance of in-memory engines and allows graph prob-
lems to scale to the capacity of semi-external memory.
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Semi-external memory [2, 22] maintains algorithmic ver-
tex state in RAM and edge lists on storage. The semi-
external memory model avoids writing data to SSDs.
Only using memory for vertices increases the scalabil-
ity of graph engines in proportion to the ratio of edges
to vertices in a graph, more than 35 times for our largest
graph of Web page crawls. FlashGraph uses an array of
solid-state drives (SSDs) to achieve high throughput and
low latency to storage. Unlike magnetic disk-based en-
gines, FlashGraph supports selective access to edge lists.

Although SSDs can deliver high IOPS, we overcome
many technical challenges to construct a semi-external
memory graph engine with performance comparable to
an in-memory graph engine. The throughput of SSDs
are an order of magnitude less than DRAM and the I/O
latency is multiple orders of magnitude slower. Also, I/O
performance is extremely non-uniform and needs to be
localized. Finally, high-speed I/O consumes many CPU
cycles, interfering with graph processing.

We build FlashGraph on top of a user-space SSD file
system called SAFS [32] to overcome these technical
challenges. The set-associative file system (SAFS) refac-
tors I/O scheduling, data placement, and data caching for
the extreme parallelism of modern NUMA multiproces-
sors. The lightweight SAFS cache enables FlashGraph
to adapt to graph applications with different cache hit
rates. We integrate FlashGraph with the asynchronous
user-task I/O interface of SAFS to reduce the overhead
of accessing data in the page cache and memory con-
sumption, as well as overlapping computation with I/O.

FlashGraph issues I/O requests carefully to maxi-
mize the performance of graph algorithms with differ-
ent I/O characteristics. It reduces I/O by only accessing
edge lists requested by applications and using compact
external-memory data structures. It reschedules I/O ac-
cess on SSDs to increase the cache hits in the SAFS page
cache. It conservatively merges I/O requests to increase
I/O throughput and reduces CPU overhead by I/O.

Our results show that FlashGraph in semi-external
memory achieves performance comparable to its in-
memory version and Galois [21], a high-performance, in-
memory graph engine with a low-level API, on a wide-
variety of algorithms that generate diverse access pat-
terns. FlashGraph in semi-external memory mode signif-
icantly outperforms PowerGraph, a popular distributed
in-memory graph engine. We further demonstrate that
FlashGraph can process massive natural graphs in a sin-
gle machine with relatively small memory footprint; e.g.,
we perform breadth-first search on a graph of 3.4 billion
vertices and 129 billion edges using only 22 GB of mem-
ory. Given the fast performance and small memory foot-
print, we conclude that FlashGraph offers unprecedented
opportunities for users to perform massive graph analysis
efficiently with commodity hardware.

2 Related Work

MapReduce [9] is a general large-scale data processing
framework. PEGASUS [13] is a popular graph process-
ing engine whose architecture is built on MapReduce.
PEGASUS respects the nature of the MapReduce pro-
gramming paradigm and expresses graph algorithms as a
generalized form of sparse matrix-vector multiplication.
This form of computation works relatively well for graph
algorithms such as PageRank [7] and label propagation
[33], but performs poorly for graph traversal algorithms.

Several other works [14, 19] perform graph analysis
using linear algebra with sparse adjacency matrices and
vertex-state vectors as data representations. In this ab-
straction, PageRank and label propagation are efficiently
expressed as sparse-matrix, dense-vector multiplication,
and breadth-first search as sparse-matrix, sparse-vector
multiplication. These frameworks target mathematicians
and those with the ability to formulate and express their
problems in the form of linear algebra.

Pregel [20] is a distributed graph-processing frame-
work that allows users to express graph algorithms in
vertex-centric programs using bulk-synchronous pro-
cessing (BSP). It abstracts away the complexity of pro-
gramming in a distributed-memory environment and runs
users’ code in parallel on a cluster. Giraph [10] is an
open-source implementation of Pregel.

Many distributed graph engines adopt the vertex-
centric programming model and express different de-
signs to improve performance. GraphLab [18] and Pow-
erGraph [11] prefer shared-memory to message pass-
ing and provide asynchronous execution. FlashGraph
supports both pulling data from SSDs and pushing data
with message passing. FlashGraph does provide asyn-
chronous execution of vertex programs to overlap com-
puting with data access. Trinity [24] optimizes message
passing by restricting vertex communication to a vertex
and its direct neighbors.

Ligra [25] is a shared-memory graph processing
framework and its programming interface is specifically
optimized for graph traversal algorithms. It is not as gen-
eral as other graph engines such as Pregel, GraphLab,
PowerGraph, and FlashGraph. Furthermore, Ligra’s
maximum supported graph size is limited by the mem-
ory size of a single machine.

Galois [21] is a graph programming framework with
a low-level abstraction to implement graph engines. The
core of the Galois framework is its novel task scheduler.
The dynamic task scheduling in Galois is orthogonal to
FlashGraph’s I/O optimizations and could be adopted.

GraphChi [16] and X-stream [23] are specifically de-
signed for magnetic disks. They eliminate random data
access from disks by scanning the entire graph dataset in
each iteration. Like graph processing frameworks built

2
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on top of MapReduce, they work relatively well for graph
algorithms that require computation on all vertices, but
share the same limitations, i.e., suboptimal graph traver-
sal algorithm performance.

TurboGraph [12] is an external-memory graph engine
optimized for SSDs. Like FlashGraph, it reads vertices
selectively and fully overlaps I/O and computation. Tur-
boGraph targets graph algorithms expressed in sparse
matrix vector multiplication, so it is difficult to imple-
ment graph applications such as triangle counting. It
uses much larger I/O requests than FlashGraph to read
vertices selectively due to its external-memory data rep-
resentation. Furthermore, it targets graph analysis on a
single SSD or a small SSD array and does not aim at
performance comparable to in-memory graph engines.

Abello et al. [2] introduced the semi-external memory
algorithmic framework for graphs. Pearce et al. [22] im-
plemented several semi-external memory graph traversal
algorithms for SSDs. FlashGraph adopts and advances
several concepts introduced by these works.

3 Design

FlashGraph is a semi-external memory graph engine op-
timized for any fast I/O device such as Fusion I/O or ar-
rays of solid-state drives (SSDs). It stores the edge lists
of vertices on SSDs and maintains vertex state in mem-
ory. FlashGraph runs on top of the set-associative file
system (SAFS) [32], a user-space filesystem designed to
realize both high IOPS and lightweight caching for SSD
arrays on non-uniform memory and I/O systems.

We design FlashGraph with two goals: to achieve per-
formance comparable to in-memory graph engines while
realizing the increased scalability of the semi-external
memory execution model; to have a concise and flexi-
ble programming interface to express a wide variety of
graph algorithms, as well as their optimizations.

To optimize performance, we design FlashGraph with
the following principles:
Reduce I/O: Because SSDs are an order of magnitude
slower than RAM, FlashGraph saturates the I/O chan-
nel in many graph applications. Reducing the amount of
I/O for a given algorithm directly improves performance.
FlashGraph (i) compacts data structures, (ii) maximizes
cache hit rates and (iii) performs selective data access to
edge lists.
Perform sequential I/O when possible: Even though
SSDs provide high IOPS for random access, sequential
I/O always outperforms random I/O and reduces the CPU
overhead of I/O processing in the kernel.
Overlap I/O and Computation: To fully utilize multi-
core processors and SSDs for data-intensive workloads,
one must initiate many parallel I/Os and process data
when it is ready.

Minimize wearout: SSDs wear out after many writes,
especially for consumer SSDs. Therefore, it is important
to minimize writes to SSDs. This includes avoiding writ-
ing data to SSDs during the application execution and re-
ducing the necessity of loading graph data to SSDs mul-
tiple times for the same graph.

In practice, selective data access and performing se-
quential I/O conflict. Selective data access prevents us
from generating large sequential I/O, while using large
sequential I/O may bring in unnecessary data from SSDs
in many graph applications. For SSDs, FlashGraph
places a higher priority in reducing the number of bytes
read from SSDs than in performing sequential I/O be-
cause the random (4KB) I/O throughput of SSDs today
is only two or three times less than their sequential I/O.
In contrast, hard drives have random I/O throughput two
orders of magnitude smaller than their sequential I/O.
Therefore, other external-memory graph engines such as
GraphChi and X-stream place a higher priority in per-
forming large sequential I/O.

3.1 SAFS

SAFS [32] is a user-space filesystem for high-speed SSD
arrays in a NUMA machine. It is implemented as a li-
brary and runs in the address space of its application. It
is deployed on top of the Linux native filesystem.

SAFS reduces overhead in the Linux block subsystem,
enabling maximal performance from an SSD array. It
deploys dedicated per-SSD I/O threads to issue I/O re-
quests with Linux AIO to reduce locking overhead in
the Linux kernel; it refactors I/Os from applications and
sends them to I/O threads with message passing. Fur-
thermore, it has a scalable, lightweight page cache that
organizes pages in a hashtable and places multiple pages
in a hashtable slot [31]. This page cache reduces lock-
ing overhead and incurs little overhead when the cache
hit rate is low; it increases application-perceived perfor-
mance linearly along with the cache hit rate.

To better support FlashGraph, we add an asyn-
chronous user-task I/O interface to SAFS. This I/O inter-
face supports general-purpose computation in the page
cache, avoiding the pitfalls of Linux asynchronous I/O.
To achieve maximal performance, SSDs require many
parallel I/O requests. This could be achieved with user-
initiated asynchronous I/O. However, this asynchronous
I/O requires the allocation of user-space buffers in ad-
vance and the copying of data into these buffers. This
creates processing overhead from copying and further
pollutes memory with empty buffers waiting to be filled.
When an application issues a large number of parallel I/O
requests, the empty buffers account for substantial mem-
ory consumption. In the SAFS user-task programming
interface, an application associates a user-defined task
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Figure 1: The architecture of FlashGraph.

with each I/O request. Upon completion of a request, the
associated user task executes inside the filesystem, ac-
cessing data in the page cache directly. Therefore, there
is no memory allocation and copy for asynchronous I/O.

3.2 The architecture of FlashGraph

We build FlashGraph on top of SAFS to fully utilize the
high I/O throughput provided by the SSD array (Fig-
ure 1). FlashGraph solely uses the asynchronous user-
task I/O interface of SAFS to reduce the overhead of ac-
cessing data in the page cache, memory consumption, as
well as overlapping computation with I/O. FlashGraph
uses the scalable, lightweight SAFS page cache to buffer
the edge lists from SSDs so that FlashGraph can adapt to
applications with different cache hit rates.

A graph algorithm in FlashGraph is composed of
many vertex programs that run inside the graph engine.
Each vertex program represents a vertex and has its own
user-defined state and logic. The execution of vertex pro-
grams is subject to scheduling by FlashGraph. When ver-
tex programs need to access data from SSDs, FlashGraph
issues I/O requests to SAFS on behalf of the vertex pro-
grams and pushes part of their computation to SAFS.

3.3 Execution model

FlashGraph proceeds in iterations when executing graph
algorithms, much like other engines. In each iteration,
FlashGraph processes the vertices activated in the previ-
ous iteration. An algorithm ends when there are no active
vertices in the next iteration.

As shown in Figure 2, FlashGraph splits a graph into
multiple partitions and assigns a worker thread to each
partition to process vertices. Each worker thread main-
tains a queue of active vertices within its own parti-
tion and executes user-defined vertex programs on them.
FlashGraph’s scheduler both manages the order of execu-
tion of active vertices and guarantees only a fixed number
of running vertices in a thread.

Inactive region

Thread 2Thread 1

inactive region

Inactive region

13 14

1 running vertex active vertex

inactive vertex message passing
state changing

vertex scheduler vertex scheduler

11

1

1

6

10
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Figure 2: Execution model in FlashGraph.

There are three possible states for a vertex: (i) running,
(ii) active, or (iii) inactive. A vertex can be activated ei-
ther by other vertices or the graph engine itself. An ac-
tive vertex enters the running state when it is scheduled.
It remains in the running state until it finishes its task in
the current iteration and becomes inactive. The running
vertices interact with other vertices via message passing.

3.4 Programming model
FlashGraph aims at providing a flexible programming in-
terface to express a variety of graph algorithms and their
optimizations. FlashGraph adopts the vertex-centric pro-
gramming model commonly used by other graph engines
such as Pregel [20] and PowerGraph [11]. In this pro-
gramming model, each vertex maintains vertex state and
performs user-defined tasks based on its own state. A
vertex affects the state of others by sending messages to
them as well as activating them. We further allow a ver-
tex to read the edge list of any vertex from SSDs.

The run method (Figure 3) is the entry point of a ver-
tex program in an iteration. It is scheduled and executed
exactly once on each active vertex. It is designed inten-
tionally to have only access the vertex’s own state in this
method. A vertex must explicitly request its own edge
list before accessing it because it is common that ver-
tices are activated but do not perform any computation.
Reading a vertex’s edge list by default before executing
its run method wastes I/O bandwidth.

The rest of FlashGraph’s programming interface is
event-driven to overlap computation and I/O, and receive
notifications from the graph engine and other vertices. A
vertex may receive three types of events:

• when it receives the edge list of a vertex, Flash-
Graph executes its run on vertex method.
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class vertex {
// entry point (runs in memory)
void run(graph_engine &g);
// per vertex computation (runs in the SAFS page cache)
void run_on_vertex(graph_engine &g, page_vertex &v);
// process a message (runs in memory)
void run_on_message(graph_engine &g, vertex_message &msg);
// run at the end of an iteration when all active vertices
// in the iteration are processed.
void run_on_iteration_end(graph_engine &g);

};

Figure 3: The programming interface of FlashGraph.

class bfs_vertex: public vertex {
bool has_visited = false;

void run(graph_engine &g) {
if (!has_visited) {

vertex_id_t id = g.get_vertex_id(*this);
// Request the edge list of the vertex from SAFS
request_vertices(&id, 1);
has_visited = true;

}
}

void run_on_vertex(graph_engine &g, page_vertex &v) {
vertex_id_t dest_buf[];
v.read_edges(dest_buf);
g.activate_vertices(dest_buf, num_dests);

}
};

Figure 4: Breadth-first search in FlashGraph.

• when it receives a message, FlashGraph executes its
run on message method. This method is executed
even if a vertex is inactive in the iteration.

• when the iteration comes to an end, FlashGraph exe-
cutes its run on iteration end method. A vertex
needs to request this notification explicitly.

Given the programming interface, breadth-first search
can be simply expressed as the code in Figure 4. If a
vertex has not been visited, it issues a request to read its
edge list in the run method and activates its neighbors in
the run on vertex method. In this example, vertices do
not receive other events.

This interface is designed for better flexibility and
gives users fine-grained programmatic control. For ex-
ample, a vertex has to explicitly request its own edge
list so that a graph application can significantly reduce
the amount of data brought to memory. Furthermore,
the interface does not constrain the vertices that a ver-
tex can communicate with or the edge lists that a vertex
can request from SSDs. This flexibility allows Flash-
Graph to handle algorithms such as Louvain clustering
[5], in which changes to the topology of the graph occur
during computation. It is difficult to express such algo-
rithms with graph frameworks in which vertices can only
interact with direct neighbors.

3.4.1 Message passing

Message passing avoids concurrent data access to the
state of other vertices. A semi-external memory graph
engine cannot push data to other vertices by embedding
data on edges like PowerGraph [11]. Writing data to
other vertices directly can cause race conditions and re-
quires atomic operations or locking for synchronization
on vertex state. Message passing is a light-weight al-
ternative for pushing data to other vertices. Although
message passing requires synchronization to coordinate
messages, it hides explicit synchronization from users
and provides a more user-friendly programming inter-
face. Furthermore, we can bundle multiple messages in
a single packet to reduce synchronization overhead.

We implement a customized message passing scheme
for vertex communication in FlashGraph. The worker
threads send and receive messages on behalf of vertices
and buffer messages to improve performance. To reduce
memory consumption, we process messages and pass
them to vertices when the buffer accumulates a certain
number of messages.

FlashGraph supports multicast to avoid unnecessary
message duplication. It is common that a vertex needs
to send the same message to many other vertices. In this
case point-to-point communication causes unnecessary
message duplication. With multicast, FlashGraph sim-
ply copies the same message once to each thread. We
implement vertex activation with multicast since activa-
tion messages contain no data and are identical.

3.5 Data representation in FlashGraph
FlashGraph uses compact data representations both in
memory and on SSDs. A smaller in-memory data rep-
resentation allows us to process a larger graph and use
a larger SAFS page cache to improve performance. A
smaller data representation on SSDs allows us to pull
more edge lists from SSDs in the same amount of time,
resulting in better performance.

3.5.1 In-memory data representation

FlashGraph maintains the following data structures in
memory: (i) a graph index for accessing edge lists on
SSDs; (ii) user-defined algorithmic vertex state of all ver-
tices; (iii) vertex status used by FlashGraph; (iv) per-
thread message queues. To save space, we choose to
compute some vertex information at runtime, such as the
location of an edge list on SSDs and vertex ID.

The graph index stores a small amount of information
for each edge list and compute their location and size at
runtime (Figure 5). Storing both the location and size in
memory would require a significant amount of memory:
12 bytes per vertex in an undirected graph and 24 bytes in
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a directed graph. Instead, for almost all vertices, we can
use one byte to store the vertex degree for an undirected
vertex and two bytes for a directed vertex. Knowing the
vertex degree, we can compute the edge list size and fur-
ther compute their locations, since edge lists on SSDs
are sorted by vertex ID. To balance computation over-
head and memory space, we store the locations of a small
number of edge lists in memory. By default, we store one
location for every 32 edge lists, which makes computa-
tion overhead almost unnoticeable while the amortized
memory overhead is small. In addition, we store the de-
gree of large vertices (≥ 255) in a hash table. Most real-
world graphs follow the power-law distribution in vertex
degree, so there are only a small number of vertices in
the hash table. In our default configuration, each ver-
tex in the index uses slightly more than 1.25 bytes in an
undirected graph and slightly more than 2.5 bytes in a
directed graph.

Users define algorithmic vertex state in vertex pro-
grams. The semi-external memory execution model re-
quires the size of vertex state to be a small constant so
FlashGraph can keep it in memory throughout execution.
In our experience, the algorithmic vertex state is usually
small. For example, breadth-first search only needs one
byte for each vertex (Figure 4). Many graph algorithms
we implement use no more than eight bytes for each ver-
tex. Many graph algorithms need to access the vertex ID
that vertex state belongs to in a vertex program. Instead
of storing the vertex ID with vertex state, we compute
the vertex ID based on the address of the vertex state in
memory. It is cheap to compute vertex ID most of the
time. It becomes relatively more expensive to compute
when FlashGraph starts to balance load because Flash-
Graph needs to search multiple partitions for the vertex
state (Section 3.8.1).

3.5.2 External-memory data representation

FlashGraph stores edges and edge attributes of vertices
on SSDs. To amortize the overhead of constructing
a graph for analysis in FlashGraph and reduce SSD
wearout, we use a single external-memory data struc-
ture for all graph algorithms supported by FlashGraph.
Since SSDs are still several times slower than RAM, the
external-memory data representation in FlashGraph has
to be compact to reduce the amount of data accessed
from SSDs.

Figure 5 shows the data representation of a graph on
SSDs. An edge list has a header, edges and edge at-
tributes. Edge attributes are stored separately from edges
so that graph applications avoid reading attributes when
they are not required. This strategy is already success-
fully employed by many database systems [1]. All of the
edge lists stored on SSDs are ordered by vertex ID, given

v0-in
offset

v0-out
offset

v0-in
#edges

v0-out
#edges …… v32-out

offset
v32-in
#edges

v32-out
#edges

v32-in
offset

v0 head edges edge attributes …… v0 head edges edge attributes ……

Graph
index

In-edge lists Out-edge lists

Figure 5: The data representation of a directed graph
in FlashGraph. During computation, the graph index is
maintained in memory and the in-edge and out-edge lists
are accessed from SSDs.

by the input graph.
FlashGraph stores the in-edge and out-edge list of a

vertex separately for a directed graph. Many graph ap-
plications require only one type of edge. As such, stor-
ing both in-edges and out-edges of a vertex together
would cause FlashGraph to read more data from SSDs.
If a graph algorithm does require both in-edges and out-
edges of vertices, having separate in-edge and out-edge
lists could potentially double the number of I/O requests.
However, FlashGraph merges I/O requests (Section 3.6),
which significantly alleviates this problem.

3.6 Edge list access on SSDs
Graph algorithms exhibit varying I/O access patterns in
the semi-external memory computation model. The most
prominent is that each vertex accesses only its own edge
list. In this category, graph algorithms such as PageRank
[7] access all edge lists of a graph in an iteration; graph
traversal algorithms require access to many edge lists in
some of their iterations on most real-world graphs. A less
common category of graph algorithms, such as triangle
counting, require a vertex to access the edge lists of many
other vertices as well. FlashGraph supports all of these
access patterns and optimizes them differently.

Given the good random I/O performance of SSDs,
FlashGraph selectively accesses the edge lists required
by graph algorithms. Most graph algorithms only need to
access a subset of edge lists within an iteration. External-
memory graph engines such as GraphChi [16] and X-
Stream [23] that sequentially access all edge lists in each
iteration waste I/O bandwidth despite avoiding random
I/O access. Selective access is superior to sequentially
accessing the entire graph in each iteration and signifi-
cantly reduces the amount of data read from SSDs.

FlashGraph merges I/O requests to maximize its per-
formance. During an iteration of most algorithms, there
are a large number of vertices that will likely request
many edge lists from SSDs. Given this, it is likely that
multiple edge lists required are stored nearby on SSDs,
giving us the opportunity to merge I/O requests.

FlashGraph globally sorts and merges I/O requests is-
sued by all active state vertices for applications where
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Figure 6: FlashGraph accesses edge lists and merges I/O
requests.

each vertex requests a single edge list within an iteration.
FlashGraph relies on its vertex scheduler (Section 3.7) to
order all I/O requests within the iteration. We only merge
I/O requests when they access either the same page or ad-
jacent pages on SSDs. To minimize the amount of data
brought from SSDs, the minimum I/O block size issued
by FlashGraph is one flash page (4KB). As a result, an
I/O request issued by FlashGraph varies from as small as
one page to as large as many megabytes to benefit graph
algorithms with various I/O access patterns.

Figure 6 illustrates the process of selectively accessing
edge lists on SSDs and merging I/O requests. In this
example, the graph algorithm requests the in-edge lists of
four vertices: v1, v2, v6 and v8. FlashGraph issues
I/O requests to access these edge lists from SSDs. Due
to our merging criteria, FlashGraph merges I/O requests
for v1 and v2 into a single I/O request because they are
on the same page, and merges v6 and v8 into a single
request because they are on adjacent pages. As a result,
FlashGraph only needs to issue two, as opposed to four,
I/O requests to access four edge lists in this example.

In the less common case that a vertex requests edge
lists of multiple vertices, FlashGraph must observe I/O
requests issued by all running state vertices before sort-
ing them. In this case, FlashGraph can no longer rely on
its vertex scheduler to reorder I/O requests in an itera-
tion. The more requests FlashGraph observes, the more
likely it is to merge them and generate cache hits. Flash-
Graph is only able to observe a relatively small number
of I/O requests, compared to the size of a graph, due to
the memory constraint. It is in this less common case
that FlashGraph relies on SAFS to merge I/O requests to
reduce memory consumption. Finally, to further increase
I/O merging and cache hit rates, FlashGraph uses a flex-
ible vertical graph partitioning scheme (Section 3.8).

3.7 Vertex scheduling
Vertex scheduling greatly affects the performance of
graph algorithms. Intelligent scheduling accelerates the
convergence rate and improves I/O performance. Flash-
Graph’s default scheduler aims to decrease the number
of I/O accesses and increase page cache hit rates. Flash-
Graph also allows users to customize the vertex sched-
uler to optimize for the I/O access pattern and accelerate

the convergence of their algorithms. For example, scan
statistics [26] in Section 4 requires large-degree vertices
to be scheduled first to skip expensive computation on
the majority of vertices.

FlashGraph deploys a per-thread vertex scheduler.
Each thread schedules vertices in its own partition inde-
pendently. This strategy simplifies implementation and
results in framework scalability. The per-thread sched-
uler keeps multiple active vertices in the running state
so that FlashGraph can observe then merge many I/O
requests issued by vertex programs. In general, Flash-
Graph favors a large number of running state vertices
because it allows FlashGraph to merge more I/O requests
to improve performance. In practice, performance im-
provement is no longer noticeable past 4000 running
state vertices per thread.

The default scheduler processes vertices ordered by
vertex ID. This scheduling maximizes merging I/O re-
quests for most graph algorithms because vertices re-
quest their own edge lists in most graph algorithms and
edge lists are ordered by vertex ID on SSDs. For algo-
rithms in which vertex ordering does not affect the con-
vergence rate, the default scheduler alternates the direc-
tion that it scans the queue of active vertices between iter-
ations. This strategy results in pages accessed at the end
of the previous iteration being accessed at the beginning
of the current iteration, potentially increasing the cache
hit rate.

3.8 Graph partitioning

FlashGraph partitions a graph in two dimensions at run-
time (Figure 7), inspired by two-dimension matrix par-
titioning. It assigns each vertex to a partition for paral-
lel processing, shown as horizontal partitioning in Fig-
ure 7. FlashGraph applies the horizontal partitioning in
all graph applications. In addition, it provides a flexi-
ble runtime edge list partitioning scheme within a hori-
zontal partition, shown as vertical partitioning in Figure
7. This scheme, when coupled with the vertex schedul-
ing, can increase the page cache hit rate for applications
that require a vertex to access the edge lists of many ver-
tices because this increases the possibility that multiple
threads share edge list data in the cache by accessing the
same edge lists concurrently.

FlashGraph assigns a worker thread to each horizon-
tal partition to process vertices in the partition indepen-
dently. The worker threads are associated with specific
hardware processors. When a thread processes vertices
in its own partition, all memory accesses to the vertex
state are localized to the processor. As such, our parti-
tioning scheme maximizes data locality in memory ac-
cess within each processor.

FlashGraph applies a range partitioning function to
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Figure 7: An example of 2D partitioning on a graph of
n vertices, visualized as an adjacency matrix. In this ex-
ample, the graph is split into two horizontal partitions
and four vertical partitions. The size of a range in a hor-
izontal partition is two. vi, j represents vertical partition
j of vertex i. The arrows show the order in which the
vertical partitions of vertices in horizontal partition 0 are
executed in a worker thread.

horizontally partition a graph. The function performs a
right bit shift on a vertex ID by a predefined number r
and takes the modulo of the shifted result:

range id = vid >> r
partition id = range id % n

As such, a partition consists of multiple vertex ID ranges
and the size of a range is determined by a tunable param-
eter r. n denotes the number of partitions. All vertices in
a partition are assigned to the same worker thread.

Range partitioning helps FlashGraph to improve spa-
tial data locality for disk I/O in many graph applications.
FlashGraph uses a per-thread vertex scheduler (Section
3.7) that optimizes I/O based on its local knowledge.
With range partitioning, the edge lists of most vertices in
the same partition are located adjacently on SSDs, which
helps the per-thread vertex scheduler issue a single large
I/O request to access many edge lists. The range size
needs to be at least as large as the number of vertices be-
ing processed in parallel in a thread. However, a very
large range may cause load imbalance because it is dif-
ficult to distribute a small number of ranges to worker
threads evenly. We observe that FlashGraph works well
for a graph with over 100 million vertices when r is be-
tween 12 and 18.

The vertical partitioning in FlashGraph allows pro-
grammers to split large vertices into small parts at run-
time. FlashGraph replicates vertex state of vertices that
require vertical partitioning and each copy of the vertex
state is referred to as a vertex part. A user has com-
plete freedom to perform computation on and request
edge lists for a vertex part. In an iteration, the default
FlashGraph scheduler executes all active vertex parts in

the first vertical partition and then proceeds to the sec-
ond one and so on. To avoid concurrent data access to
vertex state, a vertex part communicates with other ver-
tices through message passing.

The vertical partitioning increases page cache hits for
applications that require vertices to access the edge lists
of their neighbors. In these applications, a user can par-
tition the edge list of a large vertex and assign a vertex
part with part of the edge list. For example, in Figure 7,
vertex v0 is split into four parts: v0,0 , v0,1 , v0,2 and v0,3 .
Each part v0, j is only responsible for accessing the edge
lists of its neighbors with vertex ID between n

4 × j and
n
4 × ( j+1). When the scheduler executes vertex parts in
vertical partition j, only edge lists of vertices with ver-
tex ID between n

4 × j and n
4 × ( j+1) are accessed from

SSDs, thus increasing the likelihood that an edge list be-
ing accessed is in the page cache.

3.8.1 Load balancing

FlashGraph provides a dynamic load balancer to address
the computational skew created by high degree vertices
in scale-free graphs. In an iteration, each worker thread
processes active vertices in its own partition. Once a
thread finishes processing all active vertices in its own
partition, it ‘steals’ active vertices from other threads and
processes them. This process continues until no threads
have active vertices left in the current iteration.

Vertical partitioning assists in load balancing. Flash-
Graph does not execute computation on a vertex simulta-
neously in multiple threads to avoid concurrent data ac-
cess to the state of a vertex. In the applications where
only a few large vertices dominate the computation of
the applications, vertical partitioning breaks these large
vertices into parts so that FlashGraph’s load balancer can
move computation of vertex parts to multiple threads,
consequently leading to better load balancing.

4 Applications

We evaluate FlashGraph’s performance and expressive-
ness with both basic and complex graph algorithms.
These algorithms exhibit different I/O access patterns
from the perspective of the framework, providing a com-
prehensive evaluation of FlashGraph.
Breadth-first search (BFS): It starts with a single active
vertex that activates its neighbors. In each subsequent
iteration, the active and unvisited vertices activate their
neighbors for the next iteration. The algorithm proceeds
until there are no active vertices left. This requires only
out-edge lists.
Betweenness centrality (BC): We compute BC by per-
forming BFS from a vertex, followed by a back propa-
gation [6]. For performance evaluation, we perform this
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process from a single source vertex. This requires both
in-edge and out-edge lists.
PageRank (PR) [7]: In our PR, a vertex sends the delta
of its most recent PR update to its neighbors who then
update thier own PR accordingly [30]. In PageRank, ver-
tices converge at different rates. As the algorithm pro-
ceeds, fewer and fewer vertices are activated in an iter-
ation. We set the maximal number of iterations to 30,
matching the value used by Pregel [20]. This requires
only out-edge lists.
Weakly connected components (WCC): WCC in a di-
rected graph is implemented with label propagation [33].
All vertices start in their own components, broadcast
their component IDs to all neighbors, and adopt the
smallest IDs they observe. A vertex that does not receive
a smaller ID does nothing in the next iteration. This re-
quires both in-edge and out-edge lists.
Triangle counting (TC) [28]: A vertex computes the in-
tersection of its own edge list and the edge list of each
neighbor to look for triangles. We count triangles on only
one vertex in a potential triangle and this vertex then no-
tifies the other two vertices of the existence of the trian-
gle via message passing. This requires both in-edge and
out-edge lists.
Scan statistics (SS) [26]: The SS metric only requires
finding the maximal locality statistic in the graph, which
is the maximal number of edges in the neighborhood of a
vertex. We use a custom FlashGraph user-defined vertex
scheduler that begins computation on vertices with the
largest degree first. With this scheduler, we avoid actual
computation for many vertices resulting in a highly op-
timized implementation [27]. This requires both in-edge
and out-edge lists.

These algorithms fall into three categories from the
perspective of I/O access patterns. (1) BFS and between-
ness centrality only perform computation on a subset of
vertices in a graph within an iteration, thus they generate
many random I/O accesses. (2) PageRank and (weakly)
connected components need to process all vertices at the
beginning, so their I/O access is generally more sequen-
tial. (3) Triangle counting and scan statistics require a
vertex to read many edge lists. These two graph algo-
rithms are more I/O intensive than the others and gener-
ate many random I/O accesses.

5 Experimental Evaluation

We evaluate FlashGraph’s performance on the applica-
tions in section 4 on large real-world graphs. We com-
pare the performance of FlashGraph with its in-memory
implementation as well as other in-memory graph en-
gines (PowerGraph [11] and Galois [21]). For in-
memory FlashGraph, we replace SAFS with in-memory

Graph datasets # Vertices # Edges Size Diameter
Twitter [15] 42M 1.5B 13GB 23

Subdomain [29] 89M 2B 18GB 30
Page [29] 3.4B 129B 1.1TB 650

Table 1: Graph data sets. These are directed graphs and
the diameter estimation ignores the edge direction.

data structures for storing edge lists. We also com-
pare semi-external memory FlashGraph with external-
memory graph engines (GraphChi [16] and X-Stream
[23]). We further demonstrate the scalability of Flash-
Graph on a web graph of 3.4 billion vertices and 129 bil-
lion edges. We also perform experiments to justify some
of our design decisions that are critical to achieve perfor-
mance. Throughout all experiments, we use 32 threads
for all graph processing engines.

We conduct all experiments on a non-uniform mem-
ory architecture machine with four Intel Xeon E5-4620
processors, clocked at 2.2 GHz, and 512 GB memory
of DDR3-1333. Each processor has eight cores. The
machine has three LSI SAS 9207-8e host bus adapters
(HBA) connected to a SuperMicro storage chassis, in
which 15 OCZ Vertex 4 SSDs are installed. The 15 SSDs
together deliver approximately 900,000 reads per sec-
ond, or around 60,000 reads per second per SSD. The
machine runs Linux kernel v3.2.30.

We use the real-world graphs in Table 1 for evalua-
tion. The largest graph is the page graph with 3.4 billion
vertices and 129 billion edges. Even the smallest graph
we use has 42 million vertices and 1.5 billion edges.
The page graph is clustered by domain, generating good
cache hit rates for some graph algorithms.

5.1 FlashGraph: in-memory vs.
semi-external memory

We compare the performance of FlashGraph in semi-
external memory with that of its in-memory implementa-
tion to measure the performance loss caused by accessing
edge lists from SSDs.

FlashGraph scales by using semi-external memory on
SSDs while preserving up to 80% performance of its in-
memory implementation (Figure 8). In this experiment,
FlashGraph uses a page cache of 1GB and has low cache
hit rates in most applications. BC, WCC and PR perform
the best and have only small performance degradation
when running in external memory. Even in the worst
cases, external-memory BFS and TC realize more than
40% performance of their in-memory counterparts on the
subdomain Web graph.

Given around a million IOPS from the SSD array, we
observe that most applications saturate CPU before satu-
rating I/O. Figure 9 shows the CPU and I/O utilization of
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Figure 8: The performance of each application run on
semi-external memory FlashGraph with 1GB cache rela-
tive to in-memory FlashGraph.

our applications in semi-external memory on the subdo-
main Web graph. Our machine has hyper-threading en-
abled, which results in 64 hardware threads in a 32-core
machine, so 32 CPU cores are actually saturated when
the CPU utilization gets to 50%. Both PageRank and
WCC have very sequential I/O and are completely bottle-
necked by the CPU at the beginning. Triangle counting
saturates both CPU and I/O. It generates many small I/O
requests and consumes considerable CPU time in the ker-
nel space (almost 8 CPU cores). BFS generates very high
I/O throughput in terms of bytes per second but has low
CPU utilization, which suggests BFS is most likely bot-
tlenecked by I/O. Although betweenness centrality has
exactly the same I/O access pattern as BFS, it has lower
I/O throughput and higher CPU utilization because it re-
quires more computation than BFS. As a result, between-
ness centrality is bottlenecked by CPU most of the time.
The CPU-bound applications tend to have a small perfor-
mance gap between in-memory and semi-external mem-
ory implementations.

5.2 FlashGraph vs. in-memory engines

We compare the performance of FlashGraph to Power-
Graph [11], a popular distributed in-memory graph en-
gine, and Galois [21], a state-of-art in-memory graph
engine. FlashGraph and Powergraph provide a gen-
eral high-level vertex-centric programming interface,
whereas Galois provides a low-level programming ab-
straction for building graph engines. We run these three
graph engines on the Twitter and subdomain Web graphs.
Unfortunately, the Web page graph is too large for in-
memory graph engines. We run PowerGraph in multi-
thread mode to achieve its best performance and use its
synchronous execution engine because it performs better
than the asynchronous one on both graphs.

Both in-memory and semi-external memory Flash-
Graph performs comparably to Galois, while signif-
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Figure 9: CPU and I/O utilization of FlashGraph on the
subdomain Web graph. PR1 is the first 15 iterations of
PageRank and PR2 is the last 15 iterations of PageRank.
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Figure 10: The runtime of different graph engines. FG-
mem is in-memory FlashGraph. FG-1G is semi-external
memory FlashGraph with a page cache of 1 GB.
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icantly outperforming PowerGraph (Figure 10). In-
memory FlashGraph outperforms Galois in WCC and
PageRank. It performs worse than Galois in graph traver-
sal applications such as BFS and betweenness centrality,
because Galois uses a different algorithm [3] for BFS.
The algorithm reduces the number of edges traversed
in both applications. The same algorithm could be im-
plemented in FlashGraph but would not benefit semi-
external memory FlashGraph because the algorithm re-
quires access to both in-edge and out-edge lists, thus, sig-
nificantly increasing the amount of data read from SSDs.

5.3 FlashGraph vs. external memory
engines

We compare the performance of FlashGraph to that of
two external-memory graph engines, X-Stream [23] and
GraphChi [16]. We run FlashGraph in semi-external
memory and use a 1 GB page cache. We construct a
software RAID on the same SSD array to run X-Stream
and GraphChi. Note that GraphChi does not provide a
BFS implementation, and X-Stream implements triangle
counting via a semi-streaming algorithm [4].

FlashGraph outperforms GraphChi and X-Stream by
one or two orders of magnitude (Figure 11a). FlashGraph
only needs to access the edge lists and performs compu-
tation on only the vertices required by the graph appli-
cation. Even though FlashGraph generates random I/O
accesses, it saves both CPU and I/O by avoiding unneces-
sary computation and data access. In contrast, GraphChi
and X-Stream sequentially read the entire graph dataset
multiple times.

Although FlashGraph uses its semi-external memory
mode, it consumes a reasonable amount of memory when
compared with GraphChi and X-Stream (Figure 11b). In
some applications, FlashGraph even has smaller memory
footprint than GraphChi. FlashGraph’s small memory
footprint allows it to run on regular desktop computers,
comfortably processing billion-edge graphs.

5.4 Scale to billion-node graphs
We further evaluate the performance of FlashGraph on
the billion-scale page graph in Table 1. FlashGraph uses
a page cache of 4GB for all applications. To the best
of our knowledge, the page graph is the largest graph
used for evaluating a graph processing engine to date.
The closest one is the random graph used by Pregel [20],
which has a billion vertices and 127 billion edges. Pregel
processed it on 300 multicore machines. In contrast, we
process the page graph on a single multicore machine.

FlashGraph can perform all of our applications within
a reasonable amount of time and with relatively small
memory footprint (Table 2). For example, FlashGraph
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Figure 11: The runtime and memory consumption of
semi-external memory FlashGraph and external memory
graph engines on the Twitter graph.

achieves good performance in BFS on this billion-node
graph. It takes less than five minutes with a cache size of
4GB; i.e., FlashGraph traverses nearly seven million ver-
tices per second on the page graph, which is much higher
than the maximal random I/O performance (900,000
IOPS) provided by the SSD array. In contrast, Pregel
[20] used 300 multicore machines to run the shortest path
algorithm on their largest random graph and took a little
over ten minutes. More recently, Trinity [24] took over
ten minutes to perform BFS on a graph of one billion
vertices and 13 billion edges on 14 12-core machines.

Our solution allows us to process a graph one order of
magnitude larger than the page graph on a single com-
modity machine with half a terabyte of RAM. The maxi-
mal graph size that can be processed by FlashGraph is
limited by the capacity of RAM and SSDs. Our cur-
rent hardware configuration allows us to attach 24 1TB
SSDs to a machine, which can store a graph with over
one trillion edges. Furthermore, the small memory foot-
print suggests that FlashGraph is able to process a graph
with tens of billions of vertices.

FlashGraph results in a more economical solution to
process a massive graph. In contrast, it is much more
expensive to build a cluster or a supercomputer to pro-
cess a graph of the same scale. For example, it requires
48 machines with 512GB RAM each to achieve 24TB
aggregate RAM capacity, so the cost of building such a
cluster is at least 24−48 times higher than our solution.
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Algorithm Runtime (sec) Init time (sec) Memory (GB)
BFS 298 30 22
BC 595 33 81
TC 7818 31 55

WCC 461 32 47
PR 2041 33 46
SS 375 58 83

Table 2: The runtime and memory consumption of Flash-
Graph on the page graph using a 4GB cache size.

In addition, FlashGraph minimizes SSD wearout and the
only write required by FlashGraph is to load a new graph
to SSDs for processing. Therefore, we can further re-
duce the hardware cost, by using consumer SSDs instead
of enterprise SSDs to store graphs, as well as reducing
the maintenance cost.

5.5 The impact of optimizations
In this section, we perform experiments to justify some
of our design decisions that are critical to achieve perfor-
mance for FlashGraph in semi-external memory.

5.5.1 Preserve sequential I/O

We demonstrate the importance of taking advantage of
sequential I/O access in graph applications, using BFS
and weakly connected components. We start with vertex
execution performed in random order, and then sequen-
tially order vertex execution by vertex ID. Finally, we
show the performance difference between merging I/O
requests in SAFS vs. FlashGraph. All experiments are
run on the subdomain web graph.

The huge gap (Figure 12) between random execution
and sequential execution suggests that there exists a de-
gree of sequential I/O in both applications, as described
in Section 3.6. If FlashGraph did not take advantage of
these sequential I/O accesses, it would suffer substantial
performance degradation. Therefore, the first priority of
the vertex scheduler in FlashGraph is to schedule ver-
tex execution to generate sequential I/O. Consequently,
FlashGraph’s vertex scheduler is highly constrained by
I/O ordering requirements and is not able to schedule ver-
tex execution freely like Galois [21].

Figure 12 also shows that I/O accesses generated by
a graph algorithm are well merged in FlashGraph as
opposed to the filesystem level or the block subsystem
level. Although SAFS, the Linux filesystem and the
Linux block subsystem are capable of merging I/O re-
quests, they require more CPU computation to merge I/O
requests and do not have a global view for merging I/O
requests. Consequently, it is much more light-weight and
effective to merge I/O requests in FlashGraph. By do-
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Figure 12: The impact of preserving sequential I/O ac-
cess in graph applications. All performance is relative
to that of the implementation of merging I/O requests in
FlashGraph.

ing so, we achieve 40% speedup for BFS and more than
100% speedup for WCC.

5.5.2 The impact of the page size

In this section, we investigate the impact of the page size
in SAFS. A page is the smallest I/O block that Flash-
Graph can access from SSDs. The experiments are run
on the subdomain web graph.

Figure 13 shows that FlashGraph should use 4KB as
the SAFS page size. SSDs store and access data at the
granularity of 4KB flash pages, so using an SAFS page
smaller than 4KB does not increase the I/O rate of SSDs
much. A larger SAFS page size brings in more unneces-
sary data and wastes I/O bandwidth, which leads to per-
formance degradation. When we increase the SAFS page
size from 4KB to 1MB, the performance of BFS and
triangle counting (TC) decreases to a small fraction of
their maximal performance. Even WCC, whose I/O ac-
cess is more sequential, performs better with 4KB pages
because WCC also needs to selectively access edge lists
in all iterations but the first. This result suggests that
TurboGraph [12], which uses a block size of multiple
megabytes, may perform general graph analysis subopti-
mally. It also suggests that when using 4KB pages, se-
lectively accessing edge lists and merging I/O enables
FlashGraph to adapt to different I/O access patterns.

5.6 The impact of page cache size

We investigate the effect of the SAFS page cache size on
the performance of FlashGraph. We vary the cache size
from 1 GB to 32GB, which is sufficiently large to accom-
modate the twitter graph and the subdomain web graph.
We omit Twitter graph results as they mirror subdomain
graph results.
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Figure 13: The impact of the page size in FlashGraph.
All performance is relative to that of the implementation
with 4KB page size.
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Figure 14: The impact of cache size in FlashGraph.

FlashGraph performs well even with a small page
cache (Figure 14). With a 1GB page cache, all appli-
cations realize at least 65% of their performance with a
32GB page cache, and WCC and betweenness central-
ity even achieve around 90% of the performance with a
32GB page cache. Although PageRank has a similar I/O
access pattern to WCC, it converges more slowly than
WCC, so a large cache has more impact on PageRank.
By varying the page cache size, we show FlashGraph can
smoothly transition from a semi-external memory graph
engine to an in-memory graph engine.

6 Conclusions

We present the semi-external memory graph engine
called FlashGraph that closely integrates with an SSD
filesystem to achieve maximal performance. It uses an
asynchronous user-task I/O interface to reduce overhead
associated with accessing data in the filesystem and over-
lap computation with I/O. FlashGraph selectively ac-
cesses edge lists required by a graph algorithm from
SSDs to reduce data access; it conservatively merges
I/O requests to increase I/O throughput and reduce CPU
consumption; it further schedules the order of process-
ing vertices to help merge I/O requests and maximize

the page cache hit rate. All of these designs maximize
performance for applications with different I/O access
patterns. We demonstrate that a semi-external memory
graph engine can achieve performance comparable to in-
memory graph engines.

We observe that in many graph applications a large
SSD array is capable of delivering enough I/Os to satu-
rate the CPU. This suggests the importance of optimiz-
ing for CPU and RAM in such an I/O system. It also
suggests that SSDs have been sufficiently fast to be an
important extension for RAM when we build a machine
for large-scale graph analysis applications.

FlashGraph provides a concise and flexible program-
ming interface to express a wide variety of graph algo-
rithms and their optimizations. Users express graph al-
gorithms in FlashGraph from the perspective of vertices.
Vertices can interact with any other vertices in the graph
by sending messages, which localizes user computation
to the local memory and avoids concurrent data access to
algorithmic vertex state.

Unlike other external-memory graph engines such as
GraphChi and X-stream, FlashGraph supports selective
access to edge lists. We demonstrate that streaming the
entire graph to reduce random I/O leads to a suboptimal
solution for high-speed SSDs. Reading and computing
on data only required by graph applications saves com-
putation and increases the I/O access rate to the SSDs.

We further demonstrate that FlashGraph is able to pro-
cess graphs with billions of vertices and hundreds of bil-
lions of edges on a single commodity machine. Flash-
Graph, on a single machine, meets and surpasses the per-
formance of distributed graph processing engines that
run on large clusters. Furthermore, the small mem-
ory footprint of FlashGraph suggests that it can handle
a much larger graph in a single commodity machine.
Therefore, FlashGraph results in a much more economi-
cal solution for processing massive graphs, which makes
massive graph analysis more accessible to users and pro-
vides a practical alternative to large clusters for such
graph analysis.
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Abstract

Hardware consolidation in the datacenter occasionally leads
to scalability bottlenecks due to the heavy utilization of crit-
ical resources, such as the shared network bandwidth. Host-
side caching on durable media is already applied at the block
level in order to reduce the load of the storage backend. How-
ever, block-level caching is often criticized for added over-
head, and restricted data sharing across different hosts. Dur-
ing client crashes, writeback caching can also lead to unrecov-
erable loss of written data that was previously acknowledged
as stable. We improve the durability of shared storage in the
datacenter by supporting journaling at the kernel-level client
of an object-based distributed filesystem. Storage virtualiza-
tion at the file interface achieves clear consistency semantics
across data and metadata blocks, supports native file sharing
between clients over the same or different hosts, and provides
flexible configuration of the time period during which the
data is durably staged at the host side. Over a prototype im-
plementation that we developed, we experimentally demon-
strate improved performance up to 58% for specific durability
guarantees, and reduced network and disk bandwidth at the
storage servers by up to 42% and 82%, respectively.

1 Introduction

Infrastructure virtualization in the datacenter typically consol-
idates client and server nodes on similar hardware. Network
storage is often provided by scalable server clusters through
protocols operating at the file, block or object level. The file
interface is attractive for its sharing and efficiency proper-
ties [30, 13, 25, 40, 6, 22, 1]; the block interface provides
convenient virtualization flexibility but incurs undesirable
translation overheads [24, 20, 35, 36, 26]; and the object in-
terface is scalable and efficient because it carries semantical
information for specialized storage management [30, 39, 41].

Another design dimension in datacenter storage applies
client-side caching for improved performance and durability
at reduced network and server load. Existing solutions often
apply block-level caching at the client-side host, and they
adopt write-through or writeback policy according to the
application and hardware characteristics. A write-through
policy is preferred for read caching without data loss at
device failure. Instead, a writeback policy improves the re-
source efficiency and application performance but makes the
cache device part of the failure model [24, 34, 9, 19, 31, 16].

The Arion system is a new design point that we introduce
in cloud storage to improve the durability of the file interface
at the client side (Fig. 1 fully explained in Section 2). We
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Figure 1: Dirty data that remains unflushed in the volatile
memory of the client in Ceph and the proposed Arion system.

integrate the client software of a distributed filesystem with
persistent host-based storage over a journal device. We
enhance the flushing functionality of the filesystem client
with tunable control of both the amount of dirty pages that
are staged at the host, and the time period taken by dirtied
pages to reach the backend servers. At increased flushing
frequency to the journal device, we practically minimize
the recovery point objective (RPO) close to zero under the
following condition: the dominant cause of a client crash
is operator or software bug rather than permanent hardware
loss, such as that of the local storage device [28, 4].

The availability and performance of cloud services de-
pends on the ordering, durability and membership properties
of replication consistency [7]. In a multi-tier system, data
is replicated at the frontend application, an intermediate
caching layer, and the backend persistent storage. For
reduced cross-layer communication, the frontend can be
stateless and lose recently written data during a crash or
reboot. Recognition of this risk has urged the designers of
local filesystems, flash-based caches and distributed storage
systems to emphasize the ordering guarantees of crash
consistency at the expense of weaker durability [10, 19, 26].

I/O-intensive workloads in a distributed filesystem can
take advantage of writeback caching at the client side to
improve their performance and reduce the respective network
and server load. Unfortunately, current scalable filesystems
can natively support only in-memory caching at the client
side. This deficiency has been partially addressed by having
the filesystem client running in the hypervisor and enforcing
the guests to mount disk images as plain files through a block
interface that enables block-based caching [9]. But this ap-
proach has been criticized for the increased overheads from
the semantic gap that it causes and the unnecessary multiple
translations between the file and block interface [13, 20, 35].

Our main contributions are the following: (i) We improve
the durability of frontend memory caching by integrating
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disk-based journaling into the client of a distributed filesys-
tem. (ii) We implement a prototype of the proposed storage
layer in the kernel-level client of the Ceph object-based
filesystem. (iii) We experiment with several application-level
benchmarks over a virtualized host and a clustered storage
backend. Our approach enables frequent flushes of dirty
pages to the local journal without crossing the network and
hitting the disks of the backend storage. Therefore, in a host
machine with reliable local storage, we approximate the
consistency ordering and durability of write-through caching
with the configurable efficiency of periodic writeback.

We further motivate our research in Section 2 and
describe the Arion architecture in Section 3. We present our
software prototype in Section 4 and explain our experimental
results in Section 5. In Sections 6 we compare our work
with previous research, and in Section 7 we clarify our
contributions and some limitations. Finally, in Section 8 we
outline our conclusions and possible extensions.

2 Motivation

Loss or corruption of committed updates to critical data is
recognized as a particularly damaging class of failure [4].
This observation is highly relevant in a large-scale multi-tier
environment, with mean time between failures inversely
proportional to the number of machines. Several studies con-
clude that hardware failures contribute much less to service-
level failures in comparison to causes related to software
bugs and faults from operator or maintenance tasks [28, 4].

In traditional Unix, written data is acknowledged asyn-
chronously to the application but only flushed periodically
to the local disk. This approach has been adopted by several
distributed filesystems in the form of asynchronous data
transfer from the volatile memory of the client to the
servers [27, 23]. Although durable caching at the client side
can reduce the network load of the servers, it complicates
the maintenance of replication consistency among different
clients or between the clients and the servers [14].

In Fig. 1, we measure the amount of dirty data that re-
mains unflushed at the client memory over time. We com-
pare Ceph [41] under default flushing parameters with the
proposed Arion system (Section 3). In the environment of
Section 5, we used the fileserver mode of Filebench [12] run-
ning for 2min over 10000 files. The Linux pdflush daemon
wakes up every 5s and transfers dirty data older than 30s from
the client to the servers [8]. Additionally, the Arion client
every 1s flushes dirty data to the local journal of the host. On
average over time, the Ceph client keeps 24.3MB of dirty data
solely in volatile memory, i.e., unrecoverable from a crash.
Instead, the Arion host-side journaling reduces to 5.4MB the
vulnerable data in the volatile memory of the client.

3 System Architecture

Next we outline our assumptions and goals before we
describe the main design ideas of Arion and consistency.

OBJECT STORAGE SERVERS

VMVMGuest Guest

HOST
journal device

Hypervisor

Figure 2: Host-side journaling in the Arion architecture.

3.1 Assumptions and Goals

We aim to improve the durability and performance of
shared storage in the datacenter at reduced utilization of
the server resources. User is the application-level entity
that initiates I/O requests to the filesystem, and client is the
host-based software that provides filesystem access to users.
We target host hardware with reliability characteristics on
par with those of the server machines. The host provides
directly-attached storage with sufficient redundancy to
tolerate the occasional failure of a single device. Appropriate
storage technologies include hard disks, solid-state drives,
or non-volatile memory. In the proposed storage architecture
we aim to support the following properties:

i) Interface Stored data is directly accessible for regu-
lar use and maintenance tasks over the network with a
POSIX-like file-based interface [37].

ii) Sharing Heterogeneous clients on the same or different
hosts can natively share data at the storage level but may
also apply synchronizations at the application level.

iii) Durability Most recent writes survive client reboots but
require redundant hardware support to tolerate perma-
nent failures of individual storage devices at the host.

iv) Performance Client writes are safely stored at sequen-
tial disk throughput, but the read performance depends
on the efficiency of the client memory cache.

v) Scalability The storage backend linearly scales out to
efficiently hold increasing amounts of data.

3.2 Design

We rely on an object-based scale-out backend of multiple
data and metadata servers (Fig. 2). The client runs over either
a guest system on virtualized hardware or a standalone sys-
tem on bare metal. A read operation synchronously returns
the latest version of the requested state. A synchronous write
reaches a configurable number of durable replicas before
it returns. An asynchronous write returns as soon it updates
the buffer cache of the client system, but the modified blocks
have to reach a configurable number of durable replicas
before they are considered safely stored.

We regard the frontend logging to a persistent storage
medium as a complementary form of replication. Unlike the
traditional replication that is homogeneously applied across
functionally equivalent backend servers, the frontend logging
adds heterogeneity with respect to the storage format, the
logical layer and the time duration of the replica1.

1The Coda filesystem previously introduced the concept of two-tier
replication in the context of disconnected operation [18](see also Section 6).



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 61

The metadata server (MDS) enables shared filesystem
access at file granularity through different types of tokens
leased to the clients. Supported access types include exclusive
write (cached) by a single client, and concurrent read (cached)
or concurrent write (uncached) by multiple clients. A client
can only cache the writes of data and metadata accessed with
exclusive permission. The file interface provides valuable
semantical information about the consistency dependencies
of modified data and metadata. When a client transfers the file
updates to the servers, the metadata is written only after the
referenced data blocks have safely reached the server state.

The key innovation of our design is the integration of
a local journal with the kernel-level client of a distributed
filesystem (Fig. 2). The host-side journal is distinct for each
guest in virtualized hosts. The client inserts into the journal
both the data and metadata modified by an I/O request. Thus
we ensure that a metadata version matches the version of the
data it refers to (version consistency [11]). We only keep one
transaction active to accept all the (redo) records of low-level
I/O operations corresponding to an atomic filesystem request.
An active transaction closes as a result of timeout expiration,
explicit flush request, or reclamation of journal space [8].

A journaled block remains cached in the client memory
until it is safely written to the servers. If an MDS revokes
the write token from a client due to some conflict (e.g.,
concurrent writes to the same file), the client is forced to
write (checkpoint) the conflicting writes to the servers and
invalidate the respective journal records. On client disconnec-
tion from the servers, the leased tokens may expire and the
client will no longer be able to access the files locally [23].
At network reconnection, the client writes to the servers the
mutated blocks of each file whose token has been refreshed
and whose metadata cached at the client is newer than the file
metadata at the MDS, but it discards the remaining blocks.

The primary benefit from host-side journaling in a dis-
tributed filesystem is the reduced vulnerability of outstanding
writes in the volatile memory of the client. If a client crashes
and reboots without hardware failure at the host, then the
client replays the completed transactions and transfers the
recorded updates to the filesystem servers. We update a file
only if the replaying client confirms token ownership, and
the journaled metadata is newer than the file metadata at the
MDS. In case of client crash during the recovery, the replay
is repeated until the client journal is fully checkpointed.

The durable storage of recent writes over the host-side
journal improves the server writeback efficiency with respect
to the utilized network and disk bandwidth. The consumed
shared resources are reduced through batching applied to
repetitive writes over the same blocks, or to small writes.
At synchronous writes, we journal the updates locally and
postpone the server writeback as permitted by the flushing pa-
rameter settings. Thus, performance improves depending on
the pressure over the shared resources and the resulting queu-
ing delays in the I/O path of the Arion networked storage.

3.3 Consistency

We strengthen the durability of memory-based caching in
clients that provide native support for file sharing. The file in-
terface differentiates the data blocks from the metadata. Thus,
our system cleanly addresses issues of vertical (client-server)
and horizontal (client-client) consistency across different
replicas [9]. In the order imposed by their arrival time and
structural dependencies, the data and metadata updates are
first journaled at the local host and subsequently persisted at
the backend servers. Additionally, the filesystem arbitrates the
conflicts among different clients through lease-based tokens.
In contrast, block-based schemes typically operate transpar-
ently to the filesystem, and as a result explicitly track the
order and relax the durability of block updates [10, 19, 26].

4 System Prototype

Next we provide background information on the Linux kernel
and Ceph, before we present the implementation of Arion.

4.1 Background

Linux The Linux kernel maintains in memory a page cache
with data and metadata blocks of recently accessed disk
files [8]. A page descriptor stores bookkeeping information
about the address space and the inode of a page. For every
cached disk block, there is a block buffer that stores the
actual data, and a buffer head structure with bookkeeping
information. The dirty pages are written to disk at timeout
expiration, under space pressure in the main memory or the
journal device, and by explicit flush request from the user.

The Linux kernel implements filesystem journaling with
a special kernel layer, the Journaling Block Device (JBD).
All the records of the low-level operations that belong to a
high-level atomic update are stored in the same transaction
of the journal. The journaling I/O of each block buffer is
managed through a separate buffer head structure in kernel.
Additionally, a journal head structure links each block
buffer to the corresponding transaction. One or more journal
descriptor blocks mark the beginning of the transaction and
store the tags of journal blocks belonging to the transaction.
A commit operation writes to the journal the dirty buffers
of a transaction followed by a commit block. A checkpoint
operation transfers the records of a transaction to the
filesystem state and deletes the transaction from the journal.

Ceph The Ceph is an object-based parallel filesystem de-
signed for scalability, performance and high availability [41].
It consists of four main components: the clients provide
a POSIX-like I/O interface; the metadata servers (MDS)
manage the namespace hierarchy; the object storage devices
(OSD) reliably store data and metadata; and the monitors
(MON) manage the server cluster map. A set of MDSs
acts as a scalable, consistent, distributed cache of the file
namespace. The metadata is persistently stored on the OSDs
as a collection of regular objects. Ceph maps each object
to a placement group consisting of multiple OSDs. Each
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Figure 3: A write request is applied to the kernel memory,
then added to the host journal and finally reaches the servers.

OSD maintains a local journal to handle object versioning
and update serialization.

The kernel-level client prepares a page in the cache upon
a write request. A partial page update fetches the original
page to the cache from the OSDs, copies on it the user
modifications and marks the inode object as dirty. The
Linux pdflush threads wake up periodically to scan the
list of dirty inodes and write their dirty pages to the OSDs.
The writeback time refers to the wake-up period, and the
expiration time refers to the time length after which a dirty
page is flushed. After the writeback completion at the OSDs,
the client transfers the dirty inode to the MDS and receives
acknowledgment when the inode update is safely stored.

4.2 Implementation

In order to improve the durability and efficiency of shared
data storage over Ceph, we increase the statefulness of
the filesystem client with a local journal (Fig. 3). Our
prototype implementation integrates the Linux JBD with the
CephFS kernel-level client and the other Ceph components.
In the ceph fs client structure of CephFS we
added two extra fields: the journal bdev referring
to a block-device control structure in the kernel, and the
s journal referring to the journal control structure of
JBD. We specify the journal device to the kernel with a new
mount option that we added in the system.

For the addition of journaling support in Ceph, we allocate
disk block buffers and buffer heads during a write with
the ceph write begin() function. We also create a
journal head to insert each block buffer to an active transac-
tion. The modified pages are written to the network servers
either periodically, or under pressure from the client memory
and journal space. After a particular page is written back or
invalidated, we also invalidate the respective journal records.

The private field of a page descriptor is used by the
local Linux filesystem to typically link a page with a block
buffer, and by Ceph to maintain the context of the supported
snapshot service. Instead, we introduce an auxiliary metadata
structure, called ceph metapage, to associate a page
with the block buffer, the snapshot context, and several inode
attributes of the file. We link the above metadata structure
to the page via the private field of the page descriptor.
Arion allocates the ceph metapage structure when it
creates the block buffers for a page, and deallocates it after
the page is written back to the servers.

In kernel, we added a new page state, called JBD state,
to indicate that a page has been marked for journaling but

not committed yet to the journal. The journaling of metadata
operations has been particularly challenging to implement in
Arion, because there are several places in the I/O path of the
original Ceph that mark the inode as dirty. Also, unlike local
filesystems, the Ceph client does not directly cache an inode
object as a raw metadata block. In order to effectively man-
age the file metadata in the journal of Arion, we substantially
expanded the JBD tag structure in the journal descriptor block
to include several inode attributes provided by the MDS.

As a result, the journal tag of Arion contains fields
to identify the number of modified data blocks, the
modification offset range, and the inode number, version,
size, permissions and latest time of different operation
types. During the crash recovery of a client, we compare
the inode metadata contained in the journal tag of a file
against the respective attributes freshly fetched from the
MDS. Subsequently, we only replay the write requests of
files whose journaled metadata has not been obsoleted in the
MDS by accesses that occurred in the time period between
the transaction commit and the ongoing recovery.

Our current prototype implementation fully supports (i) the
journaling of mutated data and metadata from the client mem-
ory to the host-side journal, and (ii) the filesystem recovery
after a client crash that leaves the host hardware operational.

5 Performance Evaluation

We implemented the Arion host-side journaling based on
Linux JBD2 and the kernel-level client of Ceph (v0.80.1).
The Arion development required 3417 new commented lines
across 15 files of Linux kernel (v3.6.6). Next we describe our
experimentation environment, and the measured performance
and resource consumption of Arion and original Ceph.

5.1 Experimentation Environment

The host machine is a rack server with 2 quad-core x86-64
2.66GHz processors, 7GB RAM, 2 bonded 1GbE links, and
two 300GB 15KRPM SAS HDDs in RAID0 configuration.
The host uses Linux kernel v3.5.5 with Xen v4.2.0, and
the guest runs Linux v3.6.6 over 2GB RAM and 2 pinned
VCPUs. Arion uses a 2GB disk partition at the host for
local journal. We leave for future work the study with other
types of durable devices (e.g., SSDs). The guest client
mounts directly the distributed filesystem, and the hypervisor
provides local access to the network and journal devices.

Each of Ceph and Arion uses 5 machines: 3 OSDs, 1 MON
and 1 MDS. The machine is a rack server running Linux ker-
nel (v3.10.41) over 2 quad-core x86-64 2.66GHz processors,
3GB RAM, 1 GbE link, and two separate 300GB 15KRPM
SAS HDDs. A stored object is replicated over 3 OSDs. Each
OSD dedicates one disk for journaling (1GB partition).

Our experiments are based on the Filebench v1.4.9.1 mac-
robenchmark (fileserver, varmail, createfiles) and the FIO
v2.1.7 microbenchmark. We clear the caches before each
experiment. We keep the on-disk write buffers disabled at
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Figure 4: Operation throughput and normalized network
load with the varmail (a,b) and createfiles (c,d) modes of
Filebench across different settings of Ceph and Arion.

the host, but activated at the servers of Ceph and Arion [32].
RAID0 with two disks does not give unfair advantage to host
journaling because the storage backend already consists of
multiple servers with two disks each. In the shown bar charts
we include 95% confidence intervals from 5 repetitions.

5.2 Measurements

In Fig. 4 we run two Filebench modes with default settings
(for 5min) to study the system performance and efficiency.
We examine Ceph with the writeback and expiration time
respectively set to the default 5s and 30s (Ceph), or both
set equal to 1s (Ceph-1), or the filesystem mounted in syn-
chronous mode (Ceph-sync). We also examine Arion with
dirty blocks periodically copied to the host-side journal every
1s, and the writeback and expiration times both set equal to
60s (Arion-60), or infinity (Arion-inf) to minimize writeback.

Varmail emulates multi-threaded I/O activity of a server
synchronously storing email messages across 50000 files.
In Fig. 4a, Arion-60 achieves operation throughput of 837.8
ops/s, or 58% higher than 531.3 ops/s of default Ceph. Arion-
60 increases the Ceph data throughput (1.9MB/s) by 58%
and reduces the Ceph latency (97.5ms) by 39%. The perfor-
mance of Ceph-1 is similar to that of Ceph. Fig. 4b illustrates
the received and transmitted OSD network traffic normalized
by the number of completed operations. Arion-60 reduces
the received network load of Ceph —normalized in KB/IO—
by 30% and the transmitted by 27%. The bottleneck resource
is the server disk I/O caused by synchronous writes.

We examine a metadata-intensive workload with file
creations in Figures 4c,d. Arion-60 is comparable to
Ceph with respect to performance and load. Ceph-sync
achieves higher performance than Arion-60 by 10%, but
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Figure 5: (a) Average latency, (b) cumulative network load at
one OSD, and disk utilization at the (c) journal and (d) filesys-
tem OSD disks across different settings of Ceph and Arion.

also increases by 10% the received and transmitted network
load. Ceph-sync improves slightly the performance because
it handles the metadata updates directly at the MDS instead
of fetching them to the client as asynchronous settings do.

We further explore the relative behavior of the two
systems using the FIO microbenchmark with Zipfian write
pattern of α=1.0001 (e.g., [17]). The benchmark writes a
total of 2GB data in a preallocated file of 2GB size with
block size in the range 2-16KB. With respect to Ceph
(0.9ms) and Ceph-1 (1.5ms) in Fig 5a, Arion-60 achieves
lower latency (0.7ms) by 22% and 53%, respectively. We
examine the total network traffic received over time at
one OSD of each system in Fig 5b. We notice that Ceph
terminates at instance 233s with 2.1GB total received traffic.
In contrast, Arion-60 ends the experiment at 172s (26%
shorter) with received volume 1.2GB (42% lower).

In Figures 5c,d we examine the bandwidth utilization of
the journal and filesystem storage device at one of the OSDs.
We show Ceph-1 that keeps the durability characteristics simi-
lar to those of Arion. The depicted Arion-60 OSD utilizes the
journal and filesystem device at 15.0% and 16.4% on average;
the respective utilizations of Ceph-1 are 24.4% and 88.4%.
We conclude that Arion-60 reduces the filesystem device uti-
lization by 82% with respect to Ceph-1 in the examined case.

Overall, Arion-60 improves the performance of Ceph and
Ceph-1 by up to 58%, but also reduces the server network
and disk load by up to 42% and 82%, respectively. We exper-
imentally confirmed the improved comparative performance
and efficiency of Arion in several other write-intensive work-
loads (e.g., OLTP, key-value store). We also measured the
recovery time of the Arion client in the range 77.4ms-2.622s,
depending on the load of client write activity before the crash.
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6 Related Work

Filesystems Andrew pioneered client disk-based caching but
lacked the explicit separation in data and metadata manage-
ment of object-based storage [33, 41]. Coda exploited data
caching strictly for availability during disconnected opera-
tion [18]. During a communication failure, a Coda client
logged locally the mutating system calls. At network recon-
nection, each server received and replayed all the logged
operations together as one transaction. On the contrary, Ar-
ion continuously logs mutations during normal operation and
writes them back to efficiently maintain consistency.

Database consistency can be preserved through transaction
correctness [5]. SiloR is a multicore database system that
uses logging and checkpointing for fast recovery to a
transactionally-consistent state without replication [42]. The
Sprite distributed filesystem disabled client caching of files
concurrently updated by different clients [27]. Echo intro-
duced ordered write-behind to delay the automatic writing of
cached blocks to server disks [23]. NFSv4 delegates request
handling to the client for reduced latency and network
traffic [29]. Unlike Arion, existing filesystems typically
limit client caching to volatile memory without support for
durable host-side journaling during normal operation.

Virtualization and cloud VMFS stores disk volumes
over shared cluster-based block storage [38]. Capo uses the
local disks of the hosts for multicast-based preload and block-
based write-through or writeback caching [34]. Ventana com-
bines file-based sharing with the versioning, migration and
access control of virtual disks [30]. A client-side manager of-
fers disk-based caching but relies on NFSv3 at the host to con-
nect the virtual machines with object-based storage servers.
Therefore, existing storage systems only support block-level
caching, or inherit the limited scalability of NFSv3.

CacheFS supports local disk-based caching but is practi-
cally limited to read-only filesystems [15]. BlueSky provides
on-site NFS-based proxy service of remote cloud storage
through local disk caching of journal and log segments [40].
SCFS provides FUSE-based caching of entire files at the
client memory and disk without the proxy bottleneck [6].
However, it lacks the journaling integration with a scalable
distributed filesystem of Arion for flexible file sharing.

Flash memory Non-volatile memory can be used at the
client and server of a distributed filesystem for I/O effi-
ciency [3]. Writeback caching can improve performance,
reduce server load, and eliminate cache warmup on restart [2].
Optimistic crash consistency decouples ordering from dura-
bility for efficient filesystem consistency [10]. In-place com-
mit over non-volatile memory unifies the buffer cache with
journaling [21]. Offering disk-based caching through journal-
ing is an extension of Arion that we plan for future work.

Mercury pointed out the zero recovery point objective
(RPO), i.e., no recently-written data lost from a crash. It
uses flash memory in the block I/O virtualization stack
of the hypervisor to provide write-through caching [9].

Non-zero RPO can be applied for improved performance
via block-level writeback caching at the host. Update order
is preserved by explicit tracking of the dependency between
I/O requests or transaction grouping of modified blocks [19].
Due to concerns about the consistency and durability of these
ordering schemes, a recent block-level solution satisfies
asynchronously but explicitly the ordering constraints of
application-specified write barriers [31]. Nevertheless,
host-side block-based caching lacks native support for
writable file sharing within or across hosts [9, 19, 31, 2, 16].

7 Discussion

Persistent host-side caching primarily targets the improved
performance and efficiency of networked storage. Typically,
it uses a block-based interface that inherently lacks both the
support for data sharing across different hosts and the ability
for interposition in the file-based protocol of a distributed
filesystem. It also makes the consistency preservation of
network storage a challenging problem because the semantic
gap between the file and block interfaces complicates the
atomic grouping of dirty blocks by I/O request, and their
ordering according to filesystem-imposed dependencies.
Finally, the persistence of mapping metadata in block-based
caching and the repetitive translation of I/O requests across
different storage layers can introduce considerable overheads
in networked storage I/O [2, 13].

The original design of Ceph cannot recover any writes that
returned after they were only placed at the volatile memory
of the client before a crash. Therefore, the Arion architecture
is innovative because it adds durability into the client
memory cache through journal-based recovery, conditionally
propagates the updates to the servers after client reconnection,
and also permits the clients to scalably communicate directly
with the object servers of the storage backend. Overall,
assuming host machines with sufficiently reliable local
storage, our approach overcomes several sharing, scalability,
and consistency limitations of related existing solutions.

8 Conclusions

For enhanced end-to-end durability of shared storage in the
datacenter, we integrate the client of a distributed filesystem
with a host-based journal. At the host, we provide local
durable storage to dirty data and metadata until they are
written to the network servers. We implemented a prototype
of the proposed Arion design over the Ceph production
distributed filesystem. In a virtualization environment,
we experimentally demonstrate promising efficiency and
performance results for specific durability levels configured
through the frequency of copying dirty blocks to the host-side
journal. In our future work we plan to experiment with dif-
ferent types of storage devices; explore interesting tradeoffs
among performance, durability and efficiency for demanding
applications; and extend the host-based journaling to support
caching of blocks evicted from memory.
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Abstract

While future terabit networks hold the promise of signifi-
cantly improving big-data motion among geographically
distributed data centers, significant challenges must be
overcome even on today’s 100 gigabit networks to real-
ize end-to-end performance. Multiple bottlenecks exist
along the end-to-end path from source to sink. Data stor-
age infrastructure at both the source and sink and its in-
terplay with the wide-area network are increasingly the
bottleneck to achieving high performance. In this paper,
we identify the issues that lead to congestion on the path
of an end-to-end data transfer in the terabit network en-
vironment, and we present a new bulk data movement
framework called LADS for terabit networks. LADS ex-
ploits the underlying storage layout at each endpoint to
maximize throughput without negatively impacting the
performance of shared storage resources for other users.
LADS also uses the Common Communication Interface
(CCI) in lieu of the sockets interface to use zero-copy,
OS-bypass hardware when available. It can further im-
prove data transfer performance under congestion on the
end systems using buffering at the source using flash
storage. With our evaluations, we show that LADS can
avoid congested storage elements within the shared stor-
age resource, improving I/O bandwidth, and data transfer
rates across the high speed networks.

1 Introduction
While “Big Data” is now in vogue, many DOE science
facilities have produced a vast amount of experimental
and simulation data for many years. Several U.S. De-
partment of Energy (DOE) leadership-computing facili-
ties, such as the Oak Ridge Leadership Computing Fa-
cility (OLCF) [23], the Argonne Leadership Computing
Facility (ALCF) [1], and the National Energy Research
Scientific Computing (NERSC) [21] generate hundreds
of petabytes per year of simulation data and are projected
to generate in excess of 1 exabyte per year by 2018 [31].

The Big Data and Scientific Discovery report from the
DOE, Office of Science, Office of Advanced Scientific
Computing Research (ASCR) [5], predicts one of scien-
tific data challenges is the worsening input/output (I/O)
bottleneck and the high data movement cost.

To accommodate growing volumes of data, organi-
zations will continue to deploy larger, well provisioned
storage infrastructures. These data sets, however, do not
exist in isolation. For example, scientists and their col-
laborators who use the DOE’s computational facilities
typically have access to additional resources at multiple
facilities and/or universities. They use these resources
to analyze data generated from experimental facilities or
simulation on supercomputers and to validate their re-
sults, both of which requires moving the data between
geographically dispersed organizations. Some examples
of large collaborations include: OLCF petascale sim-
ulation needs nuclear interaction datasets processed at
NERSC; the ALCF runs a climate simulation and vali-
dates the simulation results with climate observation data
sets at ORNL data centers.

In order to support the increased growth of data and
the desire to move it between organizations, network
operators are increasing the capabilities of the network.
DOE’s Energy Sciences Network (ESnet) [32], for ex-
ample, has upgraded its network to 100 Gb/s between
many DOE facilities, and future deployments will most
likely support 400 Gb/s followed by 1 Tb/s throughput.
However, these network improvements only contribute to
improving the network data transfer rate, not end-to-end
data transfer rate from source storage system to sink stor-
age system. The data transfer nodes (DTN) connected
to these storage systems and the wide-area network are
the focal point for the impedance match between the
faster networks and the relatively slower storage sys-
tems. In order to improve the scalability, parallel file sys-
tems (PFS) use separate servers to service metadata and
I/O operations in parallel. To improve I/O throughput,
the PFS use ever higher counts of I/O servers connected
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more disks. DOE sites have widely adopted various PFS
to support both high performance I/O and large data sets.
Typically, these large scale storage systems use tens to
hundreds of I/O servers, each with tens to hundreds of
disks, to improve scalability of performance and capac-
ity.

Even as networks reach terabit speeds and PFS grow
to exabytes, the storage-to-network mismatch will likely
continue to be a major challenge. More importantly, such
storage systems are shared resources servicing multiple
clients including large computational systems. As con-
tention for these large resources grows, there can be se-
rious Quality-of-Service (QoS) differences between the
observed I/O performance by users [11, 38]. Moreover,
disk services can degrade while disks in the redundant
array of independent disks (RAID) are rebuilding due to
failed disks [37, 13]. Also, I/O load imbalance is a seri-
ous problem in parallel storage systems [18, 20]. The
results showed that a few controllers are highly over-
loaded while most are not. These observations strongly
motivate us to develop a mechanism to avoid temporarily
congested servers during data transfers.

We investigate the issues related to designing a data
transfer protocol using Common Communication Inter-
face (CCI) [3, 33], that can fully exploit zero-copy, oper-
ating system (OS) bypass hardware when available and
fall back to sockets when it is not. In particular, we fo-
cus on optimizing an end-to-end data transfer, and inves-
tigate the interaction between applications, network pro-
tocols, and storage systems at both source and sink hosts.
We address various design issues for implementing data
transfer protocols such as buffer and queue management,
synchronization between worker threads, parallelization
of remote memory access (RMA) transfers, and I/O op-
timizations on storage systems. With these design con-
siderations, we develop a Layout-Aware Data Scheduler
(LADS).

In this paper, we present LADS, a bulk data movement
framework for use between PFS which uses the CCI in-
terface for communication. Our primary contribution is
that LADS uses the physical view of files, instead of a log-
ical view. Traditional file transfer tools employ a logical
view of files, regardless of how the underlying objects are
distributed within the PFS. LADS, on the other hand, un-
derstands the physical layout of files in which (i) files are
composed of data objects, (ii) the set of storage targets
that hold the objects, and (iii) the topology of the storage
servers and targets.1 LADS aligns all reads and writes
to the underlying object size within the PFS. Moreover,
LADS allows out-of-order object transfers.

Our focus on the objects, rather than on the files, al-

1We use Lustre terminology for object storage servers (OSS) and
targets (OST). An OST manages a single device. A single Lustre OSS
manages one or more OSTs.

lows us to implement layout-aware I/O scheduling algo-
rithms. With this, we can minimize the stalled I/O times
due to congested storage targets by avoiding the con-
gested servers and focusing on idle servers. All other ex-
isting data transfer tools [12, 2, 29, 27, 30] implicitly syn-
chronize per file and focus exclusively on the servers that
store that one file whether they are busy or not. We also
propose a congestion-aware I/O scheduling algorithm,
which can increase the data processing rate per thread,
leading to a higher data transfer rate. We also implement
and evaluate the ideas of hierarchical data transfer us-
ing non-volatile memory (NVM) devices. Especially, in
an environment where I/O loads on storage dynamically
vary, there can be a slow storage target due to congestion.

We conduct a comprehensive evaluation for our pro-
posed ideas using a file size distribution based on a snap-
shot of one of the file systems of Spider (the previous
file system) at ORNL. We compare the performance of
our framework with a widely used data transfer program,
bbcp [12]. Specifically, in our evaluation with the real
file distribution based workload, we observe that our
framework yields a 4-5 times higher data transfer rate
than bbcp when using eight threads on a node. Also,
we find that with a small amount of SSD, LADS can im-
prove further the data transfer rate by 37% over a base-
line without SSD buffering and far more cost-effectively
than provisioning additional DRAM.

2 Background
We first introduce our target environment for DOE data
movement frameworks - the data life cycle, network en-
vironment, and data storage infrastructure. Next, we de-
fine I/O optimization problems at a multi-level hierarchy
in the PFS.

2.1 Target Environment
DOE has large HPC systems (e.g. OLCF’s Titan and
ALCF’s Mira) and scientific instruments (e.g. ORNL’s
SNS and ANL’s APS) which generate large, bulk, syn-
chronous I/O. The HPC systems run simulations that
have intense computational phases, followed by inter-
process communication, and periodically by I/O to
checkpoint state or save an output file. The simulation’s
startup is dominated by a read phase to retrieve the in-
put files as well as the application binary and libraries.
The instruments, on the other hand, do not have a read
phase and strictly have write workloads that capture mea-
surements. These measurements are triggered by a peri-
odic event such as an accelerated particle hitting a tar-
get which generates various energies and sub-particles.
The instrument’s detectors will capture these events and
it must move the data off the device before the next event.

In order to store this data, these systems typically have
large PFS connected by a high-performance network.
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Figure 1: OLCF center-wide PFS and clients

Some sites, such as OLCF, have a center-wide file system
accessible by multiple HPC systems as well as by analy-
sis and visualization clusters. In this case, the HPC sys-
tems are the primary users and the clusters are secondary
users. Given the cost to run these larger resources, one
would not want to negatively impact the HPC system’s
performance due to I/O by the secondary users.

Lastly, most of the scientists using these systems are
not located within the facility. Most are from other DOE
sites, universities, as well as some commercial entities.
They eventually want to move the data back to their insti-
tutions in order to further analyze the data. Each site has
several data transfer nodes (DTN) that mount the PFS
and are connected to DOE’s Energy Sciences Network
(ESnet). ESnet currently provides 100 Gb/s connectivity
to over 40 DOE institutions as well as peering with In-
ternet2 and commercial backbone providers. The DTNs
currently have 10 Gb/s NICs but will migrate to 40 Gb/s
NICs in the near future. As with the analysis and visu-
alization clusters, use of the DTNs should not negatively
impact the I/O of the large HPC systems.

2.2 Spider Storage Systems for Titan
Spider II is OLCF’s second generation, center-wide, Lus-
tre system. Its primary client is Titan [25, 19], currently
ranked second in the Top500. Titan has 18,688 compute
nodes, which mount Spider directly. Titan’s I/O traf-
fic passes through 432 I/O nodes, which act as Lustre
Networking (LNET) routers between Titan’s Cray Gem-
ini network and OLCF’s InfiniBandTM(IB) Scalable I/O
Network (SION). In addition to Titan, Spider is shared
with Eos, a 744 node Cray XC30 system, analysis and
visualization clusters, and DTNs. Figure 1 provides an
overview of Spider. Currently the file system is acces-
sible via two name-spaces, atlas1 and atlas2, for load-
balancing and capacity management purposes. Each
namespace has 144 OSSes, which manage seven OSTs

each, for a total of 1,008 OSTs per namespace. Each
OST represents a RAID-6 set of ten (8+2) disks.

2.3 Problem Definition: I/O Optimization
I/O Contention and Mitigation: A storage server ex-
periences transient congestion when competing I/O re-
quests exceed the capabilities of that server. During these
periods, the time to service each new request increases.
This is a common occurrence within a PFS when either
a large application enters its I/O phase (e.g. writing a
checkpoint, reading shared libraries on startup) or multi-
ple applications are accessing files co-located on a sub-
set of OSTs. Disk rebuild processes of a RAID array
can also delay I/O services. OS caching and application-
level buffering can sometimes mask the congestion for
many applications, but data movement tools do not bene-
fit from these techniques. If the congestion occurs on the
source side of the transfer, the source’s network buffers
will drain and eventually stall. On the other hand, con-
gestion at the sink will cause the buffers of both the
sink and then the source to fill, eventually stalling the
I/O threads at the source. We refer to threads stalled
on I/O accesses to congested OSTs as stalled I/Os. We
try to lower the storage occupancy rate of stalled I/Os
in order to minimize the impact of storage congestion
on the overall I/O performance using three techniques:
Layout-aware I/O Scheduling, OST congestion-aware
I/O scheduling, and object caching on SSDs.

Two-level bottlenecks: Figure 1 illustrates the poten-
tial places for I/O bottlenecks when accessing OSTs via
OSSes in Lustre file systems. For OSSm, if the arrival
rate (λOSSm) is greater than its service rate (µOSSm), the
server will start to overflow, becoming the bottleneck and
its incoming service will be delayed. This can happen
if the number of OSTs connected to an OSS is greater
than what the network connection to the OSS can han-
dle. To avoid this case, OLCF provisions the number of
OSTs per OSS such that µOSSm > ∑k

j=1 µOSSn+ j. Even
if λOSSm is smaller than µOSSm, OSTs can become the
bottleneck. For example, if λOST j is greater than µOST j,
OSTj becomes the bottleneck. Therefore, LADS has to
avoid both server and target bottlenecks in a way that it
does not assign I/O threads to the overloaded server or
target.

Lustre Configuration Impacts I/O Contention: In
Lustre, a file’s data is stored in a set of objects. The un-
derlying transfers are 1 MB aligned on 1 MB boundaries.
If the stripe count is four, then the first object holds off-
sets 0, 4 MB, 8 MB, etc. Each object is stored on a sep-
arate OST. The mapping of the OSTs to the OSSes can
impact how a file’s object are stored. Figure 2 shows how
the OST-to-OSS mapping can physically impact a file’s
object placement. The default mapping is to assign OSTs
sequentially to OSSes. For a file with a stripe count of
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Figure 2: File striping in Lustre.

three and four OSTs per OSS, the objects will be stored
on three OSTs connected to one OSS. OLCF, on the other
hand, uses a mapping such that OSTs are assigned round-
robin over all the OSSes. In this example, a file with a
stripe count of three is assigned to three OSTs and each
OST is connected to a separate OSS.

Depending on the choices of storage and network-
ing hardware, the OSS or the OSTs may be the bottle-
neck. To improve the I/O throughput by minimizing con-
tention, the higher layers need this information.

Logical versus Physical File View: Traditional file
transfer tools [12, 2] rely on the logical view of files
(called File-based approach), which ignores the under-
lying file system architecture. An I/O thread can be as-
signed to a complete file, and it should work on the file
until the entire file is read or written. If more than one
thread is used, these threads might compete for the same
OSS or OST, causing server or disk contention respec-
tively. Such contention can result in the slow-down of
applications.

To demonstrate how the File-based approach, which is
unaware of the underlying file system layout, contributes
to the problem of I/O contention in the PFS, we use a
simple example in Figure 3, in which we assume each
OST can service an object at a time within a fixed service
time. In the figure, Filea is striped over OST2 and OST3
and Fileb is striped over OST1 and OST3. In Figure 3(a),
Thread 1 (T1) and T2 attempt to read Filea and Fileb at
the same time respectively. T1 and T2 read different files,
however, T1 and T2 can interfere each other on accessing
the same OST. Based on a dilation factor model [17],
as T1 and T2 complete OST3 , T1 and T2 can slow down
by 25% and 12.5% respectively. In Figure 3(a), all four
threads access different logical regions of the same Fileb,
however, as T1 and T2 complete for OST1, and T3 and
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Figure 3: Illustration of slow-down of each job(T) due to OST
contention when accessing the same resource at the same time.

T4 complete for OST3. Thus, each thread slows down
by 50%. The results of this example indicates that OST
contention may increase due the lack of understanding of
the physical layout of the file’s objects.

In contrast, LADS, views the entire workload from a
physical point of view based on the underlying file sys-
tem architecture. LADS consider the entire workload of
O objects, where O is all of the objects in the N total
files, and each object represents one transfer MTU of
data. It can also exploit the underlying storage architec-
ture, and can use the file layout information for schedul-
ing accesses of OSTs. Thus it takes into account the S
servers and T targets that hold the O objects. We then
load-balance based on the physical distribution of the ob-
jects. A thread can be assigned to an object of any file on
any OST without requiring that all objects of a particular
file be transferred before objects of another file.

3 Design of LADS
LADS is motivated to answer a simple question: how can
we exploit the underlying storage architecture to mini-
mize I/O contention at the data source and sink? In this
section, we describe our design rational behind the LADS
implementation, system architecture, and several key de-
sign techniques using a physical view of files on the un-
derlying file system architecture.

We have implemented a data transfer framework with
the following main design goals – (i) improved par-
allelism, (ii) network portability, and (iii) congestion-
aware scheduling. Our design tries to maximize paral-
lelism by overlapping as many operations as possible, us-
ing use a combined threading and an event-driven model.

3.1 LADS Overview
System Architecture: Figure 4 provides an overview
of our design and implementation for I/O sourcing and
sinking for a PFS. LADS is composed of the follwo-
ing threads: The Master thread maintains transfer state,
while I/O threads read and write objects of files from and
to the PFS. The Comm thread is in charge of all data
transfers between source and sink. In our implemen-
tation, there is one Master thread, a configurable num-
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ber of I/O threads, and one Comm thread. Because the
I/O threads use blocking calls, we allow more threads
than cores (i.e. over-subscription). Since we can over-
subscribe the cores, the Master and I/O threads block
when idle or waiting for a resource. The Comm thread
never blocks and always tries to progress communica-
tion. The Comm thread generates most of the events that
drive the application. If the Comm thread needs a re-
source (e.g. a buffer) which it cannot get immediately, it
will queue the request on the Master’s queue and wake
the Master.

Several I/O optimization techniques are implemented
in LADS. In the figure, the layout-aware technique can
optimize the unit size of the data accessed by the I/O
threads to object size in the underlying file systems, and
improved the stalled I/O time when the server is con-
gested. The OST congestion-aware algorithm can avoid
the congested servers. NVM can be used as an extended
memory region, when the RMA buffer full using the ob-
ject caching technique. The Comm threads at source and
sink, using CCI, pin memory regions for RMA transfers
between the Comm threads at source and sink. At the
source, if the RMA buffer is full, the Master will notify
I/O threads to use the NVM buffer instead of directly
copying objects from the PFS into the RMA buffer, thus,
it allows pre-loading on the extended memory regions
on the NVM. At sink, if the RMA buffer is full, likewise,
the extended NVM regions can be used as an interme-
diate buffer before the PFS to avoid stalling the network
transfers.

3.2 Data Structure Overview
We organized the various data structures to minimize
false sharing by the various threads. The global state in-
cludes a lock which is used to synchronize the threads at
startup and shutdown as well as to manage the number
of files opened and completed. Other locks are resource
specific. There are two wait queues, one for the Master
and the other for the I/O threads. When using the SSD to
provide additional buffering, it has a wait queue as well.

The Master and I/O thread structures also have a waiter
structure that includes their condition variable and an en-
try for the wait queue. The Master and Comm threads
have a work queue implemented using a doubly-linked
list. The I/O threads will pull requests off of the OST
work queues (described below).

We manage the open files using the GNU tree search
interface, which is implemented as a red-black tree. The
tree has its own mutex and counter. We manage the RMA
and SSD buffers using bitmaps that indicate which off-
sets are available (the offset is the index in the bitmap
multiplied by the object size), an array of contexts (used
to store block requests using that buffer), and a mu-
tex. Lastly, because our implementation currently targets
Lustre, we have an array of OST pointers. Each OST has
a work queue, mutex, queue count, and busy flag. The
number of OST queues is determined by the number of
OSTs in the PFS. The design can easily be extended to
other PFS.

To avoid threads spinning on mutexes as well as “thun-
dering herds” [14] when trying to acquire a resource, we
use per-resource wait queues consisting of a linked list,
a mutex, and a per-thread condition variable. If the re-
source is not available, the waiter will acquire the lock,
enqueue itself on the resource’s wait list, and then block
on its own condition variable. When another user wants
to release the resource, it acquires the lock, dequeues
the first waiter, releases the lock, and signals the waiter’s
condition variable. This ensures fairness and avoids spin-
ning and thundering herds.

3.3 Object Transfer Protocol
For transferring files, first the source and sink processes
(hereafter simply source and sink) need to initialize some
state, spawn threads, and exchange some information.
The initial state includes a global lock used to synchro-
nize at startup, the various wait queues, the file tree to
manage open files, the OST work queues, and the struc-
ture for managing access to the RMA buffer. The Master
thread initializes its work queue, its wait queue, and the
wait queue for I/O threads.

The Comm thread opens a CCI endpoint (send and
receive queues, completion queue), allocates its RMA
buffer and registers it with CCI, and opens a connec-
tion to the remote peer. The source Comm thread sends
its maximum object size, number of objects in the RMA
buffer, and the memory handle for the RMA buffer. The
sink Comm thread accepts the connection request, which
triggers the CCI connect event on the source. The I/O
threads simply wait for the other threads.

After the CCI initialization step, data transfer will fol-
low these steps at source and sink. The detail figures of
thread communication between source and sink hosts can
be found in our technical report [16].
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Step 1. For each file, (i) the source’s master will open
the file, determine the file’s length and layout (i.e. the
size of the stored object and on which OSTs they are
located), and generate a NEW FILE request and enqueue
that request on the Comm thread’s work queue. (ii) The
Comm thread generates NEW BLOCK requests for each
stored object and enqueue that request on the appropriate
OSTs’ work queues. (iii) The Comm thread will marshal
the NEW FILE request and send it to the sink.

Step 2. At sink, the Comm thread will receive the
NEW FILE request and enqueue it on the Master’s work
queue and wake it up. The Master will open the file, add
the file descriptor to the request, change the request type
to FILE ID and queue the request on the Comm’s work
queue. The Comm thread will dequeue it and send it to
the source.

Step 3. At source, when the Comm thread receives
the FILE ID message, it will wake up N I/O threads,
where N is the number of OSTs over which the file is
striped. An I/O thread first reserves a buffer registered
with CCI for RMA. It then determines which OST queue
it should access and then dequeues the first NEW BLOCK

request. It uses pread() to read the data into the RMA
buffer. When the read completes, it enqueues the request
on the Comm thread’s work queue. The Comm thread
marshals the request and sends it to the sink. Note, the
source’s Comm thread’s work queue will have intermin-
gled NEW FILE and NEW BLOCK requests thus overlap-
ping file id exchange and block requests.

Step 4. At sink, the Comm thread receives the request
and attempts to reserve a RMA buffer. If successful, it
initiates a RMA Read of the data. If not, it enqueues
the request on the Master’s work queue and wakes the
Master. The Master will sleep on the RMA buffer’s wait
queue until a buffer is released. It then will queue the
request on the Comm’s queue, which will then issue the
RMA Read.

Step 5. At sink, when the RMA Read completes, it
sends a BLOCK DONE message back to the source. The
sink’s Comm thread determines the appropriate OST by
the block’s file offset and queues it on the OST’s work
queue. It then wakes an I/O thread. The I/O thread looks
for the next OST to service, dequeues a request, calls
pwrite() to write the data to disk. When the write com-
pletes, it releases the RMA buffer so the Comm thread
can initiate another RMA Read.

Step 6. When the source’s Comm thread receives the
BLOCK DONE message, it releases the RMA buffer and
wakes an I/O thread. This pattern continues until all of
the file’s blocks have been transferred. When all blocks
have been written, the source sends a FILE DONE mes-
sage and closes the file. When the sink receives that mes-
sage, it too closes the file.

3.4 Scheduling
Layout-aware Scheduling: In a PFS, the file is stored as
a collection of objects and stored across multiple servers
to improve overall I/O throughput. Best practices for ac-
cessing a PFS is for the application to issue large requests
in order to reap the benefits of parallel accesses across
many servers. A single thread accessing a file will re-
quest N objects and can read M objects (assuming M <
N, and the file is striped over M servers) in parallel at
once. If one of the servers is congested, however, the
request duration is determined by the slowest server. So
the throughput of the request for N objects is determined
by the throughput of objects from the congested server.
In contract, in our approach, instead of a single thread
requesting N objects, we have N threads request one ob-
ject each from separate servers, because we align all I/O
accesses to object boundaries. If one of the requests is
delayed by a congested server, the N-1 threads are free
to issue new requests to other servers. By the time that
the request to the slow server completes, we may be able
to retrieve more than N objects.

While the aligned-access technique aims to reduce the
I/O stall times and improve overall throughput, it does
not specify to which servers to send requests. Most, if
not all, data movement tools attempt to move one file at
a time (e.g. bbcp, XDD) or a small subset (e.g. GridFTP)
at a time. In a PFS, however, a single file is striped over
N servers. In the case of the Atlas file system at ORNL,
the default is four servers. Although the file system may
have hundreds of storage servers, most data movement
tools will access a very small subset of them at a time.
If one of those servers is congested, overall performance
will suffer during the congested period.

Congestion-aware Scheduling: For congestion-
aware I/O scheduling, we attempt to avoid intermittently
congested storage servers. Given a set of files, we deter-
mine where all of the objects reside in the case of reading
at the source or determine which servers to stripe the ob-
jects over when writing at the sink. We then schedule
the accesses based the location of the objects, not based
on the file. We enqueue a request for a specific object
on a particular OST’s queue. The I/O threads then se-
lect a queue in a round-robin fashion and dequeue the
first request. If another thread is accessing an OST, the
other threads skip that queue and move on to the next.
If one OST is congested, a thread may stall, but the
other threads are free to move on to other, non-congested
servers. This is important in a HPC facility like ORNL.
The PFS’s primary user is the HPC system. We do not
want to tune the data movement tools such that they re-
duce the performance of the HPC system, which is a
very expensive resource. Our goal is to maximize per-
formance while using the lightest touch on the PFS.

The basic per-OST queues and simple round-robin
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scheduling over all the OSTs is able to improve overall
I/O performance. We then extend layout-aware schedul-
ing to be congestion-aware by implementing a heuris-
tic algorithm to detect and avoid the congested OSTs.
The algorithm can make proactive decisions for selecting
storage targets that next I/O threads will work on. The al-
gorithm uses a threshold-based throttling mechanism to
further lessen our impact on the HPC system’s use of
the PFS. When reading at the source, for example, an
I/O thread reads a object from its appropriate server and
records the read time, and computes an average of multi-
ple object read times during a pre-set time window time
(W ). If the average read time during W is greater than
the pre-set threshold value (T ), then it marks the server
as congested. The algorithm tells the threads that they
should skip congested servers M times. Consequently,
the I/O threads avoid the congested servers for a short
amount of time, leading to the reduced I/O stall times.

3.5 Object Caching on SSDs
In the case when the sink is experiencing wide-spread
congestion (i.e. every I/O thread is accessing a con-
gested server), newly arriving objects will quickly fill
the RMA buffer. The sink will then stall the pipeline of
RMA Read requests from the source causing the source’s
RMA buffer to fill. Once full, the source’s I/O threads
will stall because they have no buffers in which to read.
To mitigate this, we investigate using a fast NVM de-
vice to extend the buffer space available for reading at
the source. Several efforts have introduced new inter-
faces to efficiently use NVM as an extended memory re-
gion [4, 35, 9, 24]. In this work, we specifically use the
NVMalloc library [35] to build a NVM based, intermedi-
ate buffer pool at the source using fast PCIe-based COTS
SSDs, where we create a log-file memory-mapped using
a mmap() system call. The key use of NVM buffer pool
is to continue reading objects when the RMA buffer is
full at source.

In our implementation, when servicing a new request,
an I/O thread tries to reserve a RMA buffer. If one is not
available, it attempts to reserve one in the SSD buffer.
If successful, it reads into the SSD buffer, enqueues the
request on a SSD queue, and wakes the SSD thread. The
SSD thread then attempts to acquire a RMA buffer. If
not available, it sleeps waiting for a RMA buffer to be
released. When a buffer is released, it wakes, reserves
the RMA buffer, copies the data to the RMA buffer, and
enqueues the request on the Comm thread’s work queue.
Lastly, the Comm thread marshals the NEW BLOCK and
sends it off to the sink.

We could apply the same idea of source-side SSD
buffering algorithm for sink-side SSD buffering, how-
ever, as we will discuss in the evaluation section in detail,
sink-side buffering does little to improve data transfer

rates, when buffered I/Os are allowed. Typically writes
are buffered I/Os. The key for the SSD buffering is to
decide when to use the SSD buffer or not. When using
buffered I/Os at sink, our algorithm can not account for
the effect of OS’s buffer cache and fails to correctly de-
tect congested servers. Using direct I/O for the writes
is possible and would allow our algorithm to detect con-
gested servers, but direct I/O performs much worse and
we chose not to use it for sink-side SSD buffering.

The copy from SSD buffer to RMA buffer is needed
when using hardware that supports zero-copy RMA be-
cause the memory must be pinned and registered with
the hardware and we cannot register the mapped SSD
file. Our design does this even when the hardware does
not provide RMA support (i.e. when using sockets un-
derneath CCI). We could detect this scenario and avoid
the copy by sending directly from the SSD buffer, but we
do not implement at this time. Also, should future inter-
connects support RMA from NVM, we could avoid the
copy as well.

4 Evaluation
For the evaluation of LADS, we use two experimental en-
vironments, without and with server congestion, and our
production environment. First, we show the results of
LADS without congested servers. We explore the effec-
tiveness of object scheduling in LADS versus file based
scheduling (e.g., bbcp). We then explore the perfor-
mance of LADS by varying RMA buffer size and scaling
performance. Second, we study the impact of server con-
gestion on LADS and we propose two mitigating strate-
gies, congestion-aware I/O scheduling and SSD buffer-
ing. Lastly, we show the DTN to DTN evaluation with
ORNL production systems.

4.1 Experimental Systems
Implementation: LADS has been implemented using 4
K lines of C code using Pthreads. We used CCI, which is
an open-source network abstraction layer, downloadable
from CCI-Forum [6]. The communication model fol-
lows a client-server model. On the server side, the LADS
server daemon has to be run before the LADS client starts
to transfer data.

Test-bed: In this setup, we used a private testbed
with two nodes (source and sink) connected by Infini-
Band (IB) QDR (40 Gb/s). The nodes used the IB net-
work to communicate with each other and the disk ar-
rays. We used two Intel R© Xeon R© CPU E5-2609 @ 2.40
GHz servers with eight cores, 256 GB DRAM, and two
node-local Fusion-io Duo SSDs [10] for data transfer
nodes (source and sink hosts) running with Linux kernel
2.6.32-358.23.2. Both the source and sink nodes have
separate Lustre file systems with one OSS server, one
MDS server, and 32 OSTs, mounted over 32 SAS 10K
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RPM 1TB drives each. For each file systems, we created
32 logical volume drives on top of the drives to have each
disk to become an OST.

To fairly evaluate our implementation framework,
we ensured that storage server bandwidth is not over-
provisioned with respect to network bandwidth between
those source and sink servers (i.e., the network would
not be the bottleneck). Figure 5 shows the results on
comparing network and storage I/O bandwidths in our
test-bed. For storage bandwidth, we ran block level I/O
benchmarks [22] on a host to 32 disk volumes in paral-
lel with 1 MB sequential I/O streams on each benchmark
with the highest queue depth of 16. The IB bandwidth
increases as the message size increases, and it reaches
about 3.2 GB/s, whereas the I/O bandwidth is measured
around 2.3 GB/s at the most. This testbed allowed us to
replicate the temporal congestion of the disks to provide
fair comparisons between LADS and bbcp.

Production system: We have also tested LADS
and bbcp between our production Data Transfer Nodes
(DTNs), connected to two separate Lustre file systems at
ORNL. Each DTN is connected to the OLCF backbone
network via a QDR or FDR IB connection to the OLCF’s
Scalable I/O Network where Atlas’ Lustre file systems
are mounted (Refer to Figure 1). In our evaluation, we
measured the data transfer rate from atlas1 to atlas2 via
DTN nodes with LADS and bbcp. In order to minimize
the OS page-cache effect, we cleared out OS page cache
before each measurement at both test-bed and produc-
tion system.

Workloads: For a realistic performance comparison,
we used a file system snapshot taken for a widow3 parti-
tion in the Spider-I file systems hosted by ORNL in 2013
to determine file set sizes. Figure 6 plots a file size distri-
bution in terms of the number of files and the aggregate
size of files. We can observe that 90.35% of the files are
less than 4 MB and 86.76% are less than 1 MB. Less than
10% of the files are greater than 4 MB. On the other hand,
the larger files occupy most of the file system space. For
the purpose of our evaluation, we used two representa-
tive file sizes to have two file groups; one for small files
with 10,000 1MB files, and the other for big files with
100 1GB files.
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Figure 6: File size distribution.

4.2 Scheduling Objects versus Files in an
Uncongested Environment

In this section, we show the effectiveness of object
scheduling in LADS versus file-based scheduling used by
bbcp in a controlled, uncongested environment. This sec-
tion focuses only on the difference between object versus
file scheduling; Sections 4.3 and 4.4 will examine two
mitigation strategies for congested environments.

Within our controlled test-bed environment, we evalu-
ate the performance of LADS for big and small data sets,
and compare it against bbcp. In both sets, the stripe count
is one (i.e. each file is stored in 1 MB objects on a sin-
gle OST). We note that our tests with a higher file stripe
count are shown in the results of production system in
Section 4.5.

Figures 7 and 8 show the results of LADS and bbcp
for these workloads. We had multiple runs for each test,
however the variability was very small. Both experi-
ments were tested while increasing the number of threads
on each application. In LADS, we can vary the number
of I/O threads, which can maximize CPU utilization on
the data transfer node, but use a single Comm thread.
On these hosts, LADS uses CCI’s Verbs transport, which
natively uses the underlying InfiniBand interconnect. In
bbcp, we can only tune the number of TCP/IP streams for
a performance improvement (bbcp always uses a single
I/O thread). The streams ran over the same InfiniBand in-
terconnect, but used the IPoIB interface which supports
traditional sockets. Using Netperf, we measured IPoIB
throughput at almost 1 GB/s. A newer OFED release
should provide higher sockets performance, but we en-
sured that the network was never the bottleneck for these
tests. In bbcp, we calculated the TCP window size (W )
using the formula for bandwidth-delay product: using
ping time (Tping) and a network bandwidth (Bnet ) as fol-
lows: W = Tping ×Bnet . We used 10 MB for a TCP win-
dow size in our evaluation setup. We have also tested
bbcp by varying the block size, however we have seen
little performance difference between 1 MB and 4 MB,
so we show the results with a block size of 1 MB for bbcp
tests.

Performance comparison for object scheduling of
LADS and file-based scheduling of bbcp: In Fig-
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ure 7(a)(b), we see that LADS shows almost a perfect
linear scaling in terms of data transfer rate with respect
to the increased number of I/O threads, whereas there is
little improvement in bbcp with respect to the increased
number of TCP/IP streams. bbcp is implemented using a
file-based data transfer protocol in which, files are trans-
ferred one by one, and multiple TCP streams operate on
the same file. Therefore, the bottleneck is determined by
how wide the PFS stripes the file. We also found that
with bbcp multiple TCP/IP streams will only offer a per-
formance gain when a network speed is moderately slow
compared with I/O bandwidth of the storage. Overall, we
observe that LADS significantly outperforms bbcp for all
test cases in Figure 7, except for the results when LADS
transfer uses one I/O thread for a big file set. In this case,
we believe that bbcp is benefiting from hardware-level
read-ahead in our testbed. LADS did not benefit from it
because the round-robin access of the I/O queues might
mean that we are accessing an object from a different
file the next time we visit this OST and lose the benefit
of read-ahead. OLCF production systems disable read-
ahead for this reason.

In LADS, we observe the maximum throughput at
around 400-450MB/s for the experiment of a big data set,
which is reasonable based on our test-bed configuration.
The block-level throughput for all 16 disks is 2.3GB/s,
the file system overhead reduces that by about 40% to
1.3-1.4GB/s. We tested with up to eight threads reducing
the optimum to 650-700MB/s. Given thread synchro-
nization overhead, 400-500MB/s is reasonable but im-
provement is still possible.

Resource utilization in LADS: LADS uses DIRECT

IO for the source’s read operations to minimize the re-
source utilization for CPU and memory, while the sink
writes using buffered I/O. As we see from Figure 8(a)(b),
LADS moderately uses system resources, and there is
only a slight increase in CPU utilization as the number
of I/O threads increases. The more I/O threads involve
the more meta data service requests to Lustre file system
and more I/O. Overall, LADS take advantage of the In-
finiBand NIC’s offloading abilities and manages well the
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Figure 8: Resource utilization comparisons for LADS. CPU
utilization is 800, when all cores are fully utilized.

system resources; CPU utilization stays relatively low
even at eight I/O threads. Memory usage never varies
and is almost constant at 280-300 MB. We used 256 MB
for RMA buffer at source and sink, which accounts for
the majority of memory usage.

On the contrary, in bbcp, we observe that CPU and
memory usages are very low. For example, for small file
workloads, when eight streams are used, their memory
usage and CPU utilization are less than 2 MB and 5%,
respectively. For big file workloads, with the same con-
figuration, bbcp’s memory usage and CPU utilization are
at most about 30MB and less than 40%, respectively. Not
surprisingly with bbcp’s file-based approach, disk I/Os
are the bottleneck so that the host resources cannot be
fully utilized.

Impact of RMA buffer size in LADS: All the exper-
iments in the preceding subsections were done by utiliz-
ing a large, fixed amount of DRAM (256 MB) for use
as RMA buffers at both the source and sink. Given that
DTNs are shared resources and multiple users may be
using them concurrently, we want to understand what
amount of buffering is necessary.

Figure 9 shows the impact of available RMA buffer
sizes at the source and sink on LADS. We ran each test
multiple times and again the variability was very small.
As expected, a larger RMA buffer at the source reduces
the waiting time for a slot in the RMA buffer by an
I/O thread, which improved data transfer rate from the
source. Similarly, a greater size of the RMA buffer at
sink can hold more data while I/O threads are busy with
writing blocks to OSTs, later reducing the time of an I/O
thread has to wait until data are ready to be written from
the RMA buffer. Interestingly, with the RMA buffer size
increasing, LADS’s performance does not always im-
prove. Specifically, we have the following observations:
(i) a few RMA buffer slots (a few Megabytes) at sink
are sufficient to reach the maximum data transfer rate,
and (ii) with the increased RMA buffer at source, LADS
performance improves. It is because at sink, we allow
buffered I/Os, thus writes to disks can be fast, whereas
at the source, disk read bandwidth is the bottleneck as
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Figure 9: Impact of RMA buffer size on LADS.

DIRECT I/Os are used for data read on the storage at
source. It would be beneficial to let multiple I/O threads
read data blocks in parallel into the RMA buffer using
multiple slots in the RMA buffer. Therefore, it would be
more beneficial to add more RMA slots at the source to
improve the data read performance than to increase the
RMA buffer size at the sink. We also observe that from
the big data set test, a smaller RMA buffer size at sink
can be the bottleneck, which never happens in the small
data set test. We suspect it may be due to the fact that
the small files have a close() call after each object is
transferred which requires a round-trip to the meta-data
server, but we did not investigate further.

We also studied scaling performance of LADS and
bbcp by increasing the number of source-sink instances.
We observed that LADS outperforms bbcp in aggre-
gate throughput as the number of paired-instances in-
creases. The detail results can be found in our technical
report [16].

4.3 Congestion-aware I/O Scheduling in
Congested Environment

In the previous section, we showed the effectiveness of
object scheduling compared to file-based scheduling. In
this section, we show the effectiveness of a congestion-
aware scheduling algorithm on top of object scheduling
in LADS for variable I/O load environment on storage
systems.

Figure 10 shows the run time comparison results of
transferring a total of 100 GB of data in both a nor-
mal and storage-congested environment. We exe-
cuted multiple runs for each test, however there was
very little variability in measurement between runs. In
the figure, “Normal” indicates when there are no con-
gested disks, “C” means a condition where there are
congested disks, and “RR” and “CA” represent Round
Robin and Congestion-Aware scheduling algorithms re-
spectively. In (A, B), A means a threshold to determine
if disks are congested, and B denotes a number of times
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Figure 10: Comparing average run times of transferring 100 x
1 GB files under normal and congested conditions. Source and
sink processes are run with eight I/O threads.

the I/O threads skip one or more disks. To simulate con-
gestion, we used a Linux I/O load generator which uses
libaio [22]. It generates sequential read requests to four
disks with an iteration of five seconds, issuing enough re-
quests to generate 310-350 MB/s of I/O. It runs 10 iter-
ations before it moves on to the next four disks. We had
the I/O load generator issue 4 MB requests with a queue
depth of four.

For Figure 10(a), we tested various parameter settings,
to see the effectiveness of our CA algorithm when the
source storage is partially in congestion. Overall, we
see that the CA performance can improve by 35% over
the RR performance when experiencing congestion. The
ranges of a performance improvement can be determined
in a function of the threshold, and the number of skips
over congested servers. We notice that if the threshold
value is set too large or if the number of skips for con-
gested servers to be set either too small or too large, the
algorithm likely makes false-positive decisions, negating
the performance gain from avoiding congested disks.

For Figure 10(b) shows the results for congestion at
the sink PFS. Overall, the performance impact is much
significantly higher than when source servers are con-
gested. Surprisingly, the congestion-aware scheduling is
almost never improving performance, showing execution
times as high as those obtained with the RR algorithm.
Irrespective of tuning parameter values, the run times
are quite random, mainly because our scheduling algo-
rithm failed to detect congested servers. The congestion-
aware algorithm measures I/O service time for each ob-
ject, but our use of buffered I/Os prevented it from ac-
curately measuring the OSTs’ actual level of congestion.
We confirmed from our evaluation that most of predic-
tions were false positives, often wrongly assigning I/O
threads to busy or overloaded OSTs.

We measured the throughput of bbcp for a congested
condition in the storage. The results are shown in Table 1
to compare against the results of LADS. We executed
multiple runs for each test, however there were very lit-
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tle variability in measurement between runs. The same
test-scenarios is used for the LADS evaluation presented
in Figure 10. It is not surprising that LADS is faster than
bbcp in both normal and congested conditions. Interest-
ingly, we note that the bbcp run times when the sink is
congested are not much different from those under nor-
mal conditions, which is most likely due to combination
of the OS buffer cache and bbcp’s slower communication
throughput. It is obvious that buffered I/Os for writes
should have been able to hide disk write latency. On
the other hand, we observe that bbcp’s run time, when
the source is experiencing congestion, can increase by
19% over when normal condition. Moreover, bbcp’s use
of sockets incurs additional copies, user-to-kernel con-
text switches, as well as TCP/IP stack processing. The
slower network throughput masks the sink disk conges-
tion. LADS clearly benefits from utilizing zero-copy net-
works when available.

bbcp Uncongested Congested (Side)
Condition Source Sink

Runtime 21m53s 26m11s 21m54s
Throughput (MB/s) 78 65 78

Table 1: Run times and throughput for bbcp under normal and
congested environment.

4.4 Source-based Buffering using Flash in
Congested Environment

In the previous subsection, we observed that LADS’ data
transfer throughput significantly drops when the sink is
overloaded. In this case, the source’s RMA buffer be-
comes full, which stalls the I/O threads from reading ad-
ditional objects. Therefore, we propose a source-based
buffering technique that uses flash-based storage. This
source-based SSD buffering utilizes available buffers on
flash, which are slower than DRAM yet faster than HDD,
to load ahead data blocks to be transferred.

To evaluate it, we slightly modified the overloading
workload as we used for Figure 10(b) by inserting ten
seconds of idleness between storage congestion periods.
During this congestion-free period at sink, source can
copy the buffered data from SSD buffer to network RMA
buffer. For a fair evaluation, the sink host is set to use
only 256 MB RMA buffer, and source and sink run eight
I/O threads. The source and sink do not employ the
congestion-aware algorithm.

Figure 11(a) shows the results of the effectiveness of
the source-based buffering technique using flash. We ob-
serve that throughput increases as the available memory
for communications at the source increases. However,
referring to Figure 11(b), doubling the size of DRAM
is very expensive and the same throughput could be
achieved using cheaper flash memory.

4.5 Production Environment
DTN to DTN evaluations at ORNL: To evaluate large-
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Figure 11: Performance analysis of SSD-based object buffer-
ing at source. In (a), we showed average throughput with 95%
confidence intervals in error bars. In (b), m : f denotes the price
ratio between DRAM and Flash.

scale performance, we compare the times for transferring
a big data set from atlas1 to atlas2 via two DTNs avail-
able at ORNL using both LADS and bbcp. For this exper-
iment, both bbcp and LADS use sockets (in the context of
LADS, CCI is setup to use its TCP transport) over IPoIB
between the source and sink DTNs. The overhead of
CCI implementation is quite minimal [3] in which CCI
added 150-450 ns to small message latency and no per-
ceptible impact on throughput. On the Lustre Atlas
file systems, 1 MB stripe size and a stripe count of four
are the default. We ran the experiments twice for every
test and Table 2 shows the average throughput (in MB/s).
We also want to remind that the Atlas file systems do not
use SSDs for buffering.

Threads (#) 1 2 4 8
LADS 58.71 116.30 228.38 407.02
bbcp 59.91 58.46 57.85 59.49

Table 2: Throughput comparison (MB/s).

Table 2 presents the data transfer times for LADS and
bbcp by increasing the number of threads. We observe
that throughput when using LADS increases with respect
to the increased number of I/O threads, whereas adding
streams does not help bbcp. With eight threads, LADS
shows 6.8 times higher data transfer rate than bbcp.
However, bbcp shows slightly higher in throughput than
LADS for a single thread. As we observed earlier, bbcp’s
single I/O thread issues larger reads that Lustre converts
to multiple object reads, while LADS’ single I/O thread
will only read a single object at a time. I/O parallelism
for bbcp is limited to four, which is a Lustre default file
stripe count. On the other hand, LADS allows multiple
I/O threads to operate on multiple objects from differing
files, resulting in multiple threads to work on multiple
OSTs simultaneously. Therefore, LADS can fully take
advantage of the parallelism available from multiple ob-
ject storage targets.

11



78 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

5 Related Work
Many prior studies have performed on the design and im-
plementation of bulk data movement frameworks [2, 12,
29, 27, 26, 30] and their optimization in wide-area net-
works [34]. GridFTP [2], provided by Globus toolkit,
extends the standard File Transfer Protocol (FTP), and
provides high speed, reliable, and secure data transfer.
It has a striping feature that enables multi-host to multi-
host transfers with each host transferring a subset of files,
but does not try to schedule based on the underlying ob-
ject locations. bbcp [12] is another data transfer utility
for moving large files securely, and quickly using multi-
ple streams. It uses a single I/O thread and a file based
I/O, and its I/O bandwidth is limited by the stripe width
of a file. XDD [29] optimizes the disk I/O performance;
enabling file access with direct I/Os and multiple threads
for parallelism, and varying file offset ordering to im-
prove I/O access times. These tools are useful for moving
large data faster and securely from source host to remote
host over the network, but none try to schedule based
on the underlying object locations or to detect congested
storage targets. Other related work has focused on cou-
pling MPI applications over a terabit network infrastruc-
ture [33]. It has investigated a model based on MPI-IO
and CCI for transferring large data sets between two MPI
applications at different sites. This work does not exploit
the underlying file system layouts to improving I/O per-
formance for data transfers either.

Storage contention problems remain a challenge for
shared file systems [20, 18, 38, 15, 19]. Reads or writes
can be stalled at the file system with overloaded storage
targets. The storage target can be busy due to a heavy I/O
load by some other applications, or when it is part of a
RAID rebuild process. Moreover, I/O server (OSS) can
experience bursty I/O requests. Consequently, a longer
latency from the storage target can violate the Quality-
of-Service (QoS) for file operations [11]. The storage
contention can occur even if there is one user application.
Multiple threads can implement the program, and one or
more threads can share the same storage target, causing
contentions. Therefore, the program needs a mechanism
for multiple accesses to not compete for the same re-
source, and needs to be designed in a way to minimize
the side-effect created by another user I/O streams. In
our prior work [15], we examined the I/O performance
of traditional versus layout-aware scheduling. And we
addressed a few heuristic algorithms to avoid congested
servers. However those algorithms were not fully ex-
ploited. On the other hand, in this work, we have fully
developed an end-to-end data transfer tool using CCI in-
tegrated with layout-awareness algorithms and evaluated
them.

Our work differs in several key areas from prior works:
(i) We use layout-aware data scheduling to maximize

parallelism within the PFS’ network paths, servers, and
disks. (ii) We focus on the total workload of objects with-
out artificially synchronizing on logical files. (iii) We de-
tect server congestion to minimize our impact on the PFS
in order to avoid negatively impacting the performance
of the PFS’ primary customer, a large HPC system. (iv)
We use a modern network abstraction layer, CCI, to take
advantage of HPC interconnects to improve throughput.

While our work has focused on I/O optimization for
Lustre file systems, one could add support for other par-
allel file systems such as GPFS [28], and Ceph [36].
LADS needs four pieces of information about a given
file: object size, stripe width, IDs of servers, and ob-
ject offsets held by each server. If the parallel file sys-
tem exposes this information to the user, LADS could
be implemented for that file system. In Ceph [7]
for example, it can return a structure of file system
data layout using ioctl with some parameters (e.g.,
CEPH IOC GET LAYOUT). In Eshel et. al. [8], they
describe how pNFS used the layout information of a file
in PanFS to perform direct and parallel I/Os.

6 Conclusion
Moving large data sets between geographically dis-
tributed organizations is a challenging problem which
constrains the ability of researchers to share data. Future
terabit networks will help improve the network portion of
the data transfer, but not the end-to-end transfer, which
sources and sinks the data sets in parallel file systems,
due to the impedance mismatch between the faster net-
work and much slower storage system. In this study, we
identified multiple bottlenecks that exist along the end-
to-end data transfer from source and sink host systems
in terabit networks, and we proposed LADS to demon-
strate techniques that can alleviate some end-to-end bot-
tlenecks while at the same time trying not to negatively
impact the use of the PFS by other resources, especially
large HPC systems. To minimize the effects of tran-
sient congestion within a subset of storage servers, LADS
implemented three I/O optimization techniques: layout-
aware scheduling, congestion-aware scheduling, and ob-
ject caching using SSDs.

Acknowledgments
We thank the reviewers and our shepherd, Nitin Agrawal,
for their constructive comments that have significantly
improved the paper. This research is sponsored by the
Office of Advanced Scientific Computing Research, U.S.
Department of Energy and used resources of the Oak
Ridge Leadership Computing Facility, located in the Na-
tional Center for Computational Sciences at Oak Ridge
National Laboratory, which is supported by the Office
of Science of the Department of Energy under Contract
DE-AC05-00OR22725.

12



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 79

References

[1] ALCF. Argonne Leadership Computing Facility.
https://www.alcf.anl.gov/.

[2] ALLCOCK, W., BRESNAHAN, J., KETTIMUTHU,
R., LINK, M., DUMITRESCU, C., RAICU, I., AND
FOSTER, I. The Globus Striped GridFTP Frame-
work and Server. In Proceedings of the Interna-
tional Conference for High Performance Comput-
ing, Networking, Storage and Analysis (2005), SC
’05, pp. 54–64.

[3] ATCHLEY, S., DILLOW, D., SHIPMAN, G. M.,
GEOFFRAY, P., SQUYRES, J. M., BOSILCA, G.,
AND MINNICH, R. The Common Communication
Interface (CCI). In Proceedings of the Hot Inter-
connects (2011), pp. 51–60.

[4] BADAM, A., AND PAI, V. S. SSDAlloc: Hy-
brid SSD/RAM Memory Management Made Easy.
In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation
(2011), NSDI’11, pp. 211–224.

[5] BILL HARROD. US Department of Energy Big
Data and Scientific Discovery. http://www.
exascale.org/bdec/sites/www.exascale.
org.bdec/files/talk4-Harrod.pdf.

[6] CCI: Common Communication Interface. http:
//cci-forum.com//.

[7] Ceph. https://github.com/ceph/.

[8] ESHEL, M., HASKIN, R., HILDEBRAND, D.,
NAIK, M., SCHMUCK, F., AND TEWARI, R.
Panache: A Parallel File System Cache for Global
File Access. In Proceedings of the 8th USENIX
Conference on File and Storage Technologies
(2010), FAST ’10, pp. 155–168.

[9] ESSEN, B. V., HSIEH, H., AMES, S., AND
GOKHALE, M. DI-MMAP: A High Performance
Memory-Map Runtime for Data-Intensive Applica-
tions. In Proceedings of the 2012 SC Companion:
High Performance Computing, Networking Storage
and Analysis, Salt Lake City, UT, USA, November
10-16, 2012 (2012), pp. 731–735.

[10] FUSION-IO. Fusion-io ioDrive Duo. http://www.
fusionio.com/products/iodrive-duo.

[11] GULATI, A., MERCHANT, A., AND VARMAN,
P. J. pClock: An Arrival Curve Based Approach
for QoS Guarantees in Shared Storage Systems. In
Proceedings of the 7th ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling
of Computer Systems (2007), SIGMETRICS ’07,
pp. 13–24.

[12] HANUSHEVSKY, A. BBCP. http://www.slac.
stanford.edu/~abh/bbcp/.

[13] HOLLAND, M., AND GIBSON, G. A. Parity
Declustering for Continuous Operation in Redun-
dant Disk Arrays. In Proceedings of the Fifth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(1992), ASPLOS V, pp. 23–35.

[14] HONEYMAN, P., LEVER, C., MOLLOY, S., AND
PROVOS, N. The Linux Scalability Project. Tech.
rep., 1999.

[15] KIM, Y., ATCHLEY, S., VALLÉE, G. R., AND
SHIPMAN, G. M. Layout-Aware I/O Scheduling
for Terabits Data Movement. In Proceedings of
the IEEE International Conference on Big Data -
Workshop on Distributed Storage Systems and Cod-
ing for BigData (2013), IEEE Big Data ’13, pp. 44–
51.

[16] KIM, Y., ATCHLEY, S., VALLÉE, G. R., AND
SHIPMAN, G. M. LADS: Optimizing Data Trans-
fers using Layout-Aware Data Scheduling. Tech.
Rep. ORNL/TM-2014/251, Oak Ridge National
Laboratory, Oak Ridge, TN, January 2015.

[17] LIM, S.-H., HUH, J.-S., KIM, Y., SHIPMAN,
G. M., AND DAS, C. R. D-factor: A Quantitative
Model of Application Slow-down in Multi-resource
Shared Systems. In Proceedings of the 12th
ACM SIGMETRICS/PERFORMANCE Joint Inter-
national Conference on Measurement and Model-
ing of Computer Systems (2012), SIGMETRICS
’12, pp. 271–282.

[18] LIU, Q., PODHORSZKI, N., LOGAN, J., AND
KLASKY, S. Runtime I/O Re-Routing + Throttling
on HPC Storage. In Proceedings of the USENIX
Workshop on Hot Topics in Storage and File Sys-
tems (2013), HotStorage ’13.

[19] LIU, Y., GUNASEKARAN, R., MA, X., AND
VAZHKUDAI, S. S. Automatic Identification of
Application I/O Signatures from Noisy Server-Side
Traces. In Proceedings of the 12th USENIX Con-
ference on File and Storage Technologies (2014),
FAST ’14, pp. 213–228.

[20] LOFSTEAD, J., ZHENG, F., LIU, Q., KLASKY, S.,
OLDFIELD, R., KORDENBROCK, T., SCHWAN,
K., AND WOLF, M. Managing Variability in the
IO Performance of Petascale Storage Systems. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Net-
working, Storage and Analysis (2010), SC ’10,
pp. 1–12.

[21] NERSC. National Energy Research Scientific
Computing Cente. https://www.nersc.gov/.

[22] OLCF. I/O Benchmark Suite. https:
//www.olcf.ornl.gov/center-projects/
file-system-projects/.

13



80 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

[23] OLCF. Oak Ridge Leadership Computing Facility.
https://www.olcf.ornl.gov/.

[24] OPENNVM. OpenNVM. http://opennvm.
github.io/.

[25] ORAL, S., SIMMONS, J., HILL, J., LEVER-
MAN, D., WANG, F., EZELL, M., MILLER,
R., FULLER, D., GUNASEKARAN, R., KIM, Y.,
GUPTA, S., TIWARI, D., VAZHKUDAI, S. S.,
ROGERS, J. H., DILLOW, D., SHIPMAN, G. M.,
AND BLAND, A. S. Best Practices and Lessons
Learned from Deploying and Operating Large-
scale Data-centric Parallel File Systems. In Pro-
ceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis (2014), SC ’14, pp. 217–228.

[26] REN, Y., LI, T., YU, D., JIN, S., AND ROBER-
TAZZI, T. Design and Performance Evaluation
of NUMA-aware RDMA-based End-to-end Data
Transfer Systems. In Proceedings of the Interna-
tional Conference on High Performance Comput-
ing, Networking, Storage and Analysis (2013), SC
’13, pp. 48:1–48:10.

[27] REN, Y., LI, T., YU, D., JIN, S., ROBERTAZZI,
T., TIERNEY, B. L., AND POUYOUL, E. Protocols
for Wide-area Data-intensive Applications: Design
and Performance Issues. In Proceedings of the In-
ternational Conference on High Performance Com-
puting, Networking, Storage and Analysis (2012),
SC ’12, pp. 34:1–34:11.

[28] SCHMUCK, F., AND HASKIN, R. GPFS: A Shared-
Disk File System for Large Computing Clusters. In
Proceedings of the 1st USENIX Conference on File
and Storage Technologies (2002), FAST ’02.

[29] SETTLEMYER, B., DOBSON, J. M., HODSON,
S. W., KUEHN, J. A., POOLE, S. W., AND
RUWART, T. M. A Technique for Moving Large
Data Sets over High-Performance Long Distance
Networks. In Proceedings of the IEEE Sympo-
sium on Massive Storage Systems and Technologies
(2011), MSST ’11, pp. 1–6.

[30] SUBRAMONI, H., LAI, P., KETTIMUTHU, R.,
AND PANDA, D. K. High Performance Data
Transfer in Grid Environment Using GridFTP over
InfiniBand. In Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (2010), CCGRID ’10,
pp. 557–564.

[31] TORRELLAS, J. Architectures for Extreme-Scale
Computing. Computer 42, 11 (Nov. 2009), 28–35.

[32] U.S. DEPARTMENT OF ENERGY, OFFICE OF SCI-
ENCE. Energy Science Network (ESnet). http:
//www.es.net/.

[33] VALLÉE, G., ATCHLEY, S., KIM, Y., AND SHIP-
MAN, G. M. End-to-End Data Movement Using
MPI-IO Over Routed Terabits Infrastructures. In
Proceedings of the 3rd IEEE/ACM International
Workshop on Network-aware Data Management
(2013), NDM ’13, pp. 9:1–9:8.

[34] VAZHKUDAI, S., SCHOPF, J. M., AND FOSTER,
I. F. Predicting the Performance of Wide Area Data
Transfers. In Proceedings of the IEEE 15th Inter-
national Parallel and Distributed Processing Sym-
posium (2001), IPDPS ’01.

[35] WANG, C., VAZHKUDAI, S. S., MA, X., MENG,
F., KIM, Y., AND ENGELMANN, C. NVMalloc:
Exposing an Aggregate SSD Store As a Memory
Partition in Extreme-Scale Machines. In Proceed-
ings of the 2012 IEEE 26th International Paral-
lel and Distributed Processing Symposium (2012),
IPDPS ’12, pp. 957–968.

[36] WEIL, S. A., BRANDT, S. A., MILLER, E. L.,
LONG, D. D. E., AND MALTZAHN, C. Ceph: A
Scalable, High-performance Distributed File Sys-
tem. In Proceedings of the 7th Symposium on Oper-
ating Systems Design and Implementation (2006),
OSDI ’06, pp. 307–320.

[37] WELCH, B., UNANGST, M., ABBASI, Z., GIB-
SON, G., MUELLER, B., SMALL, J., ZELENKA,
J., AND ZHOU, B. Scalable Performance of the
Panasas Parallel File System. In Proceedings of the
6th USENIX Conference on File and Storage Tech-
nologies (2008), FAST ’08, pp. 2:1–2:17.

[38] XIE, B., CHASE, J., DILLOW, D., DROKIN, O.,
KLASKY, S., ORAL, S., AND PODHORSZKI, N.
Characterizing Output Bottlenecks in a Supercom-
puter. In Proceedings of the International Confer-
ence on High Performance Computing, Network-
ing, Storage and Analysis (2012), SC ’12, pp. 8:1–
8:11.

14



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 81

Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for
I/O, Storage and Network-bandwidth

K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, Kannan Ramchandran
University of California, Berkeley

Abstract

Erasure codes, such as Reed-Solomon (RS) codes, are
increasingly being deployed as an alternative to data-
replication for fault tolerance in distributed storage sys-
tems. While RS codes provide significant savings in
storage space, they can impose a huge burden on the
I/O and network resources when reconstructing failed
or otherwise unavailable data. A recent class of era-
sure codes, called minimum-storage-regeneration (MSR)
codes, has emerged as a superior alternative to the popu-
lar RS codes, in that it minimizes network transfers dur-
ing reconstruction while also being optimal with respect
to storage and reliability. However, existing practical
MSR codes do not address the increasingly important
problem of I/O overhead incurred during reconstructions,
and are, in general, inferior to RS codes in this regard.
In this paper, we design erasure codes that are simultane-
ously optimal in terms of I/O, storage, and network band-
width. Our design builds on top of a class of powerful
practical codes, called the product-matrix-MSR codes.
Evaluations show that our proposed design results in a
significant reduction the number of I/Os consumed dur-
ing reconstructions (a 5× reduction for typical parame-
ters), while retaining optimality with respect to storage,
reliability, and network bandwidth.

1 Introduction

The amount of data stored in large-scale distributed
storage architectures such as the ones employed in data
centers is increasing exponentially. These storage sys-
tems are expected to store the data in a reliable and avail-
able fashion in the face of multitude of temporary and
permanent failures that occur in the day-to-day opera-
tions of such systems. It has been observed in a num-
ber of studies that failure events that render data unavail-
able occur quite frequently in data centers (for example,
see [32, 14, 28] and references therein). Hence, it is im-
perative that the data is stored in a redundant fashion.

Traditionally, data centers have been employing triple
replication in order to ensure that the data is reliable and
that it is available to the applications that wish to con-
sume it [15, 35, 10]. However, more recently, the enor-
mous amount of data to be stored has made replication
an expensive option. Erasure coding offers an alternative
means of introducing redundancy, providing higher lev-
els of reliability as compared to replication while requir-
ing much lower storage overheads [5, 39, 37]. Data cen-
ters and cloud storage providers are increasingly turning
towards this option [14, 9, 10, 4], with Reed-Solomon
(RS) codes [31] being the most popular choice. RS
codes make optimal use of storage resources in the sys-
tem for providing reliability. This property makes RS
codes appealing for large-scale, distributed storage sys-
tems where storage capacity is one of the critical re-
sources [1]. It has been reported that Facebook has saved
multiple Petabytes of storage space by employing RS
codes instead of replication in their data warehouse clus-
ter [3].

Under RS codes, redundancy is introduced in the fol-
lowing manner: a file to be stored is divided into equal-
sized units, which we will call blocks. Blocks are
grouped into sets of k each, and for each such set of k
blocks, r parity blocks are computed. The set of these
(k + r) blocks consisting of both the data and the par-
ity blocks constitute a stripe. The parity blocks possess
the property that any k blocks out the (k+ r) blocks in
a stripe suffice to recover the entire data of the stripe. It
follows that the failure of any r blocks in a stripe can
be tolerated without any data loss. The data and parity
blocks belonging to a stripe are placed on different nodes
in the storage network, and these nodes are typically cho-
sen from different racks.

Due to the frequent temporary and permanent failures
that occur in data centers, blocks are rendered unavail-
able from time-to-time. These blocks need to be replaced
in order to maintain the desired level of reliability. Un-
der RS codes, since there are no replicas, a missing block
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Figure 1: Amount of data transfer involved in reconstruc-
tion of block 1 for an RS code with k = 6, r = 6 and an
MSR code with k = 6, r = 6, d = 11, with blocks of size
16MB. The data blocks are shaded.

is replaced by downloading all data from (any) k other
blocks in the stripe and decoding the desired data from
it. We will refer to this operation as a reconstruction op-
eration. A reconstruction operation may also be called
upon to serve read requests for data that is currently un-
available. Such read requests are called degraded reads.
Degraded reads are served by reconstructing the requi-
site data on-the-fly, i.e., immediately as opposed to as a
background job.

Let us look at an example. Consider an RS code with
k = 6 and r = 6. While this code has a storage overhead
of 2x, it offers orders of magnitude higher reliability than
3x replication. Figure 1a depicts a stripe of this code,
and also illustrates the reconstruction of block 1 using the
data from blocks 2 to 7. We call the blocks that are called
upon during the reconstruction process as helpers. In
Figure 1a, blocks 2 to 7 are the helpers. In this example,
in order to reconstruct a 16MB block, 6×16MB= 96MB
of data is read from disk at the helpers and transferred
across the network to the node performing the decoding
computations. In general, the disk read and the network
transfer overheads during a reconstruction operation is
k times that under replication. Consequently, under RS
codes, reconstruction operations result in a large amount
of disk I/O and network transfers, putting a huge burden
on these system resources.

There has been considerable interest in the recent
past in designing a new class of (network-coding based)
codes called minimum-storage-regenerating (MSR)
codes, which were originally formulated in [12]. Under
an MSR code, an unavailable block is reconstructed
by downloading a small fraction of the data from any
d (> k) blocks in the stripe, in a manner that the total
amount of data transferred during reconstruction is
lower than that in RS codes. Let us consider an example

he
lp
er
s!

16MB"read"

16MB"read"

16MB"read"

16MB"read"

16MB"read"

1"

12"

8"

7"

6"

2"
total"data"read"

="176MB"

(a) PM-MSR

1"

he
lp
er
s!

2.7MB"read"

2.7MB"read"

2.7MB"read"

2.7MB"read"

2.7MB"read"12"

8"

7"

6"

2"
total"data"read"

="29.7MB"

(b) PM-RBT (this paper)

Figure 2: Amount of data read from disks during recon-
struction of block 1 for k = 6, r = 6, d = 11 with blocks
of size 16MB.

with k = 6, r = 6 and d = 11. For these parameters, re-
construction of block 1 under an MSR code is illustrated
in Figure 1b. In this example, the total network transfer
is only 29.7MB as opposed to 96MB under RS. MSR
codes are optimal with respect to storage and network
transfers: the storage capacity and reliability is identical
to that under RS codes, while the network transfer is
significantly lower than that under RS and in fact, is
the minimum possible under any code. However, MSR
codes do not optimize with respect to I/Os. The I/O
overhead during a reconstruction operation in a system
employing an MSR code is, in general, higher than
that in a system employing RS code. This is illustrated
in Figure 2a which depicts the amount data read from
disks for reconstruction of block 1 under a practical
construction of MSR codes called product-matrix-MSR
(PM-MSR) codes. This entails reading 16MB at each of
the 11 helpers, totaling 176MB of data read.

I/Os are a valuable resource in storage systems. With
the increasing speeds of newer generation network in-
terconnects and the increasing storage capacities of in-
dividual storage devices, I/O is becoming the primary
bottleneck in the performance of storage systems. More-
over, many applications that the storage systems serve
today are I/O bound, for example, applications that serve
a large number of user requests [7] or perform data-
intensive computations such as analytics [2]. Motivated
by the increasing importance of I/O, in this paper, we in-
vestigate practical erasure codes for storage systems that
are I/O optimal.

In this paper, we design erasure codes that are simul-
taneously optimal in terms of I/O, storage, and network
bandwidth during reconstructions. We first identify two
properties that aid in transforming MSR codes to be disk-
read optimal during reconstruction while retaining their
storage and network optimality. We show that a class

2
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of powerful practical constructions for MSR codes, the
product-matrix-MSR codes (PM-MSR) [29], indeed sat-
isfy these desired properties. We then present an algo-
rithm to transform any MSR code satisfying these prop-
erties into a code that is optimal in terms of the amount
of data read from disks. We apply our transformation to
PM-MSR codes and call the resulting I/O optimal codes
as PM-RBT codes. Figure 2b depicts the amount of
data read for reconstruction of block 1: PM-RBT entails
reading only 2.7MB at each of the 11 helpers, totaling
29.7MB of data read as opposed to 176MB under PM-
MSR. We note that the PM-MSR codes operate in the
regime r ≥ k− 1, and consequently the PM-RBT codes
also operate in this regime.

We implement PM-RBT codes and show through ex-
periments on Amazon EC2 instances that our approach
results in 5× reduction in I/Os consumed during re-
construction as compared to the original product-matrix
codes, for a typical set of parameters. For general pa-
rameters, the number of I/Os consumed would reduce
approximately by a factor of (d − k + 1). For typical
values of d and k, this can result in substantial gains.
We then show that if the relative frequencies of recon-
struction of blocks are different, then a more holistic
system-level design of helper assignments is needed to
optimize I/Os across the entire system. Such situations
are common: for instance, in a system that deals with de-
graded reads as well as node failures, the data blocks will
be reconstructed more frequently than the parity blocks.
We pose this problem as an optimization problem and
present an algorithm to obtain the optimal solution to
this problem. We evaluate our helper assignment algo-
rithm through simulations using data from experiments
on Amazon EC2 instances.

2 Background

2.1 Notation and Terminology

The computations for encoding, decoding, and recon-
struction in a code are performed using what is called
finite-field arithmetic. For simplicity, however, through-
out the paper the reader may choose to consider usual
arithmetic without any loss in comprehension. We will
refer the smallest granularity of the data in the system
as a symbol. The actual size of a symbol is dependent
on the finite-field arithmetic that is employed. For sim-
plicity, the reader may consider a symbol to be a single
byte.

A vector will be column vector by default. We will use
boldface to denote column vectors, and use T to denote
a matrix or vector transpose operation.

We will now introduce some more terminology in ad-
dition to that introduced in Section 1. This terminology
is illustrated in Figure 3. Let n (= k+ r) denote the to-
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Figure 3: Illustration of notation: hierarchy of sym-
bols, byte-level stripes and block-level stripe. The first
k blocks shown shaded are systematic.

tal number of blocks in a stripe. In order to encode the
k data blocks in a stripe, each of the k data blocks are
first divided into smaller units consisting of w symbols
each. A set of w symbols from each of the k blocks is
encoded to obtain the corresponding set of w symbols in
the parity blocks. We call the set of data and parities at
the granularity of w symbols as a byte-level stripe. Thus
in a byte-level stripe, B = kw original data symbols (w
symbols from each of the k original data blocks) are en-
coded to generate nw symbols (w symbols for each of the
n encoded blocks). The data symbols in different byte-
level stripes are encoded independently in an identical
fashion. Hence in the rest of the paper, for simplicity of
exposition, we will assume that each block consists of a
single byte-level stripe. We denote the B original data
symbols as {m1, . . . ,mB}. For i ∈ {1, . . . ,n}, we denote
the w symbols stored in block i by {si1, . . . ,siw}. The
value of w is called the stripe-width.

During reconstruction of a block, the other blocks
from which data is accessed are termed the helpers for
that reconstruction operation (see Figure 1). The ac-
cessed data is transferred to a node that performs the
decoding operation on this data in order to recover the
desired data. This node is termed the decoding node.

2.2 Linear and Systematic Codes
A code is said to be linear, if all operations includ-

ing encoding, decoding and reconstruction can be per-
formed using linear operations over the finite field. Any
linear code can be represented using a (nw×B) matrix
G, called its generator matrix. The nw encoded symbols
can be obtained by multiplying the generator matrix with
a vector consisting of the B message symbols:

G
[

m1 m2 · · · mB
]T

. (1)

We will consider only linear codes in this paper.
In most systems, the codes employed have the prop-

erty that the original data is available in unencoded (i.e.,
raw) form in some k of the n blocks. This property is
appealing since it allows for read requests to be served

3
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directly without having to perform any decoding opera-
tions. Codes that possess this property are called system-
atic codes. We will assume without loss of generality
that the first k blocks out of the n encoded blocks store
the unencoded data. These blocks are called systematic
blocks. The remaining (r = n− k) blocks store the en-
coded data and are called parity blocks. For a linear sys-
tematic code, the generator matrix can be written as

[
I
Ĝ

]
, (2)

where I is a (B×B) identity matrix, and Ĝ is a ((nw−
B)×B) matrix. The codes presented in this paper are
systematic.

2.3 Optimality of Storage Codes

A storage code is said to be optimal with respect to
the storage-reliability tradeoff if it offers maximum fault
tolerance for the storage overhead consumed. A (k,r) RS
code adds r parity blocks, each of the same size as that
of the k data blocks. These r parity blocks have the prop-
erty that any k out of these (k+ r) blocks are sufficient to
recover all the original data symbols in the stripe. Thus
failure of any r arbitrary blocks among the (k+ r) blocks
in a stripe can be tolerated without any data loss. It is
well known from analytical results [22] that this is the
maximum possible fault tolerance that can be achieved
for the storage overhead used. Hence, RS codes are opti-
mal with respect to the storage-reliability tradeoff.

In [12], the authors introduced another dimension of
optimality for storage codes, that of reconstruction band-
width, by providing a lower bound on the amount of data
that needs to be transferred during a reconstruction op-
eration. Codes that meet this lower bound are termed
optimal with respect to storage-bandwidth tradeoff.

2.4 Minimum Storage Regenerating Codes

A minimum-storage-regenrating (MSR) code [12] is
associated with, in addition to the parameters k and r in-
troduced Section 1, a parameter d (> k) that refers to the
number of helpers used during a reconstruction opera-
tion. For an MSR code, the stripe-width w is dependent
on the parameters k and d, and is given by w = d−k+1.
Thus, each byte-level stripe stores B = kw = k(d−k+1)
original data symbols.

We now describe the reconstruction process under the
framework of MSR codes. A block to be reconstructed
can choose any d other blocks as helpers from the re-
maining (n − 1) blocks in the stripe. Each of these d
helpers compute some function of the w symbols stored
whose resultant is a single symbol (for each byte-level
stripe). Note that the symbol computed and transferred

by a helper may, in general, depend on the choice of
(d −1) other helpers.

Consider the reconstruction of block f . Let D denote
that set of d helpers participating in this reconstruction
operation. We denote the symbol that a helper block h
transfers to aid in the reconstruction of block f when the
set of helpers is denoted by D as th f D. This resulting
symbol is transferred to the decoding node, and the d
symbols received from the helpers are used to reconstruct
block f .

Like RS codes, MSR codes are optimal with respect to
the storage-reliability tradeoff. Furthermore, they meet
the lower bound on the amount of data transfer for recon-
struction, and hence are optimal with respect to storage-
bandwidth tradeoff as well.

2.5 Product-Matrix-MSR Codes

Product-matrix-MSR codes are a class of practical
constructions for MSR codes that were proposed in [29].
These codes are linear. We consider the systematic ver-
sion of these codes where the first k blocks store the data
in an unencoded form. We will refer to these codes as
PM-vanilla codes.

PM-vanilla codes exist for all values of the system
parameters k and d satisfying d ≥ (2k − 2). In order
to ensure that, there are atleast d blocks that can act
as helpers during reconstruction of any block, we need
atleast (d+1) blocks in a stripe, i.e., we need n≥ (d+1).
It follows that PM-vanilla codes need a storage overhead
of

n
k
≥
(

2k−1
k

)
= 2− 1

k
. (3)

We now briefly describe the reconstruction operation
in PM-vanilla codes to the extent that is required for the
exposition of this paper. We refer the interested reader
to [29] for more details on how encoding and decoding
operations are performed. Every block i (1 ≤ i ≤ n) is
assigned a vector gi of length w, which we will call the
reconstruction vector for block i. Let gi = [gi1, . . . ,giw]

T .
The n (= k+ r) vectors, {g1, . . . ,gn}, are designed such
that any w of these n vectors are linearly independent.

During reconstruction of a block, say block f , each
of the chosen helpers, take a linear combination of their
w stored symbols with the reconstruction vector of the
failed block, gf, and transfer the result to the decoding
node. That is, for reconstruction of block f , helper block
h computes and transfers the symbol

th f D =
w

∑
j=1

sh jg f j , (4)

where {sh1, . . . ,shw} are the w symbols stored in block h,
and D denotes the set of helpers.
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PM-vanilla codes are optimal with respect to the
storage-reliability tradeoff and storage-bandwidth trade-
off. However, PM-vanilla codes are not optimal with re-
spect to the amount of data read during reconstruction:
The values of most coefficients g f j in the reconstruction
vector are non-zero. Since the corresponding symbol sh j
must be read for every g f j that is non-zero, the absence
of sparsity in g f j results in a large I/O overhead during
the rebuilding process, as illustrated in Figure 2a (and
experimentally evaluated in Figure 7).

3 Optimizing I/O during reconstruction
We will now employ the PM-vanilla codes to con-

struct codes that optimize I/Os during reconstruction,
while retaining optimality with respect to storage, reli-
ability and network-bandwidth. In this section, we will
optimize the I/Os locally in individual blocks, and Sec-
tion 4 will build on these results to design an algorithm to
optimize the I/Os globally across the entire system. The
resulting codes are termed the PM-RBT codes. We note
that the methods described here are more broadly appli-
cable to other MSR codes as discussed subsequently.

3.1 Reconstruct-by-transfer
Under an MSR code, during a reconstruction opera-

tion, a helper is said to perform reconstruct-by-transfer
(RBT) if it does not perform any computation and merely
transfers one its stored symbols (per byte-level stripe) to
the decoding node.1 In the notation introduced in Sec-
tion 2, this implies that gf in (4) is a unit vector, and

th f D ∈ {sh1, . . . ,shw} .

We call such a helper as an RBT-helper. At an RBT-
helper, the amount of data read from the disks is equal to
the amount transferred through the network.

During a reconstruction operation, a helper reads req-
uisite data from the disks, computes (if required) the de-
sired function, and transfers the result to the decoding
node. It follows that the amount of network transfer per-
formed during reconstruction forms a lower bound on the
amount of data read from the disk at the helpers. Thus,
a lower bound on the network transfers is also a lower
bound on the amount of data read. On the other hand,
MSR codes are optimal with respect to network trans-
fers during reconstruction since they meet the associated
lower bound [12]. It follows that, under an MSR code,
an RBT-helper is optimal with respect to the amount of
data read from the disk.

1This property was originally titled ‘repair-by-transfer’ in [34] since
the focus of that paper was primarily on node failures. In this paper,
we consider more general reconstruction operations that include node-
repair, degraded reads etc., and hence the slight change in nomencla-
ture.

We now present our technique for achieving the
reconstruct-by-transfer property in MSR codes.

3.2 Achieving Reconstruct-by-transfer
Towards the goal of designing reconstruct-by-transfer

codes, we first identify two properties that we would like
a helper to satisfy. We will then provide an algorithm to
convert any (linear) MSR code satisfying these two prop-
erties into one that can perform reconstruct-by-transfer at
such a helper.

Property 1: The function computed at a helper is in-
dependent of the choice of the remaining (d−1) helpers.
In other words, for any choice of h and f , th f D is inde-
pendent of D (recall the notation th f D from Section 2.4).

This allows us to simplify the notation by dropping the
dependence on D and referring to th f D simply as th f .

Property 2: Assume Property 1 is satisfied. Then the
helper would take (n−1) linear combinations of its own
data to transmit for the reconstruction of the other (n−1)
blocks in the stripe. We want every w of these (n− 1)
linear combinations to be linearly independent.

We now show that under the product-matrix-MSR
(PM-vanilla) codes, every helper satisfies the two prop-
erties enumerated above. Recall from Equation (4), the
computation performed at the helpers during reconstruc-
tion in PM-vanilla codes. Observe that the right hand
side of Equation (4) is independent of ‘D’, and therefore
the data that a helper transfers during a reconstruction
operation is dependent only on the identity of the helper
and the block being reconstructed. The helper, therefore,
does not need to know the identity of the other helpers.
It follows that PM-vanilla codes satisfy Property 1.

Let us now investigate Property 2. Recall
from Equation (4), the set of (n − 1) symbols,
{th1, . . . , th(h−1), th(h+1), . . . , thn}, that a helper block h
transfers to aid in reconstruction of each the other (n−1)
blocks in the stripe. Also, recall that the reconstruction
vectors {g1, . . . ,gn} assigned to the n blocks are chosen
such that every w of these vectors are linearly indepen-
dent. It follows that for every block, the (n− 1) linear
combinations that it computes and transfers for the re-
construction of the other (n−1) blocks in the stripe have
the property of any w being independent. PM-vanilla
codes thus satisfy Property 2 as well.

PM-vanilla codes are optimal with respect to the
storage-bandwidth tradeoff (Section 2.3). However,
these codes are not optimized in terms of I/O. As we will
show through experiments on the Amazon EC2 instances
(Section 5.3), PM-vanilla codes, in fact, have a higher
I/O overhead as compared to RS codes. In this section,
we will make use of the two properties listed above to
transform the PM-vanilla codes into being I/O optimal
for reconstruction, while retaining its properties of being
storage and network optimal. While we focus on the PM-
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vanilla codes for concreteness, we remark that the tech-
nique described is generic and can be applied to any (lin-
ear) MSR code satisfying the two properties listed above.

Under our algorithm, each block will function as an
RBT-helper for some w other blocks in the stripe. For
the time being, let us assume that for each helper block,
the choice of these w blocks is given to us. Under this
assumption, Algorithm 1 outlines the procedure to con-
vert the PM-vanilla code (or in general any linear MSR
code satisfying the two aforementioned properties) into
one in which every block can function as an RBT-helper
for w other blocks. Section 4 will subsequently provide
an algorithm to make the choice of RBT-helpers for each
block to optimize the I/O cost across the entire system.

Let us now analyze Algorithm 1. Observe that each
block still stores w symbols and hence Algorithm 1
does not increase the storage requirements. Further,
recall from Section 2.5 that the reconstruction vectors{

gih1 , · · · ,gihw

}
are linearly independent. Hence the

transformation performed in Algorithm 1 is an invertible
transformation within each block. Thus the property of
being able to recover all the data from any k blocks con-
tinues to hold as under PM-vanilla codes, and the trans-
formed code retains the storage-reliability optimality.

Let us now look at the reconstruction process in the
transformed code given by Algorithm 1. The symbol
transferred by any helper block h for the reconstruc-
tion of any block f remains identical to that under the
PM-vanilla code, i.e., is as given by the right hand side
of Equation (4). Since the transformation performed in
Algorithm 1 is invertible within each block, such a re-
construction is always possible and entails the minimum
network transfers. Thus, the code retains the storage-
bandwidth optimality as well. Observe that for a block f
in the set of the w blocks for which a block h intends to
function as an RBT-helper, block h now directly stores
the symbol th f = [sh1 · · · shw]g f . As a result, whenever
called upon to help block f , block h can directly read and
transfer this symbol, thus performing a reconstruct-by-
transfer operation. As discussed in Section 3.1, by virtue
of its storage-bandwidth optimality and reconstruct-by-
transfer, the transformed code from Algorithm 1 (lo-
cally) optimizes the amount of data read from disks at
the helpers. We will consider optimizing I/O across the
entire system in Section 4.

3.3 Making the Code Systematic
Transforming the PM-vanilla code using Algorithm 1

may result in a loss of the systematic property. A fur-
ther transformation of the code, termed ‘symbol remap-
ping’, is required to make the transformed code system-
atic. Symbol remapping [29, Theorem 1] involves trans-
forming the original data symbols {m1, . . . ,mB} using a
bijective transformation before applying Algorithm 1, as

described below.
Since every step of Algorithm 1 is linear, the encod-

ing under Algorithm 1 can be represented by a generator
matrix, say GAlg1, of dimension (nw×B) and the encod-
ing can be performed by the matrix-vector multiplica-
tion: GAlg1

[
m1 m2 · · · mB

]T . Partition GAlg1 as

GAlg1 =

[
G1
G2

]
, (5)

where G1 is a (B×B) matrix corresponding to the en-
coded symbols in the first k systematic blocks, and G2 is
an ((nw−B)×B matrix. The symbol remapping step to
make the transformed code systematic involves multipli-
cation by G−1

1 . The invertibility of G1 follows from the
fact that G1 corresponds to the encoded symbols in the
first k blocks and all the encoded symbols in any set of k
blocks are linearly independent. Thus the entire encod-
ing process becomes

[
G1
G2

]
G−1

1




m1
m2
...

mB


=

[
I

G2G−1
1

]



m1
m2
...

mB


 , (6)

where I is the (B×B) identity matrix. We can see that the
symbol remapping step followed by Algorithm 1 makes
the first k blocks systematic.

Since the transformation involved in the symbol
remapping step is invertible and is applied to the data
symbols before the encoding process, this step does not
affect the performance with respect to storage, reliability,
and network and I/O consumption during reconstruction.

3.4 Making Reads Sequential
Optimizing the amount of data read from disks might

not directly correspond to optimized I/Os, unless the data
read is sequential. In the code obtained from Algo-
rithm 1, an RBT-helper reads one symbol per byte-level
stripe during a reconstruction operation. Thus, if one
chooses the w symbols belonging to a byte-level stripe
within a block in a contiguous manner, as in Figure 3,
the data read at the helpers during reconstruction oper-
ations will be fragmented. In order to the read sequen-
tial, we employ the hop-and-couple technique introduced
in [27]. The basic idea behind this technique is to choose
symbols that are farther apart within a block to form the
byte-level stripes. If the stripe-width of the code is w,
then choosing symbols that are a 1

w fraction of the block
size away will make the read at the helpers during recon-
struction operations sequential. Note that this technique
does not affect the natural sequence of the raw data in the
data blocks, so the normal read operations can be served
directly without any sorting. In this manner, we ensure
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Algorithm 1 Algorithm to achieve reconstruct-by-transfer at helpers
Encode the data in k data blocks using PM-vanilla code to obtain the n encoded blocks
for every block h in the set of n blocks
...Let {ih1, . . . , ihw} denote the set of w blocks that block h will help to reconstruct by transfer
...Let {sh1, . . . ,shw} denote the set of w symbols that block h stores under PM− vanilla
...Compute [sh1 · · · shw]

[
gih1 · · · gihw

]
and store the resulting w symbols in block h instead of the original w symbols

that reconstruct-by-transfer optimizes I/O at the helpers
along with the amount of data read from the disks.

4 Optimizing RBT-Helper Assignment
In Algorithm 1 presented in Section 3, we assumed

the choice of the RBT-helpers for each block to be given
to us. Under any such given choice, we saw how to
perform a local transformation at each block such that
reconstruction-by-transfer could be realized under that
assignment. In this section, we present an algorithm to
make this choice such that the I/Os consumed during re-
construction operations is optimized globally across the
entire system. Before going into any details, we first
make an observation which will motivate our approach.

A reconstruction operation may be instantiated in any
one of the following two scenarios:

• Failures: When a node fails, the reconstruction op-
eration restores the contents of that node in another
storage nodes in order to maintain the system reli-
ability and availability. Failures may entail recon-
struction operations of either systematic or parity
blocks.

• Degraded reads: When a read request arrives, the
systematic block storing the requested data may be
busy or unavailable. The request is then served by
calling upon a reconstruction operation to recover
the desired data from the remaining blocks. This is
called a degraded read. Degraded reads entail re-
construction of only the systematic blocks.

A system may be required to support either one or both
of these scenarios, and as a result, the importance asso-
ciated to the reconstruction of a systematic block may
often be higher than the importance associated to the re-
construction of a parity block.

We now present a simple yet general model that we
will use to optimize I/Os holistically across the system.
The model has two parameters, δ and p. The relative
importance between systematic and parity blocks is cap-
tured by the first parameter δ . The parameter δ takes
a value between (and including) 0 and 1, and the cost
associated with the reconstruction of any parity block
is assumed to be δ times the cost associated to the re-
construction of any systematic block. The “cost” can be
used to capture the relative difference in the frequency

(a) Total number of I/Os consumed

(b) Maximum of the I/O completion times at
helpers

Figure 4: Reconstruction under different number of
RBT-helpers for k = 6, d = 11, and a block size of 16MB.

of reconstruction operations between the parity and sys-
tematic blocks or the preferential treatment that one may
wish to confer to the reconstruction of systematic blocks
in order to serve degraded reads faster.

When reconstruction of any block is to be carried out,
either for repairing a possible failure or for a degraded
read, not all remaining blocks may be available to help in
the reconstruction process. The parameter p (0 ≤ p ≤ 1)
aims to capture this fact: when the reconstruction of a
block is to be performed, every other block may indi-
vidually be unavailable with a probability p independent
of all other blocks. Our intention here is to capture the
fact that if a block has certain number of helpers that can
function as RBT-helpers, not all of them may be avail-
able when reconstruction is to be performed.

We performed experiments on Amazon EC2 measur-
ing the number of I/Os performed for reconstruction
when precisely j (0 ≤ j ≤ d) of the available helpers
are RBT-helpers and the remaining (d − j) helpers are
non-RBT-helpers. The non-RBT-helpers do not perform
reconstruct-by-transfer, and are hence optimal with re-
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Algorithm 2 Algorithm for optimizing RBT-helper assignment
//To compute number of RBT-helpers for each block
Set num rbt helpers[block] = 0 for every block
for total rbt help = nw to 1
...for block in all blocks
......if num rbt helpers[block] < n-1

.........Set improvement[block] = Cost(num rbt helpers[block]) - Cost(num rbt helpers[block]+1)

......else

.........Set improvement[block] = -1

...Let max improvement be the set of blocks with the maximum value of improvement

...Let this block be a block in max improvement with the largest value of num rbt helpers

...Set num rbt helpers[this block] = num rbt helpers[this block]+1

...
//To select the RBT-helpers for each block
Call the Kleitman-Wang algorithm [20] to generate a digraph on n vertices with incoming degrees num rbt helpers

and all outgoing degrees equal to w
for every edge i → j in the digraph
...Set block i as an RBT-helper to block j

spect to network transfers but not the I/Os. The result
of this experiment aggregated from 20 runs is shown in
Figure 4a, where we see that the number of I/Os con-
sumed reduces linearly with an increase in j. We also
measured the maximum of the time taken by the d helper
blocks to complete the requisite I/O, which is shown Fig-
ure 4b. Observe that as long as j < d, this time decays
very slowly upon increase in j, but reduces by a large
value when j crosses d. The reason for this behavior is
that the time taken by the non-RBT-helpers to complete
the required I/O is similar, but is much larger than the
time taken by the RBT-helpers.

Algorithm 2 takes the two parameters δ and p as in-
puts and assigns RBT-helpers to all the blocks in the
stripe. The algorithm optimizes the expected cost of I/O
for reconstruction across the system, and furthermore
subject to this minimum cost, minimizes the expected
time for reconstruction. The algorithm takes a greedy ap-
proach in deciding the number of RBT-helpers for each
block. Observing that, under the code obtained from Al-
gorithm 1, each block can function as an RBT-helper for
at most w other blocks, the total RBT-helping capacity
in the system is nw. This total capacity is partitioned
among the n blocks as follows. The allocation of each
unit of RBT-helping capacity is made to the block whose
expected reconstruction cost will reduce the most with
the help of this additional RBT-helper. The expected re-
construction cost for any block, under a given number
of RBT-helper blocks, can be easily computed using the
parameter p; the cost of a parity block is further mul-
tiplied by δ . Once the number of RBT-helpers for each
block is obtained as above, all that remains is to make the
choice of the RBT-helpers for each block. In making this
choice, the only constraints to be satisfied are the num-

ber of RBT-helpers for each block as determined above
and that no block can help itself. The Kleitman-Wang
algorithm [20] facilitates such a construction.

The following theorem provides rigorous guarantees
on the performance of Algorithm 2.

Theorem 1 For any given (δ , p), Algorithm 2 minimizes
the expected amount of disk reads for reconstruction op-
erations in the system. Moreover, among all options re-
sulting in this minimum disk read, the algorithm further
chooses the option which minimizes the expected time of
reconstruction.

The proof proceeds by first showing that the expected re-
construction cost of any particular block is convex in the
number of RBT-helpers assigned to it. It then employs
this convexity, along with the fact that the expected cost
must be non-increasing in the number of assigned RBT-
helpers, to show that no other assignment algorithm can
yield a lower expected cost. We omit the complete proof
of the theorem due to space constraints.

The output of Algorithm 2 for n = 15, k = 6, d = 11
and (δ = 0.25, p = 0.03) is illustrated in Fig 5. Blocks
1, . . . ,6 are systematic and the rest are parity blocks.
Here, Algorithm 2 assigns 12 RBT-helpers to each of the
systematic blocks, and 11 and 7 RBT-helpers to the first
and second parity blocks respectively.

The two ‘extremities’ of the output of Algorithm 2
form two interesting special cases:

1. Systematic (SYS): All blocks function as RBT-
helpers for the k systematic blocks.

2. Cyclic (CYC): Block i ∈ {1, . . . ,n} functions as an
RBT-helper for blocks {i+1, . . . , i+w} mod n.
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Figure 5: The output of Algorithm 2 for the parameters
n = 15, k = 6, d = 11, and (δ = 0.25, p = 0.03) depict-
ing the assignment of RBT-helpers. The directed edges
from a block indicate the set of blocks that it helps to
reconstruct-by-transfer. Systematic blocks are shaded.

Algorithm 2 will output the SYS pattern if, for example,
reconstruction of parity blocks incur negligible cost (δ is
close to 0) or if δ < 1 and p is large. Algorithm 2 will
output the CYC pattern if, for instance, the systematic
and the parity blocks are treated on equal footing (δ is
close to 1), or in low churn systems where p is close to
0.

While Theorem 1 provides mathematical guarantees
on the performance of Algorithm 2, Section 5.7 will
present an evaluation of its performance via simulations
using data from Amazon EC2 experiments.

5 Implementation and Evaluation

5.1 Implementation and Evaluation Set-
ting

We have implemented the PM-vanilla codes [29] and
the PM-RBT codes (Section 3 and Section 4) in C/C++.
In our implementation, we make use of the fact that
the PM-vanilla and the PM-RBT codes are both lin-
ear. That is, we compute the matrices that represent
the encoding and decoding operations under these codes
and execute these operations with a single matrix-vector
multiplication. We employ the Jerasure2 [25] and GF-
Complete [26] libraries for finite-field arithmetic opera-
tions also for the RS encoding and decoding operations.

We performed all the evaluations, except those in Sec-
tion 5.5 and Section 5.6, on Amazon EC2 instances of
type m1.medium (with 1 CPU, 3.75 GB memory, and

Figure 6: Total amount of data transferred across the
network from the helpers during reconstruction. Y-axes
scales vary across plots.

attached to 410 GB of hard disk storage). We chose
m1.medium type since these instances have hard-disk
storage. We evaluated the encoding and decoding per-
formance on instances of type m3.medium which run on
an Intel Xeon E5-2670v2 processor with a 2.5GHz clock
speed. All evaluations are single-threaded.

All the plots are from results aggregated over 20 inde-
pendent runs showing the median values with 25th and
75th percentiles. In the plots, PM refers to PM-vanilla
codes and RBT refers to PM-RBT codes. Unless other-
wise mentioned, all evaluations on reconstruction are for
(n = 12, k = 6, d = 11), considering reconstruction of
block 1 (i.e., the first systematic block) with all d = 11
RBT-helpers. We note that all evaluations except the one
on decoding performance (Section 5.5) are independent
of the identity of the block being reconstructed.

5.2 Data Transfers Across the Network

Figure 6 compares the total amount of data trans-
ferred from helper blocks to the decoding node during
reconstruction of a block. We can see that, both PM-
vanilla and PM-RBT codes have identical and signifi-
cantly lower amount of data transferred across the net-
work as compared to RS codes: the network transfers
during the reconstruction for PM-vanilla and PM-RBT
are about 4x lower than that under RS codes.

5.3 Data Read and Number of I/Os

A comparison of the total number of disk I/Os and
the total amount of data read from disks at helpers dur-
ing reconstruction are shown in Figure 7a and Figure 7b
respectively. We observe that the amount of data read
from the disks is as given by the theory across all block
sizes that we experimented with. We can see that while
PM-vanilla codes provide significant savings in network
transfers during reconstruction as compared to RS as
seen in Figure 6, they result in an increased number of
I/Os. Furthermore, the PM-RBT code leads to a signif-
icant reduction in the number of I/Os consumed and the
amount of data read from disks during reconstruction.

9
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(a) Total number of disk I/Os consumed

(b) Total amount of data read from disks

Figure 7: Total number of disk I/Os and total amount of
data read from disks at the helpers during reconstruction.
Y-axes scales vary across plots.

Figure 8: Maximum of the I/O completion times at
helpers. Y-axes scales vary across plots.

For all the block sizes considered, we observed approx-
imately a 5x reduction in the number of I/Os consumed
under the PM-RBT as compared to PM-vanilla (and ap-
proximately 3× reduction as compared to RS).

5.4 I/O Completion Time

The I/O completion times during reconstruction are
shown in Figure 8. During a reconstruction operation,
the I/O requests are issued in parallel to the helpers.
Hence we plot the the maximum of the I/O completion
times from the k = 6 helpers for RS coded blocks and
the maximum of the I/O completion times from d = 11
helpers for PM-vanilla and PM-RBT coded blocks. We
can see that PM-RBT code results in approximately 5×
to 6× reduction I/O completion time.

Figure 9: Comparison of decoding speed during recon-
struction for various values of k with n = 2k, and d =
2k−1 for PM-vanilla and PM-RBT.

5.5 Decoding Performance

We measure the decoding performance during re-
construction in terms of the amount of data of the
failed/unavailable block that is decoded per unit time.
We compare the decoding speed for various values of
k, and fix n = 2k and d = 2k − 1 for both PM-vanilla
and PM-RBT. For reconstruction under RS codes, we
observed that a higher number of systematic helpers re-
sults in a faster decoding process, as expected. In the
plots discussed below, we will show two extremes of this
spectrum: (RS1) the best case of helper blocks compris-
ing all the existing (k−1) = 5 systematic blocks and one
parity block, and (RS2) the worst case of helper blocks
comprising all the r = 6 parity blocks.

Figure 9 shows a comparison of the decoding speed
during reconstruction of block 0. We see that the best
case (RS1) for RS is the fastest since the operation in-
volves only substitution and solving a small number of
linear equations. On the other extreme, the worst case
(RS2) for RS is much slower than PM-vanilla and PM-
RBT. The actual decoding speed for RS would depend on
the number of systematic helpers involved and the per-
formance would lie between the RS1 and RS2 curves.
We can also see that the transformations introduced in
this paper to optimize I/Os does not affect the decoding
performance: PM-vanilla and PM-RBT have roughly the
same decoding speed. In our experiments, we also ob-
served that in both PM-vanilla and PM-RBT, the decod-
ing speeds were identical for the n blocks.

5.6 Encoding Performance

We measure the encoding performance in terms of the
amount of data encoded per unit time. A comparison
of the encoding speed for varying values of k is shown
in Figure 10. Here we fix d = 2k − 1 and n = 2k and
vary the values of k. The lower encoding speeds for PM-
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Figure 10: Encoding speed for various values of k with
n = 2k, and d = 2k−1 for PM-vanilla and PM-RBT.

vanilla and PM-RBT as compared to RS are expected
since the encoding complexity of these codes is higher.
In RS codes, computing each encoded symbol involves a
linear combination of only k data symbols, which incurs
a complexity of O(k), whereas in PM-vanilla and PM-
RBT codes each encoded symbol is a linear combination
of kw symbols which incurs a complexity of O(k2).

Interestingly, we observe that encoding under PM-
RBT with the SYS RBT-helper pattern (Section 4) is
significantly faster than that under the PM-vanilla code.
This is because the generator matrix of the code under the
SYS RBT-helper pattern is sparse (i.e., has many zero-
valued entries); this reduces the number of finite-field
multiplication operations, that are otherwise computa-
tionally heavy. Thus, PM-RBT with SYS RBT-helper
pattern results in faster encoding as compared to PM-
vanilla codes, in addition to minimizing the disk I/O dur-
ing reconstruction. Such sparsity does not arise under the
CYC RBT-helper pattern, and hence its encoding speed
is almost identical to PM-vanilla.

We believe that the significant savings in disk I/O of-
fered by PM-RBT codes outweigh the cost of decreased
encoding speed. This is especially true for systems stor-
ing immutable data (where encoding is a one-time over-
head) and where encoding is performed as a background
operation without falling along any critical path. This
is true in many cloud storage systems such as Windows
Azure and the Hadoop Distributed File System where
data is first stored in a triple replicated fashion and then
encoded in the background.

Remark: The reader may observe that the speed
(MB/s) of encoding in Figure 10 is faster than that of de-
coding during reconstruction in Figure 9. This is because
encoding addresses k blocks at a time while the decoding
operation addresses only a single block.

Figure 11: A box plot of the reconstruction cost for dif-
ferent RBT-helper assignments, for δ = 0.25, p = 0.03,
n = 15, k = 6, d = 11, and block size of 16MB. In each
box, the mean is shown by the small (red) square and the
median is shown by the thick (red) line.

5.7 RBT-helper Assignment Algorithm

As discussed earlier in Section 4, we conducted exper-
iments on EC2 performing reconstruction using differ-
ent number of RBT-helpers (see Figure 4). We will now
evaluate the performance of the helper assignment algo-
rithm, Algorithm 2, via simulations employing the mea-
surements obtained from these experiments. The plots of
the simulation results presented here are aggregated from
one million runs of the simulation. In each run, we failed
one of the n blocks chosen uniformly at random. For its
reconstruction operation, the remaining (n − 1) blocks
were made unavailable (busy) with a probability p each,
thereby also making some of the RBT-helpers assigned
to this block unavailable. In the situation when only j
RBT-helpers are available (for any j in {0, . . . ,d}), we
obtained the cost of reconstruction (in terms of number
of I/Os used) by sampling from the experimental values
obtained from our EC2 experiments with j RBT-helpers
and (d − j) non-RBT-helpers (Figure 4a). The recon-
struction cost for parity blocks is weighted by δ .

Figure 11 shows the performance of the RBT-helper
assignment algorithm for the parameter values δ = 0.25
and p = 0.03. The plot compares the performance of
three possible choices of helper assignments: the assign-
ment obtained by Algorithm 2 for the chosen param-
eters (shown in Figure 5), and the two extremities of
Algorithm 2, namely SYS and CYC. We make the fol-
lowing observations from the simulations. In the CYC
case, the unweighted costs for reconstruction are homo-
geneous across systematic and parity blocks due to the
homogenity of the CYC pattern, but upon reweighting
by δ , the distribution of costs become (highly) bi-modal.
In Figure 11, the performance of SYS and the solution
obtained from Algorithm 2 are comparable, with the out-
put of Algorithm 2 slightly outperforming SYS. This is
as expected since for the given choice of parameter val-
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ues δ = 0.25 and p = 0.03, the output of Algorithm 2
(see Figure 5) is close to SYS pattern.

6 Related Literature
In this section, we review related literature on optimiz-

ing erasure-coded storage systems with respect to net-
work transfers and the amount of data read from disks
during reconstruction operations.

In [17], the authors build a file system based on
the minimum-bandwidth-regenerating (MBR) code con-
structions of [34]. While system minimizes network
transfers and the amount of data read during reconstruc-
tion, it mandates additional storage capacity to achieve
the same. That is, the system is not optimal with respect
to storage-reliability tradeoff (recall from Section 2).
The storage systems proposed in [18, 23, 13] employ
a class of codes called local-repair codes which opti-
mize the number of blocks accessed during reconstruc-
tion. This, in turn, also reduces the amount of disk reads
and network transfers. However, these systems also ne-
cessitate an increase in storage-space requirements in
the form of at least 25% to 50% additional parities.
In [21], authors present a system which combines local-
repair codes with the graph-based MBR codes presented
in [34]. This work also necessitates additional storage
space. The goal of the present paper is to optimize I/Os
consumed during reconstruction without losing the opti-
mality with respect to storage-reliability tradeoff.

[16] and [6], the authors present storage systems based
on random network-coding that optimize resources con-
sumed during reconstruction. Here the data that is recon-
structed is not identical and is only “functionally equiv-
alent” to the failed data. As a consequence, the system
is not systematic, and needs to execute the decoding pro-
cedure for serving every read request. The present paper
designs codes that are systematic, allowing read requests
during the normal mode of operation to be served directly
without executing the decoding procedure.

In [27], the authors present a storage system based
on a class of codes called Piggybacked-RS codes [30]
that also reduces the amount of data read during recon-
struction. However, PM-RBT codes provide higher sav-
ings as compared to these codes. On the other hand,
Piggybacked-RS codes have the advantage of being ap-
plicable for all values of k and r, whereas PM-RBT codes
are only applicable for d ≥ (2k−2) and thereby necessi-
tate a storage overhead of atleast (2− 1

k ). In [19], authors
present Rotated-RS codes which also reduce the amount
of data read during rebuilding. However, the reduction
achieved is significantly lower than that in PM-RBT.

In [33], the authors consider the theory behind
reconstruction-by-transfer for MBR codes, which as dis-
cussed earlier are not optimal with respect to storage-
reliability tradeoff. Some of the techniques employed in

the current paper are inspired by the techniques intro-
duced in [33]. In [36] and [38], the authors present op-
timizations to reduce the amount of data read for recon-
struction in array codes with two parities. [19] presents
a search-based approach to find reconstruction symbols
that optimize I/O for arbitrary binary erasure codes, but
this search problem is shown to be NP-hard.

Several works (e.g., [8, 24, 11]) have proposed system-
level solutions to reduce network and I/O consumption
for reconstruction, such as caching the data read during
reconstruction, batching multiple reconstruction opera-
tions, and delaying the reconstruction operations. While
these solutions consider the erasure code as a black-box,
our work optimizes this black-box and can be used in
conjunction with these system-level solutions.

7 Conclusion

With rapid increases in the network-interconnect
speeds and the advent of high-capacity storage de-
vices, I/O is increasingly becoming the bottleneck in
many large-scale distributed storage systems. A family
of erasure-codes called minimum-storage-regeneration
(MSR) codes has recently been proposed as a superior
alternative to the popular Reed-Solomon codes in terms
of storage, fault-tolerance and network-bandwidth con-
sumed. However, existing practical MSR codes do not
address the critically growing problem of optimizing for
I/Os. In this work, we show that it is possible to have
your cake and eat it too, in the sense that we can min-
imize disk I/O consumed, while simultaneously retain-
ing optimality in terms of both storage, reliability and
network-bandwidth.

Our solution is based on the identification of two key
properties of existing MSR codes that can be exploited
to make them I/O optimal. We presented an algorithm
to transform Product-Matrix-MSR codes into I/O opti-
mal codes (which we term the PM-RBT codes), while re-
taining their storage and network optimality. Through an
extensive set of experiments on Amazon EC2, we have
shown that our proposed PM-RBT codes result in signif-
icant reduction in the I/O consumed. Additionally, we
have presented an optimization framework for helper as-
signment to attain a system-wide globally optimal solu-
tion, and established its performance through simulations
based on EC2 experimentation data.
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Abstract
Reuse-distance analysis is a powerful technique for char-
acterizing temporal locality of workloads, often visual-
ized with miss ratio curves (MRCs). Unfortunately, even
the most efficient exact implementations are too heavy-
weight for practical online use in production systems.

We introduce a new approximation algorithm that
employs uniform randomized spatial sampling, imple-
mented by tracking references to representative loca-
tions selected dynamically based on their hash values.
A further refinement runs in constant space by lower-
ing the sampling rate adaptively. Our approach, called
SHARDS (Spatially Hashed Approximate Reuse Distance
Sampling), drastically reduces the space and time re-
quirements of reuse-distance analysis, making continu-
ous, online MRC generation practical to embed into pro-
duction firmware or system software. SHARDS also en-
ables the analysis of long traces that, due to memory con-
straints, were resistant to such analysis in the past.

We evaluate SHARDS using trace data collected from
a commercial I/O caching analytics service. MRCs gen-
erated for more than a hundred traces demonstrate high
accuracy with very low resource usage. MRCs con-
structed in a bounded 1 MB footprint, with effective sam-
pling rates significantly lower than 1%, exhibit approxi-
mate miss ratio errors averaging less than 0.01. For large
traces, this configuration reduces memory usage by a fac-
tor of up to 10,800 and run time by a factor of up to 204.

1 Introduction

Caches designed to accelerate data access by exploiting
locality are pervasive in modern storage systems. Oper-
ating systems and databases maintain in-memory buffer
caches containing “hot” blocks considered likely to be
reused. Server-side or networked storage caches using
flash memory are popular as a cost-effective way to re-
duce application latency and offload work from rotating
disks. Virtually all storage devices — ranging from indi-
vidual disk drives to large storage arrays — include sig-
nificant caches composed of RAM or flash memory.

Since cache space consists of relatively fast, expensive
storage, it is inherently a scarce resource, and is com-
monly shared among multiple clients. As a result, op-
timizing cache allocations is important, and approaches

for estimating workload performance as a function of
cache size are particularly valuable.

1.1 Cache Utility Curves
Cache utility curves are effective tools for managing
cache allocations. Such curves plot a performance metric
as a function of cache size. Figure 1 shows an example
miss-ratio curve (MRC), which plots the ratio of cache
misses to total references for a workload (y-axis) as a
function of cache size (x-axis). The higher the miss ra-
tio, the worse the performance; the miss ratio decreases
as cache size increases. MRCs come in many shapes
and sizes, and represent the historical cache behavior of
a particular workload.

Assuming some level of stationarity in the workload
pattern at the time scale of interest, its MRC can also be
used to predict its future cache performance. An admin-
istrator can use a system-wide miss ratio curve to help
determine the aggregate amount of cache space to pro-
vision for a desired improvement in overall system per-
formance. Similarly, an automated cache manager can
utilize separate MRCs for multiple workloads of varying
importance, optimizing cache allocations dynamically to
achieve service-level objectives.

1.2 Weaker Alternatives
The concept of a working set — the set of data accessed
during the most recent sample interval [16] — is often
used by online allocation algorithms in systems software
[12, 54, 61]. While working-set estimation provides
valuable information, it doesn’t measure data reuse, nor
does it predict changes in performance as cache alloca-
tions are varied. Without the type of information con-
veyed in a cache utility curve, administrators or auto-
mated systems seeking to optimize cache allocations are
forced to resort to simple heuristics, or to engage in trial-
and-error tests. Both approaches are problematic.

Heuristics simply don’t work well for cache sizing,
since they cannot capture the temporal locality profile of
a workload. Without knowledge of marginal benefits, for
example, doubling (or halving) the cache size for a given
workload may change its performance only slightly, or
by a dramatic amount.

Trial-and-error tests that vary the size of a cache and
measure the effect are not only time-consuming and ex-
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Figure 1: Example MRC. A miss ratio curve plots the ratio
of cache misses to total references, as a function of cache size.

pensive, but also present significant risk to production
systems. Correct sizing requires experimentation across
a range of cache allocations; some might induce thrash-
ing and cause a precipitous loss of performance. Long-
running experiments required to warm up caches or to
observe business cycles may exacerbate the negative ef-
fects. In practice, administrators rarely have time for this.

1.3 MRC Construction
Although cache utility curves are extremely useful for
planning and optimization, the algorithms used to con-
struct them are computationally expensive. To construct
an exact MRC, it is necessary to observe data reuse over
the access trace. Every accessed location must be tracked
and stored in data structures during trace processing, re-
sulting in large overheads in both time and space.

The technique due to Mattson et al. [34] scans the
trace of references to collect a histogram of reuse dis-
tances. The reuse distance for an access to a block B
is measured as the number of other intervening unique
blocks referenced since the previous access to B. The
number of times a particular reuse distance occurs is col-
lected while processing the trace, over all possible reuse
distances. Conceptually, for modeling LRU, accessed
blocks are totally ordered in a stack from most recent
to least recent access. On an access to block B, it:
• determines the reuse distance of B as:

D = stack depth of B (for first access to B, D = ∞),
• records D in a reuse-distance histogram, and
• moves B to the top of stack.

Standard implementations maintain a balanced tree to
track the most recent references to each block and com-
pute reuse distances efficiently, and employ a hash table
for fast lookups into this tree. For a trace of length N
containing M unique references, the most efficient im-
plementations of this algorithm have an asymptotic cost
of O(N logM) time and O(M) space.

Given the non-linear computation cost and unbounded
memory requirements, it is impractical to perform real-
time analysis in production systems. Even when pro-

cessing can be delayed and performed offline from a
trace file, memory requirements may still be excessive.1

This is especially important when modeling large stor-
age caches; in contrast to RAM-based caches, affordable
flash cache capacities often exceed 1 TB, requiring many
gigabytes of RAM for traditional MRC construction.

1.4 Our Contributions
We introduce a new approach for reuse-distance anal-
ysis that constructs accurate miss ratio curves using
only modest computational resources. We call our tech-
nique SHARDS, for Spatially Hashed Approximate Reuse
Distance Sampling. It employs randomized spatial sam-
pling, implemented by tracking only references to rep-
resentative locations, selected dynamically based on a
function of their hash values. We further introduce an
extended version of SHARDS which runs in constant
space, by lowering the sampling rate adaptively.

The SHARDS approximation requires several orders
of magnitude less space and time than exact methods,
and is inexpensive enough for practical online MRC con-
struction in high-performance systems. The dramatic
space reductions also enable analysis of long traces that
is not feasible with exact methods. Traces that consume
many gigabytes of RAM to construct exact MRCs re-
quire less than 1 MB for accurate approximations.

This low cost even enables concurrent evaluation of
different cache configurations (e.g., block size or write
policy) using multiple SHARDS instances. We also
present a related generalization to non-LRU policies.

We have implemented SHARDS in the context of a
commercial I/O caching analytics service for virtualized
environments. Our system streams compressed block I/O
traces for VMware virtual disks from customer data cen-
ters to a cloud-based backend that constructs approxi-
mate MRCs efficiently. A web-based interface reports
expected cache benefits, such as the cache size required
to reduce average I/O latency by specified amounts. Run-
ning this service, we have accumulated a large number of
production traces from customer environments.

For this paper, we analyzed both exact and approxi-
mate MRCs for more than a hundred virtual disks from
our trace library, plus additional publicly-available block
I/O traces. Averaged across all traces, the miss ratios
of the approximated MRCs, constructed using a 0.1%
sampling rate, deviate in absolute value from the exact
MRCs by an average of less than 0.02; i.e., the approxi-
mate sampled miss ratio is within 2 percentage points of
the value calculated exactly using the full trace.

Moreover, approximate MRCs constructed using a
fixed sample-set size, with only 8K samples in less than

1We have collected several single-VM I/O traces for which conven-
tional MRC construction does not fit in 64 GB RAM.
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1 MB memory, deviate by an average of less than 0.01
from the exact full trace values. This high accuracy is
achieved despite dramatic memory savings by a factor of
up to 10,800× for large traces, and a median of 185×
across all traces. The computation cost is also reduced
up to 204× for large traces, with a median of 22×.

The next section presents the SHARDS algorithm,
along with an extended version that runs in constant
space. Details of our MRC construction implementation
are examined in Section 3. Section 4 evaluates SHARDS
through quantitative experiments on more than a hundred
real-world I/O traces. Related work is discussed in Sec-
tion 5. Finally, we summarize our conclusions and high-
light opportunities for future work in Section 6.

2 SHARDS Sampling Algorithm

Our core idea is centered around a simple question: what
if we compute reuse distances for a randomly sampled
subset of the referenced blocks? The answer leads to
SHARDS, a new algorithm based on spatially-hashed
sampling. Despite the focus on storage MRCs, this ap-
proach can be applied more generally to approximate
other cache utility curves, with any stream of references
containing virtual or physical location identifiers.

2.1 Basic SHARDS
SHARDS is conceptually simple — for each referenced
location L, the decision of whether or not to sample L is
based on whether hash(L) satisfies some condition. For
example, the condition hash(L) mod 100 < K samples
approximately K percent of the entire location space. As-
suming a reasonable hash function, this effectively im-
plements uniform random spatial sampling.

This method has several desirable properties. As re-
quired for reuse distance computations, it ensures that all
accesses to the same location will be sampled, since they
will have the same hash value. It does not require any
prior knowledge about the system, its workload, or the
location address space. In particular, no information is
needed about the set of locations that may be accessed
by the workload, nor the distribution of accesses to these
locations. As a result, SHARDS sampling is effectively
stateless. In contrast, explicitly pre-selecting a random
subset of locations may require significant storage, espe-
cially if the location address space is large. Often, only a
small fraction of this space is accessed by the workload,
making such pre-selection especially inefficient.

More generally, using the sampling condition
hash(L) mod P < T , with modulus P and threshold T ,
the effective sampling rate is R = T/P, and each sample
represents 1/R locations, in a statistical sense. The
sampling rate may be varied by changing the threshold
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Tree for fast distance computation
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Figure 2: Algorithm Overview. New steps in SHARDS
compared to a standard exact MRC construction algorithm.

T dynamically. When the threshold is lowered from
T to T ′, a subset-inclusion property is maintained
automatically. Each location sampled after lowering the
rate would also have been sampled prior to lowering the
rate; since T ′ < T , the samples selected with T ′ are a
proper subset of those selected with T .

2.2 Fixed-Rate MRC Construction
Conventional reuse-distance algorithms construct an ex-
act MRC from a complete reference trace [34, 39]. Con-
veniently, as shown in Figure 2, existing MRC construc-
tion implementations can be run, essentially unmodified,
by providing them a sampled reference trace as input.
The only modification is that each reuse distance must be
scaled appropriately by 1/R, since each sampled location
statistically represents a larger number of locations.
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Standard MRC construction algorithms are computa-
tionally expensive. Consider a reference stream contain-
ing N total references to M unique locations. While
an optimized implementation using efficient data struc-
tures requires only O(N logM) time, it still consumes
O(M) space for the hash table and balanced tree used
to compute reuse distances. SHARDS can be used to
construct an approximate MRC in dramatically less time
and space. With a fixed sampling rate R, the expected
number of unique sampled locations becomes R ·M. As-
suming the sampled locations are fairly representative,
the total number of sampled references is reduced to ap-
proximately R ·N. As we will see in Section 4, for most
workloads, R = 0.001 yields very accurate MRCs, us-
ing memory and processing resources that are orders of
magnitude smaller than conventional approaches.

2.3 Fixed-Size MRC Construction
Fixed-rate MRC construction achieves a radical reduc-
tion in computational resource requirements. Neverthe-
less, even with a low, constant sampling rate, space re-
quirements may still grow without bound, along with the
total number of unique locations that must be tracked.
For memory-constrained environments, such as produc-
tion cache controller firmware where MRCs could in-
form cache allocation decisions, it is desirable to place
an upper bound on memory size.

An additional issue is the choice of an appropriate
sampling rate, R, since the accuracy of MRC approxi-
mation using spatial sampling also depends on N and M.
When these values are small, it is preferable to use a rela-
tively large value for R (such as 0.1) to improve accuracy.
When these values are large, it is preferable to use a rela-
tively small value of R (such as 0.001), to avoid wasting
or exhausting available resources. Weighing these trade-
offs is difficult, especially with incomplete information.

This suggests that accuracy may depend more on an
adequate sample size than a particular sampling rate.
This motivates an extended version of SHARDS that
constructs an MRC in O(1) space and O(N) time, re-
gardless of the size or other properties of its input trace.

2.3.1 Sampling Rate Adaptation
An appropriate sampling rate is determined automati-
cally, and need not be specified. The basic idea is to
lower the sampling rate adaptively, in order to maintain
a fixed bound on the total number of sampled locations
that are tracked at any given point in time. The sampling
rate is initialized to a high value, and is lowered grad-
ually as more unique locations are encountered. This
approach leverages the subset-inclusion property main-
tained by SHARDS as the rate is reduced.

Initially, the sampling rate is set to a high value, such
as R0 = 1.0, the maximum possible value. This is im-

plemented by using a sampling condition of the form
hash(L) mod P < T , and setting the initial threshold T =
P, so that every location L will be selected. In practice,
R0 = 0.1 is sufficiently high for nearly any workload.

The goal of operating in constant space implies that
we cannot continue to track all sampled references. As
shown in Figure 2, a new auxiliary data structure is in-
troduced to maintain a fixed-size set S with cardinality
|S|. Each element of S is a tuple 〈Li, Ti〉, consisting of an
actively-sampled location Li, and its associated threshold
value, Ti = hash(Li) mod P. Let smax denote the max-
imum desired size |S| of set S; i.e., smax is a constant
representing an upper bound on the number of actively-
sampled locations. S can be implemented efficiently as a
priority queue, ordered by the tuple’s threshold value.

When the first reference to a location L that satisfies
the current sampling condition is processed, it is a cold
miss, since it has never been resident in the cache. In this
case, L is not already in S, so it must be added to the set.
If, after adding L, the bound on the set of active locations
would be exceeded, such that |S| > smax, then the size
of S must be reduced. The element

〈
L j, Tmax

〉
with the

largest threshold value Tmax is removed from the set, us-
ing a priority-queue dequeue operation. The threshold T
used in the current sampling condition is reduced to Tmax,
effectively reducing the sampling rate from Rold = T/P
to a new, strictly lower rate Rnew = Tmax/P, narrowing
the criteria used for future sample selection.

The corresponding location L j is also removed from
all other data structures, such as the hash table and tree
used in standard implementations. If any additional el-
ements of S have the same threshold Tmax, then they are
also removed from S in the same manner.

2.3.2 Histogram Count Rescaling
As with fixed-rate sampling, reuse distances must be
scaled by 1/R to reflect the sampling rate. An additional
consideration for the fixed-size case is that R is adjusted
dynamically. As the rate is reduced, the counts associ-
ated with earlier updates to the reuse-distance histogram
need to be adjusted. Ideally, the effects of all updates
associated with an evicted sample should be rescaled ex-
actly. Since this would incur significant space and pro-
cessing costs, we opt for a simple approximation.

When the threshold is reduced, the count associated
with each histogram bucket is scaled by the ratio of the
new and old sampling rates, Rnew/Rold , which is equiva-
lent to the ratio of the new and old thresholds, Tnew/Told .
Rescaling makes the simplifying assumption that previ-
ous references to an evicted sample contributed equally
to all existing buckets. While this is unlikely to be true
for any individual sample, it is nonetheless a reasonable
statistical approximation when viewed over many sam-
ple evictions and rescaling operations. Rescaling ensures
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Figure 3: Example SHARDS MRCs. MRCs constructed for a block I/O trace containing 69.5M references to 5.2M unique
blocks, using (a) fixed-rate SHARDS, varying R from 0.00001 to 0.1, and (b) fixed-size SHARDS, varying smax from 128 to 32K.

that subsequent references to the remaining samples in S
have the appropriate relative weight associated with their
corresponding histogram bucket increments.

Conceptually, rescaling occurs immediately each time
the current sampling threshold T is reduced. In practice,
to avoid the expense of rescaling all histogram counts
on every threshold change, it is instead performed in-
crementally. This is accomplished efficiently by storing
Tbucket with each histogram bucket, representing the sam-
pling threshold in effect when the bucket was last up-
dated. When incrementing a bucket count, if Tbucket �= T ,
then the existing count is first rescaled by T/Tbucket , the
count is incremented, and Tbucket is set to T . During the
final step in MRC construction, when histogram buck-
ets are summed to generate miss ratios, any buckets for
which Tbucket �= T need to be similarly rescaled.

3 Design and Implementation

We have developed several different implementations of
SHARDS. Although designed for flexible experimenta-
tion, efficiency — especially space efficiency — was al-
ways a key goal. This section describes important as-
pects of both our fixed-rate and fixed-size MRC con-
struction implementations, and discusses considerations
for modeling various cache policies.

3.1 Fixed-Rate Implementation
To facilitate comparison with a known baseline, we start
with the sequential version of the open-source C imple-
mentation of PARDA [39, 38]. PARDA takes a trace
file as input, and performs offline reuse distance analysis,
yielding an MRC. The implementation leverages two key
data structures: a hash table that maps a location to the

timestamp of its most recent reference, and a splay tree
[48, 47] that is used to compute the number of distinct
locations referenced since this timestamp.

Only a few simple modifications to the PARDA code
were required to implement fixed-rate SHARDS, involv-
ing less than 50 lines of code. First, each referenced
location read from the trace file is hashed, and pro-
cessed only if it meets the specified sampling condition
hash(L) mod P < T . For efficiency, the modulus P is
set to a power of two2 and “mod P” is replaced with
the less expensive bitwise mask operation “& (P− 1)”.
For a given sampling rate R, the threshold T is set to
round(R ·P). For the hash function, we used the public-
domain C implementation of MurmurHash3 [3]. We also
experimented with other hash functions, including a fast
pseudo-random number generator [13], and found that
they yielded nearly identical results.

Next, computed reuse distances are adjusted to re-
flect the sampling rate. Each raw distance D is simply
divided by R to yield the appropriately scaled distance
D/R. Since R = T/P, the scaled distance (D ·P)/T is
computed efficiently using an integer shift and division.

Figure 3(a) presents an example application of fixed-
rate SHARDS, using a real-world storage block I/O
trace3. The exact MRC is constructed using the un-
sampled, full-trace PARDA baseline. Five approximate
MRCs are plotted for different fixed sampling rates,
varying R between 0.00001 and 0.1, using powers of ten.
The approximate curves for R ≥ 0.001 are nearly indis-
tinguishable from the exact MRC.

2We use P = 224, providing sufficient resolution to represent very
low sampling rates, while still avoiding integer overflow when using
64-bit arithmetic for scaling operations.

3Customer VM disk trace t04, which also appears later in Figure 5.
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Data structure element smax < 64K smax < 4G
hash table chain pointer 2 4
hash table entry 12 16
reference splay tree node 14 20
sample splay tree node 12 20
total per-sample size 40 60

Table 1: Fixed-size SHARDS Data Structure Sizes.
Size (in bytes) used to represent elements of key data struc-
tures, for both 16-bit and 32-bit values of smax.

3.2 Fixed-Size Implementation

With a constant memory footprint, fixed-size SHARDS
is suitable for online use in memory-constrained systems,
such as device drivers in embedded systems. To explore
such applications, we developed a new implementation,
written in C, optimized for for space efficiency.

Since all data structure sizes are known up-front,
memory is allocated only during initialization. In con-
trast, other implementations perform a large number of
dynamic allocations for individual tree nodes and hash
table entries. A single, contiguous allocation is faster,
and enables further space optimizations. For example,
if the maximum number of samples smax is bounded by
64K, “pointers” can be represented compactly as 16-bit
indices instead of ordinary 64-bit addresses.

Like PARDA, our implementation leverages Sleator’s
public-domain splay tree code [47]. In addition to using
a splay tree for computing reuse distances, we employ a
second splay tree to maintain a priority queue represent-
ing the sample set S, ordered by hash threshold value. A
conventional chained hash table maps locations to splay
tree nodes. As an additional space optimization, refer-
ences between data structures are encoded using small
indices instead of general-purpose pointers.

The combined effect of these space-saving optimiza-
tions is summarized in Table 1, which reports the per-
sample sizes for key data structures. Additional mem-
ory is needed for the output histogram; each bucket con-
sumes 12 bytes to store a count and the update thresh-
old Tbucket used for rescaling. For example, with smax =
8K, the aggregate overhead for samples is only 320 KB.
Using 10K histogram buckets, providing high resolution
for evaluating cache allocation sizes, consumes another
120 KB. Even when code size, stack space, and all other
memory usage is considered, the entire measured run-
time footprint remains smaller than 1 MB, making this
implementation practical even for extremely memory-
constrained execution environments.

Figure 3(b) presents an example application of fixed-
size SHARDS, using the same trace as Figure 3(a). Five
approximate MRCs are plotted for different fixed sample
sizes, varying smax between 128 and 32K, using factors
of four. The approximate curves for smax ≥ 2K are nearly
indistinguishable from the exact MRC.

3.3 Modeling Cache Policy
PARDA uses a simple binary trace format: a sequence of
64-bit references, with no additional metadata. Storage
I/O traces typically contain richer information for each
reference, including a timestamp, access type (read or
write), and a location represented as an offset and length.

For the experiments in this paper, we converted I/O
block traces to the simpler PARDA format, assumed a
fixed cache block size, and ignored the distinction be-
tween reads and writes. This effectively models a simple
LRU policy with fixed access granularity, where the first
access to a block is counted as a miss.

We have also developed other SHARDS implemen-
tations to simulate diverse caching policies. For exam-
ple, on a write miss to a partial cache block, a write-
through cache may first read the entire enclosing cache-
block-sized region from storage. The extra read over-
head caused by partial writes can be modeled by main-
taining separate histograms for ordinary reads and reads
induced by partial writes. Other write-through caches
manage partial writes at sub-block granularity, modeled
using known techniques [57]. In all cases, we found
hash-based spatial sampling to be extremely effective.

4 Experimental Evaluation

We conducted a series of experiments with over a hun-
dred real-world I/O traces collected from our commercial
caching analytics service for virtualized environments.
We first describe our data collection system and charac-
terize the trace files used in this paper. Next, we evaluate
the accuracy of approximate MRCs. Finally, we present
results of performance experiments that demonstrate the
space and time efficiency of our implementations.

4.1 Data Collection
Our SaaS caching analytics service is designed to collect
block I/O traces for VMware virtual disks in customer
data centers running the VMware ESXi hypervisor [60].
A user-mode application, deployed on each ESXi host,
coordinates with the standard VMware vscsiStats utility
[1] to collect complete block I/O traces for VM virtual
disks. A web-based interface allows particular virtual
disks to be selected for tracing remotely.

Compressed traces are streamed to a cloud-based
backend to perform various storage analyses, including
offline MRC construction using SHARDS. If the trace
is not needed for additional storage analysis, SHARDS
sampling could be performed locally, obviating the need
to stream full traces. Ideally, SHARDS should be inte-
grated directly with the kernel-mode hypervisor compo-
nent of vscsiStats for maximum efficiency, enabling con-
tinuous, online reuse-distance analysis.
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Figure 4: Error Analysis. Average absolute error calculated over all 124 traces for different SHARDS sampling parameters.
The fixed-rate and fixed-size results are explained in Section 4.3.2, and the adjusted fixed-size results are discussed in Section 4.3.3.

4.2 Trace Files
We use 106 week-long vscsiStats traces, collected by our
caching analytics service from virtual disks in production
customer environments. These traces represent VMware
virtual disks with sizes ranging from 8 GB to 34 TB,
with a median of 90 GB. The associated VMs are a mix
of Windows and Linux, with up to 64 GB RAM (6 GB
median) and up to 32 virtual CPUs (2 vCPUs median).

In addition, we included several publicly-available
block I/O traces from the SNIA IOTTA repository [51].
We used a dozen week-long enterprise server traces col-
lected by Microsoft Research Cambridge [37], as well
as six day-long server traces collected by FIU [31]. In
total, this gives us a diverse set of 124 real-world block
I/O traces to evaluate the accuracy and performance of
SHARDS compared to exact methods.

4.3 Accuracy
We analyze the accuracy of MRCs constructed using
SHARDS by comparing them to corresponding exact
MRCs without sampling. Differences between the ap-
proximate and exact curves are measured over a wide
range of sampling parameters. Numerous MRC plots are
displayed as visual examples of SHARDS’ accuracy.

4.3.1 Parameters
Our system supports many configuration parameters. We
specify a 16 KB cache block size, so that a cache miss
reads from primary storage in aligned, fixed-size 16 KB
units; typical storage caches in commercial virtualized
systems employ values between 4 KB and 64 KB. As dis-
cussed in Section 3.3, reads and writes are treated identi-
cally, effectively modeling a simple LRU cache policy.
By default, we specify a histogram bucket size of 4K
cache blocks, so that each bucket represents 64 MB.

Fixed-rate sampling is characterized by a single pa-
rameter, the sampling rate R, which we vary between

0.0001 and 0.1 using powers of ten. Fixed-size sampling
has two parameters: the sample set size, smax, and the ini-
tial sampling rate, R0. We vary smax using powers of two
between 128 and 32K, and use R0 = 0.1, since this rate
is sufficiently high to work well with even small traces.

4.3.2 Error Metric
To analyze the accuracy of SHARDS, we consider the
difference between each approximate MRC, constructed
using hash-based spatial sampling, and its corresponding
exact MRC, generated from a complete reference trace.
An intuitive measure of this distance, also used to quan-
tify error in related work [53, 43, 65], is the mean abso-
lute difference or error (MAE) between the approximate
and exact MRCs across several different cache sizes.
This difference is between two values in the range [0, 1],
so an absolute error of 0.01 represents 1% of that range.

The box plots4 in Figure 4 show the MAE metric for a
wide range of fixed-rate and fixed-size sampling param-
eters. For each trace, this distance is computed over all
discrete cache sizes, at 64 MB granularity (correspond-
ing to all non-zero histogram buckets).

Overall, the average error is extremely small, even
for low sampling rates and small sample sizes. Fixed-
rate sampling with R = 0.001 results in approximate
MRCs with a median MAE of less than 0.02; most ex-
hibit an MAE bounded by 0.05. The error for fixed-rate
SHARDS typically has larger variance than fixed-size
SHARDS, indicating that accuracy is better controlled
via sample count than sampling rate.

For fixed-size SHARDS with smax = 8K, the median
MAE is 0.0072, with a worst-case of 0.078. Aside from
a few outliers (13 traces), the error is bounded by 0.021.

4The top and the bottom of each box represent the first and third
quartile values of the error. The thin whiskers represents the min and
max error, excluding outliers. Outliers, represented by dots, are the
values larger than Q3 +1.5× IQR, where IQR = Q3 −Q1.
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Figure 5: Example MRCs: Exact vs. Fixed-Size SHARDS. Exact and approximate MRCs for 35 representative traces.
Approximate MRCs are constructed using fixed-size SHARDS and SHARDSadj with smax = 8K. Trace names are shown for three
public MSR traces [37]; others are anonymized as t00 through t31. The effective sampling rates appear in parentheses.

4.3.3 Using Reference Estimates to Reduce Error
In cases where SHARDS exhibits non-trivial error, we
find that a coarse “vertical shift” accounts for most of the
difference, while finer features are modeled accurately.
This effect is seen in Figure 3. Recently, this observation
led us to develop SHARDSadj, a simple adjustment that
improves accuracy significantly at virtually no cost.

Spatial sampling selects a static set of blocks. If the
dynamic behavior of the sample set differs too much
from that of the complete trace, the weights of the sums
of buckets and the total count of accesses from the reuse
histogram will be off, skewing the resulting MRC. For
example, excluding too many or too few very hot blocks
biases dynamic access counts.

Ideally, the average number of repetitions per block
should be the same for both the sample set and the com-
plete trace. This happens when the actual number of
sampled references, Ns, matches the expected number,
E[Ns] = N ·R. When this does not occur, we find that it is
because the sample set contains the wrong proportion of
frequently accessed blocks. Our correction simply adds
the difference, E[Ns]−Ns, to the first histogram bucket
before computing final miss ratios.

We now consider this adjustment to be best practice.
Although there was insufficient time to update all of
our earlier experiments, SHARDSadj results appear in

Figures 4 and 5. Figure 4 reveals that the error with
SHARDSadj is significantly lower. Across all 124 traces,
this adjustment reduces the median fixed-size SHARDS
error with smax = 8K to 0.0027, and the worst-case to
0.017, factors of nearly 3× and 5×, respectively. Ex-
cluding the two outliers, MAE is bounded at 0.012. Even
with just 128 samples, the median MAE is only 0.012.

4.3.4 Example MRCs
The quantitative error measurements reveal that, for
nearly all traces, with fixed-size sampling at smax = 8K,
the miss ratios in the approximate MRCs deviate only
slightly from the corresponding exact MRCs. Although
space limitations prevent us from showing MRCs for all
of the traces described in Section 4.2, we present a large
number of small plots for this practical configuration.

Figure 5 plots 35 approximate MRCs, together with
the matching exact curves; in most cases, the curves are
nearly indistinguishable. In all cases, the location of
prominent features, such as steep descents, appear faith-
ful. Each plot is annotated with the effective dynamic
sampling rate, indicating the fraction of IOs processed,
including evicted samples. This rate reflects the amount
of processing required to construct the MRC.

SHARDSadj effectively corrects all cases with visible
error. For trace t31, the worst case over all 124 traces for
SHARDS, error is reduced from 0.078 to 0.008.
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Figure 6: Dynamic Rate Adaptation. Sampling rate R (on
log scale) for four traces over time. Each starts at R0 = 0.1, and
is lowered dynamically as more unique references are sampled.

4.3.5 Sampling Rate Adaptation
Choosing a sampling rate that achieves high accuracy
with good efficiency is challenging. The automatic rate
adaptation of fixed-size SHARDS is advantageous be-
cause it eliminates the need to specify R. Figure 6 plots
R as a function of reference count for four diverse traces:
t08, t04, t27, and t25 from Figure 5. For each, the sam-
pling rate starts at a high initial value of R0 = 0.1, and is
lowered progressively as more unique locations are en-
countered. The figure shows that SHARDS adapts au-
tomatically for each of the traces, which contain signifi-
cantly different numbers of unique references. After 50
million references, the values of R for these traces are
0.0002, 0.0016, 0.0032, and 0.0111. The total number of
samples processed, including evictions from the fixed-
size sample set S, is given by the area under each curve.

4.3.6 Discussion
Quantitative experiments confirm that, for nearly all
workloads, SHARDS yields accurate MRCs, in radically
less time and space than conventional exact algorithms.
While the accuracy achieved with high sampling rates
may not be surprising, success with very low rates, such
as R = 0.001, was unexpected. Even more extraordi-
nary is the ability to construct accurate MRCs for a broad
range of workloads, using only a small constant number
of samples, such as smax = 8K, or even smax = 256. The
constant-space and rate-adaptation properties of fixed-
size SHARDS make it our preferred approach.

Our intuition is that most workloads are composed
of a fairly small number of basic underlying processes,
each of which operates somewhat uniformly over rela-
tively large amounts of data. As a result, a small number
of representative samples is sufficient to model the main
underlying processes. Additional samples are needed to
properly capture the relative weights of these processes.
Interestingly, the number of samples required to obtain
accurate results for a given workload may be indicative

of its underlying dimensionality or intrinsic complexity.
Many statistical methods exhibit sampling error in-

versely proportional to
√

n, where n is the sample size.
Our data is consistent; regressing the average absolute
error for each smax value shown in Figure 4 against
1/
√

smax resulted in a high correlation coefficient of r2 =
0.97. This explains the observed diminishing accuracy
improvements with increasing smax.

4.4 Performance
We conducted performance experiments in a VMware
virtual machine, using a 64-bit Ubuntu 12.04 guest run-
ning Linux kernel version 3.2.0. The VM was config-
ured with 64 GB RAM, and 8 virtual cores, and executed
on an under-committed physical host running VMware
ESXi 5.5, configured with 128 GB RAM and 32 AMD
Opteron x86-64 cores running at 2 GHz.

To quantify the performance advantages of SHARDS
over exact MRC construction, we use a modern high-
performance reuse-distance algorithm from the open-
source PARDA implementation [39, 38] as our baseline.
Although the main innovation of PARDA is a parallel
reuse distance algorithm, we use the same sequential
“classical tree-based stack distance” baseline as in their
paper. The PARDA parallelization technique would also
result in further performance gains for SHARDS.

4.4.1 Space
To enable a fair comparison of memory consumption
with SHARDS, we implemented minor extensions to
PARDA, adding command-line options to specify the
number of output histogram buckets and the histogram
bucket width.5 We also added code to both PARDA and
SHARDS to obtain accurate runtime memory usage6.

All experiments were run over the full set of traces
described in Section 4.2. Each run was configured with
10 thousand histogram buckets, each 64 MB wide (4K
cache blocks of size 16 KB), resulting in an MRC for
cache allocations up to 640 GB.

Sequential PARDA serves as a baseline, representing
an efficient, exact MRC construction algorithm without
sampling. Fixed-rate SHARDS, implemented via the
simple code modifications described in Section 3.1, is
configured with R= 0.01 and R= 0.001. Finally, the new
space-efficient fixed-size SHARDS implementation, pre-
sented in Section 3.2, is run with smax = 8K and R0 = 0.1.

Figure 7 shows the memory usage for each algorithm
over the full set of traces, ordered by baseline memory
consumption. The drastic reductions with SHARDS re-
quired the use of a log scale. As expected, for traces

5By default, PARDA is configured with hard-coded values – 1M
buckets, each a single cache block wide.

6We obtain the peak resident set size directly from the Linux
procfs node /proc/<pid>/status immediately before terminating;
the VmHWM line reports the “high water mark” [32].
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Figure 7: Memory Usage. Measured memory consumption
(in MB, log scale) for unsampled baseline, fixed-rate SHARDS
(R = 0.01, 0.001), and fixed-size SHARDS (smax = 8K).

with large numbers of unique references, the memory re-
quired for fixed-rate SHARDS is approximately R times
as big as the baseline. With much smaller traces, fixed
overheads dominate. For fixed-size SHARDS, the run-
time footprint remained approximately 1 MB for all runs,
ranging from 964 KB to 1,044 KB, with an average of
974 KB, yielding a savings of up to 10,800× for large
traces and a median of 185× across all traces.

4.4.2 Time
Figure 8 plots the CPU usage measured7 for the same
runs described above, ordered by baseline CPU con-
sumption. The significant processing time reductions
with SHARDS prompted the use of a log scale.

Fixed-rate SHARDS with R= 0.01 results in speedups
over the baseline ranging from 29× to 449×, with a me-
dian of 75×. For R = 0.001, the improvement ranges
from 41× to 1,029×, with a median of 128×. For
short traces with relatively small numbers of unique ref-
erences, fixed overheads dominate, limiting speedups to
values lower than implied by R.

Fixed-size SHARDS with smax = 8K and R0 = 0.1 in-
curs more overhead than fixed-rate SHARDS with R =
0.01. This is due to the non-trivial work associated with
evicted samples as the sampling rate adapts dynamically,
as well as the cost of updating the sample set priority
queue. Nonetheless, fixed-size SHARDS achieves sig-
nificant speedups over the baseline, ranging from 6× to
204×, with a median of 22×. In terms of throughput, for
the top three traces ordered by CPU consumption in Fig-
ure 8, fixed-size SHARDS processes an average of 15.4
million references per second.

7For each run, CPU time was obtained by adding the user and sys-
tem time components reported by /usr/bin/time.
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MRCs for merged trace interleaving 4.3G IOs to 509M unique
blocks from 32 separate virtual disks. Fixed-size SHARDS
with smax = 8K exhibits an average absolute error of only 0.008.

4.5 MRCs for Mixed Workloads
Our VM-based traces represent single-machine work-
loads, while the IOs received by storage arrays are typi-
cally an undistinguished, blended mix of numerous inde-
pendent workloads. Figure 9 demonstrates the accuracy
of fixed-size SHARDS using a relative-time-interleaved
reference stream combining all 32 virtual disk traces
(t00. . .t31) shown in Figure 5. With smax = 8K, SHARDS
exhibits a small MAE of 0.008. The high accuracy and
extremely low overhead provide additional confidence
that continuous, online MRC construction and analysis
is finally practical for production storage arrays.

4.6 Non-LRU Replacement Policies
SHARDS constructs MRCs for a cache using an LRU
replacement policy. Significantly, the same underlying
hash-based spatial sampling approach appears promis-
ing for simulating more sophisticated policies, such as
LIRS [27], ARC [35], CAR [5], or Clock-Pro [26].
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Figure 10: Scaled-Down ARC Simulation. Exact and
approximate MRCs for VM disk trace t04. Each curve plots
100 separate ARC simulations at different cache sizes.

As with fixed-rate SHARDS, the input trace is filtered
to select blocks that satisfy a hash-based sampling con-
dition, corresponding to the sampling rate R. A series of
separate simulations is run, each using a different cache
size, which is also scaled down by R. Figure 10 presents
results for the same trace as in Figure 3, leveraging an
open-source ARC implementation [21]. For R = 0.001,
the simulated cache is only 0.1% of the desired cache
size, achieving huge reductions in space and time, while
exhibiting excellent accuracy, with an MAE of 0.01.

5 Related Work
Before the seminal paper of Mattson, Gecsei, Slutz, and
Traiger [34], studies of memory and storage systems re-
quired running separate experiments for each size of a
given level of the hierarchy. Their key insight is that
many replacement policies have an inclusion property:
given a cache C of size z, C(z)⊆C(z+1). Such policies,
referred to as stack algorithms, include LRU, LFU, and
MRU.8 Mattson et al. also model set associativity, dele-
tion, no-write-allocate policies, and the handling of the
entire set of memory and storage hierarchies as a list of
such stacks. Others extended the model for caches with
write-back or subblocking policies [56, 57], variable-size
pages [58], set associativity [24, 30, 52], and modeling
groups of these behaviors in a single analysis [25, 59].

Because it generates models of behavior for all cache
sizes in a single pass over a trace, Mattson’s technique
has been applied widely. Application areas include the
modeling of caches [24, 30, 52]; of multicore caches
including the effects of invalidation [45, 44]; guidance
of mechanisms to apportion shared caches amongst pro-
cesses [41, 53, 18]; the scheduling of memory within an
operating system [49, 72, 4]; the sizing and management
of unified buffer caches [28]; secondary exclusive (vic-
tim I/O) caches [33], and memory caches [43]; the sizing

8Policies other than LRU require one more step: after a block is
moved to the top, the remaining blocks are reordered in a single pass.

of garbage-collected heaps [68, 67]; the impact of mem-
ory systems and caches on Java performance [29]; the
transparent borrowing of memory for low-priority com-
putation [14]; the balancing of memory across sets of
virtual machines [70, 69]; and the analysis of program
behavior and compilation for data layout [2, 11, 17].

5.1 Optimizations
Mattson’s algorithm takes O(NM) time and O(M) space
for a trace of length N containing M unique blocks.
Given its broad applicability, much effort has been spent
improving its performance in both space and time.

5.1.1 Management of LRU Stacks
Early improvements added hash tables either to detect
cold accesses or to map references to their previous en-
tries [6, 40, 56]. Bennett and Kruskal [6] used a bal-
anced tree over the trace tracking which references were
the most recent instances and keeping counts in the sub-
trees, allowing each distance to be computed in O(logN)
steps. Olken [40] improved on this by tracking only the
most recent references in the tree, further reducing the
distance computation to O(logM). Use of a balanced
tree is now common for computing distances. By manag-
ing the stack of references with a doubly-linked or chun-
ked list and mapping references to nodes in the stack, the
algorithm takes O(N logM) time and O(M) space.

Another key advance, by Niu et al., is processing a
trace in parallel [39]. Their technique, PARDA, achieves
impressive speedups by splitting a trace into P partitions,
processing each independently, and patching up missing
information between partitions.

5.1.2 Compression and Grouping of References
Much effort has been spent reducing trace sizes [50, 36].
Smith [50] compressed virtual-memory traces by ignor-
ing references whose reuse distance is less than some K,
and periodically scanning access-bits for pages.

Another optimization is to coarsen the distances that
are tracked [52, 72, 68, 67, 4, 70, 43]. Kim et al. [30]
track groups of references in the stack where the sizes of
the groups are powers of two. By tracking the boundary
of each group of references, updates to the LRU stack
simply adjust the distances for the pages pushed across
these boundaries. This can reduce costs of tracking ac-
cesses to O(G) where G is the number of groups tracked.
Recently, Saemundsson et al. [43] grouped references
into variable-sized buckets. Their ROUNDER aging al-
gorithm with 128 buckets yields MAEs up to 0.04 with
a median MAE of 0.006 for partial MRCs [42], but the
space complexity remains O(M). Zhao et al. [70] re-
port an error rate of 10% for their level of coarseness, 32
pages. None of the others report error rates.

Ding and Zhong [17] apply clustering in the context of
the splay tree they use to track reuse-distances for pro-
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gram analysis. By dynamically compressing the tree,
they bound the overall size and cost of their analysis,
achieving a time bound of O(N log logM) and a space
bound of O(logM). The relative error is bounded by how
the nodes in the tree are merged and compressed and, so,
factors in as the base of the log . For an error of 50%, the
base is 2; for smaller ones, the base quickly approaches
1. For their purpose, they can tolerate large error bounds.

5.1.3 Temporal Sampling
Temporal sampling — complementary to SHARDS —
reduces reference-tracking costs by only doing so some
of the time. Berg et al. [7, 8] sample every Nth refer-
ence (1 in every 10K) to derive MRCs for caches. Bryan
and Conte’s cluster sampling [10], RapidMRC [53], and
work on low-cost tracking for VMs [69], by contrast, di-
vide the execution into periods in which references are
either sampled or are not. They also tackle how to de-
tect phase changes that require regeneration of the reuse-
distances. RapidMRC reports a mean average error rate
of 1.02 misses per thousand instructions (MPKI) with a
maximum of 6.57 MPKI observed. Zhao et al. [69] re-
port mean relative errors of 3.9% to 12.6%. These errors
are significantly larger than what SHARDS achieves.

Use of sampling periods allows for accurate measure-
ments of reuse distances within a sample period. How-
ever, Zhong and Chang [71] and Schuff et al. [45, 44] ob-
serve that naively sampling every Nth reference as Berg
et al. do or using simple sampling phases causes a bias
against the tracking of longer reuse distances. Both ef-
forts address this bias by sampling references during a
sampling period and then following their next accesses
across subsequent sampling and non-sampling phases.

5.1.4 Spatial and Content-Based Sampling
A challenge when sampling references is that reuse-
distance is a recurrent behavior. One solution is to extract
a sample from the trace based on an identifying charac-
teristic of its references. Spatial sampling uses addresses
to select a sample set. Content-based sampling does so
by using data contents. Both techniques can capture all
events for a set of references, even those that occur rarely.

Many analyses for set-associative caches have used
set-sampling [23, 41, 46]. For example, UMON-
DSS [41] reduces the cost of collecting reuse-distances
by sampling the behavior of a subset of the sets in a pro-
cessor cache. Kessler et al. [23] compare temporal sam-
pling, set-sampling and constant-bit sampling of refer-
ences and find that the last technique is most useful when
studying set-associative caches of different dimensions.

Many techniques targeting hardware implementations
use grouping or spatial sampling to constrain their use of
space [72, 41, 4, 59, 46]. However, these tend to focus on
narrow problems such as limited set associativity [41] or
limited cache size ranges [4] for each MRC. Like these

approaches, SHARDS reduces and bounds space use, but
unlike them, it models the full range of cache sizes. In
addition, these techniques do not report error rates.

Inspired by processor hardware for cache sampling,
Waldspurger et al. propose constructing an MRC by sam-
pling a fixed set of pages from the guest-physical mem-
ory of a VM [62]. Unfortunately, practical sampling re-
quires using small (4 KB) pages, increasing the overhead
of memory virtualization [9]. Choosing sampled loca-
tions up-front is also inefficient, especially for workloads
with large, sparse address spaces. In contrast, SHARDS
does not require any information about the address space.

Xie et al. address a different problem: estimation of
duplication among blocks in a storage system [66]. Their
system hashes the contents of blocks producing finger-
prints. These are partitioned into sets with one set cho-
sen as the sample. Their model has error proportional to
the sample-set size. This property is used to dynamically
repartition the sample so that the sample size is bounded.
Like Xie et al., the SHARDS sampling rate can be ad-
justed to ensure an upper bound on the space used. But,
how the sample set is chosen, how the sampling rate is
adjusted, and how the sampling ratio is used to adjust the
summary information are different. Most importantly,
where their work looks at individual blocks’ hash values
and how these collide, our technique accurately captures
the relationship between pairs of accesses to the blocks.

5.2 Analytical Models
Many analytical models have been proposed to approx-
imate MRCs with reduced effort. By constraining the
block replacement policy, Tay and Zou [55] derive a uni-
versal equation that models cache behavior from a small
set of sampled data points. He et al. propose modeling
MRCs as fractals and claim error rates of 7-10% in many
cases with low overhead [22]. Berg et al. [7, 8, 19, 18]
use a closed-form equation of the miss rate. Through a
sequence of sampling, deriving local miss rates and com-
bining these separate curves, they model caches with ran-
dom or LRU replacement. Others model cache behavior
by tracking hardware performance counters [15, 63, 46].

Unlike the analytical approaches, SHARDS estimates
the MRC directly from the sampled trace. We have
shown that SHARDS can be implemented using con-
stant space and with high accuracy. Where the error of
SHARDS is small, the analytic techniques report errors
of a few percent to 50% with some outliers at 100-200%.
Berg et al. simply offer graphs for comparison.

5.3 Counter Stacks
Mattson et al. track distances as counts of unique refer-
ences between reuses. Wires et al. extend this in three
ways in their recent MRC approximation work, using a
counter stack [65].
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Figure 11: Merged MSR Trace. Exact, SHARDS and
SHARDSadj MRCs for the merged “master” MSR trace used
in the Counter Stacks evaluation [65], with smax = 8K.

First, the counts of repetitions, themselves, can be
computed by comparing changes in the number of unique
references seen from different starting points in the
stream. The sequence of locations observed by a newer
counter is a proper suffix of the sequence recorded by an
older one. So, if the newer counter increases but the older
does not, then the older location must have repeated, and
its reuse-distance is the older counter’s value.

Second, the repetitions and reuse-distances can be ap-
proximated efficiently using a bounded set of counters.
Instead of starting a new counter with every reference,
one may downsample the set of counters, creating and
tracking a new one periodically. The set can be further
pruned since, over time, adjacent counters converge as
they observe the same set of elements. Using probabilis-
tic counters based on the HyperLogLog algorithm [20]
together with downsampling and pruning, the counter
stack algorithm only uses O(logM) space.

Third, columns of counts in the counter stack can be
periodically written to a checkpoint together with times-
tamps for subsequent analysis. Checkpointed counter-
stack sequences can be spliced, shifted temporally, and
combined to model the behavior of combinations of
workloads. Because the checkpoint only captures stacks
of counts at each timestamp, such modeling assumes that
different checkpoints access disjoint sets of blocks.

To provide a direct quantitative comparison with
SHARDS, we generated the same merged “master” MSR
trace used by Wires et al. [65], configured identically
with only read requests and a 4 KB cache block size.
Figure 11 shows MRCs constructed using fixed-size
SHARDS, with 48K histogram buckets of size 64 MB,
supporting cache sizes up to 3 TB. For smax = 8K, the
MAE is 0.006 with SHARDSadj (0.029 unadjusted). The
MRC is computed using only 1.3 MB of memory in
137 seconds, processing 17.6M blocks/sec. Wires et
al. report that Counter Stacks requires 80 MB of mem-
ory, and 1,034 seconds to process this trace at a rate of
2.3M blocks/sec. In this case, Counter Stacks is approx-

imately 7× slower and needs 62× as much memory as
SHARDSadj, but is more accurate, with an MAE of only
0.0025 [64]. Using smax = 32K, with 2 MB of memory
in 142 seconds, yields a comparable MAE of 0.0026.

While Counter Stacks uses O(logM) space, fixed-
size SHARDS computes MRCs in small constant space.
As a result, separate SHARDS instances can efficiently
compute multiple MRCs tracking different properties
or time-scales for a given reference stream, something
Wires et al. claim is not practical.

One advantage of Counter Stacks is that every refer-
ence affects the probabilistic counters and contributes to
the resulting MRC. By contrast, SHARDS assumes that
hashing generates a uniformly distributed set of values
for a reference stream. While an adversarial trace could
yield an inaccurate MRC, we have not encountered one.

Unlike Counter Stacks, SHARDS maintains the iden-
tity of each block in its sample set. This enables track-
ing additional information, including access frequency,
making it possible to directly implement other policies
such as LFU, LIRS [27], ARC [35], CAR [5], or Clock-
Pro [26], as discussed in Section 4.6.

6 Conclusions

We have introduced SHARDS, a new hash-based spa-
tial sampling technique for reuse-distance analysis that
computes approximate miss ratio curves accurately us-
ing only modest computational resources. The approach
is so lightweight — operating in constant space, and re-
quiring several orders of magnitude less processing than
conventional algorithms — that online MRC construc-
tion becomes practical. Furthermore, SHARDS enables
offline analysis for long traces that, due to memory con-
straints, could not be studied using exact techniques.

Our experimental evaluation of SHARDS demon-
strates its accuracy, robustness, and performance advan-
tages, over a large collection of I/O traces from real-
world production storage systems. Quantitative results
show that, for most workloads, an approximate sampled
MRC that differs only slightly from an exact MRC can be
constructed in 1 MB of memory. Performance analysis
highlights dramatic reductions in resource consumption,
up to 10,800× in memory and up to 204× in CPU.

Encouraged by progress generalizing hash-based spa-
tial sampling to model sophisticated replacement poli-
cies, such as ARC, we are exploring similar techniques
for other complex systems. We are also examining the
rich temporal dynamics of MRCs at different time scales.
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Abstract
We present a new form of storage virtualization based on
block-level address remapping. By allowing the host sys-
tem to manipulate this address map with a set of three
simple operations (clone, move, and delete), we enable
a variety of useful features and optimizations to be read-
ily implemented, including snapshots, deduplication, and
single-write journaling. We present a prototype imple-
mentation called Project ANViL and demonstrate its util-
ity with a set of case studies.

1 Introduction
Virtualization has been widely employed as a technique
for managing and exploiting the available resources in
computing systems, from memory and processors to en-
tire machines [1,2,4,5,9,22]. Virtual memory in particular
has enabled numerous features and optimizations, includ-
ing the mmap(2) interface to file I/O, shared libraries,
efficient fork(2), zero-copy I/O, and page sharing be-
tween virtual machines [3, 29].

Storage virtualization, however, while conceptually
similar to memory virtualization, has typically been of
limited use to applications, focusing instead on storage
management by introducing abstraction between physical
storage layout and the logical device as presented to a host
or application using it [10, 13, 28]. Features and function-
ality enabled by storage virtualization, such as dedupli-
cation, replication, and thin-provisioning, remain hidden
behind the block device interface. While highly useful,
the features of existing storage virtualization systems are
primarily limited to administrative functionality, such as
defining and provisioning LUNs, offering nothing to ac-
tual applications beyond standard read and write opera-
tions. As others have shown, these limitations in stor-
age virtualization result in sub-optimal application per-
formance and duplication of functionality across different
layers in the storage stack [8, 11, 18, 21].

Some of the limits of storage virtualization have been
addressed in recent research on Flash Translation Layers
(FTLs), with new machinery proposed to support Atomic
Writes, Persistent TRIM, and Sparseness [17, 18, 20, 21,

24]. These extensions enable applications to better lever-
age the power of virtualization already built into the FTL
and also extensions enable the removal of redundant func-
tionality across system layers, resulting in better flash en-
durance and application-level performance [16, 21].

We propose a simple yet powerful set of primitives
based on fine-grained address remapping at both the block
and extent level. As we will show, fine-grained address
remapping provides the flexibility needed to benefit ap-
plications while still retaining the generality necessary to
provide the functionality offered by existing virtualized
volume managers. By allowing the host to manipulate the
block-level logical-to-physical address map with clone,
move, and delete operations, we enable storage virtual-
ization to more closely resemble virtualized memory in
its fine-grained flexibility and broad utility, though in a
manner adapted to the needs of persistent storage.

We illustrate the utility of our approach by developing
the Advanced Nonvolatile-memory Virtualization Layer
(ANViL), a prototype implementation of fine-grained ad-
dress remapping as a stacking block device driver, to effi-
ciently implement both file and volume snapshots, dedu-
plication, and single-write journaling. More specifically,
we demonstrate how ANViL can provide high perfor-
mance volume snapshots, offering as much as a 7× per-
formance improvement over an existing copy-on-write
implementation of this feature. We show how ANViL can
be used to allow common, conventional file systems to
easily add support for file-level snapshots without requir-
ing any radical redesign. We also demonstrate how it can
be leveraged to provide a performance boost of up to 50%
for transactional commits in a journaling file system.

The remainder of this paper is organized as follows: we
begin by describing how ANViL fits in naturally in the
context of modern flash devices (§2) and detailing the ex-
tended device interface we propose (§3). We then discuss
the implementation of ANViL (§4), describe a set of case
studies illustrating a variety of useful real-world applica-
tions (§5), and conclude (§6).
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2 Background

Existing storage virtualization systems focus their feature
sets primarily on functionality “behind” the block inter-
face, offering features like replication, thin-provisioning,
and volume snapshots geared toward simplified and im-
proved storage administration [10, 28]. They offer little,
however, in the way of added functionality to the con-
sumers of the block interface: the file systems, databases,
and other applications that actually access data from the
virtualized storage. Existing storage technologies, partic-
ularly those found in increasingly-popular flash devices,
offer much of the infrastructure necessary to provide more
advanced storage virtualization that could provide a richer
interface directly beneficial to applications.

At its innermost physical level, flash storage does not
offer the simple read/write interface of conventional hard
disk drives (HDDs), around which existing storage soft-
ware has been designed. While reads can be performed
simply, a write (or program) operation must be preceded
by a relatively slow and energy-intensive erase opera-
tion on a larger erase block (often hundreds of kilobytes
or larger), before which any live data in the erase block
must be copied elsewhere. Flash storage devices typi-
cally employ a flash translation layer (FTL) to simplify
integration of this more complex interface into existing
systems by adapting the native flash interface to the sim-
pler HDD-style read/write interface, hiding the complex-
ity of program/erase cycles from other system compo-
nents and making the flash device appear essentially as
a faster HDD. In order to achieve this, FTLs typically em-
ploy log-style writing, in which data is never overwritten
in-place, but instead appended to the head of a log [23].
The FTL then maintains an internal address-remapping ta-
ble to track which locations in the physical log correspond
to which addresses in the logical block address space pro-
vided to higher layers of the storage stack [12, 26].

Such an address map provides most of the machinery
that would be necessary to provide more sophisticated
storage virtualization, but its existence is not exposed to
the host system, preventing its capabilities from being
fully exploited. A variety of primitives have been pro-
posed to better expose the internal power of flash transla-
tion layers and similar log and remapping style systems,
including atomic writes, sparseness (thin provisioning),
Persistent TRIM, and cache-friendly garbage collection
models [18, 20, 21, 24, 30]. These have been shown to
have value for a range of applications from file systems
to databases, key-value stores, and caches.

3 Interfaces
Address-remapping structures exist in FTLs and storage
engines that provide thin provisioning and other storage
virtualization functions today. We propose an extended
block interface that enables a new form of storage virtu-
alization by introducing three operations to allow the host
system to directly manipulate such an address map.

3.1 Operations
Range Clone: clone(src, len, dst): The range
clone operation instantiates new mappings in a given
range of logical address space (the destination range) that
point to the same physical addresses mapped at the corre-
sponding logical addresses in another range (the source
range); upon completion the two ranges share storage
space. A read of an address in one range will return the
same data as would be returned by a read of the corre-
sponding address in the other range. This operation can be
used to quickly relocate data from one location to another
without incurring the time, space, and I/O bandwidth costs
of a simplistic read-and-rewrite copy operation.

Range Move: move(src, len, dst): The range
move operation is similar to a range clone, but leaves the
source logical address range unmapped. This operation
has the effect of efficiently transferring data from one lo-
cation to another, again avoiding the overheads of reading
in data and writing it back out to a new location.

Range Delete: delete(src, len): The range
delete operation simply unmaps a range of the logical ad-
dress space, effectively deleting whatever data had been
present there. This operation is similar to the TRIM or
DISCARD operation offered by existing SSDs. However,
unlike TRIM or DISCARD, which are merely advisory,
the stricter range delete operation guarantees that upon
acknowledgment of completion the specified logical ad-
dress range is persistently unmapped. Range deletion is
conceptually similar to the Persistent TRIM operation de-
fined in prior work [15, 20]. Our work extends previous
concepts by combining this primitive with the above clone
and move operations for additional utility.

Under this model, a given logical address can be either
mapped or unmapped. A read of a mapped address returns
the data stored at the corresponding physical address. A
read of an unmapped address simply returns a block of
zeros. A write to a logical address, whether mapped or
unmapped, allocates a new location in physical storage
for the updated logical address. If the logical address pre-
viously shared physical space with one or more additional
logical addresses, that mapping will be decoupled, with
the affected logical address now pointing to a new physi-
cal location while the other logical addresses retain their
original mapping.
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3.2 Complementary Properties
While giving the host system the ability to manipulate the
storage address map is of course the primary aim of our
proposed interface, other properties complement our in-
terfaces nicely and make them more useful in practice for
real-world storage systems.

Sparseness or Thin Provisioning: In conventional
storage devices, the logical space exposed to the host
system is mapped one-to-one to the (advertised) physi-
cal capacity of the device. However, the existence of the
range clone operation implies that the address map must
be many-to-one. Thus, in order to retain the ability to
utilize the available storage capacity, the logical address
space must be expanded – in other words, the device must
be thin-provisioned or sparse. The size of the logical ad-
dress space, now decoupled from the physical capacity of
the device, determines the upper limit on the total number
of cloned mappings that may exist for a given block.

Durability: The effects of a range operation must be
crash-safe in the same manner that an ordinary data write
is: once acknowledged as complete, the alteration to the
address map must persist across a crash or power loss.
This requirement implies that the metadata modification
must be synchronously persisted, and thus that each range
operation implies a write to the underlying physical stor-
age media.

Atomicity: Because it provides significant added util-
ity for applications in implementing semantics such as
transactional updates, we propose that a vector of range
operations may be submitted as a single atomic batch,
guaranteeing that after a crash or power loss, the effects
of either all or none of the requested operations will re-
main persistent upon recovery. Log-structuring (see §4.1)
makes this relatively simple to implement.

4 Implementation
In this section we describe the implementation of our pro-
totype, the Advanced Nonvolatile-memory Virtualization
Layer (ANViL), a Linux kernel module that acts as a
generic stacking block device driver. ANViL runs on top
of single storage devices as well as RAID arrays of mul-
tiple devices and is equally at home on either. It is not a
full FTL, but it bears a strong resemblance to one. Though
an implementation within the context of an existing FTL
would have been a possibility, we chose instead to build
ANViL as a separate layer to simplify development.

4.1 Log Structuring
In order to support the operations described earlier (§3),
ANViL is implemented as a log-structured block device.
Every range operation is represented by a note written
to the log specifying the point in the logical ordering

of updates at which it was performed. The note also
records the alterations to the logical address map that were
performed; this simplifies reconstruction of the device’s
metadata after a crash. Each incoming write is redirected
to a new physical location, so updates to a given logical
range do not affect other logical ranges which might share
physical data. Space on the backing device is managed
in large segments (128MB by default); each segment is
written sequentially and a log is maintained that links the
segments together in temporal order.

4.2 Metadata Persistence
Whenever ANViL receives a write request, before ac-
knowledging completion it must store in non-volatile me-
dia not only the data requested to be written, but also any
updates to its own internal metadata necessary to guaran-
tee that it will be able to read the block back even after a
crash or power loss. The additional metadata is small (24
bytes per write request, independent of size), but due to
being a stacked layer of the block IO path, writing an addi-
tional 24 bytes would require it to write out another entire
block. Done naı̈vely, the extra blocks would incur an im-
mediate 100% write amplification for a workload consist-
ing of single-block writes, harming both performance and
flash device lifespan. However, for a workload with mul-
tiple outstanding write requests (a write IO queue depth
greater than one), metadata updates for multiple requests
can be batched together into a single block write, amor-
tizing the metadata update cost across multiple writes.

ANViL thus uses an adaptive write batching algorithm,
which, upon receiving a write request, waits for a small
period of time to see if further write requests arrive, in-
creasing the effectiveness of this metadata batching opti-
mization, while balancing the time spent waiting for an-
other write with impact on the latency of the current write.

4.3 Space Management
Space on the backing device is allocated at block granular-
ity for incoming write requests. When a write overwrites a
logical address that was already written and thus mapped
to an existing backing-device address, the new write is al-
located a new address on the backing device and the old
mapping for the logical address is deleted and replaced
by a mapping to the new backing device address. When
no mappings to a given block of the backing device re-
main, that block becomes “dead” and its space may be
reclaimed. However, in order to maintain large regions of
space in the backing device so as to allow for sequential
writing, freeing individual blocks as they become invalid
is not a good approach for ANViL. Instead, the minimum
unit of space reclamation is one segment.

A background garbage collector continuously searches
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for segments of backing device space that are under-
utilized (i.e. have a large number of invalid blocks). When
such a segment is found, its remaining live blocks are
copied into a new segment (appended at the current head
of the log as with a normal write), any logical addresses
mapped to them are updated to point to the new location
they have been written out to, and finally the entire seg-
ment is returned to the space allocator for reuse.

5 Case Studies
Here we demonstrate the generality and utility of our
range operations by implementing, with relatively lit-
tle effort, a number of features useful to other compo-
nents across a broad range of the storage stack, includ-
ing volume managers (enabling simple and efficient vol-
ume snapshots), file systems (easily-integrated file snap-
shots), and transactional storage systems such as rela-
tional databases (allowing transactional updates without
the double-write penalty). All experiments were per-
formed on an HP DL380p Gen8 server with two six-core
(12-thread) 2.5GHz Intel Xeon processors and a 785GB
Fusion-io ioDrive2, running Linux 3.4.

5.1 Snapshots
Snapshots are an important feature of modern storage sys-
tems and have been implemented at different layers of
the storage stack from file systems to block devices [25].
ANViL easily supports snapshots at multiple layers; here
we demonstrate file- and volume-level snapshots.

5.1.1 File Snapshots
File-level snapshots enable applications to checkpoint the
state of individual files at arbitrary points in time, but are
only supported by a few recent file systems [7]. Many
widely-used file systems, such as ext4 [19] and XFS [27],
do not offer file-level snapshots, due to the significant de-
sign and implementation complexity required.

ANViL enables file systems to support file-level snap-
shots with minimal implementation effort and no changes
to their internal data structures. Snapshotting individual
files is simplified with range clones, as the file system has
only to allocate logical address space and issue a range
operation to clone the address mappings from the existing
file into the newly-allocated address space [14].

With just a few hundred lines of code, we have added
an ioctl to ext4 to allow a zero-copy implementation
of the standard cp command, providing an efficient (in
both space and time) file-snapshot operation. Figure 1
shows, for varying file sizes, the time taken to copy a
file using the standard cp command on an ext4 file sys-
tem mounted on an ANViL device in comparison to the
time taken to copy the file using our special range-clone

Figure 1: Time to copy files of various sizes via standard
cp with both a cold and a warm page cache, and using a
special ANViL ioctl in our modified version of ext4.

ioctl. Unsurprisingly, the range-clone based file copy
is dramatically faster than the conventional read-and-write
approach used by the unmodified cp, copying larger files
in orders of magnitude less time. Also, unlike standard
cp, the clone based implementation shares physical space
between copies, making it vastly more storage efficient as
normal for thinly provisioned snapshots.

5.1.2 Volume Snapshots
Volume snapshots are similar to file snapshots, but even
simpler to implement. We merely identify the range of
blocks that represent a volume and clone it into a new
range of logical address space, which a volume manager
can then provide access to as an independent volume.

Volume snapshots via range-clones offer much better
performance than the snapshot facilities offered by some
existing systems, such as Linux’s built-in volume man-
ager, LVM. LVM snapshots are (somewhat notoriously)
slow, because they operate via copy-on-write of large ex-
tents of data (2MB by default) for each extent that is writ-
ten to in the volume of which the snapshot was taken.
To quantify this, we measure the performance of random
writes at varying queue depths on an LVM volume and on
ANViL, both with and without a recently-activated snap-
shot. In Figure 2, we see that while the LVM volume suf-
fers a dramatic performance hit when a snapshot is active,
ANViL sees little change in performance, since it instead
uses its innate redirect-on-write mechanism.

5.2 Deduplication
Data deduplication is often employed to eliminate data re-
dundancy and better utilize storage capacity by identify-
ing pieces of identical data and collapsing them together
to share the same physical space. Deduplication can of
course be implemented easily using a range clone opera-
tion. As with snapshots, deduplication can be performed
at different layers of the storage stack. Here we show how
block-level deduplication can be easily supported by a file
system running on top of an ANViL device.
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Figure 2: Random write IOPS on ANViL and LVM, both
in isolation and with a recently-activated snapshot. The
baseline bars illustrate ANViL’s raw I/O performance. Its
relatively low performance at small queue depths is due to
the overhead incurred by its metadata updates.

Extending the same ioctl used to implement file
snapshots (§5.1.1), we added an optional flag to specify
that the file system should, as a single atomic operation,
read the two indicated file ranges and then conditionally
perform a range clone if and only if they contain iden-
tical data. This operation provides a base primitive that
can be used as the underlying mechanism for a userspace
deduplication tool, with the atomicity necessary to allow
it to operate safely in the presence of possible concurrent
file modifications. Without this locking it would risk los-
ing data written to files in a time-of-check-to-time-of-use
race between the deduplicator detecting that two block
ranges are identical (the check) and performing the range-
copy operation (the use). While the simplistic proof-of-
concept deduplication system we have is unable to detect
previously-deduplicated blocks and avoid re-processing
them, the underlying mechanism could be employed by a
more sophisticated offline deduplicator without this draw-
back (or even, with appropriate plumbing, an online one).

5.3 Single-Write Journaling
Journaling is widely used to provide atomicity to multi-
block updates and thus ensure metadata (and sometimes
data) consistency in systems such as databases and file
systems. Such techniques are required because storage
devices typically do not provide any atomicity guarantees
beyond a single block write. Unfortunately, journaling
causes each journaled update to be performed twice: once
to the journal region and then to the final location of the
data. In case of failure, updates that have been commit-
ted to the journal are replayed at recovery time, and un-
committed updates are discarded. ANViL, however, can
leverage its redirect-on-write nature and internal metadata
management to support a multi-block atomic write oper-
ation. With this capability, we can avoid the double-write
penalty of journaling and thus improve both performance
and the lifespan of the flash device.

By making a relatively small modification to a journal-
ing file system, we can use a vectored atomic range move
operation to achieve this optimization. When the file sys-
tem would write the commit block for a journal transac-
tion, it instead issues a single vector of range moves to
atomically relocate all metadata (and/or data) blocks in
the journal transaction to their “home” locations in the
main file system. Figure 3 illustrates an atomic com-
mit operation via range moves. This approach is similar
to Choi et al.’s JFTL [6], though unlike JFTL the much
more general framework provided by ANViL is not tai-
lored specifically to journaling file systems.

Using range moves in this way obviates the need for a
second write to copy each block to its primary location,
since the range move has already put them there, elimi-
nating the double-write penalty inherent to conventional
journaling. This technique is equally applicable to meta-
data journaling and full data journaling; with the latter this
means that a file system can achieve the stronger consis-
tency properties offered by data journaling without pay-
ing the penalty of the doubling of write traffic incurred by
journaling without range moves. By halving the amount
of data written, flash device lifespan is also increased.

Commit-via-range-move also obviates the need for any
journal recovery at mount time, since any transaction that
has committed will need no further processing or IO,
and any transaction in the journal that has not completed
should not be replayed anyway (for consistency reasons).
This simplification would allow the elimination of over
700 lines of (relatively intricate) recovery code from the
jbd2 codebase.

In effect, this approach to atomicity simply exposes to
the application (the file system, in this case) the internal
operations necessary to stitch together a vectored atomic
write operation from more primitive operations: the appli-
cation writes its buffers to a region of scratch space (the
journal), and then, once all of the writes have completed,
issues a single vectored atomic range move to put each
block in its desired location.

We have implemented single-write journaling in ext4’s
jbd2 journaling layer; it took approximately 100 lines of
new code and allowed the removal of over 900 lines of
existing commit and recovery code. Figure 4 shows the
performance results for write throughput in data journal-
ing mode of a process writing to a file in varying chunk
sizes and calling fdatasync after each write. In all
cases ext4a (our modified, ANViL-optimized version of
ext4) achieves substantially higher throughput than the
baseline ext4 file system. At small write sizes the rela-
tive gain of ext4a is larger, because in addition to elim-
inating the double-write of file data, the recovery-less
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Figure 3: Transactions via address remapping By using an application-managed scratch area, atomic transactional updates
can be implemented using range operations. At 1© the system is in its consistent pre-transaction state, with logical blocks L1, L2,
and L3 each mapped to blocks containing the initial versions of the relevant data. Between 1© and 2©, new versions of these blocks
are written out and mapped to logical addresses in a temporary scratch area (L4, L5, and L6). Note that this portion is not required
to proceed atomically. Once the temporary locations have all been populated, an atomic range-move operation remaps the new
blocks at L4, L5, and L6 to L1, L2, and L3, respectively, leading to 3©, at which point the transaction is fully committed.

Figure 4: Data journaling write throughput with ANViL-
optimized ext4a compared to unmodified ext4. Each bar
is labeled with absolute write bandwidth.

nature of single-write journaling also obviates the need
for writing the start and commit blocks of each jour-
nal transaction; for small transactions the savings from
this are proportionally larger. At larger write sizes, the
reason that the performance gain is less than the dou-
bling that might be expected (due to halving the amount
of data written) is that despite consisting purely of syn-
chronous file writes, the workload is actually insuffi-
ciently IO-bound. The raw performance of the storage
device is high enough that CPU activity in the file system
consumes approximately 50% of the workload’s execu-
tion time; jbd2’s kjournald thread (which performs all
journal writes) is incapable of keeping the device utilized,
and its single-threadedness means that adding additional
userspace IO threads to the workload does little to in-
crease device IO bandwidth utilization. Adding a second
thread to the 512KB write workload increases throughput
from 132 MB/s to 140 MB/s; four threads actually de-
creases throughput to 128 MB/s.

The mechanism underlying single-write journaling
could be more generally applied to most forms of write-
ahead logging, such as that employed by relational
database management systems [21].

6 Conclusions
The above case studies show that with a simple but power-
ful remapping mechanism, a single log structured storage
layer can provide upstream software with both high per-
formance and a flexible storage substrate.

Virtualization is an integral part of modern systems, and
with the advent of flash it has become important to con-
sider storage virtualization beyond volume management
in order to uncover the true potential of the technology.
In this paper we have proposed advanced storage virtual-
ization with a set of interfaces giving applications fine-
grained control over storage address remapping. Their
implementation is a natural extension of common mech-
anisms present in log-structured datastores such as FTLs,
and we demonstrated, with a set of practical case studies
with our ANViL prototype, the utility and generality of
this interface. Our work to date shows that the proposed
interfaces have enough flexibility to provide a great deal
of added utility to applications while remaining relatively
simple to integrate.
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Abstract
We present Chopper, a tool that efficiently explores the
vast input space of file system policies to find behav-
iors that lead to costly performance problems. We fo-
cus specifically on block allocation, as unexpected poor
layouts can lead to high tail latencies. Our approach
utilizes sophisticated statistical methodologies, based on
Latin Hypercube Sampling (LHS) and sensitivity analy-
sis, to explore the search space efficiently and diagnose
intricate design problems. We apply Chopper to study the
overall behavior of two file systems, and to study Linux
ext4 in depth. We identify four internal design issues in
the block allocator of ext4 which form a large tail in the
distribution of layout quality. By removing the underly-
ing problems in the code, we cut the size of the tail by an
order of magnitude, producing consistent and satisfactory
file layouts that reduce data access latencies.

1 Introduction
As the distributed systems that power the cloud have ma-
tured, a new performance focus has come into play: tail
latency. As Dean and Barroso describe, long tails can dra-
matically harm interactive performance and thus limit the
applications that can be effectively deployed at scale in
modern cloud-based services [17]. As a result, a great
deal of recent research effort has attacked tail latency di-
rectly [6,49,51]; for example, Alizadeh et al. show how to
reduce the network latency of the 99th percentile by a fac-
tor of ten through a combination of novel techniques [6].

The fundamental reason that reducing such tail latency
is challenging is that rare, corner-case behaviors, which
have little impact on a single system, can dominate when
running a system at scale [17]. Thus, while the well-
tested and frequently-exercised portions of a system per-
form well, the unusual behaviors that are readily ignored
on one machine become the common case upon one thou-
sand (or more) machines.

To build the next generation of robust, predictably per-
forming systems, we need an approach that can read-
ily discover corner-case behaviors, thus enabling a de-
veloper to find and fix intrinsic tail-latency problems be-
fore deployment. Unfortunately, finding unusual behav-
ior is hard: just like exploring an infinite state space
for correctness bugs remains an issue for today’s model
checkers [10, 19], discovering the poorly-performing tail-
influencing behaviors presents a significant challenge.

One critical contributor to tail latency is the local file
system [8]. Found at the heart of most distributed file sys-
tems [20, 47], local file systems such as Linux ext4, XFS,
and btrfs serve as the building block for modern scalable
storage. Thus, if rare-case performance of the local file
system is poor, the performance of the distributed file sys-
tem built on top of it will suffer.

In this paper, we present Chopper, a tool that en-
ables developers to discover (and subsequently repair)
high-latency operations within local file systems. Chop-
per currently focuses on a critical contributor to unusual
behavior in modern systems: block allocation, which
can reduce file system performance by one or more or-
ders of magnitude on both hard disk and solid state
drives [1, 11, 13, 30, 36]. With Chopper, we show how to
find such poor behaviors, and then how to fix them (usu-
ally through simple file-system repairs).

The key and most novel aspect of Chopper is its usage
of advanced statistical techniques to search and investi-
gate an infinite performance space systematically. Specif-
ically, we use Latin hypercube sampling [29] and sensi-
tivity analysis [40], which has been proven efficient in
the investigation of many-factor systems in other appli-
cations [24,31,39]. We show how to apply such advanced
techniques to the domain of file-system performance anal-
ysis, and in doing so make finding tail behavior tractable.

We use Chopper to analyze the allocation performance
of Linux ext4 and XFS, and then delve into a detailed
analysis of ext4 as its behavior is more complex and var-
ied. We find four subtle flaws in ext4, including behav-
iors that spread sequentially-written files over the entire
disk volume, greatly increasing fragmentation and induc-
ing large latency when the data is later accessed. We also
show how simple fixes can remedy these problems, result-
ing in an order-of-magnitude improvement in the tail lay-
out quality of the block allocator. Chopper and the ext4
patches are publicly available at:

research.cs.wisc.edu/adsl/Software/chopper

The rest of the paper is organized as follows. Section 2
introduces the experimental methodology and implemen-
tation of Chopper. In Section 3, we evaluate ext4 and
XFS as black boxes and then go further to explore ext4 as
a white box since ext4 has a much larger tail than XFS.
We present detailed analysis and fixes for internal allo-
cator design issues of ext4. Section 4 introduces related
work. Section 5 concludes this paper.
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2 Diagnosis Methodology
We now describe our methodology for discovering inter-
esting tail behaviors in file system performance, particu-
larly as related to block allocation. The file system input
space is vast, and thus cannot be explored exhaustively;
we thus treat each file system experiment as a simulation,
and apply a sophisticated sampling technique to ensure
that the large input space is explored carefully.

In this section, we first describe our general experimen-
tal approach, the inputs we use, and the output metric of
choice. We conclude by presenting our implementation.

2.1 Experimental Framework
The Monte Carlo method is a process of exploring simu-
lation by obtaining numeric results through repeated ran-
dom sampling of inputs [38,40,43]. Here, we treat the file
system itself as a simulator, thus placing it into the Monte
Carlo framework. Each run of the file system, given a set
of inputs, produces a single output, and we use this frame-
work to explore the file system as a black box.

Each input factor Xi (i = 1, 2, ...,K) (described fur-
ther in Section 2.2) is estimated to follow a distribution.
For example, if small files are of particular interest, one
can utilize a distribution that skews toward small file sizes.
In the experiments of this paper, we use a uniform distri-
bution for fair searching. For each factor Xi, we draw
a sample from its distribution and get a vector of values
(X1

i , X
2
i , X

3
i , .., X

N
i ). Collecting samples of all the fac-

tors, we obtain a matrix M .

M =



X1

1 X1
2 ... X1

K

X2
1 X2

2 ... X2
K

...
XN

1 XN
2 ... XN

K


 Y =



Y 1

Y 2

...
Y N




Each row in M , i.e., a treatment, is a vector to be used
as input of one run, which produces one row in vector Y .
In our experiment, M consists of columns such as the size
of the file system and how much of it is currently in use.
Y is a vector of the output metric; as described below,
we use a metric that captures how much a file is spread
out over the disk called d-span. M and Y are used for
exploratory data analysis.

The framework described above allows us to explore
file systems over different combinations of values for un-
certain inputs. This is valuable for file system studies
where the access patterns are uncertain. With the frame-
work, block allocator designers can explore the conse-
quences of design decisions and users can examine the
allocator for their workload.

In the experiment framework, M is a set of treatments
we would like to test, which is called an experimental plan
(or experimental design). With a large input space, it is
essential to pick input values of each factor and organize
them in a way to efficiently explore the space in a limited
number of runs. For example, even with our refined space

in Table 1 (introduced in detail later), there are about 8×
109 combinations to explore. With an overly optimistic
speed of one treatment per second, it still would take 250
compute-years to finish just one such exploration.

Latin Hypercube Sampling (LHS) is a sampling method
that efficiently explores many-factor systems with a large
input space and helps discover surprising behaviors [25,
29, 40]. A Latin hypercube is a generalization of a Latin
square, which is a square grid with only one sample point
in each row and each column, to an arbitrary number of di-
mensions [12]. LHS is very effective in examining the in-
fluence of each factor when the number of runs in the ex-
periment is much larger than the number of factors. It aids
visual analysis as it exercises the system over the entire
range of each input factor and ensures all levels of it are
explored evenly [38]. LHS can effectively discover which
factors and which combinations of factors have a large in-
fluence on the response. A poor sampling method, such
as a completely random one, could have input points clus-
tered in the input space, leaving large unexplored gaps in-
between [38]. Our experimental plan, based on LHS, con-
tains 16384 runs, large enough to discover subtle behav-
iors but not so large as to require an impractical amount
of time.

2.2 Factors to Explore
File systems are complex. It is virtually impossible to
study all possible factors influencing performance. For
example, the various file system formatting and mounting
options alone yield a large number of combinations. In
addition, the run-time environment is complex; for exam-
ple, file system data is often buffered in OS page caches in
memory, and differences in memory size can dramatically
change file system behavior.

In this study, we choose to focus on a subset of factors
that we believe are most relevant to allocation behavior.
As we will see, these factors are broad enough to dis-
cover interesting performance oddities; they are also not
so broad as to make a thorough exploration intractable.

There are three categories of input factors in Chopper.
The first category of factors describes the initial state of
the file system. The second category includes a relevant
OS state. The third category includes factors describing
the workload itself. All factors are picked to reveal poten-
tially interesting design issues. In the rest of this paper, a
value picked for a factor is called a level. A set of levels,
each of which is selected for a factor, is called a treat-
ment. One execution of a treatment is called a run. We
picked twelve factors, which are summarized in Table 1
and introduced as follows.

We create a virtual disk of DiskSize bytes, because
block allocators may have different space management
policies for disks of different sizes.

The UsedRatio factor describes the ratio of disk that
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Factor Description Presented Space

FS

DiskSize Size of disk the file system is mounted on. 1,2,4,...,64GB
UsedRatio Ratio of used disk. 0, 0.2, 0.4, 0.6

FreeSpaceLayout Small number indicates high fragmentation. 1,2,...,6

OS CPUCount Number of CPUs available. 1,2

W
or

kl
oa

d

FileSize Size of file. 8,16,24,...,256KB
ChunkCount Number of chunks each file is evenly divided into. 4

InternalDensity Degree of sparseness or overwriting. 0.2,0.4,...,2.0
ChunkOrder Order of writing the chunks. permutation(0,1,2,3)

Fsync Pattern of fsync(). ****, *=0 or 1
Sync Pattern of close(), sync(), and open(). ***1, *=0 or 1

FileCount Number of files to be written. 1,2
DirectorySpan Distance of files in the directory tree. 1,2,3,...,12

Table 1: Factors in Experiment.
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Figure 1: LayoutNumber. Degree of fragmentation
represented as lognormal distribution.

has been used. Chopper includes it because block alloca-
tors may allocate blocks differently when the availability
of free space is different.

The FreeSpaceLayout factor describes the contiguity
of free space on disk. Obtaining satisfactory layouts de-
spite a paucity of free space, which often arises when file
systems are aged, is an important task for block alloca-
tors. Because enumerating all fragmentation states is im-
possible, we use six numbers to represent degrees from
extremely fragmented to generally contiguous. We use
the distribution of free extent sizes to describe the de-
gree of fragmentations; the extent sizes follow lognormal
distributions. Distributions of layout 1 to 5 are shown
in Figure 1. For example, if layout is number 2, about
0.1 × DiskSize × (1 − UsedRatio) bytes will consist
of 32KB extents, which are placed randomly in the free
space. Layout 6 is not manually fragmented, in order to
have the most contiguous free extents possible.

The CPUCount factor controls the number of CPUs
the OS runs on. It can be used to discover scalability is-
sues of block allocators.

The FileSize factor represents the size of the file to be
written, as allocators may behave differently when differ-
ent sized files are allocated. For simplicity, if there is more
than one file in a treatment, all of them have the same size.

A chunk is the data written by a write() call. A file
is often not written by only one call, but a series of writes.
Thus, it is interesting to see how block allocators act with
different numbers of chunks, which ChunkCount factor
captures. In our experiments, a file is divided into multiple
chunks of equal sizes. They are named by their positions
in file, e.g., if there are four chunks, chunk-0 is at the head
of the file and chunk-3 is at the end.

Sparse files, such as virtual machine images [26],
are commonly-used and important. Files written non-
sequentially are sparse at some point in their life, although
the final state is not. On the other hand, overwriting is also
common and can have effect if any copy-on-write strategy
is adopted [34]. The InternalDensity factor describes the
degree of coverage (e.g. sparseness or overwriting) of a

file. For example, if InternalDensity is 0.2 and chunk size
is 10KB, only the 2KB at the end of each chunk will be
written. If InternalDensity is 1.2, there will be two writes
for each chunk; the first write of this chunk will be 10KB
and the second one will be 2KB at the end of the chunk.

The ChunkOrder factor defines the order in which the
chunks are written. It explores sequential and random
write patterns, but with more control. For example, if
a file has four chunks, ChunkOrder=0123 specifies that
the file is written from the beginning to the end; Chunk-
Order=3210 specifies that the file is written backwards.

The Fsync factor is defined as a bitmap describing
whether Chopper performs an fsync() call after each
chunk is written. Applications, such as databases, often
use fsync() to force data durability immediately [15,
23]. This factor explores how fsync() may interplay
with allocator features (e.g., delayed allocation in Linux
ext4 [28]). In the experiment, if ChunkOrder=1230 and
Fsync=1100, Chopper will perform an fsync() after
chunk-1 and chunk-2 are written, but not otherwise.

The Sync factor defines how we open, close, or sync
the file system with each write. For example, if Chunk-
Order=1230 and Sync=0011, Chopper will perform the
three calls after chunk-3 and perform close() and
sync() after chunk-0; open() is not called after the
last chunk is written. All Sync bitmaps end with 1, in or-
der to place data on disk before we inquire about layout in-
formation. Chopper performs fsync() before sync()
if they both are requested for a chunk.

The FileCount factor describes the number of files
written, which is used to explore how block allocators pre-
serve spatial locality for one file and for multiple files. In
the experiment, if there is more than one file, the chunks
of each file will be written in an interleaved fashion. The
ChunkOrder, Fsync, and Sync for all the files in a single
treatment are identical.

Chopper places files in different nodes of a directory
tree to study how parent directories can affect the data
layouts. The DirectorySpan factor describes the dis-
tance between parent directories of the first and last files
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in a breadth-first traversal of the tree. If FileCount=1,
DirectorySpan is the index of the parent directory in the
breadth-first traversal sequence. If FileCount=2, the first
file will be placed in the first directory, and the second
one will be at the DirectorySpan-th position of the traver-
sal sequence.

In summary, the input space of the experiments pre-
sented in this paper is described in Table 1. The choice
is based on efficiency and simplicity. For example, we
study relatively small file sizes because past studies of file
systems indicates most files are relatively small [5, 9, 35].
Specifically, Agrawal et. al. found that over 90% of the
files are below 256 KB across a wide range of systems [5].
Our results reveal many interesting behaviors, many of
which also apply to larger files. In addition, we study
relatively small disk sizes as large ones slow down ex-
periments and prevent broad explorations in limited time.
The file system problems we found with small disk sizes
are also present with large disks.

Simplicity is also critical. For example, we use at most
two files in these experiments. Writing to just two files,
we have found, can reveal interesting nuances in block
allocation. Exploring more files make the results more
challenging to interpret. We leave further exploration of
the file system input space to future work.

2.3 Layout Diagnosis Response
To diagnose block allocators, which aim to place data
compactly to avoid time-consuming seeking on HDDs [7,
36] and garbage collections on SSDs [11, 30], we need
an intuitive metric reflecting data layout quality. To this
end, we define d-span, the distance in bytes between the
first and last physical block of a file. In other words, d-
span measures the worst allocation decision the allocator
makes in terms of spreading data. As desired, d-span is an
indirect performance metric, and, more importantly, an in-
tuitive diagnostic signal that helps us find unexpected file-
system behaviors. These behaviors may produce poor lay-
outs that eventually induce long data access latencies. d-
span captures subtle problematic behaviors which would
be hidden if end-to-end performance metrics were used.
Ideally, d-span should be the same size as the file.

d-span is not intended to be an one-size-fits-all metric.
Being simple, it has its weaknesses. For example, it can-
not distinguish cases that have the same span but different
internal layouts. An alternative of d-span that we have in-
vestigated is to model data blocks as vertices in a graph
and use average path length [18] as the metric. The min-
imum distance between two vertices in the graph is their
corresponding distance on disk. Although this metric is
able to distinguish between various internal layouts, we
have found that it is often confusing. In contrast, d-span
contains less information but is much easier to interpret.

In addition to the metrics above, we have also explored

Manager

Workload Generator

Workload Player FS Manipulator

FS Monitor

Analyzer

UtilitiesFS

Figure 2: Chopper components.

metrics such as number of data extents, layout score (frac-
tion of contiguous blocks) [42], and normalized versions
of each metric (e.g. d-span/ideal d-span). One can even
create a metric by plugging in a disk model to measure
quality. Our diagnostic framework works with all of these
metrics, each of which allows us to view the system from
a different angle. However, d-span has the best trade-off
between information gain and simplicity.

2.4 Implementation
The components of Chopper are presented in Figure 2.
The Manager builds an experimental plan and conducts
the plan using the other components. The FS Manipu-
lator prepares the file system for subsequent workloads.
In order to speed up the experiments, the file system is
mounted on an in-memory virtual disk, which is imple-
mented as a loop-back device backed by a file in a RAM
file system. The initial disk images are re-used whenever
needed, thus speeding up experimentation and provid-
ing reproducibility. After the image is ready, the Work-
load Generator produces a workload description, which
is then fed into the Workload Player for running. After
playing the workload, the Manager informs the FS Mon-
itor, which invokes existing system utilities, such as de-
bugfs and xfs db, to collect layout information. No kernel
changes are needed. Finally, layout information is merged
with workload and system information and fed into the
Analyzer. The experiment runs can be executed in paral-
lel to significantly reduce time.

3 The Tale of Tail
We use Chopper to help understand the policies of file
system block allocators, to achieve more predictable and
consistent data layouts, and to reduce the chances of per-
formance fluctuations. In this paper, we focus on Linux
ext4 [28] and XFS [41], which are among the most popu-
lar local file systems [2–4, 33].

For each file system, we begin in Section 3.1 by asking
whether or not it provides robust file layout in the pres-
ence of uncertain workloads. If the file system is robust
(i.e., XFS), then we claim success; however, if it is not
(i.e., ext4), then we delve further into understanding the
workload and environment factors that cause the unpre-
dictable layouts. Once we understand the combination of
factors that are problematic, in Section 3.2, we search for
the responsible policies in the file system source code and
improve those policies.
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Figure 4: Contribution to d-span variance. It shows contribu-
tions calculated by factor prioritization of sensitivity analysis.

3.1 File System as a Black Box
3.1.1 Does a Tail Exist?
The first question we ask is whether or not the file alloca-
tion policies in Linux ext4 and XFS are robust to the input
space introduced in Table 1.

To find out if there are tails in the resulting allocations,
we conducted experiments with 16384 runs using Chop-
per. The experiments were conducted on a cluster of
nodes with 16 GB RAM and two Opteron-242 CPUs [21].
The nodes ran Linux v3.12.5. Exploiting Chopper’s par-
allelism and optimizations, one full experiment on each
file system took about 30 minutes with 32 nodes.

Figure 3 presents the empirical CDF of the resulting d-
spans for each file system over all the runs; in runs with
multiple files, the reported d-span is the maximum d-span
of the allocated files. A large d-span value indicates a file
with poor locality. Note that the file sizes are never larger
than 256KB, so d-span with optimal allocation would be
only 256KB as well.

The figure shows that the CDF line for XFS is nearly
vertical; thus, XFS allocates files with relatively little vari-
ation in the d-span metric, even with widely differing
workloads and environmental factors. While XFS may
not be ideal, this CDF (as well as further experiments not
shown due to space constraints) indicates that its block
allocation policy is relatively robust.

In contrast, the CDF for ext4 has a significant tail.
Specifically, 10% of the runs in ext4 have at least one file
spreading over 10GB. This tail indicates instability in the
ext4 block allocation policy that could produce poor lay-
outs inducing long access latencies.

3.1.2 Which factors contribute to the tail?
We next investigate which workload and environment fac-
tors contribute most to the variation seen in ext4 layout.
Understanding these factors is important for two reasons.
First, it can help file system users to see which workloads
run best on a given file system and to avoid those which
do not run well; second, it can help file system developers
track down the source of internal policy problems.

The contribution of a factor to variation can be calcu-
lated by variance-based factor prioritization, a technique
in sensitivity analysis [38]. Specifically, the contribution
of factor Xi is calculated by:

Si =
VXi(EX∼i(Y |Xi = x∗

i ))

V (Y )

Si is always smaller than 1 and reports the ratio of the
contribution by factor Xi to the overall variation. In more
detail, if factor Xi is fixed at a particular level x∗

i , then
EX∼i

(Y |Xi = x∗
i ) is the resulting mean of response val-

ues for that level, VXi
(EX∼i

(Y |Xi = x∗
i )) is the variance

among level means of Xi, and V (Y ) is the variance of all
response values for an experiment. Intuitively, Si indi-
cates how much changing a factor can affect the response.

Figure 4 presents the contribution of each factor for
ext4; again, the metric indicates the contribution of each
factor to the variation of d-span in the experiment. The
figure shows that the most significant factors are DiskSize,
FileSize, Sync, ChunkOrder, and Fsync; that is, changing
any one of those factors may significantly affect d-span
and layout quality. DiskSize is the most sensitive fac-
tor, indicating that ext4 does not have stable layout quality
with different disk sizes. It is not surprising that FileSize
affects d-span considering that the definition d-span de-
pends on the size of the file; however, the variance con-
tributed by FileSize (0.14 × V (dspanreal) = 3 × 1018)
is much larger than ideally expected (V (dspanideal) =
6 × 1010, dspanideal = FileSize). The significance of
Sync, ChunkOrder, and Fsync imply that certain write
patterns are much worse than others for ext4 allocator.

Factor prioritization gives us an overview of the impor-
tance of each factor and guides further exploration. We
would also like to know which factors and which levels of
a factor are most responsible for the tail. This can be de-
termined with factor mapping [38]; factor mapping uses
a threshold value to group responses (i.e., d-span values)
into tail and non-tail categories and finds the input space
of factors that drive the system into each category. We de-
fine the threshold value as the 90th% (10GB in this case)
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(e) Fsync
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Figure 5: Tail Distribution of 11 Factors. In the figure, we can find what levels of each factor have tail runs and percentage of
tail runs in each level. Regions with significantly more tail runs are marked bold. Note that the number of total runs of each level is
identical for each factor. Therefore, the percentages between levels of a factor are comparable. For example, (a) shows all tail runs
in the experiment have disk sizes ≥ 16GB. In addition, when DiskSize=16GB, 17% of runs are in the tail (d-span≥10GB) which
is less than DiskSize=32GB.

of all d-spans in the experiment. We say that a run is a tail
run if its response is in the tail category.

Factor mapping visualization in Figure 5 shows how the
tails are distributed to the levels of each factor. Thanks to
the balanced Latin hypercube design with large sample
size, the difference between any two levels of a factor is
likely to be attributed to the level change of this factor and
not due to chance.

Figure 5a shows that all tail runs lay on disk sizes over
8GB because the threshold d-span (10GB) is only possi-
ble when the disk size exceeds that size. This result im-
plies that blocks are spread farther as the capacity of the
disk increases, possibly due to poor allocation polices in
ext4. Figure 5b shows a surprising result: there are sig-
nificantly more tail runs when the file size is larger than
64KB. This reveals that ext4 uses very different block al-
location polices for files below and above 64KB.

Sync, ChunkOrder, and Fsync also present interesting
behaviors, in which the first written chunk plays an impor-
tant role in deciding the tail. Figure 5c shows that closing
and sync-ing after the first written chunk (coded 1***)
causes more tail runs than otherwise. Figure 5d shows that
writing chunk-0 of a file first (coded 0***), including se-
quential writes (coded 0123) which are usually preferred,
leads to more tail runs. Figure 5e shows that, on average,
not fsync-ing the first written chunk (coded 0***) leads to
more tail runs than otherwise.

The rest of the factors are less significant, but still reveal
interesting observations. Figure 5f and Figure 5g show
that tail runs are always present and not strongly corre-
lated with free space layout or the amount of free space,
even given the small file sizes in our workloads (below
256KB). Even with layout number 6 (not manually frag-
mented), there are still many tail runs. Similarly, hav-
ing more free spaces does not reduce tail cases. These
facts indicate that many tail runs do not depend on the
disk state and instead it is the ext4 block allocation policy
itself causing these tail runs. After we fix the ext4 allo-
cation polices in the next section, the DiskUsed and Free-
spaceLayout factors will have a much stronger impact.

Finally, Figure 5h and Figure 5i show that tail runs
are generally not affected by DirectorySpan and Internal-
Density. Figure 5j shows that having more files leads
to 29% more tail cases, indicating potential layout prob-
lems in production systems where multi-file operations
are common. Figure 5k shows that there are 6% more
tail cases when there are two CPUs.

3.1.3 Which factors interact in the tail?
In a complex system such as ext4 block allocator, perfor-
mance may depend on more than one factor. We have
inspected all two-factor interactions and select two cases
in Figure 6 that present clear patterns. The figures show
how pairwise interactions may lead to tail runs, reveal-
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Figure 6: Tail Runs in the Interactions of Factors Note that
each interaction data point corresponds to multiple runs with
other factors varying. A black dot means that there is at least
one tail case in that interaction. Low-danger zones are marked
with bold labels.

ing both dangerous and low-danger zones in the work-
load space; these zones give us hints about the causes of
the tail, which will be investigated in Section 3.2. Fig-
ure 6a shows that, writing and fsync-ing chunk-3 first sig-
nificantly reduces tail cases. In Figure 6b, we see that,
for files not larger than 64KB, fsync-ing the first writ-
ten chunk significantly reduces the possibility of produc-
ing tail runs. These two figures do not conflict with each
other; in fact, they indicate a low-danger zone in a three-
dimension space.

Evaluating ext4 as black box, we have shown that ext4
does not consistently provide good layouts given diverse
inputs. Our results show that unstable performance with
ext4 is not due to the external state of the disk (e.g., frag-
mentation or utilization), but to the internal policies of
ext4. To understand and fix the problems with ext4 al-
location, we use detailed results from Chopper to guide
our search through ext4 documentation and source code.

3.2 File System as a White Box
Our previous analysis uncovered a number of problems
with the layout policies of ext4, but it did not pinpoint the
location of those policies within the ext4 source code. We
now use the hints provided by our previous data analysis
to narrow down the sources of problems and to perform
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detailed source code tracing given the set of workloads
suggested by Chopper. In this manner, we are able to fix
a series of problems in the ext4 layout policies and show
that each fix reduces the tail cases in ext4 layout.

Figure 7 compares the original version of ext4 and our
final version that has four sources of layout variation re-
moved. We can see that the fixes significantly reduce the
size of the tail, providing better and more consistent lay-
out quality. We now connect the symptoms of problems
shown by Chopper to their root causes in the code.

3.2.1 Randomness → Scheduler Dependency
Our first step is to remove non-determinism for experi-
ments with the same treatment. Our previous experiments
corresponded to a single run for each treatment; this ap-
proach was acceptable for summarizing from a large sam-
ple space, but cannot show intra-treatment variation. Af-
ter we identify and remove this intra-treatment variation,
it will be more straightforward to remove other tail effects.

We conducted two repeated experiments with the same
input space as in Table 1 and found that 6% of the runs
have different d-spans for the same treatment; thus, ext4
can produce different layouts for the same controlled in-
put. Figure 9a shows the distribution of the d-span differ-
ences for those 6% of runs. The graph indicates that the
physical data layout can differ by as much as 46GB for
the same workload.
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Figure 9: Symptoms of Randomness. (a): CDF of d-span
variations between two experiments. The median is 1.9MB.
The max is 46GB. (b): Number of runs with changed d-span,
shown as the interaction of FileSize and CPUCount. (c): Num-
ber of runs with changed d-span, shown as the interaction of
FileSize and ChunkOrder. Regions with considerable tail runs
are marked with bold labels.

Examining the full set of factors responsible for this
variation, we found interesting interactions between File-
Size, CPUCount, and ChunkOrder. Figure 9b shows the
count of runs in which d-span changed between identi-
cal treatments as a function of CPUCount and FileSize.
This figure gives us the hint that small files in multiple-
CPU systems may suffer from unpredictable layouts. Fig-
ure 9c shows the number of runs with changed d-span as
a function of ChunkOrder and FileSize. This figure in-
dicates that most small files and those large files written
with more sequential patterns are affected.

Root Cause: With these symptoms as hints we focused
on the interaction between small files and the CPU sched-
uler. Linux ext4 has an allocation policy such that files
not larger than 64KB (small files) are allocated from lo-
cality group (LG) preallocations; further, the block allo-
cator associates each LG preallocation with a CPU, in or-
der to avoid contention. Thus, for small files, the layout
location is based solely on which CPU the flusher thread
is running. Since the flusher thread can be scheduled on
different CPUs, the same small file can use different LG
preallocations spread across the entire disk.

This policy is also the cause of the variation seen by
some large files written sequentially: large files written
sequentially begin as small files and are subject to LG pre-
allocation; large files written backwards have large sizes
from the beginning and never trigger this scheduling de-
pendency1. In production systems with heavy loads, more
cores, and more files, we expect more unexpected poor
layouts due to this effect.

Fix: We remove the problem of random layout by
choosing the locality group for a small file based on its i-
number range instead of the CPU. Using the i-number not
only removes the dependency on the scheduler, but also
ensures that small files with close i-numbers are likely to
be placed close together. We refer to the ext4 version with
this new policy as !SD, for no Scheduler Dependency.

Figure 8a compares vanilla ext4 and !SD. The graph
shows that the new version slightly reduces the size of
the tail. Further analysis shows that in total d-span is re-
duced by 1.4 TB in 7% of the runs but is increased by
0.8 TB in 3% of runs. These mixed results occur because
this first fix unmasks other problems which can lead to
larger d-spans. In complex systems such as ext4, perfor-
mance problems interact in surprising ways; we will pro-
gressively work to remove three more problems.

3.2.2 Allocating Last Chunk → Special End
We now return to the interesting behaviors originally
shown in Figure 6a, which showed that allocating chunk-3
first (Fsync=1*** and ChunkOrder=3***) helps to avoid
tail runs. To determine the cause of poor allocations, we
compared traces from selected workloads in which a tail
occurs to similar workloads in which tails do not occur.

Root Cause: Linux ext4 uses a Special End policy to
allocate the last extent of a file when the file is no longer
open; specifically, the last extent does not trigger preallo-
cation. The Special End policy is implemented by check-
ing three conditions - Condition 1: the extent is at the end
of the file; Condition 2: the file system is not busy; Con-
dition 3: the file is not open. If all conditions are satisfied,
this request is marked with the hint “do not preallocate”,
which is different from other parts of the file2.

The motivation is that, since the status of a file is final
(i.e., no process can change the file until the next open),
there is no need to reserve additional space. While this
motivation is valid, the implementation causes an incon-
sistent allocation for the last extent of the file compared
to the rest; the consequence is that blocks can be spread

1Note that file size in ext4 is calculated by the ending logical block
number of the file, not the sum of physical blocks occupied.

2In fact, this hint is vague. It means: 1. if there is a preallocation
solely for this file (i.e., i-node preallocation), use it; 2. do not use
LG preallocations, even they are available 3. do not create any new
preallocations.
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Figure 10: Effects of removing problematic policies. The d-
spans could be ‘Reduced’, ‘Unchanged’ or ‘Increased’ due to
the removal. (a): removing Special End; (b) and (c): removing
Shared Global.

far apart. For example, a small file may be inadvertently
split because non-ending extents are allocated with LG
preallocations while the ending extent is not; thus, these
conflicting policies drag the extents of the file apart.

This policy explains the tail-free zone (Fsync=1*** and
ChunkOrder=3***) in Figure 6a. In these tail-free zones,
the three conditions cannot be simultaneously satisfied
since fsync-ing chunk-3 causes the last extent to be al-
located, while the file is still open; thus, the Special End
policy is not triggered.

Fix: To reduce the layout variability, we have removed
the Special End policy from ext4; in this version named
!SE, the ending extent is treated like all other parts of the
file. Figure 8 shows that !SE reduces the size of the tail.
Further analysis of the results show that removing Special
End policy reduces d-spans for 32% of the runs by a to-
tal of 21TB, but increases d-spans for 14% of the runs by
a total of 9TB. The increasing of d-span is primarily be-
cause removing this policy unmasks inconsistent policies
in File Size Dependency, which we will discuss next.

Figure 10a examines the benefits of the !SE policy com-
pared to vanilla ext4 in more detail; to compare only de-
terministic results, we set CPUCount=1. The graph shows
that the !SE policy significantly reduces tail runs when
the workload begins with sync operations (combination
of close(), sync(), and open()); this is because
the Special End policy is more likely to be triggered when
the file is temporarily closed.

3.2.3 File Size Dependency → Shared Global
After removing the Scheduler Dependency and Special
End policies, ext4 layout still presents a significant tail.
Experimenting with these two fixes, we observe a new
symptom that occurs due to the interaction of FileSize
and ChunkOrder, as shown in Figure 11. The stair shape
of the tail runs across workloads indicates that this pol-
icy only affects large files and it depends upon the first
written chunk.
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Figure 11: Tail Runs in !(SD|SE). The figure shows tail runs
in the interaction of ChunkOrder and FileSize, after removing
Scheduler Dependency and Special End.

Root Cause: Traces of several representative data
points reveal the source of the ‘stair’ symptom, which we
call File Size Dependency. In ext4, one of the design goals
is to place small files (less than 64KB, which is tunable)
close and big files apart [7]. Blocks for small files are al-
located from LG preallocations, which are shared by all
small files; blocks in large files are allocated from per-
file inode preallocations (except for the ending extent of
a closed file, due to the Special End policy).

This file-size-dependant policy ignores the activeness
of files, since the dynamically changing size of a file may
trigger inconsistent allocation policies for the same file.
In other words, blocks of a file larger than 64KB can
be allocated with two distinct policies as the file grows
from small to large. This changing policy explains why
FileSize is the most significant workload factor, as seen
in Figure 4, and why Figure 5b shows such a dramatic
change at 64KB.

Sequential writes are likely to trigger this problem. For
example, the first 36KB extent of a 72KB file will be al-
located from the LG preallocation; the next 36KB extent
will be allocated from a new i-node preallocation (since
the file is now classified as large with 72KB > 64KB).
The allocator will try to allocate the second extent next to
the first, but the preferred location is already occupied by
the LG preallocation; the next choice is to use the block
group where the last big file in the whole file system was
allocated (Shared Global policy, coded SG), which can
be far away. Growing a file often triggers this problem.
File Size Dependency is the reason why runs with Chunk-
Order=0*** in Figure 5d and Figure 11 have relatively
more tail runs than other orders. Writing Chunk-0 first
makes the file grow from a small size and increases the
chance of triggering two distinct policies.

Fix: Placing extents of large files together with a
shared global policy violates the initial design goal of
placing big files apart and deteriorates the consequences
of File Size Dependency. To mitigate the problem, we
implemented a new policy (coded !SG) that tries to place
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Figure 12: Tail Runs in !(SD|SE|SG). This figure shows tail
runs in the interaction of ChunkOrder and InternalDensity on
version !(SD|SE|SG).

extents of large files close to existing extents of that file.
Figure 8a shows that !SG significantly reduces the size of
the tail. In more detail, !SG reduces d-span in 35% of the
runs by a total of 45TB.

To demonstrate the effectiveness of the !SG version, we
compare the number of tail cases with it and vanilla ext4
for deterministic scenarios (CPUCount=1). Figure 10b
shows that the layout of large files (>64KB) is signifi-
cantly improved with this fix. Figure 10c shows that the
layout of sparse files (with InternalDensity < 1) is also
improved; the new policy is able to separately allocate
each extent while still keeping them near one another.

3.2.4 Sparse Files → Normalization Bug
With three problems fixed in version !(SD|SE|SG), we
show an interesting interaction that still remains between
ChunkOrder and InternalDensity. Figure 12 shows that
while most of the workloads exhibit tails, several work-
loads do not, specifically, all “solid” (InternalDensity≥1)
files with ChunkOrder=3012. To identify the root cause,
we focus only on workloads with ChunkOrder=3012 and
compare solid and sparse patterns.

Root Cause: Comparing solid and sparse runs with
ChunkOrder=3012 shows that the source of the tail is
a bug in ext4 normalization; normalization enlarges re-
quests so that the extra space can be used for a similar
extent later. The normalization function should update
the request’s logical starting block number, correspond-
ing physical block number, and size; however, with the
bug, the physical block number is not updated and the old
value is used later for allocation3.

Figure 13 illustrates how this bug can lead to poor lay-
out. In this scenario, an ill-normalized request is started
(incorrectly) at the original physical block number, but
is of a new (correct) larger size; as a result, the request
will not fit in the desired gap within this file. Therefore,
ext4 may fail to allocate blocks from preferred locations

3This bug is present even in the currently latest version of Linux,
Linux v3.17-rc6. It has been confirmed by an ext4 developer and is
waiting for further tests.

existing extentoriginal request

normalized request (incorrect)

normalized request (expected)

disk

file

x

Figure 13: Ill Implementation of Request Normalization. In
this case, the normalized request overlaps with the existing ex-
tent of the file, making it impossible to fulfill the request at the
preferred location.
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Figure 14: Impact of Normalization Bug. This figure shows
the count of runs affected by Normalization Bug in the interac-
tion of FileSize and InternalDensity. The count is obtained by
comparing experimental results ran with and without the bug.

and will perform a desperate search for free space else-
where, spreading blocks. The solid files with ChunkOrder
of 3012 in Figure 12 avoid this bug because if chunks-
0,1,2 are written sequentially after chunk-3 exists, then
the physical block number of the request does not need to
be updated.

Fix: We fix the bug by correctly updating the physi-
cal starting block of the request in version !NB. Figure 14
shows that large files were particularly susceptible to this
bug, as were sparse files (InternalDensity < 1). Fig-
ure 8a shows that fixing this bug reduces the tail cases, as
desired. In more detail, !NB reduces d-span for 19% of
runs by 8.3 TB in total. Surprisingly, fixing the bug in-
creases d-span for 5% of runs by 1.5 TB in total. Trace
analysis reveals that, by pure luck, the mis-implemented
normalization sometimes sets the request to nearby space
which happened to be free, while the correct request fell
in space occupied by another file; thus, with the correct
request, ext4 sometimes performs a desperate search and
chooses a more distant location.

Figure 8 summarizes the benefits of these four fixes.
Overall, with all four fixes, the 90th-percentile for d-span
values is dramatically reduced from well over 4GB to
close to 4MB. Thus, as originally shown in Figure 7, our
final version of ext4 has a much less significant tail than
the original ext4.

3.3 Latencies Reduced
Chopper uses d-span as a diagnostic signal to find prob-
lematic block allocator designs that produce poor data lay-
outs. The poor layouts, which incur costly disk seeks on
HDDs [36], garbage collections on SSDs [11] and even
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Figure 15: Latency Reduction. This figure shows that !SD
significantly reduces average data access time comparing with
SD. All experiments were repeated 5 times. Standard errors are
small and thus hidden for clarity.

CPU spikes [1], can in turn result in long data access la-
tencies. Our repairs based on Chopper’s findings reduce
latencies caused by the problematic designs.

For example, Figure 15 demonstrates how Scheduler
Dependency incurs long latencies and how our repaired
version, !SD, reduces latencies on an HDD (Hitachi
HUA723030ALA640: 3.0 TB, 7200 RPM). In the exper-
iment, files were created by multiple creating threads re-
siding on different CPUs; each of the threads wrote a part
of a 64KB file. We then measured file access time by
reading and over-writing with one thread, which avoids
resource contentions and maximizes performance. To ob-
tain application-disk data transfer performance, OS and
disk cache effects were circumvented. Figure 15 shows
that with the SD version, access time increases with more
creating threads because SD splits each file into more and
potentially distant physical data pieces. Our fixed version,
!SD, reduced read and write time by up to 67 and 4 times
proportionally, and by up to 300 and 1400 ms. The reduc-
tions in this experiment, as well as expected greater ones
with more creating threads and files, are significant – as
a comparison, a round trip between US and Europe for a
network packet takes 150 ms and a round trip within the
same data center takes 0.5 ms [22, 32]. The time increase
caused by Scheduler Dependency, as well as other issues,
may translate to long latencies in high-level data center
operations [17]. Chopper is able to find such issues, lead-
ing to fixes reducing latencies.

3.4 Discussion
With the help of exploratory data analysis, we have found
and removed four issues in ext4 that can lead to unex-
pected tail latencies; these issues are summarized in Ta-
ble 2. We have made the patches for these issues publicly
available with Chopper.

While these fixes do significantly reduce the tail behav-
iors, they have several potential limitations. First, with-
out the Scheduler Dependency policy, flusher threads run-

Issue Description

Scheduler Dependency Choice of preallocation group for small files
depends on CPU of flushing thread.

Special End The last extent of a closed file may be rejected
to allocate from preallocated spaces.

File Size Dependency Preferred target locations depend on file size
which may dynamically change.

Normalization Bug Block allocation requests for large files are not
correctly adjusted, causing the allocator to ex-
amine mis-aligned locations for free space.

Table 2: Linux ext4 Issues. This table summarizes issues we
have found and fixed.

ning on different CPUs may contend for the same preal-
location groups. We believe that the contention degree
is acceptable, since allocation within a preallocation is
fast and files are distributed across many preallocations;
if contention is found to be a problem, more prealloca-
tions can be added (the current ext4 creates preallocations
lazily, one for each CPU). Second, removing the Shared
Global policy mitigates but does not eliminate the layout
problem for files with dynamically changing sizes; choos-
ing policies based on dynamic properties such as file size
is complicated and requires more fundamental policy re-
visions. Third, our final version, as shown in Figure 7,
still contains a small tail. This tail is due to the disk state
(DiskUsed and FreespaceLayout); as expected, when the
file system is run on a disk that is more heavily used and
is more fragmented, the layout for new files suffers.

The symptoms of internal design problems revealed by
Chopper drive us to reason about their causes. In this pro-
cess, time-consuming tracing is often necessary to pin-
point a particular problematic code line as the code makes
complex decisions based on environmental factors. For-
tunately, analyzing and visualizing the data sets produced
by Chopper enabled us to focus on several representative
runs. In addition, we can easily reproduce and trace any
runs in the controlled environmental provided by Chop-
per, without worrying about confounding noises.

With Chopper, we have learned several lessons from
our experience with ext4 that may help build file sys-
tems that are robust to uncertain workload and environ-
mental factors in the future. First, policies for different
circumstances should be harmonious with one another.
For example, ext4 tries to optimize allocation for differ-
ent scenarios and as a result has a different policy for each
case (e.g., the ending extent, small and large files); when
multiple policies are triggered for the same file, the poli-
cies conflict and the file is dragged apart. Second, poli-
cies should not depend on environmental factors that may
change and are outside the control of the file system. In
contrast, data layout in ext4 depends on the OS scheduler,
which makes layout quality unpredictable. By simplifying
the layout policies in ext4 to avoid special cases and to be
independent of environmental factors, we have shown that
file layout is much more compact and predictable.
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4 Related Work
Chopper is a comprehensive diagnostic tool that provides
techniques to explore file system block allocation designs.
It shares similarities and has notable differences with tra-
ditional benchmarks and with model checkers.

File system benchmarks have been criticized for
decades [44–46]. Many file system benchmarks target
many aspects of file system performance and thus include
many factors that affect the results in unpredictable ways.
In contrast, Chopper leverages well-developed statistical
techniques [37,38,48] to isolate the impact of various fac-
tors and avoid noise. With its sole focus on block allo-
cation, Chopper is able to isolate its behavior and reveal
problems with data layout quality.

The self-scaling I/O benchmark [14] is similar to Chop-
per, but the self-scaling benchmark searches a five-
dimension workload parameter space by dynamically ad-
justing one parameter at a time while keeping the rest
constant; its goal is to converge all parameters to values
that uniformly achieve a specific percentage of max per-
formance, which is called a focal point. This approach
was able to find interesting behaviors, but it is limited and
has several problems. First, the experiments may never
find such a focal point. Second, the approach is not feasi-
ble given a large number of parameters. Third, changing
one parameter at a time may miss interesting points in the
space and interactions between parameters. In contrast,
Chopper has been designed to systematically extract the
maximum amount of information from limited runs.

Model checking is a verification process that explores
system state space [16]; it has also been used to diagnose
latent performance bugs. For example, MacePC [27] can
identify bad performance and pinpoint the causing state.
One problem with this approach is that it requires a sim-
ulation which may not perfectly match the desired imple-
mentation. Implementation-level model checkers, such
as FiSC [50], address this problem by checking the ac-
tual system. FiSC checks a real Linux kernel in a cus-
tomized environment to find file system bugs; however,
FiSC needs to run the whole OS in the model checker and
intercept calls. In contrast, Chopper can run in an unmod-
ified, low-overhead environment. In addition, Chopper
explores the input space differently; model checkers con-
sider transitions between states and often use tree search
algorithms, which may have clustered exploration states
and leave gaps unexplored. In Chopper, we precisely de-
fine a large number of factors and ensure the effects and
interactions of these factors are evenly explored by statis-
tical experimental design [29, 37, 38, 48].

5 Conclusions
Tail behaviors have high consequences and cause unex-
pected system fluctuations. Removing tail behaviors will
lead to a system with more consistent performance. How-

ever, identifying tails and finding their sources are chal-
lenging in complex systems because the input space can
be infinite and exhaustive search is impossible. To study
the tails of block allocation in XFS and ext4, we built
Chopper to facilitate carefully designed experiments to
effectively explore the input space of more than ten fac-
tors. We used Latin hypercube design and sensitivity
analysis to uncover unexpected behaviors among many of
those factors. Analysis with Chopper helped us pinpoint
and remove four layout issues in ext4; our improvements
significantly reduce the problematic behaviors causing tail
latencies. We have made Chopper and ext4 patches pub-
licly available.

We believe that the application of established statisti-
cal methodologies to system analysis can have a tremen-
dous impact on system design and implementation. We
encourage developers and researchers alike to make sys-
tems amenable to such experimentation, as experiments
are essential in the analysis and construction of robust sys-
tems. Rigorous statistics will help to reduce unexpected
issues caused by intuitive but unreliable design decisions.
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Skylight—A Window on Shingled Disk Operation
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Abstract

We introduce Skylight, a novel methodology that combines
software and hardware techniques to reverse engineer key
properties of drive-managed Shingled Magnetic Recording
(SMR) drives. The software part of Skylight measures
the latency of controlled I/O operations to infer important
properties of drive-managed SMR, including type, structure,
and size of the persistent cache; type of cleaning algorithm;
type of block mapping; and size of bands. The hardware part
of Skylight tracks drive head movements during these tests,
using a high-speed camera through an observation window
drilled through the cover of the drive. These observations
not only confirm inferences from measurements, but resolve
ambiguities that arise from the use of latency measurements
alone. We show the generality and efficacy of our techniques
by running them on top of three emulated and two real SMR
drives, discovering valuable performance-relevant details of
the behavior of the real SMR drives.

1 Introduction

In the nearly 60 years since the hard disk drive (HDD) has
been introduced, it has become the mainstay of computer
storage systems. In 2013 the hard drive industry shipped
over 400 exabytes [1] of storage, or almost 60 gigabytes for
every person on earth. Although facing strong competition
from NAND flash-based solid-state drives (SSDs), magnetic
disks hold a 10× advantage over flash in both total bits
shipped [2] and per-bit cost [3], an advantage that will persist
if density improvements continue at current rates.

The most recent growth in disk capacity is the result of im-
provements to perpendicular magnetic recording (PMR) [4],
which has yielded terabyte drives by enabling bits as short
as 20 nm in tracks 70 nm wide [5], but further increases will
require new technologies [6]. Shingled Magnetic Recording
(SMR) [7] is the first such technology to reach market: 5 TB
drives are available from Seagate [8] and shipments of 8 TB
and 10 TB drives have been announced by Seagate [9] and

HGST [10]. Other technologies (Heat-Assisted Magnetic
Recording [11] and Bit-Patterned Media [12]) remain in the
research stage, and may in fact use shingled recording when
they are released [13].

Shingled recording spaces tracks more closely, so they
overlap like rows of shingles on a roof, squeezing more tracks
and bits onto each platter [7]. The increase in density comes at
a cost in complexity, as modifying a disk sector will corrupt
other data on the overlapped tracks, requiring copying to
avoid data loss [14–17]. Rather than push this work onto the
host file system [18,19], SMR drives shipped to date preserve
compatibility with existing drives by implementing a Shingle
Translation Layer (STL) [20,21] that hides this complexity.

Like an SSD, an SMR drive combines out-of-place writes
with dynamic mapping in order to efficiently update data,
resulting in a drive with performance much different from
that of a Conventional Magnetic Recording (CMR) drive
due to seek overhead for out-of-order operations. However
unlike SSDs, which have been extensively measured and
characterized [22,23], little is known about the behavior and
performance of SMR drives and their translation layers, or
how to optimize file systems, storage arrays, and applications
to best use them.

We introduce a methodology for measuring and char-
acterizing such drives, developing a specific series of
micro-benchmarks for this characterization process, much as
has been done in the past for conventional drives [24–26]. We
augment these timing measurements with a novel technique
that tracks actual head movements via high-speed camera
and image processing and provides a source of reliable
information in cases where timing results are ambiguous.

We validate this methodology on three different emulated
drives that use STLs previously described in the litera-
ture [20, 21, 27], implemented as a Linux device mapper
target [28] over a conventional drive, demonstrating accurate
inference of properties. We then apply this methodology to
5 TB and 8 TB SMR drives provided by Seagate, inferring
the STL algorithm and its properties and providing the first
public characterization of such drives.
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Using our approach we are able to discover important
characteristics of the Seagate SMR drives and their
translation layer, including the following:
Cache type and size: The drives use a persistent disk
cache of 20 GiB and 25 GiB on the 5 TB and 8 TB drives,
respectively, with high random write speed until the cache
is full. The effective cache size is a function of write size
and queue depth.
Persistent cache structure: The persistent disk cache
is written as journal entries with quantized sizes—a
phenomenon absent from the academic literature on SMRs.
Block Mapping: Non-cached data is statically mapped, us-
ing a fixed assignment of logical block addresses (LBAs) to
physical block addresses (PBAs), similar to that used in CMR
drives, with implications for performance and durability.
Band size: SMR drives organize data in bands—a set of
contiguous tracks that are re-written as a unit; the examined
drives have a small band size of 15–40 MiB.
Cleaning mechanism: Aggressive cleaning during idle
times moves data from the persistent cache to bands;
cleaning duration is 0.6–1.6 s per modified band.

Our results show the details that may be discovered using
Skylight, most of which impact (negatively or positively)
the performance of different workloads, as described
in § 6. These results—and the toolset allowing similar
measurements on new drives—should thus be useful to users
of SMR drives, both in determining what workloads are
best suited for these drives and in modifying applications
to better use them. In addition, we hope that they will be of
use to designers of SMR drives and their translation layers,
by illustrating the effects of low-level design decisions on
system-level performance.

In the rest of the paper we give an overview of Shingled
Magnetic Recording (§ 2) followed by the description of
emulated and real drives examined (§ 3). We then present
our characterization methodology and apply it to all of the
drives (§ 4); finally, we survey related work (§ 5) and present
our conclusions (§ 6).

2 Background

Shingled recording is a response to limitations on areal
density with perpendicular magnetic recording due to the su-
perparamagnetic limit [6]. In brief, for bits to become smaller,
write heads must become narrower, resulting in weaker mag-
netic fields. This requires lower coercivity (easily recordable)
media, which is more vulnerable to bit flips due to thermal
noise, requiring larger bits for reliability. As the head gets
smaller this minimum bit size gets larger, until it reaches the
width of the head and further scaling is impossible.

Several technologies have been proposed to go beyond
this limit, of which SMR is the simplest [7]. To decrease
the bit size further, SMR reduces the track width while
keeping the head size constant, resulting in a head that writes

Figure 1: Shingled disk tracks with head width k=2

a path several tracks wide. Tracks are then overlapped like
rows of shingles on a roof, as seen in Figure 1. Writing
these overlapping tracks requires only incremental changes
in manufacturing, but much greater system changes, as
it becomes impossible to re-write a single sector without
destroying data on the overlapped sectors.

For maximum capacity an SMR drive could be written
from beginning to end, utilizing all tracks. Modifying any
of this data, however, would require reading and re-writing
the data that would be damaged by that write, and data to be
damaged by the re-write, etc. until the end of the surface is
reached. This cascade of copying may be halted by inserting
guard regions—tracks written at the full head width—so that
the tracks before the guard region may be re-written without
affecting any tracks following it, as shown in Figure 2. These
guard regions divide each disk surface into re-writable bands;
since the guards hold a single track’s worth of data, storage
efficiency for a band size of b tracks is b

b+k−1 .
Given knowledge of these bands, a host file system can

ensure they are only written sequentially, for example, by im-
plementing a log-structured file system [18,29]. Standards are
being developed to allow a drive to identify these bands to the
host [19]: host-aware drives report sequential-write-preferred
bands (an internal STL handles non-sequential writes), and
host-managed drives report sequential-write-required bands.
These standards are still in draft form, and to date no drives
based on them are available on the open market.

Alternately the drive-managed disks present a standard
re-writable block interface that is implemented by an internal
Shingle Translation Layer, much as an SSD uses a Flash
Translation Layer (FTL). Although the two are logically
similar, appropriate algorithms differ due to differences in
the constraints placed by the underlying media: (a) high seek
times for non-sequential access, (b) lack of high-speed reads,
(c) use of large (10s to 100s of MB) cleaning units, and (d)
lack of wear-out, eliminating the need for wear leveling.

These translation layers typically store all data in bands
where it is mapped at a coarse granularity, and devote a
small fraction of the disk to a persistent cache, as shown
in Figure 2, which contains copies of recently-written data.
Data that should be retrieved from the persistent cache
may be identified by checking a persistent cache map (or

2
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Figure 2: Surface of a platter in a hypothetical SMR drive. A persistent
cache consisting of 9 tracks is located at the outer diameter. The guard
region that separates the persistent cache from the first band is simply a
track that is written at a full head width of k tracks. Although the guard
region occupies the width of k tracks, it contains a single track’s worth of
data and the remaining k-1 tracks are wasted. The bands consist of 4 tracks,
also separated with a guard region. Overwriting a sector in the last track
of any band will not affect the following band. Overwriting a sector in any
of the tracks will require reading and re-writing all of the tracks starting
at the affected track and ending at the guard region within the band.

exception map) [20, 21]. Data is moved back from the
persistent cache to bands by the process of cleaning, which
performs read-modify-write (RMW) on every band whose
data was overwritten. The cleaning process may be lazy,
running only when the free cache space is low, or aggressive,
running during idle times.

In one translation approach, a static mapping algorith-
mically assigns a native location [20] (a PBA) to each
LBA in the same way as is done in a CMR drive. An
alternate approach uses coarse-grained dynamic mapping for
non-cached LBAs [20], in combination with a small number
of free bands. During cleaning, the drive writes an updated
band to one of these free bands and then updates the dynamic
map, potentially eliminating the need for a temporary staging
area for cleaning updates and sequential writes.

In any of these cases drive operation may change based
on the setting of the volatile cache (enabled or disabled) [30].
When the volatile cache is disabled, writes are required to
be persistent before completion is reported to the host. When
it is enabled, persistence is only guaranteed after a FLUSH
command or a write command with the flush (FUA) flag set.

3 Test Drives

We now describe the drives we study. First, we discuss how
we emulate three SMR drives using our implementation of
two STLs described in the literature. Second, we describe
the real SMR drives we study in this paper and the real CMR
drive we use for emulating SMR drives.

3.1 Emulated Drives

We implement Cassuto et al.’s set-associative STL [20]
and a variant of their S-blocks STL [20,31], which we call
fully-associative STL, as Linux device mapper targets. These
are kernel modules that export a pseudo block device to
user-space that internally behaves like a drive-managed
SMR—the module translates incoming requests using the
translation algorithm and executes them on a CMR drive.

The set-associative STL manages the disk as a set of N
iso-capacity (same-sized) data bands, with typical sizes of
20–40 MiB, and uses a small (1–10%) section of the disk
as the persistent cache. The persistent cache is also managed
as a set of n iso-capacity cache bands where n�N. When
a block in data band a is to be written, a cache band chosen
through (a mod n); the next empty block in this cache
band is written and the persistent cache map is updated.
Further accesses to the block are served from the cache band
until cleaning moves the block to its native location, which
happens when the cache band becomes full.

The fully-associative STL, on the other hand, divides the
disk into large (we used 40 GiB) zones and manages each
zone independently. A zone starts with 5% of its capacity pro-
visioned to free bands for handling updates. When a block in
logical band a is to be written to the corresponding physical
band b, a free band c is chosen and written to and the persis-
tent cache map is updated. When the number of free bands
falls below a threshold, cleaning merges the bands b and c
and writes it to a new band d and remaps the logical band a
to the physical band d, freeing bands b and c in the process.
This dynamic mapping of bands allows the fully-associative
STL to handle streaming writes with zero overhead.

To evaluate the accuracy of our emulation strategy, we
implemented a pass-through device mapper target and found
negligible overhead for our tests, confirming a previous
study [32]. Although in theory, this emulation approach may
seem disadvantaged by the lack of access to exact sector
layout, in practice this is not the case—even in real SMR
drives, the STL running inside the drive is implemented on
top of a layer that provides linear PBAs by hiding sector
layout and defect management [33]. Therefore, we believe
that the device mapper target running on top of a CMR drive
provides an accurate model for predicting the behavior of
an STL implemented by the controller of an SMR drive.

Table 1 shows the three emulated SMR drive config-
urations we use in our tests. The first two drives use the
set-associative STL, and they differ in the type of persistent
cache and band size. The last drive uses the fully-associative
STL and disk for the persistent cache. We do not have a
drive configuration combining the fully-associative STL and
flash for persistent cache, since the fully-associative STL
was designed for a drive with a disk cache and uses multiple
disk caches evenly spread out on a disk to avoid long seeks
during cleaning.

3
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Drive Name STL Persistent Cache
Type and Size

Disk Cache Multiplicity Cleaning Type Band Size Mapping Type Size

Emulated-SMR-1 Set-associative Disk, 37.2 GiB Single at ID Lazy 40 MiB Static 3.9 TB
Emulated-SMR-2 Set-associative Flash, 9.98 GiB N/A Lazy 25 MiB Static 3.9 TB
Emulated-SMR-3 Fully-associative Disk, 37.2 GiB Multiple Aggressive 20 MiB Dynamic 3.9 TB

Table 1: Emulated SMR drive configurations.

To emulate an SMR drive with a flash cache (Emulate-
SMR-2) we use the Emulate-SMR-1 implementation,
but use a device mapper linear target to redirect the
underlying LBAs corresponding to the persistent cache,
storing them on an SSD.

To check the correctness of the emulated SMR drives
we ran repeated burn-in tests using fio [34]. We also
formatted emulated drives with ext4, compiled the Linux
kernel on top, and successfully booted the system with the
compiled kernel. The source code for STLs (1,200 lines of
C) and a testing framework (250 lines of Go) are available
at http://sssl.ccs.neu.edu/skylight.

3.2 Real Drives
Two real SMR drives were tested: Seagate ST5000AS0011,
a 5900 RPM desktop drive (rotation time ≈10 ms) with four
platters, eight heads, and 5 TB capacity (termed Seagate-
SMR below), and Seagate ST8000AS0011, a similar drive
with six platters, twelve heads and 8 TB capacity. Emulated
drives use a Seagate ST4000NC001 (Seagate-CMR), a real
CMR drive identical in drive mechanics and specification
(except the 4 TB capacity) to the ST5000AS0011. Results for
the 8 TB and 5 TB SMR drives were similar; to save space,
we only present results for the publicly-available 5 TB drive.

4 Characterization Tests

To motivate our drive characterization methodology we first
describe the goals of our measurements. We then describe
the mechanisms and methodology for the tests, and finally
present results for each tested drive. For emulated SMR
drives, we show that the tests produce accurate answers,
based on implemented parameters; for real SMR drives we
discover their properties. The behavior of the real SMR drives
under some of the tests engenders further investigation, lead-
ing to the discovery of important details about their operation.

4.1 Characterization Goals
The goal of our measurements is to determine key drive
characteristics and parameters:
Drive type: In the absence of information from the vendor,
is a drive an SMR or a CMR?
Persistent cache type: Does the drive use flash or disk for
the persistent cache? The type of the persistent cache affects

Figure 3: SMR drive with the observation window encircled in red. Head
assembly is visible parked at the inner diameter.

the performance of random writes and reliable—volatile
cache-disabled—sequential writes. If the drive uses disk for
persistent cache, is it a single cache, or is it distributed across
the drive [20, 31]? The layout of the persistent disk cache
affects the cleaning performance and the performance of the
sequential read of a sparsely overwritten linear region.
Cleaning: Does the drive use aggressive cleaning, improving
performance for low duty-cycle applications, or lazy cleaning,
which may be better for throughput-oriented ones? Can we
predict the performance impact of cleaning?
Persistent cache size: After some number of out-of-place
writes the drive will need to begin a cleaning process, moving
data from the persistent cache to bands so that it can accept
new writes, negatively affecting performance. What is this
limit, as a function of total blocks written, number of write
operations, and other factors?
Band size: Since a band is the smallest unit that may be
re-written efficiently, knowledge of band size is important
for optimizing SMR drive workloads [20,27]. What are the
band sizes for a drive, and are these sizes constant over time
and space [35]?
Block mapping: The mapping type affects performance of
both cleaning and reliable sequential writes. For LBAs that
are not in the persistent cache, is there a static mapping from
LBAs to PBAs, or is this mapping dynamic?
Zone structure: Determining the zone structure of a drive
is a common step in understanding block mapping and band
size, although the structure itself has little effect on external
performance.

4
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Figure 5: Seagate-SMR head position during random writes.

4.2 Test Mechanisms

The software part of Skylight uses fio to generate micro-
benchmarks that elicit the drive characteristics. The hardware
part of Skylight tracks the head movement during these tests.
It resolves ambiguities in the interpretation of the latency data
obtained from the micro-benchmarks and leads to discoveries
that are not possible with micro-benchmarks alone. To
make head tracking possible, we installed (under clean-room
conditions) a transparent window in the drive casing over the
region traversed by the head. Figure 3 shows the head assem-
bly parked at the inner diameter (ID). We recorded the head
movements using Casio EX-ZR500 camera at 1,000 frames
per second and processed the recordings with ffmpeg to
generate head location value for each video frame.

We ran the tests on a 64-bit Intel Core-i3 Haswell system
with 16 GiB RAM and 64-bit Linux kernel version 3.14.
Unless otherwise stated, we disabled kernel read-ahead,
drive look-ahead and drive volatile cache using hdparm.

Extensions to fio developed for these tests have been
integrated back and are available in the latest fio release.
Slow-motion clips for the head position graphs shown in
the paper, as well as the tests themselves, are available at
http://sssl.ccs.neu.edu/skylight.

4.3 Drive Type and Persistent Cache Type

Test 1 exploits the unusual random write behavior of the
SMR drives to differentiate them from CMR drives. While
random writes to a CMR drive incur varying latency due
to random seek time and rotational delay, random writes
to an SMR drive are sequentially logged to the persistent
cache with a fixed latency. If random writes are not local,
SMR drives using separate persistent caches by the LBA
range [20] may still incur varying write latency. Therefore,
random writes are done within a small region to ensure that
a single persistent cache is used.

Test 1: Discovering Drive Type

1 Write blocks in the first 1 GiB in random order to the drive.
2 if latency is fixed then the drive is SMR else the drive is CMR.

Figure 4 shows the results for this test. Emulated-SMR-1
sequentially writes incoming random writes to the persistent
cache. It fills one empty block after another and due to syn-
chronicity of the writes it misses the next empty block by the
time the next write arrives. Therefore, it waits for a complete
rotation resulting in a 10 ms write latency, which is the rota-
tion time of the underlying CMR drive. The sub-millisecond
latency of Emulated-SMR-2 shows that this drive uses flash
for the persistent cache. The latency of Emulated-SMR-3
is identical to that of Emulated-SMR-1, suggesting a similar
setup. The varying latency of Seagate-CMR identifies it as
a conventional drive. Seagate-SMR shows a fixed ≈25 ms
latency with a ≈325 ms bump at the 240th write. While the
fixed latency indicates that it is an SMR drive, we resort to
the head position graph to understand why it takes 25 ms
to write a single block and what causes the 325 ms latency.

Figure 5 shows that the head, initially parked at the ID,
seeks to the outer diameter (OD) for the first write. It stays
there during the first 239 writes (incidentally, showing that
the persistent cache is at the OD), and on the 240th write
it seeks to the center, staying there for ≈285 ms before
seeking back and continuing to write.

Is all of 25 ms latency associated with every block write
spent writing or is some of it spent in rotational delay? When
we repeat the test multiple times, the completion time of the
first write ranges between 41 and 52 ms, while the remaining
writes complete in 25 ms. The latency of the first write al-
ways consists of a seek from the ID to the OD (≈16 ms). We
presume that the remaining time is spent in rotational delay—
likely waiting for the beginning of a delimited location—and
writing (25 ms). Depending on where the head lands after the
seek, the latency of the first write changes between 41 ms and
52 ms. The remaining writes are written as they arrive, with-
out seek time and rotational delay, each taking 25 ms. Hence,
a single block host write results in a 2.5 track internal write.
In the following section we explore this phenomenon further.
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Figure 6: Surface of a disk platter in a hypothetical SMR drive divided
into two 2.5 track imaginary regions. The left figure shows the placement
of random blocks 3 and 7 when writing synchronously. Each internal write
contains a single block and takes 25 ms (50 ms in total) to complete. The
drive reports 25 ms write latency for each block; reading the blocks in the
written order results in a 5 ms latency. The right figure shows the placement
of blocks when writing asynchronously with high queue depth. A single
internal write contains both of the blocks, taking 25 ms to complete. The
drive still reports 25 ms write latency for each block; reading the blocks
back in the written order results in a 10 ms latency due to missed rotation.
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Figure 7: Random write latency of different write sizes on Seagate-SMR,
when writing at the queue depth of 31.

4.3.1 Journal Entries with Quantized Sizes

If after Test 1 we immediately read blocks in the written
order, read latency is fixed at ≈5 ms, indicating 0.5 track
distance (covering a complete track takes a full rotation,
which is 10 ms for the drive; therefore 5 ms translates to
0.5 track distance) between blocks. On the other hand, if we
write blocks asynchronously at the maximum queue depth
of 31 [36] and immediately read them, latency is fixed at
≈10 ms, indicating a missed rotation due to contiguous
placement. Furthermore, although the drive still reports
25 ms completion time for every write, asynchronous writes
complete faster—for the 256 write operations, asynchronous
writes complete in 216 ms whereas synchronous writes com-
plete in 6,539 ms, as seen in Figure 5. Gathering these facts,
we arrive at Figure 6. Writing asynchronously with high
queue depth allows the drive to pack multiple blocks into

a single internal write, placing them contiguously (shown on
the right). The drive reports the completion of individual host
writes packed into the same internal write once the internal
write completes. Thus, although each of the host writes in the
same internal write is reported to take 25 ms, it is the same
25 ms that went into writing the internal write. As a result, in
the asynchronous case, the drive does fewer internal writes,
which accounts for the fast completion time. The contiguous
placement also explains the 10 ms latency when reading
blocks in the written order. Writing synchronously, however,
results in doing a separate internal write for every block
(shown on the left), taking longer to complete. Placing blocks
starting at the beginning of 2.5 track internal writes explains
the 5 ms latency when reading blocks in the written order.

To understand how the internal write size changes with the
increasing host write size, we keep writing at the maximum
queue depth, gradually increasing the write size. Figure 7
shows that the writes in the range of 4 KiB–26 KiB result
in 25 ms latency, suggesting that 31 host writes in this size
range fit in a single internal write. As we jump to the 28 KiB
writes, the latency increases by ≈5 ms (or 0.5 track) and
remains approximately constant for the writes of sizes up
to 54 KiB. We observe a similar jump in latency as we cross
from 54 KiB to 56 KiB and also from 82 KiB to 84 KiB.
This shows that the internal write size increases in 0.5 track
increments. Given that the persistent cache is written using a
“log-structured journaling mechanism” [37], we infer that the
0.5 track of 2.5 track minimum internal write is the journal
entry that grows in 0.5 track increments, and the remaining
2 tracks contain out-of-band data, like parts of the persistent
cache map affected by the host writes. The purpose of this
quantization of journal entries is not known, but may be in
order to reduce rotational delay or simplify delimiting and
locating them. We further hypothesize that the 325 ms delay
in Figure 4, observed every 240th write, is a map merge
operation that stores the updated map at the middle tracks.

As the write size increases to 256 KiB we see varying
delays, and inspection of completion times shows less than
31 writes completing in each burst, implying a bound on the
journal entry size. Different completion times for large writes
suggest that for these, the journal entry size is determined
dynamically, likely based on the available drive resources
at the time when the journal entry is formed.

4.4 Disk Cache Location and Layout

We next determine the location and layout of the disk cache,
exploiting a phenomenon called fragmented reads [20].
When sequentially reading a region in an SMR drive, if the
cache contains newer version of some of the blocks in the
region, the head has to seek to the persistent cache and back,
physically fragmenting a logically sequential read. In Test 2,
we use these variations in seek time to discover the location
and layout of the disk cache.
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Figure 9: Seagate-SMR head position during fragmented reads.

Test 2: Discovering Disk Cache Location and Layout

1 Starting at a given offset, write a block and skip a block, and so on,
writing 512 blocks in total.

2 Starting at the same offset, read 1024 blocks; call average latency
lato f f set .

3 Repeat steps 1 and 2 at the offsets high, low, mid.
4 if lathigh < latmid < latlow then

There is a single disk cache at the ID.
else if lathigh > latmid > latlow then

There is a single disk cache at the OD.
else if lathigh = latmid = latlow then

There are multiple disk caches.
else

assert(lathigh = latlow and lathigh > latmid)
There is a single disk cache in the middle.

The test works by choosing a small region and writing ev-
ery other block in it and then reading the region sequentially
from the beginning, forcing a fragmented read. LBA num-
bering conventionally starts at the OD and grows towards
the ID. Therefore, a fragmented read at low LBAs on a drive
with the disk cache located at the OD would incur negligible
seek time, whereas a fragmented read at high LBAs on the
same drive would incur high seek time. Conversely, on a
drive with the disk cache located at the ID, a fragmented read
would incur high seek time at low LBAs and negligible seek
time at high LBAs. On a drive with the disk cache located at
the middle diameter (MD), fragmented reads at low and high
LBAs would incur similar high seek times and they would
incur negligible seek times at middle LBAs. Finally, on a

drive with multiple disk caches evenly distributed across the
drive, the fragmented read latency would be mostly due to
rotational delay and vary little across the LBA space. Guided
by these assumptions, to identify the location of the disk
cache, the test chooses a small region at low, middle, and
high LBAs and forces fragmented reads at these regions.

Figure 8 shows the latency of fragmented reads at three
offsets on all SMR drives. The test correctly identifies the
Emulated-SMR-1 as having a single cache at the ID. For
Emulated-SMR-2 with flash cache, latency is seen to be
negligible for flash reads, and a full missed rotation for
each disk read. Emulated-SMR-3 is also correctly identified
as having multiple disk caches—the latency graph of all
fragmented reads overlap, all having the same 10 ms average
latency. For Seagate-SMR1 we confirm that it has a single
disk cache at OD.

Figure 9 shows the Seagate-SMR head position during
fragmented reads at offsets of 0 TB, 2.5 TB and 5 TB. For
offsets of 2.5 TB and 5 TB, we see that the head seeks back
and forth between the OD and near-center and between the
OD and the ID, respectively, occasionally missing a rotation.
The cache-to-data distance for LBAs near 0 TB was too
small for the resolution of our camera.

4.5 Cleaning
The fragmented read effect is also used in Test 3 to determine
whether the drive uses aggressive or lazy cleaning, by
creating a fragmented region and then pausing to allow an
aggressive cleaning to run before reading the region back.

Test 3: Discovering Cleaning Type

1 Starting at a given offset, write a block and skip a block and so on,
writing 512 blocks in total.

2 Pause for 3–5 seconds.
3 Starting at the same offset, read 1024 blocks.
4 if latency is fixed then cleaning is aggressive else cleaning is lazy.

Figure 10 shows the read latency graph of step 3 from
Test 3 at an offset of 2.5 TB, with a three second pause in
step 2. For all drives, offsets were chosen to land within a
single band (§ 4.7). After a pause the top two emulated drives
continue to show fragmented read behavior, indicating lazy
cleaning, while in Emulated-SMR-3 and Seagate-SMR reads
are no longer fragmented, indicating aggressive cleaning.

Figure 11 shows the Seagate-SMR head position during
the 3.5 second period starting at the beginning of step 2.
Two short seeks from the OD to the ID and back are seen
in the first 200 ms; their purpose is not known. The RMW
operation for cleaning a band starts at 1,242 ms after the
last write, when the head seeks to the band at 2.5 TB offset,
reads for 180 ms and seeks back to the cache at the OD
where it spends 1,210 ms. We believe this time is spent

1Test performed with volatile cache enabled with hdparm -W1.
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Figure 11: Seagate-SMR head position during the 3.5 second period
starting at the beginning of step 2 of Test 3.

forming an updated band and persisting it to the disk cache,
to protect against power failure during band overwrite. Next,
the head seeks to the band, taking 227 ms to overwrite it and
then seeks to the center to update the map. Hence, cleaning
a band with half of its content overwritten takes ≈1.6 s.
We believe the center to contain the map because the head
always moves to this position after performing a RMW, and
stays there for a short period before eventually parking at
the ID. At 3 seconds reads begin and the head seeks back to
the band location, where it stays until reads complete (only
the first 500 ms is seen in Figure 11).

We confirmed that the operation starting at 1,242 ms
is indeed an RMW: when step 3 is begun before the
entire cleaning sequence has completed, read behavior is
unchanged from Test 2. We did not explore the details of
the RMW; alternatives like partial read-modify-write [38]
may also have been used.

4.5.1 Seagate-SMR Cleaning Algorithm

We next start exploring performance-relevant details that are
specific to the Seagate-SMR cleaning algorithm, by running
Test 4. In step 1, as the drive receives random writes, it sequen-
tially logs them to the persistent cache as they arrive. There-
fore, immediately reading the blocks back in the written order
should result in a fixed rotational delay with no seek time.
During the pause in step 3, cleaning process moves the blocks
from the persistent cache to their native locations. As a result,
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Figure 12: Latency of reads of random writes immediately after the writes
and after 10–20 minute pauses.

reading after the pause should incur varying seek time and
rotational delay for the blocks moved by the cleaning process,
whereas unmoved blocks should still incur a fixed latency.

Test 4: Exploring Cleaning Algorithm

1 Write 4096 random blocks.
2 Read back the blocks in the written order.
3 Pause for 10–20 minutes.
4 Repeat steps 2 and 3.

In Figure 12 read latency is shown immediately after step
2, and then after 10, 30, and 50 minutes. We observe that the
latency is fixed when we read the blocks immediately after
the writes. If we re-read the blocks after a 10-minute pause,
we observe random latencies for the first ≈800 blocks,
indicating that the cleaning process has moved these blocks
to their native locations. Since every block is expected to be
on a different band, the number of operations with random
read latencies after each pause shows the progress of the
cleaning process, that is, the number of bands it has cleaned.
Given that it takes ≈30 minutes to clean ≈3,000 bands, it
takes ≈600 ms to clean a band whose single block has been
overwritten. We also observe a growing number of cleaned
blocks in the unprocessed region (for example, operations
3,000–4,000 in the 30 minute graph); based on this behavior,
we hypothesize that cleaning follows Algorithm 1.

Algorithm 1: Hypothesized Cleaning Algorithm of Seagate-SMR

1 Read the next block from the persistent cache, find the block’s band.
2 Scan the persistent cache identifying blocks belonging to the band.
3 Read-modify-write the band, update the map.

To test this hypothesis we run Test 5. In Figure 13 we
see that after one minute, all of the blocks written in step
1, some of those written in step 2, and all of those written
in step 3 have been cleaned, as indicated by non-uniform
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Test 5: Verifying the Hypothesized Cleaning Algorithm

1 Write 128 blocks from a 256 MiB linear region in random order.
2 Write 128 random blocks across the LBA space.
3 Repeat step 1, using different blocks.
4 Pause for one minute; read all blocks in the written order.
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Figure 13: Verifying hypothesized cleaning algorithm on Seagate-SMR.

latency, while the remainder of step 2 blocks remain in cache,
confirming our hypothesis. After two minutes all blocks
have been cleaned. (The higher latency for step 2 blocks is
due to their higher mean seek distance.)

4.6 Persistent Cache Size
We discover the size of the persistent cache by ensuring that
the cache is empty and then measuring how much data may
be written before cleaning begins. We use random writes
across the LBA space to fill the cache, because sequential
writes may fill the drive bypassing the cache [20] and
cleaning may never start. Also, with sequential writes, a
drive with multiple caches may fill only one of the caches
and start cleaning before all of the caches are full [20]. With
random writes, bypassing the cache is not possible; also, they
will fill multiple caches at the same rate and start cleaning
when all of the caches are almost full.

The simple task of filling the cache is complicated in
drives using extent mapping: a cache is considered full
when the extent map is full or when the disk cache is full,
whichever happens first. The latter is further complicated
by journal entries with quantized sizes—as seen previously
(§ 4.3.1), a single 4 KB write may consume as much cache
space as dozens of 8 KB writes. Due to this overhead, actual
size of the disk cache is larger than what is available to host
writes—we differentiate the two by calling them persistent
cache raw size and persistent cache size, respectively.

Figure 14 shows three possible scenarios on a hypothetical
drive with a persistent cache raw size of 36 blocks and a
12 entry extent map. The minimum journal entry size is 2

blocks, and it grows in units of 2 blocks to the maximum
of 16 blocks; out-of-band data of 2 blocks is written with
every journal entry; the persistent cache size is 32 blocks.

Part (a) of Figure 14 shows the case of queue depth 1
and 1-block writes. After the host issues 9 writes, the drive
puts every write to a separate 2-block journal entry, fills the
cache with 9 journal entries and starts cleaning. Every write
consumes a slot in the map, shown by the arrows. Due to
low queue depth, the drive leaves one empty block in each
journal entry, wasting 9 blocks. Exploiting this behavior,
Test 6 discovers the persistent cache raw size. In this and the
following tests, we detect the start of cleaning by the drop
of the IOPS to near zero.

Test 6: Discovering Persistent Cache Raw Size

1 Write with a small size and low queue depth until cleaning starts.
2 Persistent cache raw size = number of writes ×

(minimum journal entry size + out-of-band data size).

Part (b) of Figure 14 shows the case of queue depth 4
and 1-block writes. After the host issues 12 writes, the drive
forms three 4-block journal entries. Writing these journal
entries to the cache fills the map and the drive starts cleaning
despite a half-empty cache. We use Test 7 to discover the
persistent cache map size.

Test 7: Discovering Persistent Cache Map Size

1 Write with a small size and high queue depth until cleaning starts.
2 Persistent cache map size = number of writes.

Finally, part (c) of Figure 14 shows the case of queue
depth 4 and 4-block writes. After the host issues 8 writes, the
drive forms two 16-block journal entries, filling the cache.
Due to high queue depth and large write size, the drive is
able to fill the cache (without wasting any blocks) before the
map fills. We use Test 8 to discover the persistent cache size.

Test 8: Discovering Persistent Cache Size

1 Write with a large size and high queue depth until cleaning starts.
2 Persistent cache size = total host write size.

Table 2 shows the result of the tests on Seagate-SMR.
In the first row, we discover persistent cache raw size
using Test 6. Writing with 4 KiB size and queue depth
of 1 produces constant 25 ms latency (§ 4.3), that is 2.5
rotations. Track size is ≈2 MiB at the OD, therefore, 22,800
operations correspond to ≈100 GiB.

In rows 2 and 3 we discover the persistent cache map size
using Test 7. For write sizes of 4 KiB and 64 KiB cleaning
starts after ≈182,200 writes, which corresponds to 0.7 GiB
and 11.12 GiB of host writes, respectively. This confirms that
in both cases the drive hits the map size limit, corresponding
to scenario (b) in Figure 14. Assuming that the drive uses
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a) Queue Depth = 1, Write Size = 1 block

b) Queue Depth = 4, Write Size = 1 block

c) Queue Depth = 4, Write Size = 4 blocks

Persistent Cache

Persistent Cache Map

Journal entries are differentiated 
with alternating colors, green 
and cyan. Out-of-band data blocks
are shown in yellow with diagonal 
stripes.

Writes are differentiated with 
alternating vertical and horizontal 
stripes. Free map entries are white,
occupied map entres are purple.

Figure 14: Three different scenarios triggering cleaning on drives using journal entries with quantized sizes and extent mapping. The text on the left explains
the meaning of the colors.

Drive Write
Size

QD Operation
Count

Host
Writes

Internal
Writes

Sea-SMR

4 KiB 1 22,800 89 MiB 100 GiB
4 KiB 31 182,270 0.7 GiB N/A

64 KiB 31 182,231 11.12 GiB N/A
128 KiB 31 137,496 16.78 GiB N/A
256 KiB 31 67,830 16.56 GiB N/A

Em-SMR-1 4 KiB 1 9,175,056 35 GiB 35 GiB
Em-SMR-2 4 KiB 1 2,464,153 9.4 GiB 9.4 GiB
Em-SMR-3 4 KiB 1 9,175,056 35 GiB 35 GiB

Table 2: Discovering persistent cache parameters.

a low watermark to trigger cleaning, we estimate that the
map size is 200,000 entries.

In rows 4 and 5 we discover the persistent cache size
using Test 8. With 128 KiB writes we write ≈17 GiB in
fewer operations than in row 3, indicating that we are hitting
the size limit. To confirm this, we increase write size to
256 KiB in row 5; as expected, the number of operations
drops by half while the total write size stays the same. Again,
assuming that the drive has hit the low watermark, we
estimate that the persistent cache size is 20 GiB.

Journal entries with quantized sizes and extent mapping
are absent topics in academic literature on SMR, so emulated
drives implement neither feature. Running Test 6 on
emulated drives produces all three answers, since in these
drives, the cache is block-mapped, and the cache size and
cache raw size are the same. Furthermore, set-associative
STL divides the persistent cache into cache bands and
assigns data bands to them using modulo arithmetic.
Therefore, despite having a single cache, under random
writes it behaves similarly to a fully-associative cache. The
bottom rows of Table 2 show that in emulated drives, Test 8
discovers the cache size (see Table 1) with 95% accuracy.

4.7 Band Size
STLs proposed to date [15,20,31] clean a single band at a
time, by reading unmodified data from a band and updates
from the cache, merging them, and writing the merge result
back to a band. Test 9 determines the band size, by measuring
the granularity at which this cleaning process occurs.

Test 9: Discovering the Band Size

1 Select an accuracy granularity a, and a band size estimate b.
2 Choose a linear region of size 100×b and divide it into a-sized blocks.
3 Write 4 KiB to the beginning of every a-sized block, in random order.
4 Force cleaning to run for a few seconds and read 4 KiB from the

beginning of every a-sized block in sequential order.
5 Consecutive reads with identical high latency identify a cleaned band.

Assuming that the linear region chosen in Test 9 lies within
a region of equal track length, for data that is not in the persis-
tent cache, 4 KB reads at a fixed stride a should see identical
latencies—that is, a rotational delay equivalent to (a mod T)
bytes where T is the track length. Conversely reads of data
from cache will see varying delays in the case of a disk cache
due to the different (and random) order in which they were
written or sub-millisecond delays in the case of a flash cache.

With aggressive cleaning, after pausing to allow the disk
to clean a few bands, a linear read of the written blocks will
identify the bands that have been cleaned. For a drive with
lazy cleaning the linear region is chosen so that writes fill the
persistent cache and force a few bands to be cleaned, which
again may be detected by a linear read of the written data.

In Figure 15 we see the results of Test 9 for a=1 MiB and
b=50 MiB, respectively, with the region located at the 2.5 TB
offset; for each drive we zoom in to show an individual band
that has been cleaned. We correctly identify the band size for
the emulated drives (see Table 1). The band size of Seagate-
SMR at this location is seen to be 30 MiB; running tests at dif-
ferent offsets shows that bands are iso-capacity within a zone
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Figure 16: Head position during the sequential read for Seagate-SMR,
corresponding to the time period in Figure 15.

(§ 4.9) but vary from 36 MiB at the OD to 17 MiB at the ID.
Figure 16 shows the head position of Seagate-SMR

corresponding to the time period in Figure 15. It shows
that the head remains at the OD during the reads from the
persistent cache up to 454 MiB, then seeks to 2.5 TB offset
and stays there for 30 MiB, and then seeks back to the cache
at OD, confirming that the blocks in the band are read from
their native locations.

4.8 Block Mapping
Once we discover the band size (§ 4.7), we can use Test 10
to determine the mapping type. This test exploits varying
inter-track switching latency between different track pairs
to detect if a band was remapped. After overwriting the
first two tracks of band b, cleaning will move the band to its
new location—a different physical location only if dynamic
mapping is used. Plotting latency graphs of step 2 and step
4 will produce the same pattern for the static mapping and
a different pattern for the dynamic mapping.

Adapting this test to a drive with lazy cleaning involves
some extra work. First, we should start the test on a drive
after a secure erase, so that the persistent cache is empty.
Due to lazy cleaning, the graph of step 4 will be the graph
of switching between a track and the persistent cache.
Therefore, we will fill the cache until cleaning starts, and
repeat step 2 once in a while, comparing its graph to the
previous two: if it is similar to the last, then data is still in

Test 10: Discovering mapping type.

1 Choose two adjacent iso-capacity bands a and b; set n to the
number of blocks in a track.

2 for i←0 to i<2 do
for j←0 to j<n do

Read block j of track 0 of band a
Read block j of track i of band b

3 Overwrite the first two tracks of band b; force cleaning to run.
4 Repeat step 2.
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Figure 17: Mapping Type Detection.

the cache, if it is similar to the first, then the drive uses static
mapping, otherwise, the drive uses dynamic mapping.

We used track and block terms to concisely describe the
algorithm above, but the size chosen for these algorithmic
parameters need not match track size and block size of the
underlying drive. Figure 17, for example, shows the plots for
the test on Emulated-SMR-3 and Seagate-SMR, using 2 MiB
for the track size and 16 KiB for the block size. The latency
pattern for the Seagate-SMR does not change, indicating a
static mapping, but it changes for Emulated-SMR-3, which
indeed uses dynamic mapping. We omit the graphs of the
remaining drives to save space.

4.9 Zone Structure

We use sequential reads (Test 11) to discover the zone
structure of Seagate-SMR. While there are no such drives
yet, on drives with dynamic mapping a secure erase that
would restore the mapping to the default state may be
necessary for this test to work. Figure 18 shows the zone
profile of Seagate-SMR, with a zoom to the beginning.

Test 11: Discovering Zone Structure

1 Enable kernel read-ahead and drive look-ahead.
2 Sequentially read the whole drive in 1 MiB blocks.
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Figure 19: Seagate-SMR head position during sequential reads at different
offsets.

Similar to CMR drives, the throughput falls as we reach
higher LBAs; unlike CMR drives, there is a pattern that
repeats throughout the graph, shown by the zoomed part.
This pattern has an axis of symmetry indicated by the dotted
vertical line at 2,264th second. There are eight distinct
plateaus to the left and to the right of the axis with similar
throughputs. The fixed throughput in a single plateau and
a sharp change in throughput between plateaus suggest a
wide radial stroke and a head switch. Plateaus corresponds
to large zones of size 18–20 GiB, gradually decreasing to
4 GiB as we approach higher LBAs. The slight decrease
in throughput in symmetric plateaus on the right is due to
moving from a larger to smaller radii, where sector per track
count decreases; therefore, throughput decreases as well.

We confirmed these hypotheses using the head position
graph shown in Figure 19 (a), which corresponds to the

time interval of the zoomed graph of Figure 18. Unlike with
CMR drives, where we could not observe head switches due
to narrow radial strokes, with this SMR drive head switches
are visible to an unaided eye. Figure 19 (a) shows that the
head starts at the OD and slowly moves towards the MD
completing this inwards move at 1,457th second, indicated
by the vertical dotted line. At this point, the head has just
completed a wide radial stroke reading gigabytes from the
top surface of the first platter, and it performs a jump back
to the OD and starts a similar stroke on the bottom surface
of the first platter. The direction of the head movement
indicates that the shingling direction is towards the ID at the
OD. The head completes the descent through the platters
at 2,264th second—indicated by the vertical solid line—and
starts its ascent reading surfaces in the reverse order. These
wide radial strokes create “horizontal zones” that consist
of thousands of tracks on the same surface, as opposed to
“vertical zones” spanning multiple platters in CMR drives.
We expect these horizontal zones to be the norm in SMR
drives, since they facilitate SMR mechanisms like allocation
of iso-capacity bands, static mapping, and dynamic band
size adjustment [35]. Figure 19 (b) corresponds to the end of
Figure 18, shows that the direction of the head movement is
reversed at the ID, indicating that both at the OD and at the
ID, shingling direction is towards the middle diameter. To our
surprise, Figure 19 (c) shows that a conventional serpentine
layout with wide serpents is used at the MD. We speculate
that although the whole surface is managed as if it is shingled,
there is a large region in the middle that is not shingled.

5 Related Work

Little has been published on the subject of system-level
behavior of SMR drives. Although several works (for
example, Amer et al. [15] and Le et al. [39]) have discussed
requirements and possibilities for use of shingled drives in
systems, only three papers to date—Cassuto et al. [20], Lin
et al. [40], and Hall et al. [21]—present example translation
layers and simulation results. A range of STL approaches
is found in the patent literature [27,31,35,41], but evaluation
and analysis is lacking. Several SMR-specific file systems
have been proposed, such as SMRfs [14], SFS [18], and
HiSMRfs [42]. He and Du [43] propose a static mapping to
minimize re-writes for in-place updates, which requires high
guard overhead (20%) and assumes file system free space is
contiguous in the upper LBA region. Pitchumani et al. [32]
present an emulator implemented as a Linux device mapper
target that mimics shingled writing on top of a CMR drive.
Tan et al. [44] describe a simulation of S-blocks algorithm,
with a more accurate simulator calibrated with data from a
real CMR drive. To date no work (to the authors’ knowledge)
has presented measurements of read and write operations on
an SMR drive, or performance-accurate emulation of STLs.

This work draws heavily on earlier disk characterization

12
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Drive Model

Property ST5000AS0011 ST8000AS0011

Drive Type SMR SMR
Persistent Cache Type Disk Disk
Cache Layout and Location Single, at the OD Single, at the OD
Cache Size 20 GiB 25 GiB
Cache Map Size 200,000 250,000
Band Size 17–36 MiB 15–40 MiB
Block Mapping Static Static
Cleaning Type Aggressive Aggressive
Cleaning Algorithm FIFO FIFO
Cleaning Time 0.6–1.6 s/band 0.6–1.6 s/band
Zone Structure 4–20 GiB 5–40 GiB
Shingling Direction Towards MD N/A

Table 3: Properties of the 5 TB and the 8 TB Seagate drives discovered
using Skylight methodology. The benchmarks worked out of the box on
the 8 TB drive. Since the 8 TB drive was on loan, we did not drill a hole
on it; therefore, shingling direction for it is not available.

studies that have used micro-benchmarks to elicit details of
internal performance, such as Schlosser et al. [45], Gim et
al. [26], Krevat et al. [46], Talagala et al. [25], Worthington et
al. [24]. Due to the presence of a translation layer, however,
the specific parameters examined in this work (and the
micro-benchmarks for measuring them) are different.

6 Conclusions and Recommendations

As Table 3 shows, the Skylight methodology enables us to
discover key properties of two drive-managed SMR disks
automatically. With manual intervention, it allows us to
completely reverse engineer a drive. The purpose of doing so
is not just to satisfy our curiosity, however, but to guide both
their use and evolution. In particular, we draw the following
conclusions from our measurements of the 5 TB Seagate
drive:

1. Write latency with the volatile cache disabled is high
(Test 1). This appears to be an artifact of specific design
choices rather than fundamental requirements, and we
hope for it to drop in later firmware revisions.

2. Sequential throughput (with the volatile cache disabled)
is much lower (by 3× or more, depending on write
size) than for conventional drives. (We omitted these
test results, as performance is identical to the random
writes in Test 1.) Due to the use of static mapping
(Test 10), achieving full sequential throughput requires
enabling volatile cache.

3. Random I/O throughput (with the volatile cache en-
abled or with high queue depth) is high (Test 7)—15×
that of the equivalent CMR drive. This is a general
property of any SMR drive using a persistent cache.

4. Throughput may degrade precipitously when the cache
fills after many writes (Table 2). The point at which

this occurs depends on write size and queue depth2.
5. Background cleaning begins after ≈1 second of idle

time, and proceeds in steps requiring 0.6–1.6 seconds
of uninterrupted idle time to clean a single band.
The duration of the step depends on the amount of
data updated in the band. Cleaning a band whose
single block was overwritten may take 0.6 seconds
(Figure 12), whereas cleaning a band with half of its
content overwritten may take 1.6 seconds (Figure 11).
The number of the steps required is proportional to the
number of bands—contiguous regions of 15–40 MB
(§ 4.7)—that have been modified.

6. Sequential reads of randomly-written data will result in
random-like read performance until cleaning completes
(§ 4.4).

In summary, SMR drives like the ones we studied should
offer good performance if the following conditions are met:
(a) the volatile cache is enabled or a high queue depth is used,
(b) writes display strong spatial locality, modifying only a
few bands at any particular time, (c) non-sequential writes
(or all writes, if the volatile cache is disabled) occur in bursts
of less than 16 GB or 180,000 operations (Table 2), and (d)
long powered-on idle periods are available for background
cleaning. From the use of aggressive cleaning that presumes
long idle periods, we may conclude that the drive is adapted
to desktop use, but may perform poorly on server workloads.
Further work will include investigation of STL algorithms
that may offer a better balance of performance for both.
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Abstract

Writing data to a page not present in the file-system

page cache causes the operating system to synchronously

fetch the page into memory first. Synchronous page fetch

defines both policy (when) and mechanism (how), and al-

ways blocks the writing process. Non-blocking writes

eliminate such blocking by buffering the written data

elsewhere in memory and unblocking the writing pro-

cess immediately. Subsequent reads to the updated page

locations are also made non-blocking. This new han-

dling of writes to non-cached pages allow processes to

overlap more computation with I/O and improves page

fetch I/O throughput by increasing fetch parallelism. Our

empirical evaluation demonstrates the potential of non-

blocking writes in improving the overall performance of

systems with no loss of performance when workloads

cannot benefit from it. Across the Filebench write work-

loads, non-blocking writes improve benchmark through-

put by 7X on average (up to 45.4X) when using disk

drives and by 2.1X on average (up to 4.2X) when using

SSDs. For the SPECsfs2008 benchmark, non-blocking

writes decrease overall average latency of NFS opera-

tions between 3.5% and 70% and average write latency

between 65% and 79%. When replaying the MobiBench

file system traces, non-blocking writes decrease average

operation latency by 20-60%.

1 Introduction

Caching and buffering file data within the operating sys-

tem (OS) memory is a key performance optimization that

has been prevalent for over four decades [7, 43]. The

OS caches file data in units of pages, seamlessly fetching

pages into memory from the backing store when neces-

sary as they are read or written to by a process. This ba-

sic design has also carried over to networked file systems

whereby the client issues page fetches over the network

to a remote file server. An undesirable outcome of this

design is that processes are blocked by the OS during the

page fetch.

While blocking the process for a page fetch cannot be

avoided in case of a read to a non-cached page, it can

be entirely eliminated in case of writes. The OS could

buffer the data written temporarily elsewhere in memory

∗Work done while at Florida International University.

and unblock the process immediately; fetching and up-

dating the page can be performed asynchronously. This

decoupling of page write request by the application pro-

cess from the OS-level page update allows two crucial

performance enhancements. First, the process is free to

make progress without having to wait for a slow page

fetch I/O operation to complete. Second, the parallelism

of page fetch operations increases; this improves page

fetch throughput since storage devices offer greater per-

formance at higher levels of I/O parallelism.

In this paper, we explore new design alternatives and

optimizations for non-blocking writes, address consis-

tency and correctness implications, and present an imple-

mentation and evaluation of these ideas. By separating

page fetch policy from fetch mechanism, we implement

and evaluate two page fetch policies: asynchronous and

lazy, and two page fetch mechanisms: foreground and

background. We also develop non-blocking reads to re-

cently written data in non-cached pages.

We implemented non-blocking writes to files in the

Linux kernel. Our implementation works seamlessly in-

side the OS requiring no changes to applications. We

integrate the handling of writes to non-cached file data

for both local file systems and network file system clients

within a common design and implementation framework.

And because it builds on a generic design, our implemen-

tation provides a starting point for similar implementa-

tions in other operating systems.

We evaluated non-blocking writes using several file

system workloads. Across Filebench workloads that

perform writes, non-blocking writes improve average

benchmark throughput by 7X (up to 45.4X) when us-

ing disk drives and by 2.1X (up to 4.2X) when using

SSDs. For the SPECsfs2008 benchmarkworkloads, non-

blocking writes decrease overall average latency of NFS

operations between 3.5% and 70% and average write la-

tency between 65% and 79% across configurations that

were obtained by varying the proportion of NFS write

operations and NFS read operations. When replaying the

MobiBench file system traces, non-blocking writes de-

crease average operation latency by 20-60%. Finally, the

overhead introduced by non-blocking writes is negligi-

ble with no loss of performance when workloads cannot

benefit from it.
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Figure 1: Anatomy of a write. The first step, a write ref-

erence, fails because the page is not in memory. The process

resumes execution (Step 5) only after the blocking I/O opera-

tion is completed (Step 4). The dash-dotted arrow represents a

slow transition.

2 Motivating Non-blocking Writes

Previous studies that have analyzed production file sys-

tem workloads report a significant fraction of write ac-

cesses being small or unaligned writes [11, 30, 39, 44].

Technology trends also indicate an increase in page fetch

rates in the future. On the server end, multi-core systems

and virtualization now enable more co-located work-

loads leading to larger memory working sets. As the

effective memory working sets [8, 25] of workloads

continue to grow, page fetch rates also continue to in-

crease. A host of flash-based hybrid memory systems

and storage caching and tiering systems have been in-

spired, and find relevance in practice, because of these

trends [3, 4, 13, 16, 17, 18, 22, 24, 35, 40, 45, 55, 57]. On

the personal computing end, newer data intensive desk-

top/laptop applications place greater I/O demands [20].

In mobile systems, page fetches have been found to af-

fect the performance of the data-intensive applications

significantly [23]. Second, emerging byte-addressable

persistent memories can provide extremely fast durabil-

ity to applications and systems software [6, 10, 17, 27,

28, 42, 54, 56, 58]. Recent research has also argued

in favor of considering main memory in smartphones

as quasi non-volatile [32]. When used as file system

caches [29, 32], such memories can make the durabil-

ity of in-memory data a non-blocking operation. Elim-

inating any unwanted blocking in the front end of the

durability process, such as fetch-before-write, becomes

critical.

2.1 The fetch-before-write problem

Page fetch behavior in file systems is caused because

of the mismatch in data access granularities: bytes ac-

cessed by the application, and pages accessed from stor-

age by the operating system. To handle write refer-

ences, the target page is synchronously fetched before

the write is applied, leading to a fetch-before-write re-

quirement [34, 51]. This is illustrated in Figure 1. This
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Figure 2: A non-blocking write employing asyn-

chronous fetch. The process resumes execution (Step 5) af-

ter the patch is created in memory while the originally blocking

I/O completion is delayed until later (Step 6). The dash-dotted

line represents a slow transition.

Waiting I/O: Thinking:

Time

Blocking write

Write P Read P

Non-blocking write

Write P Read P

Figure 3: Page fetch asynchrony with non-blocking

writes. Page P , not present in the page cache, is written to.

The application waits for I/O completion. A brief thinktime is

followed by a read toP to a different location than the one writ-

ten to earlier. With non-blocking writes, since the write returns

immediately, computation and I/O are performed in parallel.

blocking behavior affects performance since it requires

fetching data from devices much slower than main mem-

ory. Today, main memory accesses can be performed

in a couple of nanoseconds whereas accesses to flash

drives and hard drives can take hundreds of microsec-

onds to a few milliseconds respectively. We confirmed

the page fetch-before-write behavior for the latest open-

source kernel versions of BSD (all variants), Linux,

Minix, OpenSolaris, and Xen.

2.2 Addressing the fetch-before-write problem

Non-blocking writes eliminate the fetch-before-write re-

quirement by creating an in-memory patch for the up-

dated page and unblocking the process immediately.

This modification is illustrated in Figure 2.

2.2.1 Reducing Process blocking

Processes block when they partially overwrite one or

more non-cached file pages. Such overwrites may be of

any size as long as they are not perfectly aligned to page

2
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Workload Description

ug-filesrv Undergrad NFS/CIFS fileserver

gsf-filesrv Grad/Staff/Faculty NFS/CIFS fileserver

moodle Web & DB server for department CMS

backup Nightly backups of department servers

usr1 Researcher 1 desktop

usr2 Researcher 2 desktop

Facebook MobiBench Facebook trace [14]

twitter MobiBench twitter trace [14]

Table 1: Workloads and descriptions.
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Figure 4: Breakdown of write operations by amount

of page data overwritten. Each bar represents a different

trace and the number above each bar is the percentage of write

operations than involve at least one partial page overwrite.

boundaries. Figure 3 illustrates how non-blocking writes

reduce process blocking. Previous studies have reported

about the significant fraction of small or unalignedwrites

in production file system workloads [11, 30, 39, 44].

However, little is known about partial page overwrite be-

havior. To better understand the prevalence of such file

writes in production workloads, we developed a Linux

kernel module that intercepts file system operations and

reports sizes and block alignment for writes. We then

analyzed one day’s worth of file system operations col-

lected from several production machines at Florida Inter-

national University’s Computer Science department. Be-

sides these we also analyzed file system traces of much

shorter duration (two minutes each) available in Mo-

biBench [14, 21]. Table 1 provides a description of all

the traces we analyzed.

Figure 4 provides an analysis of the write traffic on

each of these machines. On an average, 63.12% of the

writes involved partial page overwrites. Depending on

the size of the page cache, these overwrites could re-

sult in varying degrees of page fetches prior to the page

update. The degree of page fetches also depends on

the locality of data accesses in the workload wherein a

write may follow a read in short temporal order. To ac-

count for access locality, we refined our estimates using

a cache simulator to count the number of writes that ac-
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Figure 5: Non-blocking writes as a percentage of total

write operations when varying the page cache size.

tually lead to page fetches at various memory sizes. Such

writes can be made non-blocking. The cache simulator

used a modified Mattson’s LRU stack algorithm [33] and

uses the observation that a non-blocking write at a given

LRU cache size would also be a non-blocking write at

all smaller cache sizes. Modifications to the original al-

gorithm involved counting all partial page overwrites to

pages not in the cache as non-blocking writes. Figure 5

presents the percentage of total writes that would ben-

efit from non-blocking writes for the workloads in Ta-

ble 1. For a majority of the workloads, this value is at

least 15% even for a large page cache of size 100GB.

A system that can make such writes non-blocking would

make the overall write performance less dependent on

the page cache capacity.

2.2.2 Increasing Page fetch parallelism

Processes that access multiple pages not resident in

memory during their execution are blocked by the op-

erating system, once for each page while fetching it.

As a result, operating systems end up serializing page

fetches for accesses that are independent of each other.

With non-blocking writes, the operating system allows

a process to fetch independent pages in parallel taking

better advantage of the available I/O parallelism at the

device level. Figure 6 depicts this improvement graph-

ically. Higher levels of I/O parallelism lead to greater

device I/O throughput which ultimately improves page

fetch throughput for the application.

2.2.3 Making Durable Writes Fast

Next-generation byte-addressable persistent memories

are likely to be relatively small compared to today’s

block-based persistent stores, at least initially. Main

memory in today’s smartphones has been argued to be

quasi non-volatile [32]. When such memories are used

3
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Figure 6: Page fetch parallelism with non-blocking

writes. Two non-cached pages, P and Q, are written in se-

quence and the page fetches get serialized by default. With

non-blocking writes, P and Q get fetched in parallel increas-

ing device I/O parallelism and thus page fetch throughput.

as a persistent file system cache [29, 32], the containing

devices have the ability to provide extremely fast durabil-

ity (i.e., sync operations), a function that would typically

block process execution. In such systems, any blocking

in the front end of the durability mechanism, such as the

fetch-before-write, becomes detrimental to performance.

Since non-blocking writes would allow updates without

having to fetch the page, it represents the final link in ex-

tremely fast data durability when byte addressable per-

sistent memories become widely deployed.

2.3 Addressing Correctness

With non-blocking writes, the ordering of read and write

operations within and across processes in the system are

liable to change. As we shall elaborate later (§3.3),

the patch creation and patch application mechanisms in

non-blocking writes ensure that the ordering of causally

dependent operations is preserved. The key insights that

we use are: (i) reads to recent updates can be served cor-

rectly using the most recently created patches, (ii) reads

that block on page-fetch are allowed to proceed only af-

ter applying all the outstanding patches, and (iii) reads

and writes that are independent and issued by the same

or different threads can be reordered without loss of cor-

rectness.

Another potential concern with non-blocking writes is

data durability. For file data, we observe that the asyn-

chronous write operation only modifies volatile memory

and the OS makes no guarantees that the modifications

are durable. With non-blocking writes, synchronous

writes (on account of sync/fsync or the periodic page-

flusher daemon) block to wait for the required fetch, ap-

ply any outstanding patches, and write the page to stor-

age before unblocking the process. Thus, the durabil-

ity properties of the system remain unchanged with non-

blocking writes.
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Figure 7: Process and page state diagram for page

fetch with blocking writes.

3 Non-blocking Writes

The operating system services an application write as de-

picted in Figure 7. In the Check Page state, it looks for

the page in the page cache. If the page is already in mem-

ory (as a result of a recent fetch completion), it moves to

theUpdate Page state which also marks the page as dirty.

If the page is not in memory, it issues a page fetch I/O

and enters the Wait state, wherein it waits for the page

to be available in memory. When the I/O completes, the

page is up-to-date and ready to be unlocked (states Up-

to-date and Accessible in the page state diagram). In the

Update Page state, the OS makes the page accessible. Fi-

nally, control flow returns to the application performing

the page write.

3.1 Approach Overview

The page fetch process blocks process execution, which

is undesirable. Non-blocking writes work by buffering

updates to non-cached pages by creating patches in OS

memory to be applied later. The basic approach modifies

the page fetch path as illustrated in Figure 8. In contrast

to current systems, non-blockingwrites eliminate the I/O

Wait state that blocks the process until the page is avail-

able in memory. Instead, a non-blocking write returns

immediately once a patch of the update is created and

queued to the list of pending page updates. non-blocking

writes add a new state in the page state,Outdated, that re-

flects the state of the page after it is read into memory but

before pending patches are applied. The page transitions

into the Up-to-date state once all the pending patches are

applied.

Non-blocking writes alter write control flow, thus af-

fecting reads to recently written data. Further, they re-

quire managing additional cached data in the form of

patches. The rest of this section discusses these details

in the context of general systems design as well as im-

plementations specific to Linux.

4



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 155

Application
Check

Page

Update

Page

Write

Page

in memory

Page not in memory;

Create patch /

Return control

Return control

Outdated Up-to-date Accessible

I/O

complete

Apply

patches Unlock

P
ag
e
st
at
e

Figure 8: Process and page state diagram for page

fetch with non-blocking writes.

3.2 Write Handling

Operating systems allow writes to file data via two com-

mon mechanisms: supervised system calls and unsuper-

vised memory mapped access.

To handle supervised writes, the OS uses the system

call arguments — the address of the data buffer to be

written, the size of the data, and the file (and implicitly,

the offset) to write to — and resolves this access to a data

page write internally. With non-blocking writes, the OS

extracts the data update from the system call arguments,

creates a patch, and queues it for later use. This patch is

applied later when the data page is read into memory.

Unsupervised file access can be provided by memory

mapping a portion of a file to the process address space.

In our current design, memory mapped access are han-

dled as in current systems by blocking the process to ser-

vice the page fault.

3.3 Patch Management

We now discuss how patches are created, stored in the

OS, and applied to a page after it is fetched into memory.

3.3.1 Patch Creation

A patch must contain the data to be written along with its

target location and size. Since commodity operating sys-

tems handle data at the granularity of pages, we chose

a design where each patch will apply to a single page.

Thus, we abstract an update with a page patch data struc-

ture that contains all the information to patch and bring

the page up-to-date. To handle multiple disjoint over-

writes to the same page, we implement per-page patch

queues wherein page patches are queued and later ap-

plied to the page in FIFO order. Consequently, sharing

pages via page tables or otherwise is handled correctly.

This is possible since operating systems maintain a one-

to-one mapping of pages to physical memory frames

(e.g., struct page in Linux or struct vm page in

OpenBSD). When new data is adjacent or overwrites ex-

isting patches, it is merged into existing patches accord-

ingly. This makes patch memory overhead and patch ap-

plication overhead proportional to the number of page

bytes changed in the page instead of the number of bytes

written to the page since the page was last evicted from

memory.

3.3.2 Patch Application

Patch application is rather straightforward. When a page

is read in either via a system call induced page fetch or

a memory-mapped access causing a page fault, the first

step is to apply outstanding patches, if any, to the page

to bring it up-to-date before the page is made accessi-

ble. Patches are applied by simply copying patch data to

the target page location. Patch application occurs in the

bottom-half interrupt handling of the page read comple-

tion event (further discussed in §5). Once all patches are

applied, the page is unlocked which also unblocks the

processes waiting on the page, if any.

3.4 Non-blocking Reads

Similar to writes, reads can be classified as supervised

and unsupervised as well. Reads to non-cached pages

block the process in current systems. With non-blocking

writes, a new opportunity to perform non-blocking reads

becomes available. Specifically, if the read is service-

able from one of the patches queued on the page, then

the reading process can be unblocked immediately with-

out incurring a page fetch I/O. This occurs with no loss

of correctness since the patch contains the most recent

data written to the page. The read is not serviceable if

any portion of the data being requested is not contained

within the patch queue. In such a case, the reading pro-

cess blocks for the page to be fetched. If all data be-

ing requested is contained in the patch queue, the data

is copied into the target buffer and the reading process

is unblocked immediately. For unsupervised reads, our

current design blocks the process for the page fetch in all

cases.

4 Alternative Page Fetch Modes

Let us consider the page fetch operation issued in Step

3 when performing a non-blocking write as depicted in

Figure 2. This operation requires a physical memory al-

location (for the page to be fetched) and a subsequent

asynchronous I/O to fetch the page so that the newly cre-

ated patch can be applied to the page. However, since

blocking is avoided, process execution is not dependent

on the page being available in memory. This raises the

question: can page allocation and fetch be deferred or

even eliminated? Page fetch deferral and elimination al-

low reduction and shaping of memory consumption and

page fetch I/O to storage. While page fetch deferral is

opportunistic, page fetch elimination is only possible if

the patches created are sufficient to overwrite the page

entirely or if page persistence becomes unnecessary. We

5
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now explore the page fetch modes that become possible

with non-blocking writes.

4.1 Asynchronous Page Fetch

In this mode, page fetch I/O is queued to be issued at

the time of the page write. The appeal of this approach

is its simplicity. Since the page is brought into memory

in a timely fashion similar to the synchronous fetch, it

is transparent to timer-based durability mechanisms such

as dirty page flushing [2] and file system journaling [19].

Asynchronous page fetch defines policy. However, its

mechanism may involve additional blocking prior to is-

suing the page fetch. We discuss two alternative page

fetch mechanisms that highlight this issue.

1. Foreground Asynchronous Page Fetch (NBW-

Async-FG). The page fetch I/O is issued in the con-

text of process performing the write to the file page.

Our discussion in previous sections was based on this

mechanism. Although the process does not wait for the

completion of the data fetch, issuing the fetch I/O for

the data page may itself involve retrieving additional

metadata pages to locate the data page if these meta-

data pages are not cached in OS memory. If so, the

writing process would have to block for the necessary

metadata fetches to complete, thereby voiding most of

the benefits of the non-blocking write.

2. Background Asynchronous Page Fetch (NBW-

Async-BG). The writing process moves all work nec-

essary to issue the page fetch to a different context by

using kernel worker threads. This approach eliminates

any blocking of the writing process owing to metadata

misses; a worker thread blocks for all fetches while the

issuing process continues its execution.

Synchronous fetch is a valuable improvement. However,

it consumes system resources, allocating systemmemory

for the page to be fetched and using storage I/O band-

width to fetch the page.

4.2 Lazy Page Fetch (NBW-Lazy)

When a process writes to a non-cached data page, its ex-

ecution is not contingent on the page being available in

memory. With lazy page fetch, the OS delays the page

fetch until it becomes unavoidable. Lazy page fetch has

the potential to further reduce the system’s resource con-

sumption. Figure 9 illustrates this alternative.

Lazy page fetch creates new system scenarios which

must be considered carefully. If a future page read can-

not be served using the currently available patches for

the non-cached page, the page fetch becomes unavoid-

able. In this case, the page is fetched synchronously and

patches are applied first before unblocking the reading

process. If the page gets overwritten in its entirety or if

page persistence becomes unnecessary for another rea-
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Figure 9: A non-blocking write employing lazy fetch.

The process resumes execution (Step 4) after the patch is cre-

ated in memory. The Read operation in Step 5 optionally oc-

curs later in the execution while the originally blocking I/O is

optionally issued and completes much later (Step 8). The dash-

dotted arrow represents a slow transition.

son (e.g., the containing file is deleted), the original page

fetch is eliminated entirely.

Page data durability can become necessary in the fol-

lowing instances: (i) synchronous file write by an appli-

cation, (ii) periodic flushing of dirty pages by the OS [2],

or (iii) ordered page writes to storage as in a journal-

ing file system [19, 41]. In all these cases, the page is

fetched synchronously before being flushed to the back-

ing store. Lastly, non-blocking writes are not engaged

for metadata pages which use the conventional durability

mechanisms. Durability related questions are discussed

further in §5.2.

5 Implementation

Non-blocking writes alter the behavior and control flow

of current systems. We present an overview of the im-

plementation of non-blocking writes and discuss details

related to how it preserves system correctness.

5.1 Overview

We implemented non-blocking writes for file data in

the Linux kernel (version 2.6.34.17) by modifying the

generic virtual file system (VFS) layer. Unlike the con-

ventional Linux approach, all handling of fetch comple-

tion (such as applying patches, marking the page dirty,

processing a journaling transaction, and unlocking the

page) occurs in the bottom-half I/O completion handler.

5.2 Handling Correctness

OS-initiated Page Accesses. Our implementation does

not implement non-blocking writes for accesses (writes

and reads) to un-cached pages initiated internally by the

OS. These include file system metadata page updates,

and updates performed by kernel threads. This imple-

mentation trivially provides the durability properties ex-

pected by OS services to preserve semantic correctness.

6



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 157

Journaling File Systems. Our implementation of non-

blocking writes preserves the correctness of journaling

file systems by allowing the expected behavior for vari-

ous journaling modes. For instance, non-blocking writes

preserve ext4’s ordered mode journaling invariant that

data updates are flushed to disk before transactions con-

taining related metadata updates. Metadata transactions

in ext4 do not get processed until after the related data

page is fetched into memory, outstanding patches are ap-

plied, the page is marked dirty, and dirty buffers added

to the transaction handler. Thus, all dirty data pages re-

lated to a metadata transaction are resident in memory

and flushed to disk by ext4’s ordered mode journaling

mechanism prior to committing the transaction.

Handling Read-Write Dependencies. While a non-

blocking write is being handled within the operating sys-

tem, multiple operations such as read, prefetch, syn-

chronous write, and flush, can be issued to the page in-

volved. Operating systems carefully synchronize these

operations to maintain consistency and return only up-to-

date data to applications. Our implementation respects

the Linux page locking protocol. A page is locked af-

ter it is allocated and before issuing a fetch for it. As

a result, kernel mechanisms such as fsync and mmap are

also supported correctly. These mechanisms block on the

page lock which becomes available only after the page is

fetched and patches applied before proceeding to operate

on the page. When delayed page fetch mechanisms (as

in NBW-Async-BG and NBW-Lazy) are used, an NBW

entry for the page involved is added in the page cache

mapping for the file before the page is allocated. This

NBW entry allows for locking the page to maintain the or-

dering of page operations. When necessary (e.g., a sync),

pages indexed as NBW get fetched which in turn involves

acquiring the page lock, thus synchronizing future op-

erations on the page. The only exception to such page

locking is writing to a page already in the non-blocking

write state; the write does not lock the page but instead

queues a new patch.

Ordering of Page Updates. Non-blocking writes may

alter the sequence in which patches to different pages

get applied since the page fetches may complete out-of-

order. Non-blocking writes only replace writes that are

to memory that are not guaranteed to be reflected to per-

sistent storage in any particular sequence. Thus, ordering

violations in updates of in-memory pages are crash-safe.

Page Persistence and Syncs. If an application would

like explicit disk ordering for memory page updates, it

would execute a blocking flush operation (e.g., fsync)

subsequent to each operation. The flush operation causes

the OS to force the fetch of any page indexed as NBW even

if it has not been allocated yet. The OS then obtains the

page lock, waits for the page fetch, and applies any out-

standing patches, before flushing the page and returning

control to the application. Ordering of disk writes are

thus preserved with non-blocking writes.

Handling of disk errors. Our implementation changes

the semantics of the OS with respect to notification of

I/O errors when handling writes to non-cached pages.

Since page fetches on writes are done asynchronously,

disk I/O errors (e.g., EIO returned for the UNIX write

system call) during the asynchronous page fetch oper-

ation would not get reported to the writing application

process. Any action that the application was designed to

take based on the error reported would not be performed.

Semantically, the application write was a memory write

and not to persistent storage; an I/O error being reported

by current systems is an artifact of the fetch-before-write

design. With non-blocking writes, if the write were to be

made persistent at any point via a flush issued by the ap-

plication or the OS, any I/O errors during page flushing

would be reported to the initiator.

Multi-core and Kernel Preemption. Our implementa-

tion fully supports SMP and kernel preemption. For a

given non-cached page, the patch creation mechanism

(when processing the write system call) can contend with

the patch application mechanism (when handling page

fetch completion). Our implementation uses a single ad-

ditional lock to protect a patch queue from simultaneous

access.

6 Evaluation

We address the following questions:

(1)What are the benefits of non-blockingwrites for dif-

ferent workloads?

(2) How do the fetch modes of non-blockingwrites per-

form relative to each other?

(3) How sensitive are non-blockingwrites to the under-

lying storage type?

(4) How does memory size affect non-blocking writes?

We evaluate four different solutions. Blocking writes

(BW) is the conventional approach to handlingwrites and

uses the Linux kernel implementation. Non-blocking

writes variants include asynchronous mode using fore-

ground (NBW-Async-FG) and background (NBW-Async-

BG) fetch, and lazy mode (NBW-Lazy).

Workloads and Experimental Setup. We use the

Filebench micro-benchmark [50] to address (1), (2),

(3), and (4) using controlled workloads. We use

the SPECsfs2008 benchmark [49] and replay the Mo-

biBench traces [14] to further analyze questions (1) and

(2); the MobiBench trace replay also helps answer ques-

tion (3). The Filebench and MobiBench evaluations

were performed on a machine with Quad-Core 2.50 GHz

AMDOpteron(tm) 1381 processors, 8GB of RAM, a 500

7
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Figure 10: Performance for various Filebench personalities when varying the I/O size. The two rows correspond to

two different storage back-ends: hard disk-drive (top) and solid-state drive (bottom).

GB WDC WD5002ABYS hard disk-drive, a 32 GB In-

tel X25-E SSD, and Gigabit Ethernet, running Gentoo

Linux (kernel 2.6.34.14) . The above setup was also used

to run the client-side component of the SPECsfs2008

benchmark. Additionally, for the SPECsfs2008 bench-

mark, the NFS server used a 2.3 GHz Quad-Core AMD

Opteron(tm) Processor 1356, 7GB of RAM, 500 GB

WDC and 160 GB Seagate disks, and Gigabit Ethernet,

running Gentoo Linux (kernel 2.6.34.14). The 500GB

hard disk housed the root file system while the 160GB

hard disk stored the NFS exported data. The network

link between client and server was Gigabit Ethernet.

6.1 Filebench Micro-benchmark

For all the following experiments we ran five Filebench

personalities for 60 seconds using a 5GB pre-allocated

file after clearing the contents of the OS page cache.

Each personality represents a different type of workload.

The system was configured to use 4GB of main mem-

ory and memory used for patches was limited to 64MB,

a small fraction of DRAM, to avoid significantly affect-

ing the DRAM available to the workload and the OS. We

report the Filebench performance metric, the number of

operations per second. Each data-point is calculated us-

ing the average of 3 executions.

6.1.1 Performance Evaluation

We first examine the performance of Filebench when us-

ing a hard disk as the storage back-end. The top row

of Figure 10 depicts the performance for four Filebench

personalities when varying the size of the Filebench op-

eration. Each data point reports the average of 3 execu-

tions. Standard error of measurement was less than 3%

of the average for 96.88% of the cases and were less than

10% for the rest.

The first three plots involve personalities that perform

write operations. At 4KB I/O size, there is no fetch-

before-write behavior because every write results in an

overwrite of an entire page; thus, non-blocking writes

are not engaged and do not impose any overhead either.

For the sequential-write personality, performancewith

blocking writes (BW) depends on the operation size, and

is limited by the number of page misses per operation. In

the worst case, when the I/O size is equal to 2KB, every

two writes involve a blocking fetch. On average, the dif-

ferent non-blocking write modes provide a performance

improvement of 13-160% depending on the I/O size.

The second and third personalities represent random

access workloads. Random-write is a write-only work-

load, while random-readwrite is a mixed workload; the

latter uses two threads, one for issuing reads and the

other for writes. For I/O sizes smaller than 4KB, BW

provides a constant throughput of around 97 and 146

operations/sec for random-write and random-readwrite

personalities respectively. Performance is consistent re-

gardless of the I/O size because each operation is equally

likely to result in a page miss and fetch. Random-

readwrite performs better than random-write due to the

additional available I/O parallelism when two threads are

used. Further, for random-write, NBW-Async-FG pro-

vides 50-60% performance improvement due to reduced

blocking for page fetches of the process. However, this

improvement does not manifest for random-readwrite

wherein read operations incur higher latencies due to ad-

ditional blocking for pages with fetches in progress. In

both cases, the benefits of NBW-Async-FG are signifi-

cantly lower when compared to other non-blockingwrite

modes since NBW-Async-FG blocks on many of the ini-

8
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Figure 11: Memory sensitivity of Filebench. The I/O size was fixed at 2KB and patch memory limit was set to 64MB.

tial file-systemmetadata misses during this short-running

experiment.

In contrast, NBW-Async-BG unblocks the process im-

mediately while a different kernel thread blocks for the

metadata fetches as necessary. This mode shows a 6.7x-

29.5x performance improvement for random-write, de-

pending on the I/O size. These performance gains re-

duce as the I/O size increases since non-blocking writes

can create fewer outstanding patches to comply with the

imposed patch memory limit of 64MB. A similar trend

is observed for random-readwrite with performance im-

provements varying from 3.4x-19.5x depending on the

I/O size used. NBW-Lazy provides up to 45.4X perfor-

mance improvement over BW by also eliminating both

data and metadata page fetches when possible. When

the available patch memory limit is reached, writes are

treated as in BW until more patch memory is freed up.

The final two personalities, random-read and

sequential-read (not shown), are read-only workloads.

These workloads do not create write operations and the

overhead of using a non-blocking writes kernel is zero.

Non-blocking writes deliver the same performance as

blocking writes.

6.1.2 Sensitivity to system parameters

Our sensitivity analysis of non-blockingwrites addresses

the following specific questions:

(1) What are the benefits of non-blocking writes when

using different storage back-ends?

(2) How do non-blocking writes perform when system

memory size is varied?

Sensitivity to storage back-ends

To answer the first question, we evaluated non-blocking

writes using a solid state drive (SSD) based storage back-

end. Figure 10 (bottom row) presents results when run-

ning Filebench personalities using a solid state drive.

Each data point reports the average of 3 executions. Stan-

dard error of measurement was less than 2.25% of the

average in all cases except one for which it was 5%.

Performance trends with the sequential-write work-

load are almost identical to the hard disk counterparts

(top row in Figure 10) for all modes of non-blocking

writes. This is because non-blocking writes completely

eliminate the latency of accessing storage for every op-

eration in both systems. On the other hand, because the

SSD offers better throughput than the hard disk drive,

BW offers an increase in throughput for every size be-

low 4KB. In summary, the different non-blocking write

modes provide between 4% and 61% performance im-

provement depending on the I/O size.

For the random-write and random-readwrite work-

loads, the non-blocking write variants all improve per-

formance but to varying degrees. The SSD had signifi-

cantly lower latencies servicing random accesses relative

to the hard disk drive which allowed for metadata misses

to be serviced much quicker. The efficiency of NBW-

Async-FG relative to BW is further improved relative to

the hard disk system and it delivers 188% and 117% per-

formance improvement for random-write and random-

readwrite respectively. NBW-Async-BG improves over

NBW-Async-FG for reasons similar to those with hard

disks. NBW-Async-BG delivers 272% (up to 4.2X in

the best case) and 125% performance improvement over

BW on average for random-write and random-readwrite

respectively. Lastly, although NBW-Lazy performs sig-

nificantly better than BW, contrary to our expectations,

its performance improvements were lower when com-

pared to the NBW-Async modes. Upon further inves-

tigation, we found that when the patch memory limit is

reached, NBW-Lazy takes longer than the other modes

to free its memory given that the fetches are issued only

when blocking cannot be avoided anymore. While the

duration of the experiment is the same as disk drives, a

faster SSD results in the patch memory limit being met

more quickly. In our current implementation, after the

patch memory limit is reached and no more patches can

be created, NBW-Lazy defaults to a BW behavior issu-

ing fetches synchronously for handling writes to non-

cached pages. Despite this drawback, NBW-Lazy mode

shows 163%-211% and 70% improvement over BW for

random-write and random-readwrite respectively.
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Write size % Write size %

1 - 4095 bytes 28 8193 - 16383 bytes 7

4KB 11 16KB 5

4097 - 8191 bytes 3 16385 - 32767 bytes 1

8KB 30 32, 64, 96, 128, 256 KB 15

Table 2: SPECsfs2008 write sizes.

Sensitivity to system memory size

We answer the second question using the Filebench

workloads and varying the amount of system memory

available to the operating system. For these experiments,

we used a hard disk drive as the storage back-end and

fixed the I/O size at 2KB. Figure 11 presents the results

of this experiment. Each data point reports the average

of 3 executions. Standard error of measurement was less

than 4% of the average for 90% of the cases and were

less than 10% for the rest.

For the sequential-write workload, the non-blocking

writes variants perform 45-180% better than BW. Fur-

ther NBW-Lazy performs better and can be considered

optimal because (i) it uses very little patch memory, suf-

ficient to hold enough patches until a single whole page is

overwritten, and (ii) since pages get overwritten entirely

in the sequential write, it eliminates all page fetches.

For random-write and random-readwrite workloads,

NBW-Async-FG delivers performance that is relatively

consistent with BW; the I/O performance achieved by

these solutions is not high enough to make differences

in memory relevant. NBW-Async-BG and NBW-Lazy

offer significant performance gains relative to BW of as

much as 560% and 710% respectively. With NBW-Lazy,

performance improves with more available memory but

only up to the point at which the imposed patch memory

limit is reached prior to the completion of the execution;

increasing the patch memory limit would allow NBW-

Lazy to continue scaling its performance.

6.2 SPECsfs2008 Macro-benchmark

The SPECsfs2008 benchmark tests the performance of

NFS servers. For this experiment, we installed a non-

blocking writes kernel in the NFS server which exported

the network file system in async mode. SPECsfs2008

uses a client side workload generator that bypasses the

page cache entirely. The client was configured for a tar-

get load of 500 operations per second. The target load

was sustained in all evaluations; thus the SPECsfs2008

performance metric is the operation latency reported by

the NFS client. While the evaluation results are encour-

aging, the relative performance results we report for NFS

workloads are likely to be an underestimate. This is be-

cause our prototype was used only at the NFS server;

the client counterpart of non-blocking writes was not en-

gaged by this benchmark.

SPECsfs2008 operations are classified as write, read,

and others which includes metadata operations such as

create, remove, and getattr. For each variant solution,

we report results for the above three classes of operations

separately as well as the overall performance that rep-

resents the weighted average across all operations. Fur-

ther, we evaluated performancewhen varying the relative

proportion of NFS operations issued by the benchmark.

The default configuration as specified in SPECsfs2008

is: reads (18%), writes (10%) and others (72%). We also

evaluated three modified configurations: no-writes, no-

reads, and one that uses: reads (10%), writes (18%), and

others (72%) to examine a wider spectrum of behaviors.

We first perform a brief analysis of the workload to de-

termine expected performance. Even for configurations

that contained more writes than reads (e.g., 18% writes

and 10% reads) the actual fraction of cache misses upon

writes is far lower than the fraction of misses due to reads

(i.e 16.9% write misses vs. 83.1% read misses). This

mismatch is explained by noting that each read access

to a non-cached page results in a read miss but the same

is not true for write accesses when they are page-aligned.

Further, Table 2 reports that only 39% of all writes issued

by the SPECsfs2008 are partial page overwrites which

may result in non-blocking writes.

Figure 12 presents the average operation latencies nor-

malized using the latency with the BW solution. Exclud-

ing the read-only workload, the dominant trend is that the

non-blocking write modes offer significant reductions in

write operation latency with little or no degradation in

read latencies. Further, the average overall operation la-

tency is proportional to the fraction of write misses and

to the latency improvements for NFS write operations.

For the three configurations containing write operations,

the latency of the write operations is reduced between 65

and 79 percent when using the different modes of non-

blocking writes. Read latencies are slightly affected

negatively due to additional blocking on certain pages.

With BW, certain pages could have been fetched into

memory by the time the read operation was issued. With

non-blocking writes, the corresponding fetches could be

delayed or not issued at all until the blocking read oc-

curs. For the configuration with no write operations the

average overall latency remained relatively unaffected.

6.3 MobiBench Trace Replay

The MobiBench suite of tools contains traces obtained

from an Android device when using the Facebook and

Twitter apps [14]. We used MobiBench’s timing-

accurate replay tool to replay the traces. We fixed a bug

in the replay tool prior to using it; the original replayer

used a fixed set of flags when opening files regardless

of the trace information. MobiBench reports the aver-

age file system call operation latency as the performance

metric. We replayed the traces five times and report the

10
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Figure 12: Normalized average operation latencies for SPECsfs2008.
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Figure 13: Normalized average operation latencies when replaying MobiBench traces [14].

average latency observed. Standard error of measure-

ment was less than 4% of the average in all cases except

one for which it was 7.18%. The two left-most graphs

of Figure 13 present the results for this evaluation for

both hard disks and solid-state drives respectively. Non-

blocking writes exhibit a reduction in operation latencies

between 20% and 40% depending on the mode and back-

end storage used for both Facebook and Twitter traces.

When we analyzed the MobiBench traces, we found

that they contained a significant amount of sync op-

erations. Sync operations do not allow exploiting the

full potential of non-blocking writes because they block

the process to fetch pages synchronously. As discussed

previously, recent work on byte-addressable persistent

memories and qNVRAM [32] provide for extremely fast,

durable, in-memory operations. In such systems, the

blocking fetch-before-write behavior in OSes becomes

an even more significant obstacle to performance. To es-

timate1 the impact of non-blocking writes in such an en-

vironment, we modified the original traces by discarding

all fsync operations to simulate extremely fast durability

of in-memory data. The rightmost two graphs present

the results obtained upon replaying the modified traces.

non-blockingwrites reduce latencies by 40-60% depend-

ing on the mode and the storage back-end used.

7 Related Work

Non-blocking writes have existed for almost three

decades for managing CPU caches. Observing that entire

cache lines do not need to be fetched on a word write-

1We did not enforce ordered CPU cache flushing to persistent mem-

ory to ensure in-memory durability upon fsync.

miss thereby stalling the processor, the use of additional

registers that temporarily store these word updates was

investigated [26] and later adopted [31].

Recently, non-blocking writes to main memory pages

was motivated using full system memory access traces

generated by an instrumented QEMU machine emula-

tor [53]. This prior work outlined some of the challenges

of implementing non-blocking writes in commodity op-

erating systems. We improve upon this work by present-

ing a detailed design and Linux kernel implementation of

non-blocking writes, addressing a host of challenges as

well as uncovering new design points. We also present

a comprehensive evaluation with a wider range of work-

loads and performance numbers from a running system.

A candidate approach to mitigate the fetch-before-

write problem involves provisioning adequate DRAM

to minimize write cache misses. However, the file sys-

tem footprint of a workload over time is usually un-

predictable and potentially unbounded. Alternatively,

prefetching [46] can reduce blocking by anticipating fu-

ture memory accesses. However, prefetching is typi-

cally limited to sequential accesses. Moreover, incorrect

decisions can render prefetching ineffective and pollute

memory. Non-blockingwrites is complementary to these

approaches. It uses memory judiciously and only fetches

those pages that are necessary for process execution.

There are several approaches proposed in the litera-

ture that reduce process blocking specifically for system

call induced page fetches. The goal of the asynchronous

I/O library (e.g., POSIX AIO [1]) available on Linux and

a few BSD variants is to make file system writes asyn-

chronous; a helper library thread blocks on behalf of the

11
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process. LAIO [12] is a generalization of the basic AIO

technique to make all system calls asynchronous; a li-

brary checkpoints execution state and relies on sched-

uler activations to get notified about the completion of

blocking I/O operations initiated inside the kernel. Re-

cently, FlexSC [48] proposed asynchronous exception-

less system calls wherein system calls are queued by the

process in a page shared between user and kernel space;

these calls are serviced asynchronously by syscall kernel

threads which report completion back to the user process.

The scope of non-blocking writes in relation to the

above proposals is different. Its goal is to entirely elim-

inate the blocking of memory writes to pages not avail-

able in the file system page cache. A non-blocking write

does not need to checkpoint state thereby consuming

lesser system resources. Further, it can be configured to

be lightweight so that it does not use additional threads

(often a limited resource in systems) to block on behalf

of the running process. Finally, unlike these approaches

which require application modifications to use specific

libraries, non-blocking writes work seamlessly in the OS

transparent to applications.

There are works that are related to non-blocking

writes, but quite different in their accomplished goal.

Speculative execution (or Speculator) as proposed by

Nightingale et al. [36] eliminates blocking when syn-

chronously writing cached in-memory page modifica-

tions to a network file server using a process check-

point and rollback mechanism. Xsyncfs [37] eliminates

the blocking upon performing synchronous writes of

in-memory pages to disk by creating a commit depen-

dency for the write and allowing the process to make

progress. Featherstitch [15] improves the performance

of synchronous file system page updates by scheduling

these page writes to disk more intelligently. Featherstitch

employed patches but for a different purpose – to specify

dependent changes across disk blocks at the byte gran-

ularity. OptFS [5] decouples the ordering of writes of

in-memory pages from their durability, thus improving

performance. While these approaches optimize the writ-

ing of in-memory pages to disk they do not eliminate the

blocking page fetch before in-memorymodifications to a

file page can be made.

BOSC [47] describes a new disk update interface for

applications to explicitly specify disk update requests

and associate call back functions. Opportunistic Log [38]

describes the fetch-before-write problem for objects and

uses a second log to record updates. Both of these re-

duce application blocking allowing updates to happen

in the background but they require application modifi-

cation and do not support general-purpose usage. Non-

blocking writes is complementary to the above body of

work because it runs seamlessly inside the OS requiring

no changes to applications.

8 Conclusions and Future Work

For over four decades, operating systems have blocked

processes for page fetch I/O when they write to non-

cached file data. In this paper, we revisited this well-

established design and demonstrated that such blocking

is not just unnecessary but also detrimental to perfor-

mance. Non-blocking writes decouple the writing of

data to a page from its presence in memory by buffer-

ing page updates elsewhere in OS memory. This de-

coupling is achieved with a self-contained operating sys-

tem improvement seamless to the applications. We de-

signed and implemented asynchronous and lazy page

fetch modes that are worthwhile alternatives to block-

ing page fetch. Our evaluation of non-blocking writes

using Filebench revealed throughput performance im-

provements of as much as 45.4X across variousworkload

types relative to blocking writes. For the SPECsfs2008

benchmark, non-blockingwrites reduced write operation

latencies by as much as 65-79%. When replaying the

MobiBench file system traces, non-blocking writes de-

creased average operation latency by 20-60%. Further,

there is no loss of performance when workloads cannot

benefit from non-blocking writes.

Non-blocking writes open up several avenues for fu-

ture work. First, since they alter the relative importance

of pages in memory in a fundamental way, new page

replacement algorithms are worth investigating. Sec-

ond, by intelligently scheduling page fetch operations

(instead of simply asynchronously or lazily), we can re-

duce and shape both memory consumption and the page

fetch I/O traffic to storage. Third, I/O related to asyn-

chronous page fetching due to non-blocking writes can

be scheduled more intelligently (e.g., as background op-

erations [52] or semi-preemptibly [9]) to speed up block-

ing page fetches. Finally, certain OS mechanisms such as

dirty page flushing thresholds and limits on per-process

dirty data would need to be updated to also account for

in-memory patches.
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Abstract
The non-volatile memory (NVM) has DRAM-like per-
formance and disk-like persistency which make it possi-
ble to replace both disk and DRAM to build single level
systems. To keep data consistency in such systems is
non-trivial because memory writes may be reordered by
CPU and memory controller. In this paper, we study
the consistency cost for an important and common data
structure, B+Tree. Although the memory fence and CPU
cacheline flush instructions can order memory writes to
achieve data consistency, they introduce a significant
overhead (more than 10X slower in performance). Based
on our quantitative analysis of consistency cost, we pro-
pose NV-Tree, a consistent and cache-optimized B+Tree
variant with reduced CPU cacheline flush. We imple-
ment and evaluate NV-Tree and NV-Store, a key-value
store based on NV-Tree, on an NVDIMM server. NV-
Tree outperforms the state-of-art consistent tree struc-
tures by up to 12X under write-intensive workloads.
NV-Store increases the throughput by up to 4.8X under
YCSB workloads compared to Redis.

1 Introduction
For the past few decades, DRAM has been de facto
building block for the main memory of computer sys-
tems. However, it is becoming insufficient with an in-
creasing need of large main memory due to its den-
sity limitation [40, 43]. To address this issue, several
Non-Volatile Memory (NVM) technologies have been
under active development, such as phase-change mem-
ory (PCM) [49], and spin-transfer torque memory (STT-
RAM) [29]. These new types of memory have the poten-
tial to provide comparable performance and much higher
capacity than DRAM. More important, they are persis-
tent which makes failure recovery faster [31, 33].

Considering the projected cost [21] and power effi-
ciency of NVM, there have been a number of proposals
that replace both disk and DRAM with NVM to build a

§ Corresponding author: WEI_Qingsong@dsi.a-star.edu.sg

single level system [21, 53, 45]. Such systems can (i)
eliminate the data movement between disk and memory,
(2) fully utilize the low-latency byte-addressable NVM
by connecting it through memory bus instead of legacy
block interface [16, 30, 56, 7, 6]. However, with data
stored only in NVM, data structures and algorithms must
be carefully designed to avoid any inconsistency caused
by system failure. In particular, if the system crashes
when an update is being made to a data structure in
NVM, the data structure may be left in a corrupted state
as the update is only half-done. In that case, we need
certain mechanism to recover the data structure to its last
consistent state. To achieve data consistency in NVM,
ordered memory writes is fundamental. However, ex-
isting CPU and memory controller may reorder mem-
ory writes which makes it non-trivial to develop consis-
tent NVM-based systems and data structures, as demon-
strated in previous works [44, 53, 58, 55, 14, 12, 18, 35,
22, 46, 10, 32, 17]. To maintain memory writes to NVM
in certain order, we must (1) prevent them from being re-
ordered by CPU and (2) manually control CPU cacheline
flush to make them persistent on NVM. Most studies use
CPU instructions such as memory fence and cacheline
flush. However, these operations introduce significant
overhead [14, 53, 44]. We observe a huge amplification
of CPU cacheline flush when using existing approaches
to keep B+Tree [13] consistent, which makes the consis-
tency cost very high.

In this paper, we propose NV-Tree, a consistent and
cache-optimized B+Tree variant which reduces CPU
cacheline flush for keeping data consistency in NVM.
Specifically, NV-Tree decouples tree nodes into two
parts, leaf nodes (LNs) as critical data and internal nodes
(INs) as reconstructable data. By enforcing consistency
only on LNs and reconstructing INs from LNs during
failure recovery, the consistency cost for INs is elimi-
nated but the data consistency of the entire NV-Tree is
still guaranteed. Moreover, NV-Tree keeps entries in
each LN unsorted which can reduce CPU cacheline flush
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by 82% to 96% for keeping LN consistent. Last but
not least, to overcome the drawback of slowing down
searches and deletions due to the write-optimized design
in LN, NV-Tree adopts a pointer-less layout for INs to
further increase the CPU cache efficiency.

Our contributions can be summarized as follows:

1. We quantify the consistency cost for B+Tree using
existing approaches, and present two insightful ob-
servations: (1) keeping entries in LN sorted intro-
duces large amount of CPU cacheline flush which
dominates the overall consistency cost (over 90%);
(2) enforcing consistency only on LN is sufficient
to keep the entire tree consistent because INs can
always be reconstructed even after system failure.

2. Based on the observations, we present our NV-Tree,
which (1) decouples LNs and INs, only enforces
consistency on LNs; (2) keeps entries in LN un-
sorted, updates LN consistently without logging or
versioning; (3) organizes INs in a cache-optimized
format to further increase CPU cache efficiency.

3. To evaluate NV-Tree in system level, we have also
implemented a key-value store, called NV-Store,
using NV-Tree as the core data structure.

4. Both NV-Tree and NV-Store are implemented and
evaluated on a real NVDIMM [1] platform. The ex-
perimental results show that NV-Tree outperforms
CDDS-Tree [53], the state-of-art consistent tree
structure, by up to 12X under write-intensive work-
loads. The speedup drops but still reaches 2X under
read-intensive workloads. NV-Store increases the
throughput by up to 4.8X under YCSB workloads
compared to Redis [50].

The rest of this paper is organized as follows. Sec-
tion 2 discusses the background, related work and mo-
tivation. Section 3 presents the detailed design and im-
plementation of NV-Tree. The experimental evaluation
of NV-Tree and NV-Store is shown in Section 4. Finally,
Section 5 concludes this paper.

2 Related Work and Motivation
2.1 Non-Volatile Memory (NVM)
Computer memory has been evolving rapidly in recent
years. A new category of memory, NVM, has attracted
more and more attention in both academia and industry
[21, 55]. Early work [36, 41, 35, 57, 47, 51, 11, 52, 59,
60, 2, 27, 39] focuses on flash memory. As shown in Ta-
ble 1, flash is faster than HDD but is still unsuitable to
replace DRAM due to much higher latency and limited
endurance [24]. Recent work has focused on the next

Table 1: Characteristics of Different Types of Memory
Category Read Latency Write Latency Endurance

(ns) (ns) (# of writes per bit)
SRAM 2-3 2-3 ∞

DRAM 15 15 1018

STT-RAM 5-30 10-100 1015

PCM 50-70 150-220 108-1012

Flash 25,000 200,000-500,000 105

HDD 3,000,000 3,000,000 ∞

generation NVM [28], such as PCM [49, 42, 4, 8, 23]
and STT-RAM [29], which (i) is byte addressable, (ii)
has DRAM-like performance, and (iii) provides better
endurance than flash. PCM is several times slower than
DRAM and its write endurance is limited to as few as 108

times. However, PCM has larger density than DRAM
and shows a promising potential for increasing the ca-
pacity of main memory. Although wear-leveling is nec-
essary for PCM, it can be done by memory controller
[48, 61]. STT-RAM has the advantages of lower power
consumption over DRAM, unlimited write cycles over
PCM, and lower read/write latency than PCM. Recently,
Everspin announced its commercial 64Mb STT-RAM
chip with DDR3 interface [20]. In this paper, NVM is
referred to the next generation of non-volatile memory
excluding flash memory.

Due to the price and prematurity of NVM, mass pro-
duction with large capacity is still impractical today. As
an alternative, NVDIMM [44], which is commercially
available [1], provides persistency and DRAM-like per-
formance. NVDIMM is a combination of DRAM and
NAND flash. During normal operations, NVDIMM is
working as DRAM while flash is invisible to the host.
However, upon power failure, NVDIMM saves all the
data from DRAM to flash by using supercapacitor to
make the data persistent. Since this process is transparent
to other parts of the system, NVDIMM can be treated as
NVM. In this paper, our NV-Tree and NV-Store are im-
plemented and evaluated on a NVDIMM platform.

2.2 Data Consistency in NVM
NVM-based single level systems [21, 14, 53, 58, 44]
have been proposed and evaluated using the simulated
NVM in terms of cost, power efficiency and perfor-
mance. As one of the most crucial features of storage
systems, data consistency guarantees that stored data can
survive system failure. Based on the fact that data is rec-
ognizable only if it is organized in a certain format, up-
dating data consistently means preventing data from be-
ing lost or partially updated after a system failure. How-
ever, the atomicity of memory writes can only be sup-
ported with a very small granularity or no more than the
memory bus width (8 bytes for 64-bit CPUs) [25] which
is addressed in previous work [55, 14, 44], so updating

2
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data larger than 8 bytes requires certain mechanisms to
make sure data can be recovered even if system failure
happens before it is completely updated. Particularly,
the approaches such as logging and copy-on-write make
data recoverable by writing a copy elsewhere before up-
dating the data itself. To implement these approaches,
we must make sure memory writes are in a certain or-
der, e.g., the memory writes for making the copy of
data must be completed before updating the data itself.
Similar write ordering requirement also exists in pointer-
based data structures, e.g., in B+Tree, if one tree node
is split, the new node must be written completely before
its pointer being added to the parent node, otherwise, the
wrong write order will make the parent node contain an
invalid pointer if the system crash right after the pointer
being added.

Unfortunately, memory writes may be reordered by ei-
ther CPU or memory controller. Alternatively, without
modifying existing hardware, we can use the sequence
of {MFENCE, CLFLUSH, MFENCE} instruction (referred
to flush in the rest of this paper) to form ordered mem-
ory writes [53]. Specifically, MFENCE issues a memory
barrier which guarantees the memory operations after
the barrier cannot proceed until those before the barrier
complete, but it does not guarantee the order of write-
back to the memory from CPU cache. On the other
hand, CLFLUSH can explicitly invalidate the correspond-
ing dirty CPU cachelines so that they can be flushed to
NVM by CPU which makes the memory write persistent
eventually. However, CLFLUSH can only flush a dirty
cacheline by explicitly invalidating it which makes CPU
cache very inefficient. Although such invalidations can
be avoided if we can modify the hardware itself to imple-
ment epoch [14], CPU cacheline flush cannot be avoided.
Reducing it is still necessary to not only improve perfor-
mance but also extend the life cycle of NVM with re-
duced memory write.

2.3 Related Work
Recent work proposed mechanisms to provide data con-
sistency in NVM-based systems by either modifying ex-
isting hardware or using CPU primitive instructions such
as MFENCE and CLFLUSH. BPFS [14] proposed a new
file system which is resided in NVM. It adopts a copy-on-
write approach called short-circuit shadow paging using
epoch which can flush dirty CPU cachelines without in-
validating them to order memory writes for keeping data
consistency. However, it still suffers from the overhead
of cacheline flush. It must be implemented by modifying
existing hardware which is not practical in most cases.
Volos et al. [55] proposed Mnemosyne, a new program
interface for memory allocations in NVM. To manage

memory consistency, it presents persist memory region,
persist primitives and durable memory transaction which
consist of MFENCE and CLFLUSH eventually. NV-Heaps
[12] is another way to consistently manage NVM directly
by programmers based on epoch. It uses mmap to access
spaces in NVM and gives a way to allocate, use and deal-
locate objects and their pointers in NVM. Narayanan et
al. [44] proposed a way to keep the whole system status
when power failure happens. Realizing the significant
overhead of flushing CPU cacheline to NVM, they pro-
pose to flush-on-fail instead of flush-on-demand. How-
ever, they cannot protect the system from any software
failure. In general, flushing CPU cacheline is necessary
to order memory writes and used in almost all the exist-
ing NVM-based systems [34, 37, 54, 19].

The most related work to our NV-Tree is CDDS-Tree
[53] which uses flush to enforce consistency on all the
tree nodes. In order to keep entries sorted, when an en-
try is inserted to a node, all the entries on the right side
of the insertion position need to be shifted. CDDS-Tree
performs flush for each entry shift, which makes the
consistency cost very high. Moreover, it uses the entry-
level versioning approach to keep consistency for all tree
operations. Therefore, a background garbage collector
and a relatively complicated recovery process are both
needed.

2.4 Motivation
To quantify the consistency cost, we compare the exe-
cution of performing one million insertion in (a) a stan-
dard B+Tree [13] without consistency guarantee, (b) a
log-based consistent B+Tree (LCB+Tree), (c) a CDDS-
Tree [53] using versioning, and (d) a volatile CDDS-Tree
with flush disabled. In LCB+Tree, before modifying
a node, its original copy is logged and flushed. The
modified part of it is then flushed to make the changes
persistent. Note that we only use LCB+Tree as the base-
line to illustrate one way to use logging to guarantee the
consistency. We understand optimizations (such as com-
bining several modification to one node into one flush)
can be made to improve the performance of LCB+Tree
but it is beyond the scope of this paper. Since CDDS-
Tree is not open-source, we implement it ourselves and
achieve similar performance to that in the original paper
[53]. As shown in Figure 1a, for one million insertion
with 4KB nodes, the LCB+Tree and CDDS-Tree are up
to 16X and 20X slower than their volatile version, re-
spectively. Such performance drop is caused by the in-
creased number of cache misses and additional cacheline
flush.

Remembering that CLFLUSH flushes a dirty cacheline
by explicitly invalidating it, which causes a cache miss

3
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Figure 1: Consistency Cost Analysis of B+Tree and CDDS-Tree

when reading the same memory address later. We use
Intel vTune Amplifier1, a CPU profiling tool, to count
the L3 cache misses during the one million insertion. As
shown in Figure 1b, while the volatile CDDS-Tree or
B+Tree produces about 10 million L3 cache misses, their
consistent version causes about 120-800 million cache
misses which explains the performance drop.

Figure 1c shows the total number of cacheline flushes
in CDDS-Tree and LCB+Tree for one million insertion.
With 0.5KB/1KB/2KB/4KB nodes, the total amount
of cacheline flushes is 14.8/24.6/44.7/85.26 million for
LCB+Tree, and 12.1/19.0/34.2/64.7 million for CDDS-
Tree. This indicates that keeping consistency causes a
huge amplification of the CPU cacheline invalidation
and flush, which increases the cache misses signifi-
cantly, as shown in Figure 1b.

The numbers of both the cache misses and cacheline
flushes in LCB+Tree and CDDS-Tree are proportional to
the node size due to the flush for keeping the entries
sorted. Specifically, for LCB+Tree and CDDS-Tree, all
the shifted entries caused by inserting an entry inside a
node need to be flushed to make the insertion persis-
tent. As a result, the amount of data to be flushed is
related to the node size for both trees.

We further categorize the CPU cacheline flush into
four types, as shown in Figure 1d, Sort LN/Sort IN stands
for the cacheline flush of shifted entries. It also includes
the flush of logs in LCB+Tree. LN/IN stands for the

1https://software.intel.com/en-us/intel-vtune-amplifier-xe

flush of other purpose such as flushing new nodes
and updated pointers after split, etc. The result shows
that the consistency cost due to flush mostly comes
from flushing shifted entries in order to keep LN
sorted, about 60%-94% in CDDS-Tree, and 81%-97%
in LCB+Tree.

Note that CDDS-Tree is slower than LCB+Tree by 11-
32% even though it produces less cacheline flush. The
reasons are that (1) the size of each flush in CDDS-
Tree is the entry size, which is much smaller than that
in LCB+Tree, and (2) the performance of flush for
small objects is over 25% slower than that for large ob-
jects [53].

Last but not least, we observe that given a data struc-
ture, not all the data needs to be consistent to keep
the entire data structure consistent. As long as some
parts of it (denoted as critical data) is consistent, the rest
(denoted as reconstructable data) can be reconstructed
without losing consistency for the whole data structure.
For instance, in B+Tree, where all the data is stored in
LNs, they can be considered as critical data while INs
are reconstructable data because they can always be re-
constructed from LNs at a reasonably low cost. That sug-
gests we may only need to enforce consistency on crit-
ical data, and reconstruct the entire data structure from
the consistent critical data during the recovery.

4
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3 NV-Tree Design and Implementation
In this section, we present NV-Tree, a consistent and
cache-optimized B+Tree variant with reduced consis-
tency cost.

3.1 Design Decisions
Based on our observations above, we make three major
design decisions in our NV-Tree as the following.
D1. Selectively Enforce Data Consistency. NV-Tree

decouples LNs and INs by treating them as critical data
and reconstructable data, respectively. Different from
the traditional design where all nodes are updated with
consistency guaranteed, NV-Tree only enforces consis-
tency on LNs (critical data) but processes INs (recon-
structable data) with no consistency guaranteed to re-
duce the consistency cost. Upon system failure, INs are
reconstructed from the consistent LNs so that the whole
NV-Tree is always consistent.
D2. Keep Entries in LN Unsorted. NV-Tree uses

unsorted LNs so that the flush operation used in
LCB+Tree and CDDS-Tree for shifting entries upon in-
sertion can be avoided. Meanwhile, entries of INs are
still sorted to optimize search performance. Although
the unsorted LN strategy is not new [9], we are the first
one that quantify its impact on the consistency cost and
propose to use it to reduce the consistency cost in NVM.
Moreover, based on our unsorted scheme for LNs, both
the content (entry insertion/update/deletion) and struc-
tural (split) changes in LNs are designed to be visible
only after a CPU primitive atomic write. Therefore, LNs
can be protected from being corrupted by any half-done
updates due to system failure without using logging or
versioning. Thanks to the invisibility of on-going up-
dates, the parallelism of accessing LN is also increased
because searching in LN is no longer blocked by the con-
current on-going update.
D3. Organizing IN in Cache-optimized Format. The

CPU cache efficiency is a key factor to the performance.
In NV-Tree, all INs are stored in a consecutive memory
space and located by offset instead of pointers, and all
nodes are aligned to CPU cacheline. As a result, NV-
Tree achieves higher space utilization and cache hit rate.

3.2 NV-Tree
In this subsection, we present the details of tree node lay-
out design and all the tree operations of NV-Tree.

3.2.1 Overview
In NV-Tree, as shown in Figure 2, all the data is stored in
LNs which are linked together with right-sibling point-
ers. Each LN can also be accessed by the LN pointer
stored in the last level of IN, denoted as PLN (parent of

PLN id LN

... ... ... ... ... ... ...

6 10... 11 15... 16 20... 21 25... 26 30...

1 2 3 4 5

0

id
IN

... ...

Critical Data

Reconstructable Data

nKeys

nElements flag key value

LN_Element[0]

...

IN

nKeysPLN
key[0]

LN[0]

key[1]

LN[1]

key[m]

LN[m]

...

... LN[m+1]

key[0] key[1] ... key[2m]

LN

LN_Element[1]

flag key value

Node Layout

31 32 3736 96 97 10035

Figure 2: NV-Tree Overview and Node Layout

leaf node). All the IN/PLNs are stored in a pre-allocated
consecutive memory space which means the position of
each IN/PLN is fixed upon creation. The node id of each
IN/PLN is assigned sequentially from 0 (root). There-
fore it can be used to calculate the offset of each IN/PLN
to the root. Given the memory address of the root, all
the IN/PLNs can be located without using any pointers.
Each key/value pair (KV-pair) stored in LNs is encapsu-
lated in an LN_element.

Keeping each LN and the LN list consistent in NV-
Tree without using logging or versioning is non-trivial.
Different from a normal B+Tree, both update and dele-
tion are implemented as insertion using an append-
only strategy discussed in Section 3.2.3. Any inser-
tion/update/deletion operations may lead to a full LN
which triggers either split/replace/merge discussed in
Section 3.2.4. We carefully design the write order for
insertion (update/deletion) and split/replace/merge using
flush to guarantee the changes made by these oper-
ations cannot be seen until a successful atomic write.
When one PLN is full, a procedure called rebuilding is
executed to reconstruct a new set of IN/PLN to accom-
modate more LNs, discussed in Section 3.2.5.

3.2.2 Locating Target LN
We first present how to find the target LN in NV-Tree.
Due to the hybrid design, the procedure of locating target
LN with a given key in NV-Tree is different from that in
standard B+Tree.

As shown in Algorithm 1, given the search key and the
memory address of root, INs are searched level by level,
starting from root with node id 0. On each level, which
child to go in the next level is determined by a binary
search based on the given search key. For instance, with

5



172 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Algorithm 1: NV-Tree LN Lookup

1 Function find_leaf(k, r)
Input: k: key, r: root
Output: LNpointer: the pointer of target leaf

node
/* Start from root (id=0). */

2 id ← 0;
3 while id /∈ PLNIDs do /* Find PLN. */
4 IN ← memory address of node id;
5 pos ← BinarySearch(key, IN);
6 id ← id ∗ (2m+1)+1+ pos;

/* m is the maximum number of
keys in a PLN. */

7 PLN ← memory address of node id;
8 pos ← BinarySearch(key,PLN);
9 return PLN.LNpointers[pos]

keys and pointers having the same length, if a PLN can
hold m keys and m+ 1 LN pointers, an IN can hold 2m
keys. If the node id of current IN is i and the binary
search finds the smallest key which is no smaller than
the search key is at position k in current IN, then the next
node to visit should have the node id (i× (2m+1)+1+
k). When reaching a PLN, the address of the target LN
can be retrieved from the leaf node pointer array.

As every IN/PLN has a fixed location once rebuilt,
PLNs are not allowed to split. Therefore, the content
of INs (PLNs excluded) remains unchanged during nor-
mal execution. Therefore, NV-Tree does not need to
use locks in INs for concurrent tree operations which in-
creases the scalability of NV-Tree.

3.2.3 Insertion, Update, Deletion and Search
Insertion starts with finding target LN. After target LN
is located, a new LN_element will be generated using
the new KV-pair. If the target LN has enough space
to hold the LN_element, the insertion completes after
the LN_element is appended, and the nElement is in-
creased by one successfully. Otherwise, the target LN
will split before insertion (discussed in Section 3.2.4).
The pseudo-code of insertion is shown in Algorithm
2. Figure 3a shows an example of inserting a KV-pair
{7,b} into an LN with existing two KV-pairs {6,a}
and {8,c}.

Deletion is implemented just the same as insertion ex-
cept a special NEGATIVE flag. Figure 3b shows an ex-
ample of deleting the {6,a} in the original LN. A NEG-
ATIVE LN_element {6,a} (marked as ‘-’) is inserted.
Note that the NEGATIVE one cannot be inserted unless a
normal one is found. The space of both the NEGATIVE
and normal LN_elements are recycled by later split.

Algorithm 2: NV-Tree Insertion
Input: k: key, v: value, r: root
Output: SUCCESS/FAILURE

1 begin
2 if r = NULL then /* Create new tree

with the given KV-pair. */
3 r ← create_new_tree(k, v);
4 return SUCCESS

5 lea f ← find_leaf(k, r);
6 if LN has space for new KV-pair then
7 newElement ←CreateElement(k,v);
8 flush(newElement);
9 AtomicInc(lea f .number);

10 flush(lea f .number);
11 else
12 leaf_split_and_insert(leaf, k, v)

13 return SUCCESS

Update is implemented by inserting two
LN_elements, a NEGATIVE with the same value
and a normal one with updated value. For instance, as
shown in Figure 3c, to update the original {8,c} with
{8,y}, the NEGATIVE LN_element for {8,c} and
the normal one for {8,y} are appended accordingly.

Note that the order of appending LN_element before
updating nElement in LN is guaranteed by flush. The
appended LN_element is only visible after the nElement
is increased by a successful atomic write to make sure
LN cannot be corrupted by system failure.

Search a key starts with locating the target LN with
the given key. After the target LN is located, since
keys are unsorted in LN, a scan is performed to re-
trieve the LN_element with the given key. Note that if
two LN_elements have the target key and same value
but one of them has a NEGATIVE flag, both of them
are ignored because that indicates the corresponding KV-
pair is deleted. Although the unsorted leaf increases the
searching time inside LN, the entries in IN/PLNs are still
sorted so that the search performance is still acceptable
as shown in Section 4.4.

All the modification made to LNs/PLNs is protected
by light-weight latches. Meanwhile, given the nature of
the append-only strategy, searching in LNs/PLNs can be
executed without being blocked by any ongoing modifi-
cation as long as the nElement is used as the boundary of
the search range in LNs/PLNs.

3.2.4 LN Split/Replace/Merge
When an LN is full, the first step is to scan the LN
to identify the number of valid LN_elements. Those
NEGATIVE ones and the corresponding normal ones are

6
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2 + 6 a + 8 c + 7 b

3 + 6 a + 8 c + 7 b

2 + 6 a + 8 c

(a) Insert (7,b)

2 + 6 a + 8 c - 6 a
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(b) Delete (6,a)

2 + 6 a + 8 c

2 + 6 a + 8 c - 8 c + 8 y

4 + 6 a + 8 c - 8 c + 8 y

(c) Update (8,c)→(8,y)
Figure 3: Example of NV-Tree Insertion/Deletion/Update
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Figure 4: Example of LN Split

both considered invalid. The second step is to determine
whether the LN needs a split.

If the percentage of valid elements is above the min-
imal fill factor (e.g., 50% in standard B+Tree), we per-
form split. Two new LNs (left and right) are created and
valid elements are copied to either of them according to
the selected separate key. Then the new KV-pair is in-
serted accordingly. The split completes after the pointer
in the left sibling of the old LN is updated to point to
new left LN using an atomic write. Before that, all the
changes made during split are not visible to the tree. Fig-
ure 4 shows an example of an LN split.

If the percentage is below the minimal fill factor, we
check the number of LN_elements in the right sibling
of the old LN. If it is above the minimal fill factor, we
perform replace, otherwise, we perform merge. For re-
place, those valid LN_elements in the old LN are copied
to a new LN, and the new LN replaces the old LN in the
LN list using an atomic write. For merge, those valid
LN_elements from both the old LN and its right sibling
are copied to a new LN, and the new LN replaces both of
them in the LN list using an atomic write. Note that we
use the nElement instead of the number of valid elements
in the right sibling to decide which operation to perform

because finding the latter needs to perform a scan which
is relatively more expensive. Due to space limitation, ex-
amples of replace and merge are omitted here.

3.2.5 Rebuilding

As the memory address of each IN/PLN is fixed upon
creation, IN/PLNs are not allowed to split. Therefore,
when one PLN is full, all IN/PLNs have to be recon-
structed to make space in PLNs to hold more LN point-
ers. The first step is to determine the new number of
PLNs based on the current number of LNs. In our current
implementation, to delay the next rebuilding as much as
possible under a workload with uniformly distributed ac-
cess pattern, each PLN stores exactly one LN pointer af-
ter rebuilding. Optimizing rebuilding for workloads with
different access patterns is one of our future work.

During normal execution, we can use rebuild-from-
PLN strategy by redistributing all the keys and LN point-
ers in existing PLNs into the new set of PLNs. However,
upon system failure, we use rebuild-from-LN strategy.
Because entries are unsorted in each LN, rebuild-from-
LN needs to scan each LN to find its maximum key to
construct the corresponding key and LN pointer in PLN.
Rebuild-from-LN is more expensive than rebuild-from-
PLN but is only executed upon system failure. Com-
pared to a single tree operation (e.g., insertion or search),
one rebuilding may be very time-consuming in large
NV-Tree. However, given the frequency of rebuilding,
such overhead is neglectable in a long-running applica-
tion (less than 1% in most cases, details can be found in
Section 4.7).

If the memory space is enough to hold the new
IN/PLNs without deleting the old ones, search can still
proceed during rebuilding because it can always access
the tree from the old IN/PLNs. In that case, the mem-
ory requirement of rebuilding is the total size of both old
and new IN/PLNs. For instance, when inserting 100 mil-
lion entries with random keys to a NV-Tree with 4KB
nodes, rebuilding is executed only for two times. The
memory requirement to enable parallel rebuilding for the
first/second rebuilding is only about 1MB/129MB which
is totally acceptable.

7
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3.2.6 Recovery
Since the LN list (critical data) is consistent, rebuild-
from-LN is sufficient to recover a NV-Tree from either
normal shutdown or system failure.

To further optimize the recovery after normal shut-
down, our current implementation is able to achieve
instant recovery by storing IN/PLNs persistently in
NVM. More specifically, during normal shutdown, we
(1) flush all IN/PLNs to NVM, (2) save the root
pointer to a reserved position in NVM, (3) and use an
atomic write to mark a special flag along with the root
pointer to indicate a successful shutdown. Then, the re-
covery can (1) start with checking the special flag, (2) if it
is marked, reset it and use the root pointer stored in NVM
as the current root to complete the recovery. Otherwise,
it means a system failure occurred, and a rebuild-from-
LN procedure is executed to recover the NV-Tree.

4 Evaluation
In this section, we evaluate our NV-Tree by compar-
ing it with LCB+Tree and CDDS-Tree in terms of in-
sertion performance, overall performance under mixed
workloads and throughput of all types of tree operations.
We also study the overhead of rebuilding by quantifying
its impact on the overall performance. We use YCSB
[15], a benchmark for KV-stores, to perform an end-to-
end comparison between our NV-Store and Redis [50],
a well-known in-memory KV-store. Finally, we discuss
the performance of NV-Tree on different types of NVM
and estimated performance with epoch.

4.1 Implementation Effort
We implement our NV-Tree from scratch, an LCB+Tree
by applying flush and logging to a standard B+Tree
[5], and a CDDS-Tree [53]. To make use of NVDIMM
as a persistent storage device, we modify the memory
management of Linux kernel to add new functions (e.g.,
malloc_NVDIMM) to directly allocate memory space
from NVDIMM. The NVDIMM space used by NV-Tree
is guaranteed to be mapped to a continuous (virtual)
memory space. The node “pointer” stored in NV-Tree
is actually the memory offset to the start address of the
mapped memory space. Therefore, even if the mapping
is changed after reboot, each node can always be located
using the offset. With the position information of the first
LN stored in a reserved location, our NV-Tree is practi-
cally recoverable after power down.

We build our NV-Store based on NV-Tree by allowing
different sizes of key and value. Moreover, by adding a
timestamp in each LN_Element, NV-Store is able to sup-
port lock-free concurrent access using timestamp-based

multi-version concurrency control (MVCC) [38]. Based
on that, we implement NV-Store to support Snapshot Iso-
lation [3] transactions. Finally, we implement a database
interface layer to extend YCSB to support NV-Store to
facilitate our performance evaluation.

4.2 Experimental Setup
All of our experiments are conducted on a Linux server
(Kernel version 3.13.0-24) with an Intel Xeon E5-2650
2.4GHz CPU (512KB/2MB/20MB L1/L2/L3 cache),
8GB DRAM and 8GB NVDIMM [1] which has practi-
cally the same read/write latency as DRAM. In the end-
to-end comparison, we use YCSB (0.1.4) to compare
NV-Store with Redis (2.8.13). Note that all results shown
in this section are produced by running application on
NVDIMM server instead of simulation. The execution
time measured for NV-Tree and NV-Store includes the
rebuilding overhead.

4.3 Insertion Performance
We first compare the insertion performance of
LCB+Tree, CDDS-Tree and NV-Tree with differ-
ent node sizes. Figure 5a shows the execution time of
inserting one million KV-pairs (8B/8B) with randomly
selected keys to each tree with different sizes of tree
nodes from 512B to 4KB. The result shows that NV-Tree
outperforms LCB+Tree and CDDS-Tree up to 8X and
16X with 4KB nodes, respectively. Moreover, different
from LCB+Tree and CDDS-Tree that the insertion per-
formance drops when the node size increases, NV-Tree
shows the best performance with larger nodes. This
is because (1) NV-Tree adopts unsorted LN to avoid
CPU cacheline flush for shifting entries. The size of
those cacheline flush is proportional to the node size in
LCB+Tree and CDDS-Tree; (2) larger nodes lead to less
LN split resulting in less rebuilding and reduced height
of NV-Tree.

The performance improvement of NV-Tree over the
competitors is mainly because of the reduced number
of cacheline flush thanks to both the unsorted LN and
decoupling strategy of enforcing consistency selectively.
Specifically, as shown in Figure 5b, NV-Tree reduces
the total CPU cacheline flush by 80%-97% compared to
LCB+Tree and 76%-96% compared to CDDS-Tree.

Although the consistency cost of INs is almost ne-
glectable for LCB+Tree and CDDS-Tree as shown in
Figure 1d, such cost becomes relatively expensive in NV-
Tree. This is because the consistency cost for LN is sig-
nificantly reduced after our optimization for LN, such as
keeping entries unsorted and modifying LN with a log-
free append-only approach. To quantify the consistency
cost of INs after such optimization, we implement a mod-
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Figure 6: Execution Time of 1/10/100 Million Insertion

ified NV-Tree, denoted as NVT-A, which does the same
optimization for LN as NV-Tree, but manages INs in the
same way as LCB+Tree and enforces consistency for all
INs. Figure 5c shows the breakdown of CPU cache-
line flush for IN and LN in LCB+Tree and NVT-A. The
percentage of CPU cacheline flush for IN increase from
around 7% in LCB+Tree to more than 20% in NVT-A.
This result proves that decoupling IN/LN and enforc-
ing consistency selectively are necessary and beneficial.

Figure 6 shows the execution time of inserting differ-
ent number of KV-pairs with 4KB node size. The re-
sult shows that for inserting 1/10/100 million KV-pairs,
the speedup of NV-Tree can be 15.2X/6.3X/5.3X over
LCB+Tree and 8X/9.7X/8.2X over CDDS-Tree. This
suggests that although inserting more KV-pairs increases
the number and duration of rebuilding, NV-Tree can still
outperform the competitors thanks to the write-optimized
design.

4.4 Update/Deletion/Search Throughput
This subsection compares the throughput of up-
date/deletion/search operations in LCB+Tree, CDDS-
Tree and NV-Tree. In this experiment, we first insert
one million KV-pairs, then update each of them with new

value (same size), then search with every key and finally
delete all of them. For each type of operation, each key
is randomly and uniquely selected. After each type of
operation, we flush the CPU cache to remove the cache
influence between different types of operation.

The update/deletion/search performance with node
size varied from 512B to 4KB is shown in Figure 7.
As shown in Figure 7a, NV-Tree improves the through-
put of update by up to 5.6X and 8.5X over LCB+Tree
and CDDS-Tree. In CDDS-Tree, although update does
not trigger the split if any reusable slots are available,
entry shifting is still needed to keep the entries sorted.
LCB+Tree does not need to shift entries for update, but
in addition to the updated part of the node, it flushes
the log which contains the original copy of the node. In
contrast, NV-Tree uses log-free append-only approach to
modify LNs so that only two LN_elements need to be
flushed.

Upon deletion, NV-Tree is better than LCB+Tree but
not as good as CDDS-Tree as shown in 7b. This is be-
cause CDDS-Tree simply does an in-place update to up-
date the end version of a corresponding key. However,
with the node size increased, NV-Tree is able to achieve
comparable throughput to CDDS-Tree because of the re-
duction of split.

Note that the throughput of update and deletion in Fig-
ure 7a and 7b in LCB+Tree decreases when the node
size increases. This is because both the log size and the
amount of data to flush for shifting entries are propor-
tional to the node size. The same trend is observed in
CDDS-Tree. In NV-Tree, by contrast, the throughput of
update and deletion always increases when the node size
increases because (1) the amount of data to flush is ir-
relevant to the node size, (2) a larger node reduces the
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number of split as well as rebuilding.
Although NV-Tree uses unsorted LN, thanks to the

cache-optimized IN layout, the search throughput of NV-
Tree is comparable to that of LCB+Tree and CDDS-Tree
as shown in Figure 7c, which is consistent to the pub-
lished result [9].

4.5 Mixed Workloads
Figure 8 shows the execution time of performing one
million insertion/search operations with varied ratios on
an existing tree with one million KV-pairs.NV-Tree has
the best performance under mixed workloads compared
to LCB+Tree and CDDS-Tree.

Firstly, all three trees have better performance under
workloads with less insertion. This is because memory
writes must be performed to write LN changes to NVM
persistently through flush while searches can be much
faster if they hit the CPU cache. Moreover, NV-Tree
shows the highest speedup, 6.6X over LCB+Tree and
10X over CDDS-Tree, under the most write-intensive
workload (90% insertion/10% search). As the write/read
ratio decreases, the speedup of NV-Tree drops but is
still better than both competitors under the most read-
intensive workload (10% insertion/90% search). This is
because NV-Tree has much better insertion performance
and comparable search throughput as well.

4.6 CPU Cache Efficiency
This subsection shows the underlying CPU cache effi-
ciency of LCB+Tree, CDDS-Tree and NV-Tree by us-
ing vTune Amplifier. Figure 9a shows the total num-

ber of LOAD instructions executed for inserting one mil-
lion KV-pairs in each tree. NV-Tree reduces the num-
ber of LOAD instruction by about 44%-90% and 52%-
92% compared to LCB+Tree and CDDS-Tree, respec-
tively. We also notice the number of LOAD instructions
is not sensitive to the node size in NV-Tree while it is
proportional to the node size in LCB+Tree and CDDS-
Tree. This is because NV-Tree (1) eliminates entry shift-
ing during insertion in unsorted LN, (2) adopts cache-
optimized layout for IN/PLNs.

Most important, NV-Tree produces much less cache
misses. Since memory read is only needed upon L3
cache miss, we use the number of L3 cache misses to
quantify the read penalty of flush. Figure 9b shows
the total number of L3 cache misses when inserting one
million KV-pairs. NV-Tree can reduce the number of
L3 cache misses by 24%-83% and 39%-90% compared
to LCB+Tree and CDDS-Tree, respectively. This is be-
cause NV-Tree reduces the number of CPU cacheline in-
validation and flush.

4.7 Rebuilding and Failure Recovery
To quantify the impact of rebuilding on the overall per-
formance of NV-Tree, we measure the total number and
time of rebuilding with different node sizes under dif-
ferent number of insertion. Compared to the total exe-
cution time, as shown in Table 2, the percentage of re-
building time in the total execution time is below 1%
for all types of workloads, which is totally neglectable.
Moreover, we can tune the rebuilding frequency by in-
creasing the size of tree nodes because the total number
of splits decreases with larger nodes as shown in Figure
10a. With less splits, the frequency of rebuilding also be-
comes less, e.g., for 100 million insertion, with node size
equals to 512B/1KB/2KB/4KB, the number of rebuild-
ing is 7/4/3/2.

We also compare the performance of rebuild-from-
PLN and rebuild-from-LN. Note that rebuild-from-LN is
only used upon system failure. Figure 10b shows the
total rebuilding time of both strategies for inserting 100
million KV-pairs to NV-Tree with different node sizes.
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Table 2: Rebuilding Time (ms) for 1/10/100 Million Insertion with 512B/1KB/2KB/4KB Nodes
1M 10M 100M

Rebuild Node Size Node Size Node Size
# 0.5KB 1KB 2KB 4KB 0.5KB 1KB 2KB 4KB 0.5KB 1KB 2KB 4KB
1 0.104 0.119 0.215 0.599 0.058 0.091 0.213 0.603 0.066 0.091 0.206 0.572
2 0.779 2.592 8.761 - 0.503 2.525 8.526 41.104 0.520 2.118 8.594 41.077
3 7.433 50.021 - - 4.782 54.510 - - 4.706 47.219 814.989 -
4 31.702 - - - 39.546 - - - 37.481 1310.004 - -
5 - - - - 312.139 - - - 322.606 - - -
6 - - - - - - - - 2567.219 - - -
7 - - - - - - - - 16231.647 - - -

Rebuilding Time 40.018 52.559 8.976 0.599 357.016 57.126 8.739 41.707 19164.135 1359.432 823.789 41.649
Execution Time 6107.971 4672.032 4349.421 3955.227 62649.634 55998.473 46874.810 44091.494 692341.866 604111.327 570825.594 518323.920

Percentage 0.66% 1.13% 0.21% 0.02% 0.57% 0.10% 0.02% 0.09% 2.77% 0.23% 0.14% 0.01%
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Figure 10: Rebuilding Overhead Analysis

Rebuild-from-PLN is faster than rebuild-from-LN by 22-
47%. This is because rebuild-from-PLN only scans the
PLNs but rebuild-from-LN has to scan the entire LN list.

As the failure recovery of NV-Tree simply performs a
rebuild-from-LN. The recovery time depends on the total
number of LNs, but is bounded by the time of rebuild-
from-LN as shown in Figure 10b.

To validate the consistency, we manually trigger the
failure recovery by (1) killing NV-Tree process and (2)
cutting the power supply when running both 100M in-
sertion workload and YCSB workloads. Then we check
whether NV-Tree has any data inconsistency or memory
leak. We repeat these tests a few thousand times for NV-
Tree and find it pass the check in all cases.

4.8 End-to-End Performance
In this subsection, we present the performance of our
NV-Store under two YCSB workloads, StatusUpdate
(read-latest) and SessionStore (update-heavy), compared
to Redis. NV-Store is practically durable and consistent
because it stores data in the NVM space directly allo-

cated from NVDIMM using our modified system call.
Redis can provide persistency by using fsync to write
logs to an append-only file (AOF mode). With different
fsync strategy, Redis can be either volatile if fsync is
performed in a time interval, or consistent if fsync is
performed right after each log write. We use the NVM
space to allocate a RAMDisk for holding the log file so
that Redis can be in-memory persistent. Note that it still
goes through the POSIX interface (fsync).

Figure 11a shows the throughput of NV-Store and Re-
dis under StatusUpdate workload which has 95%/5%
search/insert ratio on keys chosen from a temporally
weighted distribution to represent applications in which
people update the online status while others view the lat-
est status, which means newly inserted keys are prefer-
entially chosen for retrieval. The result shows that NV-
Store improve the throughput by up to 3.2X over both
volatile and consistent Redis. This indicates the opti-
mization of reducing cacheline flush for insertion can
significantly improve the performance even with as low
as 5% insertion percentage. Moreover, both volatile and
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Figure 11: Throughput Comparison of NV-Store and Redis
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Figure 13: Estimated Execution Time with Epoch

consistent Redis are bottlenecked with about 16 clients
while NV-Store can still scale up with 32 clients. The
high scalability of NV-Store is achieved by (1) allowing
concurrent search in LN while it is being updated, (2)
searching in IN/PLNs without locks. Figure 11b shows
the throughput under SessionStore workload which has
50%/50% search/update ratio on keys chosen from a
Zipf distribution to represent applications in which peo-
ple record recent actions. NV-Store can improve the
throughput by up to 4.8X over Redis because the work-
load is more write-intensive.

4.9 Discussion
4.9.1 NV-Tree on Different Types of NVM

Given the write latency difference of NVDIMM (same as
DRAM), PCM (180ns), STT-RAM (50ns) in Table 1, we
explicitly add some delay before every memory write in
our NV-Tree to investigate its performance on different
types of NVM. Figure 12 shows the execution time of
one million insertion in NV-Tree with 4KB nodes. Com-
pared to the performance on NVDIMM, NV-Tree is only
5%/206% slower on STT-RAM/PCM, but LCB+Tree is
51%/241% and CDDS-Tree is 87%/281% slower. NV-
Tree suffers from less performance drop than LCB+Tree
and CDDS-Tree on slower NVM because of the reduc-
tion of CPU cacheline flush.

4.9.2 NV-Tree on Future Hardware: Epoch and
CLWB/CLFLUSHOPT/PCOMMIT

Comparing to MFENCE and CLFLUSH, epoch and a
couple of new instructions for non-volatile storage

(CLWB/CLFLUSHOPT/PCOMMIT) added by Intel re-
cently [26] are able to flush CPU cachelines without ex-
plicit invalidations which means it does not trigger any
additional cache misses. As these approaches are still un-
available in existing hardware, we estimate LCB+Tree,
CDDS-Tree and our NV-Tree performance by remov-
ing the cost of L3 cache misses due to cacheline flushes
the execution time (Figure 5a). For B+Tree and volatile
CDDS-Tree, such cost can be derived by deducting the
number of L3 cache misses without cacheline flushes
(Figure 1b) from that with cacheline flushes (Figure 9b).
As shown in Figure 13, with the cache miss penalty re-
moved, the performance improvement of NV-Tree over
LCB+Tree/CDDS-Tree is 7X/9X with 4KB nodes. This
indicates our optimization of reducing cacheline flush is
still valuable when flushing a cacheline without the in-
validation becomes possible.

5 Conclusion and Future Work
In this paper, we quantify the consistency cost of ap-
plying existing approaches such as logging and version-
ing on B+Tree. Based on our observations, we pro-
pose our NV-Tree which require the data consistency
in NVM connected through a memory bus, e.g., NVM-
based single level systems. By selectively enforcing con-
sistency, adopting unsorted LN and organizing IN cache-
optimized, NV-Tree can reduce the number of cacheline
flushes under write-intensive workloads by more than
90% compared to CDDS-Tree. Using NV-Tree as the
core data structure, we build a key-value store named
NV-Store. Both NV-Tree and NV-Store are implemented
and evaluated on a real NVDIMM platform instead of
simulation. The experimental results show that NV-Tree
outperforms LCB+Tree and CDDS-Tree by up to 8X and
12X under write-intensive workloads, respectively. Our
NV-Store increases the throughput by up to 4.8X under
YCSB workloads compared to Redis. In our future work,
we will continue to reduce the overhead of the rebuilding
in larger datasets, validate and improve the performance
of NV-Tree under skewed and TPC-C workloads, and ex-
plore NV-Tree in the distributed environment.
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Abstract
Virtualization systems should be responsible for satisfy-
ing the service level objectives (SLOs) for each VM. Per-
formance SLOs, in particular, are generally achieved by
isolating the underlying hardware resources among the
VMs. In this paper, we show through empirical evalua-
tion that performance SLOs cannot be satisfied with cur-
rent commercial SSDs. We show that garbage collection
is the source of this problem and that this cannot be eas-
ily controlled because of the interaction between VMs.
To control the effect of garbage collection on VMs, we
propose a scheme called OPS isolation. OPS isolation
allocates flash memory blocks so that blocks of one VM
do not interfere with blocks of other VMs during garbage
collection. Experimental results show that performance
SLO can be achieved through OPS isolation.

1 Introduction
The use of flash memory based Solid State Drives (SSDs)
is now commonplace and is being extended to server
virtualization [1, 2]. Virtualization systems should be
responsible for satisfying the service level objective
(SLO) for each VM. Performance service level objec-
tives (SLOs), in particular, are generally achieved by
isolating the underlying hardware resources among the
VMs. Consequently, many studies for allocating the re-
sources for each VM have been conducted and existing
products such as VMware ESX server hypervisor that
provide isolated CPU and memory are available [3, 4].

Recent studies making use of SSDs as a shared cache
resource among virtual machines (VM) in virtualization
systems have been conducted [1, 2]. In this work, we
revisit this issue, first, by quantitatively examining IO
performance and interference among the VMs within the
SSD. We show that depending on the status of the SSD,
experimental results can vary significantly, and this dif-
ference comes from the interference among the VMs. We
then propose OPS (Over-Provisioning Space) Isolation

Table 1: Characteristics of IO workloads
Request Write Average

Workload Total Ratio Write Size
Financial 7.1GB 0.76 14KB

MSN 14.6GB 0.96 27KB
Exchange 9.8GB 0.67 17KB

at the FTL (Flash Translation Layer) layer such that the
OPS of each VM is isolated from being affected by other
VMs. We show that performance SLOs of VMs can be
satisfied through OPS isolation.

The rest of the paper is organized as follows. In the
next section, we present the motivation of this work and
work related to this study. In Section 3, we look into the
internals of SSDs to understand the effects of garbage
collection on concurrently executing VMs. In Section 4,
we present OPS isolation, the main contribution of this
work along with performance evaluations. Finally, in
Section 5, we give a summary and conclude.

2 Motivation and Related Work
As motivation, we conduct a set of experiments and ob-
serve the performance results that are returned. We show
that the performance reported by SSDs vary widely even
when executing the same workloads and that the perfor-
mance of SSDs are strongly affected by their state, which
is difficult to control. The results serve as motivation to
develop SSDs that are performance predictable.

All experiments in this section are conducted using
a commercial SSD that is purchased off-the-shelf. The
product uses MLC-based flash memory with a capacity
of 128GB. The experiments conducted start from either a
clean state or an aged state. Aging is conducted by issu-
ing random writes (including overwrites) of sizes ranging
from 4KB through 32KB for a total write that exceeds
the SSD capacity. As the SSD becomes full, the SSD be-
comes busy performing garbage collection. We consider
an SSD at this state to be an aged SSD.
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Table 2: KVM environment
Description Host VM-1∼4
CPU core 8 1

Memory size 32GB 1GB
OS Ubuntu-14.x with KVM Ubuntu-14.x

Storage Dedicated storage Each 30GB SSD

Three workloads, specifically, Financial, MSN, and
Exchange, are used in the experiments. The details re-
garding the characteristics of the workloads are shown
in Table 1. The original workloads used here are traces
provided by UMass Trace Repository and MSR [5, 6].
As the experiments in this section use real SSDs, we re-
quire real IO requests. Hence, we make use of a replayer
tool that takes requests from the trace and turns them into
real requests to the device [7]. For each request, a single
threaded replayer waits for it to complete, upon which
various statistics are gathered.

2.1 Effect of SSD aging
We conduct a set of experiments to show how VMs are
affected by various conditions of the storage system.
First, we show how proportionality varies as the state of
the SSD varies. Our goal is to proportionally distribute
IO usage of a shared SSD among VMs. To do so, we first
create kernel-based virtual machine (KVM) VMs with
the same workloads. The VM settings and the rest of the
environment for the experiments are summarized in Ta-
ble 2. We use the Cgroup [8] Linux feature that limits,
accounts, and isolates hardware resource usage of pro-
cess groups to assign different weights to the VMs (al-
locating higher throughput for higher weights). We then
measure IO performance of each VM.

The results in Figure 1 show that for all the workloads,
on the HDD, proportionality is close to the IO weight ex-
cept for VM-10. However, for the SSDs, proportionality
deviates. Note that deviation is worse for the aged SSD
than the clean SSD. One can conjecture that this is due to
garbage collection (GC), which is largely considered to
be the bandit of all wrong in SSDs. Indeed, we show later
that during GC, VMs are actually moving other VM’s
data around, which is unnecessary data movement from
the GC triggering VM’s point of view, resulting in inac-
curate performance control. Another observation from
Figure 1 is that the effect of GC on the various VMs is
not uniform. That is, we understand that GC is affect-
ing performance in a negative way, but how each VM is
affected is not clear.

2.2 Effect of concurrent execution
We perform another set of experiments, this time with
a mix of workloads. Four sets of results are presented
in Figure 2, and we discuss how they were obtained and
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Figure 1: IO bandwidth with Cgroup relative to VM-
1 for various workloads. (Notation: VM-x, where x is
weight value.)
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Figure 2: IO bandwidth of individual and concurrent ex-
ecution of VMs.

what they imply. Figure 2(a) shows the observed band-
width with a clean SSD. The individual results are ob-
tained by executing each workload starting from a clean
SSD for each workload. The concurrent results are ob-
tained by executing the three workloads concurrently on
a clean SSD. The three workloads are exactly the same
for both individual and concurrent executions, so the to-
tal footprint is also the same.

We observe from the results, however, that concurrent
execution performs markedly worse than executing each
VM individually. With concurrent execution, each VM
performance is roughly a third of each individual exe-
cution with some deviation among the individual VMs.
We also observe that bandwidth is not being consumed
in full with the total bandwidth consumed by the three
concurrent workloads being roughly 270MB/s.

The results for Figure 2(b) were obtained in a man-
ner similar to that of the clean SSD, only that the SSD
goes through an aging process that was described ear-
lier. Three points are noteworthy regarding these results.
First, the overall performance drop is significant. Again,
the culprit will be GC. Second, we also see that with
concurrent execution the performance drop is significant
compared to individual execution as was observed with
the clean SSD, but the drop is more significant. Finally,
and more importantly, the effect of aging on the individ-
ual VMs varies considerably depending on the VM. That
is, the effect of aging is not uniform. For example, for
the individual execution, while the bandwidth of VM-F
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Figure 3: Sector access pattern of the Financial, MSN,
and Fileserver workloads.

Table 3: Parameters of SSD simulator
Parameter Description
Page size 4KB
Block size 512KB
Page read 60us
Page write 800us
Block erase 1.5ms

Page Xfer latency 102us

is reduced by only half, for VM-M, observed bandwidth
is reduced to only 15% of the clean SSD case.

Again, we reach the same conclusion as in the pre-
vious subsection. That is, we point our fingers at GC
for the reduction in performance. However, the effect of
GC on individual VMs is not at all uniform. We know
GC have negative effects, but how the VMs are being
affected is not clear.

2.3 Related Work
In virtualization systems, service level objectives (SLOs)
for VMs is achieved through transparent allocation of re-
sources for each VM. Products such as VMware ESX
server hypervisor provides isolated CPU and memory to
satisfy SLOs [3, 4]. Numerous studies have been con-
ducted to satisfy SLOs for VMs [1, 2, 9, 10, 11, 12, 13,
14]. In particular, DeepDive identifies and manages per-
formance interference between VMs sharing hardware
resources [11]. It is regarded as the first end-to-end sys-
tem that handles interference of major resources such as
CPU, memory, and IO.

Studies to provide IO SLOs among VMs have
also been conducted [9, 10, 14]. mClock provides
proportional-share fairness among the VMs through IO
scheduling of the hypervisor [10]. Research on alloca-
tion of a shared SSD cache for VMs have also been con-
ducted [1, 2]. S-CAVE effectively manages a shared SSD
cache by using runtime information among VMs [1].
vCacheShare addresses the allocation decision for server
flash cache (SFC) based on IO access characteristics of
running VMs [2]. The goal of their work is in maxi-
mizing the utilization of the SSD cache and achieving
performance isolation. Our work shows that controlling
the SSD from outside the SSD is difficult as one cannot
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Figure 4: (a) IO performance and (b) GC overhead with
SSD simulator

control the internal workings of GC.
A recent study called the Multi-streamed SSD pro-

poses a technique similar to what we propose [15]. Here,
Kang et al. propose to make changes to the block de-
vice interface to manage blocks based on what they call
streams, that is, blocks with similar expected lifetime.
This work is different from ours in that their focus is
on maximizing the overall performance of SSDs through
workload independent block characterization, while we
concentrate on controlling each VM within an SSD for
SLO compliance.

3 Understanding the Effect of GC
In this section, we first discuss the effect of GC on indi-
vidual workloads when workloads are run concurrently.
This is done using a simulation environment. Then, we
present experimental results that imply that commercial
SSDs have similar effects.

3.1 GC effect on concurrent workloads
To analyze GC overhead with concurrent workloads, we
conduct experiments with SSD extension for DiskSim as
the internal workings can be monitored. DiskSim em-
ploys a page-mapped FTL used in most SSD products.
As for GC, it uses a greedy policy to select the victim
block when the number of free blocks drops below a cer-
tain threshold. Other parameters of the simulator are pre-
sented in Table 3. Also, we use the same workloads as
the previous section, and to take into account the VM na-
ture of the previous experiments, the traces that we use
for these experiments are those captured as the experi-
ments are performed in Section 2. Fig. 3 shows the sec-
tor access patterns for the workloads. The figure shows
distinct bands of space being accessed by each workload.

Figure 4(a) shows the IO performance for cases where
the workloads are executed individually and concur-
rently, similarly to those described in Section 2. Here,
we age the DiskSim simulator in similar fashion as the
commercial SSD before the performance is measured.
For the individually run case, the trend in performance
is similar to those obtained for the real SSD. For the
concurrent case, the trend is quite different, but this is
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Figure 5: (a) Data layout of concurrent workloads in con-
ventional SSD and (b) number of pages moved for each
workload during GC.

expected as the FTL employed will be different and the
three workloads are simultaneously affecting the FTL in
various ways. Note, however, that though the exact per-
formance trend may be different, the performance drop
of the individual workload varies as was observed for the
commercial SSD.

Let us now turn to the reason behind this observation.
For this, we observe the internal status and movements of
the pages within the device. This is done by tagging each
page (in the OOB (Out-Of-Band) area) with the ID of the
particular VM that instigated the request and monitoring
the tags as the experiments are conducted.

Figure 4(b) shows the average number of valid pages
(denoted u, for utilization) of the victim blocks selected
for GC. This value is lower when each workload is exe-
cuted individually than when the workloads are executed
concurrently. In particular, the difference in u is propor-
tional to the difference in performance observed in Fig-
ure 4(b), that is, largest for Financial and smallest for
Exchange. This is to say that while each workload is be-
ing negatively influenced by each other as they execute
concurrently, Financial is being influenced the most.

The reason behind this negative influence can be ex-
plained through Figure 5. Figure 5(a) shows a data lay-
out of a typical SSD when requests from multiple work-
loads arrive concurrently. The FTL takes each page and
randomly places them among the available blocks. Con-
sequently, blocks contain pages from various workloads.
Hence, upon an erase while servicing a particular work-
load, live pages from other workloads in the victim block
will be moved to a new block during the GC process.

Figure 5(b) shows the number of pages that are moved
during GC for each workload. The pages are distin-
guished by the owner of the page when they are moved.
For example, of the 190K number of pages moved while
executing the Financial workload, only 30% of them are
those of its own. This says that though GC is a necessity,
much of the work involved in the GC process are actually
unnecessary work induced by other workloads. Then the
solution to this problem is to find a means to isolate the
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Figure 6: IO bandwidth of VMs generating synthetic re-
quests on a commercial SSD after the ‘Mixed’ and ‘Sep-
arated’ initialization steps. With ‘Mixed’, initialization
is done with VM1 and VM2 workloads executed concur-
rently, while for ‘Separated’, initialization is done by first
executing VM1, followed by VM2 execution.

GC process so that GC for each workload does not inter-
fere with other workloads.

3.2 Observation in commercial SSDs
In the previous subsection, we showed results that al-
luded to the interfering phenomenon using the DiskSim
simulation environment. Though simulations are the ba-
sis of many important studies and innovations, one still
has to wonder if what we observed in the previous sub-
section actually occurs in real SSDs. To verify this, we
perform the following set of experiments.

Taking the commercial SSD that we used previously,
we create two VMs, VM1 and VM2 that generates writes
and over-writes of 64KB and 512KB sized random re-
quests, which represent small and large requests, respec-
tively. The choice of the two sizes is to vary the mix of
data within blocks as will be described below. Hence, the
results that we show do not vary for different size choices
so long as the two sizes differ by some significant value.

With the two VMs, we perform two different experi-
ments. In the first, starting from a clean SSD, the two
VMs are run simultaneously as an initialization step for
some amount of time. As a result, the SSD will be pop-
ulated with data from VM1 and VM2 resulting in data
from the two VMs being intermixed. Then, the VMs are
run again, but this time the performance is measured and
is reported as ‘Mixed’ in Figure 6(a). In the second set of
experiments, we also go through an initialization process
but this time the VMs are run one at a time filling in the
same amount of data as before. This time, because of the
request size and as the VMs are run in sequence, the FTL
will (generally) not place data from the two VMs within
the same block. Then, the VMs are run and the perfor-
mance measured. The results for these are reported as
‘Separated’ in Figure 6(a). Note that the ‘Separated’ sce-
nario performs substantially better than ‘Mixed’.

The results shown in Figure 6(b) are results from the
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Figure 7: Sample data layout with OPS isolation

same experiments with only the order of initialization
(512KB first, then 64KB random writes) for the ‘Sepa-
rate’ result being different. Figure 6(c) shows the results
for the same sequence of experiments, but with same
sized (512KB) random writes. These results are shown
to contrast them to those of Figures 6(a) and (b).

The reason the ‘Separated’ scenario performs substan-
tially better than the ‘Mixed’ scenario is likely because in
the ‘Separated’ scenario the pages from one VM do not
negatively influence the other VM. Though we cannot be
definite regarding the workings of the SSD due to their
propriety nature, these results are in line with the findings
of the DiskSim evaluation.

4 SLO Complying SSD and Its Perfor-
mance Evaluation

In this section, we discuss how the negative effect of
garbage collection can be mitigated so that SLO requests
may be satisfied. We start by reviewing previous work
that formulates IO performance of flash memory based
SSDs. We propose OPS isolation as a means to control
the performance of individual VMs. Experimental re-
sults showing that performance proportionality of VMs
can be obtained through OPS isolation are presented.

4.1 Calculating IOPS of SSD
To guarantee IO performance SLO among VMs sharing
an SSD, we need to understand the relation between IO
performance and the GC overhead. Performance char-
acterizations of NAND flash memory SSDs have been
studied extensively, and from these it is well understood
that write IO performance can be represented as shown
in Equation 1 [16, 17].

IOPSSSDW =
1

tGC + tPRG + tX f er
(1)

where tPRG and tX f er are constant values determined
by the flash chip manufacturers representing the time
to program a page and the time to transfer a page, re-
spectively, and tGC, which is the time to GC defined as
tGC = WAF(u) · tPRG. WAF(u), which stands for Write
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Figure 8: Evaluation results

Amplication Factor and which is a function of u, the uti-
lization of the flash memory blocks, refers to the addi-
tional page writes caused by GC to service the write re-
quests [16]. Studies have shown that WAF(u) can be rep-
resented as shown in Equation 2 where Np is the number
of pages per block. Note that u can be measured from the
SSD or can be estimated from the ratio of the user data
and initial OPS size [18, 19]. Also note, however, u is a
value that represents the entire SSD.

WAF(u) =
u ·NP

(1−u) ·NP
=

u
(1−u)

(2)

From Equations 1 and 2, we know that write perfor-
mance of SSDs is determined by the GC overhead, which
is determined by u, which in turn, is determined by the
OPS [20]. Therefore, to control IO performance, manag-
ing OPS properly is imperative.

Typically, OPS is globally managed in SSDs. Hence,
VM based IO performance guarantees are difficult, if not
impossible, to handle. We propose to isolate OPS han-
dling so that OPS is managed per VM. This allows more
manageable control over IO performance for each VM.

4.2 OPS isolation
To satisfy SLO requests from VMs, we propose to ded-
icate flash memory blocks, including OPS, to each VM
separately when allocating pages to VMs so that interfer-
ence can be prevented during GC. Figure 7 shows an ex-
ample of how blocks would be allocated among the three
VMs concurrently requesting flash space. Contrasting
this figure with that of Figure 5(a) shows how the two
differ. Observe in Figure 7 all blocks consists of free
pages or pages from only one VM. As OPS is also dedi-
cated to a single VM, write requests from each VM will
be placed only within the same block preventing pages
from different VMs from being mixed.

To satisfy SLO requests, IO performance must also be
guaranteed. As discussed in Section 4.1, performance is
eventually influenced by the OPS allocated to each VM.
Algorithm 1 presents the algorithm that we use to parti-
tion the OPS among the competing concurrent VMs. For
this study, we simply take the proportional division of the
total possible IOPS as satifying the SLO request.
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Figure 9: Average u of victim block along GC time

Initially, the flash memory blocks, including the OPS,
are partitioned among the competing VMs based on the
weight requested. Using the IOPS specified for the SSD,
we calculate the estimated IOPS of each VM based on
the requested weight. Then, a separate u for each VM can
be calculated using Equation 1. After this initialization
phase (lines 3 through 11), the OPS size is dynamically
and periodically adjusted to maintain the IOPS that was
initially designated (lines 12 through 20). For example,
take 3 VMs, A, B, and C that are given target propor-
tional IO performance weights of 1, 3, and 6 with higher
weights being allotted higher bandwidth. The initial OPS
size for each VM is set by the ratio of the weights (lines
3 and 4), that is, 10%, 30%, and 60% of the total OPS is
allotted to VMs A, B, C, respectively. If we assume that
the specified IOPS for the SSD is 1000, the target IOPS
is also set by the weight designated for each VM (line
9). Finally, the target utilization is set for each VM using
Equation 1 (line 11). Then, utilization is monitored so
that the OPS size can be adjusted if the utilization drifts
from the target utilization. This adjusting is done before
every GC with the OPS size increased or decreased by
one block when necessary.

To implement features such as this in an SSD, the
storage interface must change. Recent studies such as
the Multi-streamed SSD [15] have proposed changes to
the interface for enhanced performance benefits. Simi-
larly, our method requires minimal information, such as
a tag identifying the workload, which is already provided
with eMMC flash [21], and the SLO requirement such as
weight, to be transferred to the SSD.

4.3 Performance Evaluation
To evaluate the SLO complying SSD that we propose,
we implement Algorithm 1 in the DiskSim SSD exten-
sion [22] that we used in Section 3. For the workloads,
we again use the same traces that were previously used.

Figure 8(a) shows the results for the various workloads
as the weight of each VM is given differently. In the fig-
ure, the x-axis shows groups of VMs that are executed
concurrently with the weights allotted to the VMs. For
the static case, only lines 3 and 4 of Algorithm 1 are ex-
ecuted and the OPS size does not change throughout the
execution. For the rest of the results, the OPS size is

Algorithm 1 OPS Allocation
1: //N: Number of VMs running concurrently
2: //W(VMi) refers to weight given to VMi
3: for each VMi do //Initialize OPS size for VMi
4: OPS(VMi) ← OPStotal × Ratio of W(VMi)
5: //Use SSD IOPS value
6: IOPStotal ← SSD IOPS specification
7: for each VMi do
8: //Divide total IOPS according to VMi weight
9: IOPS(VMi) ← IOPStotal × Ratio of W(VMi)

10: //Find u for each VMi using Equation 1
11: u(IOPS(VMi)) ← Equation 1
12: Begin Do periodically adjust OPS:
13: for each VMi do
14: //Otherwise if current utilization is higher
15: if u(Cur(VMi)) > u(IOPS(VMi)) then
16: Increase OPS(VMi)
17: //Find VMi with max current utilization
18: VMi ← Max(VM(u(Cur(VMi))))
19: Decrease OPS(VMi)
20: End Do

dynamically adjusted according to Algorithm 1. The y-
axis represents the absolute bandwidth achieved and the
numbers on top of each bar represents the performance
ratio relative to the bar with the smallest weight. For
easy comparison, Figure 8(b) shows the same results in
Figure 1 format.

The results show that using OPS isolation and dy-
namically adjusting the OPS size based on u results in
quite accurate proportionality of IO bandwidth. How-
ever, static OPS isolation is not effective as there is no
leeway to adjust the OPS size according to the workload
characteristics.

Figure 9(a) shows how u changes when OPS is set to a
static value determined by the proportional weight of the
VMs. In contrast, Figure 9(b) shows u changing when
the whole of Algorithm 1 is employed, dynamically ad-
justing the OPS size as need be.

5 Conclusion

In this paper, we showed that performance SLOs can-
not be satisfied with current commercial SSDs because of
garbage collection interference among competing virtual
machines (VM). To resolve this problem, we proposed
OPS isolation, a scheme that allocates flash memory
blocks in such a way that blocks are not shared among
VMs, but are wholly dedicated to each individual VM.
Our experimental results showed that OPS isolation is an
effective way for SSDs to provide performance SLOs to
competing VMs.
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Abstract
Providing quick system response for mobile devices is
of great importance due to their interactive nature. How-
ever, we observe that the latency of file system opera-
tions increases dramatically under heavy asynchronous
I/Os in the background. A careful analysis reveals that
most of the delay arises from an unexpected situation
where the file system operations are blocked until one
or more asynchronous I/O operations are completed. We
call such an I/O – which is issued as an asynchronous I/O
but has the property of a synchronous I/O as some tasks
are blocked on it – Quasi-Asynchronous I/O (QASIO).

We classify the types of dependencies between tasks
and QASIOs and then show when such dependencies oc-
cur in the Linux kernel. Also, we propose a novel scheme
to detect QASIOs at run time and boost them over the
other asynchronous I/Os in the I/O scheduler. Our mea-
surement results on the latest smartphone demonstrate
that the proposed scheme effectively improves the re-
sponsiveness of file system operations.

1 Introduction
Mobile devices such as smartphones and tablet PCs have
become one of the most popular consumer electronics
devices. According to the Gartner’s survey, the world-
wide shipments of mobile devices are estimated at 2 bil-
lion units in 2013 and are expected to be nine times
higher than those of traditional PCs by 2015 [7].

A key feature in providing satisfactory user experi-
ences on mobile devices is fast responsiveness. Since
most applications running on mobile devices interact
with users all the time, quick system response without
any noticeable delay is of great importance. In spite of
the increase in storage capacity and significant improve-
ment in its performance, storage is still often blamed for
impairing end-user experience in mobile devices [9].

Several efforts have been made to understand the I/O
characteristics of popular mobile applications and their
implications on the underlying storage media, NAND
flash memory [9, 12]. Based on such investigations, var-
ious optimizations have been proposed for the I/O stack

of the mobile platform including file systems, I/O sched-
ulers, and block layers [10, 8, 11, 18]. However, previous
approaches mostly view the problem from the perspec-
tive of increasing throughput or enhancing the lifetime
of NAND flash memory.

In this paper, we focus on the latency of file system op-
erations such as creat(), write(), truncate(),
fsync(), etc. under heavy I/O load. We observe that
when the system has lots of I/O requests issued asyn-
chronously, the latency of these file system operations
increases dramatically so that the responsiveness of ap-
plications is severely degraded. In our evaluations with
one of the latest Android-based smartphones, the time to
launch an application has been slowed down by a factor
of 2.4 in the worst case when a large amount of file writes
is in progress in the background.

This problem is projected to become worse in the fu-
ture as the peripherals of mobile devices continue to
adopt newer and more advanced technology. For ex-
ample, the latest smartphones are equipped with Wi-
Fi 802.11ac (1Gbps) and USB v2.0 (480Mbps) mod-
ules which can generate the I/O traffic of several tens of
megabytes per second. It is very likely for a user to run
an application while downloading some large files in the
background through Wi-Fi or USB connections. In this
case, the responsiveness of the foreground task will be
affected significantly by massive asynchronous I/O oper-
ations.

Some degree of delay is inevitable when the fore-
ground task accesses files under heavy asynchronous
I/Os as long as they share the same storage device. Sur-
prisingly, however, we find out that most of the delay
arises from an unexpected circumstance where the file
system operations are unintentionally blocked until one
or more asynchronous I/O operations are finished. This
phenomenon contradicts the conventional wisdom that
an asynchronous I/O operation can be performed at any
time as no one waits for it. Since asynchronous I/Os
have lower priority than synchronous I/Os and handling
of asynchronous I/Os is optimized not for latency but
for throughput, the responsiveness of the foreground task
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can be highly affected when it has to wait for the com-
pletion of asynchronous I/Os. Our measurement with a
high-end smartphone shows that a single invocation of a
seemingly benign creat() or buffered write() sys-
tem call can take more than 1 second, when its execution
is blocked due to pending asynchronous I/Os (cf. Ta-
ble 2). It is common that the worst case delay of these
system calls increases to several seconds for low-end
smartphones with worse storage performance.

To address this problem, we introduce a new type
of I/O operations called Quasi-Asynchronous I/O (QA-
SIO). QASIOs are defined as the I/O operations which
are issued asynchronously, but should be treated as syn-
chronous I/Os since other tasks are blocked on them.
Note that some of asynchronous I/Os are promoted to
QASIOs at run time when a task gets blocked on them.
Since the execution of the blocked task depends on QA-
SIOs, QASIOs should be prioritized over (true) asyn-
chronous I/Os for better responsiveness. To the best of
our knowledge, this work is the first study to discuss
the dependency between file system operations and asyn-
chronous I/O operations.

We propose a novel scheme to detect QASIOs and
boost them in the Linux kernel. First, we analyze three
problematic scenarios where the responsiveness of appli-
cations is severely degraded due to QASIOs through ex-
tensive investigation across the entire storage I/O stack of
the Linux kernel encompassing virtual file system (VFS),
page cache, Ext4 file system, JBD2 journaling layer, I/O
scheduler, and block layer. Then, we classify the types of
direct or indirect dependencies between file system oper-
ations and QASIOs. We also present how to detect each
type of dependency in the Linux kernel. Finally, we de-
vise a mechanism to dynamically prioritize QASIOs in
the CFQ I/O scheduler, a de-facto I/O scheduler in the
Linux kernel.

We have implemented and evaluated the proposed
scheme on one of the latest Android-based smartphones,
Samsung Galaxy S5. Our evaluation results with mi-
crobenchmarks show that the worst case latency of
creat(), fsync(), and buffered write() is re-
duced by up to 98.4%, 87.1%, and 90.2%, respectively.
In real workloads, the worst case launch time of the CON-
TACTS application is decreased by 44.8% under heavy
asynchronous I/Os.

The rest of this paper is organized as follows. Sec-
tion 2 explains some background to understand how the
Linux kernel handles file I/O operations. Section 3 de-
scribes three problematic scenarios and Section 4 intro-
duces QASIOs. The design and implementation details
of how to detect QASIOs and boost them in the Linux
kernel are presented in Section 5. Section 6 demon-
strates evaluation results and Section 7 discusses the re-
lated work. Finally, Section 8 concludes the paper.

2 Background
2.1 I/O in the Android Platform
Android is one of the most widely used mobile platforms
in the world. Android provides an application framework
that allows a plenty of apps to operate simultaneously.
An Android app consists of different type of components
such as Activity, Service, Broadcast Receiver, and Con-
tent Provider which have an individual entry point and
needs to be executed as a separate task. An app pro-
vides not only user interfaces, but also various back-
ground services performed by the request of the other
components of the app or even by the other apps through
Intents [2]. Recently, Android devices begin to support
multi-window mode [16] beyond simple multi-tasking.
The multi-window mode allows a user to divide one dis-
play screen into two and perform different tasks on each
screen. For these reasons, a large number of tasks can
run simultaneously at any moment in the Android sys-
tem, yielding a large amount of I/Os at the same time.

2.2 Linux Kernel I/O Path
The Linux kernel is the core of the Android platform,
which is responsible for managing system resources such
as CPUs, memory, and various I/O devices. In partic-
ular, the storage I/O stack is one of the most complex
parts in the Linux kernel as each file system operation is
processed with the help of various layers such as virtual
file system (VFS), Ext4 file system, page cache, JBD2
journaling layer, I/O scheduler, and block layer. In this
subsection, we briefly describe a step-by-step procedure
for processing a write() system call as shown in Fig-
ure 1. We choose the write() system call because it is
slightly more complicated to handle compared to other
system calls as it manipulates data and metadata at the
same time. We assume that the default ordered journal-
ing mode is used in the Ext4 file system.
1. Invoke a write() system call: A task passes the
file descriptor, the address of the user data buffer, and
the write size to the kernel through write(). This in-
formation is transmitted to the VFS layer. VFS updates
necessary fields (such as timestamps and file size) of the
file metadata (i.e., inode) by obtaining a JBD2 journal
handle. The journal handle is obtained each time the
metadata is modified to record the updated metadata in
the journaling area. Then, VFS copies the requested data
into the corresponding page in the page cache. The call-
ing task returns from write() as soon as its data is
copied into the page cache.
2. Make pages of file data dirty: The pages of file data
written by VFS are marked as dirty. The Linux kernel
accumulates these dirty pages up to a certain threshold.
3. Flush out dirty pages: If a dirty page stays for more
than the expiration time or the amount of dirty pages

2
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Figure 1: The processing of the write() system call in the Linux kernel

exceeds the background dirty ratio, they are forcibly
flushed. The kworker kernel thread is executed period-
ically or synchronously in order to satisfy these require-
ments and asks the Ext4 file system to flush dirty pages
if necessary.
4. Perform Ext4 delayed block allocation: By de-
fault, Ext4 performs block allocation when the file data
is flushed from the page cache. During block alloca-
tion, Ext4 needs to modify file system metadata such as
block bitmaps and group descriptors. Since these meta-
data should be also written into the journaling area, Ext4
obtains the journal handle of the running transaction and
requests to the JBD2 module to manage them. Note that
Ext4 associates a buffer head with each metadata page.
5. Submit dirty pages of file data: After block alloca-
tion, Ext4 submits dirty data pages to the block layer as
asynchronous I/Os.
6. Commit JBD2 journaling: The running transaction
is changed to the committing transaction after a predeter-
mined time or a certain amount of buffer heads is gath-
ered by the jbd2 kernel thread. The metadata pages be-
longing to the committing transaction are submitted as
synchronous I/Os by jbd2, because they must be written
into the storage device rapidly for ensuring the file sys-
tem integrity.
7. Flush out dirty metadata: After journal commit
completes, the metadata pages included in the commit-
ting transaction are changed to the dirty state again,
which enables checkpointing the metadata pages. Fi-
nally, kworker flushes out these metadata as asyn-

chronous I/Os.
8. Make a request: Physically adjacent pages with the
same I/O property among the submitted I/O requests are
merged into one request through the block layer. These
requests are forwarded to the I/O scheduler.
9. Dispatch a request: CFQ is the default I/O sched-
uler in the Linux kernel. CFQ has separate queues for
synchronous I/Os and asynchronous I/Os. Synchronous
I/O requests generated from a process is entered into the
synchronous CFQ queue which is provided for each pro-
cess. On the other hand, the asynchronous CFQ queue is
shared by processes having the same I/O priority. Since
most asynchronous I/Os are submitted by kworker (I/O
priority 4) as shown in Figure 1, they are put into the
same asynchronous CFQ queue. When dispatching a re-
quest, CFQ first selects a CFQ queue and then processes
I/O requests in the selected queue in the order of logi-
cal sector number. Note that all the synchronous queues
have higher priority than asynchronous queues in CFQ.

3 Problem and Motivation
This section presents three real-life scenarios as motivat-
ing examples which show reduced responsiveness under
heavy asynchronous I/Os. The performance results of
these scenarios are obtained from our test device (refer
to Section 6 for details).

Scenario A: Launching the CONTACTS App:
The app start delay is a simple metric which shows the
responsiveness of mobile devices. We observe that the

3
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start time of the CONTACTS app gets slower and varies
with a large standard deviation when a 4GB file is created
in the background simultaneously. With 500 times of
repeated tests, the worst case app start time increases by
140.0% over that of the normal case where there is no
background I/O traffic.

Scenario B: Burst Mode in the CAMERA App:
The burst mode in the CAMERA app is a continuous high-
speed shooting mode and is supported by many smart-
phones nowadays [19]. Our test device, Samsung Galaxy
S5, shoots up to 30 shots by touching and holding on the
shot icon. The next burst shot is possible shortly after the
images taken by the first burst shot are processed. When
the image size of each shot is large (8MB in the tested
case), the intermittent delays occur between shots after
the first burst shot. Finally, the burst shot performance is
degraded by 19.0% than the ideal performance.

Scenario C: Installing the ANGRY BIRDS App:
The final scenario is to install the ANGRY BIRDS app
downloaded from the Google Android market, when a
4GB file is written in the background. Since down-
loading the package file depends on the network perfor-
mance, we measure the time to install the app from the
package file pre-downloaded in the local storage. We
observe that the average installation time increases by
35.0% when there are asynchronous I/Os in the back-
ground.

The underlying problem:
Many synchronous I/Os, such as read()’s or
write()’s followed by fsync(), are issued during
installing or launching an app. As mentioned in Sec-
tion 2.2, the CFQ I/O scheduler gives higher priority to
these synchronous I/Os over asynchronous I/Os. In spite
of this, it is inevitable for the foreground task to expe-
rience some delay under heavy asynchronous I/Os for
the following reasons. First, there can be a contention
in holding a lock to modify the file system metadata.
Second, it is possible that another asynchronous I/O is
already in progress in the storage device when a syn-
chronous I/O is dispatched. Third, there can be no room
in memory or request queues for additional I/Os.

However, after investigating the three scenarios care-
fully, we find out that file system operations issued by
the foreground task are significantly delayed by another
reason. Although the specific condition is slightly dif-
ferent, the root cause of the problem is the same; the
progress of a file system operation is blocked by undis-
patched asynchronous I/Os. This is an unexpected situa-
tion in the Linux kernel, resulting in an unpleasant conse-
quence that the foreground task waits for the completion
of asynchronous I/Os queued in the I/O scheduler. Since
those asynchronous I/Os are not dispatched yet, the de-
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Figure 2: The classification of I/O requests

lay could be long as they may be served last by the I/O
scheduler. In the next section, we show when this hap-
pens in more detail.

4 Quasi-Asynchronous I/O (QASIO)
This section defines a new type of I/O called quasi-
asynchronous I/O (QASIO) and describes the types of
dependencies on QASIOs. We also revisit the problem-
atic scenarios shown in Section 3 to demonstrate how
those scenarios are related to QASIOs.

4.1 Definition of Quasi-Asynchronous I/O
The Linux kernel traditionally categorizes I/O requests
into the following two classes:

• Synchronous I/O: An I/O request is called syn-
chronous when the calling task is blocked until the I/O
request is completed. For this reason, the I/O sched-
uler such as CFQ treats synchronous I/Os in prefer-
ence to asynchronous I/Os for better responsiveness.
Typically, synchronous I/Os are created by read(),
fsync(), and sync() system calls. However,
write()’s can be made synchronous by opening a
file with the O SYNC flag. The jbd2 kernel thread also
generates synchronous I/Os when it commits journal
data.

• Asynchronous I/O: Writing data to a file opened with-
out the O SYNC flag creates asynchronous I/Os. Asyn-
chronous I/Os are flushed together by the kworker
thread to maximize I/O throughput. They are handled
in low priority in the I/O scheduler because no tasks
waits for them. In this way, tasks can freely enjoy the
benefits of the buffered I/O. Asynchronous I/Os are
also produced when the file system metadata is writ-
ten into the original location after journal commit.

In this paper, we introduce a new class of I/O called
quasi-asynchronous I/O (QASIO) as depicted in Figure 2.
A QASIO is defined as the I/O which is seemingly asyn-
chronous but has the synchronous property because one
or more tasks are waiting for its completion. This seems
to be impossible in theory, but we show in the next sub-
section that it happens frequently in practice. Note that
whether an I/O request is synchronous or asynchronous
is determined when it is submitted to the block layer.
In contrast, an existing asynchronous I/O is promoted

4
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to a QASIO at run time when a task gets blocked due
to the asynchronous I/O. For better responsiveness, QA-
SIOs should be given the higher priority than other (true)
asynchronous I/Os.

4.2 Types of Dependencies on QASIO
Each task can have a direct or an indirect dependency on
QASIOs. The direct dependency occurs when the exe-
cution of a task is blocked due to (quasi-) asynchronous
I/Os. Figure 3 illustrates the situation where task A has a
direct dependency on a QASIO. To identify when such a
dependency exists, we have conducted an extensive anal-
ysis of the Linux kernel and the dynamic I/O patterns
generated by file system calls. According to our analy-
sis, we have identified the following four types of direct
dependencies on QASIOs:

• When modifying a metadata page (Dmeta): This type of
dependency can occur when a task invokes a file sys-
tem call which modifies a metadata page (such as in-
odes, group descriptors, block bitmaps, inode bitmaps,
and directory entries in Ext4). The target metadata
page, made dirty by itself or the other tasks, may
be already submitted as an asynchronous I/O by the
kworker thread.

• When modifying a data page (Ddata): When a task
appends data partially within a data page, it can be
blocked since the target data page may be already
flushed out asynchronously by the kworker thread.
The task cannot proceed its execution until the data
page hits the storage.

• When guaranteeing data to be written back (Dsync): A
task needs to wait for the completion of asynchronous
I/Os when synchronizing or truncating the previously-
issued file data in fsync() or truncate(). When
performing fsync(), all the previous buffered writes
are issued synchronously as long as they are still in
the page cache. If calling fsync() is late or there
are too many dirty pages in the page cache, some
of them can be already flushed out as asynchronous
I/Os. In this case, fsync() should wait until those
asynchronously-issued I/Os are done.

• When completing discard commands (Ddiscard): Cur-
rently, the jbd2 kernel thread issues discard com-
mands asynchronously for deallocated blocks, unlike
other journal blocks which are issued synchronously.
Hence, its execution is blocked on every journal com-
mit until all the discard commands are completed.
This delay in turn can affect the responsiveness of the
foreground task (cf. I jcommit ).

Sometimes, it is also possible that the execution of a
task is being delayed due to another task that has a direct
dependency on QASIOs. For example, Figure 3 shows

�����������������

�������������������

������

������

���

���������

Figure 3: Direct and indirect dependency on QASIO

that task B is blocked because task A cannot make any
progress due to the direct dependency on a QASIO. In
this case, we call that task B has an indirect dependency
on a QASIO. Typically, this situation arises when task A
is blocked holding a resource that task B requires. Unlike
the direct dependency, it is difficult to list all the possi-
ble types of indirect dependencies since the delay due
to QASIOs can be propagated to other tasks in diverse
and complicated ways. However, we found the following
two types of indirect dependencies related to the JBD2
journaling which has a significant impact on the perfor-
mance.

• When unable to obtain a journal handle due to Dmeta
or Ddata (I jhandle): In Ext4, a task should obtain a jour-
nal handle to modify a metadata page or a data page.
As mentioned before, the task can be blocked if the
target page is already issued asynchronously, creating
the Dmeta or Ddata type of dependency on QASIOs.
Sooner or later, the transaction including the journal
handle is started to be committed but the transaction
is locked because the blocked task holds the journal
handle. In this case, another task which attempts to
perform any file operation is blocked since it fails to
obtain a new journal handle.

• When unable to complete fsync() due to Ddiscard
(I jcommit ): This type of indirect dependency is ob-
served only for the task that invokes fsync(). The
fsync() system call needs to wait until the journal
commit is completely done to ensure that the metadata
of the corresponding file is written into the storage de-
vice. However, the processing time of the journal com-
mit can be significantly prolonged since the jbd2 ker-
nel thread usually has a direct dependency of Ddiscard
due to asynchronously-issued discard commands.

Whenever a foreground task interacting with a user
has a direct or an indirect dependency on QASIOs, its
execution has nondeterministic hiccups and the user can
encounter sluggish responsiveness. Despite that there is
room for additional I/Os in memory and request queues,
the processing of system calls is blocked by the stacked

5
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Figure 4: Dependencies on QASIOs in Scenario A

asynchronous I/Os in the request queue. More serious
problem is that the lag due to QASIOs occurs not only
in fsync(), but also such system calls as creat(),
chown(), unlink(), and even buffered write(),
where a user does not expect any delay. Depending on
the storage performance, we observe that a single invo-
cation of the creat() system call takes up to several
seconds due to its dependency on QASIOs.

4.3 Revisiting Problematic Scenarios
We now take a closer look at the problematic scenar-
ios in Section 3 and its relationship with QASIOs. Ta-
ble 1 summarizes the major dependencies on QASIOs
observed in each scenario.

4.3.1 Scenario A: Launching the CONTACTS App

When an app’s UI shows up in the Android platform,
several file system calls are made to update its states
into databases (e.g., SQLite) or files (e.g., xml files) per-
sistently. In our test device, launching the CONTACTS
app is accompanied by a series of system calls such
as rename(), write(), fsync(), and unlink().
These system calls all need to update the metadata.
Therefore, they can have the Dmeta type of dependency
on QASIOs under bulky asynchronous I/Os, when they
try to modify the metadata page which is being written
back.

The UI task of the CONTACTS app has another indi-
rect dependency of I jcommit to QASIOs. At the end of
each journal commit, the jbd2 kernel thread has a direct
dependency (Ddiscard) due to the asynchronously-issued
discard commands. If the journal commit is delayed due
to Ddiscard , the fsync() system call performed by the
UI task is delayed as well since it cannot return until the
metadata modification of the synchronized file is com-
pletely committed. Therefore, the UI task has two kinds
of dependencies on QASIOs as depicted in Figure 4.

4.3.2 Scenario B: Burst Mode in the CAMERA App

After the first burst shot completes, several services are
executed through the Intents transferred from the An-
droid platform. One of them is the thumbnail maker task
which generates thumbnails of the taken images. Since
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Figure 5: Dependencies on QASIOs in Scenario B
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Figure 6: Dependencies on QASIOs in Scenario C

the thumbnail size is very small, the thumbnail maker
task writes data in a small size (e.g., 1KB) repeatedly.
This results in partial writes to the same data page, which
can be blocked if the target data page is already being
written back. Hence, the thumbnail maker task can have
the Ddata type of dependency on QASIOs.

Since the thumbnail maker is running in the back-
ground, it should not affect the responsiveness of the
foreground CAMERA task. However, the problem is that
the CAMERA task has an indirect dependency of I jhandle
to QASIOs via the thumbnail maker as shown in Fig-
ure 5. The thumbnail maker obtains a journal handle of
the running transaction before copying the thumbnail im-
age data to the data page, and falls into a sleep by the
Ddata dependency. After a certain period of time, the
journal commit is started but the jbd2 thread falls into
the locked state since the thumbnail maker went asleep
due to Ddata with holding the journal handle of the trans-
action to be committed. When the CAMERA wants to
acquire a journal handle to write additional images for
the subsequent burst shots, it is eventually blocked. This
is because the JBD2 journaling module does not give out
any journal handle under the condition that the commit-
ting transaction is locked.

4.3.3 Scenario C: Installing the ANGRY BIRDS App

The dependencies on QASIOs arisen in this scenario are
illustrated in Figure 6. The App installer task issues a
number of buffered write() system calls in order to
save the extracted data of the downloaded app to the app
repository. To prevent data loss on sudden power fail-
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ures, the App installer task invokes fsync() so that
all the written data are flushed into the storage device.
The fsync() system call is meant to write the data
pages belonging to the corresponding file synchronously.
However, when a large file is written in the background,
the page cache is filled with dirty pages. In this case,
the data pages to be fsync()’ed can be flushed out
asynchronously by the kworker thread before the App in-
staller invokes the fsync() system call. This leads to
the Dsync type of dependency on QASIOs.

For the same reason as in scenario A, this scenario also
has an indirect dependency of I jcommit during fsync()
due to asynchronously-issued discard commands.

5 Boosting QASIOs
In this section, we explain how to detect QASIOs effi-
ciently at run time and boost them for better responsive-
ness during file system operations.

5.1 Design
When a task has a direct or an indirect dependency on a
QASIO, its execution is blocked until the corresponding
QASIO completes. This situation is somewhat similar
to the priority inversion problem in scheduling where a
high priority task cannot make any progress as a low pri-
ority task has a resource it requires. In this case, as the
priority inheritance protocol does, the best way we can
do to minimize the waiting time of the task is to give a
higher priority to the QASIO and complete it quickly.

However, it is not easy in the current design of I/O
schedulers since they do not know the presence of QA-
SIOs and thus they have no idea of which one to boost.
The various dependencies between tasks and QASIOs
are formed dynamically at run time across various up-
per layers such as VFS, page cache, and Ext4 file system.
This suggests that we have to have a run time mechanism
which can detect QASIOs in the upper layers and notify
the I/O scheduler to prioritize them.

The requirements for boosting QASIOs can be sum-
marized as follows:

• Req.(1): When a task is blocked waiting for the com-
pletion of an asynchronous I/O, the kernel should be
able to give a hint about the existence of QASIO to the
I/O scheduler.

• Req.(2): Upon the receipt of the hint from the kernel,
the I/O scheduler should prioritize them among asyn-
chronous I/Os.

The Req. (1) is independent of the I/O scheduler used
in the kernel, but Req. (2) needs to be re-implemented
for each I/O scheduler. In this paper, we only show the
implementation based on the CFQ I/O scheduler. How-
ever, the design can be easily applied to the other I/O

Table 1: The major dependencies on QASIOs in each
scenario discussed in Section 4.3. (This table shows the
major dependencies only. Sometimes other dependen-
cies can occur as well. (B) represents that the depen-
dency is associated with the background task, but the
foreground task also has an indirect dependency on QA-
SIOs.)

Direct Indirect
Scenario Dmeta Ddata Dsync Ddiscard I jhandle I jcommit

A � �(B) �

B �(B) �

C � �(B) �

����������

������������
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Figure 7: Implementation overview for detecting and
boosting QASIOs in the Linux kernel

schedulers. Figure 7 overviews our implementation for
detecting and boosting QASIOs in the Linux kernel.

5.2 Detecting QASIOs
In this subsection, we present how QASIOs can be de-
tected at run time in the Linux kernel. Since an indirect
dependency on a QASIO occurs only when there is an-
other direct dependency on the same QASIO, we only
focus on detecting direct dependencies on QASIOs. If
the direct dependency is resolved, the associated indirect
dependency is terminated as well.

As we have seen in Section 4.2, there are four types of
direct dependencies on QASIOs. Each can be detected
as follows:

• Detecting Dmeta: In Ext4, a task accesses a meta-
data page through the associated buffer head struc-
ture. Before a task modifies a metadata page, it ob-
tains an exclusive lock to the metadata page using the
lock buffer() kernel function. However, if the
buffer head is already submitted to the block layer,
the state of the buffer head is changed into the locked
state and the execution of the task that attempts to ac-
quire the same lock is suspended. Note that failing

7
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to obtain the lock does not necessarily mean that the
target metadata page is submitted as an asynchronous
I/O. Therefore, we have to double check whether the
locked buffer head is being processed as an asyn-
chronous I/O before making a decision.

• Detecting Ddata and Dsync: The dependency types of
Ddata and Dsync can be detected in the same loca-
tion in case of Ext4. When a task wants to guaran-
tee some data to be written back for synchronizing
or truncating a file or to perform a partial write to
a data page, it checks whether the previously-issued
I/O has reached the storage device using the kernel
function wait on page writeback(). If neces-
sary, the task waits in this function until the previous
I/O is finished. Similar to the Dmeta case, we should
check whether the previous I/O is submitted as an
asynchronous I/O.

• Detecting Ddiscard : The kernel function
ext4 free data callback() is registered
to the JBD2 journaling module as a callback func-
tion. This function is called whenever the block
deallocation is required at the end of journal commit.
Unlike the above two cases, the jbd2 kernel thread
submits asynchronous discard operations directly in
the callback function and then falls asleep waiting
for the completion of those I/Os. Since it is obvious
that jbd2 generates QASIOs, no additional check is
necessary.

To detect QASIOs in lock buffer() and
wait on page writeback() functions, we should
be able to quickly confirm whether the buffer head
or the page, now being accessed, is issued as an
asynchronous I/O. Since the Linux kernel has no
way to represent this information, we added a special
buffer head flag and modified the submit bh() and
ext4 bio write page() functions so that they set
the flag when submitting asynchronous I/O requests.
submit bh() and ext4 bio write page() are
used to submit a buffer head and a data page, respec-
tively, to the underlying block layer. This special flag is
unset after the I/O completes.

Algorithm 1 outlines how the actual detec-
tion of QASIOs is implemented in the func-
tion wait on page writeback(). In the
original implementation, a task simply waits in
wait on page writeback() until the writeback of
the target page completes. Instead, we check whether
the target page is submitted as an asynchronous I/O
(lines 1–2) and if it is the case, we send the sector
number of the detected QASIO to the I/O scheduler
(lines 3–4). Note that even if the I/O scheduler is notified
of the presence of a QASIO, it may fail to find it in the
request queue (line 5) for the following two reasons.

Algorithm 1 A modified algorithm for
wait on page writeback() for detecting Ddata
and Dsync

1: while the target page is already submitted do
2: if the page is issued as async. I/O then
3: extract the start sector number from the page
4: send the start sector number to I/O scheduler
5: if I/O scheduler fails to find the I/O then
6: set a timer of several clock ticks
7: end if
8: end if
9: wait until the page I/O completes or the timer expires

10: end while

First, the I/O request can be already dispatched to the
storage device by the low-level device driver. In this
case, we have no choice other than wait for the I/O
completion. The second case is that the I/O request is
staying temporarily in the plug list of the task, not in the
request queue of the I/O scheduler. The plug list keeps
I/O requests generated by a task for a short period time
on the stack space of the task in order to increase the
possibility of creating a larger request and to decrease
a lock contention in the I/O scheduler [3]. Since the
plug list is a private area that cannot be searched, we
keep checking periodically until all the I/O requests in
the plug list are flushed to the request queue. QASIOs
can be detected similarly in lock buffer() and
ext4 free data callback() functions.

5.3 Prioritizing QASIO
Since QASIOs should be processed urgently, we give
a higher priority to QASIOs than all the (true) asyn-
chronous I/Os, but not more than any other synchronous
I/Os. This is because we do not want that the boosting
of QASIOs interferes with the responsiveness of syn-
chronous I/Os. The actual implementation of handling
QASIOs proceeds as follows.

Once a QASIO is detected, the information on the QA-
SIO (i.e., start sector number) should be delivered to the
I/O scheduler. For this purpose, we have added a new
interface called elv boost() in the elevator layer of
the Linux kernel (cf. Figure 7). elv boost() is an ab-
stract interface which invokes a pre-registered function
specific to each I/O scheduler, cfq boost req() in
our case with the CFQ I/O scheduler.

For each asynchronous queue, we maintain a separate
list of I/O requests called QASIO list as shown in Fig-
ure 7. In cfq boost req(), we traverse red-black
trees of all the asynchronous queues and look for the I/O
request which contains the received sector number of the
QASIO. If it is found, an entry for the QASIO is inserted
into the corresponding QASIO list.

In the original CFQ scheduler, whenever an asyn-
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chronous CFQ queue is selected for dispatching a re-
quest, CFQ finds the nearest request, specified by the
next req pointer, from the last processed request in
the red-black tree and then sequentially dispatches I/O
requests from that position. In our implementation, how-
ever, CFQ checks the QASIO list first and then dis-
patches QASIO requests if any. Moreover, if the QA-
SIO list is empty, the current asynchronous queue yields
the chance of I/O dispatching to another asynchronous
queue which has a non-empty QASIO list. In this way,
QASIOs are dispatched before any other asynchronous
I/O requests.

6 Evaluation
This section presents the evaluation results with five mi-
crobenchmarks, three real-life scenarios, and two I/O
benchmarks for Android.

6.1 Methodology
Our evaluation has been conducted on one of the lat-
est smartphones, Samsung Galaxy S5, equipped with
Exynos 5422 (including quad Cortex-A15 and quad
Cortex-A7 ARM CPUs and Mali-T628 MP6 GPU), 2GB
DRAM, and 16GB eMMC flash storage. It runs the An-
droid platform version 4.4.2 (KitKat), with the Linux
kernel 3.10.9. In Android, the dirty page expiration time
is set to 2 seconds and the background dirty ratio to 5%
by default.

In order to investigate the impact of QASIOs on the
latency of various file system operations, we have used
the following in-house microbenchmarks:

• M1: M1 iterates the creation of a 4KB file 500
times. In each iteration, M1 opens the same file with
creat(), and then writes 4KB of data to the file
using the buffered write(). Finally, it performs
fsync() and closes the file with close(). Note
that this microbenchmark mimics the storage I/O pat-
terns of a database system such as SQLite [12].

• M2: M2 is the same as M1 except that the file size is
increased to 1MB and the number of iterations is set
to 200. The file data (1MB in size) is written using a
single write() system call.

• M3: M3 creates a new file with creat() and re-
peats a 1KB-sized write() until the file size reaches
300MB.

• M4: In each iteration, M4 truncates the 2MB file
created in the previous iteration to zero length us-
ing truncate(), recreates the same sized file using
write(), and then closes the file with close().
This is repeated 500 times. The file for the first itera-
tion is created manually before the execution.

• M5: M5 creates a single 4KB file by performing
creat(), write(), fsync(), and close(),

while another task truncates an existing 8GB file and
writes 8GB of data again to the file.

We run all the microbenchmarks except M5 while a
8GB file is written in the background in order to gener-
ate asynchronous I/O operations. In addition to these mi-
crobenchmarks, the proposed scheme is evaluated with
real-life scenarios discussed in Section 3 and two rep-
resentative I/O benchmarks in Android, Antutu and RL-
Bench.

6.2 Microbenchmarks
Figure 8 compares the total elapsed time of each mi-
crobenchmark according to the type of dependency
boosted. The results are normalized to NONE in which
no special handling is performed for QASIOs. Each
Ddata+Dsync, Dmeta, and Ddiscard represents the case
where only the specified type of dependency is detected
and boosted. Note that Ddata and Dsync types cannot be
boosted separately, as they are detected in the same lo-
cation (cf. Section 5.2). Finally, ALL means that all
kinds of optimizations are applied for QASIOs. Table 2
presents the latency of key file system operations before
and after applying the optimizations for QASIOs. Over-
all, we can see that boosting QASIOs improves the total
elapsed time by up to 83.1%. The proposed scheme also
reduces the worst case latency of each file system opera-
tion by up to 98.4%. The detailed analysis on the result
of each microbenchmark is as follows.

In M1, when all the dependency types are boosted,
the total elapsed time is reduced by 83.1% as the aver-
age latency of creat() and fsync() is improved by
99.1% and 63.7%, respectively. In each iteration of M1,
creat() modifies metadata pages and also incurs dis-
card operations as it creates the file with the same name.
Hence, creat() and fsync()will have the Dmeta and
I jcommit dependency, respectively. This is why the most
of reduction in the total elapsed time comes when Dmeta
and Ddiscard types are boosted.

The M2’s results show the similar trend as M1 ex-
cept that boosting Ddata+Dsync is as effective as Dmeta or
Ddiscard . As the file size becomes larger, it is likely that
kworker flushes out some of data pages asynchronously
before fsync() is called. Consequently, unlike in M1,
fsync() will have the Dsync dependency in M2.

In M3, the most dominant operation affecting the over-
all performance is the buffered write(). From Table 2,
we can observe that the latency of write() is reduced
by 47.4% on average and by 90.2% in the worst case.
write() suffers from the Ddata dependency since 1KB
of data is written into a data page partially. Therefore, the
most of performance improvement is achieved by boost-
ing the Ddata type of dependency as Figure 8 illustrates.

In M4, the key file system operation affected by QA-
SIOs is truncate(). If the file data is already issued
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Figure 8: The normalized total elapsed time of each mi-
crobenchmark according to the dependency type boosted

asynchronously, truncate() should wait for the com-
pletion of those asynchronous I/Os. Hence, boosting the
Dsync type of dependency is most helpful for M4.

In case of M5, jbd2 has the Ddiscard type of depen-
dency on asynchronously-issued discard commands as
another task truncates a large file. In this case, calling
fsync() to synchronize just 4KB of data takes 13.27
seconds on average due to the I jcommit dependency. How-
ever, when we boost the Ddiscard type, the latency is de-
creased to 6.85 seconds.

Since QASIOs are prioritized over other asynchronous
I/Os in the I/O scheduler, boosting QASIOs can have
a negative impact on the throughput of asynchronous
I/Os. To investigate this effect, we have measured the
throughput of creating a 8GB file in the background
while performing the M1 microbenchmark. According
to our measurement results, the throughput is decreased
by 15.4%, from 46.2MB/s to 39.1MB/s. We believe this
is acceptable considering that the total elapsed time of
the foreground task in M1 is improved by 83.1%.

6.3 Real-life Scenarios
Figure 9 depicts the impact of boosting QASIOs in three
real-life scenarios described in Section 3. On the right
side of Figure 9, we also show the total time spent on
waiting for the completion of QASIOs. These times
are measured in the kernel functions described in Sec-
tion 5.2 where each type of dependency is detected. In
Figure 9(a) and (c), the phrase “with bg. I/O” indicates
the case where a 4GB file is created in the background
simultaneously in order to generate asynchronous I/Os.

In Scenario A, we have measured the time to launch
the CONTACTS app. Under heavy asynchronous I/Os,
the launch time is increased by 29.4% on average. In
the worst case, the app start is slowed down by a factor
of 2.4. However, boosting QASIOs effectively reduces
the worst case launch time by 44.8%. Similar to the M1
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Figure 9: Results of three real-life scenarios

microbenchmark, the most of improvement comes from
boosting Dmeta and Ddiscard , as the CONTACTS task has
the Dmeta and I jcommit dependency on QASIOs. The total
wait time on the corresponding kernel function of Dmeta
and Ddiscard has been reduced by 96.1% and 87.4%, re-
spectively.

In Scenario B, we can see that the shot count in the
burst mode is improved by 14.4% on average when we
boost QASIOs. The thumbnail maker has the Ddata de-
pendency on QASIOs, however the total wait time due
to Ddata is reduced by 98.4%. As the direct dependency
between the thumbnail maker and QASIOs is resolved
quickly, the burst mode performance of the CAMERA app
has been improved as well.

Finally, the average installation time of the ANGRY
BIRDS app is slowed down by 35.0% under the heavy
asynchronous I/Os in the background. However, we ob-
serve that the average installation time is improved by
11.5% through the boosting of QASIOs. As mentioned
in Section 4.3.3, the ANGRY BIRDS app has the Dsync
and I jcommit dependency on QASIOs. Accordingly, the
most of reduction in the installation time comes from
boosting the Dsync type. Boosting Ddiscard and Dmeta also
contributes to reducing the installation time since some

10



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 201

Table 2: The latency of key file system operations in each microbenchmark. (The time unit is millisecond for M1 –
M4, while it is second for M5)

Opt
M1 M2 M3 M4 M5

creat() fsync() creat() fsync() write() truncate() fsync()

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
NONE 119.57 1435.54 98.24 1119.62 109.01 1397.64 172.05 1417.82 0.19 1813.54 62.60 1632.15 13.27 13.87
ALL 1.02 39.15 35.64 144.69 3.90 22.52 69.24 298.83 0.10 177.40 12.85 334.57 6.85 7.11

metadata modifications and discard operations are per-
formed during the app install procedure.

6.4 I/O Benchmarks for Android
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Figure 10: Results of Antutu and RLBench

Finally, we have evaluated the proposed scheme with
two famous I/O benchmarks for Android, Antutu [6]
and RLBench [15]. Antutu is a comprehensive Android
benchmark which provides several modes for measuring
the performance of CPU, memory, storage system, etc.
In this evaluation, we use the Database IO mode that es-
timates the storage I/O performance with database work-
loads. The Antutu benchmark reports the final score as a
result of the performance measurement, where the higher
score means the better performance.

RLBench is a benchmark for measuring the perfor-
mance of Android devices under SQLite workloads.
Since it makes SQLite generate storage I/O intensive
workloads, the RLBench’s result is closely related to the
storage I/O performance in general. Unlike Antutu, RL-
Bench shows the elapsed time to process the predefined
set of SQL queries, hence the lower time means the better
performance.

The results of Antutu and RLBench are displayed in
Figure 10. We run each benchmark with (labeled as
“with bg. I/O”) and without asynchronous I/O opera-
tions. The asynchronous I/Os are generated by writing
a 4GB file in the background while running the bench-

marks.
In Antutu, the base score is measured at 1,785 when

there is no asynchronous I/O operations in the back-
ground. Due to asynchronous I/Os, the score is de-
creased to 1,289. However, the proposed scheme im-
proves the score to 1,421 which is smaller than the base
score by 20.4%. An interesting observation is that boost-
ing QASIOs improves the performance of Antutu by
about 12.0% even when there is no asynchronous I/Os in
the background. This means Antutu itself issues asyn-
chronous I/Os and its performance is also affected by
QASIOs.

The result of RLBench also shows that the proposed
scheme successfully improves the storage I/O perfor-
mance. When there are asynchronous I/O operations in
the background, the elapsed time is reduced by 17.1% by
boosting QASIOs.

7 Related Work
Mobile devices usually employ NAND flash memory as
the media of the main storage system. Kim et al. show
that the storage performance is a limiting factor for the
performance of several common applications for mo-
bile devices through extensive experiments with various
flash storage systems [9]. Since NAND flash memory
shows very different characteristics compared to hard
disk drives, prior work attempts to revisit various oper-
ating system mechanisms and policies which have been
optimized for rotating media. As a result of these efforts,
several file systems [4, 13] and I/O schedulers [14, 17]
have been proposed which are optimized for the charac-
teristics of flash storage.

Recently, many researches have focused on optimizing
the I/O stack of the Linux kernel in accordance with the
I/O characteristics of SQLite, a lightweight transactional
database engine provided by the Android platform. Since
most applications heavily utilize SQLite to keep their
application-specific data persistently, the overall perfor-
mance of mobile applications is known to highly depend
on the SQLite’s performance. In particular, Lee et al.
have observed that running SQLite on top of the Ext4 file
system produces very inefficient I/O patterns to the stor-
age system [12]. Based on the observation, Jeong et al.
propose the elimination of unnecessary metadata journal-
ing, external journaling, and a polling-based I/O mecha-
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nism to improve the journaling efficiency [8]. Similarly,
Shen et al. propose the enhanced journaling mechanism
for the Ext4 file system in the SQLite environment to
solve the so-called journaling of journal problem [18].

In this paper, we focus on the fact that the respon-
siveness of file system operations is severely degraded
when the system has lots of storage I/O operations asyn-
chronously issued. This is an inherent problem in han-
dling I/O requests, being independent of file systems and
I/O schedulers. Therefore, our approach is largely or-
thogonal to previous researches. Note that the proposed
scheme reduces the latency of fsync() successfully,
which is known to be performed frequently by SQLite.
Therefore, boosting QASIOs will be also helpful in im-
proving the performance of SQLite as exemplified in the
result of RLBench.

The recent Linux kernel allows to update data pages
while they are under writeback by disabling the stable
pages feature, which successfully eliminates any Ddata
dependency [5]. However, this can be unacceptable in
future mobile devices since the hardware-supported en-
cryption during I/O is seriously being considered. Also,
the Ddiscard dependency can be removed if a userspace
program issues a fstrim command in a batch manner at
convenient times when the device is idle, as introduced
in the recent Android platform [1]. However, this may
not be a complete solution since the I/O performance of
the underlying flash storage can be suddenly degraded if
discard commands are not issued at a proper time.

8 Conclusions

This paper introduces a new type of I/O called Quasi-
Asynchronous I/O (QASIO). The QASIO is the I/O oper-
ation which is seemingly asynchronous but has the syn-
chronous property since one or more tasks are blocked
until the I/O operation is completed. As the system han-
dles asynchronous I/Os in the perspective of maximizing
throughput not latency, the responsiveness of the blocked
tasks is significantly degraded. In particular, in mobile
devices where most applications interact with users all
the time, the quality of user experiences suffers from
QASIOs.

In order to address this problem, we propose a
novel scheme to detect QASIOs and boost them in the
Linux kernel. We have implemented and evaluated the
proposed scheme on the latest Android-based smart-
phone, Samsung Galaxy S5. By performing various
microbenchmarks, real-life scenarios, and Android I/O
benchmarks, we confirm that boosting QASIOs is effec-
tive in improving the responsiveness of file system oper-
ations. We plan to analyze the effect of boosting QASIOs
on more diverse platforms including servers and low-end
smartphones.
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Abstract

We present the design, implementation, and evaluation

of a file system mechanism that protects the integrity of

application data from failures such as process crashes,

kernel panics, and power outages. A simple interface of-

fers applications a guarantee that the application data in a

file always reflects the most recent successful fsync or

msync operation on the file. Our file system furthermore

offers a new syncv mechanism that failure-atomically

commits changes to multiple files. Failure-injection tests

verify that our file system protects the integrity of ap-

plication data from crashes and performance measure-

ments confirm that our implementation is efficient. Our

file system runs on conventional hardware and unmod-

ified Linux kernels and will be released commercially.

We believe that our mechanism is implementable in any

file system that supports per-file writable snapshots.

1 Introduction

Many applications modify data on durable media, and

failures during updates—application process crashes, OS

kernel panics, and power outages—jeopardize the in-

tegrity of the application data. We therefore require so-

lutions to the fundamental problem of consistent modifi-

cation of application durable data (CMADD), i.e., the

problem of evolving durable application data without

fear that failure will preclude recovery to a consistent

state.

Existing mechanisms provide imperfect support for

solving the CMADD problem. Relational databases of-

fer ACID transactions; similarly, many key-value stores

allow failure-atomic bundling of updates [2, 13, 14]. De-

spite the obvious attractions of transactions, both kinds

of databases can lead to two difficulties: First, in-

memory data structures do not always translate conve-

niently or efficiently to and from database formats; re-

peated attempts to smooth over the “impedance mis-

match” between data formats have met with limited suc-

cess [19]. Second, the complexity of modern databases

offers fertile ground for implementation bugs that negate

the promise of ACID: A recent study has shown that

widely used key-value and relational databases exhibit

erroneous behavior under power failures; the proprietary

commercial databases tested lose data [36].

File systems strive to protect their internal metadata

from corruption, but most offer no corresponding protec-

tion for application data, providing neither transactions

on application data nor any other unified solution to the

CMADD problem. Instead, file systems offer primitives

for controlling the order in which application data attains

durability; applications shoulder the burden of restoring

consistency to their data following failures. Added to

the inconvenience and expense of implementing correct

recovery is the inefficiency of the sequences of primi-

tive operations required for complex updates: Consider,

for example, the chore of failure-atomically updating a

set of files scattered throughout a POSIX-like file sys-

tem. Remarkably, the vast majority of file systems do

not provide the straightforward operation that CMADD

demands: the ability to modify application data in (sets

of) files failure-atomically and efficiently.

We present the design, implementation, and evalua-

tion of failure-atomic application data updates in HP’s

Advanced File System (AdvFS), a modern industrial-

strength Linux file system derived from DEC’s Tru64

file system [1]. AdvFS provides a simple interface

that generalizes failure-atomic variants of writev [8]

and msync [20]: If a file is opened with a new

O_ATOMIC flag, the state of its application data will al-

ways reflect the most recent successful msync, fsync,

or fdatasync. AdvFS furthermore includes a new

syncv operation that combines updates to multiple files

into a failure-atomic bundle, comparable to the multi-

file transaction support in Windows Vista TxF [17] and

TxOS [22] but much simpler than the former and more

capable than the latter. The size of transactional updates

in AdvFS is limited only by the free space in the file sys-

tem. AdvFS requires no special hardware and runs on

unmodified Linux kernels.

The remainder of this paper is organized as follows:

Section 2 situates our contributions in the context of prior

work. Section 3 describes AdvFS and the features that

made it possible to implement failure-atomic updates of

application data. Section 4 presents experimental evalua-

tions of both the correctness and performance of AdvFS,

and Section 5 concludes with a discussion.



204 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

2 Related Work

Most widely deployed mainstream file systems offer only

limited and indirect support for consistent modification

of application durable data (CMADD).1 Semantically

weak OS interfaces are partly to blame. For example,

POSIX permits write to succeed partially, making it

difficult to define atomic semantics for this call [30].

Synchronization calls such as fsync and msync con-

strain the order in which application data reaches durable

media, and recent research has proposed decoupling or-

dering from durability [5]. However applications re-

main responsible for building CMADD solutions (e.g.,

atomicity mechanisms) atop ordering primitives and for

reconstructing a consistent state of application data fol-

lowing a crash. Experience has shown that custom recov-

ery code is difficult to write and prone to bugs. Some-

times applications circumvent the need for recovery by

using the one failure-atomicity mechanism provided in

conventional file systems: file rename [11]. For ex-

ample, desktop applications can open a temporary file,

write the entire modified contents of a file to it, then use

rename (or a specialized equivalent [7, 23]) to imple-

ment an atomic file update—a reasonable expedient for

small files but untenable for large ones.

FusionIO provides an elegant and efficient mechanism

for solving the CMADD problem for data on their flash-

based storage devices: a failure-atomic writev sup-

ported by the flash translation layer [8]. The MySQL

database exploits this new mechanism to eliminate

application-level double writes and thereby improve per-

formance substantially [29]. Still more impressive gains

are available to applications architected from scratch

around the new mechanism. For example, a key-value

store designed to exploit the new feature achieves both

performance and flash endurance benefits [15]. The lim-

itations of failure-atomic writev are that it requires

special hardware, applies only to single-file updates, and

does not address modifications to memory-mapped files.

Fully general support for failure-atomic bundles of file

modifications is surprisingly rare. Windows Vista TxF

supports such a capability, but the feature is deprecated

because its formidably complex interface has impaired

adoption [17]. TxOS includes a simpler interface to the

same capability, but with a limitation: Because TxOS

implements atomic file updates via the file system jour-

nal, transaction size is limited by the size of the jour-

nal [22]. Valor implements in the Linux kernel a transac-

tional file update API with seven new system calls that

1Spillane et al. provide an extensive review of research literature on

transactional file systems [25].

support inter-process isolation even in the presence of

non-transactional accesses by legacy applications [25].

The price that transaction-aware applications pay for this

sophisticated support includes a substantial burden of

logging: Applications must perform a Log Append

syscall prior to modifying a page of a file within a trans-

action, which is awkward at best for the important case

of random STOREs to a memory-mapped file.

An attractive approach to the CMADD problem on

emerging durable media is a persistent heap support-

ing atomic updates via a transactional memory (TM)

interface. Mnemosyne [31] and Hathi [24] imple-

ment such mechanisms for byte-addressable non-volatile

memory (NVM) and flash storage, respectively. Per-

sistent heaps obviate the need for separate in-memory

and durable data formats: Applications simply manipu-

late in-memory data structures using LOAD and STORE

instructions, which seems especially natural for byte-

addressable NVM. One limitation of these systems is that

they do not support conventional file operations; another

is that they are tailored to specific durable media. Fi-

nally, they employ software TM, which carries substan-

tial overheads.

Persistent heaps can be implemented for conventional

block storage and need not employ TM. Recent exam-

ples include Software Persistent Memory (SoftPM) [9]

and Ken [34], whose persistent heaps expose malloc-

like interfaces and support atomic checkpointing. Such

approaches provide ergonomic benefits and are com-

patible with conventional hardware, but their atomic-

update mechanisms entail substantial complexity and

overheads. For example, SoftPM automatically copies

volatile data into persistent containers as necessary

through a novel hybrid of static and dynamic pointer

analysis, making development easier and less error-

prone. However SoftPM tracks data modification in

coarse-grained chunks of 512 KB or larger, which can

lead to write amplification at the storage layer. Ken’s

user-space persistent heap tracks modifications at 4 KB

memory-page granularity, which may reduce write am-

plification, but Ken writes each modified page to storage

twice (to a REDO log synchronously and in-place asyn-

chronously).

Failure-atomic msync ensures that application data

in the backing file always reflects the most recent suc-

cessful msync call [20]. It is easy to layer increasingly

sophisticated higher-level abstractions atop this founda-

tion, e.g., persistent heaps which in turn can slide be-

neath general-purpose libraries of data structures and al-

gorithms such as C++ STL. Although it supports the

style of programming natural to non-volatile memory,

2
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failure-atomic msync can be implemented on conven-

tional block storage. A kernel-based implementation of

failure-atomic msync suffers at least three shortcom-

ings: The need to run a modified kernel impedes adop-

tion, the use of the file system journal limits transaction

sizes, and data modifications are written to storage twice

(once in the journal and once in-place) [20]. A user-

space implementation of a similar mechanism eliminates

the first two problems and has been deployed in commer-

cial production systems [3], but it does not support fully

general file manipulations and it retains the double write

due to logging.

AdvFS solves the CMADD problem directly and com-

bines many of the advantages of prior approaches. The

interface is both simple and general: Opening a file with

a new O_ATOMIC flag guarantees that the file’s appli-

cation data will reflect the most recent synchronization

operation, regardless of whether the file was modified

with the write or mmap families of interfaces (or both).

Our new syncv operation ensures that updates to a set

of files are atomic. Because it includes failure-atomic

msync as a special case, AdvFS offers the same advan-

tages as a foundation atop which persistent heaps and

other abstractions may be layered. AdvFS does not rely

on the file system journal to implement atomic updates;

it avoids double writes and the size of atomic updates is

limited only by the amount of free space in the file sys-

tem. Adopting AdvFS is relatively easy because it runs

on standard Linux kernels and requires no special hard-

ware. Its atomic-update interface admits implementation

atop both conventional block storage as well as emerging

byte-addressable NVM, and thus it provides a smooth

transition path from the former to the latter. Finally,

AdvFS for Linux is not a research prototype. It is an

extensively modernized production-quality upgrade and

Linux port of DEC’s Tru64 file system, and it is sched-

uled for commercial release in March 2015 as part of HP

Storage appliances.

As described in Section 3, implementing O_ATOMIC

is straightforward in file systems that support per-file

writable snapshots [4, 12, 28, 32]. We believe that most

could implement O_ATOMIC and syncv without pro-

hibitive cost or complexity, which in turn would make it

much easier to write robust applications.

3 Implementation

AdvFS is a modern, update-in-place, journaling Linux

file system developed internally for commercial storage

appliances, designed to be scalable and performant for

multiple use cases and workloads. AdvFS for Linux

evolved from DEC’s Tru64 file system, which was open

sourced in 2008 [1, 10] and has been rewritten exten-

sively for modern storage devices, with enterprise scal-

ability and reliability. It supports a number of advanced

capabilities such as the ability to add/remove storage de-

vices online, support multiple file systems on the same

storage pool, and take clones (described below) and

snapshots at file, directory, and FS level.

Like other modern file systems that support storage

pools [35], AdvFS decouples the logical file hierarchy

from the physical storage. The logical file hierarchy layer

implements the naming scheme and POSIX-compliant

functions such as creating, opening, reading, and writing

files. The physical storage layer implements write-ahead

logging, caching, file storage allocation, file migration,

and physical disk I/O functions. AdvFS is comparable in

performance and feature richness to most modern Linux

file systems; due to space constraints we omit a detailed

description of AdvFS and comparisons with other mod-

ern FSes. We designed and implemented O_ATOMIC on

AdvFS and exposed it to applications through the con-

ceptually simple and familiar interface of open followed

by write/fsync or mmap/msync.

O_ATOMIC leverages a file clone feature developed

to support use cases such as virtual machine cloning.

A file clone is a writable snapshot of the file. AdvFS

implements file cloning utilizing a variant of copy-on-

write (COW) [21], illustrated in Figure 1. When a file

is cloned, a copy of the file’s inode is made. The inode

includes the file’s block map, a data structure that maps

logical file offsets to block numbers on the underlying

block device. Since the original file and its clone have

identical copies of the block map, they initially share the

same storage. When a shared block is eventually written

to, either in the original file or in its clone, a copy of the

block is made and remapped to a different location on the

block device. Since COW results in new data blocks be-

ing assigned to the original file, it has the downside that

it can fragment the original file; AdvFS supports online

defragmentation, which can mitigate this difficulty. Ef-

ficient clone implementation in AdvFS enabled a simple

but effective implementation of O_ATOMIC.

When a file is opened with O_ATOMIC, a clone of

the file is made (Figure 1(a)-(b)). This clone is not vis-

ible in the user visible namespace but exists in a hidden

namespace accessible by AdvFS. When the file is mod-

ified the changed blocks are remapped via COW (Fig-

ure 1(c)). The clone still points to the blocks of the file

at the time the file was opened. On a subsequent call to

fsync/msync the existing clone is deleted and a new

one is created to track the latest version of the file (Fig-

3
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Figure 1: File clones implement atomic updates.

ure 1(d)). On the close of a file opened with O_ATOMIC,

the original file is replaced with the clone.

If the system crashes, recovery of an O_ATOMIC file

is delayed until the file is accessed again. The file sys-

tem’s path name lookup function checks if the file has a

clone in the hidden name space; this is a very inexpen-

sive check that is performed on every file open. If a clone

exists, it is renamed to the user visible file and a handle

to it is returned (we require writable clones rather than

read-only snapshots because of this scenario). AdvFS’s

“lazy,” per-file recovery offers several attractions: Con-

sider, for example, a kernel panic that occurs while many

processes are atomically updating many files. Upon re-

boot, the file system will recover quickly because the

in-progress updates, interrupted by the crash, trigger no

recovery actions when the file system is mounted. The

net effect is that applications that do not need recovery

from interrupted atomic updates (e.g., applications that

are merely reading files) do not share the recovery-time

penalty incurred by the crash; only those applications

that benefit from application-consistent recovery pay the

penalty. Lazy recovery could in principle lead to the ac-

cumulation of hidden clones; it would be straightforward

to delete clones in the background.

While our support for atomic file durability for

O_ATOMIC is built atop the clone feature of AdvFS, al-

ternative implementations are also possible, such as us-

ing delayed journal writeback [20]. Using journal write-

back to achieve atomic durability has the disadvantage

that the size of a single-file atomic update is limited by

the size of the journal; another downside is that jour-

naling can lead to double writes of modified data. Our

approach does not have these limitations but requires

that the file system provide the ability to create per-file

clones. In our experience, implementing O_ATOMIC

atop a per-file cloning capability is relatively straight-

forward, and we believe that similar implementations on

other file systems that support cloning are possible. As

of this writing several open source and commercial file

systems support per-file clones [4, 12, 28, 32].

Applications that use the O_ATOMIC feature of

AdvFS must obey a few simple rules. The only new

rule is that overlapping or concurrent modifications to

a single file via multiple file descriptors void the failure-

atomicity guarantee and should be avoided. Due to vari-

ous subtleties it is not possible to define unambiguous se-

mantics in such cases, so different processes/applications

must coordinate their access to files. The remaining rules

are not specific to AdvFS or O_ATOMIC: As in other

file systems, multi-threaded concurrent accesses to a sin-

gle file must be “orderly,” in the sense that data races,

atomicity violations, and other concurrency bugs must

be avoided. As in other file systems, programmers must

ensure that data being committed via fsync or msync

is not being modified by other threads during those calls.

3.1 Multi-File Atomic Updates: syncv

In many situations it is necessary to failure-atomically

update several files. For example, the popular SQLite

database management system stores separate databases

in separate files, and it supports transactions that atom-

ically update multiple databases. To failure-atomically

implement the corresponding updates to the underlying

files on ordinary file systems, SQLite implements a com-

plex multi-journal mechanism [27]. Such application-

level logging can interact pathologically with analo-

gous mechanisms in the underlying file and storage sys-

tems [33]. Support for multi-file atomic updates in the

file system can simplify and streamline applications that

require this capability.

AdvFS supports multi-file atomic durability via its

new “syncv” mechanism, which is implemented as an

ioctl for compatibility with the stock Linux kernel.

Our syncv achieves failure atomicity by leveraging the

AdvFS journaling mechanism. AdvFS is a journaling file

system that employs write-ahead logging to ensure the

integrity of the file system. Modifications to the meta-

data are completely written to the journal before the ac-

tual changes are written to storage. The journal is written

4
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to storage at regular intervals. During crash recovery,

AdvFS reads the journal to confirm file system trans-

actions. All completed transactions are committed to

storage and uncompleted transactions are undone. The

number of uncommitted records in the journal, not the

amount of data in the file system, determines the speed

of recovery.

Our syncv takes as arguments an array of file de-

scriptors opened with O_ATOMIC and the size of the

array. Our O_ATOMIC implementation is the building

block for implementing syncv. As noted previously

O_ATOMIC deletes the existing clone and creates a new

one at the time of fsync/msync. In order to make

syncv atomic the delete operation on all of the files’

clones must be atomic. This is achieved using AdvFS’s

journaling sub-system. Metadata modifications required

to delete the clones are logged to the journal. The jour-

naling sub-system ensures that all of these changes are

atomically and durably committed. Apart from this the

recovery for syncv is no different from single files

opened with O_ATOMIC. Creation of new clones for the

files need not be made atomic in syncv because the

files and their new clones are mapped to the same stor-

age. Unlike prior work on single-file atomic durability

which uses journaling for capturing data changes [20],

our multi-file atomic durability mechanism syncv uses

the journal not for application data but only for the meta-

data changes needed to delete the clones. This metadata

change is quite small and hence allows our approach to

support a very large number of multiple file updates si-

multaneously. With the AdvFS default journal size of

128 MB, a single syncv call can atomically update at

least 256 files under worst-case conditions. Configuring

a larger journal will proportionately increase the number

of files that syncv can accommodate.

The 256-file limitation stems from a combination of

our current implementation of “clone delete,” the worst

case size of a single “clone delete,” and the size of the

AdvFS journal. AdvFS checkpoints the journal at every

quadrant, which limits journal transaction size to 25% of

the journal size. In a badly fragmented file system, the

delete of a single file (or clone) could occupy 128 KB in

the journal. So for a 128 MB journal, in the worst case

our current implementation of syncv can atomically up-

date (128× 25% × 1024× 1024)/(128× 1024) = 256

files. In principle we could support far more files per

syncv by using Delayed Delete Lists (DDL). A DDL is

a list maintained on non-volatile storage that is used to

asynchronously delete files. If “clone delete” were to use

DDL, then the journal footprint of each would be roughly

100 bytes and syncv would be able to handle hundreds

of thousands of files.

It is important to understand that clones are taken of

individual files only, not the entire file system nor any

subtree thereof. Cloning an individual file involves cre-

ating a copy of the file’s inode and an associated (hid-

den) dentry. These steps are atomic for the same reason

that ordinary file creation is atomic: they are journaled.

Atomic update of an individual file involves first flushing

changes to the file, then unlinking its clone, then creating

a new clone; these operations are journaled separately

and sequentially, so partial or full recovery of these three

sequential but disjoint operations always leaves the sys-

tem in a consistent state. Our syncv mechanism, which

operates on multiple files, obtains atomicity by leverag-

ing the file system journal to ensure, in REDO-log fash-

ion, that all of the per-file atomic updates in a specified

bundle are (eventually) performed.

4 Evaluation

We verify that AdvFS O_ATOMIC does indeed protect

the integrity of application data across updates in the

presence of crashes (Section 4.1), and we compare the

performance of our solution to the CMADD problem

with existing alternatives (Section 4.2).

4.1 Correctness

The O_ATOMIC data integrity guarantees rely upon two

realistic assumptions about underlying storage systems.

First, it must be possible to commit data to durable media

synchronously, which means that volatile write caches

in storage hardware must include enough standby power

to rescue their contents to durable media if power fails.

Second, we assume that writes of 512-byte sectors are

atomic. Given these preconditions, the O_ATOMIC fea-

ture of AdvFS should protect application data integrity

as advertised. We verify that it does so by injecting two

types of failure: crash points and power interruptions.

Crash points are manually inserted into the AdvFS

source code where the developers believe crashes are

most likely to cause trouble, e.g., before, during, and af-

ter atomic operations. When a particular crash point is

externally activated in a running instance of AdvFS, the

result is an immediate storage system shutdown followed

by a kernel panic, triggered from the specified crash point

in the file system source code. We complement crash-

point testing with sudden whole-system power interrup-

tions, because the former test specific developer hypothe-

ses about recovery whereas the latter strive to uncover

5
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surprising scenarios. Our power outage tests employ a

scriptable device that suddenly cuts power to a computer

without warning—the same effect as physically unplug-

ging the machine’s power cord.

The goal of both crash-point testing and power in-

terruptions is to cause “impossible” post-crash corrup-

tion. Our test suites repeatedly and intensively modify

files using write or mmap/STORE then call fsync or

msync, respectively, or syncv. The patterns of data

modifications are such that a defective implementation of

O_ATOMIC would likely introduce obvious evidence of

corruption following a crash. Finally, we trigger crashes

while our test suites are running. Our crash point-tests

ran against an enterprise-class RAID controller and our

whole-system power interruptions ran on an enterprise-

class SSD, both of which are described in Section 4.2.

AdvFS successfully survived over 400 power interrup-

tions and dozens of crash-point tests, with no evidence of

application data corruption. The expected kind of appli-

cation data corruption does occur when we inject failures

if O_ATOMIC is not used. For example, crashes during

append leave partial data appended and crashes during

seek/write sequences leave partial updates.

4.2 Performance

On file system benchmarks such as IOZONE [6], post-

mark [18] and MDTest [16], AdvFS performance is com-

petitive with other well-known file systems such as ext3,

ext4, and XFS; by most performance measures AdvFS is

within ±10% of other file systems. Due to space limi-

tations we omit these comparisons and focus on the per-

formance of atomic file updates.

We evaluate the performance of the new O_ATOMIC

feature via microbenchmarks that mimic a common use

case of fsync and also via “mesobenchmarks” that

compare a simple transactional key-value store built

atop failure-atomic msync with well-known alterna-

tives. Prior literature has documented the ease with

which failure-atomic writev/msync can be retrofitted

onto complex, mature, production software to improve

resilience and performance [3, 20, 29].

We ran our tests on two systems: a workstation and

an enterprise server. The workstation has two quad-

core 2.4 GHz Xeon E5620 processors and 12 GB of

1333 MHz DRAM and ran Linux kernel 2.6.32. We

installed AdvFS on the workstation’s enterprise-grade

120 GB SATA drive on a 3 Gbps controller. The SSD is

powerfail-safe because its write cache is backed by a su-

percapacitor. Prior to our experiments we “burned in” the

SSD by writing to the device at least 180 GB of data (i.e.,
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Figure 2: Microbenchmark results.

1.5× its rated capacity). Our enterprise server had twelve

1.8 GHz Xeon E5-2450L cores and 92 GB of DRAM; its

storage controller had a 1 GB battery-backed cache con-

figured as 90% write cache and a 1 TB 7200 RPM SAS

hard drive.

What overhead does O_ATOMIC entail compared to

operations on files opened without this flag? Our mi-

crobenchmark addresses this question in the context of

a common use case: using write to append data to a

file followed by fsync to commit the amendments to

durable media. Figure 2 presents median fsync laten-

cies for this operation on files opened with and without

O_ATOMIC on our two test machines. Our results show

that O_ATOMIC carries a constant overhead on the or-

der of 2 ms, which is clearly visible in Figure 2 for ap-

pends of up to 27 pages (512 KB). This overhead oc-

curs because the current implementation of O_ATOMIC

in AdvFS performs an uncached storage read in connec-

tion with creating an inode for the clone when fsync

is called. This is a simplification in our current imple-

mentation and clone creation times could be reduced by

copying in-core state rather than reading from storage.
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Server/RAID Workstation/SSD

insert replace delete insert replace delete

STL <map>/AdvFS 1.996 2.488 2.919 1.655 2.022 2.395

Kyoto Cabinet 1.2.76 4.711 2.990 4.660 4.088 2.590 4.007

SQLite 3.7.14.1 2.394 2.524 2.433 2.374 2.611 2.435

LevelDB 1.6.0 0.629 0.626 0.615 0.641 0.640 0.633

Table 1: Mesobenchmarks: Mean per-operation timings (milliseconds).

For large modifications, the roughly constant overhead of

O_ATOMIC becomes negligible (approximately 2–3.5%)

and we approach the rated write bandwidth of the SSD.

In other words, the price we pay for failure-atomicity is

modest for large updates.

Our “mesobenchmark” repeats the experiment in Sec-

tion 5.3 of our original failure-atomic msync paper [20],

which compares four transactional key-value stores:

SQLite [26], LevelDB [14], Kyoto Cabinet [13], and a

fourth contender implemented as a C++ Standard Tem-

plate Library (STL) <map> container that stores data in a

persistent heap backed by a file opened with O_ATOMIC

and updated with msync. Each of these key-value stores

performed the following transactional operations on one

thousand keys: first, insert all keys paired with random

1 KB values; next, replace the value associated with each

key with a different random value; and finally, delete all

of the keys, for a total of three thousand transactions.

Each of the above three steps visits keys in a different

random order, i.e., we randomly permute the universe of

keys before each step.

Table 1 presents our results, which are comparable to

those in our earlier work. LevelDB wins hands down,

with the STL <map> atop a memory-mapped file up-

dated with AdvFS failure-atomic msync placing sec-

ond. This is easy to understand: The red-black tree

beneath an STL <map> makes no attempt to mini-

mize the number of memory pages it modifies, which

strongly influences the performance of STL/AdvFS; by

contrast, LevelDB implements failure-atomic updates

with carefully crafted, compact log file writes. Our sim-

ple <map>-based key-value store shows that a persistent

heap based on atomic file update can very easily slide

beneath a rich, full-featured library of in-memory data

structures and algorithms—which takes roughly a dozen

lines of code in the present case. The net result is to trans-

form software with no failure resilience whatsoever into

software that can withstand process crashes, OS kernel

panics, and power outages. Our AdvFS-fortified <map>

furthermore achieves better performance than two far

more complex platforms designed to provide failure re-

silience with good performance. Our experience con-

vinces us that failure-atomic file update enables dramati-

cally simplified application software whose performance

rivals all but expertly streamlined code.

5 Conclusions

We have shown that a mechanism for consistent modifi-

cation of application durable data (CMADD) can be im-

plemented straightforwardly atop per-file cloning, a fea-

ture already available in AdvFS and in several other mod-

ern FSes. Our implementation of O_ATOMIC exposes

a simple interface to applications, makes file modifica-

tions via both write and mmap failure-atomic, avoids

double writes, and supports very large transactional up-

dates of application data. Furthermore, our syncv im-

plementation supports failure-atomic updates of applica-

tion data in multiple files. Our empirical results show

that the O_ATOMIC implementation in AdvFS preserves

the integrity of application data across updates in the

presence of both surgically inserted crashes and sudden

power interruptions. Our performance evaluation shows

that O_ATOMIC carries tolerable overheads, particularly

for large atomic updates.

Implementing a CMADD mechanism in a file sys-

tem facilitates adoption because it requires neither spe-

cial hardware nor modified OS kernels. We believe that

file systems should implement simple, general, robust

CMADD mechanisms, that many applications would ex-

ploit such a feature if it were widely available, and that

O_ATOMIC and syncv are convenient interfaces.
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Abstract
Distributed storage systems are increasingly transition-
ing to the use of erasure codes since they offer higher
reliability at significantly lower storage costs than data
replication. However, these codes tradeoff recovery per-
formance as they require multiple disk reads and network
transfers for reconstructing an unavailable data block. As
a result, most existing systems use an erasure code either
optimized for storage overhead or recovery performance.

In this paper, we present HACFS, a new erasure-coded
storage system that instead uses two different erasure
codes and dynamically adapts to workload changes. It
uses a fast code to optimize for recovery performance
and a compact code to reduce the storage overhead. A
novel conversion mechanism is used to efficiently up-
code and downcode data blocks between fast and com-
pact codes. We show that HACFS design techniques are
generic and successfully apply it to two different code
families: Product and LRC codes.

We have implemented HACFS as an extension to the
Hadoop Distributed File System (HDFS) and experimen-
tally evaluate it with five different workloads from pro-
duction clusters. The HACFS system always maintains a
low storage overhead and significantly improves the re-
covery performance as compared to three popular single-
code storage systems. It reduces the degraded read la-
tency by up to 46%, and the reconstruction time and
disk/network traffic by up to 45%.

1 Introduction

Distributed storage systems storing multiple petabytes of
data are becoming common today [4, 25, 2, 15]. These
systems have to tolerate different failures arising from
unreliable components, software glitches, machine re-
boots, and maintenance operations. To guarantee high
reliablity and availablity despite these failures, data is

∗Work done as an intern at IBM Research Almaden

replicated across multiple machines and racks. For ex-
ample, the Google File System [11] and the Hadoop Dis-
tributed File System [4] maintain three copies of each
data block. Although disk storage seems inexpensive to-
day, replication of the entire data footprint is simply in-
feasible at massive scales of operation. As a result, most
large-scale distributed storage systems are transitioning
to the use of erasure codes [3, 2, 15, 20], which provide
higher reliability at significantly lower storage costs.

The trade-off for using erasure codes instead of repli-
cating data is performance. If a data block is three-way
replicated, it can be reconstructed by copying it from
one of its available replicas. However, for an erasure-
coded system, reconstructing an unavailable block re-
quires fetching multiple data and parity blocks within the
code stripe, which results in significant increase in disk
and network traffic. Recent measurements on a Face-
book’s data warehouse cluster [19, 20] storing multiple
petabytes of erasure-coded data, required a median of
more than 180 Terabytes of data transferred to recover
from 50 machine-unavailability events per day.

This increase in the amount of data to be read and
transferred during recovery for an erasure-coded system
results in two major problems: high degraded read la-
tency and longer reconstruction time. First, a read to an
unavailable block requires multiple disk reads, network
transfers and compute cycles to decode the block. The
application accessing the block waits for the entire dura-
tion of this recovery process, which results in higher la-
tencies and degraded read performance. Second, a failed
or decommissioned machine, or a failed disk results in
significantly longer reconstruction time than in a repli-
cated system. Although, the recovery of data lost from
a failed disk or machine can be performed in the back-
ground, it severely impacts the total throughput of the
system as well as the latency of degraded reads during
the reconstruction phase.

As a result, the problem of reducing the overhead of
recovery in erasure-coded systems has received signifi-

1



214 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

cant attention in the recent past both in theory and prac-
tice [19, 2, 20, 15, 24, 3, 14, 26]. Most of the solutions
tradeoff between two dimensions: storage overhead and
recovery cost. Storage overhead accounts for the addi-
tional parity blocks for a coding scheme. Recovery cost
is the total number of blocks required to reconstruct a
data block after failure.

In general, most production systems use a single era-
sure code, which either optimizes for recovery cost or
storage overhead. For example, Reed-Solomon [21]
is a popular family of codes used in Google’s Colos-
susFS [2], Facebook’s HDFS [3], and several other stor-
age systems [20, 25, 16]. The Reed-Solomon code used
in ColossusFS has a storage overhead of 1.5x, while it
requires six disk reads and network transfers to recover a
lost data block. In contrast, the Reed-Solomon code used
in HDFS reduces the storage overhead to 1.4x, but has a
recovery cost of ten blocks. The other popular code fam-
ily is the Local Reconstruction Codes (LRC) [15, 24, 26],
and has similar tradeoffs.

In this paper, we present Hadoop Adaptively-Coded
Distributed File System (HACFS), a new erasure-coded
storage system, which instead uses two different erasure
codes from the same code family. It uses a fast code
with low recovery cost and a compact code with low stor-
age overhead. It exploits the data access skew observed
in Hadoop workloads [9, 7, 22, 5] to decide the initial
encoding of data blocks. The HACFS system uses the
fast code to encode a small fraction of the frequently ac-
cessed data and provide overall low recovery cost for the
system. It uses the compact code to encode the major-
ity of less frequently accessed data blocks and maintain
a low and bounded storage overhead.

After initial encoding, the HACFS system dynami-
cally adapts to workload changes by using two novel
operations to convert data blocks between the fast and
compact codes. Upcoding blocks initally encoded with
fast code into compact code enables the HACFS system
to reduce the storage overhead. Similarly, downcoding
data blocks from compact code to fast code representa-
tion lowers the overall recovery cost of the HACFS sys-
tem. The upcode and downcode operations are very effi-
cient and only update the associated parity blocks while
converting blocks between the two codes.

We have designed and implemented HACFS as an
extension to the Hadoop Distributed File System [3].
We find that adaptive coding techniques in HACFS are
generic and can be applied to different code families.
We successfully implement adaptive coding in HACFS
with upcode and downcode operations designed for two
different code families: Product codes [23] and LRC
codes [15, 24, 26]. In both cases, HACFS with adaptive
coding using two codes outperforms HDFS with a single
Reed-Solomon [2, 3] or LRC code [15]. We evaluate our

design on an HDFS cluster with workload distributions
obtained from production environments at Facebook and
four different Cloudera customers [9].

The main contributions of this paper are as follows:

• We design HACFS, a new erasure-coded storage
system that adapts to workload changes by using
two different erasure codes - a fast code to optimize
recovery cost of degraded reads and reconstruction
of failed disks/nodes, and a compact code to provide
low and bounded storage overhead.

• We design a novel conversion mechanism in
HACFS to efficiently up/down-code data blocks be-
tween the two codes. The conversion mechanism
is generic and we implement it for two code fami-
lies – Product and LRC codes – popularly used in
distributed storage systems.

• We implement HACFS as an extension to HDFS
and demonstrate its efficacy using two case studies
with Product and LRC family of codes. We evaluate
HACFS by deploying it on a cluster with real-world
workloads and compare it against three popular sin-
gle code systems used in production. The HACFS
system always maintains a low storage overhead,
while improving the degraded read latency by 25-
46%, reconstruction time by 14-44%, and network
and disk traffic by 19-45% during reconstruction.

The remainder of the paper is structured as follows.
Section 2 motivates HACFS by describing the different
tradeoffs for erasure-coded storage systems and HDFS
workloads. Section 3 and 4 present the detailed descrip-
tion of HACFS design and implementation. Finally, we
evaluate HACFS design techniques in Section 5, and fin-
ish with related work and conclusions.

2 Motivation

In this section, we describe the different failure modes
and recovery methods in erasure-coded HDFS [3]. We
discuss how the use of erasure codes within HDFS re-
duces storage overhead, however it increases the recov-
ery cost. This motivates the need to design HACFS,
which exploits the data access characteristics of Hadoop
workloads to achieve better recovery cost and storage ef-
ficiency than the existing HDFS architecture.

Failure Modes and Recovery in HDFS. HDFS has
different failure modes, for example, block failure, disk
failure, and a decommisioned or failed node. The causes
of these failures may be diverse such as hardware fail-
ures, software glitches, maintenance operations, rolling
upgrades that take certain percentage of nodes offline,
and hot-spot effects that overload particular disks. Most
of these failures typically result in the unavailability of
a single block within an erasure code stripe. An erasure
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Figure 1: Degraded reads for HDFS block failure: The
figure shows a degraded read for an HDFS client read-
ing an unavailable block B1. The HDFS client retrieves
available data and parity blocks and decodes the block
B1.

code stripe is composed of multiple data blocks striped
across different disks or nodes in an HDFS cluster. Over
98% of all failure modes in Facebook’s data-warehouse
and other production HDFS clusters require recovery of
a single block failure [20, 19]. Another 1.87% have two
blocks missing, and just less than 0.05% are three or
more block failures. As a result, most recent research on
erasure-coded storage systems has focused on reducing
the recovery cost of single block failures [24, 20, 15, 16].

The performance of an HDFS client or a MapReduce
task can be affected by HDFS failures in two ways: de-
graded reads and reconstruction of an unavailable disk or
node. Figure 1 shows a degraded read for an HDFS client
reading an unavailable data block B1, which returns an
exception. The HDFS client recovers this block by first
retrieving the available data and parity blocks within the
erasure-code stripe from other DataNodes. Next, the
HDFS client decodes the block B1 from the available
blocks. Overall, the read to a single block B1 is delayed
or degraded by the time it takes to perform several disk
reads and network transfers for available blocks, and the
time for decoding. Reed-Solomon codes used in two pro-
duction filesystems - Facebook’s HDFS [3] and Google
ColossusFS [2] - require between 6-10 network transfers
and several seconds for completing one degraded read
(see Section 5.3).

A failed disk/node or a decomissioned node typically
requires recovery of several lost data blocks. When a
DataNode or disk failure is detected by HDFS, several
MapReduce jobs are launched to execute parallel recov-
ery of lost data blocks on other live DataNodes. HDFS
places data blocks in an erasure-code stripe on different
disks and nodes. As a result, the reconstruction of most
disk and node failures effectively requires recovery of
several single block failures similar to degraded reads.

Figure 2 shows the network transfers required by the
reconstruction job running on live DataNodes. An HDFS
client trying to access lost blocks B1 and B2 during the
reconstruction phase encounters degraded reads. Over-

DataNode

B1

Reconstruction Job

HDFS

B2

DataNode DataNode

B1 B2

Figure 2: Reconstruction for HDFS node/disk fail-
ure or decomissioned nodes: The figure shows a re-
construction MapReduce job launched to recover from
a disk failure on an HDFS DataNode. The reconstruc-
tion job executes parallel recovery of the lost blocks B1

and B2 on other live DataNodes by retrieving available
data and parity blocks. An HDFS client accessing a lost
block encounters degraded reads during the reconstruc-
tion phase.

all, the reconstruction of lost data from a failed disk or
node results in several disk reads and network transfers,
and can take from tens of minutes to hours for complete
recovery (see Section 5.4).

Erasure Coding Tradeoffs. Figure 3 show the recov-
ery cost and storage overhead for Reed-Solomon family
of codes widely used in production systems [2, 3, 25].
In addition, it also shows the recovery cost and stor-
age overhead of three popular erasure-coded storage sys-
tems: Google ColossusFS [2], Facebook HDFS [3], and
Microsoft Azure Storage [15].

Google ColossusFS and Facebook HDFS use two dif-
ferent Reed-Solomon codes - RS(6, 3) and RS(10, 4)-
that encode six and ten data blocks within an erasure-
code stripe with three and four parity blocks respectively.
As a result, they have a recovery cost of six and ten
blocks, and storage overheads of 1.5x and 1.4x respec-
tively. Microsoft Azure Storage uses an LRC code -
LRCcomp, which reduces the storage overhead to 1.33x
and has a similar recovery cost of six blocks as Google
ColossusFS. It encodes twelve data blocks with two
global and two local parity blocks (see Section 3.3 for
more detailed description on LRC codes). In contrast,
three-way data replication provides recovery cost of one
block, but a higher storage overhead of 3x. In general,
most erasure-codes including Reed-Solomon and LRC
codes trade-off between recovery cost and storage over-
head, as shown in Figure 3.

In this work, we focus on the blue region in Figure 3
to achieve recovery cost for HACFS less than that of
both Reed-Solomon and LRC codes used in ColossusFS
and Azure. We further exploit the data access skew in
Hadoop workloads to maintain a low storage overhead
for HACFS and keep it bounded between the storage
overheads of these two systems.
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Figure 3: Recovery Cost vs. Storage Overhead: The
figure shows the tradeoff between recovery cost and stor-
age overhead for the popular Reed-Solomon family of
codes. It also shows three production storage systems
each using single erasure code.

Data Access Skew. Data access skew is a common
characteristic of Hadoop storage workloads [9, 7, 22, 5].
Figure 4 shows the frequency of data accessed in pro-
duction Hadoop clusters at Facebook and four different
Cloudera customers [9]. All workloads show skew in
data access frequencies. The majority of the data vol-
ume is cold and accessed only a few times. Similarly, the
majority of the data accesses go to a small fraction of
data, which is hot. In addition, HDFS does not allow in-
place block updates or overwrites. As a result, the read
accesses primarily characterize this data access skew.

Why HACFS? The HACFS design aims to achieve the
following goals:

• Fast degraded reads to reduce the latency of reads
when accessing lost or unavailable blocks.

• Low reconstruction time to reduce the time for
recovering from failed disks/nodes or decommis-
sioned nodes, and the associated disk and network
traffic.

• Low storage overhead that is bounded under practi-
cal system constraints and adjusted based on work-
load requirements.

As shown in Figure 3, the use of a single erasure code
tradesoff recovery cost for storage overhead. To achieve
the above design goals, the HACFS system uses a combi-
nation of two erasure codes and exploits the data access
skew within the workload. We next describe HACFS de-
sign in more detail.
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Figure 4: Data Access Skew in Hadoop Workloads:
The figure shows the data access distributions of Hadoop
workloads collected from production clusters at Face-
book (FB) and four different Cloudera customers (CC-
1,2,3,4). Both axes are on log scale.

3 System Design

In this section, we first describe how the HACFS system
adapts between the two different codes based on work-
load characteristics to reduce recovery cost and storage
overhead. We next discuss the application of HACFS’s
adaptive coding to two different code families: Product
codes with low recovery cost and LRC codes with low
storage overhead.

3.1 Adaptive Coding in HACFS
The HACFS system is implemented as an extension to
the HDFS-RAID module [3] within HDFS. We show our
extensions to HDFS-RAID as three shaded components
in Figure 5. The adaptive coding module maintains the
system states of erasure-coded data and manages state
transitions for ingested and stored data. It also interfaces
with the erasure coding module, which implements the
different coding schemes.

System States. The adaptive coding module of
HACFS manages the system state. The system state
tracks the following file state associated with each
erasure-coded data file: file size, last modification time,
read count and coding state. The file size and last modifi-
cation time are attributes maintained by HDFS, and used
by HACFS to compute the total data storage and write
age of the file. The adaptive coding module also tracks
the read count of a file, which is the total number of read
accesses to the file by HDFS clients. The coding state of
a file represents if it is three-way replicated or the erasure
coding scheme used for it. The file state can be updated
on a create, read or write operation issued to the file from
an HDFS client.

The adaptive coding module also maintains a global
state, which is the total storage used for data and par-
ity. Every block in a replicated data file is replicated at
three different nodes in the HDFS cluster and the two
replicas account for the parity storage. In contrast, every
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Figure 5: HACFS Architecture: The figure shows the
different components of the HACFS architecture imple-
mented as extensions to HDFS in the shaded modules.

block in an erasure-coded data file has exactly one copy.
Each erasure-coded file is split into different erasure code
stripes, with blocks in each stripe distributed across dif-
ferent nodes in the HDFS cluster. Each erasure-coded
data file also has an associated parity file whose size is
determined by the coding scheme. The global state of the
system is updated periodically when the adaptive coding
module initiates state transitions for erasure-coded files.
A state transition corresponds to a change in the coding
state of a file and is invoked by using the following inter-
faces to the erasure-coding module.

Coding Interfaces. As shown in Table 1, the erasure
coding module in HACFS system exports four major in-
terfaces for coding data: encode, decode, upcode and
downcode. The encode operation requires a data file and
coding scheme as input, and generates a parity file for
all blocks in the data file. The decode operation is in-
voked on a degraded read for a block failure or as part of
the reconstruction job for a disk or node failure. It also
requires the index of the missing or corrupted block in
a file, and reconstructs the lost block from the remaining
data and parity blocks in the stripe using the input coding
scheme.

The adaptive coding module invokes upcode and
downcode operations to adapt with workload changes
and convert a data file representation between the two
coding schemes. As we show later in Section 3.2 and
3.3, both of these conversion operations only update the
associated parity file when changing the coding scheme
of a data file. The upcode operation transforms data from
a fast code to a compact code representation, thus reduc-
ing the size of the parity file to achieve lower storage
overhead. It does not require reading the data file and
is a parity-only transformation. The downcode operation
transforms from a compact code to a fast code represen-
tation, thus reducing the recovery cost. It requires read-

Function Input Output
encode data file, codec parity file
decode data file, parity file, codec,

lost block index
recovered block

upcode parity file, original fast
codec, new compact codec

parity file encoded
with compact codec

downcode data file, parity file, orig-
inal compact codec, new
fast codec

parity file encoded
with fast codec

Table 1: The HACFS Erasure Coding Interfaces

ing both data and parity files, but only changes the parity
file. We next explain how HACFS uses these interfaces
for transitioning files between different coding schemes
based on the file state and global system state.

State Transitions. The HACFS system extends
HDFS-RAID to use different erasure coding schemes
for files with different read frequency, thus achieving
the low recovery cost of a fast code and the low storage
overhead of a compact code. We first describe the basic
state machine used in HDFS-RAID and then elaborate
on the HACFS extensions.

As shown in Figure 6(a), a recently created file in
HDFS-RAID is classified as write hot based on its last
modified time and therefore three-way replicated. The
HDFS-RAID process (shown as RaidNode in Figure 5)
scans the file system periodically to select write cold files
for erasure coding. It then schedules several MapRe-
duce jobs to encode all such candidate files with a Reed-
Solomon code [3]. After encoding, the replication level
of these files is reduced to one and the coding state
changes to Reed-Solomon. As HDFS only supports ap-
pends to files, a block is never overwritten and these files
are only read after being erasure-coded.

Figure 6(b) shows the first extension of the HACFS
system. It replicates write hot files similar to HDFS-
RAID. In addition, HACFS also accounts for the read
accesses to data blocks in a file. All write cold files are
further classified based on their read counts and encoded
with either of the two different erasure codes. Read hot
files with a high read count are encoded with a fast code,
which has a low recovery cost. Read cold files with a low
read count are encoded with a compact code, which has
a low storage overhead.

However, a read cold file can later get accessed and
turn into a read hot file, thereby requiring low recovery
cost. Similarly, encoding all files with the fast code may
result in a higher total storage overhead for the system.
As a result, the HACFS system needs to adapt to the
workload by converting files between fast and compact
codes (as shown in Figure 6(c)). The conversion for a
file is guided by its own file state (read count) as well
as the global system state (total storage). When the to-
tal storage consumed by data and parity blocks exceeds a
configured system storage bound, the HACFS system se-
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Figure 6: Execution States: The figure shows the functional state machines for HDFS and two extensions for HACFS.
Transitions between different states are triggered by the adaptive coding module, which invokes the coding interface
exported by the erasure-coding module in HACFS.

PCfast PCcomp LRCfast LRCcomp

DRC 2 5 2 6
RC 2 5 3.25 6.75
SO 1.8x 1.4x 1.66x 1.33x
MTTF 1.4 × 1012 2.1 × 1011 6.1 × 1011 8.9 × 1010

Table 2: Fast and Compact Codes: This table shows the
two codes in the Product and LRC code families used for
adaptive coding in HACFS (DRC: Degraded Read Cost,
RC: Reconstruction Cost, SO: Storage Overhead, MTTF:
Mean-Time-To-Failure in years).

lects some files encoded with fast code and upcodes them
to the compact code. Similarly, it selects some repli-
cated files and encodes them directly into the compact
code. The HACFS system selects these files by first sort-
ing them based on their read counts and then upcodes/en-
codes the files with lowest read counts into compact code
to make the total storage overhead bounded again.

The downcode operation transitions a file from com-
pact to fast code. As a result, it reduces the recovery
cost of a future degraded read to a file, which was ear-
lier compact-coded but has been recently accessed. As
shown in Figure 4, the data access skew for Hadoop
workloads result in a small fraction of read hot files
and large fraction of read cold files. This skew allows
HACFS to reduce the recovery cost by encoding/down-
coding the read hot files with a fast code and reduces the
storage overhead by encoding/upcoding a large fraction
of read cold files with a compact code.

Fast and Compact Codes. The adaptive coding tech-
niques in HACFS are generic and can be applied to dif-
ferent code families. We demonstrate its application to
two code families: Product codes [23] with low recov-
ery cost and LRC codes [15, 24] with low storage over-
head. Table 2 shows the three major characteristics use-
ful for selecting fast and compact codes from a code fam-
ily. The fast code must have a low recovery cost for
degraded reads and reconstruction. The compact code
must have a low storage overhead. Finally, the reliability
of both codes measured in terms of mean-time-to-failure
for data loss must be greater than that for three-way repli-
cation (3.5 × 109 years) [13]. In addition, the HACFS

system requires a storage bound, which can be set from
the practical requirements of the system or can be opti-
mally tuned close to the storage overhead of the compact
code. We use a storage bound of 1.5x with Product codes
and 1.4x with LRC codes in the two case studies of the
HACFS system.

We next describe the design of the erasure cod-
ing module in HACFS for Product and LRC codes in
Section 3.2 and 3.3 respectively.

3.2 Product Codes
We now describe the construction and coding interfaces
of Product codes used in the HACFS system.

Encoding and Decoding. Figure 7 shows the con-
struction of a Product code, PCfast or PC(2 × 5),
which has a stripe with two rows and five columns of
data blocks. The encode operation for PCfast retrieves
the ten data blocks from different locations in the HDFS
cluster and generates two horizontal, five vertical and one
global parity. The horizontal parities are generated by
transferring the five data blocks in each row and perform-
ing an XOR operation on them. A vertical parity only re-
quires two data block transfers in a column. The global
parity can be constructed as an XOR of the two horizon-
tal parities. The decode operation for a Product code is
invoked on a block failure. A single failure in any data or
parity block of the PCfast code requires only two block
transfers from the same column to reconstruct it.

As a result, the PCfast code can achieve a very low
recovery cost of two block transfers at the cost of a
high storage overhead of eight parity blocks for ten data
blocks (1.8x). We choose the PCcomp or PC(6 × 5) as
the compact code (see Figure 7), which provides a lower
storage overhead of 1.4x and higher recovery cost of five
block transfers (see Table 2). In addition, both fast and
compact Product codes have reliability better than three-
way replication. We select a storage bound of 1.5x for
the HACFS system with these Product codes since it is
close to the storage overhead of the PCcomp code. This
bound also matches the practical limits prescribed by the
Google ColossusFS [2], which uses the Reed-Solomon
RS(6, 3) code similarly optimized for recovery cost.
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Figure 7: Product Code - Upcode and Downcode Op-
erations: The figure shows the upcode and downcode
operations on the data and parity blocks for Product
codes. The shaded horizontal parity blocks in the out-
put code are only computed, and the remaining blocks
remain unchanged from the input code.

Upcoding and Downcoding. Figure 7 shows upcod-
ing from PCfast to PCcomp and downcoding from
PCcomp to PCfast codes. Upcode is a very efficient
parity-only conversion operation for Product codes. All
data and vertical parity blocks remain unchanged in up-
coding from the PCfast to PCcomp code. Further, it
only performs XOR over the old horizontal and global
parity blocks of the three PCfast codes to compute the
new horizontal and global parity blocks of the PCcomp

code. As a result, the upcode operation does not require
any network transfers of the data blocks from the three
PCfast codes to compute the new parities in the PCcomp

code.
The downcode operation converts a PCcomp code into

three PCfast codes. Only the horizontal and global par-
ities change between the PCcomp code and the three
PCfast codes. However, computing the horizontal and
global parities in the first two PCfast codes requires net-
work transfers and XOR operations over the data blocks
in the two horizontal rows of the PCcomp code. The
horizontal and global parities in the third PCfast code
is computed from the those of the old PCcomp code
and those newly computed ones of the first two PCfast

codes. This optimization saves on the network transfers
of two horizontal rows of data blocks. Similar to the up-
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Figure 8: LRC Code - Upcode and Downcode Op-
erations: The figure shows the upcode and downcode
operations with data and parity blocks for LRC codes.
The shaded blocks are only computed during these oper-
ations, and remaining blocks remain unchanged.

code operation, data and vertical parity blocks in the re-
sulting three PCfast codes remain unchanged from the
PCcomp code and do not require any network transfers.

3.3 LRC Codes
We now describe the construction and coding inter-
faces of the erasure coding module using LRC codes in
HACFS.

Encoding and Decoding. Figure 8 shows the con-
struction of the LRCfast or LRC(12, 6, 2), with twelve
data blocks, six local parities, and two global parities.
The encode operation for an LRC code computes the lo-
cal parities by performing an XOR over a group of data
blocks. Two data blocks in each column form a different
group in LRCfast. The two global parities are computed
by performing a Reed-Solomon encoding over all of the
twelve data blocks [24]. The Reed-Solomon encoding
of the global parities has properties similar to the LRC
code construct used in Microsoft Azure Storage [15] for
the most prominent single block failure scenarios. The
decode operation for LRCfast code is similar to Product
Codes for data and local parity blocks. Any single fail-
ure in data or local parity blocks for LRCfast requires
two block transfers from the same column to reconstruct
it. However, a failure in a global parity block requires
all twelve data blocks to reconstruct it using the Reed-
Solomon decoding.

Degraded reads from an HDFS client only occur on
data blocks, while reconstructing a failed disk or node
can also require recovering lost global parity blocks.
As a result, the degraded read cost for the fast code -
LRCfast or LRC(12, 6, 2) - is very low at two blocks
(see Table 2). Unlike Product codes, the average re-
construction cost for the LRCfast code is asymmetri-
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cal to its degraded read cost since reconstruction re-
quires twelve block transfers for global parity failures:
(12+6)∗2+2∗12

12+6+2 or 3.25 blocks. However, the storage over-
head for an LRCfast code is 1.66x corresponding to
eight parity blocks required for twelve data blocks.

We use the LRCcomp or LRC(12, 2, 2) code used in
Azure [15] as the compact code for adaptive coding in
HACFS. The LRCcomp code has a lower storage over-
head of 1.33x due to fewer local parities. However, each
of its two local parities is associated with a group of six
data blocks. Thus, recovering a lost data block or local
parity requires six block transfers from its group in the
LRCcomp code. The global parities require twelve data
block transfers for recovery. As a result, the LRCcomp

code also has a lower recovery cost for degraded reads
than its reconstruction cost similar to the LRCfast code.
Both LRC codes are more reliable than three-way repli-
cation. We select a storage bound of 1.4x for the HACFS
system with LRC codes since it is close to the storage
overhead of LRCcomp code and lower than HACFS with
Product codes.

Upcoding and Downcoding. Upcode and downcode
operations for Product codes require merging three
PCfast codes into a PCcomp code and splitting a
PCcomp code into three PCfast codes respectively. The
LRC codes can be upcoded and downcoded in a similar
manner. However, such upcoding and downcoding with
LRC codes requires several data block transfers to com-
pute the new local and global parities. As a result, we use
a more efficient code collapsing technique for the LRC
upcode and downcode operations. This does not require
computing the global parities again because collapsing
converts exactly one LRCfast code to one LRCcomp

code (and reverse for downcoding).

Figure 8 shows the LRC upcode operation by comput-
ing the new local parities in LRCcomp code and preserv-
ing the global parities from the LRCfast code. The two
local parities in the LRCcomp code are computed as an
XOR over three local parities in the LRCfast code. As
a result, the HACFS system requires only six network
transfers to compute the two new local parities of the
LRCcomp code in an upcode operation. The downcode
operation computes two of the three new local parities
in LRCfast code from the data blocks in the individual
columns of the LRCcomp code. The third local parity
is computed by performing an XOR over the two new
local parities and the old local parity in the LRCcomp

code. Overall, the downcode operation requires ten block
transfers for computing the new local parities. The global
parities remain unchanged and do not require any net-
work transfers in the downcode operation as well.

4 Implementation

We have implemented HACFS as an extension to the
HDFS-RAID [3] module in the Hadoop Distributed File
System (HDFS). The HDFS-RAID module is imple-
mented by Facebook to support a single erasure code for
distributed storage in an HDFS cluster. Our implementa-
tion of HACFS spans nearly 2 K lines of code, contained
within the HDFS-RAID module, and requires no modi-
fication to other HDFS components such as the NameN-
ode or DataNode.
Erasure Coding in HDFS. The HDFS-RAID module
overlays erasure coding on top of HDFS and runs as a
RaidNode process. The RaidNode process periodically
queries the NameNode for new data files that need to
be encoded and for corrupted files that need to be re-
covered. The RaidNode launches a MapReduce job to
compute the parity files associated with data files on dif-
ferent DataNodes for the encode operation. The decode
operation is invoked as part of a degraded read or the re-
construction phase.

A read from an HDFS client requests the block con-
tents from a DataNode. A degraded read can occur due
to failures on DataNodes such as a CRC check error.
In those cases, the HDFS client queries the RaidNode
for locations of the available blocks in the erasure-code
stripe required for recovery. The client then retrieves
these blocks and performs decoding itself to recover the
failed block. The recovered block is used to serve the
read request, but it is not written back to HDFS since
most degraded reads are caused by transient failures that
do not necessarily indicate data loss [20, 24].

When a disk or node failure is detected, the Name-
Node updates the list of corrupted blocks and lost files.
The RaidNode then launches two MapReduce recon-
struction jobs, one to recover lost data blocks and the
other for lost parity blocks. The reconstruction job re-
trieves the available blocks for decoding, recovers the
lost blocks using the decode operation, writes the recov-
ered blocks to HDFS, and informs the NameNode of suc-
cessful recovery. If there is a file which has many errors
and can not be recovered, then it is marked as perma-
nently lost.
HACFS and Two Erasure Codes. Figure 5 shows the
three major components of HACFS implementation: era-
sure coding module, system states and the adaptive cod-
ing module. In addition, we also implement a fault injec-
tor to trigger degraded reads and data reconstruction.

The HDFS-RAID only supports a single Reed-
Solomon erasure code for encoding data. We implement
two new code families as part of the HACFS erasure cod-
ing module: Product and LRC codes. The erasure coding
module in HACFS exports the same encode/decode in-
terfaces as HDFS-RAID. In addition, the erasure coding
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module also provides two new upcode/downcode inter-
faces to the extended state machine implemented in the
adaptive coding module of HACFS. The upcode opera-
tion either merges three fast codes for Product codes or
collapses one fast code for LRC codes into a new com-
pact code of smaller size. Downcoding performs the re-
verse sequence of steps. Both operations change the cod-
ing state of the data file and reduce its replication level to
one.

The adaptive coding module tracks the system states
and invokes the different coding interfaces. As desribed
earlier, the HDFS-RAID module selects the three-way
replicated files which are write cold based on their last
modification time for encoding. The extended state ma-
chine implemented as part of the adaptive coding module
in HACFS further examines these candidate files based
on their read counts. It retrieves the coding state of all
files classified as read cold and launches MapReduce
jobs to upcode them into the compact code. Similarly,
if the global system storage exceeds the bound, it up-
codes the files with the lowest read counts into the com-
pact code. If the global system storage is lower than the
bound or a cold file has been accessed, the adaptive cod-
ing module downcodes the file into the fast code and also
updates its coding state.

On a disk or node failure, the RaidNode in HACFS
launches MapReduce jobs to recover lost data and par-
ity blocks similar to HDFS-RAID. It prioritizes the jobs
for reconstructing data over parities to quickly restore
data availability for HDFS clients. There are four dif-
ferent types of reconstruction jobs in HACFS, which re-
cover data and parity files encoded with fast and compact
codes. Data files encoded with a fast code have a lower
recovery cost, but they are also fewer in number than
compact-coded data files. As a result, the reconstruc-
tion of data files encoded with a fast code is prioritized
first among all reconstruction jobs. This prioritization
also helps to reduce the total number of degraded reads
during the reconstruction phase since fast-coded files get
accessed more frequently.

We also implement a fault injector outside HDFS to
simulate different modes of block, disk and node failures
on DataNodes. The fault injector deletes a block from the
local file system on a DataNode, which is detected by the
HDFS DataNode as a missing block, and triggers a de-
graded read when an HDFS client tries to access it. The
fault injector simulates a disk failure by deleting all data
on a given disk of the target DataNode and then restart-
ing the corresponding DataNode process. A node failure
is injected by killing the target DataNode process itself.
In both disk and node failure, the NameNode updates the
list of lost blocks, and then the RaidNode launches the
MapReduce jobs for reconstruction.

5 Evaluation

We evaluate HACFS’s design techniques along three dif-
ferent axes: degraded read latency, reconstruction time
and storage overhead.

5.1 Methods
Experiments were performed on a cluster of eleven dif-
ferent nodes, each of which is equipped with 24 Intel
Xeon E5645 CPU cores running at 2.4 GHz, six 7.2 K
RPM disks each of 2 TB capacity, 96 GB of memory, and
1 Gbps network link. The systems run Red Hat Enter-
prise Linux 6.5 and HDFS-RAID [3]. We use the default
HDFS filesystem block size of 64 MB.

The HACFS system uses adaptive coding with fast
and compact codes from Product and LRC code fami-
lies. We refer these two different systems as: HACFS-
PC using PCfast and PCcomp codes, and HACFS-
LRC using LRCfast and LRCcomp codes. We compare
these two HACFS systems against three HDFS-RAID
systems using exactly one of these codes for erasure
coding: Reed-Solomon RS(6, 3) code, Reed-Solomon
RS(10, 4) code, and LRC(12, 2, 2) or LRCcomp code.
These three codes are used in production storage sys-
tems: RS(6, 3) used in Google Colossus FS [2],
RS(10, 4) used in Facebook HDFS-RAID [3], and
LRCcomp used in Microsoft Azure Storage [15]. We
configure the storage overhead bound for HACFS-PC
and HACFS-LRC systems as 1.5x (similar to Colossus
FS) and 1.4x (similar to Facebook’s HDFS-RAID) re-
spectively.

We use the default HDFS-RAID block placement
scheme to evenly distribute data across the cluster en-
suring that no two blocks within an erasure code stripe
reside on the same disk. We measure the degraded read
latency by injecting single block failures (as described
in Section 4) for a MapReduce grep job that is both net-
work and I/O intensive. We measure the reconstruction
time by deleting all blocks on a disk. The block place-
ment scheme ensures that the lost disk does not have two
blocks from the same stripe. As a result, the NameNode
starts the reconstruction jobs in parallel using the remain-
ing available disks. We report the completion time and
network bytes transferred for reconstruction jobs aver-
aged over five different executions.

We use five different workloads collected from pro-
duction Hadoop clusters in Facebook and four Cloudera
customers [9]. Table 3 shows the distribution of each
workload: number of files accessed, percentage of files
accounting for 90% of the total accesses, percentage of
data volume corresponding to such files, and percentage
of reads in all accesses to such files.

5.2 System Comparison
HACFS improves degraded read latency, reconstruction
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HACFS-PC HACFS-LRC
Colossus FS HDFS-RAID Azure Colossus FS HDFS-RAID Azure

Degraded Read Latency 25.2% 46.1% 25.4% 21.5% 43.3% 21.2%
Reconstruction Time 14.3% 43.7% 21.4% -3.1% 32.2% 5.6%

Storage Overhead 2.3% -4.7% -10.2% 7.7% 1.1% -4.2%

Table 4: System Comparison. The table shows the percentage improvement of two HACFS systems using Product
and LRC codes for recovery performance and storage overhead over three single code systems: Google ColossusFS
using RS(6, 3), Facebook HDFS-RAID using RS(10, 4), and Microsoft Azure Storage using LRCcomp codes.

Workload Files Hot Files % Hot Data % Hot Reads
CC1 20.1K 1.2K 5.9 86.1
CC2 10.2K 1.6K 15.7 75.9
CC3 2.1K 1.1K 52.4 75.5
CC4 5.2K 1.4K 26.9 85.2
FB 802K 103K 12.8 90.2

Table 3: Workload Characteristics: The table shows the dis-
tributions of five different workloads from Hadoop clusters de-
ployed at four different Cloudera customers (CC1/2/3/4) and
Facebook (FB).

time, and provides low and bounded storage overhead.
We begin with a high-level comparison of HACFS us-
ing adaptive coding on Product and LRC codes with
three single code systems: ColossusFS, HDFS-RAID
and Azure.

Degraded Read Latency. Table 4 shows the percent-
age improvement of adaptive coding in HACFS with
Product and LRC codes averaged over five different
workloads. HACFS reduces the degraded latency by 25-
46% for Product codes and 21-43% for LRC codes com-
pared to three single-coded systems. This improvement
in HACFS primarily comes from the use of fast codes
(PCfast and LRCfast) for hot data, which is primarily
dominated by read accesses (see Table 3). As a result,
the degraded read latency of HACFS is lower than all of
the three other production systems relying on RS(6, 3),
RS(10, 4) and LRCcomp codes. We describe these re-
sults in more detail for each of the five different work-
loads in Section 5.3.

Reconstruction Time. HACFS improves the recon-
struction time to recover from a disk or node failure by
14-43% for Product codes and up to 32% for LRC codes.
The reconstruction time is dominated by the volume of
data and parity blocks lost in a disk or node failure. The
fast and compact Product codes used in HACFS have a
lower reconstruction cost than the two LRC codes. As
described in Section 3.3, this is because LRC codes have
a higher recovery cost for failures in local and global par-
ity blocks than data blocks. As a result, the HACFS sys-
tem with LRC codes takes slightly longer to reconstruct
a lost disk than ColossusFS, which uses the RS(6, 3)
code with a symmetric cost to recover from data and par-
ity failures. We discuss these results in more detail in

Figure 9: Degraded Read Latency: The figure shows
the degraded read latency and storage overhead for two
HACFS systems and three single code systems.

Section 5.4.

Storage Overhead. HACFS is designed to provide low
and bounded storage overheads. The Azure system using
the LRCcomp code has the lowest storage overhead (see
Table 2), and is up to 4-10% better than the two HACFS
systems. The HDFS-RAID system using RS(10, 4) has
about 5% lower storage overhead than HACFS optimized
for recovery with Product codes. However, the HACFS
system with LRC codes has storage overheads lower
or comparable to the three single-coded production sys-
tems [2, 15, 24]. This is primarily because adaptive cod-
ing in HACFS bounds the storage overhead by 1.5x for
Product codes and by 1.4x for LRC codes. We discuss
the storage overheads of each system across different
workloads in Section 5.3.

5.3 Degraded Read Latency
HACFS uses a combination of recovery-efficient fast
codes (PCfast and LRCfast) and storage-efficient com-
pact codes (PCcomp and LRCcomp). Figure 9 shows
the degraded read latency on y-axis and storage over-
head on x-axis for the five different workloads. A nor-
mal read from an HDFS client to an available data block
can take up to 1.2 seconds since it requires one local
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Figure 10: Reconstruction Time: The figure shows the
reconstruction time to recover from data loss with two
HACFS systems and three single code systems.

disk read and one network transfer if the block is re-
mote. In contrast, a degraded read can require multiple
network transfers, and takes between 16-21 seconds for
the three single coded systems. These systems do not
adapt with the workload and only use a single code. As
a result, their degraded read latency and storage over-
head is the same across all five workloads. Adaptive
coding in HACFS reduces the degraded read latency by
5-10 seconds for three workloads (CC1, CC4 and FB),
which have a higher percentage of reads to hot data en-
coded with the fast code (85-90%, see Table 3). The
two shaded boxes in Figure 9 demonstrate that HACFS
adapts to the characteristics of the different workloads.
However, HACFS always outperforms the three single
coded systems since all of them require more blocks to be
read and transferred over the network to decode a miss-
ing block.

Both HACFS systems have a lower storage overhead
for workloads (CC1, CC2 and FB) with a higher per-
centage of cold files (85-95%) encoded with the com-
pact codes. The lowest possible storage overhead for
HACFS is shown by the left boundary of the two shaded
regions marked with 1.33x and 1.4x for the compact
codes (LRCcomp and PCcomp codes respectively). In
addition, HACFS also bounds the storage overhead by
1.5x for Product codes and 1.4x for LRC codes. As a
result, workloads (CC3 and CC4) with fewer cold files
still never exceed these storage overheads marked by the
right edges in the two shaded regions. If we do not en-
force any storage overhead bounds, these two workloads
benefit even further by a reduction of 6-20% in their de-
graded read latencies.

Figure 11: Reconstruction Traffic: The figure shows
the reconstruction traffic for recovering lost data and par-
ity blocks with two HACFS systems and three single
code systems.

5.4 Reconstruction Time
Figure 10 shows the reconstruction time of the three sin-
gle code systems and HACFS system with adaptive cod-
ing when a disk with 100 GB of data fails. The recon-
struction job launches map tasks on different DataNodes
to recreate the data and parity blocks from the lost disk.
The time to reconstruct a cold file encoded with a com-
pact code is longer than that for a fast code. The HACFS
system with Product codes outperforms the three single
code systems for all five workloads. It takes about 10-
35 minutes less reconstruction time than the three sin-
gle code systems. This is because both fast and com-
pact Product codes reconstruct faster than the two Reed-
Solomon codes and the LRCcomp code.

The HACFS system with the use of faster LRCfast

code for reconstruction outperforms the LRCcomp code
with the lowest storage overhead. However, the HACFS
system with LRC codes is generally worse for all work-
loads than the RS(6, 3) code used in the ColossusFS.
This is because both LRC codes used in HACFS have a
recovery cost for global parities higher than the RS(6, 3)
code (see Table 2).

Figure 11 shows the reconstruction traffic measured as
HDFS read and writes incurred by the reconstruction job
to recover 100 GB of data and additional parity blocks
lost from the failed disk. The reconstruction job reads all
blocks in the code stripe for recovering the lost blocks,
and then writes the recovered data and parity blocks back
to HDFS. The HDFS-RAID system using the RS(10, 4)
code results in the highest traffic: 1550 GB of recon-
struction traffic for 100 GB of lost data. This is close
to the theoretical reconstruction traffic of nearly fifteen
blocks per lost data block, including ten block reads for
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Figure 12: Encoding Cost: The figure shows the encod-
ing time for three single code systems and two HACFS
systems normalized over the HDFS-RAID (RS(10, 4)).
The black bars show the c-onversion time component of
the total e-ncoding time for the two HACFS systems.

data recovery, four block reads for parity recovery, and
then writes of the recovered data block and parity blocks
(RS(10, 4) uniformly stores 0.4 parity blocks with each
data block on a disk). Similarly, LRCcomp in Azure and
RS(6, 3) in Colossus, require nearly ten HDFS block
read/writes for recovering a block from the lost disk.

The HACFS system with Product codes always re-
quires fewer blocks for reconstruction than the three sin-
gle code systems: between eight blocks for CC3 and
CC4 workloads and nine blocks for CC1, CC2 and FB
workloads (with more than 85% cold files) based on the
data skew distributions. The HACFS system with LRC
codes requires more blocks for global parity recovery
than Product codes. As a result, its reconstruction traffic
is close to RS(6, 3) and LRCcomp codes at nearly ten
blocks per lost data block.

5.5 Encoding and Conversion Time
Figure 12 shows the encoding cost for initial encoding
of three-way replicated data in three single code sys-
tems, and the encoding cost for initial encoding and later
conversion between the fast and compact codes in the
two HACFS systems. We normalize the encoding cost
per block to eliminate the differences in dataset sizes
across the five workloads. All compared systems are
based on HDFS-RAID implementation, which sched-
ules the encoding and conversion operations as MapRe-
duce jobs in background to minimize their impacts on
user jobs. As a result, we show the impact of encod-
ing cost for all systems relative to RS(10, 4) used in
HDFS-RAID in Figure 12. Encoding cost is a function
of the coding scheme used for data blocks and does not
change with workload for the three single code systems.

Reed-Solomon codes used in HDFS-RAID and Colos-
susFS have the highest encoding cost because of com-
plex Galois Field operations required to compute parity
blocks [18]. LRC code in Azure uses such operations
only to compute global parities and uses cheaper XOR
operations for all local parities. Similarly, HACFS with
Product codes only uses XOR operations for encoding.
As a result, the encoding time component of the two
HACFS systems is similar to the LRC codes in Azure
for all workloads.

The HACFS system also converts (upcodes/down-
codes) data between fast and compact codes. The con-
version cost is only high when the HACFS system ag-
gressively converts blocks to limit the storage overhead
by upcoding hot files into compact code. As a result, the
three workloads (CC2, CC3 and CC4) with a higher per-
centage of hot data spend up to 18% of total encoding
time for conversion operations. For these workloads, the
total encoding and conversion cost of the HACFS sys-
tems is up to 16% higher than the Azure system using a
single LRC code. In general, the encoding cost of the two
HACFS systems is about 3-28% lower than the single-
code ColossusFS and HDFS-RAID systems using Reed-
Solomon codes for all workloads.

6 Related Work

Our work builds on past work on distributed storage sys-
tems, faster recovery techniques, and tiered storage sys-
tems.

Distributed Storage Systems. Petabytes of storage is
becoming common with the fast growing data require-
ments of modern systems today. Erasure codes offer
an attractive alternative to provide lower storage over-
head than data replication. As a result, many distributed
filesystems such as Google ColossusFS [2], Facebook
HDFS [3], and IBM General Parallel File System [6] are
moving to the use of erasure codes. Many popular object
stores used for cloud storage, for example, OpenStack
Swift [17], Microsoft Azure Storage [15] and Clever-
safe [1] are also adopting erasure codes for low storage
overhead. However, most of these systems use a single
erasure code and address the recovery cost by trading for
storage overhead. In contrast, HACFS is the first sys-
tem that uses a combination of two codes to dynamically
adapt with workload changes and provide both low re-
covery cost and storage overhead.

Faster Recovery for Erasure-Codes. Recently, there
has been a growing focus on improving recovery per-
formance for erasure-coded storage systems. Reed-
Solomon codes [21] offer optimal storage overhead
but generally have high recovery cost. Rotated Reed-
Solomon codes have been proposed as an alternative con-
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struction, which requires fewer data reads for faster de-
graded read recovery [16]. HitchHiker proposes a new
encoding technique by dividing a single Reed-Solomon
code stripe into two correlated substripes and improves
recovery performance [20]. However, both of them trade
extra encoding time for faster recovery. In contrast,
adaptive coding techniques in HACFS provide lower re-
covery cost without increasing encoding time. In gen-
eral, adaptive coding can be applied to most code fami-
lies, which tradeoff between storage overhead and recov-
ery cost. We have found efficient up/downcode opera-
tions for applying adaptive coding to different constructs
of Reed-Solomon code and other modern storage codes
such as PMDS [8] and HoVer [12]. For example, we
devised up/downcode operations for converting m (n,r)
Reed-Solomon codes into a (mn, r) Reed-Solomon code
using a parity-only conversion scheme.
Tiered Storage Systems. Adaptive coding in HACFS
is inspired by tiering in RAID architectures [27, 3, 10].
AutoRAID [27] provides a two-level storage hierar-
chy within the storage controller. It automatically mi-
grates data between different RAID levels to provide
high I/O performance for active data and low storage
overhead for inactive data. Similarly, HACFS migrates
data between fast and compact erasure codes, how-
ever with the objective to reduce extra network transfers
for recovery in distributed storage. Facebook’s HDFS-
RAID [3] and DiskReduce [10] propose tiered storage by
asynchronously migrating data between replicated and
erasure-coded storage tiers. HACFS extends this further
by splitting the erasure-coded storage tier into two parts
to optimize for both storage overhead and recovery per-
formance.

7 Conclusions

Distributed storage systems extensively deploy erasure-
coding today for lower storage overhead than data repli-
cation. However, most of these systems trade storage
overhead for recovery performance. We present a novel
erasure-coded storage system, which uses two different
erasure codes and dynamically adapts by converting be-
tween them based on workload characteristics. It uses
a fast code for fast recovery performance and a com-
pact code for low storage overhead. In the future, as we
move to cloud storage, it will be important to revisit sim-
ilar erasure-coding tradeoffs, and extend adaptive coding
techniques to large-scale object stores in the cloud.
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Abstract

Although data compression can benefit flash memory
lifetime, little work has been done to rigorously study
the full potential of exploiting data compressibility to
improve memory lifetime. This work attempts to fill
this missing link. Motivated by the fact that memory
cell damage strongly depends on the data content be-
ing stored, we first propose an implicit data compres-
sion approach (i.e., compress each data sector but do not
increase the number of sectors per flash memory page)
as a complement to conventional explicit data compres-
sion that aims to increase the number of sectors per flash
memory page. Due to the runtime variation of data com-
pressibility, each flash memory page almost always con-
tains some unused storage space left by compressed data
sectors. We develop a set of design strategies for ex-
ploiting such unused storage space to reduce the overall
memory physical damage. We derive a set of mathemat-
ical formulations that can quantitatively estimate flash
memory physical damage reduction gained by the pro-
posed design strategies for both explicit and implicit data
compression. Using 20nm MLC NAND flash memory
chips, we carry out extensive experiments to quantify the
content dependency of memory cell damage, based upon
which we empirically evaluate and compare the effec-
tiveness of the proposed design strategies under a wide
spectrum of data compressibility characteristics.

1 Introduction

NAND flash memory cells gradually wear out with pro-
gram/erase (P/E) cycling due to physical device damage
caused by each P/E cycle, and cycling endurance drasti-
cally degrades with the technology scaling down. Hence,
how to maximize memory lifetime has been widely stud-
ied from different aspects, e.g., signal processing and er-
ror correction coding (ECC) [1–3], flash translation layer
(FTL) [4–10], and system software stack [11–13].

Nevertheless, to our best knowledge, no prior work
has thoroughly studied how data compressibility can be
leveraged to improve flash memory lifetime. It is actually
not surprising, since this question appears to be trivial at
first glance: In conventional practice, the sole objective
of data compression is to improve storage efficiency (i.e.,
explicitly increase the number of data sectors that can be
stored in one flash memory page). This is referred to
as explicit data compression in this work. Due to the
runtime variation of data compressibility, explicit data
compression results in heterogeneity among flash mem-
ory pages in terms of the number of sectors per page,
which can complicate FTL and/or file system design. As
a result, it is not uncommon that commercial flash-based
storage devices do not use data compression at all. If so-
phisticated FTL and/or file systems, which can employ
explicit compression to improve storage efficiency, are
indeed available, one may simply expect that storing data
with an average compression ratio1 of α can directly im-
prove the flash memory lifetime by 1/α . Therefore, one
may easily draw the following conclusion: If we do not
want to complicate the FTL and/or file system, we should
simply leave the user data uncompressed, for which the
data compressibility is totally irrelevant to flash memory
lifetime; If we use complicated FTL and/or file systems
to support explicit data compression, the flash memory
lifetime improvement solely depends on the average data
compression ratio.

This work contends that the above intuitive conclusion
is far from revealing the complete potential of how data
compressibility can help to improve flash memory life-
time. In essence, it overlooks two factors. First, flash
memory experiences content-dependent memory dam-
age, i.e., the damage suffered by each memory cell de-
pends on its content (e.g., ‘11’, ‘10’, ‘00’, and ‘01’
in MLC flash memory) being stored. Once data com-
pression leaves some unused storage space within flash

1Let So and Sc denote the size of the original and compressed data,
then we define compression ratio as Sc/So, which falls into (0,1].
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memory pages, we can manipulate their data content
in a damage-friendly manner to reduce physical dam-
age. Hence, conventional explicit data compression is
not necessarily the only option of exploiting data com-
pressibility to improve memory lifetime. We propose
implicit data compression as an alternative to comple-
ment with explicit data compression. With implicit data
compression, we compress each data sector but do not in-
crease the number of data sectors per flash memory page.
Therefore, implicit compression has no impact on FTL
and/or file system but meanwhile does not improve stor-
age efficiency either. Second, for multi-bit per cell (e.g.,
MLC and TLC) flash memory, physical damage depends
on a variety of factors (e.g., distribution characteristics of
compressed data size, relative placement or layout of dif-
ferent pages on the same memory wordline), which have
not been considered in prior work.

This paper presents a thorough study on exploit-
ing data compressibility to reduce physical damage and
hence improve flash memory lifetime. Since random
read latency is one of the most important metrics of
flash-based storage devices, this work assumes that each
compressed data sector must reside entirely in one flash
memory page. As a result, each flash memory page al-
most always contains some unused storage space left by
compressed data sectors. Motivated by the content de-
pendency of flash memory cell damage, we present a set
of design strategies that can exploit the unused storage
space within a flash memory page to reduce the overall
memory damage, for both explicit and implicit data com-
pression. Then we derive a set of mathematical formu-
lations for quantitatively estimating flash memory dam-
age reduction gained by the proposed design strategies.
These rigorous mathematical formulations build a frame-
work that directly links flash memory lifetime with data
compressibility characteristics (e.g., mean and deviation
of data compression ratio) and memory cell damage con-
tent dependency. Using 20nm MLC NAND flash mem-
ory chips, we carried out experiments to quantitatively
measure the content-dependent memory cell damage fac-
tors, based upon which we empirically evaluated and
compared the effectiveness of the proposed design strate-
gies with either explicit or implicit compression. In sum-
mary, the main contributions of this work include:

1. We propose an implicit data compression strategy as
a viable complement to conventional explicit data
compression for exploiting data compressibility to
improve flash memory lifetime;

2. A set of design strategies are developed to leverage
the unused storage space left by data compression
within flash memory pages to reduce the memory
cell physical damage;

3. We derive a set of mathematical formulations to ac-
curately estimate the flash memory damage based
upon the characteristics of data compressibility and
content-dependent memory cell damage;

4. We quantitatively compare explicit data compres-
sion and implicit data compression under a wide
spectrum of runtime data compressibility character-
istics and show that it is important to fully under-
stand the data compressibility characteristics in or-
der to choose the appropriate design strategy.

Finally, we note that, although this work focuses on flash
memory, the developed design strategies and mathemat-
ical formulations are readily applicable to other emerg-
ing memory technologies, e.g., PCM and ReRAM, that
experience similar content dependency of memory cell
physical damage.

2 Design Strategies

This section presents a set of design strategies that can
exploit data compressibility to reduce memory cell dam-
age. We first discuss the content dependency of cycling-
induced memory damage that motivates us to propose
implicit compression (i.e., compress the data without in-
creasing the number of sectors per flash memory page)
in addition to the conventional explicit compression (i.e.,
compress the data and increase the number of sectors per
page as much as possible). We further present differ-
ent strategies on laying out the compressed data within
flash memory pages that aim to leverage the content-
dependent memory damage phenomenon for improving
flash memory lifetime. We note that this work only fo-
cuses on MLC memory, and the discussions could be
readily extended to the more complicated TLC case.

2.1 Content-Dependent Damage

NAND flash memory handles data programming and
read in page units with a typical size of 4kB or 8kB.
For high-density MLC and TLC memory, different bits
within each MLC/TLC memory cell belong to different
pages. This can be illustrated in Fig. 1 for MLC flash
memory, where the two bits within each memory cell be-
long to lower and upper pages, respectively.

NAND flash memory cells wear out with P/E cycling
due to the oxide damage caused by the electrons that pass
through the gate oxide during each P/E cycle. Although
current practice estimates the memory cell damage solely
dependent upon the number of P/E cycles endured by
memory cells, actual physical damage further depends
on the data content being programmed to memory cells.
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Figure 2: Illustration of method for accurately quantify-
ing the flash memory cell damage caused by each distinct
data content.

This can be intuitively explained using Fig. 1: differ-
ent data content (e.g., ‘11’, ‘10’, ‘00’, and ‘01’) corre-
spond to different number of electrons that pass through
the gate oxide, and hence different amount of physical
damage [14, 15].

To further demonstrate such content dependency, we
carried out experiments using 20nm MLC NAND flash
memory chips. To evaluate the effect of writing the con-
tent Dtest ∈{‘11’,‘10’,‘00’,‘01’}, we program each flash
memory block with the pattern as shown in Fig. 2, i.e., to
examine the cell content Dtest , each memory cell written
with Dtest is surrounded by memory cells written with
random data. This can incorporate the effect of cell-to-
cell interference and program disturb in practice. The
memory cells written with Dtest are called cells under
test (CUT). Different memory blocks are used for test-
ing different Dtest , and the locations of all the CUTs are
fixed throughout the entire cycling. We capture the raw
bit error rate (BER) of all the CUTs every few hundreds
cycles by writing random data to all the memory cells.
The measurement results are shown in Fig. 3.

2.2 Data Storage Schemes
Since each compressed sector resides entirely in one
memory page, each page will have a certain amount of
unused storage space. This subsection first discusses
how we should determine the content of the unused stor-
age space to minimize the overall damage, then dis-
cusses different options of laying out the compressed
data within flash memory pages.
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Figure 3: Measured memory raw bit error rate (BER)
vs. cycling with different data content.

2.2.1 Content of Unused Storage Space

For MLC NAND flash memory, each pair of lower and
upper pages together determine the memory cell content
and hence the flash memory damage. To minimize the
flash memory damage, we should appropriately deter-
mine the data content in the unused storage space left
by data compression. Let S(l) and S(u) denote the unused
storage space in lower and upper page, and bl and bu de-
note the two bits in the same memory cell and belong to
lower and upper page, respectively. Recall that the mem-
ory cell damage caused by the content ‘11’, ‘10’, ‘00’,
and ‘01’ monotonically increase (where the left bit and
right bit resides in lower and upper page, respectively),
as illustrated in Fig. 3. Therefore, for each memory cell,
we should apply the following rules to minimize flash
memory damage:

• If bl ∈ S(l) and bu ∈ S(u) (i.e., we can freely set the
values of both bits), we set bl = bu = 1 hence the
least harmful content ‘11’ is written to the cell;

• If bl ∈ S(l) and bu /∈ S(u) (i.e., we can only freely set
the value of bl), we always set bl as ‘1’ regardless
to the value of bu;

• If bl /∈ S(l) and bu ∈ S(u) (i.e., we can only freely set
the value of bu), we always set bu = bl .

2.2.2 Compressed Data Layout

Since the memory cells covered by S(l) or S(u) experi-
ence less damage than the other memory cells, we should
keep shifting the location of S(l) and S(u) within flash
memory pages in order to equalize the damage among
all the memory cells. We define a parameter lhead to rep-
resent the location from where the compressed data are
continuously stored in the lower and upper pages. We
should keep changing lhead in order to equalize the mem-
ory cell damage. Since the storage device FTL module
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Figure 4: Two different data layout strategies.

always keeps track of the P/E cycles of each memory
block, we can fix a relationship between lhead and P/E
cycle number, e.g., let L denote the memory page size
and NP/E denote the P/E cycle number, we can calculate
lhead =

⌊
�t ·NP/E�mod L

⌋
, where t is a fixed constant in-

teger. As a result, the storage device controller does not
need to record the value of lhead for each memory block.
In addition, as decompression is a process that is done
serially, the length of the compressed data need not be
kept in the FTL. For each compressed memory page, the
decompression process can be terminated once the de-
compressed data length reaches the page length. There-
fore, in order to support the proposed design strategy, the
only overhead at the FTL layer is to calculate the lhead
for each memory page.

For MLC NAND flash memory, there are two differ-
ent options for laying out the compressed data in lower
and upper pages. As illustrated in Fig. 4, the first op-
tion is to lay out the compressed data towards the same
direction from lhead in both the lower and upper pages,
that we refer is referred to as unidirectional data layout.
The other option is to lay out the compressed data to-
wards opposite directions in the lower and upper pages,
that we refer to as bidirectional data layout. As shown in
Fig. 4, all the memory cells can be categorized into three
types: (1) In each type-I memory cell, both bits belong
to the compressed data; (2) In each type-II memory cell,
one bit belongs to the compressed data while the other
bit belongs to the unused storage space; (3) In each type-
III memory cell, both bits belong to the unused storage
space. Apparently, the physical damage experienced by
type-I, type-II, and type-III memory cells monotonically
reduces. Compared with unidirectional data layout, bidi-
rectional data layout leads to more type-II memory cells
and less type-I and type-III memory cells.

2.2.3 Conditional Data Exchange

According to the discussion in Section 2.2.1, the content
of each type-II memory cell can only belong to {‘11’,
‘10’} or {‘11’, ‘00’} if the lower or upper page bit be-
longs to unused storage space. As shown in Fig. 3, ‘10’
causes less damage than ‘00’. Hence, the memory dam-

age tends to be less if the lower page has more unused
storage space (i.e., data being stored in the lower page
have better compressibility). This observation directly
motivates us to propose conditional data exchange: Let
D(l) and D(u) denote the compressed data that have been
originally arranged by the storage device FTL to store
in one pair of lower and upper pages. If the length of
D(l) is not larger than that of D(u) (i.e., |D(l)| ≤ |D(u)|),
we directly store D(l) and D(u) to the lower and upper
pages, respectively; otherwise we switch their page lo-
cation, i.e., store D(l) to the upper page and D(u) to the
lower page.

Although this design scheme can reduce flash mem-
ory damage, it could complicate the FTL design. If the
FTL uses the page-level address mapping, we need to
update the mapping table once the data exchange oper-
ation occurs. This will not introduce any mapping table
storage overhead. If the FTL uses block-level or hybrid
page/block-level address mapping, we must keep a 1-bit
flag for each memory wordline, leading to extra mapping
table storage overhead.

3 Mathematical Formulations

This section presents the mathematical formulations that
can accurately estimate flash memory physical damage
reduction when using the design strategies presented in
Section 2, for both explicit and implicit data compres-
sion. It is evident that different types of data can have
different compressibility characteristics. With the popu-
lar LZ77 [16] compression algorithm and sector size of
4kB, Fig. 5 shows the per-sector compression ratio dis-
tribution for some common types of data. The results
show that the compression ratio tends to approximately
follows a Gaussian distribution. We carried out further
experiments to verify the accuracy of such distribution
approximation. Fig. 5 shows the absolute difference (de-
noted as “Appr. error” in the figure) between the exact
distribution and the approximate distribution for differ-
ent types of data. The corresponding mean square errors
(MSE) for these types of data are all at the magnitude of
10−5. Therefore, we can conclude that such a Gaussian-
based approximation is reasonable with almost negligi-
ble inaccuracy. Therefore, to facilitate the mathematical
derivation, we set that per-sector data compression ratio
follows a Gaussian distribution in this work.

3.1 Content-dependent Damage Factor
We first introduce a parameter, called normalized
content-dependent damage factor, to quantify the impact
of different content on memory cell damage. Let BERmax
denote the maximum memory raw BER that can be tol-
erated by the storage device error correction mechanism.
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Figure 5: Measured distribution of compression ratio for
different types of data.

For l-bit/cell NAND flash memory, let Ψ(i)(η) denote the
raw BER after we keep programming memory cells with
the same content i ∈ [0,2l −1] for η cycles. Let Ψ(r)(η)
denote the raw BER after we have programmed memory
cells with random content for η cycles. Let η(i)

max and
η(r)

maxdenote the P/E cycle number under which the raw
BER Ψ(i)(η) and Ψ(r)(η) equal to BERmax, respectively.
Hence, we can estimate that the physical memory cell
damage caused by each programming operation with the
content i is proportional to 1/η(i)

max. In addition, on av-
erage the physical memory cell damage caused by pro-
gramming random content is proportional to 1/η(r)

max. In
this work, we define the content-dependent damage fac-
tor ρi for each content i by normalizing with the average
damage caused by random content, i.e.,

ρi =
η(r)

max

η(i)
max

, where i ∈ [0,2l −1], (1)

and hence the damage factor ρr for random content is
1. Using the measurement results shown in Fig. 3 as an
example, assume the BERmax is 5× 10−3, we calculate
the four damage factors as ρ11 = 0.33, ρ10 = 0.69, ρ00 =
1.01, and ρ01 = 1.58.

3.2 Effect of Compression
We first derive the mathematical formulations for esti-
mating the distribution characteristics of the compressed
data and unused storage space size in each page. Let Cs
denote the size of each uncompressed data sector (e.g.,
4kB), ms denote the number of uncompressed sectors
in each page, and Cp = ms ·Cs denote the size of each
flash memory page (e.g., 8kB). As pointed out above,
the per-sector compression ratio x approximately follows
a Gaussian distribution N(µ,σ2). Let m(e)

s denote the

number of compressed sectors per page when using ex-
plicit compression, and C(e)

s denote the length of the
compressed data within one page. Due to the variation
of the compression ratio x, both m(e)

s and C(e)
s are ran-

dom variables. Since x ·m(e)
s ·Cs denotes the length of

the compressed data within one page when m(e)
s is deter-

mined, C(e)
s can be expressed as

C(e)
s =

∞

∑
m(e)

s =ms

x ·m(e)
s ·Cs ·P

(
m(e)

s

)
, (2)

where P
(

m(e)
s

)
is the probability that m(e)

s compressed

sectors can fit into one page. We can express P
(

m(e)
s

)
as

P
(

m(e)
s

)
= P

{
x ·m(e)

s ≤ ms < x ·
(

m(e)
s +1

)}
=

P
{

x ·m(e)
s ≤ ms

}
·
(

1−P
{

x ·
(

m(e)
s +1

)
≤ ms

})
.

Since x ∼ N(µ,σ2), we have that x · m(e)
s and

x ·
(

m(e)
s +1

)
follow N

(
µm(e)

s ,(σm(e)
s )2

)
and

N
(

µ(m(e)
s +1),(σ(m(e)

s +1))2
)

, respectively. Hence,

P
{

x ·m(e)
s ≤ ms

}
and P

{
x ·

(
m(e)

s +1
)
≤ ms

}
is the

CDF (cumulative distribution function) for the random
variant x ·m(e)

s and x ·
(

m(e)
s +1

)
. Accordingly, we have

that

P
(

m(e)
s

)
=

[
1+ er f

(
ms−m(e)

s µ
σm(e)

s
√

2

)]
·

[
1− er f

(
ms−(m(e)

s +1)µ
σ(m(e)

s +1)
√

2

)]
/4

, (3)

where er f (z) is the error function for Gaussian distribu-
tion, i.e., er f (z) = 1√

π
∫ z
−z e−t2

dt. For each given m(e)
s ,

we can calculate the value of P
(

m(e)
s

)
based upon (3).

Hence, each item in (2), i.e., x ·m(e)
s ·Cs ·P

(
m(e)

s

)
, is a

random variable following a Gaussian distribution. As a

result, we have that C(e)
s ∼ N

(
µ

c(e)s
,σ2

c(e)s

)
, where




µ
c(e)s

= µCs · ∑
m(e)

s

m(e)
s P

(
m(e)

s

)
,

σ2
c(e)s

= (σCs)
2 · ∑

m(e)
s

(
m(e)

s P
(

m(e)
s

))2
.

(4)

When using implicit compression, the number of com-
pressed sectors per flash memory page always remains
as ms and the length of compressed data per page is
C(i)

s = x · ms ·Cs. Therefore, we have that the random
variable C(i)

s ∼ N
(
µmsCs,σ2m2

sC2
s
)
.

5
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3.3 Memory Damage Estimation

We further derive the mathematical formulations for cal-
culating average memory cell damage per P/E cycle.
Based upon the above discussions, we should consider
four different design scenarios: (1) UD: unidirectional
data layout without conditional data exchange, (2) BD:
bidirectional data layout without conditional data ex-
change, (3) UDC: unidirectional data layout with con-
ditional data exchange, (4) BDC: bidirectional data lay-
out with conditional data exchange. Since the mathemat-
ical formulations can be derived with the same princi-
ple for all the scenarios, we first show the mathematical
derivation in detail for UD (i.e., unidirectional data lay-
out without conditional data exchange) and then present
the results for the others without detailed derivations.

3.3.1 Derivation for the UD Design Scenario

We first define two parameters xl and xu as the ratios be-
tween the compressed data size and flash memory page
size for lower and upper pages, respectively. Recall that
both C(e)

s and C(i)
s (i.e., compressed data size within each

flash memory page when using explicit and implicit com-
pression, respectively) follow Gaussian distributions as
derived in Section 3.2. Hence, xl and xu also follow
the Gaussian distribution N(µ̃, σ̃2), where µ̃ = µ

c(e)s
/Cp

and σ̃2 = σ2
c(e)s

/C2
p for explicit compression, and µ̃ =

µmsCs/Cp and σ̃2 = σ2m2
sC2

s /C2
p for implicit compres-

sion. Define zl = min(xl ,xu) and zu = max(xl ,xu) and re-
call that {ρ11,ρ10,ρ00,ρ01} represent the memory dam-
age factors for the four different memory cell content and
the damage factor ρr for random content is 1. In addi-
tion, let m(c)

s denote the average number of sectors per
flash memory page and recall that ms denote the number
of sectors per flash memory page without using compres-

sion, and define r = m(c)
s

ms
. Therefore, we can calculate the

average memory cell damage per P/E cycle for the UD
design scenario, which is normalized against the case of
without using compression, as

ρUD =
1
r

(
zl + |xl − xu|

ρ00 +2ρ11 +ρ10

4
+(1− zu)ρ11

)

=
1
r

(
1− ρ00 +2ρ11 +ρ10

4

)
zl

+
1
r

(
ρ00 +ρ10 −2ρ11

4

)
zu +

ρ11

r

=
λ l

UD
r

· zl +
λ u

UD
r

· zu +
ρ11

r
,

(5)

where

λ l
UD = 1− ρ00 +2ρ11 +ρ10

4
, λ u

UD =
ρ00 +ρ10 −2ρ11

4
.

In order to obtain the distribution of ρUD, we must de-
rive the distributions of zu and zl . The CDF of zu can be
written as

Fzu(z) = P(xl ≤ z,xu ≤ z) = P(xl ≤ z) ·P(xu ≤ z)

= Fxl (z) ·Fxu(z),

where Fxl and Fxu denote the CDF of xu and xl . Since xu
and xl follow the same Gaussian distribution (denoted as
fN), we have that Fxl = Fxu . By taking the derivative of
the CDF, we can obtain the PDF of zu as

fzu(z) = F
′
zu(z) = fN (z) ·

(
1+ er f

(
z− µ̃√

2σ̃

))

≈ fN (z) ·
(

1+
z− µ̃√

2σ̃

)
. (6)

Hence, fzu can be approximately expressed as the prod-
uct of the PDF of a Gaussian distribution and a straight
line with the slope of

√
2σ̃ . Since z ∈ (0,1], we

could further approximate fzu to a PDF of a Gaus-
sian distribution, i.e., zu ∼ N

(
µzu ,σ2

zu

)
and fzu(z) =

1
σzu

√
2π

exp
(
− (z−µzu )

2

2σ2
zu

)
. The value of µzu and σzu can

be obtained by solving



d( fzu (z))
dz

∣∣∣
z=µzu

≈
d
(

fN(z)·
(

1+ z−µ̃√
2σ̃

))

dz

∣∣∣∣∣
z=µzu

= 0,

fzu(z)|z=µzu
≈ fN (z) ·

(
1+ z−µ̃√

2σ̃

)∣∣∣
z=µzu

.

(7)

Accordingly, we have that



µzu = µ̃ +
√

6−
√

2
2 · σ̃ ,

σzu = 2
√

2√
6+

√
2
· σ̃ · exp

(
(
√

6−
√

2)
2

8

)
.

(8)

We can obtain the PDF of zl in similar manner. First,
we can express the CDF of zl as

Fzl (z) = 1−P(xl > z,xu > z)

= 1− (1−P(xl ≤ z)) · (1−P(xu ≤ z))

= 1− (1−FN (z))2.

By taking the derivative of Fzl , we obtain the PDF of zl
as

fzl (z) = 2(1−FN (z)) · fN (z) . (9)

Similar to the above derivations for the case of zu, we
can approximate the PDF fzl as a Gaussian distribution
N
(
µzl ,σ

2
zl

)
, where




µzl = µ̃ −
√

6−
√

2
2 · σ̃ ,

σzl = 2
√

2√
6+

√
2
· σ̃ · exp

(
(
√

6−
√

2)
2

8

)
.

(10)

6



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 233

0 0.2 0.4 0.6 0.8 10

0.05

0.10

0.15

0.20

0.25

Length ratio of compressed data

Pr
ob

ab
ilit

y 
D

en
si

ty
Exact PDF of zu
Approximate PDF of zu

Exact PDF of zl
Approximate PDF of zl

Figure 6: Comparison between the exact PDF of zl , zu
and their Gaussian approximations with different sets of
µ̃ and σ̃ .

To justify the Gaussian approximation of fzu(z) and
fzl (z) (i.e., the PDF of zu and zl) in the above deriva-
tions, Fig. 6 compares the Gaussian approximation and
the exact PDF, where we considered three different sets
of {µ̃, σ̃} (i.e., {0.2,0.05}, {0.5,0.1}, and {0.8,0.02},
respectively) to cover a wide range of the compressed
data length ratio and deviations. As clearly shown in
Fig. 6, the Gaussian approximation of fzu(z) and fzl (z)
incurs almost negligible inaccuracy.

Since zl ∼ N
(
µzl ,σ

2
zl

)
and zu ∼ N

(
µzu ,σ2

zu

)
, accord-

ing to (5), the average cell damage ρUD also follows a
Gaussian distribution, i.e., ρUD ∼ N

(
µUD,σ2

UD
)
, where

{
µUD = 1

r

(
λ l

UD ·µzl +λ u
UD ·µzu +ρ11

)
,

σUD = 1
r

√(
λ l

UD ·σzl

)2
+
(
λ u

UD ·σzu

)2
.

(11)

Given the same data compressibility, the use of im-
plicit and explicit compression leads to different distri-
bution of xu and xl , and different r, leading to different
memory cell damage.

3.3.2 More Formulation Results

Using the same principle, we can derive the mathemat-
ical formulations that can calculate the normalized av-
erage memory cell damage per P/E cycle for the other
three design scenarios. Due to the page limit, we will di-
rectly present the final mathematical formulations with-
out showing the derivation details.

For the BD design scenario that uses bidirectional data
layout without conditional data exchange, its average
memory cell damage is ρ(BD) ∼ N

(
µ(BD),σ2

(BD)

)
:




µ(BD) = 1
r

((
λ l
(BD) +λ u

(BD)

)
· µ̃ +C(BD)

)
,

σ(BD) = 1
r

√
(λ l

(BD)
)2 +(λ u

(BD)
)2 · σ̃ .

where
{

λ l
(BD) = 1− ρ11+ρ10

2 , λ u
(BD) = 1− ρ11+ρ00

2 ,

C(BD) = 2ρ11+ρ10+ρ00
2 −1.

For the UDC design scenario that uses unidirectional
data layout with conditional data exchange, its average
memory cell damage is ρ(UDC) ∼ N

(
µ(UDC),σ2

(UDC)

)
:





µ(UDC) = 1
r

(
λ l
(UDC) ·µzl +λ u

(UDC) ·µzu +ρ11

)
,

σ(UDC) = 1
r

√
(λ l

(UDC)
·σzl )

2 +(λ u
(UDC)

·σzu)
2.

where

λ l
(UDC) = 1− ρ11 +ρ10

2
, λ u

(UDC) =
ρ11 +ρ10

2
−ρ11.

For the BDC design scenario that uses bidirectional
data layout with conditional data exchange, its average
memory cell damage is ρ(BDC) ∼ N

(
µ(BDC),σ2

(BDC)

)
:




µ(BDC) = 1
r

(
λ l
(BD) ·µzl +λ u

(BD) ·µzu +C(BD)

)
,

σ(BDC) = 1
r

√
(λ l

(BD)
·σzl )

2 +(λ u
(BD)

·σzu)
2.

3.4 Estimation of Memory Lifetime
This subsection discusses how we estimate the flash
memory lifetime improvement based upon the average
memory cell damage derived in the above section. In
this work, we assume ideal wear-leveling, i.e., all the
memory blocks always experience the same number
of P/E cycles, and quantitatively define memory life-
time as the P/E cycle number that one memory block
can survive before reaching the maximum allowable
BER. Since it is common practice to use capacity over-
provisioning in flash-based storage devices, we define
an over-provisioning factor τ ≥ 1, i.e., the total physi-
cal storage capacity inside the storage device is τ× larger
than the storage capacity visible to the host. Let η denote
the memory block P/E cycling endurance of the baseline
scenario without using any data compression. Straight-
forwardly, the overall memory lifetime of the baseline
scenario is τ ·η cycles.

Once data compression is used, the average memory
cell damage becomes a random variable with a Gaussian
distribution due to the Gaussian-like distribution of run-
time data compression ratio. As a result, the cycling en-
durance of each memory block and hence overall mem-
ory lifetime also become random variables. Let P(t)

b de-
note the probability that one memory block can survive
(i.e., can ensure the storage integrity even for incom-
pressible data) after t P/E cycles, referred to as memory
block survival probability. As the granularity of data era-
sure is in memory block units in NAND Flash memory,

7
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Figure 7: Storage device survival probability when storing (a) DLL, (b) Text, (c) Exe, (d) Log, (e) XML, and (f)
HTML data in flash memory. Both explicit compression and implicit compression are considered.

the number of P/E cycles is independent among memory
blocks. Hence, the survival of memory blocks is inde-
pendent. Let N denote the number of memory blocks
visible to the host, then the storage device contains τ ·N
memory blocks in total. Therefore, once P(t)

b is known,
based on the law of total probability, we can calculate the
probability that the storage device can survive t cycles as

SP(t) =
(τ−1)N

∑
k=0

((
Nτ
k

)
·
(

P(t)
b

)Nτ−k
·
(

1−P(t)
b

)k
)
,

(12)
which is called storage device survival probability. Sup-
pose each memory block contains M wordlines and let
P(t)

wl denote the survival probability of one wordline, we

have that P(t)
b =

(
P(t)

wl

)M
, i.e., one memory block sur-

vives only when all the wordlines inside this block sur-
vive. In the following, we will discuss how we can esti-
mate the memory wordline survival probability P(t)

wl .
For the baseline scenario without using data compres-

sion, the storage device fails to survive once the accu-
mulated average damage of each memory cell reaches
η ·ρr (recall that ρr = 1 is the normalized memory cell
damage factor when storing random data). When using
data compression, let ρw denote the memory cell damage
per cycle, where ρw could be ρ(UD), ρ(BD), ρ(UDC), or
ρ(BDC) dependent upon the design strategies being used.
By setting η ·ρr as the maximum tolerable accumulated

memory cell damage, we can express the P/E cycling en-
durance of each wordline as

T = max(t) , t ·ρw ≤ η ·ρr −ρr. (13)

Since ρw follows Gaussian distribution, t · ρw also fol-
lows Gaussian distribution with mean of t ·µρw and vari-
ance of t2 ·σ2

ρw . Therefore, we can calculate the wordline

survival probability P(t)
wl at t cycles as

P(t)
wl =

1
2

(
1+ er f

(
τ ·η −1− t ·µρw

tσρw

))
, (14)

where µρw and σρw can be obtained using the formula-
tions presented above for the four different design sce-
narios.

4 Quantitative Studies

With the formulations derived in Section 3, we studied
the effectiveness of the design strategies presented in
Section 2 for both explicit and implicit data compression.
Based upon our measurement results with 20nm MLC
NAND flash memory chips, we set the damage factors
ρ11 = 0.33, ρ10 = 0.69, ρ00 = 1.01, and ρ01 = 1.58, as
discussed in Section 3.1. As shown in (12), the storage
device survival probability SP(t) depends on the over-
provisioning factor τ and the total number of memory
blocks N visible to the host. Assume the storage capac-
ity of 512GB visible to the host and a block size of 4MB,
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we have N equals 128k. Each flash memory page has a
size of 8kB, and we set the data sector size as 4kB. We
further set the over-provisioning factor τ as 1.2. Based
upon the memory chip measurement results and the over-
provisioning factor of 1.2, we set the cycling endurance
of the baseline scenario (i.e., without using data com-
pression) as 8000.

4.1 Lifetime with Different Data Types

Using the measured compression ratio distribution of dif-
ferent data types as shown in Fig. 5, we evaluated the ef-
fectiveness of the developed design strategies on improv-
ing memory lifetime over the baseline scenario. Fig. 7
shows the results when using the four different design
scenarios. Recall that the design scenario UD uses unidi-
rectional data layout without conditional data exchange,
BD uses bidirectional data layout without conditional
data exchange, UDC uses unidirectional data layout with
conditional data exchange, BDC uses bidirectional data
layout with conditional data exchange. For the baseline
scenario, the storage device lifetime remains 8000 re-
gardless to the data types. When using data compres-
sion with different design strategies, the storage device
lifetime becomes a random variable, whose CDF (i.e., its
survival probability) is calculated according to the for-
mulations derived in Section 3.

As shown in Fig. 7, explicit compression always out-
performs implicit compression, which can be intuitively
justified because explicit compression always tries to fit
as many sectors as possible into each flash page. By com-
paring the data compressibility shown in Fig. 5 and the
results shown in Fig. 7, we can clearly see that the dif-
ference between explicit compression and implicit com-
pression strongly relies on the data compressibility. The
higher data compressibility is, the larger difference be-
tween explicit compression and implicit compression is.
In addition, the BDC design scenario always performs
the best under both explicit and implicit data compres-
sion.

When explicit compression is being used, the differ-
ence among different design strategies tends to dimin-
ish for data with better compressibility (e.g., LOG and
HTML). This can be explained as follows. With highly
compressible data, explicit compression can fit more
compressed data and hence leave less unused storage
space within each flash memory page. As a result, there
is a smaller room for these different design strategies to
exploit the unused storage space, leading to almost the
same storage device lifetime. On the other hand, when
implicit compression is being used, unidirectional data
layout and bidirectional data layout tend to have notice-
able different effect, especially for data with better com-
pressibility. As pointed out in Section 2.2.2, compared

with bidirectional data layout, unidirectional data layout
leads to more cells with random data content and ‘11’.
Although ‘11’ causes the least memory cell damage, ran-
dom data tend to cause relatively large damage, as shown
in Fig. 3. Based upon the content-dependent damage fac-
tors measured from our 20nm MLC flash memory chips,
the penalty of having more random data can noticeably
off-set the gain of having more ‘11’. As a result, unidi-
rectional data layout tends to be inferior to bidirectional
data layout. In the case of implicit compression, for data
with worse compressibility (e.g., DLL and EXE ), most
memory cells would store random data content in both
unidirectional and bidirectional data layout. As a result,
bidirectional data layout will be inferior to unidirectional
data layout in this scenario, which is shown in Fig. 7(a)
and (c). Meanwhile, as shown in the results, the bene-
fit of using conditional data exchange is not significant.
Conditional data exchange aims to convert memory cell
content from ‘00’ to ‘10’, since ‘10’ causes less damage
than ‘00’. Nevertheless, as shown in Fig. 3, the dam-
age difference between ‘00’ and ‘10’ is not significant,
which explains the low effectiveness of conditional data
exchange observed in our study.

4.2 Sensitivity to Data Compressibility

The above results are based upon the measured com-
pressibility characteristics of several different types of
data. To more thoroughly elaborate on the impact of
data compressibility, we carried out further evaluations
by considering a much wider range of data compress-
ibility in terms of compression ratio mean and standard
deviation.

We first fix the data compression ratio standard devi-
ation as 0.01, and Fig. 8 shows the corresponding stor-
age device survival probability vs. lifetime for a wide
range of compression ratio mean from 0.1 to 0.9. Data
with better compressibility (i.e., smaller compression ra-
tio mean) lead to larger lifetime improvement in both
explicit compression and implicit compression. In ad-
dition, the advantage of explicit compression over im-
plicit compression increases as the data have better com-
pressibility. At the compression ratio mean of 0.1 (i.e.,
the data can be compressed by 10:1 on average), ex-
plicit and implicit compression can improve the storage
device lifetime by 9.6 and 4.8 times, respectively. As
shown in Fig. 8, for less compressible data (e.g., with the
compression ratio mean of 0.7 and higher), explicit and
implicit compression have almost the same effect. This
is because, with low data compressibility, explicit com-
pression can hardly increase the number of compressed
data sectors per page. The results more clearly reveal the
observations discussed above in Section 4.1: Under ex-
plicit compression, the difference between different de-
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Figure 8: Storage device survival probability when data compression ratio standard deviation is 0.01 and mean is (a)
0.9, (b) 0.7, (c) 0.6, (d) 0.4, (e) 0.3, and (f) 0.1.
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Figure 10: Storage device lifetime survival probability when compression ratio mean is 0.5 and standard deviation is
(a) 0.01, (b) 0.03, (c) 0.05, (d) 0.09, (e) 0.1, and (f) 0.14.
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Figure 9: Lifetime gain under different data compression
ratio mean.

sign strategies quickly shrinks as we reduce the com-
pression ratio mean; Under implicit compression, bidi-
rectional data layout is always noticeably more benefi-
cial than unidirectional data layout. By setting the stor-
age device lifetime as the P/E cycles corresponding to
99.9% of storage device survival probability, Fig. 9 fur-
ther plots the storage device lifetime gain over the base-
line scenario without using compression under different
compression ratio mean.

Next, we examined the impact of data compression ra-
tio standard deviation. With the compression ratio mean
of 0.5, Fig. 10 shows the storage device survival prob-
ability vs. P/E cycles when the compression ratio stan-
dard deviation varies from 0.01 to 0.14. As the data
compression ratio standard deviation increases, advan-
tage of explicit compression over implicit compression
becomes more significant, and the storage device lifetime
improvement generally reduces. In addition, the differ-
ence among the four different design scenarios reduces
as the compression ratio standard deviation increases, for
both explicit and implicit compression. Again, the de-
sign scenario of BDC is the most effective for both ex-
plicit and implicit compression.

By setting the storage device lifetime as the P/E cycles
corresponding to 99.9% of storage device survival prob-
ability, Fig. 11 further shows the storage device lifetime
gain over the baseline scenario under different compres-
sion ratio standard deviation. It shows that the lifetime
gain monotonically reduces as we increase the data com-
pression ratio standard deviation for implicit data com-
pression. Nevertheless, for explicit data compression,
the storage device lifetime gain first reduces and then
saturates and even slightly increases as we increase the
compression ratio standard deviation. The figure more
clearly reveals the dependency of comparison between
explicit and implicit compression on compression ratio
standard deviation.
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Figure 11: Lifetime gain for different data compression
ratio standard deviation.

4.3 Discussions

The above quantitative studies show that the proposed
implicit data compression is a viable complement to the
conventional explicit data compression. Although ex-
plicit data compression may noticeably complicate the
design of FTL and/or OS, it always outperforms implicit
data compression from the storage device lifetime per-
spective. Nevertheless, the advantage of explicit com-
pression over implicit compression strongly depends on
the data compressibility. As shown in the above evalua-
tion results, the advantage of explicit compression over
implicit compression reduces as the data compressibility
drops, and becomes very small as the data compression
ratio mean becomes sufficiently large (e.g., over 0.6∼0.7
in this study), particularly when the data compression ra-
tio has a small standard deviation.

Our studies show that the bidirectional data layout out-
performs the unidirectional data layout, especially when
using the implicit data compression. Nevertheless, we
should emphasize that this conclusion may not be al-
ways true. As pointed out above, compared with bidi-
rectional data layout, unidirectional data layout result
in more memory cells with random data content and
‘11’. Hence, which data layout option is better is fun-
damentally dependent on the exact values of the content-
dependent damage factors. In this work, we extracted
the content-dependent damage factors based upon mea-
surements with 20nm MLC flash memory chips. How-
ever, for further scaled technology nodes such as 16nm or
the emerging 3D flash memory, content-dependent dam-
age factors and their relative comparison may (largely)
change. This could essentially change the conclusion on
the comparison between unidirectional data layout and
bidirectional data layout. In addition, the above results
suggest that the design strategy of conditional data ex-
change is not very effective, which is again also essen-
tially due to the content-dependent damage factors being
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used in this work. For MLC NAND flash memory, the
conditional data exchange will become more effective if
the damage factors of ‘10’ and ’00’ have a larger differ-
ence in future memory technology nodes.

Therefore, when applying the developed design frame-
work in practice, one should carry out sufficient measure-
ments and experiments to fully understand the content
dependency of NAND flash memory damage and run-
time data compressibility characteristics, in order to de-
termine the most appropriate design strategy for leverag-
ing data compressibility to improve device lifetime.

5 Related Work

Prior work [17–19] has studied the practical implementa-
tion of data compression in flash-based data storage sys-
tems, aiming to improve the storage system I/O speed
performance and flash memory lifetime. In [17], a block-
level compression engine is devised to support on-line
compression for SSD-based cache, which is transpar-
ent to the file system. The authors of [18] develop a
compression-aware FTL that can support compression-
aware address mapping and garbage collection. The au-
thors of [19] implement a caching system with commod-
ity SSD by integrating data compression and data dedu-
plication. All the prior work aimed to explicitly improve
the storage efficiency, like the explicit data compression
scenario being considered in this work. Besides data
compression, prior work [20, 21] also investigated the
practical implementation of data deduplication in flash-
based storage systems.

FTL plays an important role in determining the life-
time of flash-based data storage devices, hence it has
been well studied. The wear-leveling function in FTL
aims to equalize the physical damage among all the flash
memory block by appropriately allocating the memory
blocks for erase and programming. A variety of tech-
niques have been proposed to optimize the design of the
wear-leveling function (e.g., see [10, 22, 23]). Aiming to
reduce the write amplification and hence improve flash
memory lifetime, the garbage collection function in FTL
has been well studied (e.g., see [24]). The log-structured
approach to managing flash memory have been consid-
ered through direct management of raw flash memory
chips [11] or by facilitating the operation of the FTL in-
side SSDs [13]. Such log-structured file system level
management of memory chips lead to improved flash
memory lifetime and storage system performance.

The strength of fault tolerance, in particular ECC, also
largely affect the storage device lifetime. Although clas-
sical BCH codes are still widely used in commercial
flash-based storage devices [25, 26], the more powerful
LDPC codes are receiving significant attention from the
industry (e.g., see several industrial presentations at re-

cent Flash Summit [2, 3, 27, 28]). A variety of tech-
niques [29–32] have been developed to optimize the im-
plementation of LDPC codes in future flash-based data
storage devices.

6 Conclusion

This paper presents a thorough study on exploiting data
compressibility to reduce cycling-induced flash mem-
ory cell physical damage and hence improve storage de-
vice lifetime. This work is essentially motivated by the
content dependency of flash memory cell damage. We
first present an unconventional implicit data compression
strategy as a viable complement to explicit data com-
pression being used in current practice, both of which
represent different trade-offs between flash memory life-
time improvement and impact on FTL and system design
complexity. In addition, their effectiveness and compar-
ison largely vary with the runtime data compressibility
characteristics. We further develop a set of design strate-
gies that can exploit the unused storage space left by
data compression within flash memory pages in order to
minimize the overall memory physical damage. Further-
more, we derive a set of mathematical formulations that
can quantitatively estimate the effectiveness of the pro-
posed design strategies. Using 20nm MLC NAND flash
memory chips, we carried out experiments to empiri-
cally evaluate the content dependency of flash memory
cell damage. Employing these quantized experimental
results, we compare the effectiveness of the proposed de-
sign strategies when using either explicit or implicit com-
pression. Although this work focuses on flash memory,
the proposed design strategies and developed mathemat-
ical formulations are readily applicable to other emerg-
ing memory technologies, e.g., PCM and ReRAM, that
experience similar content dependency of memory cell
damage.

Acknowledgements

We would like to thank our shepherd Sam H. Noh and
the anonymous reviewers for their insight and sugges-
tions for improvement. This work was supported by the
National Science Foundation under Grants No. 1162152
and 1406154, National Science Foundation CAREER
award CNS-125394, and the Department of Defense
award W911NF-13-1-0157.

References

[1] G. Dong, N. Xie, and T. Zhang, “On the use
of soft-decision error-correction codes in NAND
Flash memory,” IEEE Transactions on Circuits and

12



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 239

Systems I: Regular Papers, vol. 58, no. 2, pp. 429–
439, 2011.

[2] E. Yeo, “An LDPC-enabled flash controller in
40nm CMOS,” in Proceedings of Flash Memory
Summit, 2012.

[3] X. Hu, “LDPC codes for Flash channel,” in Pro-
ceedings of Flash Memory Summit, 2012.

[4] J. Kim, J. Kim, S. Noh, S. Min, and Y. Cho, “A
space-efficient flash translation layer for compact
flash systems,” IEEE Transactions on Consumer
Electronics, vol. 48, no. 2, pp. 366–375, 2002.

[5] K. Yim, H. Bahn, and K. Koh, “A flash compres-
sion layer for smart media card systems,” IEEE
Transactions on Consumer Electronics, vol. 50, no.
1, pp. 192–197, 2004.

[6] E. Gal and S. Toledo, “Algorithms and data struc-
tures for flash memories,” ACM Computing Sur-
veys, vol. 37, no. 2, pp. 138–163, 2005.

[7] J. Kang, H. Jo, J. Kim, and J. Lee, “A superblock-
based flash translation layer for NAND Flash mem-
ory,” in Proceedings of the 6th ACM & IEEE In-
ternational conference on Embedded software, pp.
161–170, 2006.

[8] T. Park and J. Kim, “Compression support for flash
translation layer,” in Proceedings of the Interna-
tional Workshop on Software Support for Portable
Storage, pp. 19–24, 2010.

[9] S. Lee, J. Park, K. Fleming, and J. Kim, “Improving
performance and lifetime of solid-state drives using
hardware-accelerated compression,” IEEE Trans-
actions on Consumer Electronics, vol. 57, no. 4, pp.
1732–1739, 2011.

[10] Y. Pan, G. Dong, and T. Zhang, “Error rate-based
wear-leveling for NAND Flash memory at highly
scaled technology nodes,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol.
21, no. 7, pp. 1350–1354, 2013.

[11] C. Manning, “Introducing yaffs, the first NAND-
specific flash file system,” http://linuxdevices.com,
2002.

[12] A. Schierl, G. Schellhorn, D. Haneberg, and
W. Reif, “Abstract specification of the UBIFS file
system for flash memory,” in FM 2009: Formal
Methods, pp. 190–206. Springer, 2009.

[13] C. Lee, D. Sim, J. Hwang, and S. Cho, “F2FS: A
New File System for Flash Storage,” in Proceed-
ings of the 13th USENIX File and Storage Tech-
nologies (FAST), 2015.

[14] Y. Cai, E.F. Haratsch, O. Mutlu, and K. Mai, “Error
patterns in MLC NAND flash memory: Measure-
ment characterization and analysis,” in Proceedings
of Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pp. 521–526, 2012.

[15] N. Mielke, T. Marquart, N. Wu, J. Kessenich,
H. Belgal, S. Eric, F. Trivedi, E. Goodness, and
L.R. Nevill, “Bit error rate in NAND Flash mem-
ories,” in Proceedings of IEEE International Relia-
bility Physics Symposium, pp. 9–19, 2008.

[16] J. Ziv and A. Lempel, “A universal algorithm for
sequential data compression,” IEEE Transactions
on Information Theory, vol. IT-23, pp. 337–343,
1977.

[17] T. Makatos, Y. Klonatos, M. Marazakis, M. Flouris,
and A. Bilas, “Using transparent compression to
improve SSD-based i/o caches,” in Proceedings
of the European Conference on Computer Systems
(EuroSys), pp. 1–14, 2010.

[18] S. Lee, J. Park, K. Fleming, Arvind, and J. Kim,
“Improving performance and lifetime of solid-state
drives using hardware-accelerated compression,”
IEEE Transactions on Consumer Electronics, vol.
57, no. 4, pp. 1732–1739, 2011.

[19] C. Li, P. Shilane, F. Douglis, H. Shim, S. Smaldone,
and G. Wallace, “Nitro: A capacity-optimized
SSD cache for primary storage,” in Proceedings
of USENIX Annual Technical Conference (ATC),
pp. 501–512, 2014.

[20] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Siva-
subramaniam, “Leveraging value locality in opti-
mizing NAND Flash-based SSDs,” in Proceedings
of the 9th USENIX File and Storage Technologies
(FAST), 2011.

[21] F. Chen, T. Luo, and X. Zhang, “CAFTL: A
content-aware flash translation layer enhancing the
lifespan of Flash memory based solid state drives,”
in Proceedings of the 9th USENIX File and Storage
Technologies (FAST), 2011.

[22] Y. Lu, J. Shu, and W. Zheng, “Extending the life-
time of flash-based storage through reducing write
amplification from file systems,” in Proceedings of
the 11th USENIX File and Storage Technologies
(FAST), pp. 257–270, 2013.

[23] X. Jimenez, D. Novo, and P. Ienne, “Wear unlevel-
ing: improving NAND Flash lifetime by balanc-
ing page endurance,” in Proceedings of the 12th
USENIX File and Storage Technologies (FAST),
47–59, pp. 2014.

13



240 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

[24] L. Chang, T. Kuo, and S. Lo, “Real-time garbage
collection for flash-memory storage systems of
real-time embedded systems,” ACM Transactions
on Embedded Computing Systems, vol. 3, no. 4,
pp. 837–863, 2004.

[25] Y. Lee, H. Yoo, I. Yoo, and I. Park, “6.4
gb/s multi-threaded BCH encoder and decoder for
multi-channel SSD controllers,” in Proceedings of
IEEE International Solid-State Circuits Conference
(ISSCC), pp. 426–428, 2012.

[26] H. Tsai, C. Yang, and H. Chang, “An efficient
BCH decoder with 124-bit correctability for multi-
channel SSD applications,” in Proceedings of IEEE
Asian Solid State Circuits Conference (A-SSCC),
pp. 61–64, 2012.

[27] J. Yang, “The efficient LDPC DSP system for
SSD,” in Proceedings of Flash Memory Summit,
2013.

[28] L. Dolecek, “Non binary LDPC codes: The next
frontier in ECC for flash,” in Proceedings of Flash
Memory Summit, 2014.

[29] J. Wang, T. Courtade, H. Shankar, and R. We-
sel, “Soft information for LDPC decoding in flash:
mutual-information optimized quantization,” in
Proceedings of IEEE Global Telecommunications
Conference (GLOBECOM), 2011.

[30] S. Tanakamaru, Y. Yanagihara, and K. Takeuchi,
“Over-10-extended-lifetime 76%-reduced-error
solid-state drives (SSDs) with error-prediction
LDPC architecture and error-recovery scheme,”
in Proceedings of IEEE International Solid-State
Circuits Conference (ISSCC), 424–426, pp. 2012.

[31] J. Li, K. Zhao, J. Ma, and T. Zhang, “Realizing
unequal error correction for NAND flash memory
at minimal read latency overhead,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs,
vol. 61, no. 5, pp. 354–358, 2014.

[32] J. Wang, K. Vakilinia, T. Chen, T. Courtade,
G. Dong, T. Zhang, H. Shankar, and R. Wesel, “En-
hanced precision through multiple reads for LDPC
decoding in flash memories,” IEEE Journal on Se-
lected Areas in Communications, vol. 32, no. 5, pp.
880–891, 2014.

14



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 241

RAIDShield: Characterizing, Monitoring, and Proactively Protecting

Against Disk Failures

Ao Ma1, Fred Douglis1, Guanlin Lu1, Darren Sawyer1, Surendar Chandra2, Windsor Hsu2

1EMC Corporation, 2Datrium, Inc.

Abstract
Modern storage systems orchestrate a group of disks

to achieve their performance and reliability goals. Even

though such systems are designed to withstand the fail-

ure of individual disks, failure of multiple disks poses a

unique set of challenges. We empirically investigate disk

failure data from a large number of production systems,

specifically focusing on the impact of disk failures on

RAID storage systems. Our data covers about one

million SATA disks from 6 disk models for periods up to

5 years. We show how observed disk failures weaken the

protection provided by RAID. The count of reallocated

sectors correlates strongly with impending failures.

With these findings we designed RAIDSHIELD,

which consists of two components. First, we have built

and evaluated an active defense mechanism that moni-

tors the health of each disk and replaces those that are

predicted to fail imminently. This proactive protection

has been incorporated into our product and is observed to

eliminate 88% of triple disk errors, which are 80% of all

RAID failures. Second, we have designed and simulated

a method of using the joint failure probability to quantify

and predict how likely a RAID group is to face multi-

ple simultaneous disk failures, which can identify disks

that collectively represent a risk of failure even when no

individual disk is flagged in isolation. We find in sim-

ulation that RAID-level analysis can effectively identify

most vulnerable RAID-6 systems, improving the cover-

age to 98% of triple errors.

1 Introduction

Storage systems have relied for decades on redundancy

mechanisms such as RAID to tolerate disk failures, as-

suming an ideal world with independent and instanta-

neous failures as well as exponential distributions of the

time to failure [3, 11, 18, 36]. However, some assump-

tions no longer hold given the fault model presented by

modern disk drives. Schroeder and Gibson [42] analyzed

100,000 disks and rejected the hypothesis of the time be-

tween disk replacements following an exponential distri-

bution. Further, in addition to whole-disk failures that

make an entire disk unusable, modern drives can exhibit

latent sector errors in which a block or set of blocks be-

come inaccessible [6, 29]. Such sector faults in otherwise

working disks further weaken the RAID reconstruction

capability. Not only were sector errors previously ig-

nored in the early RAID reliability model, these errors

may worsen over time due to increasing drive complex-

ity [4] and the common use of less reliable disks in stor-

age systems [6, 17, 38]. In short, RAID protection is no

longer enough; however, given its prevalence in the stor-

age industry, a mechanism to shield RAID systems from

unreliable disks would have a wide audience.

System designers have realized the new threats caused

by these disk faults and built additional mechanisms to

improve data reliability. While the original RAID sys-

tem would protect against the loss of data from one

disk (either an unavailable sector or the failure of the

entire disk), the trend has been to use additional re-

dundancy to guard against related data loss on mul-

tiple disks. For example, some storage arrays incor-

porate extra levels of parity, such as RAID-6, which

can tolerate two simultaneous whole or partial disk fail-

ures [2, 12, 13, 19, 22, 23]; others add redundancy with

CPU-intensive erasure coding [14, 25]. Throughout this

paper we focus on “triple-disk failures,” or “triple fail-

ures” for short, which refer to any combination of losing

related data from three disks simultaneously, due to bad

sectors or an entire disk. If a RAID-6 system encoun-

ters a triple failure it will lose data, but additional layers

of redundancy (such as replication) can further protect

against catastrophic data loss.

Many storage systems apply disk scrubbing to proac-

tively detect latent sector errors; i.e., they read data from

disk specifically to check for media errors, rather than be-

cause an application has requested the data [28, 43]. File

systems also incorporate techniques such as replication

and parity to improve data availability [10, 37, 41]; repli-

cation is critical because the failure of a disk group (DG)

can be rectified, at high overhead, with a separate replica

accessible via a LAN or WAN. Finally, even when pri-

mary storage systems are backed up onto separate ded-

icated backup systems, those backup systems can them-
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selves be replicated [27].

Unfortunately, improvements to the basic RAID archi-

tecture are still based on certain assumptions given the

limited understanding of disk fault modes. For example,

empirical observations show both the sector error rate

and the whole-disk failure rate grow over time [6, 42],

causing RAID availability to continuously degrade. It

is possible for multiple disks in the same RAID DG to

fail simultaneously while other working disks have de-

veloped a number of latent sector errors [16]. Such mul-

tiple combined faults can overcomeRAID protection and

affect data availability. Unfortunately, little data is pub-

licly available that quantifies such correlated faults.

To address this knowledge gap with respect to storage

system reliability, we collected and analyzed disk error

logs from EMC Data Domain backup systems. The data

cover periods up to 60 months and include about 1 mil-

lion SATA disks from deployed systems at customer and

internal sites. To our knowledge, this is the first study

of this magnitude to focus on analyzing disk faults (e.g.,

whole-disk failures and sector errors) that influence data

reliability. The logs report when a disk failure is de-

tected, at which point a system can automatically initi-

ate data recovery onto a spare drive using available data

from within that system. They also report larger-scale

outages, when too many drives fail simultaneously for

data to be accessible. We define a recovery-related inci-

dent as a failure that requires the retrieval of data from

another system, such as a backup or disk replica.

Our analysis reveals that many disks fail at a similar

age and the frequency of sector errors keeps increasing

on working disks. Ensuring data reliability in the worst

case requires adding considerable extra redundancy,

making the traditional passive approach of RAID pro-

tection unattractive from a cost perspective. By studying

numerous types of disk error, we also observe that the

accumulation of sector errors contributes to whole-disk

failures, causing disk reliability to deteriorate continu-

ously. Specifically, a large number of reallocated sectors

(RS1) indicates a high probability of imminent whole-

disk failure or, at a minimum, a burst of sector errors.

With these findings we designed RAIDSHIELD, a

monitoring mechanism, which proactively identifies

and preempts impending failures and vulnerable RAID

groups. RAIDSHIELD consists of two components,

PLATE+ARMOR. First, we have built and evaluated Pre-

dict Loss Accumulating in The Enterprise (PLATE), an

active defense mechanism that monitors the health of

each disk by tracking the number of reallocated sec-

tors, proactively detecting unstable disks and replacing

them in advance. PLATE has been deployed in produc-

tion systems for nearly a year. Second, we have de-

1RS is also sometimes referred to as RAS in disk statistics, but we

prefer to avoid the confusion with other uses of RAS in the CS literature.

signed and simulated Assure Redundant Media Or Re-

place (ARMOR), which uses the joint failure probabil-

ity of a DG to quantify the likelihood of multiple si-

multaneous disk failures. ARMOR has the potential to

identify sets of disks that collectively represent a risk of

failure even when no individual disk is flagged in iso-

lation. Given this assessment, unstable disks can then

be replaced in advance or the redundancy of a DG can

be increased; either approach can improve overall RAID

availability.

Simulation results for PLATE, the single-disk proac-

tive protection, show it can capture up to 65% of impend-

ing whole-disk failures with up to 2.5% false alarms. Af-

ter incorporating it into our product, we find its effect on

RAID failures is disproportionate: it has been observed

to eliminate 70% of the recovery-related incidents caused

by RAID failures and 88% of the RAID failures due to

triple disk failures. Its benefits are somewhat limited by

the types of errors that it cannot predict: about 20% of

DG failures are caused by user errors, hardware faults,

and other unknown reasons. Simulation results indicate

that ARMOR, the cross-disk proactive protection, can ef-

fectively identify 80% of vulnerable RAID-6 systems in

a test of 5500 DGs. We find that it can predict most of

the triple failures not prevented by PLATE, leading to to-

tal coverage of 98% of triple failures.

The rest of this paper is organized as follows. We first

provide background on partial disk failures and describe

our storage system architecture, including an overview

of RAIDSHIELD (§2). §3 presents our study on the rela-
tion between whole-disk failure and sector errors, and it

characterizes reallocated sectors, which are found to be

highly correlated with whole-disk failures. §4 describes

and evaluates PLATE, demonstrating the substantial re-

duction in RAID failures after deploying single-disk pre-

dictive replacement. §5 describes the design and evalua-

tion, via simulation, of ARMOR: using joint probabilities

to assess the failure risk to a DG as a whole. §6 discusses
related work and §7 concludes.

2 Background and Motivation

In this section we define disk partial failures, provid-

ing the background to understand our subsequent failure

analysis. We then present an overview of our storage sys-

tem architecture and describe the two aspects of RAID-

SHIELD.

2.1 Disk Failures

Disks do not fail in a simple fail-stop fashion. Hence,

there is no consensus definition of what constitutes a disk

failure [5, 8, 45]. The production systems we studied

define a whole-disk failure as:

2
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• The system loses its connection to the disk,

• An operation exceeds the timeout threshold, or

• A write operation fails.

These criteria serve as the bottom line to replace disks

that cannot function properly. However, in addition

to whole-disk failures, disk drives can experience vari-

ous partial failures while they still otherwise function.

Sector-related issues are the major partial failures that

endanger data safety [7, 31, 41]. Disk drives therefore

provide a variety of proprietary and complicated mecha-

nisms to rectify some failures and extend drive lifespans.

In this subsection, we briefly describe disk technology,

focusing on detection and error handling mechanisms for

sector errors; refer elsewhere for more detailed descrip-

tions [6, 38]. Failure detection and recovery mechanisms

vary by manufacturer, production model, interface and

capacity; the mechanisms introduced here cover com-

mon SATA disk internal mechanisms.

Sector errors can be categorized into different specific

types based on how they are detected, as shown in Fig-

ure 1. Operations to the disk can be initiated by file sys-

tem read() and write() calls as well as by an internal scan

process, which systematically checks sector reliability

and accessibility in the background. (These are shown

in Figure 1 in blue, magenta, and green respectively.)

Media error: This error occurs when a particular disk

sector cannot be read, whether during a normal read or a

background disk scan. Any data previously stored in the

sector is lost. The disk interface reports the status code

upon detecting a sector error, specifying the reason why

the read command failed.

Pending and Uncorrectable sector: Unstable sectors

detected in the background process will be marked as

pending sectors, and disk drives can try rectifying these

errors through internal protection mechanisms, such as

built-in Error Correcting Codes and Refreshment. These

techniques rewrite the sector with the data read from that

track to recover the faded data. Any sectors that are not

successfully recovered will be marked as uncorrectable

sectors.

Reallocated sector: After a number of unsuccessful re-

tries, disk drives automatically re-map a failed write to

a spare sector; its logical block address (LBA) remains

unchanged. Modern disk drives usually reserve a few

thousand spare sectors, which are not initially mapped to

particular LBAs. Reallocation only occurs on detected

write errors.

We also observe that changes to disk technology tend

to increase the frequency of sector errors, a major frac-

tion of partial disk failures. First, the number of sectors

on a disk keeps increasing: while the capacity of individ-

ual disks may not be increasing at the rate once predicted

by Kryder [33, 47], they still increase. Thus, if sector er-

rors occur at the current rate, there would be more sector

Figure 1: Sector error transition. This figure depicts

different responses to sector errors. A read (shown in blue) will

report a media error if target sector is unreadable. A write

(magenta) will attempt to remap a bad sector. An internal scan

(green) will try to identify and rectify unstable sectors.

errors per disk. Second, the disk capacity increase comes

from packing more sectors per track, rather than adding

more physical platters. Sectors become increasingly vul-

nerable to media scratches and side-track erasures [15].

2.2 Storage System Environment

We now briefly describe the context of our storage sys-

tem with a focus on sector error detection and handling.

At a high level, the storage system is composed of three

layers, including a typical file system, the RAID layer,

and the storage layer. The file system processes client re-

quests by sending read and write operations to the RAID

layer. The RAID layer transforms the file system re-

quests into disk logical block requests and passes them to

the storage layer, which accesses the physical disks. Our

RAID layer adopts the RAID-6 algorithm, which can tol-

erate two simultaneous failures.

In addition to reporting latent sector errors captured

in ordinary I/Os, our storage systems scrub all disks pe-

riodically as a proactive measure to detect latent sector

errors and data corruption errors. Specifically, this scan

process checks the accessibility of “live” sectors (those

storing data accessible through the file system), verifies

the checksums, and notifies the RAID layer on failures.

Sector error handling depends on the type of disk re-

quest. A failed write is re-directed to a spare sector

through the automatic disk remapping process, without

reporting the error to the storage layer. If a read fails, the

RAID layer reconstructs data on the inaccessible sector

and passes it to the storage layer for rewriting. Writing

to the failed sector will trigger the disk internal mapping

process. Note that given the process of RAID recon-

struction and re-issued write, the failed sector detected

3
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through read (media error) will eventually lead to an RS.

Therefore, the RS count is actually the number of inac-

cessible sectors detected in either reads or writes.

Finally, the systems evaluated in this paper are backup

systems, which are known to have write-heavy work-

loads with fewer random I/Os than primary storage [46];

this workload may change the way in which disk faults

are detected, as write errors may be relatively more com-

mon than read errors. The general conclusions should

hold for other types of use.

2.3 RAIDSHIELD Motivation

Despite the expectation that RAID-6 systems should be

resilient to disk failures, given a large enough popula-

tion of DGs there will be errors leading to potential data

loss [3]. Indeed, our systems encounter RAID-level er-

rors, but thankfully these are extremely rare.2 These

systems usually rely on extra layers of redundancy such

as (possibly off-site) replication to guard against catas-

trophic failures, but there is a strong incentive to decrease

the rate at which RAID failures occur.

As we see in §3, disks that are installed together are

somewhat likely to fail together, and disks that have par-

tial (media) errors will rapidly accumulate errors until

they are deemed to have failed completely. Our goal for

RAIDSHIELD is to identify and replace failing disks be-

fore they completely fail, within reason. In the extreme

case, one could use a single disk error as a warning signal

and replace any disk as soon as it reported the slightest

problem. However, the cost in time and expense would

be prohibitive, especially for large-scale installations like

cloud providers. With RAIDSHIELD, we take two tacks

in this regard. The first is to use statistical information

to discriminate between those disks that are likely to fail

soon and those that are not. In the next section we con-

sider a number of disk statistics that might be used for

this purpose, finding that the reallocated sectors (RS)

metric is an excellent predictor of impending failures.

We show in §4 that after deploying PLATE proactive disk

replacement, looking at each disk in isolation, our RAID

failures dropped dramatically.

Can we do better with ARMOR, our second tack? We

hypothesize that by using the joint failure probability

across a DG we can find some additional instances where

no single disk is close enough to failure to justify replac-

ing it using the criteria for PLATE, but enough disks are

symptomatic that the DG as a whole is in jeopardy. In §5
we present the probability analysis and some simulation

results to justify this approach. In addition, we specu-

late that in some environments, it will be undesirable to

2We are unable to release specific error rates for DGs or disk mod-

els.

Figure 2: Example of RAIDSHIELD. Four DGs are

shown, each with four disks. Green disks are healthy, yellow

disks are at risk, and red disks are likely to fail imminently.

DG2 and DG3 are at risk of failure.

proactively replace every disk that is showing the possi-

bility of failure; instead, it may be important to prioritize

among DGs and first replace disks in the most vulner-

able groups. A single soon-to-fail disk in an otherwise

healthy DG is a lower risk than a DG with many disks

that have moderate probability of failure.

Figure 2 provides an example of the difference be-

tween PLATE and ARMOR. There are four disk groups;

DG2, with two failing disks, is at high risk, while DG3

has a moderate risk due to the large number of partly-

failing disks. With PLATE, we would replace the red

disks, protecting vulnerable DG2 and improving the pro-

tection of DG4, but DG4 is already protected by three

healthy disks. With ARMOR, we replace the two failing

disks in DG2 but also recognize the vulnerability of DG3

given the large number of at-risk disks.

3 Disk Failure Analysis

Understanding the nature of whole-disk failures and par-

tial failures is essential for improving storage system re-

liability and availability. This section presents the results

of our analysis of about 1 million SATA disks. First, we

describe how we collected the disk data studied in this

work. Second, we present our observations of the new

disk failure modes (e.g., simultaneous disk failures and

sector errors) which endanger RAID availability. Third,

we analyze the correlation between these two failure

modes. Finally, we analyze characteristics and proper-

ties of reallocated sectors, the specific sector error type

that is found to predict drive failures.

4



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 245

0 0 1 2
4

15

34

29

11

3

0

10

20

30

40

P
e
rc

e
n
ta

g
e

0-6 12-18 24-30 36-42 48-54
months

A-1

0 0 0 1
4

24

46

20

3
1

0

10

20

30

40

50

P
e
rc

e
n
ta

g
e

0-6 12-18 24-30 36-42 48-54
months

A-2

6

2 1 2

7

18

26

38

0

10

20

30

40

P
e
rc

e
n
ta

g
e

0-6 12-18 24-30 36-42
months

B-1

16

10

8
9

7 7
8

7 7 7 7 7

0

5

10

15

20

P
e
rc

e
n
ta

g
e

0-3 6-9 12-15 18-21 24-27 30-33
months

C-1

0
1 1

4

12

21
22

13

10

7
5

4

0

5

10

15

20

25

P
e
rc

e
n
ta

g
e

0-3 6-9 12-15 18-21 24-27 30-33
months

C-2

19

16 15

12 12 13 12

0

10

20

30

P
e
rc

e
n
ta

g
e

0-3 6-9 12-15 18-21
months

D-1

Figure 3: Distribution of lifetimes of failed drives. These graphs show that many disks fail at a similar age. Note that the

number of buckets, i.e. total age since deployment, and time length of each bucket varies by drive.

Disk Population First Log Length

Model (Thousands) Deployment (Months)

A-1 34 06/2008 60

A-2 165 11/2008 60

B-1 100 06/2008 48

C-1 93 10/2010 36

C-2 253 12/2010 36

D-1 384 09/2011 21

Table 1: Disk population. Population, earliest deploy-

ment date and log length of disk models used in this study.

3.1 Data Collection

Our storage system has a built-in mechanism to log sys-

tem status, which can optionally send important events

back to a central repository each day [46]. These mes-

sages record a variety of system events including disk

errors and failures. The data studied here are collected

from these reports over a period of 5 years starting in

June, 2008.

Similar to previous work [6], we anonymize disk in-

formation to make it possible to compare across disks

from a single manufacturer but not across disk families.

We denote each disk drive model as 〈family-capacity〉.
Family is a single letter representing the disk family and

capacity is a single number representing the disk’s partic-

ular capacity. Although capacities are anonymized as a

single number, relative sizes within a family are ordered

by the number representing the capacity. That is, A-2

and C-2 are larger than A-1 and C-1 respectively.

Our entire sample of 1 million disks includes 6 disk

models, each of which has a population of at least

30,000. They have been shipped in our storage systems

since June, 2008, giving us a sufficient observation win-

dow to study various errors over the full lifespans of

many drives. Details of the drives studied are presented

in Table 1. Note that the recorded period of each disk

model varies: the studied data range from 60-month logs

of A-1 and A-2 down to 21 months for D-1.

3.2 New Disk Failure Modes

We observe two new disk failure modes that are not pre-

dicted by the early RAID reliability model and degrade

RAID reliability and availability.

Drives fail at similar ages: We analyze all failed drives

and categorize them into different buckets based on their

lifetime. Figure 3 shows that a large fraction of failed

drives are found at a similar age. For example, 63% of

A-1 failed drives, 66% of A-2 failed drives and 64% of

B-1 failed drives are found in their fourth year. This fail-

ure peak is also observed in the second year of the C-2

model, with 68% of failed drives found in this period.

Given a large population of drives, some drives will fail

not only in the same month but occasionally the same

week or day, resulting in vulnerable systems. If a third

error (a defective sector or a failed drive) should also oc-

cur before drives can be replaced and data reconstructed,

the DG will be unavailable.

The lifetime distributions of C-1 and D-1 failed drives

are comparatively uniform. However, these drives are

5
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with sector errors, for each model the number of errors in-

creased significantly in the second year.

relatively young compared to the drives with long obser-

vation intervals, so it is difficult to draw specific conclu-

sions from this uniformity. We note a degree of “infant

mortality” with these drives, with peaks of failures in the

first three months.

Sector errors exacerbate risk: Figure 4 presents the

fraction of disks affected by sector errors as a function

of the disk age. Disks from all models show sector er-

rors by the time they have been in use for 2–3 years, but

some have significant errors much earlier. In addition,

the rate at which errors appear increases with the age of

the disks: for example, about 5% of A-2 disks get sector

errors in the first 30 months, but it only takes an addi-

tional 6 months for 10% more to develop sector errors.

Similar trends can be observed with A-1, B-1, and C-2.

To demonstrate the rate of error increase, we select

1000 disks randomly from each disk model, which de-

veloped at least one sector in a one-month observation

window. We collect the count of their sector errors one

year later. Figure 5 shows the average number of sector

errors in the first and second years. For all drives with at

least one sector error, the number of sector errors for the

second year increases considerably, ranging from 25%

for the C-2 model to about 300% for A-2.

These new disk failure modes reveal that the tradi-

tional RAID mechanism has become inadequate. The

observation that many disks fail at a similar age means

RAID systems face a higher risk of multiple whole-disk

failures than anticipated. The increasing frequency of

sector errors in working disks means RAID systems face

a correspondingly higher risk of reconstruction failures:

a disk that has not completely failed may be unable to

provide specific sectors needed for the reconstruction.

The disk technology trends introduced in §2.1 exacerbate
these risks.

3.3 Correlating Full and Partial Errors

Since both whole-disk failures and sector errors affect

data availability, exploring how they are correlated helps

us to understand the challenges of RAID reliability. Here

we introduce the statistical methodology used to analyze

the data, then we evaluate the correlation between whole-

disk failures and sector errors.

3.3.1 Statistical Methods

Our objective is to compare the sector errors in working

disks and failed ones, and to use a measure to reflect their

discrimination. We use quantile distributions to quantita-

tively evaluate the correlation degree between disk fail-

ures and sector errors. Specifically, we collect the num-

ber of sector errors on working and failed disks, summa-

rizing each data set value using deciles of the cumulative

distribution (i.e., we divide the sorted data set into ten

equal-sized subsets; we normally display only the first

nine deciles to avoid the skew of outliers). Such quan-

tiles are more robust than other statistical techniques,

such as mean and cumulative distribution function, to

outliers and noise in depicting the value distribution and

have been used to analyze performance crises in data

centers [9].

3.3.2 Identifying Correlation

As introduced in §2.1, sector errors can be categorized

into specific types based on how they are detected. For

example, a sector error detected in a read is regarded as

a media error while a sector error captured in a write is

counted as an RS. Those error counts can be collected

through the disk SMART interface [1] and are included

in our logs.

Figures 6-7 compare the deciles of disk errors built on

6



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 247

0

100

200

300

400

500

600

700

800

900

1000
R

ea
llo

ca
te

d 
S

ec
to

r 
C

ou
nt

1 2 3 4 5 6 7 8 9

Deciles

0 5 28
53

171

332

511

743

902

0 0 0 0 0 0 0 0 1

failed disk deciles

working disk deciles

A-1

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

R
ea

llo
ca

te
d 

S
ec

to
r 

C
ou

nt

1 2 3 4 5 6 7 8 9

Deciles

2 23 87
187

327

522

812

1242

2025

0 0 0 0 0 1 2 6 29

failed disk deciles

working disk deciles

A-2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

R
ea

llo
ca

te
d 

S
ec

to
r 

C
ou

nt

1 2 3 4 5 6 7 8 9

Deciles

5 49 113
220

338

569

818

1342

2032

0 0 0 0 0 0 1 2 13

failed disk deciles

working disk deciles

B-1

0

300

600

900

1200

1500

R
ea

llo
ca

te
d 

S
ec

to
r 

C
ou

nt

1 2 3 4 5 6 7 8 9

Deciles

0 0 0 0 0 1 52

266

974

0 0 0 0 0 0 0 0 0

failed disk deciles

working disk deciles

C-1

0

300

600

900

1200

1500

R
ea

llo
ca

te
d 

S
ec

to
r 

C
ou

nt

1 2 3 4 5 6 7 8 9

Deciles

1
39 88

143
221

324

504

766

1364

0 0 0 0 0 0 0 0 0

failed disk deciles

working disk deciles

C-2

0

100

200

300

400

500

R
ea

llo
ca

te
d 

S
ec

to
r 

C
ou

nt

1 2 3 4 5 6 7 8 9

Deciles

0 0 0 1 8
26

71

160

393

0 0 0 0 0 0 0 0 0

failed disk deciles

working disk deciles

D-1

Figure 6: Reallocated sector comparison. Failed drives have more RS across all disk models. Many disks fail before they

exhaust their spare sectors. Failed drives with bigger capacity have more RS. Y-axis scales vary.

the working and failed disk sets. The x-axis represents

the Kth deciles, with the error counts on the y-axis.

Reallocated sector: Figure 6 presents the number of RS

on failed and working drives. We observe that the ma-

jority of failed drives developed a large number of RS

while most that are working have only a few. For ex-

ample, 80% of A-2 failed drives have more than 23 RS

but 90% of working drives have less than 29 of this er-

ror. Every disk model demonstrates a similar pattern; the

only difference is how large the discrimination is. Failed

disks have different RS counts, implying that many disks

fail before they use up all spare sectors. We also find

that failed drives with bigger capacity tend to have more

RS, though the numbers depend more on the maximum

number of reallocations permitted than the total size. For

example, the median count of RS on A-2 failed drives is

327, compared to 171 for A-1; A-2 has both twice the ca-

pacity and twice the maximum number of reallocations,

so this difference is expected. On the other hand, C-2 has

twice the capacity as C-1 but the same maximum num-

ber of RS (2048), and its 9th decile of RS is only 40%

higher than C-1. (Note that the median RS count for C-

1 is zero, implying that many C-1 disks fail for reasons

other than reallocated sectors; this is consistent with the

large infant mortality shown in Figure 4 and bears further

investigation. D-1 has similar characteristics.)

Media error: Due to the limitation of the logging mes-

sages we have on hand, we can analyze this error type

only on the A-2 disk model. The result is presented in

Figure 7. Though failed disks have more media errors

than working ones, the discrimination is not that signif-
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Figure 7: Media error comparison. There is only mod-

erate discrimination. Shown only for A-2.

icant compared to RS. For example, 50% of failed disks

have fewer than 15 media errors, and 50% of working

ones developed more than 3 errors. There is a large over-

lap between them, perhaps because only sector errors de-

tected in read operations are reported as media errors.

Sector errors detected in writes will trigger the reallo-

cation process directly without notifying the upper layer.

Since the RAID layer will re-write the reconstructed data

upon a detected media error, which causes the realloca-

tion process, every media error will lead to an RS even-

tually: the media error count is thus a subset of RS. More

details can be found in §2.2.

Pending and Uncorrectable sectors: As introduced in

§2.1, sector errors discovered through the disk internal

scan will be marked as pending sectors or uncorrectable

sectors. The results for pending sectors are presented

7
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Figure 8: Pending sector comparison. There is a large

variation among different models.

in Figure 8; the figure for uncorrectable sectors is sim-

ilar and is omitted for space considerations. Through

the comparison we find that for some disk models (such

as A-1, A-2, and B-1), a certain fraction of failed disks

(usually 30%) develop a similar amount of pending and

uncorrectable sectors. Failed drives of the other disk

models, including C-1, C-2, D-1 develop pending sec-

tor errors but none of them have uncorrectable sector er-

rors, implying most pending errors have been addressed

with drives’ internal protection mechanisms. No work-

ing disks show these two types of sector errors, revealing

that once disks develop these two types of error, they are

very probable to fail.

3.3.3 Summary

These experiments characterize the correlation between

whole-disk failures and various sector-related errors. We

observe that most failed disks tend to have a larger num-

ber of RS than do working disks. Thus RS are strongly

correlated with whole-disk failures. We infer that reallo-

cation is the last resort to tolerate a defective sector af-

ter all other recovery mechanisms have failed; therefore,

it avoids the influence of temporary errors which also

appear on working disks. Further, given the process of

RAID reconstruction and re-issued writes, inaccessible

sectors detected through read and write will both eventu-

ally lead to RS. Therefore, the number of RS represents

all inaccessible sectors and is a good indication of the

extent to which a disk is wearing out.

3.4 Characterization of RS

The previous subsection revealed that RS appear more

frequently in a large population of failed disks than work-

ing disks. Thus the number of RS is highly correlated

with whole-disk failures across all disk models studied.

This subsection studies characteristics of RS.

The best data set to study the properties of RS over

the disk lifetime is disk model A-2. The reason is that

this disk model was deployed for a long enough time

period (more than 5 years) with a robust population of

failed drives and detailed logging. Therefore, we use disk

model A-2 as an illustration to explain our findings in the

following sections.

All disks fail eventually, so we define an impending

disk failure in our study as the disk failing within a 60-

day observation window. A two-month window gives

enough time for the disk to expose latent problems, since

disk failure is not a simple fail-stop process. If a disk

does not fail during this observation period, it is regarded

as a qualified working disk.

We first evaluate how RS counts relate to disk fail-

ure rates. We analyze the percentage of disk failures af-

ter they exceed different thresholds of RS. The results

are presented in Figure 9. The X-axis represents the RS

count and the Y-axis depicts the failure percentage.

As found by Pinheiro, et al., the failure rate jumps dra-

matically once the disk starts to develop RS [38]. This

rate grows steadily as the count of RS increases; for ex-

ample, the failure rate of disks without any RS is merely

1.7%, while more than 50% of disks fail after this count

exceeds 40. If the count grows to the range of 500 and

600, the failure rate increases to nearly 95%. We con-

clude that the more RS the disk has, the higher probabil-

ity the disk will fail.

Second, we study the failed drives by analyzing the

period between the time the disk RS count exceeds a cer-

tain value and the time a disk failure happens. We collect

all time-to-fail (TTF) values and summarize the data set

with the box-and-whisker plot in Figure 10, showing the

10-25-50-75-90 percentiles. All values for the time mar-

gin shrink as the number of RS grows. For example, one

of every two failed disks would have more than seven

days TTF when it exceeds 40 RS. But when the count of

RS grows beyond 200, 50% of those disks that will soon

fail are found to fail within just two days. However, the

prediction is not guaranteed: the 90th percentile of fail-

ures is measured in weeks rather than days. We conclude

that a larger number of RS indicates a disk will fail more

quickly, in most cases just a few days.

Third, we analyze working drives, which have devel-

oped a certain number of RS, and categorize them into

different buckets based on their RS counts. Figure 11

groups disks into buckets, randomly selecting 1000 disks

with 0-100 RS, 1000 disks with 101-200 reallocations,

and so on. We track howmany sector errors they have ac-

cumulated 30 days later: for each bucket, the first (blue)

bar shows the mean RS of the 1000 disks within that

bucket as of the first month, and the second (magenta)

bar shows the mean reallocations as of the second month.

The data shows that drives with less than 100 RS de-

veloped another 6 RS on average, while drives with RS

in the range of 100 and 200 developed 100 more on av-

erage, well more than the aforementioned set. A similar
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trend has been observed in other drive sets. In general,

no matter how many existing sectors the disks have, the

number of RS grows consistently.

Our analysis of other disk models is trending in the

same direction of all the observations of model A-2. A

slight difference is that the latest disk models can survive

for a longer time with a certain number of RS. Therefore,

the latest disk drives have a greater time margin as the

number of RS grows.

From these experiments, we conclude that the accu-

mulation of sector errors contributes to the whole-disk

failure, causing disk reliability to deteriorate continu-

ously. The more RS errors the drive has, the higher the

probability to fail shortly or suffer a larger burst of sector

errors. Therefore, the number of RS is a good criteria to

reflect the disk survivability and sector reliability.

4 PLATE: Individual Failures

Much of the previous research on RAID has focused

on improving redundancy schemes to tolerate more si-

multaneous failures [13, 30, 32, 39, 40]. However, our

data analysis reveals that the likelihood of simultane-

ous whole-disk failures increases considerablywith older

disks. Further, the accumulation of sector errors con-

tributes to whole-disk failures, causing the disk reliabil-

ity to deteriorate continuously. Hence, ensuring data reli-

ability in the worst case requires adding considerable ex-

tra redundancy, making the traditional passive approach

of RAID protection unattractive from a cost perspective.

Meanwhile, the RS count has been observed to be a

good criteria to quantify and predict the degree of dete-

rioration of disk reliability. Therefore, we can upgrade

the passive RAID protection into a proactive defense:

PLATE monitors disk health (§4.1), identifies unreliable
disks (§4.2), and replaces unstable disks in advance to

prevent failures. Since unreliable disks are detected and

removed promptly, the likelihood of simultaneous fail-

ures also decreases (§4.3).

4.1 Monitor Disk Status

Our previous analysis reveals that the number of RS

is a good criteria to identify unstable disks. This ex-

pands the role of disk scrubbing: originally, scrubbing

aimed to verify data accessibility and proactively de-

tect lost data on failed sectors which could be recovered

through RAID redundancy; thus, it only scans “live” sec-

tors (those storing data accessible through the file sys-

tem). The new findings show that recognizing all latent

sector errors in a timely fashion is invaluable for monitor-

ing the status of a DG, so our scrubbing is being updated

to periodically check even unused disk sectors. We then

monitor the status of each disk via daily system logs, and

when a disk’s RS count exceeds a threshold, its replace-

ment is automatically triggered.

4.2 Proactively Identify Unreliable Disks

We see that the accumulation of sector errors contributes

to whole-disk failures, causing disk reliability to deterio-

rate continuously. Hence, using the RS count can pre-

dict impending disk failures in advance. Such proac-

tive protection provides administrators the chance to re-

place disks before whole-disk failures happen, improv-

ing RAID availability. We evaluate the methodology of

the proactive protection through simulations based on

historical disk information. We provide the result of de-

ployment in production systems in §4.3.
If the RS count exceeds the given failure threshold

T, the disk is considered to be unreliable. We evaluate

the result using two curves that represent the trade-off

between the fraction of failures successfully predicted

9
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(i.e., the recall of the prediction), and the false positive

amount, which includes qualified working disks identi-

fied incorrectly. The impending whole-disk failure is de-

fined as the disk failing within a 60-day observation win-

dow. If a disk that has more RS than the threshold is

still functioning properly after the observation window,

it is regarded as a false positive. Similarly, if a failed

disk reports at least the given minimum number of RS

within 60 days prior to the failure, the failure is success-

fully predicted. By comparing these two curves over the

whole range of the identification threshold, we take into

account all possible cost-based scenarios in terms of the

trade-off betweenmissing impending disk failures versus

failing working ones incorrectly.

We measure the proactive protection on a population

of 100,000 A-2 disks as reported by autosupport logs,

and present the result in Figure 12. It shows that both

the successful prediction rate and the false positive rate

decrease smoothly as the RS threshold grows from 20

to 600. When the threshold is less than 200, it captures

nearly 52–70% impendingwhole-disk failures, with 0.8–

4.5% false positive rates. Themajority of the unpredicted

failures are caused by hardware faults, user error and

other unknown reasons, which are unpredictable from a

software perspective; these prediction rates are consis-

tent with the curve for A-2 in Figure6, which depicted

the fraction of failed disks that had encountered a given

number of RS. Other disk models demonstrate similar

trends in our experiments.

System administrators can decide the appropriate

threshold to fail disks based on their expectation of cap-

tured rate, tolerance of replacing disks prematurely, and

the time required to replace disks.

4.3 Deployment Result

PLATE, the single-disk proactive protection using

remapped sector count, has been incorporated into some
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Figure 13: Causes of recovery incidents. The distri-

bution of causes of RAID failures, before and after proactive

protection was deployed, normalized to the case without pro-

tection. Single disk proactive protection reduces about 70% of

RAID failures and avoids 88% of the triple-disk failures previ-

ously encountered.

production systems. In our initial deployment, affect-

ing disks A-1, A-2, and B-1, we set the threshold for

predicting failure at 200 RS. This threshold was based

on the “training set” of our analysis prior to deployment

and was selected for two reasons: first, replacing disks

in production systems may take up to 3 days in the worst

case, and second, the median time to failure drops to less

than 3 days when the count of RS grows beyond 200.

In other words, setting the threshold less than 200 pro-

vides enough time to fix 50% of those impending failures

proactively. In addition, the cost of replacing a working

disk by mistake requires us to strive for a false positive

rate less than 1% (i.e., < 1% unnecessarily added costs

from incorrectly replacing working drives), resulting in a

replacement threshold of at least 200.

Figure 13 compares the recovery incidents caused by

RAID failures before and after proactive protection was

added to our systems. The graphs are normalized to

the average number of RAID failures per month before

the deployment, which are dominated by triple failures

(80%), the results of some combination of whole-disk

failures and sector errors. Another 5% are due to other

hardware faults (for example, errors in host bus adapters,

cables and shelves), while the remaining 15% are caused

by factors such as user error and other unknown reasons.

While it is a challenge to reduce failures due to hard-

ware faults and other errors, single-disk proactive pro-

tection detects unstable drives before their reliability is

further deteriorated and triggers the DG reconstruction

promptly, reducing the likelihood of multiple simulta-

neous failures. We find this eliminates about 88% of

recovery incidents caused by triple failures, equivalent

to about 70% of all disk-related incidents. This dispro-

portionate reduction in DG errors (relative to the frac-

tion of individual disk failures we can predict) is because

we only need to avoid one out of the three disk failures

10
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that would disable a RAID-6 DG.3 The remaining 12%

of triple failures are due to sudden failures or multiple

“somewhat unreliable” disks, all of which have a num-

ber of RS but none of which exceeds the failure thresh-

old; we address these in §5. All the proactively replaced
disks subsequently undergo rigorous testing by our com-

pany upon their return; the specialists analyzing these

disks have not seen a noticeable number of false posi-

tives upon replacement.

5 ARMOR: Multiple Failures

Single-disk proactive protection (PLATE) identifies and

fails unreliable disks in advance, which can prevent po-

tential data loss by reducing the likelihood of multiple

simultaneous failures. But PLATE will wait patiently for

one disk to exceed a threshold before sounding an alarm.

Disks can fail quickly after exceeding that threshold and

will sometimes fail before it is even reached. If several

disks are close to being declared near imminent failure,

they may collectively put the DG at high enough risk to

take action. At the same time, simply replacing all un-

reliable disks is not the most efficient approach, because

not every impending disk failure will lead to a RAID fail-

ure. If disk failures are within the tolerance of RAID

redundancy, repair efforts may be better directed else-

where: i.e., administrators might triage to prioritize an-

other DG at higher risk. (Refer to the example in §2.3.)
The next subsection (§5.1) introduces howwe quantify

the degree of RAID reliability and identify a vulnerable

RAID, which is likely to lose redundancy in the face of

multiple unreliable disks. §5.2 presents some simulation

results using the ARMOR technique, and §5.3 discusses

ongoing work.

5.1 Identifying Vulnerabilities

The accumulation of sector errors contributes to whole-

disk failures, causing the RAID reliability to deteriorate

continuously. Therefore, we can quantify and predict

the single disk reliability with its number of existing RS,

which can be further used to evaluate the degree of RAID

reliability deterioration through joint probability. There

are two steps in this process.

Calculate the probability of single whole-disk fail-

ure: Our previous analysis reveals that the RS count re-

flects the likelihood of whole-disk failure. This probabil-

ity is calculated as follows. We define:

• P(fail) as the probability of disk failure

• NRS as the observed number of reallocated sectors

3It may also arise from differences in the rate of failures over time,

something that is difficult to assess.

• P(NRS) as the probability that a disk has a reallo-

cated sector count larger than NRS

• P(fail|NRS) as the probability of a whole-disk failure

given at least NRS reallocated sectors

• P(NRS|fail) as the probability that a failed disk has a
reallocated sector count larger than NRS

P( f ail|NRS) =
P(NRS| f ail)×P( f ail)

P(NRS)

=

num. o f f ailed disks with NRS
num. o f f ailed disks

× num. o f f ailed disks
num. o f disks

num. o f all disks with NRS
num. o f disks

=
num. o f f ailed disks with NRS

num. o f all disks with NRS

Figure 14: Formula of calculating the probability of
whole-disk failure given a certain number of reallo-
cated sectors.

Ultimately we want to compute P(fail|NRS), which can be

calculated according to Bayes’s Theorem (the first line of

Figure 14).

Calculate the probability of a vulnerable RAID: Our

storage system uses RAID-6, which can tolerate two si-

multaneous failures. We define RAID vulnerability as

the probability of a RAID system having more than one

disk failure. Specifically, we use the formula introduced

in Figure 14 to calculate the failure probability of each

disk given its reallocated sector count. The combina-

tion of these single disk probabilities allows us to com-

pute RAID vulnerability using the formula shown in Fig-

ure 15. A similar methodology can be applied to other

redundant disk systems (e.g., RAID-5).

5.2 Simulation Result

We evaluate our methodology of identifying vulnera-

ble RAID DGs. Specifically, we analyze historical disk

failures recorded in our logs and categorize their corre-

sponding RAID DGs into two subsets: “good” RAID

DGs with no disk failures (subset G) and “bad” RAID

DGs with more than one disk failure (subset B). We use

their reallocated sector counts (one or more days prior to

a failure, in the case of subset B) as an input to compute

the probability of RAID vulnerability through our mea-

surement. If our approach can effectively identify vul-

nerable RAID DGs, the calculated probability of most

DGs in subset B should be considerably larger than that

of the majority of DGs in subset G.

We use one-year disk historical data to build the statis-

tical model and collect 5000 DGs for G and 500 DGs for

B respectively from other years. Deciles are used to sum-

marize the distribution of vulnerable probability of these

11
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P(vulnerable RAID|RS1,RS2, . . . ,RSN) = P(≥ 2 disks f ail|RS1,RS2, . . . ,RSN)

= 1−P(0 disk f ail|RS1,RS2, . . . ,RSN)−P(1 disk f ails|RS1,RS2, . . . ,RSN)

P(0 disk f ail|RS1,RS2, . . . ,RSN) =
N

∏

i=1

(1−P(ith disk f ails|RSi))

P(1 disk f ails|RS1,RS2, . . . ,RSN) =
N

∑

j=1

P(( jth disk f ails|RS j)
N

∏

i=1,i�= j

(1−P(ith disk f ails|RSi))

N is the number of disks in a RAID DG, RSi represents the reallocated sector count of disk i

P(ith disk f ails|RSi) represents the failure probability of ith disk given RSi reallocated sector count

Figure 15: Formula of calculating the probability of a vulnerable RAID DG.
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two subsets. The result is presented in Figure 16, which

shows that probabilities of 90% of DGs in subset G are

less than 0.32, while probabilities of most DGs in subset

B are between 0.25 and 0.93. This probability discrim-

ination between subset G and B show the methodology

of identifying vulnerable RAID is effective to recognize

endangered DGs, which are likely to have more than one

disk failures. For example, when its probability grows

to more than 0.32, we can regard this DG as a vulnera-

ble one with high confidence. This threshold can capture

more than 80% of vulnerable RAID DGs. Administra-

tors can rely on this monitoring mechanism to keep track

of disk statuses, recognize endangered RAID DGs, and

trigger the appropriate proactive protection mechanism.

We examined the 12% of triple-disk failures that were

not prevented by PLATE, looking at logs reported 3–7

days prior to the failure. (The duration varies depend-

ing on when the reports were made.) In 80% of the

cases, ARMOR computed a failure probability of 80–95%

despite no single disk being above the 200 RS thresh-

old; this indicates that between PLATE and ARMOR, we

could potentially prevent 98% of triple failures. Al-

though the results of this analysis are based on a small

sample, we are encouraged by the possibility of elim-

inating nearly failures resulting from triple-disk errors.

However, greater attention will be needed for the 20% of

RAID recovery incidents due to other causes.

5.3 Ongoing and Future Work

Incorporating the RAIDmonitoring mechanism into pro-

duction systems has some operational considerations.

We are upgrading our monitoring and logging mecha-

nisms to recognize and record the reason for disk failure,

as well as quantifying the variance of parameters of the

statistical model, so we can activate the DG monitoring

mechanism in our production systems.

We are considering methods to put a potentially fail-

ing disk “on probation” to test whether it is truly failing.

This would be especially useful in cases where individ-

ual disks are not above a threshold for replacement but

the availability of the DG as a whole is in doubt. Spare

disks could be brought on-line while suspect disks get

scrubbed thoroughly.

It would be interesting to extend ARMOR to other con-

figurations, such as erasure coding, or to consider repli-

cated data. A disk group or erasure coding system might

be vulnerable when a given number of disks fail, but

the data stored on it would be recoverable from another

replica at a high cost. What if the replica is also vulnera-

ble? The joint probability of multiple replicas failing si-

multaneously should by necessity be comparatively low,

but it should be quantified.

Finally, it will be important to gain more operational

experiencewith both PLATE and ARMOR on a greater va-

riety of disk models over a greater period of time. Tuning

the thresholds for the characteristics of each system will

be important; even within a model, we would like to test

different thresholds on a limited set of disks to determine

the accuracy of our chosen threshold. Sensitivity to ap-

plication workloadsmay also prove interesting: a backup

storage system sees different read-write workloads than

a primary system [46].
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6 Related Work

Early work by Gibson, et al. [18, 36] and Chen, et al. [11]

evaluates RAID reliability assuming an ideal world with

independent failures, exponential lifetimes, and instanta-

neous failures. Unfortunately, the fault model presented

by modern disk drives is more complex. Schroeder and

Gibson [42] analyze 100,000 disks to reject the hypoth-

esis that time between disk failure/replacement follows

an exponential distribution. Bairavasundaram et al. [6]

reveal the potential risk of sector errors during RAID re-

construction, which is not predicted in the early RAID

reliability model. Researchers have since noted that

the original RAID reliability model has outlived its use-

ful life and built new models to depict RAID reliabil-

ity [16, 21].

Given the presence of these new disk failure modes,

many mechanisms have been built to improve system re-

liability. Schwarz, et al. [43] propose disk scrubbing to

proactively detect latent sector errors. Many new stor-

age arrays adopt extra levels of redundancy to tolerate

more failures [12, 19]. File systems also detect and

handle disk faults through checksums and replication.

For example, in addition to using RAID techniques, ZFS

employs checksums to detect block corruption and keep

replicas of certain ”important” on-disk blocks to tolerate

disk faults [10]. The IRON file system applies similar

techniques to improve robustness of commodity file sys-

tems [41]. Another related approach is to tolerate disk

faults at the application-level [44, 17].

Unfortunately, our previous analysis reveals that

whole-disk failure and sector errors are strongly corre-

lated. Further, the likelihood of such simultaneous fail-

ures is not consistent over time. Ensuring data reliability

in the worst case requires adding considerable extra re-

dundancy, which adds unnecessary costs.

Alternatively, a number of previous approaches seek

indicators of impending failures. In particular, Pinheiro

et al [38] study the failure characteristics of consumer-

grade disk drives used in Google’s services. They find

that most SMART error metrics such as reallocated sec-

tors strongly suggest an impending failure, but they also

determine that half of failed disks show no such errors.

We find that some disks (such as C-1 and D-1) fre-

quently do not report errors before failing, but several

models correlate well. These differences are presumably

due to differences in disk models as well as workloads:

since our systems rewrite data upon error, we may trigger

remappings in ways their systems would not.

Goldszmidt [20] seeks to predict whole-disk failures

with a performance signal, particularly the average max-

imum latency. Murray et al. [26, 34, 35] and Hamerly

et al. [24] also attempt to improve whole-disk failure

prediction by applying various advanced data mining al-

gorithms on SMART [1] analytic data. In comparison,

our work is on a much larger population of production

disks with a focus on the correlation between whole-disk

failures and sector errors, both of which affect the data

safety. We quantitatively evaluate their correlation, and

reveal that the RS count is a good criteria to reflect disk

survivability and the sector reliability, which is then used

to proactively recognize unstable disks and vulnerable

RAID DGs.

7 Conclusion

In this paper, we present and analyze disk failure data

from a large number of backup systems, including some

of the world’s largest enterprises. Our analysis reveals

that the accumulation of reallocated sectors, a specific

type of sector error, causes the disk reliability to deteri-

orate continuously. Therefore, the RS count can be used

as an indicator to quantify and predict the degree of de-

terioration in disk reliability.

With these findings we designed RAIDSHIELD, con-

sisting of PLATE and ARMOR. PLATE monitors disk

health by tracking the number of RS and proactively

detecting unstable disks; the deployment of single-disk

proactive protection has eliminated 70% of RAID fail-

ures in production systems. With ARMOR, we aim to

quantify the deterioration of RAID reliability and detect

vulnerable RAID DGs in advance, even when individ-

ual disks have not degraded sufficiently to trigger alarms.

Initial results with ARMOR suggest that it can eliminate

most of the remaining triple-disk errors not identified by

PLATE.

While we expect that the techniques presented here

apply to all storage systems, the specific analyses were

performed on backup systems with particular I/O pat-

terns [46]. Extending the analysis and evaluating these

techniques in other environments are promising future

work.
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Abstract
NAND flash, used in modern SSDs, is a write-once

medium, where each memory cell must be erased prior
to writing. The lifetime of an SSD is limited by the num-
ber of erasures allowed on each cell. Thus, minimizing
erasures is a key objective in SSD design.

A promising approach to eliminate erasures and extend
SSD lifetime is to use write-once memory (WOM) codes,
designed to accommodate additional writes on write-once
media. However, these codes inflate the physically stored
data by at least 29%, and require an extra read operation
before each additional write. This reduces the available
capacity and I/O performance of the storage device, so far
preventing the adoption of these codes in SSD design.

We present Reusable SSD, in which invalid pages are
reused for additional writes, without modifying the drive’s
exported storage capacity or page size. Only data written
as a second write is inflated, and the required additional
storage is provided by the SSD’s inherent overprovision-
ing space. By prefetching invalid data and parallelizing
second writes between planes, our design achieves latency
equivalent to a regular write. We reduce the number of
erasures by 33% in most cases, resulting in a 15% lifetime
extension and an overall reduction of up to 35% in I/O re-
sponse time, on a wide range of synthetic and production
workloads and flash chip architectures.

1 Introduction
The use of flash based solid state drives (SSD) has in-
creased in recent years, thanks to their short read and
write latencies and increasing throughput. However, once
flash cells are written upon, they must be erased before
they can be rewritten. These comparatively slow erasures,
along with the additional overheads they incur, signifi-
cantly slow down pending read and write operations. In
addition, flash cells have a limited lifetime, measured as
the number of erasures a block can endure before its relia-
bility deteriorates below an acceptable level [1, 12].

Erasures are the major contributors to cell wear [24].
Thus, much effort has been invested in attempts to re-
duce them and extend SSD lifetime. Suggested methods
include minimizing write traffic [16, 18, 29, 38, 43, 46,
53] and distributing erase costs evenly across the drive’s

P0 P1 P2

W(0)
W(1)

P0 P1

1. Clean 2. Valid 3. Invalid 4. Valid2 5. Invalid2

W(0)
W(1) W(2)

P2

W(2)

�
�

� ��

Figure 1: A simplified depiction of our second write approach.
Each block holds one page, and begins in a clean state (1). Log-
ical pages P0 and P1 are written by the application and stored
on the first two blocks of the drive (2). When they are written
again their copies are invalidated (3) and written elsewhere (not
shown). Normally, the blocks would now be erased and returned
to the clean state. Instead, in our design, they are reused to write
logical page P2 as a second write (4). When page P2 is written
again by the application, its copy is invalidated (5) and the blocks
are erased, returning to the clean state.

blocks [1, 20, 27, 28]. While most of these methods im-
prove performance due to the reduction in erasures, oth-
ers extend device lifetime at the cost of degrading per-
formance [11, 24, 30]. Another approach is to improve
current error correction methods in order to compensate
for the decreasing reliability of blocks late in their life-
time [7, 44, 60].

A promising technique for reducing block erasures is
to use write-once memory (WOM) codes. WOM codes
alter the logical data before it is physically written, thus
allowing the reuse of cells for multiple writes. They en-
sure that, on every consecutive write, zeroes may be over-
written with ones, but not vice versa. WOM codes were
originally proposed for write-once storage media such as
punch cards and optical disks [47]. However, they can
be applied to flash memories, which impose similar con-
straints: the bit value of each cell can only increase, not
decrease, unless the entire block is erased1. Indeed, sev-
eral recent studies proposed the use of WOM codes to re-
duce SSD block erasures [4, 14, 21, 23, 35, 42, 57].

Unfortunately, the additional writes come at a price.
The old data must be read before the new data can be en-
coded. More importantly, WOM codes ‘inflate’ the data:
the physical capacity required for storing the encoded data
is larger than the original, logical, data by at least 29% —

1We adopt the conventions of coding literature, and refer to the initial,
low voltage state of flash cells as zero.
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a theoretical lower bound [17, 47]. Furthermore, WOM
code design involves three conflicting objectives: mini-
mizing physical capacity, minimizing encoding complex-
ity, and minimizing the probability of encoding failure.
Any two objectives can be optimized at the cost of com-
promising the third.

Existing studies have focused on minimizing the physi-
cal capacity overhead and the probability of encoding fail-
ure, greatly increasing complexity. The resulting designs,
in which additional writes are performed on the same
‘used’ page, incur impractically high overheads. Thus, the
industry has been unable to exploit recent theoretical ad-
vances effectively.

Our goal is to bridge the gap between theory and prac-
tice. To achieve a practical, applicable design, we are will-
ing to tolerate a certain probability of (albeit rare) encod-
ing failure and mitigate its penalties with the negligible
overhead of an additional calculation.

We present Reusable SSD — a design that uses WOM
codes to perform second writes on flash, thus reducing era-
sures and extending SSD lifetime. This is, to the best of
our knowledge, the first design that addresses all the prac-
tical constraints of WOM codes. A simplified depiction of
the design of Reusable SSD appears in Figure 1.

In order to preserve the SSD’s logical capacity, we per-
form first writes with unmodified logical data, with no ad-
ditional overheads, and utilize existing spare space within
the SSD to perform ‘inflated’ second writes. For efficient
storage utilization, we use second writes only for “hot”
data that is invalidated quickly.

In order to preserve the SSD’s I/O performance, we use
WOM codes with encoding complexity equivalent to that
of error correction codes used by current SSDs. Second
writes are written on two used physical pages on different
blocks, so that they are read and written in parallel, avoid-
ing additional latency. We prefetch the old, invalid, data
in advance to avoid additional delays.

We evaluate Reusable SSD using the SSD [1] exten-
sion of the DiskSim simulator [5], and a well-studied set
of workloads [40, 41]. Second writes in our design are
indeed shown to be “free”: they reduce the number of era-
sures by an almost steady 33%, resulting in a 15% life-
time extension. By eliminating so many erasures while
preserving the read and write latency of individual opera-
tions, our design also notably reduces I/O response time:
up to 15% in enterprise architectures and up to 35% in
consumer class SSD architectures. Furthermore, our de-
sign is orthogonal to most existing techniques for extend-
ing SSD lifetime. These techniques can be combined with
Reusable SSD to provide additional lifetime extension.

The rest of this paper is organized as follows. Section 2
contains the preliminaries for our design. We present our
implementation of second writes in Section 3, and give
an overview of our design in Section 4. The details are

described in Section 5, with our experimental setup and
evaluation in Section 6. We survey related work in Sec-
tion 7, and conclude in Section 8.

2 Preliminaries
2.1 Use of NAND Flash for SSD

A flash memory chip is built from floating-gate cells that
can be programmed to store a single bit, two bits, and three
bits in SLC, MLC and TLC flash, respectively. Cells are
organized in blocks, which are the unit of erasure. Blocks
are further divided into pages, which are the read and pro-
gram units. Each block typically contains 64-384 pages,
ranging in size from 2KB to 16KB [12, 14]. Within the
chip, blocks are divided into two or more planes, which
are managed and accessed independently. Planes within
a chip can operate concurrently, performing independent
operations such as read, program, and erase, possibly with
some minor restrictions [14, 19, 49, 55].

Each page is augmented with a page spare area, used
mainly for storing redundancy bytes of error correction
codes (ECC) [12, 14]. The size of the spare area ranges
between 5% and 12.5% of the page’s logical size [19, 49,
55, 60]. The larger sizes are more common in recent archi-
tectures, because scaling in technology degrades the cell’s
reliability [12, 45]. Furthermore, the bit error rate (BER)
increases as a function of the block’s lifetime, requiring
stronger ECC as the block grows older [8, 12, 37].

Write requests cannot update the data in the same place
it is stored, because the pages must first be erased. Thus,
writes are performed out-of-place: the previous data loca-
tion is marked as invalid, and the data is written again on
a clean page. To accommodate out-of-place writes, some
physical storage capacity is not included in the drive’s ex-
ported logical capacity. Thus, the drive’s overprovisioning
is defined as T−U

U
, where T and U represent the number

of physical and logical blocks, respectively [12]. Typical
values of overprovisioning are 7% and 28% for consumer
and enterprise class SSDs, respectively [52]. The Flash
Translation Layer (FTL) is responsible for mapping logi-
cal addresses to physical pages.

Whenever the number of clean blocks drops below a
certain threshold, the garbage collection process is in-
voked. Garbage collection is typically performed greed-
ily, picking the block with the minimum valid count –
number of valid pages, as the victim for cleaning. The
valid pages are moved – read and copied to another avail-
able block, and then the block is erased. The addition of
internal writes incurred by garbage collection is referred
to as write amplification [12]. It delays the cleaning pro-
cess, and requires, eventually, additional erasures. Write
amplification can be reduced by increasing overprovision-
ing, sacrificing logical capacity for performance and block
lifetime [12, 43, 52].
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P0 P1 P0 P1

1. First Write 2. Invalidate 3. Second Write
� ��

P2 P3

Figure 2: Naive implementation of second writes with the code
in Table 1. Every write, first or second, must program and occupy
storage capacity equivalent to 150% of the logical page size.

Data on the drive is usually not updated uniformly.
Thus, some blocks may reach their lifetime limit, ren-
dering the drive inoperable, while many blocks are still
‘young’. Several techniques have been proposed for
wear leveling – distributing erasures uniformly across the
drive’s blocks [1, 27].

2.2 Write-Once Memory Codes
Write-once memory (WOM) codes were first introduced
in 1982 by Rivest and Shamir, for recording informa-
tion multiple times on a write-once storage medium [47].
They give a simple WOM code example, presented in Ta-
ble 1. This code enables the recording of two bits of

Data bits 1st write 2nd write
00 000 111
10 100 011
01 010 101
11 001 110

Table 1: WOM Code Example

information in three cells
twice, ensuring that in
both writes the cells
change their value only
from 0 to 1. For example,
if the first message to be
stored is 11, then 001 is
written, programming only the last cell. If the second
message is 01, then 101 is written, programming the
first cell as well. Note that without special encoding, 11
cannot be overwritten by 01 without prior erasure. If the
first and second messages are identical, then the cells do
not change their value between the first and second writes.
Thus, before performing a second write, the cell values
must be read in order to determine the correct encoding.

In the example from Table 1, a total of four bits of infor-
mation are written into three cells: two in each write. Note
that on a write-once medium, a basic scheme, without en-
coding, would require a total of four cells, one for every
data bit written. In general, the main goal in the design of
WOM codes is to maximize the total number of bits that
can be written to memory for a given number of cells and
number of writes. The number of bits written in each write
does not have to be the same.

A WOM code design is a called a construction. It spec-
ifies, for a given number of cells, the number of achiev-
able writes, the amount of information that can be written
in each write, and how each successive write is encoded.
Numerous methods have been suggested for improving
WOM code constructions [4, 6, 21, 25, 47, 51, 56].

To see how WOM codes can be used to reduce era-

Figure 3: WOM code de-
sign space trades off storage
capacity, encoding com-
plexity (efficiency) and the
rate of successful encoding.

Capacity

Complexity Success rate

sures, consider a naive application of the WOM code in
Table 1 to SSD. Every page of data would be encoded by
the SSD controller into 1.5 physical pages according to the
WOM code construction from Table 1. Thus, each page
could be written by a first write, invalidated, and written
by a second write before being erased, as depicted in Fig-
ure 2. Such an application has two major drawbacks: (1)
Although additional writes can be performed before era-
sure, at any given moment the SSD can utilize only 2/3
of its available storage capacity. (2) Every I/O operation
must access physical bits equivalent to 50% more than its
logical size, slowing down read and write response times.

Moreover, to accommodate such an application, the
SSD manufacturer would have to modify its unit of inter-
nal operations to be larger than the logical page size. Al-
ternatively, if unmodified hardware is used, each I/O oper-
ation would have to access two physical pages, increasing
its response time overhead to 100%.

The limitations of practical WOM codes complicate
things even further. WOM code constructions that achieve
a capacity overhead close to the theoretical lower bound
(“capacity achieving”) entail encoding and decoding com-
plexities that are far from practical [51, 56]. Alternatively,
more efficient constructions achieve similar capacity over-
head but do not necessarily succeed in successive writes
for all data combinations [6]. In other words, each such
code is characterized by a small (nonnegligible) probabil-
ity of failure in writing.

Figure 3 depicts the inherent tradeoff of WOM code de-
sign space. Of the three objectives: capacity, complexity,
and high encoding success rate, any two can be optimized
at the cost of compromising the third.

3 Implementing Second Writes
Our design is based on choosing WOM code constructions
suitable for real systems. We narrow our choice of WOM
code by means of two initial requirements:

1. First writes must not be modified. Their encoding
and data size must remain unchanged.

2. The complexity of the chosen code must not exceed
that of commonly used error correction codes.

The first requirement ensures that the latency and stor-
age utilization of most of the I/O operations performed on
the SSD will remain unaffected. The second requirement
enables us to parallelize or even combine WOM and ECC
encoding and decoding within the SSD controller, without
incurring additional delays [25].

Thus, we limit our choice to codes that satisfy the above
constraints and vary in the tradeoff between storage capac-
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a b c d e f
Req. storage 200% 206% 208% 210% 212% 214%
Success rate 0 5% 58% 95% 99% 100%

Table 2: Sample WOM codes and their characteristics. Success
rates were verified in simulations on random data, as described
in [6], assuming a 4KB page size. The required storage is relative
to the logical page size.

ity and success rate. One such example are polar WOM
codes [6], based on a family of error-correcting codes re-
cently proposed by Arikan [2]. Their encoding and de-
coding complexities are the same as those of LDPC er-
ror correction codes [3, 6, 50]. Polar WOM codes can be
constructed for all achievable capacity overheads, but with
nonnegligible failure probability [6]. Table 2 summarizes
several known instances which match our requirements.

The tradeoff between storage efficiency and success rate
is evident. While choosing a code that always succeeds
(Table 2(f)) is appealing, it requires programming three
physical pages for writing a single logical page, which,
on most flash architectures, cannot be done concurrently.
However, a code that requires exactly two physical pages
for a second write (Table 2(a)) always fails in practice.

We compromise these two conflicting objectives by uti-
lizing the page spare area. Recall that the spare area
is mainly used for error correction. However, since
the bit error rates increase with block lifetime, weaker
ECC can sometimes be used, utilizing only a portion
of the page spare area and improving encoding perfor-
mance [7, 28, 33, 44, 48, 58, 60]. We take advantage of the
page spare area and divide it into two sections, as depicted
in Figure 4. In the first, smaller section, we store the ECC
of the first write. In the second, larger section, we store
the ECC of the second write combined with some of the
encoded data of the second write. A way to produce this
combined output has been suggested in [25].

By limiting the size of the ECC of the first write, we
limit its strength. Consequently, when the blocks’ BER in-
creases beyond the error-correcting capabilities of the new
ECC, we must disable second writes, and the SSD oper-
ates normally with first writes only. Bit errors are continu-
ously monitored during both reading and writing, to iden-
tify bad pages and blocks [27]. The same information can
be used to determine the time for disabling second writes
on each block. Another consequence of our choice of code
is that WOM computations will fail with a small probabil-
ity. When that happens, we simply retry the encoding; if
that fails, we write the logical data as a first write. We ex-
plain this process in detail in Section 5.6, and evaluate its
effect on performance in Section 6.6.

In our implementation, we use the code from Table 2(d),
which requires 210% storage capacity and succeeds with
a probability of 95%. We assume each page is augmented
with a spare area 9% of its size [60], and allocate 2.5%
for storing the ECC of the first write (Figure 4(a)). The

Figure 4: Use of page
spare area for second
writes. A small section
is used for the ECC of
the first write (a). The
remaining area is used for
the combined WOM code
and ECC of the second
write (b).

P0 P1

ECC(P0) ECC(P1)

P2’

ECC(P2’)+P2’’

a. First write b. Second write

remaining 6.5% stores 5% of the WOM code output com-
bined with the ECC equivalent to an ECC of 4% of the
page size (Figure 4(b)). Altogether, the two physical pages
along with their spare areas provide a total capacity equiv-
alent to 210% of the logical page size. An ECC of 2.5% of
the page size is sufficient for roughly the first 30% of the
block’s lifetime [7, 33, 48], after which we disable second
writes.

The utilization of the spare area can change in future
implementations, in order to trade off storage capacity and
success rate, according to the size of the page spare area
and the available codes. According to current manufactur-
ing trends, BERs increase, requiring stronger ECCs, and,
respectively, larger page spare area. However, the size of
the spare area is set to accommodate error correction for
the highest expected BER, observed as flash cells reach
their lifetime limit. The Retention Aware FTL [33] com-
bines two types of ECC, using the weaker code to improve
write performance when lower BERs are expected. The
same method can be used to utilize the redundant spare
area for second writes.

WOM codes require that there be enough (≥ 50%) zero
bits on the physical page in order to apply a second write.
Thus, we ensure that no more than half the cells are pro-
grammed in the first write. If a first write data page has too
many one bits, we program its complement on the phys-
ical page, and use one extra bit to flag this modification.
The overhead of this process is negligible [10]. The ap-
plication of WOM encoding to SLC flash, where each cell
represents one bit, is straightforward. In MLC and TLC
flash, the cell voltage levels are mapped to four and eight
possible 2-bit and 3-bit values, respectively. WOM encod-
ing ensures that the cell level can only increase in the sec-
ond write, assuming the number of one bits in each level
is greater than or equal to the number of ones in all lower
levels. Due to inter-cell interference, the failure probabil-
ity may be higher with MLC and TLC [26].
Expected benefit. To estimate the expected reduction

in the number of erasures, we perform the following best
case analysis. We refer to an SSD that performs only first
writes as a standard SSD. Assume that each block contains
N pages, and that there are M page write requests. The
expected number of erasures in a standard SSD is E =
M
N

. In Reusable SSD, N + N
2

pages can be written on
each block before it is erased. Thus, the expected number
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used and reused 
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#clean < min ||

#recycled+#reused > max

Choose block
with  minimum

valid pages

Yes: erase

No: recycleGC invoked

Finish 2nd writes

Finish 1st writes

Figure 5: Garbage collection and block lifecycle

of erasures is E′ = M
N+N/2

= 2

3
E, a reduction of 33%

compared to a standard SSD.
To calculate the effect on the SSD’s lifetime, consider a

standard SSD that can accommodate W page writes. 30%
of them (0.3W ) are written in the first 30% of the SSD’s
lifetime. With second writes, 50% more pages can be writ-
ten (0.15W ), resulting in a total of 1.15W , equivalent to
an increase of 15% in the SSD’s lifetime.

4 Reusable SSD: Overview
In our design, blocks transition between four states, as de-
picted in Figure 5. In the initial, clean state, a block has
never been written to, or has been erased and not writ-
ten to since. A block moves to the used state after all
of its pages have been written by a first write. When
a used block is chosen as victim by the garbage collec-
tion process, it is usually recycled, moving to the recycled
state, which means its invalid pages can be used for second
writes. When all of the invalid pages on a recycled block
have been written, it moves to the reused state. When a
reused block is chosen by the garbage collection process,
it is erased, moving back to the clean state.

Note that a used block can, alternatively, be erased, in
which case it skips the recycled and reused states, and
moves directly to the clean state. The garbage collection
process determines, according to the number of blocks in
each state, whether to erase or recycle the victim block.
Figure 5 provides a high level depiction of this process,
explained in detail in Section 5.4.

Figures 5 and 6 show how blocks are organized within
the two planes in a flash chip. We divide the physical
blocks in each plane into three logical partitions: one for
clean blocks, one for recycled ones, and one for used
and reused blocks. One clean block and one recycled
block in each plane are designated as CleanActive and
RecycledActive, respectively. First writes of pages that
are mapped to a specific flash chip are performed, inde-
pendently, on any of the two CleanActive blocks in that
chip. Second writes are performed in parallel on both
RecycledActive blocks in the chip.

A logical page is written as a second write if (1) recy-
cled blocks are available for second writes in both planes,
and (2) the data written has been classified as hot. Pages
written as first writes are divided between planes to bal-
ance the number of valid pages between them. Figure 6

clean

recycled

clean

recycled

1st write

1st write

2nd write
Hot/cold,

load balancing
(FTL)

Logical
write
(FS)

Plane 0
Plane 1

CleanActive0

RecycledActive0

CleanActive1

RecycledActive1

Figure 6: Logical and physical writes within one flash chip

provides a high level description of this process. A de-
tailed description of our design is given in the next section.

5 Design Details
5.1 Page Allocation
Within an SSD, logical data is striped between several
chips. The page allocation scheme determines, within
each flash chip, to which plane to direct a logical write
request. The target plane need not be the one on which
the previous copy of the page was written. The standard
scheme, which we modify for second writes, balances the
number of clean pages in each plane [1]. Thus, a write re-
quest is directed to the plane that currently has fewer clean
pages than the other.

We adapt the standard scheme to second writes as fol-
lows. When a page is classified as hot, it is written in
parallel to a pair of RecycledActive blocks, one in each
plane, as depicted in Figure 6. To minimize the size of
additional metadata, we require that a second write be
performed on a pair of pages with identical offset within
their blocks. Thus, we maintain an offset counter, ad-
vanced after each second write, that points to the mini-
mal page offset that corresponds to invalid data in both
RecycledActive blocks. The two pages are written in par-
allel, utilizing the specific architecture’s set of parallel or
multiplane commands.

The modification to the page allocation scheme is min-
imal. First writes are divided between planes as before.
Read requests of pages written in first writes are served as
before. Read requests of pages written in second writes
are served in parallel, using the respective parallel read
command.

Our requirement that second write pages have identi-
cal offset affects performance only slightly. Although
invalid pages may be dispersed differently in each
RecycledActive block, this limitation is negligible in
practice. Most blocks are recycled with a very small valid
count (up to 7% of the block size in our experiments), so
most invalid pages can be easily reused.

5.2 Page Mapping
Our design is based on a page mapping FTL, which main-
tains a full map of logical pages to physical ones in the
page map table. Since every logical page may be mapped
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to two physical pages, the page map in a naive implemen-
tation would have to double in size. However, the size of
the page map is typically already too large to fit entirely in
memory. Thus, we wish to limit the size of the additional
mapping information required for second writes.

To do so, we require that in a second write, the logi-
cal page be written on two physical pages with identical
offset within the two RecycledActive blocks. We main-
tain a separate mapping of blocks and their pairs, in a ta-
ble called the block map, while the page map remains un-
modified. Each block map entry corresponds to a block
in plane0, and points to the pair of this block in plane1
on the same chip. Entries corresponding to clean and used
blocks are null.

For a page written in a first write, the page map points
to the physical location of this page. For a page written in
a second write, the map points to the physical location of
the first half of this page, in plane0. Thus, if the page map
points to a page in plane0 and the corresponding block
map entry is non-null, the page is stored on two physical
pages, whose addresses we now know.

For a rough estimate of the block map size, assume that
2 byte block addresses are used — enough to address 64K
blocks. The block map maintains entries only for blocks
in plane0, so for a drive with 64K blocks we would need
64KB for the block map. Such a drive corresponds to a
logical capacity of 16GB to 128GB, with blocks of size
256KB [55] to 2MB [19], respectively. 64KB is very small
compared to the size of page mapping FTLs, and to the
available RAM of modern SSDs [12]. Thus, the overhead
required for mapping of second writes is negligible. The
block map can be further compacted, if, instead of storing
full block addresses, it would store only the relative block
address within plane1.

The state-of-the-art page mapping FTLs, such as
DFTL [15], add a level of indirection to selectively cache
the hottest portion of the page map. Within such FTLs,
the block map necessary for second writes can be used in
a similar manner. However, due to its small size, we can
reasonably assume that the block map will be stored en-
tirely in memory, without incurring any additional lookup
and update overhead.

Hybrid or block mapping FTLs typically use page-
mapped log blocks on which data is initially written, be-
fore it becomes cold and is transferred for long term stor-
age on data blocks [9]. These FTLs can be modified as
described above, to apply second writes to pairs of log
blocks. Although data blocks can also be paired for sec-
ond writes, it may be advisable to restrict second writes
only to the hot data in the log.

5.3 Prefetching Invalid Pages
Recall that a WOM encoding requires the invalidated data
currently present on the two physical pages. Thus, one

page must be read from each RecycledActive block in
a chip, before a second write can be performed. In
our design, second writes are always directed to the
next pair of invalid pages available on the current pair
of RecycledActive blocks. Thus, these pages can be
prefetched — read and stored in the SSD’s RAM, as soon
as the previous second write completes.

One page must be prefetched for each plane. Thus, for
a typical architecture of 8KB pages, 1MB of RAM can ac-
commodate prefetching for 128 planes, equivalent to 64
flash chips. In the best case, prefetching can completely
eliminate the read overhead of second writes. In the worst
case, however, it may not complete before the write re-
quest arrives, or, even worse, delay application reads or
other writes. Our experiments, described in Section 6.4,
show that the latter is rare in practice, and that prefetching
significantly reduces the overall I/O response time.

5.4 Garbage Collection and Recycling
We modify the standard garbage collection process to han-
dle block recycles. Recall that greedy garbage collection
always picks the block with the minimum valid count as
victim for cleaning and erasure. Ideally, using second
writes, every used block would first be recycled and reused
before it is erased. However, our goal of preserving the ex-
ported storage capacity and performance of the SSD im-
poses two restrictions on recycling.

Minimum number of clean blocks. When a victim
block is cleaned before erasure, its valid pages are moved:
they are invalidated and copied to the active block. We
require that valid pages move to CleanActive, and not
to RecycledActive, for two reasons. First, to avoid de-
pendency in the cleaning process, so that cleaning in both
planes can carry on concurrently, and second, so that re-
maining valid pages that are likely cold will be stored effi-
ciently by first writes. Thus, at least two clean blocks must
be available in each plane for efficient garbage collection.

Maximum number of reused and recycled blocks. To
preserve the drive’s exported logical size, we utilize its
overprovisioned space for second writes as follows. Con-
sider a drive with T physical blocks and U logical blocks,
resulting in an overprovisioning ratio of T−U

U
. Then phys-

ical pages with capacity equivalent to R = T − U blocks
are either clean, or hold invalid data. For second writes,
we require that the number of blocks in the recycled or
reused states not exceed 2R. Since second writes occupy
twice the capacity of first writes, this number of blocks can
store a logical capacity equivalent to R. Thus, the drive’s
physical capacity is divided between T − 2R blocks hold-
ing first writes, and 2R blocks holding data of size R in
second writes, with a total logical capacity of T −2R+R,
equivalent to the original logical capacity, U .

Garbage collection is invoked when the number of
available clean blocks reaches a given threshold. We
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modify the standard greedy garbage collector to count re-
cycled blocks towards that threshold. When the threshold
is reached in a plane, the block with the minimum number
of valid pages in this plane is chosen as victim. The block
is erased if (1) it is reused, (2) there are fewer than 2 clean
blocks in the plane, or (3) the total of reused and recycled
blocks is greater than 2R. Otherwise, the block is recycled
(see Figure 5).

While wear leveling is not an explicit objective of our
design, blocks effectively alternate between the ‘cold par-
tition’ of first writes, and the ‘hot partition’ of second
writes. Further wear leveling optimizations, such as re-
tirement, migrations [1] and fine grained partitioning [54],
are orthogonal to our design, and can be applied at the time
of block erasure and allocation.

Cleaning reused blocks. Special consideration must
be given to second write pages that are still valid when a
reused block is recycled. Usually, each plane is an inde-
pendent block allocation pool, meaning garbage collection
invocation, operation, and limits apply separately to each
plane. This allows page movement during cleaning to be
performed by copyback, transferring data between blocks
in the same plane, avoiding inter-plane bus overheads.

Each reused block chosen as victim in one plane has a
pair in the second plane of that chip. However, since each
block may also have valid pages of first writes, a block
may be chosen as victim while its pair does not have the
minimum valid count in its plane. Thus, we clean only
the victim block, as follows. All valid pages of first writes
are moved as usual. Valid pages of second writes are read
from both blocks, and must be transferred all the way to
the controller for WOM decoding2. Then they are written
as first writes in the plane on which garbage collection was
invoked. The overhead of this extra transfer and decoding
is usually small, since most reused blocks are cleaned with
a low valid count (usually below 7% of the block size).

5.5 Separating Hot and Cold Data

The advantages of separating hot and cold data have been
evaluated in several studies [9, 13, 20, 27, 38, 42, 54]. In
our design, this separation is also motivated by the need
to maintain the drive’s original capacity and performance.
The largest benefit from second writes is achieved if they
are used to write hot data, as we explain below.

When a reused block is cleaned before erasure, all re-
maining valid pages must be copied elsewhere. Second
write pages that are moved to the active block are not
“free,” in the sense that they end up generating first writes.
If second writes are used only for hot data, we can ex-
pect it to be invalidated by the time the block is chosen for
cleaning.

2Recent SSDs require similar transfer for valid pages of first writes,
for recalculation of the ECC due to accumulated bit errors.

In addition, in order to maximize the potential of sec-
ond writes, we wish to avoid as much as possible cases in
which used blocks are erased without being reused. This
may happen if too many reused blocks have a high valid
page count, and the number of reused and recycled blocks
reaches 2R. Then, the garbage collector must choose used
blocks as victims and erase them.

The use of a specific hot/cold data classification scheme
is orthogonal to the design of Reusable SSD. As a proof
of concept, we identify hot/cold data according to the size
of its file system I/O request. It has been suggested [9, 20]
that large request sizes indicate cold data. We classify a
logical page as cold if its original request size is 64KB or
more. We also assume, as in previous work [20, 42], that
pages that are still valid on a block chosen by the garbage
collector are cold. Thus, pages moved from a block before
it is erased are also classified as cold. Cold data is written
as first writes, and hot data as second writes, if recycled
blocks are available (see Figure 6).

5.6 Handling Second Write Failures
Our design uses WOM codes that fail with a nonnegligible
probability (the success rate is P = 95% in our implemen-
tation). A failed encoding means that the output contains
0 bits in places corresponding to cells in the invalidated
pages that have already been programmed to 1.

The simplest approach to handling such failures is to
simply abort the second write, and write the data on a clean
block as a first write. The first write requires additional
latency for computing the ECC, typically 8us [60], but is
guaranteed to succeed. Within our design, choosing this
approach would imply that 5% of the hot pages destined
for second writes end up occupying pages in cold blocks.

A different approach is to handle the problematic bits in
the same manner as bit errors in standard first writes. The
output is programmed on the physical pages as is, and the
ECC ‘fixes’ the erroneous bits. However, recall that we
already ‘sacrificed’ some ECC strength for implementing
second writes, and the number of erroneous bits may ex-
ceed the remaining error-correction capability.

Our approach is to retry the encoding, i.e., recompute
the WOM code output. In the general case, this can be
done by encoding the logical data for writing on an alter-
native pair of invalid pages. The two attempts are inde-
pendent in terms of success probability, because they are
applied to different data combinations. Thus, the prob-
ability of success in the first encoding or the retry is
P ′ = 1 − (1 − P )2, or 99.75% in our case. This value
is sufficient for all practical purposes, as supported by our
evaluation in Section 6.6.

The overhead incurred by each retry is that of the ad-
ditional WOM computation, plus that of reading another
pair of physical pages. However when using Polar WOM
codes, the extra read overhead can be avoided. Due to
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the probabilistic nature of these codes, the retry can be
performed using the same physical invalidated data, while
only altering an internal encoding parameter [6]. Succes-
sive retries are independent, yielding a similar overall suc-
cess probability as with the general retry method described
above. Thus, in our design, a WOM code failure triggers
one retry, without incurring an additional read. If the retry
fails, the page is written as a first write. We evaluate the
overhead incurred by retries in both the special and gen-
eral cases in Section 6.6.

6 Evaluation
We performed a series of trace driven simulations to ver-
ify that second writes in Reusable SSD are indeed ‘free.’
We answer the following questions. (1) How many era-
sures can be eliminated by second writes? (2) What is the
effect of second writes on read and write latency? (3) Do
second writes incur additional overheads? (4) How sensi-
tive are the answers to design and system parameters? In
addition, we establish the importance of our main design
components.

6.1 Experimental Setup
We implemented second writes within the MSR SSD ex-
tension [1] of DiskSim [5]. We configured the simulator
with two planes in each flash chip, so that each plane is an
independent allocation pool, as described in Section 5.4.
We allow for parallel execution of commands in separate
planes within each chip. Second writes are simulated by
mapping a logical page to two physical pages that have to
be read and written. We use a random number generator
to simulate encoding failures, and disable second writes
on blocks that reach 30% of their lifetime.

The SSD extension of DiskSim implements a greedy
garbage collector with wear leveling and migrations,
copying cold data into blocks with remaining lifetime
lower than a threshold. We modify this process as de-
scribed in Section 5.4, so that it applies only to victim
blocks that are going to be erased. Garbage collection is
invoked when the total of clean and recycled blocks in
the plane drops below a threshold of 1%. DiskSim ini-
tializes the SSD as full. Thus, every write request in the
trace generates an invalidation and an out-of-place write.
We use two common overprovisioning values, 7% and
28%, which represent consumer and enterprise products,
respectively [52]. We refer to the unmodified version of
DiskSim, with first writes only, as the standard SSD.

We evaluate our design using real world traces from two
sources. The first is the MSR Cambridge workload [40],
which contains traces from 36 volumes on 13 servers. The
second is the Microsoft Exchange workload [41], from
one of the servers responsible for Microsoft employee e-
mail. The volumes are configured as RAID-1 or RAID-5
arrays, so some of them are too big to fit on a single SSD.
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zipf(1,2) 3 4 200 200 1 4 12
src1 2 2 16 3.15 95.69 0.75 33 45
stg 0 2 3.36 10.23 0.85 10 16
hm 0 4 32 6.6 48.62 0.64 9 23
rsrch 0 1.5 2.37 6.16 0.91 9 11
src2 0 1.5 2.58 19.95 0.89 8 10
ts 0 2 2.98 14.4 0.82 8 12
usr 0 2.5 3.7 12.54 0.6 11 14
wdev 0 1 1.89 7.41 0.8 8 7
prxy 0 12.5 64 20.7 42.57 0.97 7 83
mds 0 1 2 5.61 0.88 8 8
proj 0 4 6.98 132.71 0.88 41 145
web 0 2 3.36 18.52 0.7 13 17
prn 0 5.5 128 9.24 145.1 0.89 11 54
exch 0 4 45.28 90.56 0.92 27 94
src2 2 1 256 1.91 271.41 0.7 55 42
prxy 1 24 278.83 120.81 0.35 13 106

Table 3: Trace characteristics. The duration of all production
traces is one week, except prxy 1 and exch 0, which are one day.

Manufacturer Type Pages/ Read Write Erase Size
Block (us) (ms) (ms) (Gb)

Toshiba [55] SLC 64 30 0.3 3 32
Samsung [49] MLC 128 200 1.3 1.5 16
Hynix [19] MLC 256 80 1.5 5 32

Table 4: NAND flash characteristics used in our experiments.

We used the 16 traces whose address space could fit in
an SSD size of 256GB or less, and that included enough
write requests to invoke the garbage collector on that drive.
These traces vary in a wide range of parameters, summa-
rized in Table 3. We also used two synthetic workloads
with Zipf distribution, with exponential parameter α = 1
and 2. Note that a perfectly uniform workload is unsuit-
able for the evaluation of second writes, because all the
data is essentially cold.

We use parameters from 3 different NAND flash manu-
facturers, corresponding to a wide range of block sizes and
latencies, specified in Table 4. While the flash packages
are distributed in different sizes, we assume they can be
used to construct SSDs with the various sizes required by
our workloads. Due to alignment constraints of DiskSim,
we set the page size to 4KB for all drives. To maintain the
same degree of parallelism for all equal sized drives, we
assume each chip contains 1GB, divided into two planes.
The number of blocks in each plane varies from 512 to
2048, according to the block size. The MSR SSD exten-
sion implements one channel for the entire SSD, and one
data path (way) for each chip. We vary the number of
chips to obtain the drive sizes specified in Table 3.

6.2 The Benefit of Second Writes
Write amplification is commonly used to evaluate FTL
performance, but is not applicable to our design. Second
writes incur twice as many physical writes as first writes
but these writes are performed after the block’s capacity
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has been exhausted by first writes, and do not incur ad-
ditional erasures. Thus, to evaluate the performance of
Reusable SSD, we measure the relative number of erasures
and relative response time of our design, compared to the
standard SSD. Note that in a standard SSD, the number of
erasures is an equivalent measure to write amplification.
In all our figures, the traces are ordered by the amount of
data written compared to the physical drive size, i.e., in
mds 0 the least data was written, and in zipf (1) and (2)
the most.

Erasures. Figure 7 shows the relative number of era-
sures of Reusable SSD compared to the standard SSD.
Recall that according to the best case analysis, Reusable
SSD can write up to 50% more pages on a block before its
erasure, corresponding to a reduction of 33% in the num-
ber of block erasures. In most traces, the reduction is even
slightly better, around 40%. This is due to the finite na-
ture of our simulation – some of the recycled blocks were
not erased within the duration of the simulation. Since
Reusable SSD can apply second writes in the first 30% of
the drive’s lifetime, it performs additional writes equiva-
lent to a lifetime extension of 15%.

In several traces the reduction was less than 33%, be-
cause a large portion of the data was written in I/O requests
larger than the 64KB threshold. The corresponding pages
were classified, mostly correctly, as cold and written as
first writes, so the full potential of second writes was not
realized. In traces src2 2, prxy 1, exch 0, prxy 0, proj 0
and src1 2, the percentage of such cold pages was 95, 44,
83, 32, 86 and 78, respectively (compared to 1%-15% in
the rest of the traces). We further investigate the effect of
the hot/cold threshold in Section 6.5.

The different block sizes of the drives we used affect
the absolute number of erasures, both for standard and for
Reusable SSD. However, the relative number of erasures
was almost identical for all block sizes.

The synthetic Zipf workloads have no temporal local-
ity, so more pages remain valid when blocks are erased
or recycled, especially with zipf(1) which has less access
skew than zipf(2). With low overprovisioning, Reusable
SSD is less efficient in reducing erasures for this work-
load because there are fewer invalid pages for use in sec-
ond writes.

The reduction in the number of erasures usually de-
pends on the drive’s overprovisioning (OP). Higher over-
provisioning means the maximum number of blocks that
can be in the reused or recycled states (2R) is higher, thus
allowing more pages to be written in second writes. In
the extreme case of trace src2 2 with OP=28% , all writes
could be accommodated by the overprovisioned and recy-
cled blocks, thus reducing the number of erasures to 0. In
the other traces with a high percentage of cold data, the
number of erasures did not decrease further with overpro-
visioning because fewer blocks were required to accom-
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Figure 7: Relative number of erasures of Reusable SSD com-
pared to the standard SSD. The reduction in erasures is close to
the expected 33% in most cases.

modate the “hot” portion of the data. We examine a wider
range of overprovisioning values in Section 6.6.

Performance. Overprovisioning notably affects the
performance of first as well as second writes. When over-
provisioning is low, garbage collection is less efficient be-
cause blocks are chosen for cleaning while they still have
many valid pages that must be moved. This degrades per-
formance in two ways. First, more block erasures are re-
quired because erasures do not generate full clean blocks.
Second, cleaning before erasure takes longer, because the
valid pages must be written first. This is the notorious
delay caused by write amplification, which is known to
increase as overprovisioning decreases.

Indeed, the reduction in erasures achieved by Reusable
SSD further speeds up I/O response time when overprovi-
sioning is low. Figure 8 shows the reduction in average I/O
response time achieved by Reusable SSD compared to the
standard SSD. I/O response time decreased by as much as
15% and 35%, with OP=28% and OP=7%, respectively.

The delay caused by garbage collection strongly de-
pends on write and erase latencies, as well as on the block
size. When overprovisioning is low (7%) and writes cause
a major delay before erasures, the benefit from second
writes is greater for drives with longer write latencies –
the benefit in the Hynix setup is up to 60% greater than in
the Toshiba setup. When overprovisioning is high (28%)
and the cost of cleaning is only that of erasures, the benefit
from second writes is greater for drives with small blocks
whose absolute number of erasures is greater – the benefit
in the Toshiba setup is up to 350% greater than the benefit
in the Hynix setup.

6.3 The Benefit of Parallel Execution
To establish the importance of parallelizing second writes,
we implemented a “sequential” version of our design,
where second writes are performed on a pair of contiguous
invalid pages on the same block. The two planes in each
chip can still be accessed concurrently – they each have an
independently written RecycledActive block.

The reduction in the number of cleans is almost iden-
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Figure 8: Relative I/O response time of Reusable SSD com-
pared to the standard SSD. The reduction in erasures reduces I/O
response time, more so with lower overprovisioning.

tical to that of the parallel implementation, but the I/O
response time increases substantially. In the majority of
traces and setups, second writes increased the I/O response
time, by an average of 15% and as much as 31%. We ex-
pected such an increase. Data written by a second write
requires twice as many pages to be accessed, both for read-
ing and for writing, and roughly 33% of the data in each
trace is written as second writes.

As a matter of fact, the I/O response time increased less
than we expected, and sometimes decreased even with the
sequential implementation. The major reason is the reduc-
tion in erasures – the time saved masks some of the extra
latency of second writes. Another reason is that although
roughly 33% of the data was written in second writes, only
1%-19% of the reads (2%-6% in most traces) accessed
pages written in second writes. This corresponds to a well-
known characteristic of secondary storage, where hot data
is often overwritten without first being read [53].

Nevertheless, an increase of 15%-30% in average re-
sponse time is an unacceptable performance penalty. Our
parallel design complements the reduction in erasures with
a significant reduction in I/O response time.

6.4 The Benefits of Prefetching Invalid Pages
To evaluate the contribution of prefetching invalid pages,
we disabled prefetching and repeated our experiments.
Figure 9 shows the results for the Hynix setup with
OP=28% and OP=7%. These are the two setups where
second writes achieved the least and most reduction in
I/O response time, respectively. These are also the setups
where the contribution of prefetching was the highest and
lowest, respectively.

With OP=7%, and specifically the Hynix setup, the re-
duction in erasures was so great that the extra reads be-
fore second writes had little effect on overall performance.
Prefetching reduced I/O response time by an additional
68% at most. With OP=28%, where the reduction in I/O
response time was less substantial, prefetching played a
more important role, reducing I/O response time by as
much as ×21 more than second writes without it.
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Figure 9: Relative I/O response time of Reusable SSD with
and without prefetching, in the Hynix setup. Prefetching always
reduces I/O response time.

The results for the rest of the setups were within
this range; the average I/O response time for second
writes with prefetching was 120% shorter than without it.
Prefetching never delayed reads or first writes to the point
of degrading performance.

6.5 The Benefits of Hot/Cold Classification
When an I/O request size is equal to or larger than the
hot/cold threshold, its data is classified as cold and written
in first writes. We examine the importance of separating
hot data from cold, and evaluate the sensitivity of our de-
sign to the value of the threshold. We varied the thresh-
old from 16KB to 256KB. Figure 10 shows the results for
the Toshiba setup – the results were similar for all drives.
We present only the traces for which varying the threshold
changed the I/O response time or the number of erasures.
The results for 256KB were the same as for 128KB.

Figure 10(a) shows that as the threshold increases, more
data is written in second writes, and the reduction in the
number of erasures approaches the expected 33%. How-
ever, increasing the threshold too much sometimes incurs
additional cleans. For example, in prn 0, data written in
requests of 64KB or larger nearly doubled the valid count
of victim blocks chosen for cleaning, incurring additional
delays as well as additional erase operations. Figure 10(c)
shows that a reduction [increase] in the number of erasures
due to higher thresholds entails a reduction [increase] in
the relative I/O response time.

Figures 10(b) and 10(d) show the results for the same
experiments with OP=28%. The additional overprovi-
sioned capacity extends the time between cleans, to the
point where even the cold data is already invalid by the
time its block is erased. Both the number of erasures and
the I/O response time decrease as more data can be written
in second writes. Specifically, Figure 10(b) shows that the
full “50% free” writes can be achieved in enterprise class
setups. Still, the hot/cold classification guarantees better
performance, possibly at the price of limiting the reduc-
tion in erasures.

An adaptive scheme can set the threshold according to
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Figure 10: Relative I/O response time and erasures when vary-
ing the hot/cold classification threshold. Increasing the threshold
too much might increase I/O response time.

the observed workload to optimize both objectives, but is
outside the scope of this work. Alternatively, classifica-
tion can be done using recent optimized schemes (see Sec-
tion 7) for more accurate results. Note that regardless of
the classification scheme, Reusable SSD also separates ap-
plication writes from garbage collection writes. This sep-
aration is expected to reduce the number of erasures com-
pared to the standard SSD, even without second writes.

6.6 Sensitivity Analysis
Overprovisioning. For a comprehensive analysis we
repeated our experiments, varying the overprovisioning
value from 5% to 50%3. For all the drives and traces, the
number of erasures and the I/O response time decreased
as overprovisioning increased, both in the standard SSD
and in Reusable SSD. Figure 11 shows the relative num-
ber of erasures and relative I/O response time of Reusable
SSD compared to the standard SSD. We show results for
the Hynix setup, where varying the overprovisioning value
had the largest effect on these two measures.

These results support our observation in Section 6.2,
that the reduction in erasures is larger when overprovision-
ing is higher, except in traces that have a high portion of
cold data written as first writes. Reusable SSD reduces I/O
response time more with lower overprovisioning, where
erasures cause longer delays. The maximal variation in
relative average response time was 24%, 32%, and 35% in
the Toshiba, Samsung and Hynix setups, respectively.

WOM encoding failures. Reusable SSD is designed

3The address space of ts 0, exch 0 and stg 0 was too large to fit in
the respective drive sizes from Table 3 with OP=50% (and OP=40% for
exch 0). Thus, the data points corresponding to those traces and OP
values are missing.
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Figure 11: Relative number of erasures (top) and average I/O
response time (bottom) with the Hynix setup, with varying over-
provisioning ratios.

to work with any WOM code construction that satisfies
the requirements specified in Section 3. To evaluate the
sensitivity of our design to WOM code characteristics, we
repeated our experiments, varying the encoding success
rate from 75% to 100%.

In the first set of experiments we disable retries com-
pletely, so they serve as a worst case analysis. On a
WOM encoding failure we default to a first write on the
CleanActive block. Every such failure incurs the over-
head of an additional ECC computation, because ECC
must be computed for the logical data. The ECC for a 4KB
page can usually be computed in less than 10µs [60]. To
account for changes in page size, ECC and WOM code,
and as a worst case analysis, we set the overhead to half
the read access time in each drive.

Figure 12(a) shows the relative I/O response time of
Reusable SSD without retries, compared to the standard
SSD. Surprisingly, varying the success rate resulted in a
difference in relative I/O response time of less than 1% for
all traces with OP=7%, and for most traces with OP=28%.
The reduction in erase operations was not affected at all.
We show here only the traces for which the difference was
larger than 1%. We show the results with the Toshiba setup
because the differences with the other setups were even
smaller. The reason for such small differences is that in
most traces, the maximum allowed number of reused and
recycled blocks does not accommodate all the hot data,
and some hot data is written as first writes when no re-
cycled block is available. Thus, WOM encoding failures



268 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

ex
ch

_0

st
g_

0

pr
xy

_0

pr
oj

_0

sr
c1

_2

R
e
la

ti
v
e
 A

v
e
ra

g
e
 R

e
sp

o
n
se

 T
im

e

P=75%
P=85%
P=95%

P=100%

(a) No retries

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

ex
ch

_0

st
g_

0

pr
xy

_0

pr
oj

_0

sr
c1

_2

P=75%
P=85%
P=95%

P=100%

(b) Same pages

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

ex
ch

_0

st
g_

0

pr
xy

_0

pr
oj

_0

sr
c1

_2

P=75%
P=85%
P=95%

P=100%

(c) Alt. pages

Figure 12: The sensitivity of Reusable SSD to varying WOM
encoding success rates with no retries (a), retries on the same
physical pages (b) and retries on alternative physical pages (c),
with the Toshiba setup and OP=28%.

simply distribute the hot data differently, incurring only
the additional ECC computation delay.

Figure 12(b) shows the relative I/O response time of
Reusable SSD with retries, as described in Section 5.6.
A retry incurs the same overhead as the first WOM encod-
ing. If that retry fails, extra overhead is incurred by the
ECC computation of the first write. Note that with one
retry, the overall probability of successful encoding with
P = 75% is P ′ = 1 − (1 − 0.75)2 = 93.75%. Indeed,
the performance of Reusable SSD with P = 75% is al-
most equal to that of Reusable SSD without retries and
P = 95%. Similarly, the relative I/O response time with
P = 95% and one retry is almost equal to that of using a
WOM code with no encoding failures (P = 100%).

We also examine the applicability of our design to
WOM codes that do not guarantee independent success
probability on the same invalid data. Thus, we ran one
more set of experiments where, upon a WOM encoding
failure, an additional pair of invalid pages is read, and the
encoding is retried on these pages. In this variation, the
overhead of retrying is the same as in our design, plus
an additional read latency. Our results, presented in Fig-
ure 12(c), show that the additional overhead is negligible
when P is high (95%), but nonnegligible for smaller val-
ues of P (≤ 85%). In addition, unlike the first two ap-
proaches, this overhead appeared in the rest of the traces
as well, and also with OP=7%. Still, even in those cases,
the I/O response times were reduced substantially com-
pared to the standard SSD, and the difference between
P = 100% and P = 75% was always below 4%.

Energy consumption. According to a recent
study [39], the energy consumption of an erase operation
is one order of magnitude larger than that of a write opera-
tion, but the energy it consumes per page is the smallest of
all operations. Of all measured operations, writes are the
major contributor to energy consumption in flash chips.
In Reusable SSD, roughly 33% of the pages are written

in second writes, programming two pages instead of one.
Thus, one might expect its energy consumption to increase
in proportion to the increase in physical writes.

However, this same study also showed the energy con-
sumed by writes to depend on the number of programmed
cells. But not only do second writes not require program-
ming twice as many cells, their overall number of pro-
grammed bits is expected to equal that of first writes [6].
We thus expect the energy consumption to decrease,
thanks to the reduction in erasures that comes with second
writes. Measurements on a naive implementation of sec-
ond writes showed such a reduction [14], and we believe
these results will hold for Reusable SSD. A more accurate
evaluation remains part of our future work.

7 Related Work
The Flash Translation Layer is a good candidate for ma-
nipulating flash traffic to extend SSD lifetime. Most FTLs
implement some notion of wear leveling, where cold data
is migrated to retired or about-to-be-retired blocks, and
blocks are allocated for writing according to their erase
count or wear [1, 20, 24, 27, 28, 38, 42]. Buffering [29]
and even deduplication [16] are used by some FTLs to re-
duce the number of flash writes.

Another approach reduces write traffic to the SSD
by eliminating write operations at higher levels of the
storage hierarchy. Such methods include a hard disk
based write cache [53], specialized file systems and data
bases [11, 31, 34, 36, 38], and admission control in flash
based caches [18, 43, 46].

A recent analytic study showed that separating hot and
cold data can minimize write amplification so that it ap-
proaches 1 [13]. Indeed, many FTLs write hot and cold
data into separate partitions [9, 20, 27, 28, 38, 42, 54].
They classify hot data according to I/O request size [9, 20],
time and frequency of write [38, 54], and whether the write
was generated by the garbage collector [42].

Reusable SSD separates hot and cold data, and applies
wear leveling and migration to blocks that are about to be
erased. However, the specific classification or wear level-
ing technique is orthogonal to our design, and can be re-
placed with any of the state-of-the-art methods to combine
their advantages with those of second writes. Similarly,
when some of the write traffic is eliminated from the SSD,
Reusable SSD can apply roughly 33% of the remaining
writes to reused blocks, eliminating additional erasures.

More intrusive methods for extending SSD lifetime in-
clude modifying the voltage of write and erase opera-
tions [24], and even explicitly delaying requests to allow
cell recovery [30]. They incur an overhead that limits the
SSD’s performance. Reusable SSD extends SSD lifetime
without requiring any changes in flash hardware. More
importantly, it improves — rather than degrades — per-
formance. Still, Reusable SSD can also be combined with
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such methods, to further extend device lifetime.
While the number of erasures is the most commonly

used measure of device lifetime, recent studies show that
cell programming has a substantial impact on their wear.
They show that programming MLC cells as SLC [26], or
occasionally ‘relieving’ them from programming [27] can
significantly slow down cell degradation, regardless of the
number of erasures. Second writes result in a higher aver-
age voltage level of flash cells, possibly increasing their
wear. Thus, with second writes, 50% more writes can
be performed before each erasure, but the number of ‘al-
lowed’ erasures might decrease. However, as long as the
increase in cell wear is smaller than 50%, second writes
extend device lifetime. Since cell degradation is not lin-
ear with average voltage level, the magnitude of this effect
cannot be derived from previous studies, and remains to
be verified in future work. Our analysis of the benefits of
Reusable SSD is conservative, disabling second writes on
all pages after 30% of the block’s lifetime. A more ac-
curate model of cell wear can facilitate additional second
writes on SLC flash or on the LSB pages in MLC flash.

Several studies suggested using WOM codes to extend
SSD lifetime. Their designs are all based on an increased
page size, as in Figure 2, resulting in greatly reduced ca-
pacity [4, 14, 21, 35, 57]. In [42], the capacity loss is
bound by limiting second writes to several blocks. The au-
thors of [23] assume the logical data has been compressed
by the upper level, to allow for the overhead of WOM en-
coding. None of these studies address the additional laten-
cies of reading invalid data before encoding and of reading
and writing larger pages. In addition, most of them rely on
capacity achieving codes, ignoring their high complexity
or their nonnegligible failure rate [35, 42]. The design of
Reusable SSD addresses all the practical aspects of sec-
ond writes with off-the-shelf flash products and efficient
coding techniques, achieving both performance improve-
ments and a lifetime extension of up to 15%.

The above studies use write amplification to evaluate
their designs, but it is not the correct figure of merit for
multiple writes. Consider a best case example where a
code with minimal 29% space overhead achieves a write
amplification of 1. Still, the amount of physical data writ-
ten is 29% more than the logical data written by the ap-
plication. Thus, for correct evaluation, the number of era-
sures incurred in various designs should be compared, on
SSDs with the same block size and overprovisioning.

The use of WOM codes has also been suggested for
extending PCM lifetime [22, 32, 59]. The corresponding
studies show a reduction in energy consumption and cell
wear, but sacrifice either capacity, performance, or both.

8 Conclusions and Future Directions
We presented Reusable SSD, a practical design for ap-
plying second writes to extend SSD lifetime while sig-

nificantly improving performance. Our design is general
and is applicable to current flash architectures, requiring
only minor adjustments within the FTL, without addi-
tional hardware or interface modifications.

Nevertheless, more can be gained from Reusable SSD
as technology advances in several expected directions.
Flash architectures that allow for higher degrees of par-
allelism can accommodate third and maybe fourth writes,
combining 4 and 8 physical pages per logical page, re-
spectively [6]. As the hardware implementation of Po-
lar WOM codes matures, its encoding overheads will de-
crease [3, 50], enabling faster retries, and possibly use of
constructions with higher success probability. Similarly,
stronger ECCs can compensate for increasing BERs, in-
creasing the percentage of a block’s lifetime in which it
can be recycled before erasure.

Finally, most previously suggested schemes for extend-
ing SSD lifetime are orthogonal to the design of Reusable
SSD, and can be combined with second writes. The per-
formance improvement achieved by Reusable SSD can
mask some of the overheads of those schemes that incur
additional latencies.
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Abstract
F2FS is a Linux file system designed to perform well on
modern flash storage devices. The file system builds on
append-only logging and its key design decisions were
made with the characteristics of flash storage in mind.
This paper describes the main design ideas, data struc-
tures, algorithms and the resulting performance of F2FS.

Experimental results highlight the desirable perfor-
mance of F2FS; on a state-of-the-art mobile system, it
outperforms EXT4 under synthetic workloads by up to
3.1× (iozone) and 2× (SQLite). It reduces elapsed time
of several realistic workloads by up to 40%. On a server
system, F2FS is shown to perform better than EXT4 by
up to 2.5× (SATA SSD) and 1.8× (PCIe SSD).

1 Introduction
NAND flash memory has been used widely in various
mobile devices like smartphones, tablets and MP3 play-
ers. Furthermore, server systems started utilizing flash
devices as their primary storage. Despite its broad use,
flash memory has several limitations, like erase-before-
write requirement, the need to write on erased blocks se-
quentially and limited write cycles per erase block.

In early days, many consumer electronic devices di-
rectly utilized “bare” NAND flash memory put on a
platform. With the growth of storage needs, however,
it is increasingly common to use a “solution” that has
multiple flash chips connected through a dedicated con-
troller. The firmware running on the controller, com-
monly called FTL (flash translation layer), addresses
the NAND flash memory’s limitations and provides a
generic block device abstraction. Examples of such a
flash storage solution include eMMC (embedded mul-
timedia card), UFS (universal flash storage) and SSD
(solid-state drive). Typically, these modern flash stor-
age devices show much lower access latency than a hard

disk drive (HDD), their mechanical counterpart. When it
comes to random I/O, SSDs perform orders of magnitude
better than HDDs.

However, under certain usage conditions of flash stor-
age devices, the idiosyncrasy of the NAND flash media
manifests. For example, Min et al. [21] observe that fre-
quent random writes to an SSD would incur internal frag-
mentation of the underlying media and degrade the sus-
tained SSD performance. Studies indicate that random
write patterns are quite common and even more taxing to
resource-constrained flash solutions on mobile devices.
Kim et al. [12] quantified that the Facebook mobile ap-
plication issues 150% and WebBench register 70% more
random writes than sequential writes. Furthermore, over
80% of total I/Os are random and more than 70% of the
random writes are triggered with fsync by applications
such as Facebook and Twitter [8]. This specific I/O pat-
tern comes from the dominant use of SQLite [2] in those
applications. Unless handled carefully, frequent random
writes and flush operations in modern workloads can se-
riously increase a flash device’s I/O latency and reduce
the device lifetime.

The detrimental effects of random writes could be
reduced by the log-structured file system (LFS) ap-
proach [27] and/or the copy-on-write strategy. For exam-
ple, one might anticipate file systems like BTRFS [26]
and NILFS2 [15] would perform well on NAND flash
SSDs; unfortunately, they do not consider the charac-
teristics of flash storage devices and are inevitably sub-
optimal in terms of performance and device lifetime. We
argue that traditional file system design strategies for
HDDs—albeit beneficial—fall short of fully leveraging
and optimizing the usage of the NAND flash media.

In this paper, we present the design and implemen-
tation of F2FS, a new file system optimized for mod-
ern flash storage devices. As far as we know, F2FS is
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the first publicly and widely available file system that
is designed from scratch to optimize performance and
lifetime of flash devices with a generic block interface.1

This paper describes its design and implementation.

Listed in the following are the main considerations for
the design of F2FS:
• Flash-friendly on-disk layout (Section 2.1). F2FS
employs three configurable units: segment, section and
zone. It allocates storage blocks in the unit of segments
from a number of individual zones. It performs “clean-
ing” in the unit of section. These units are introduced
to align with the underlying FTL’s operational units to
avoid unnecessary (yet costly) data copying.
• Cost-effective index structure (Section 2.2). LFS
writes data and index blocks to newly allocated free
space. If a leaf data block is updated (and written to
somewhere), its direct index block should be updated,
too. Once the direct index block is written, again its in-
direct index block should be updated. Such recursive up-
dates result in a chain of writes, creating the “wandering
tree” problem [4]. In order to attack this problem, we
propose a novel index table called node address table.
• Multi-head logging (Section 2.4). We devise an effec-
tive hot/cold data separation scheme applied during log-
ging time (i.e., block allocation time). It runs multiple
active log segments concurrently and appends data and
metadata to separate log segments based on their antici-
pated update frequency. Since the flash storage devices
exploit media parallelism, multiple active segments can
run simultaneously without frequent management oper-
ations, making performance degradation due to multiple
logging (vs. single-segment logging) insignificant.
• Adaptive logging (Section 2.6). F2FS builds basically
on append-only logging to turn random writes into se-
quential ones. At high storage utilization, however, it
changes the logging strategy to threaded logging [23] to
avoid long write latency. In essence, threaded logging
writes new data to free space in a dirty segment without
cleaning it in the foreground. This strategy works well
on modern flash devices but may not do so on HDDs.
• fsync acceleration with roll-forward recovery
(Section 2.7). F2FS optimizes small synchronous writes
to reduce the latency of fsync requests, by minimizing
required metadata writes and recovering synchronized
data with an efficient roll-forward mechanism.

In a nutshell, F2FS builds on the concept of LFS
but deviates significantly from the original LFS proposal
with new design considerations. We have implemented
F2FS as a Linux file system and compare it with two

1F2FS has been available in the Linux kernel since version 3.8 and
has been adopted in commercial products.

state-of-the-art Linux file systems—EXT4 and BTRFS.
We also evaluate NILFS2, an alternative implementation
of LFS in Linux. Our evaluation considers two generally
categorized target systems: mobile system and server
system. In the case of the server system, we study the
file systems on a SATA SSD and a PCIe SSD. The results
we obtain and present in this work highlight the overall
desirable performance characteristics of F2FS.

In the remainder of this paper, Section 2 first describes
the design and implementation of F2FS. Section 3 pro-
vides performance results and discussions. We describe
related work in Section 4 and conclude in Section 5.

2 Design and Implementation of F2FS

2.1 On-Disk Layout
The on-disk data structures of F2FS are carefully laid
out to match how underlying NAND flash memory is or-
ganized and managed. As illustrated in Figure 1, F2FS
divides the whole volume into fixed-size segments. The
segment is a basic unit of management in F2FS and is
used to determine the initial file system metadata layout.

A section is comprised of consecutive segments, and
a zone consists of a series of sections. These units are
important during logging and cleaning, which are further
discussed in Section 2.4 and 2.5.

F2FS splits the entire volume into six areas:

• Superblock (SB) has the basic partition information
and default parameters of F2FS, which are given at the
format time and not changeable.
• Checkpoint (CP) keeps the file system status, bitmaps
for valid NAT/SIT sets (see below), orphan inode lists
and summary entries of currently active segments. A
successful “checkpoint pack” should store a consistent
F2FS status at a given point of time—a recovery point af-
ter a sudden power-off event (Section 2.7). The CP area
stores two checkpoint packs across the two segments (#0
and #1): one for the last stable version and the other for
the intermediate (obsolete) version, alternatively.
• Segment Information Table (SIT) contains per-
segment information such as the number of valid blocks
and the bitmap for the validity of all blocks in the “Main”
area (see below). The SIT information is retrieved to se-
lect victim segments and identify valid blocks in them
during the cleaning process (Section 2.5).
• Node Address Table (NAT) is a block address table to
locate all the “node blocks” stored in the Main area.
• Segment Summary Area (SSA) stores summary en-
tries representing the owner information of all blocks
in the Main area, such as parent inode number and its
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Figure 1: On-disk layout of F2FS.

node/data offsets. The SSA entries identify parent node
blocks before migrating valid blocks during cleaning.
• Main Area is filled with 4KB blocks. Each block is al-
located and typed to be node or data. A node block con-
tains inode or indices of data blocks, while a data block
contains either directory or user file data. Note that a sec-
tion does not store data and node blocks simultaneously.

Given the above on-disk data structures, let us illus-
trate how a file look-up operation is done. Assuming a
file “/dir/file”, F2FS performs the following steps:
(1) It obtains the root inode by reading a block whose lo-
cation is obtained from NAT; (2) In the root inode block,
it searches for a directory entry named dir from its data
blocks and obtains its inode number; (3) It translates the
retrieved inode number to a physical location through
NAT; (4) It obtains the inode named dir by reading the
corresponding block; and (5) In the dir inode, it identi-
fies the directory entry named file, and finally, obtains
the file inode by repeating steps (3) and (4) for file.
The actual data can be retrieved from the Main area, with
indices obtained via the corresponding file structure.

2.2 File Structure
The original LFS introduced inode map to translate an
inode number to an on-disk location. In comparison,
F2FS utilizes the “node” structure that extends the inode
map to locate more indexing blocks. Each node block
has a unique identification number, “node ID”. By using
node ID as an index, NAT serves the physical locations
of all node blocks. A node block represents one of three
types: inode, direct and indirect node. An inode block
contains a file’s metadata, such as file name, inode num-
ber, file size, atime and dtime. A direct node block con-
tains block addresses of data and an indirect node block
has node IDs locating another node blocks.

As illustrated in Figure 2, F2FS uses pointer-based file
indexing with direct and indirect node blocks to elim-
inate update propagation (i.e., “wandering tree” prob-
lem [27]). In the traditional LFS design, if a leaf data is
updated, its direct and indirect pointer blocks are updated

direct pointers

or

inline data

Metadata

Inline xattrs

Single-indirect

Double-indirect

Triple-indirect

Inode block

...

...

... ...

... ... ...

Data

Direct node

Indirect node

Figure 2: File structure of F2FS.

recursively. F2FS, however, only updates one direct node
block and its NAT entry, effectively addressing the wan-
dering tree problem. For example, when a 4KB data is
appended to a file of 8MB to 4GB, the LFS updates two
pointer blocks recursively while F2FS updates only one
direct node block (not considering cache effects). For
files larger than 4GB, the LFS updates one more pointer
block (three total) while F2FS still updates only one.

An inode block contains direct pointers to the file’s
data blocks, two single-indirect pointers, two double-
indirect pointers and one triple-indirect pointer. F2FS
supports inline data and inline extended attributes, which
embed small-sized data or extended attributes in the
inode block itself. Inlining reduces space requirements
and improve I/O performance. Note that many systems
have small files and a small number of extended at-
tributes. By default, F2FS activates inlining of data if
a file size is smaller than 3,692 bytes. F2FS reserves 200
bytes in an inode block for storing extended attributes.

2.3 Directory Structure
In F2FS, a 4KB directory entry (“dentry”) block is com-
posed of a bitmap and two arrays of slots and names in
pairs. The bitmap tells whether each slot is valid or not.
A slot carries a hash value, inode number, length of a file
name and file type (e.g., normal file, directory and sym-
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bolic link). A directory file constructs multi-level hash
tables to manage a large number of dentries efficiently.

When F2FS looks up a given file name in a directory,
it first calculates the hash value of the file name. Then, it
traverses the constructed hash tables incrementally from
level 0 to the maximum allocated level recorded in the
inode. In each level, it scans one bucket of two or four
dentry blocks, resulting in an O(log(# of dentries)) com-
plexity. To find a dentry more quickly, it compares the
bitmap, the hash value and the file name in order.

When large directories are preferred (e.g., in a server
environment), users can configure F2FS to initially allo-
cate space for many dentries. With a larger hash table at
low levels, F2FS reaches to a target dentry more quickly.

2.4 Multi-head Logging
Unlike the LFS that has one large log area, F2FS main-
tains six major log areas to maximize the effect of hot and
cold data separation. F2FS statically defines three levels
of temperature—hot, warm and cold—for node and data
blocks, as summarized in Table 1.

Direct node blocks are considered hotter than indi-
rect node blocks since they are updated much more fre-
quently. Indirect node blocks contain node IDs and are
written only when a dedicated node block is added or
removed. Direct node blocks and data blocks for direc-
tories are considered hot, since they have obviously dif-
ferent write patterns compared to blocks for regular files.
Data blocks satisfying one of the following three condi-
tions are considered cold:
• Data blocks moved by cleaning (see Section 2.5).
Since they have remained valid for an extended period
of time, we expect they will remain so in the near future.
• Data blocks labeled “cold” by the user. F2FS sup-
ports an extended attribute operation to this end.
• Multimedia file data. They likely show write-once
and read-only patterns. F2FS identifies them by match-
ing a file’s extension against registered file extensions.

By default, F2FS activates six logs open for writing.
The user may adjust the number of write streams to two
or four at mount time if doing so is believed to yield bet-
ter results on a given storage device and platform. If six
logs are used, each logging segment corresponds directly
to a temperature level listed in Table 1. In the case of four
logs, F2FS combines the cold and warm logs in each of
node and data types. With only two logs, F2FS allocates
one for node and the other for data types. Section 3.2.3
examines how the number of logging heads affects the
effectiveness of data separation.

F2FS introduces configurable zones to be compat-
ible with an FTL, with a view to mitigating the

Table 1: Separation of objects in multiple active seg-
ments.

Type Temp. Objects

Node
Hot Direct node blocks for directories

Warm Direct node blocks for regular files
Cold Indirect node blocks

Data

Hot Directory entry blocks
Warm Data blocks made by users

Cold
Data blocks moved by cleaning;
Cold data blocks specified by users;
Multimedia file data

garbage collection (GC) overheads.2 FTL algorithms are
largely classified into three groups (block-associative,
set-associative and fully-associative) according to the as-
sociativity between data and “log flash blocks” [24].
Once a data flash block is assigned to store initial data,
log flash blocks assimilate data updates as much as pos-
sible, like the journal in EXT4 [18]. The log flash
block can be used exclusively for a single data flash
block (block-associative) [13], for all data flash blocks
(fully-associative) [17], or for a set of contiguous data
flash blocks (set-associative) [24]. Modern FTLs adopt
a fully-associative or set-associative method, to be able
to properly handle random writes. Note that F2FS writes
node and data blocks in parallel using multi-head logging
and an associative FTL would mix the separated blocks
(in the file system level) into the same flash block. In or-
der to avoid such misalignment, F2FS maps active logs
to different zones to separate them in the FTL. This strat-
egy is expected to be effective for set-associative FTLs.
Multi-head logging is also a natural match with the re-
cently proposed “multi-streaming” interface [10].

2.5 Cleaning
Cleaning is a process to reclaim scattered and invalidated
blocks, and secures free segments for further logging.
Because cleaning occurs constantly once the underlying
storage capacity has been filled up, limiting the costs re-
lated with cleaning is extremely important for the sus-
tained performance of F2FS (and any LFS in general).
In F2FS, cleaning is done in the unit of a section.

F2FS performs cleaning in two distinct manners, fore-
ground and background. Foreground cleaning is trig-
gered only when there are not enough free sections, while
a kernel thread wakes up periodically to conduct cleaning
in background. A cleaning process takes three steps:

2Conducted by FTL, GC involves copying valid flash pages and
erasing flash blocks for further data writes. GC overheads depend
partly on how well file system operations align to the given FTL map-
ping algorithm.
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(1) Victim selection. The cleaning process starts first
to identify a victim section among non-empty sections.
There are two well-known policies for victim selection
during LFS cleaning—greedy and cost-benefit [11, 27].
The greedy policy selects a section with the smallest
number of valid blocks. Intuitively, this policy controls
overheads of migrating valid blocks. F2FS adopts the
greedy policy for its foreground cleaning to minimize the
latency visible to applications. Moreover, F2FS reserves
a small unused capacity (5% of the storage space by de-
fault) so that the cleaning process has room for adequate
operation at high storage utilization levels. Section 3.2.4
studies the impact of utilization levels on cleaning cost.

On the other hand, the cost-benefit policy is practiced
in the background cleaning process of F2FS. This policy
selects a victim section not only based on its utilization
but also its “age”. F2FS infers the age of a section by
averaging the age of segments in the section, which, in
turn, can be obtained from their last modification time
recorded in SIT. With the cost-benefit policy, F2FS gets
another chance to separate hot and cold data.
(2) Valid block identification and migration. After se-
lecting a victim section, F2FS must identify valid blocks
in the section quickly. To this end, F2FS maintains a va-
lidity bitmap per segment in SIT. Once having identified
all valid blocks by scanning the bitmaps, F2FS retrieves
parent node blocks containing their indices from the SSA
information. If the blocks are valid, F2FS migrates them
to other free logs.

For background cleaning, F2FS does not issue actual
I/Os to migrate valid blocks. Instead, F2FS loads the
blocks into page cache and marks them as dirty. Then,
F2FS just leaves them in the page cache for the kernel
worker thread to flush them to the storage later. This lazy
migration not only alleviates the performance impact on
foreground I/O activities, but also allows small writes
to be combined. Background cleaning does not kick in
when normal I/O or foreground cleaning is in progress.
(3) Post-cleaning process. After all valid blocks are mi-
grated, a victim section is registered as a candidate to
become a new free section (called a “pre-free” section
in F2FS). After a checkpoint is made, the section finally
becomes a free section, to be reallocated. We do this be-
cause if a pre-free section is reused before checkpointing,
the file system may lose the data referenced by a previous
checkpoint when unexpected power outage occurs.

2.6 Adaptive Logging
The original LFS introduced two logging policies, nor-
mal logging and threaded logging. In the normal log-
ging, blocks are written to clean segments, yielding

strictly sequential writes. Even if users submit many
random write requests, this process transforms them to
sequential writes as long as there exists enough free log-
ging space. As the free space shrinks to nil, however,
this policy starts to suffer high cleaning overheads, re-
sulting in a serious performance drop (quantified to be
over 90% under harsh conditions, see Section 3.2.5). On
the other hand, threaded logging writes blocks to holes
(invalidated, obsolete space) in existing dirty segments.
This policy requires no cleaning operations, but triggers
random writes and may degrade performance as a result.

F2FS implements both policies and switches between
them dynamically according to the file system status.
Specifically, if there are more than k clean sections,
where k is a pre-defined threshold, normal logging is ini-
tiated. Otherwise, threaded logging is activated. k is set
to 5% of total sections by default and can be configured.

There is a chance that threaded logging incurs undesir-
able random writes when there are scattered holes. Nev-
ertheless, such random writes typically show better spa-
tial locality than those in update-in-place file systems,
since all holes in a dirty segment are filled first before
F2FS searches for more in other dirty segments. Lee et
al. [16] demonstrate that flash storage devices show bet-
ter random write performance with strong spatial local-
ity. F2FS gracefully gives up normal logging and turns
to threaded logging for higher sustained performance, as
will be shown in Section 3.2.5.

2.7 Checkpointing and Recovery
F2FS implements checkpointing to provide a consistent
recovery point from a sudden power failure or system
crash. Whenever it needs to remain a consistent state
across events like sync, umount and foreground clean-
ing, F2FS triggers a checkpoint procedure as follows:
(1) All dirty node and dentry blocks in the page cache
are flushed; (2) It suspends ordinary writing activities
including system calls such as create, unlink and
mkdir; (3) The file system metadata, NAT, SIT and
SSA, are written to their dedicated areas on the disk; and
(4) Finally, F2FS writes a checkpoint pack, consisting of
the following information, to the CP area:
• Header and footer are written at the beginning and
the end of the pack, respectively. F2FS maintains in the
header and footer a version number that is incremented
on creating a checkpoint. The version number discrimi-
nates the latest stable pack between two recorded packs
during the mount time;
• NAT and SIT bitmaps indicate the set of NAT and SIT
blocks comprising the current pack;
• NAT and SIT journals contain a small number of re-
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cently modified entries of NAT and SIT to avoid frequent
NAT and SIT updates;
• Summary blocks of active segments consist of in-
memory SSA blocks that will be flushed to the SSA area
in the future; and
• Orphan blocks keep “orphan inode” information. If an
inode is deleted before it is closed (e.g., this can happen
when two processes open a common file and one process
deletes it), it should be registered as an orphan inode, so
that F2FS can recover it after a sudden power-off.

2.7.1 Roll-Back Recovery

After a sudden power-off, F2FS rolls back to the latest
consistent checkpoint. In order to keep at least one sta-
ble checkpoint pack while creating a new pack, F2FS
maintains two checkpoint packs. If a checkpoint pack
has identical contents in the header and footer, F2FS con-
siders it valid. Otherwise, it is dropped.

Likewise, F2FS also manages two sets of NAT and
SIT blocks, distinguished by the NAT and SIT bitmaps
in each checkpoint pack. When it writes updated NAT
or SIT blocks during checkpointing, F2FS writes them
to one of the two sets alternatively, and then mark the
bitmap to point to its new set.

If a small number of NAT or SIT entries are updated
frequently, F2FS would write many 4KB-sized NAT or
SIT blocks. To mitigate this overhead, F2FS implements
a NAT and SIT journal within the checkpoint pack. This
technique reduces the number of I/Os, and accordingly,
the checkpointing latency as well.

During the recovery procedure at mount time, F2FS
searches valid checkpoint packs by inspecting headers
and footers. If both checkpoint packs are valid, F2FS
picks the latest one by comparing their version numbers.
Once selecting the latest valid checkpoint pack, it checks
whether orphan inode blocks exist or not. If so, it trun-
cates all the data blocks referenced by them and lastly
frees the orphan inodes, too. Then, F2FS starts file sys-
tem services with a consistent set of NAT and SIT blocks
referenced by their bitmaps, after the roll-forward recov-
ery procedure is done successfully, as is explained below.

2.7.2 Roll-Forward Recovery

Applications like database (e.g., SQLite) frequently
write small data to a file and conduct fsync to guar-
antee durability. A naı̈ve approach to supporting fsync
would be to trigger checkpointing and recover data with
the roll-back model. However, this approach leads to
poor performance, as checkpointing involves writing all
node and dentry blocks unrelated to the database file.

Table 2: Platforms used in experimentation. Numbers
in parentheses are basic sequential and random perfor-
mance (Seq-R, Seq-W, Rand-R, Rand-W) in MB/s.

Target System Storage Devices

Mobile

CPU: Exynos 5410 eMMC 16GB:

Memory: 2GB 2GB partition:

OS: Linux 3.4.5 (114, 72, 12, 12)

Android: JB 4.2.2

Server

CPU: Intel i7-3770 SATA SSD 250GB:

Memory: 4GB (486, 471, 40, 140)

OS: Linux 3.14 PCIe (NVMe) SSD
960GB:

Ubuntu 12.10 server (1,295, 922, 41, 254)

F2FS implements an efficient roll-forward recovery
mechanism to enhance fsync performance. The key
idea is to write data blocks and their direct node blocks
only, excluding other node or F2FS metadata blocks. In
order to find the data blocks selectively after rolling back
to the stable checkpoint, F2FS remains a special flag in-
side direct node blocks.

F2FS performs roll-forward recovery as follows. If
we denote the log position of the last stable checkpoint
as N, (1) F2FS collects the direct node blocks having the
special flag located in N+n, while constructing a list of
their node information. n refers to the number of blocks
updated since the last checkpoint. (2) By using the node
information in the list, it loads the most recently written
node blocks, named N-n, into the page cache. (3) Then,
it compares the data indices in between N-n and N+n. (4)
If it detects different data indices, then it refreshes the
cached node blocks with the new indices stored in N+n,
and finally marks them as dirty. Once completing the
roll-forward recovery, F2FS performs checkpointing to
store the whole in-memory changes to the disk.

3 Evaluation
3.1 Experimental Setup
We evaluate F2FS on two broadly categorized target sys-
tems, mobile system and server system. We employ a
Galaxy S4 smartphone to represent the mobile system
and an x86 platform for the server system. Specifications
of the platforms are summarized in Table 2.

For the target systems, we back-ported F2FS from the
3.15-rc1 main-line kernel to the 3.4.5 and 3.14 kernel,
respectively. In the mobile system, F2FS runs on a state-
of-the-art eMMC storage. In the case of the server sys-
tem, we harness a SATA SSD and a (higher-speed) PCIe
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Table 3: Summary of benchmarks.
Target Name Workload Files File size Threads R/W fsync

Mobile
iozone Sequential and random read/write 1 1G 1 50/50 N
SQLite Random writes with frequent fsync 2 3.3MB 1 0/100 Y

Facebook-app Random writes with frequent fsync 579 852KB 1 1/99 Y
Twitter-app generated by the given system call traces 177 3.3MB 1 1/99 Y

Server

videoserver Mostly sequential reads and writes 64 1GB 48 20/80 N
fileserver Many large files with random writes 80,000 128KB 50 70/30 N
varmail Many small files with frequent fsync 8,000 16KB 16 50/50 Y

oltp Large files with random writes and fsync 10 800MB 211 1/99 Y

SSD. Note that the values in the parentheses denoted
under each storage device indicate the basic sequential
read/write and random read/write bandwidth in MB/s.
We measured the bandwidth through a simple single-
thread application that triggers 512KB sequential I/Os
and 4KB random I/Os with O DIRECT.

We compare F2FS with EXT4 [18], BTRFS [26] and
NILFS2 [15]. EXT4 is a widely used update-in-place
file system. BTRFS is a copy-on-write file system, and
NILFS2 is an LFS.

Table 3 summarizes our benchmarks and their charac-
teristics in terms of generated I/O patterns, the number
of touched files and their maximum size, the number of
working threads, the ratio of reads and writes (R/W) and
whether there are fsync system calls. For the mobile
system, we execute and show the results of iozone [22],
to study basic file I/O performance. Because mobile sys-
tems are subject to costly random writes with frequent
fsync calls, we run mobibench [8], a macro benchmark,
to measure the SQLite performance. We also replay two
system call traces collected from the “Facebook” and
“Twitter” application (each dubbed “Facebook-app” and
“Twitter-app”) under a realistic usage scenario [8].

For the server workloads, we make use of a synthetic
benchmark called Filebench [20]. It emulates various
file system workloads and allows for fast intuitive system
performance evaluation. We use four pre-defined work-
loads in the benchmark—videoserver, fileserver, varmail
and oltp. They differ in I/O pattern and fsync usage.

Videoserver issues mostly sequential reads and writes.
Fileserver pre-allocates 80,000 files with 128KB data
and subsequently starts 50 threads, each of which creates
and deletes files randomly as well as reads and appends
small data to randomly chosen files. This workload, thus,
represents a scenario having many large files touched by
buffered random writes and no fsync. Varmail creates
and deletes a number of small files with fsync, while
oltp pre-allocates ten large files and updates their data
randomly with fsync with 200 threads in parallel.

3.2 Results
This section gives the performance results and insights
obtained from deep block trace level analysis. We ex-
amined various I/O patterns (i.e., read, write, fsync and
discard3), amount of I/Os and request size distribution.
For intuitive and consistent comparison, we normalize
performance results against EXT4 performance. We note
that performance depends basically on the speed gap be-
tween sequential and random I/Os. In the case of the
mobile system that has low computing power and a slow
storage, I/O pattern and its quantity are the major per-
formance factors. For the server system, CPU efficiency
with instruction execution overheads and lock contention
become an additional critical factor.

3.2.1 Performance on the Mobile System
Figure 3(a) shows the iozone results of sequential
read/write (SR/SW) and random read/write (RR/RW)
bandwidth on a single 1GB file. In the SW case, NILFS2
shows performance degradation of nearly 50% over
EXT4 since it triggers expensive synchronous writes pe-
riodically, according to its own data flush policy. In
the RW case, F2FS performs 3.1× better than EXT4,
since it turns over 90% of 4KB random writes into
512KB sequential writes (not directly shown in the plot).
BTRFS also performs well (1.8×) as it produces se-
quential writes through the copy-on-write policy. While
NILFS2 transforms random writes to sequential writes, it
gains only 10% improvement due to costly synchronous
writes. Furthermore, it issues up to 30% more write re-
quests than other file systems. For RR, all file systems
show comparable performance. BTRFS shows slightly
lower performance due to its tree indexing overheads.

Figure 3(b) gives SQLite performance measured in
transactions per second (TPS), normalized against that
of EXT4. We measure three types of transactions—

3A discard command gives a hint to the underlying flash storage
device that a specified address range has no valid data. This command
is sometimes called “trim” or “unmap”.
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Figure 4: Performance results on the server system.

insert, update and delete—on a DB comprised of 1,000
records under the write ahead logging (WAL) journal
mode. This journal mode is considered the fastest in
SQLite. F2FS shows significantly better performance
than other file systems and outperforms EXT4 by up to
2×. For this workload, the roll-forward recovery policy
of F2FS produces huge benefits. In fact, F2FS reduces
the amount of data writes by about 46% over EXT4 in
all examined cases. Due to heavy indexing overheads,
BTRFS writes 3× more data than EXT4, resulting in per-
formance degradation of nearly 80%. NILFS2 achieves
similar performance with a nearly identical amount of
data writes compared to EXT4.

Figure 3(c) shows normalized elapsed times to com-
plete replaying the Facebook-app and Twitter-app traces.
They resort to SQLite for storing data, and F2FS re-
duces the elapsed time by 20% (Facebook-app) and 40%
(Twitter-app) compared to EXT4.

3.2.2 Performance on the Server System
Figure 4 plots performance of the studied file systems
using SATA and PCIe SSDs. Each bar indicates normal-
ized performance (i.e., performance improvement if the
bar has a value larger than 1).

Videoserver generates mostly sequential reads and
writes, and all results, regardless of the device used, ex-
pose no performance gaps among the studied file sys-
tems. This demonstrates that F2FS has no performance

regression for normal sequential I/Os.
Fileserver has different I/O patterns; Figure 5 com-

pares block traces obtained from all file systems on the
SATA SSD. A closer examination finds that only 0.9%
of all write requests generated by EXT4 are for 512KB,
while F2FS has 6.9% (not directly shown in the plot).
Another finding is that EXT4 issues many small discard
commands and causes visible command processing over-
heads, especially on the SATA drive; it trims two thirds
of all block addresses covered by data writes and nearly
60% of all discard commands were for an address space
smaller than 256KB in size. In contrast, F2FS discards
obsolete spaces in the unit of segments only when check-
pointing is triggered; it trims 38% of block address space
with no small discard commands. These differences lead
to a 2.4× performance gain (Figure 4(a)).

On the other hand, BTRFS degrades performance by
8%, since it issues 512KB data writes in only 3.8% of all
write requests. In addition, it trims 47% of block address
space with small discard commands (corresponding to
75% of all discard commands) during the read service
time as shown in Figure 5(c). In the case of NILFS2,
as many as 78% of its write requests are for 512KB (Fig-
ure 5(d)). However, its periodic synchronous data flushes
limited the performance gain over EXT4 to 1.8×. On the
PCIe SSD, all file systems perform rather similarly. This
is because the PCIe SSD used in the study performs con-
current buffered writes well.
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Figure 5: Block traces of the fileserver workload according to the running time in seconds.

In the varmail case, F2FS outperforms EXT4 by 2.5×
on the SATA SSD and 1.8× on the PCIe SSD, respec-
tively. Since varmail generates many small writes with
concurrent fsync, the result again underscores the ef-
ficiency of fsync processing in F2FS. BTRFS perfor-
mance was on par with that of EXT4 and NILFS2 per-
formed relatively well on the PCIe SSD.

The oltp workload generates a large number of ran-
dom writes and fsync calls on a single 800MB database
file (unlike varmail, which touches many small files).
F2FS shows measurable performance advantages over
EXT4—16% on the SATA SSD and 13% on the PCIe
SSD. On the other hand, both BTRFS and NILFS2 per-
formed rather poorly on the PCIe drive. Fast com-
mand processing and efficient random writes on the PCIe
drive appear to move performance bottleneck points, and
BTRFS and NILFS2 do not show robust performance.

Our results so far have clearly demonstrated the rela-
tive effectiveness of the overall design and implementa-
tion of F2FS. We will now examine the impact of F2FS
logging and cleaning policies.

3.2.3 Multi-head Logging Effect
This section studies the effectiveness of the multi-head
logging policy of F2FS. Rather than presenting extensive
evaluation results that span many different workloads,

we focus on an experiment that captures the intuitions of
our design. The metric used in this section is the number
of valid blocks in a given dirty segment before cleaning.
If hot and cold data separation is done perfectly, a dirty
segment would have either zero valid blocks or the max-
imum number of valid blocks in a segment (512 under
the default configuration). An aged dirty segment would
carry zero valid blocks in it if all (hot) data stored in the
segment have been invalidated. By comparison, a dirty
segment full of valid blocks is likely keeping cold data.

In our experiment, we run two workloads simultane-
ously: varmail and copying of jpeg files. Varmail em-
ploys 10,000 files in total in 100 directories and writes
6.5GB of data. We copy 5,000 jpeg files of roughly
500KB each, hence resulting in 2.5GB of data written.
Note that F2FS statically classifies jpeg files as cold data.
After these workloads finish, we count the number of
valid blocks in all dirty segments. We repeat the experi-
ment as we vary the number of logs from two to six.

Figure 6 gives the result. With two logs, over 75%
of all segments have more than 256 valid blocks while
“full segments” with 512 valid blocks are very few. Be-
cause the two-log configuration splits only data segments
(85% of all dirty segments, not shown) and node seg-
ments (15%), the effectiveness of multi-head logging is
fairly limited. Adding two more logs changes the picture
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Figure 6: Dirty segment distribution according to the
number of valid blocks in segments.

somewhat; it increases the number of segments having
fewer than 256 valid blocks. It also slightly increases the
number of nearly full segments.

Lastly, with six logs, we clearly see the benefits of
hot and cold data separation; the number of pre-free
segments having zero valid blocks and the number of
full segments increase significantly. Moreover, there are
more segments having relatively few valid blocks (128
or fewer) and segments with many valid blocks (384 or
more). An obvious impact of this bimodal distribution is
improved cleaning efficiency (as cleaning costs depend
on the number of valid blocks in a victim segment).

We make several observations before we close this
section. First, the result shows that more logs, allow-
ing finer separation of data temperature, generally bring
more benefits. However, in the particular experiment we
performed, the benefit of four logs over two logs was
rather insignificant. If we separate cold data from hot
and warm data (as defined in Table 1) rather than hot
data from warm and cold data (default), the result would
look different. Second, since the number of valid blocks
in dirty segments will gradually decrease over time, the
left-most knee of the curves in Figure 6 will move up-
ward (at a different speed according to the chosen log-
ging configuration). Hence, if we age the file system,
we expect that multi-head logging benefits will become
more visible. Fully studying these observations is be-
yond the scope of this paper.

3.2.4 Cleaning Cost

We quantify the impact of cleaning in F2FS in this sec-
tion. In order to focus on file system level cleaning cost,
we ensure that SSD level GC does not occur during ex-
periments by intentionally leaving ample free space in
the SSD. To do so, we format a 250GB SSD and obtain
a partition of (only) 120GB.
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Figure 7: Relative performance (upper) and write am-
plification factor (lower) of the first ten runs. Four lines
capture results for different file system utilization levels.

After reserving 5% of the space for overprovisioning
(Section 2.5), we divide remaining capacity into “cold”
and “hot” regions. We build four configurations that re-
flect different file system utilization levels by filling up
the two regions as follows: 80% (60 (cold):20 (hot)),
90% (60:30), 95% (60:35) and 97.5% (60:37.5). Then,
we iterate ten runs of experiments where each run ran-
domly writes 20GB of data in 4KB to the hot region.

Figure 7 plots results of the first ten runs in two met-
rics: performance (throughput) and write amplification
factor (WAF).4 They are relative to results obtained on
a clean SSD. We make two main observations. First,
higher file system utilization leads to larger WAF and
reduced performance. At 80%, performance degrada-
tion and WAF increase were rather minor. On the third
run, the file system ran out of free segments and there
was a performance dip. During this run, it switched to
threaded logging from normal logging, and as the result,
performance stabilized. (We revisit the effects of adap-
tive, threaded logging in Section 3.2.5.) After the third
run, nearly all data were written via threaded logging, in
place. In this case, cleaning is needed not for data, but

4Iterating 100 runs would not reveal further performance drops.
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Figure 8: Worst-case performance drop ratio under file system aging.

for recording nodes. As we raised utilization level from
80% to 97.5%, the amount of GC increased and the per-
formance degradation became more visible. At 97.5%,
the performance loss was about 30% and WAF 1.02.

The second observation is that F2FS does not dramat-
ically increase WAF at high utilization levels; adaptive
logging plays an important role of keeping WAF down.
Note that threaded logging incurs random writes whereas
normal logging issues sequential writes. While random
writes are relatively expensive and motivates append-
only logging as a preferred mode of operation in many
file systems, our design choice (of switching to threaded
logging) is justified because: cleaning could render very
costly due to a high WAF when the file system is frag-
mented, and SSDs have high random write performance.
Results in this section show that F2FS successfully con-
trols the cost of cleaning at high utilization levels.

Showing the positive impact of background cleaning is
not straightforward because background cleaning is sup-
pressed during busy periods. Still, We measured over
10% performance improvement at a 90% utilization level
when we insert an idle time of ten minutes or more be-
tween runs.

3.2.5 Adaptive Logging Performance
This section delves into the question: How effective is the
F2FS adaptive logging policy with threaded logging? By
default, F2FS switches to threaded logging from normal
logging when the number of free sections falls below 5%
of total sections. We compare this default configuration
(“F2FS adaptive”) with “F2FS normal”, which sticks to
the normal logging policy all the time. For experiments,
we design and perform the following two intuitive tests
on the SATA SSD.
• fileserver test. This test first fills up the target stor-
age partition 94%, with hundreds of 1GB files. The test
then runs the fileserver workload four times and mea-
sures the performance trends (Figure 8(a)). As we repeat

experiments, the underlying flash storage device as well
as the file system get fragmented. Accordingly, the per-
formance of the workload is supposed to drop. Note that
we were unable to perform this test with NILFS2 as it
stopped with a “no space” error report.

EXT4 showed the mildest performance hit—17% be-
tween the first and the second round. By comparison,
BTRFS and F2FS (especially F2FS normal) saw a se-
vere performance drop of 22% and 48% each, as they
do not find enough sequential space. On the other hand,
F2FS adaptive serves 51% of total writes with threaded
logging (not shown in the plot) and successfully lim-
ited performance degradation in the second round to 22%
(comparable to BTRFS and not too far from EXT4). As
the result, F2FS maintained the performance improve-
ment ratio of two or more over EXT4 across the board.
All the file systems were shown to sustain performance
beyond the second round.

Further examination reveals that F2FS normal writes
27% more data than F2FS adaptive due to foreground
cleaning. The large performance hit on BTRFS is due
partly to the heavy usage of small discard commands.

• iozone test. This test first creates sixteen 4GB files
and additional 1GB files until it fills up the device ca-
pacity (∼100%). Then it runs iozone to perform 4KB
random writes on the sixteen 4GB files. The aggregate
write volume amounts to 512MB per file. We repeat this
step ten times, which turns out to be quite harsh, as both
BTRFS and NILFS2 failed to complete with a “no space”
error. Note that from the theoretical viewpoint, EXT4,
an update-in-place file system, would perform the best
in this test because EXT4 issues random writes without
creating additional file system metadata. On the other
hand, a log-structured file system like F2FS may suffer
high cleaning costs. Also note that this workload frag-
ments the data in the storage device, and the storage per-
formance would suffer as the workload triggers repeated
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device-internal GC operations.
Under EXT4, the performance degradation was about

75% (Figure 8(b)). In the case of F2FS normal, as ex-
pected, the performance drops to a very low level (of less
than 5% of EXT4 from round 3) as both the file system
and the storage device keep busy cleaning fragmented ca-
pacity to reclaim new space for logging. F2FS adaptive
is shown to handle the situation much more gracefully; it
performs better than EXT4 in the first few rounds (when
fragmentation was not severe) and shows performance
very similar to that of EXT4 as the experiment advances
with more random writes.

The two experiments in this section reveal that adap-
tive logging is critical for F2FS to sustain its performance
at high storage utilization levels. The adaptive logging
policy is also shown to effectively limit the performance
degradation of F2FS due to fragmentation.

4 Related Work
This section discusses prior work related to ours in three
categories—log-structured file systems, file systems tar-
geting flash memory, and optimizations specific to FTL.

4.1 Log-Structured File Systems (LFS)
Much work has been done on log-structured file systems
(for HDDs), beginning with the original LFS proposal
by Rosenblum et al. [27]. Wilkes et al. proposed a hole
plugging method in which valid blocks of a victim seg-
ment are moved to holes, i.e., invalid blocks in other
dirty segment [30]. Matthews et al. proposed an adap-
tive cleaning policy where they choose between a normal
logging policy and a hole-plugging policy based on cost-
benefit evaluation [19]. Oh et al. [23] demonstrated that
threaded logging provides better performance in a highly
utilized volume. F2FS has been tuned on the basis of
prior work and real-world workloads and devices.

A number of studies focus on separating hot and cold
data. Wang and Hu [28] proposed to distinguish active
and inactive data in the buffer cache, instead of writing
them to a single log and separating them during clean-
ing. They determine which data is active by monitoring
access patterns. Hylog [29] adopts a hybrid approach; it
uses logging for hot pages to achieve high random write
performance, and overwriting for cold pages to reduce
cleaning cost.

SFS [21] is a file system for SSDs implemented based
on NILFS2. Like F2FS, SFS uses logging to eliminate
random writes. To reduce the cost of cleaning, they sep-
arate hot and cold data in the buffer cache, like [28],
based on the “update likelihood” (or hotness) measured

by tracking write counts and age per block. They use
iterative quantization to partition segments into groups
based on measured hotness.

Unlike the hot/cold data separation methods that resort
to run-time monitoring of access patterns [21, 28], F2FS
estimates update likelihood using information readily
available, such as file operation (append or overwrite),
file type (directory or regular file) and file extensions.
While our experimental results show that the simple ap-
proach we take is fairly effective, more sophisticated run-
time monitoring approaches can be incorporated in F2FS
to fine-track data temperature.

NVMFS is an experimental file system assuming
two distinct storage media: NVRAM and NAND flash
SSD [25]. The fast byte-addressable storage capacity
from NVRAM is used to store hot and meta data. More-
over, writes to the SSD are sequentialized as in F2FS.

4.2 Flash Memory File Systems
A number of file systems have been proposed and im-
plemented for embedded systems that use raw NAND
flash memories as storage [1, 3, 6, 14, 31]. These file
systems directly access NAND flash memories while ad-
dressing all the chip-level issues such as wear-leveling
and bad block management. Unlike these systems, F2FS
targets flash storage devices that come with a dedicated
controller and firmware (FTL) to handle low-level tasks.
Such flash storage devices are more commonplace.

Josephson et al. proposed the direct file system
(DFS) [9], which leverages special support from host-run
FTL, including atomic update interface and very large
logical address space, to simplify the file system design.
DFS is however limited to specific flash devices and sys-
tem configurations and is not open source.

4.3 FTL Optimizations
There has been much work aiming at improving random
write performance at the FTL level, sharing some design
strategies with F2FS. Most FTLs use a log-structured up-
date approach to overcome the no-overwrite limitation of
flash memory. DAC [5] provides a page-mapping FTL
that clusters data based on update frequency by monitor-
ing accesses at run time. To reduce the overheads of large
page mapping tables, DFTL [7] dynamically loads a por-
tion of the page map into working memory on demand
and offers the random-write benefits of page mapping for
devices with limited RAM.

Hybrid mapping (or log block mapping) is an exten-
sion of block mapping to improve random writes [13, 17,
24]. It has a smaller mapping table than page mapping
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while its performance can be as good as page mapping
for workloads with substantial access locality.

5 Concluding Remarks
F2FS is a full-fledged Linux file system designed for
modern flash storage devices and is slated for wider
adoption in the industry. This paper describes key de-
sign and implementation details of F2FS. Our evaluation
results underscore how our design decisions and trade-
offs lead to performance advantages, over other existing
file systems. F2FS is fairly young—it was incorporated
in Linux kernel 3.8 in late 2012. We expect new opti-
mizations and features will be continuously added to the
file system.
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Abstract

Host-side flash storage opens up an exciting avenue for
accelerating Virtual Machine (VM) writes in virtual-
ized datacenters. The key challenge with implement-
ing such an acceleration layer is to do so without break-
ing live VM migration which is essential for provid-
ing distributed resource management and high availabil-
ity. High availability also powers-on VMs on new host
when the previous host crashes. We introduce FVP,
a fault tolerant host-side flash write acceleration layer
that seamlessly integrates with the virtualized environ-
ment while preserving dynamic resource management
and high availability, the holy tenets of a virtualized en-
vironment. FVP integrates with the VMware ESX hy-
pervisor kernel to intercept VM I/O and redirects the I/O
to host-side flash devices. VMs experience flash laten-
cies instead of SAN latencies and write intensive appli-
cations such as databases and email servers benefit from
predictable write throughput. No changes are required
to the VM guest operating systems so VM applications
can continue to function seamlessly without any mod-
ifications. FVP pools together all the host-side flash
devices in the cluster so every host can access another
host’s flash device preserving VM mobility. By repli-
cating VM writes onto peer host-side flash devices, FVP
is able to tolerate multiple cascading host and flash fail-
ures. Failure recovery is distributed, requiring no central
co-ordination. We describe the workings of the FVP key
components and demonstrate how FVP reduces VM la-
tencies to accelerate VM writes, improves performance
predictability, and increases virtualized datacenter effi-
ciency.

1 Introduction

Virtualization has revolutionized how we build and op-
erate data centers today. Large cost savings and in-
creased operational efficiencies have made virtualization

the biggest trend in data centers. However, as more appli-
cations become virtualized, and Virtual Machine (VM)
density increases, shared storage performance does not
scale with the high volumes of cumulative I/O gener-
ated by the VMs. I/O bottlenecks in the storage array
add significant latency to virtual applications, resulting
in slow response times at best and unusable applications
at worst [1–3].

Provisioning better or more storage hardware is one
way to address this problem. Some of these strategies
include provisioning faster disks, improving the Stor-
age Area Network (SAN) interconnect speeds, deploying
flash caches in storage controllers [4–8], and replacing
spinning disks with an all flash array [9, 10]. Replacing
spinning disks with an all flash array is disruptive, incur-
ring system downtime which may not be viable. Also,
upgrading the SAN is usually a temporary fix in that
even the new storage array will reach peak performance
at some point resulting in the need for constant upgrades.
Adding more CPUs or hosts is less disruptive.

An alternative approach is to install a flash device on
the host and use it to cache VM writes. By co-locating
the application’s working set close to the application at
the beginning of the I/O path, applications experience re-
sponse times of the order of microseconds as opposed to
milliseconds for shared storage. Host-side flash is thus
used to accelerate applications and decouple storage per-
formance from storage capacity [11–16].

Host-side flash has been typically used to cache re-
cently accessed data to accelerate reads alone. VM reads
are first issued to the flash device and, in case of a cache
miss, issued to the SAN. The newly read data are also
cached. VM writes are issued to the flash device and
to the SAN. This approach of using the host-side flash
device to accelerate reads is called write-through (wt)
acceleration [12, 14]. Because a significant number of
reads are offloaded from the SAN, it frees up the SAN’s
resources to service writes and un-cached reads. There-
fore, write-through yields some improvement in write
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performance as well.
Another approach is to use the host-side flash to ac-

celerate both writes and reads. This is called write-
back (wb) acceleration [11]. In wb, VM writes are is-
sued to flash and on flash write completion, acknowl-
edged back to the VM without issuing them to the SAN.
This accelerates the writes since writes complete at flash
speed, not SAN speed. In the background, writes on the
flash device are batched and then issued periodically to
the SAN to flush dirty VM data and to free up flash space
for future writes. This process of issuing batched writes
to the SAN is called destaging.
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Figure 1: Combined throughput of Microsoft Exchange
Server JetStress and fio, in wb, wt, un-cached

Write-back acceleration has a significant impact on
write performance, because writes are acknowledged to
the VM as soon as they are committed to the flash de-
vice alone. This creates a very short I/O path, resulting
in very low latencies (typically microseconds). Write-
through, in contrast, requires writes to cross the storage
fabric to get to the SAN and be acknowledged before
completion. Hence, VM writes in wt incurs SAN la-
tencies. Figure 1 depicts the combined throughput of
two VMs, one running Microsoft Exchange Server Jet-
stress [17] and the other running fio [18]. JetStress sim-
ulates the workload of an Exchange database consisting
of transactions (reads and writes) by issuing 32 KB ran-
dom reads and writes, and 14 KB sequential writes. fio
was setup to issue 64 K sequential writes. Clearly, wb
yields much better throughput than wt. Though the the-
ory is sound and these benefits are appealing, accelerat-
ing writes using host-side flash in a clustered virtualized
environment is not trivial.

The first challenge using host side flash in virtualized
environments is that it must be done without breaking
VM mobility [19]. For Distributed Resource Schedul-
ing and Power Management (DRS) [20, 21], to bal-
ance resources utilization, VMs are live migrated or re-
distributed across hosts. For High Availability (HA) [22],

in case of a host failure, VMs are migrated away from the
failed host. VM mobility, therefore, must be preserved.

To ensure VM mobility, all the hosts must have ac-
cess to the VM’s data. Virtualized datacenters achieve
this by consolidating storage arrays under a shared SAN.
Host-side flash, in contrast, is a local resource so hosts
cannot access each others flash. If a VM with data on a
host’s flash device gets migrated to another host, the VM
loses access to its data. This precludes VM mobility and
consequently breaks DRS and HA. Byan et al. [12] and
Holland et al. [13] cite these reasons for why host-side
flash cannot be used for accelerating writes.

The second challenge using host-side flash for acceler-
ating writes is that it creates potential fault tolerance and
consistency problems. In case of a flash device failure
VM writes which were not yet destaged are not retriev-
able resulting in data loss. Koller et al. [11] argue that
the only way to prevent data loss is to retrench to wt.

The third challenge using host-side flash for accelerat-
ing writes is that write-heavy applications may fill up the
flash device at a faster rate than the rate at which those
writes can be destaged to the SAN. This happens if SAN
latency is high. If there is no space left on the flash de-
vice, the application cannot be allowed to write to the
SAN because the SAN has stale data and overwriting
stale data would cause data inconsistency and corruption.
In this scenario, the application will stall until space can
be made available on the flash device. A stalled applica-
tion is clearly unacceptable; it would be preferable not to
accelerate writes at all.

We introduce FVP, a write acceleration layer that uses
host-side flash devices to accelerate VM writes in a clus-
tered virtualized environment, while tolerating multiple
cascading flash and host failures. FVP is a kernel mod-
ule installed inside the ESX hypervisor [23] which in-
tercepts VM I/Os and forwards them to the flash device.
Since FVP sits inside the hypervisor, the I/O path from
the guest OS to the flash device is short, resulting in good
application performance. No change is required to the
guest VM operating system.

FVP pools together the flash devices from all the hosts
such that each host can access the data on another host’s
flash device. When a VM migrates to another host, its
data on the previous host’s flash device can be accessed
by the new host eliminating inconsistency and data loss.
VM mobility, DRS and HA are preserved.

VM writes are replicated to other hosts or peers.
Therefore, in the event of a host or flash failure, other
hosts co-ordinate with each other to destage their copy of
VM writes to the SAN and restore VM consistency. By
replicating VM writes, FVP can tolerate multiple host
and flash failures. Recovery is distributed and happens
without any central co-ordination. Our contributions are
as follows:
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1. FVP is a host-side write acceleration layer which
supports transparent VM migration and seamlessly
integrates into the virtualized environment.

2. FVP can handle multiple, cascading host and flash
failures. To the best of our knowledge, ours
is the only solution that provides fault tolerance.
Recovery is distributed without requiring any co-
ordination.

3. We introduce Flow Control, an I/O control mecha-
nism designed to prevent write heavy applications
from running out of flash space.

Though FVP has been implemented for ESX, the de-
sign principles are hypervisor independent and can be
applied to any well-known hypervisor architecture, in-
cluding Xen [24], Hyper-V [25], and KVM [26]. In the
subsequent sections, we describe FVP in more detail.

2 Overview

Figure 2: Virtualized Environment

Figure 2 depicts a typical virtualized environment with
physical machines/hosts running the ESX hypervisor. A
Storage Area Network (SAN) is used to consolidate stor-
age and provide hosts shared access to it. A clustered
file system, VMFS [27], provides multiple hosts simul-
taneous access to file system volumes or datastores. A
datastore is a VMFS (block) based volume that houses
VM virtual disks. A hypervisor cluster is a group of such
hosts sharing one or more datastores via SAN. All the
components and operations in the cluster are managed
by a central entity, the vCenter.

A VM can only migrate to a host that has access to its
datastore. Though a VM’s files are accessible to every
host in the cluster, VMFS moderates this access to one
host alone. This is done using on-disk locks co-located
on the same datastore as the VM’s virtual disk. Only
one host can acquire the VM’s on-disk lock and this is
the host that can write to the datastore on behalf of that
VM. When DRS live migrates a VM, from one host to
another, VMFS releases the on-disk lock for that VM.
The new host now acquires the lock and runs the VM.

A FVP cluster is a hypervisor cluster in which every
host runs FVP. VMs, thus, migrate only among FVP
hosts. Henceforth, the term ‘host’ assumes that it is a
FVP host, and ‘cluster’ assumes that all hosts in the clus-
ter are FVP hosts.

3 VM Acceleration Policies

Each VM on an FVP host is configured with an accel-
eration policy. The acceleration policy dictates how
VM writes and/or reads should be cached. Data center
administrators can configure VMs with an appropriate
write policy depending on VM workload.

Write Through (wt) policy: In wt [12, 13, 28] mode,
FVP intercepts VM writes and issues them simultane-
ously to SAN and to flash. The write is acknowledged
to the VM after it has been acknowledged by both
the flash and the SAN. Typically, the longest time to
acknowledgment is from the SAN, and the VM sees
SAN latencies for writes.

Write-Back (no peers) (wb): For a VM in wb, FVP
intercepts VM writes and issues them to the host’s local
flash alone. The write is acknowledged to the VM after
flash completion. As writes accumulate on the flash
device, they are batched and destaged/issued in batches
to the SAN. Destaging is completely transparent to the
VM. The VM, thus, sees flash latencies instead of SAN
latencies for writes.

Write-Back with Peering (wbp): For a VM in wbp,
FVP synchronously duplicates every write and sends it to
another host, or peer, in the cluster while simultaneously
writing it to local flash. When the peer writes VM data to
its flash, an acknowledgment is sent back to the primary
host housing the VM. FVP on the primary host then ac-
knowledges the write to the VM. The peer holds on to
the write until the primary has destaged it. Typically,
data transmission over the network to the peer takes the
longest. VM writes experience network and peer flash
latencies.

FVP selects peer hosts based on rules/policies setup
by administrators.
Datacenter administrators can setup fault domains that
group together hosts based on the datacenter topology
such as, hosts on a rack belong to one fault domain etc.
Further, FVP also allows administrators to choose that
hosts be configured with local peers within their fault
domain and/or remote peers in other fault domains.

Un-cached: For a VM that is un-cached, FVP does not
cache its data. Neither reads nor writes are accelerated.

For wt, wb, and wbp VMs reads are first issued to
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flash. In case of a cache miss, the read is issued to SAN
and the data written to flash. Evictions, irrespective of
caching policy are done on a LRU basis.

4 Seamless VM Migration

To balance resource utilization in datacenters, VMs are
live migrated, or re-distributed across hosts [20]. An el-
igible host is one that has access to the VM’s datastore.
After migration, VMs continue to have access to their
data because datacenters consolidate storage arrays un-
der a shared SAN. However, host side flash is local to
the host. If a VM having dirty data on its host’s flash
is migrated to another host, it loses access to that data.
FVP solves this problem by enabling the new host to ac-
cess the previous host’s flash.

Figure 3: Virtual Machine Migration

Figure 3 illustrates how FVP orchestrates VM migra-
tion between two hosts. When a VM migrates from
Host 1 to Host 2, its cached data on Host 1’s flash, i. e.,
its footprint, remains on Host 1. Host 1 is free to evict
the VM’s cache if it so requires.

FVP maintains state about the VM’s previous host.
This obviates the need for Host 2 to poll every other host
to locate that VM’s footprint. So, when the VM issues a
read that causes a cache miss on Host 2’s flash, Host 2
re-transmits the read to Host 1. Such a read is called
a remote read. If the read request causes a cache miss
on Host 1’s flash (possibly because Host 1 has already
evicted that data to reclaim flash space) Host 2 re-issues
the read to the SAN.

In case of a cache hit on Host 1’s flash, Host 1 trans-
mits that data to Host 2. When Host 2 receives the data,
it copies the data onto its own local flash. Thus, Host 2
begins building the VM’s footprint locally. Owing to re-
mote reads, VM reads that are a cache hit are faster, see-
ing only network and flash latency than if they were is-
sued to SAN. Remote reads also alleviate traffic to the
storage array while VM footprint is rebuilt on Host 2. By
issuing remote reads for only what the VM requires, in-
stead of eagerly copying the entire VM footprint, Host 2
conserves network bandwidth and flash wear.

The VM’s footprint eventually rebuilds on Host 2’s
flash. When the number of cache misses for remote
reads hits a pre-defined value, Host 2 stops issuing re-
mote reads to Host 1. VM mobility is thus transparently
preserved.

It would be ideal if a wbp VM were to migrate to one
of its peers. The VM would then run off of its own foot-
print on the peer obviating the need to issue remote reads.
However, FVP has no say over which host is chosen as
the destination host for a VM. This is a decision made by
the DRS process into which FVP has no visibility.

5 The Destager

The destager is a process that collects dirty VM writes
cached on the flash device and issues them to the SAN.
The writes are batched and all writes in a batch are is-
sued concurrently. Batching is used to improve per-
formance and ensure correctness as is described in this
section. When the SAN acknowledges the writes, FVP
marks those writes as destaged. Those writes can now
be evicted from the cache. We discuss how the underly-
ing storage fabric drives the design and behavior of the
destager.

Figure 4: Workings of the destager

The sequence in which a storage controller may order
concurrent writes is opaque to FVP, and indeed, to the
application issuing such writes. This is not an issue for
concurrent non-overlapping writes. However, concurrent
overlapping writes, if not handled correctly, can cause
application inconsistency and data corruption. Consider
a write X at offset Y, denoted as X(Y). Consider two
concurrent overlapping writes A(O) and B(O). FVP con-
strues an ordering of A(O) followed by B(O) and issues
them to flash. FVP only indexes the last write and there-
fore records B for offset O. So, when the VM issues a
read for offset O it receives B. Meanwhile, the destager
begins destaging the writes and both (A, O) and (B, O)
being concurrent writes, issues them concurrently to the
VM’s datastore. The storage controller orders them (B,
O) followed by (A, O), overwriting B with A. The datas-
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tore is now inconsistent with the VM.
To avoid such inconsistencies, a gatekeeper, assigns

a monotonically increasing serial number (ser#) to ev-
ery write. Non-overlapping writes tagged with a ser#

are issued simultaneously to the flash. However, concur-
rent overlapping writes are serialized, i. e., the gatekeeper
waits for the flash device to acknowledge the write be-
fore issuing the next overlapping write. The writes are
then enqueued in a staging queue in the staging area.

Figure 4 depicts the workings of the destager. The
staging area is kept in RAM to save flash space and
wear. It consists of a staging queue where writes are
enqueued in order of their ser#. Note that the queue
contains metadata only. The data resides on the flash de-
vice. The destager scans these writes, batches them up
such that no two writes in a batch overlap. All writes
in a batch are issued concurrently to the SAN. After the
SAN acknowledges all those writes, the destager issues
a checkPoint to the flash. A checkPoint is a spe-
cial record consisting of the VM UUID, and ser# of
the VM’s last write record acknowledged by the SAN.
FVP uses checkPoint records during failure recovery
described in Section 7.

After the destager receives acknowledgment from the
flash that it has completed writing the checkPoint, the
destager proceeds to scan the staging queue again. If the
VM was configured with peers, the checkPoint record
is also transmitted to the peer/s. Each peer commits the
checkPoint record to its flash. FVP on the primary and
peer hosts is now free to evict from its flash device all
records for that VM whose ser#≤ checkPoint (ser#).

The storage controller may or may not order the writes
in ser# order (indeed, it is unaware of any such meta-
data), but, since these writes are non-overlapping, writ-
ing them in any order it wishes does not lead to data
corruption. The justification for such behavior is that
even in the absence of FVP, for concurrent writes the
storage controller gives the same consistency guarantees
and therefore after the entire batch of writes has been
committed to the SAN, the SAN is consistent with VM,
though lagging by some time.

The staging queue is maintained on a per VM basis.
The destager cycles through staging queues in a round
robin fashion destaging one batch per queue before pro-
ceeding to the next VM’s queue. To allow each VM a
fair share of the SAN’s bandwidth for servicing writes
and reads, the size of each batch is capped to a config-
urable value. The maximum batch size, defined in the
number of writes, is configured to match the queue depth
of the storage’s host bus adapter.

As a rule of thumb, issuing fewer but larger sets of
concurrent writes to storage yields better throughput than
issuing smaller and frequent concurrent writes. There-
fore, deferring and consolidating writes while destaging

yields better flash acceleration. A VM that issues fre-
quent overlapping writes does not see the level of flash
acceleration that another VM issuing fewer overlapping
writes would see. If such writes are bursty, the flash is
able to absorb the burst, simultaneously destage writes
and catch up with the VM a few moments after the burst
of writes has stabilized without degrading application
throughput.

6 Flow Control

The flash space on an ESX host could potentially be
shared by hundreds of VMs. Though every VM may
have different space requirements which change over
time [29], FVP implements a fair share policy when
carving out flash space for individual VMs. Fair share,
though an early implementation, has advantages such
that it isolates VMs from any noisy neighbors. Noisy
neighbors are VMs that claim a high proportion of flash
space due to their large working sets. Consequentially,
other VMs experience degraded performance. FVP im-
plements fair share for its simplicity and to insulate VMs.

For sustained write bursts, a VM’s writes accumulate
on flash at a high rate filling up its quota of flash space.
The destager works in tandem with the VM to clear up
that flash space to accommodate new writes. However,
the destager’s throughput is predicated on the latency of
the SAN. If SAN latency is high, during a sustained write
burst, a VM’s flash space fills up before the destager has
a chance to catch up. The VM, then, would have to be
stalled, i. e., it cannot be allowed to issue I/Os until (a)
the destager is able to reclaim space by flushing out ac-
cumulated writes and/or (b) FVP is able to evict cached
reads from the flash device. When space is reclaimed,
the VM can continue to issue I/Os, but if the write burst
continues, the VM would have to be stalled once again
to allow the destager to make more space and so on. At
such times, the VM would experience degraded perfor-
mance or SAN latencies.

The VM cannot be allowed to write to SAN because
SAN has stale data. If the VM were allowed to write,
and those writes overlapped with writes that are yet to be
destaged, data corruption would occur.

To prevent VM performance degradation, FVP trig-
gers a process called flow control. Flow control throttles
the VM by introducing an artificial delay before a write is
acknowledged back to the VM. Though this slows down
the VM, it gives the destager some extra time to make
space for new writes. The delay is calculated as a mov-
ing average over SAN latencies observed in the near past.
FVP uses three heuristics to trigger flow control per VM:

1. The number of dirty VM writes.

2. The cumulative size of the dirty writes.
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3. The expected time to destage those writes.

These were chosen because they are indicative of how
fast the destager would be able make progress given its
pending workload. A high number of writes in propor-
tion to their cumulative size indicates that the VM is pri-
marily issuing small writes. The destager’s batch size
being fixed, this means the destager has to cycle through
a larger number of batches, and consequentially, engage
in those many conversations with the SAN. A higher cu-
mulative size of dirty writes in proportion to the num-
ber of dirty writes indicates that the VM is issuing large
writes which typically incur higher SAN latencies. The
expected time to destage all the writes is calculated us-
ing a moving average of SAN latencies seen in the past.
Together, these three heuristics indicate the probability
of whether the destager would be able to clear up flash
space in time to accommodate VM writes. If any of
the above heuristic counters cross pre-defined trigger-
ing values, flow control kicks in, progressively injecting
increasing amounts of delay when acknowledging VM
writes. Flow control slows down the incoming writes by
introducing delays of the order of 1× to up to 4× the
SAN latency to reduce the pressure on the staging area.
However, if VM writes fill up its flash space because the
destager is not able to make progress on account of a very
slow SAN, the VM performance degrades to match that
of the SAN.

Stalling is extremely rare. Only in the case of work-
loads that are write intensive over a prolonged period of
time coupled with a very slow SAN would the VM be
stalled.

Most VMs, however, are not continuously write in-
tensive, but rather bursty [30]. Short write bursts are
absorbed by the flash device and the VM throughput
remains unaltered during the bursty period. Sustained
write bursts may need to be throttled for the latter part
of the bursty period, and in majority of the cases, con-
tinue to run while experiencing SAN latencies instead of
flash latencies. Also, once the sustained burst of writes
has lapsed the destager once again regains ground and
the VM is freed from flow control.

Besides undesirable degraded VM performance, hold-
ing on to a large size of dirty VM data on the flash de-
vice increases the impact of data loss to a wb VM in case
of a flash failure and the window of vulnerability in the
case of host failure. Flow control, thus, prevents VM
performance degradation, mitigates the consequences of
failures, and speeds up VM migration.

7 Distributed Fault Tolerance

For wb VMs, in the event of a failure the SAN is left in an
inconsistent state with respect to the VM in that some of
the VM’s writes have not yet been persisted to the SAN

but have been acknowledged to the VM right after they
were persisted to the host-side flash. The key challenge
towards achieving crash consistent fault tolerance when
using host-side flash devices for write back acceleration
is ensuring that at the end of failure recovery cached VM
writes are destaged correctly and completely to the SAN.

In the case of a host failure, for wb VMs, after the host
recovers the destager flushes VM writes from its flash to
the SAN from the last checkPoint onwards in order of
their ser#. The ser# is persisted to flash as part of other
metadata for every write. This ensures correctness, viz.,
the writes are replayed in the order in which they were
received by FVP.

However, HA may migrate affected wb VMs to an-
other host while the failed host is recovering. If those
VMs issue I/Os that overlap with previous I/Os that have
not yet made it to the SAN, data corruption will occur.

To prevent data corruption, and co-ordinate the re-
covery process between two hosts as a wb VM mi-
grates between them, FVP uses an on-disk lock file
called vault.lock. For every VM, FVP persists its cur-
rent acceleration policy and checkPoint record in the
vault.lock file. The vault.lock file is located on the
VM’s datastore. Through atomic vault.lock access,
VMFS arbitrates ownership of a VM’s datastore between
hosts such that the vault.lock file is locked and kept
open by one host only. Only this host is eligible to exe-
cute I/Os on behalf of the VM to the SAN. The lock is
held by the recovering host until recovery is complete.

In the case of a flash failure the cached writes are lost.
FVP solves this problem by replicating VM writes onto
peer hosts’ flash devices. The peers can now flush those
replicated writes to the SAN to complete recovery.

When a host loses connectivity to the storage fabric,
the cached writes cannot be flushed to the SAN resulting
in data loss. If any of the peers has access to the SAN, it
can flush the replicated writes from its flash.

In addition to on-disk locks, hosts also monitor net-
work, storage, and, peer health via regular heart beats.
Thus, atomic access to the on-disk vault.lock file,
read-only access to the vault file contents and heart
beats together form the basis of FVP’s failure recovery
mechanism. FVP is designed to tolerate multiple flash,
host, and network failures. Recovery is distributed; there
is no master-slave protocol between hosts. We now dis-
cuss how this distributed failure recovery is instrumented
for each of the failure scenarios.

7.1 Flash Failure

For a wt VM, in the event of a flash failure there is no
data loss.

For a wb VM, in the event of a flash failure, if there
was dirty data on the flash device, FVP stalls the VM. To
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Failure wt wb wbp
Flash wt →un-cached

No data loss
Data loss Peer online replay

wb →wt →un-cached
Host No recovery re-

quired
Offline replay
wb →wt →wb

Peer online replay
wbp →wt →wbp

Network NA NA Primary online replay
wbp →wt →wbp

Multiple Failures NA For host failures, offline replay,
or surrogate offline replay

Online/offline replay by pri-
mary, peer, or surrogate hosts

Table 1: Recovery from flash, host, network and multiple failures

avoid data corruption the VM cannot be allowed to write
to the SAN. A flash failure for a wb VM results in data
loss.

For a VM in wbp, in the event of a flash failure,
to avoid data corruption FVP stalls the VM, and relin-
quishes lock on vault.lock. The peers, who periodi-
cally poll vault.lock, attempt to acquire the lock, con-
tending against each other, where contention is resolved
by VMFS. The peer that acquires the lock begins destag-
ing VM writes starting from the last checkPoint that
it had received from the primary host, regularly updat-
ing the checkPoint in vault.lock. After destaging is
complete the peer updates vault.lock with the latest
checkPoint, a cache policy of wt, and relinquishes lock
on vault.lock. The process of destaging writes by a
live host in the event of a failure is called Online Replay.

The VM policy of wt indicates to the peers that the
VMs dirty data has been flushed. They drop all of the
VM’s writes from their flash and stop polling vault.
The host that destages VM writes updates vault.lock
checkPoint regularly so as to communicate to the re-
maining peers, via vault, that they can clear up writes
that have already been destaged. Also, in case of peer
failure or peer flash failure, the remaining peers can
pick up where the last peer left off by starting with the
checkPoint in vault.lock minimizing recovery time.

When the primary host detects from vault that the
VM has transitioned to wt, it reacquires vault.lock,
updates vault.lock with an acceleration policy of ‘un-
cached’, and, un-stalls the VM.

7.2 Host Failure
There is no data loss for a wt VM in the case of a host
failure.

In the event of a host failure all the vault.lock files
for the affected VMs are released as part of the failure
detection process. After the host recovers, the host reac-
quires those locks. For a wb VM, after the failed host
recovers, FVP scans all the cached writes on the flash,
building an inventory of resident wb VMs and their dirty
data. This scan is necessary because as a consequence

of host failure, the ‘in RAM’ staging data structures used
during normal destaging and online replay operations are
no longer available.

As soon as the scan is complete, the host and FVP
come back online, and the VMs are powered on. VMs
having dirty data on flash are stalled until their data is
destaged, but FVP is ready to service VMs not affected
by the host failure. For VMs with dirty data, FVP tries to
lock vault.lock. For those VMs whose vault.lock

was acquired, their dirty writes are destaged in or-
der of ser# while regularly updating vault.lock

checkPoint. At the end of replay, each vault.lock

is updated with a cache policy of wt. This process of
destaging records by a host recovering from a failure is
called Offline Replay.

If HA has migrated any wb VMs to another host before
the previous host has recovered, the new host is now able
to acquire a lock on their vault.lock file and is, there-
fore, now eligible to issue I/Os on behalf of the migrated
VM. This could cause data corruption. To prevent this
from happening, FVP persists VM acceleration policy in
vault.lock. When the new host acquires vault.lock
for a migrated VM, it gleans that the VM was in wb on
the previous host. This indicates to the new host that
the VM has pending writes on the previous host’s flash
which have not yet been flushed to the SAN. It releases
vault.lock and stalls the VM.

A read only copy of vault.lock is kept in another file
called vault. The new host polls vault periodically so
it can re-acquire vault.lock when the previous host is
done destaging.

For wbp VMs, while the primary host is down, the
peer/s detect host failure due to missing heart beats. Ei-
ther that, or the peer/s detect host failure because one of
them is able to acquire vault.lock for affected VMs.
The peer that succeeds, executes an online replay on be-
half of those VMs regularly updating the checkPoint in
vault.lock. At the end of online replay vault.lock

is updated with the last VM checkPoint, and wt cache
policy. The other peers, on gleaning transition of the VM
to wt, drop all data belonging to that VM from their flash.
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The peers no longer participate in providing fault toler-
ance for the VM.

Meanwhile, FVP on the recovering primary host tries
to acquire vault.lock, and fails. When it eventually
acquires vault.lock it detects that the VM has transi-
tioned to wt. No offline replay is required for this VM.
The VM is un-stalled, new peers are configured and it
transitions back to running in wbp.

7.3 Network Failure
A network failure is one when peers lose connectivity
with each other. This only affects VMs in wbp. In case
of a network failure, writes can no longer be replicated
to peers. When FVP on the primary host detects a net-
work failure, it initiates a wb → wt transition of the af-
fected VMs. The destager flushes all the dirty data for
those VMs. Flow control is invoked to allow the destager
to make quick progress. During this stage, the affected
VMs continue running in wb, but without the desired
level of write redundancy. When a very small number
of writes remain to be destaged, the VM is stalled, the
remaining writes are destaged, the VM is un-stalled, re-
leased from flow control, and the transition to wt is com-
plete.

The peers glean the transition to wt from vault and
drop all cached data for the concerned VMs. For every
affected VM, FVP chooses new peers from a list of other
candidate hosts. Once the desired number of peers are
re-established the VM is transitioned back to wbp.

It is possible that after the failed peer comes back up,
the VM has already transitioned to wb/wbp. The peer
may then incorrectly deduce that it should continue hold-
ing on to the VMs dirty data on its flash. To prevent this,
FVP maintains a generation number (gen#) for every
VM which is also persisted in vault.lock. The gen#

is a monotonically increasing number that keeps track
of a VM’s transitions through cache policies. It is in-
cremented every time a VM transitions from wb →wt or
wbp →wt. The incremented gen# indicates to the freshly
recovered peer that the VM’s data it contains on its flash
has already been replayed. It is now free to evict that
data.

Lastly, a network failure, could be misconstrued by
peers, as a primary host failure. They try to acquire
vault.lock while monitoring vault and take over re-
play if the primary host fails.

7.4 SAN Failure
A SAN failure is when hosts are unable to connect to the
storage array. It is possible that such disruption affects
only partial hosts. If FVP on the primary host has lost
connectivity to the storage array, it stalls the VMs. For

VMs in wbp, the primary host depends on the peers to
replay dirty data. If only the peers have lost connectivity
to storage, they begin to fail remote writes sent for repli-
cation by the primary host. This indicates to the primary
host that the peers are no longer able to keep replicas.
The VMs are flow controlled, their data is destaged and
then transitioned to wb. To summarize, any host that has
access to the storage array can acquire vault.lock and
replay dirty data. Note that even if all hosts have experi-
enced SAN failure, data on the flash device is still intact.

7.5 Multiple Cascading Failures
If during an online or offline replay, the concerned host
fails, the remaining replay can be completed either by
its peers or itself on recovery. If the primary host and
peers fail and are unable to recover, the flash device can
be re-installed on another host that has access to the
VM’s datastore. This is possible because all necessary
metadata required to conduct replay is persisted on
the flash device itself. The surrogate host would scan
the flash device, acquire the necessary vault.lock

from the VM’s datastore and then complete replay for
affected VMs. To minimize recovery time in the case
of cascading failures, vault.lock (and consequently,
vault) are regularly updated with the last checkPoint.

7.6 Distributed Recovery
The key to distributed recovery is access to shared stor-
age and exclusive ownership of vault.lock among par-
ticipating hosts. Shared storage access enables primary
and peer hosts to monitor VM acceleration policy tran-
sitions and destaging progress. VMFS ensures access
to the on-disk lock is atomic preventing any split-brain
scenarios allowing hosts to co-ordinate failure recovery
one at a time via online/offline replay picking up from
where the last host left off. For instance, in the case of
primary host failure, one of the peers takes over online
replay. If this peer fails, the next peer may take over. If
both peers fail and the primary host comes back online,
the remaining data, is destaged by the primary host via
offline replay.

Table 1 summarizes how FVP recovers from various
failure scenarios. FVP recovery is crash consistent. Data
corruption is prevented by use of checkPoint, gen# and
ser#. Recovery is complete when every write acknowl-
edged to the VM before failure/crash is committed to the
SAN. Hence, after recovery, affected VMs return to a
crash consistent state. VMs in wt are always crash con-
sistent. For VM in wb, in case of a flash failure, there is
data loss. VMs in wbp are protected against p flash, and
p+1 host failures, where p is the number of peers.
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8 Evaluation

Our setup consists of two hosts, each a HP Proliant DL
380 G6, 8 cores, R©Intel Xeon CPU E5540 at 2.533 GHz,
55 GB RAM, and 120 GB flash drive. Each host runs
VMware vSphere 5.5 Enterprise Plus. The shared stor-
age is a storage appliance with disk spindles and a flash
cache. We will show that even when used with this faster
than average SAN, FVP provides significant speed and
latency improvement. With a slower HDD-based SAN,
latency improvements will be more significant.

8.1 Short Write Bursts
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Figure 5: Short Write Bursts: (a) VM Writes/sec, (b)
Write Latency

The objective of the first experiment is to demonstrate
how FVP absorbs short write bursts thereby masking the
VM from latency spikes of the SAN. To do this, we gen-
erated a workload resembling writes issued by a database
servicing an OLTP application [31]. The workload, gen-
erated using Iometer [32], issued a burst of sequential
writes for a short duration (40 seconds) followed by a
slow and steady pace of random writes for 280 seconds.
The short bursts of sequential writes simulated writes
generated by a database as a result of multiple transac-
tion commits, and log flushing. The steady stream of

random writes simulated inserts/updates to support short
database transactions. All writes were 8 KB in size, and
8 KB aligned.

To illustrate the benefits of using FVP to accelerate
such workloads, we compared VM performance in wb
and in an un-cached mode. The workload was run twice,
once with the VM configured in wb and next with the VM
in un-cached mode. In the un-cached mode, writes were
not cached on the flash device but were issued directly to
the SAN.

Figure 5 (a) compares the rate at which writes were
acknowledged to the VM when running in wb with that
when the VM ran in un-cached mode. In un-cached
mode, writes were acknowledged to the VM after they
were written to the SAN, at about 7,500 writes/second.
In wb, during the first write burst (between 0 and 50 sec-
onds) FVP acknowledged the writes to the VM as soon
as the writes issued to the flash device were completed,
at the rate of about 30,000 writes/second. Even though
the SAN was slower to acknowledge writes during the
bursty period, the VM did not see a degradation in per-
formance when running in wb. This is because the write
burst was absorbed by the flash device and the VM writes
were acknowledged at flash speed. In the background,
the destager issued those accumulated writes to the SAN.

Next, Iometer issued a steady stream of random writes
at a slower rate for 280 seconds. During this period, as
seen in Figure 5 (a), VM writes were acknowledged at
the same rate in wb and in the un-cached mode. This is
because, the incoming rate of writes was slow enough so
that FVP and the SAN were able to service all the writes
in a batch before the next batch of writes was issued.

This cycle of short bursts followed by steady writes
was repeated once more.

Figure 5 (b) plots the average write latency, i. e., the
time from write issue to write completion, as observed
by the VM. The figure also plots the flash write latency
when VM writes were cached (wb). Together, the Fig-
ures 5 (a) and (b) demonstrate two key strengths of FVP:
the first being that during the bursty period, the VM la-
tency in wb tracked flash latency, not SAN latency. This
allowed the VM to issue 4× the number of writes during
the bursty period in wb than when un-cached. The sec-
ond, is that the write latencies in wb were steady and low.
In contrast, write latencies observed by the un-cached
VM varied from 0.4 ms at best, to 1 ms during the bursty
period.

8.2 Sustained Write Bursts

Figures 6 (a) and (b), demonstrate how FVP handles sus-
tained write bursts. Figure 6 (a) depicts the rate at which
writes were acknowledged to the VM by FVP and to the
destager by the SAN, while Figure 6 (b) depicts VM, and
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Figure 6: Sustained Write Bursts: (a) Writes/sec, (b)
Write Latency

flash write latencies for those corresponding times.
To demonstrate how flow control manifests, we gen-

erated a workload similar to the OLTP workload, but
quadrupled the write burst period (160 seconds). For the
first 80 seconds, writes were acknowledged to the VM
at flash speed. After 80 seconds, due to the volume and
rate at which writes accumulated on flash, FVP triggered
flow control. Flow control introduced delays in the write
completion path before the writes were acknowledged to
the VM. The induced delays were equal to the SAN’s
latency. Hence, VM writes experienced SAN latencies.
These additional delays are shown in the Figure 6 (b)
where VM latencies increased over and above flash la-
tencies during the flow control period. Flash latencies
were always steady at about 70 µseconds.

Once the sustained burst was over, the rate of incom-
ing writes dropped. This allowed the destager to catch
up and destage the pending records. The VM was then
released from flow control. We know it was released,
because at the beginning of the next burst, the VM ac-
knowledged writes at flash speed again.

SAN latencies may increase if/when the SAN is over-
loaded because of the cumulative I/Os issued by several
VMs or due to SAN administrative tasks. This too can

trigger flow control. By using flow control, FVP avoids
stalling applications/VMs which would unacceptably in-
terrupt business processes. Instead VMs continue to run
gracefully at SAN speed.

8.3 Read Latencies during VM migration
The objective of the next experiment is to demonstrate
how FVP preserves VM mobility with minimal impact to
VM performance. Figure 7 shows latencies observed by
a VM running Iometer while issuing random 4K reads.
For the first 700 seconds, the VM experiences millisec-
ond latencies as the data is fetched from SAN. This was
because, none of the data was cached before the work-
load was started. As the cache was populated and hits
increased, read latencies gradually reduced. Once the
working set is cached, the VM experiences flash laten-
cies of the order of 450 µseconds. Then the VM is mi-
grated to another host. In response to cache misses the
new host begins to issue reads to the previous host and
gradually builds up the VM’s footprint on its local flash.
The increased read latencies in the graph after VM mi-
gration when the new host issues remote reads are due
to the additional latency incurred in transmitting the read
data over the network from the previous host to the new
one. As the new host gradually builds up the VM’s foot-
print, fewer remote reads are issued. This can be seen
from the graph where read latencies gradually reduce af-
ter migration. Once the VM footprint on the new host’s
flash is complete, remote reads are no longer issued and
the VM experiences flash latencies once again.
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Figure 7: VM observed read latencies after migration

8.4 Fault Tolerance Cost vs Benefit
The objective of the final experiment is to analyze the
trade-off between fault tolerance and performance. To
do this, we compare VM throughput in wt with that in
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Figure 8: Combined throughput of two VMs in wt, wb,
wbp (p=1), wbp (p=2). Workloads: Microsoft Exchange
Server Jetstress and fio

fio
Throughput

JetStress
Transactional

IOPs
wb 468.81 MB/s 9325

wbp (p=1) 322.48 MB/s 7677
wbp (p=2) 235.32 MB/s 6605

wt 149.44 MB/s 5514

Table 2: Application performance in wt, wb, wbp (p=1),
wbp (p=2)

wb, wbp (p = 1), and wbp (p = 2). Figure 8 depicts the
combined throughput of two VMs. The guest OS of one
VM was Windows 2008, running Microsoft Exchange
Server Jetstress [17]. Jetstress simulates the workload
of an Exchange database consisting of database trans-
actions (reads and writes), log writes, and maintenance
tasks such as database compaction, defragmentation and
checksums. Jetstress was configured with 150 mailboxes
allocated over 40 GB. The guest OS of the second VM
was Ubuntu running fio [18], an IO workload genera-
tor. fio was configured to simulate a throughput intensive
workload with two threads, each thread issuing 64 KB
sequential writes with 8 writes in flight.

The first observation from Figure 8 is that write
caching (wb) has clearly accelerated VM throughput, a
definite gain over wt. The second observation is that
when writes were replicated to the peer (wbp), the VM
throughput slowed down compared to that in wb. In
wb, the average throughput of the VMs was around
600 MB/s, while in wbp (p = 1) it was 475 MB/s. This
difference was because in wbp, every write incurred an
additional latency when it was replicated across the net-
work onto the peer’s flash.

DRS and HA use the network interconnect between
hosts to migrate VMs between them. FVP uses the

same network to transmit writes between a host and its
peers for fault tolerance. The cumulative throughput for
wbp (p = 2) was lesser than that with wbp (p = 1) be-
cause currently the FVP network stack instrumentation
does not exploit multiple NICs. This work is, however,
planned for the coming future. With multiple NIC sup-
port, VM throughput would track that of the slowest peer
network.

Table 2 lists the performance of the individual applica-
tions in wt, wb, and wbp (p = 1, p = 2). For fio, the table
lists the average throughput whereas for JetStress, the ta-
ble lists the transaction rate (IOPs). Figure 8 and Ta-
ble 2, together illustrate that the cost of replicating writes
is reduced VM throughput. However, the throughput of
a wbp VM is still better than a wt VM with the added
advantage of fault tolerance. To summarize, FVP solves
fault tolerance by replicating writes, and achieves write
acceleration by using host-side flash.

9 Related Work

Holland et al. [13] and Byan et al. [12] prescribe using
host side flash for wt only because wb causes consistency
issues with VM migration. Byan et al. explore various
options for deploying host-side flash: integrated with the
storage controller, the network, the hypervisor etc., and
choose to deploy their solution within the hypervisor.

Koller et al. [11] discuss the trade-offs of using host-
side flash with respect to data consistency, staleness and
performance for wt and wb. They propose ordered and
journaled destaging. Ordered destaging evicts writes in
the order in which they were issued, like FVP. In ad-
dition, Koller et al. parallelize evictions for unrelated
writes. Journaled destaging coalesces writes to absorb
write bursts. Using application specified hints Jour-
naled destaging provides application level consistency.
FVP also offers a best-effort application level consistent
destager, but for the sake of brevity, and to focus on our
key contributions, we have not elaborated on it.

Qin et al. [14] use application specified write barriers
to achieve application consistency when using host-side
flash to accelerate writes. Application specified write
barriers, or hints are not distinguishable to the FVP ker-
nel module. This was a deliberate decision; one that al-
lows FVP to seamlessly integrate into the virtualized en-
vironment. Further, in an enterprise environment third
party softwares [33] are employed to perform backups.
These software quiesce the guest OS to allow for appli-
cation consistent snapshots. FVP seamlessly detects this
activity and transitions those wb VMs to wt for the dura-
tion of the snapshot operation. The details of this mech-
anism have not been discussed in the paper since that is
not the main focus. In addition FVP also provides data-
center administrators a switch to initiate a wb → wt tran-
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sition on VMs for the duration of the backup/snapshot
window.

Koller et al. also discuss the cost in terms of the po-
tential data loss that might be incurred in the case of fail-
ure for applications when they use wb acceleration. With
wbp in FVP VMs are protected against p flash failures
and p+ 1 host failures to minimize the probability of a
data loss. The cost, however, is increased recovery time
for when the affected VMs are stalled until their wb data
has been flushed to the storage.

How long a VM is kept stalled depends on several
multi-dimensional factors. The most critical being the
volume of dirty writes. The time required to destage
those writes, and therefore, the period for which the VM
is kept stalled is proportional to the size of staged data.
The other factors being the SAN speed/performance, the
saturation of the SCSI network, the load on the disk ar-
ray, the number of VMs being hosted, the workload those
VMs are generating etc. These factors, other than staged
data size, change dynamically depending on the work-
load supported by the datacenter. If these were steady,
then the time for a which a VM needs to be stalled is
proportional to the amount of staged data that needs to
be flushed. To mitigate the cost of recovery, FVP caps
the size of dirty data that can accumulate for a VM. As
discussed in 6, flow control is invoked to moderate VM
write footprint. To tune this further, datacenter adminis-
trators can configure the staging size based on the RPO
requirements for applications.

Also, in the case of FVP, recovery speeds up when
peers are involved. When a host fails, the peers can fin-
ish destaging so that when the VMs are brought back up
most or all of their data has been already flushed to SAN.
Thus, peering reduces the cost of recovery for wbp VMs.

10 Future Work

We are working on building more intelligence into FVP;
an adaptive resource manager that detects VM workload
characteristics and priority, and in response, tunes VM
flash space usage, acceleration policy, eviction policies,
and destager behavior for that VM.

11 Conclusion

FVP brings seamless, fault tolerant write acceleration us-
ing host-side flash to HA and DRS enabled virtualized
datacenters. Failure recovery is distributed and, with p
peers, is p+ 1 host/flash failure tolerant. FVP absorbs
short write bursts so VMs see flash latencies instead of
degraded SAN latencies during the bursty period. This
masks VMs from SAN latency spikes, improves VM
performance predictability to help deliver SLA objec-
tives allowing IT teams to accelerate write heavy ap-

plications, such as databases and Virtual Desktop In-
frastructure [34]. For sustained write bursts FVP uses
flow control; write intensive applications continue with-
out stalling. The storage can now be provisioned linearly
with new hosts, instead of being provisioned for bursty
workloads. FVP helps increase VM density allowing ex-
isting hosts to support more VMs without having to pro-
vision additional storage. This increase in performance
means happier end users and, consequently, fewer sup-
port calls relating to poor application performance. This
allows IT organizations to consolidate more hosts and
economize.
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Abstract
The Bε -tree File System, or BetrFS, (pronounced

“better eff ess”) is the first in-kernel file system to use a
write-optimized index. Write optimized indexes (WOIs)
are promising building blocks for storage systems be-
cause of their potential to implement both microwrites
and large scans efficiently.

Previous work on WOI-based file systems has shown
promise but has also been hampered by several open
problems, which this paper addresses. For example,
FUSE issues many queries into the file system, su-
perimposing read-intensive workloads on top of write-
intensive ones, thereby reducing the effectiveness of
WOIs. Moving to an in-kernel implementation can ad-
dress this problem by providing finer control of reads.
This paper also contributes several implementation tech-
niques to leverage kernel infrastructure without throttling
write performance.

Our results show that BetrFS provides good perfor-
mance for both arbitrary microdata operations, which in-
clude creating small files, updating metadata, and small
writes into large or small files, and for large sequen-
tial I/O. On one microdata benchmark, BetrFS pro-
vides more than 4× the performance of ext4 or XFS.
BetrFS is an ongoing prototype effort, and requires ad-
ditional data-structure tuning to match current general-
purpose file systems on some operations such as deletes,
directory renames, and large sequential writes. Nonethe-
less, many applications realize significant performance
improvements. For instance, an in-place rsync of the
Linux kernel source realizes roughly 1.6–22× speedup
over other commodity file systems.

1 Introduction

Today’s applications exhibit widely varying I/O patterns,
making performance tuning of a general-purpose file sys-
tem a frustrating balancing act. Some software, such
as virus scans and backups, demand large, sequential
scans of data. Other software requires many small writes

(microwrites). Examples include email delivery, creat-
ing lock files for an editing application, making small
updates to a large file, or updating a file’s atime. The un-
derlying problem is that many standard data structures in
the file-system designer’s toolbox optimize for one case
at the expense of another.

Recent advances in write-optimized indexes (WOI) [4,
8–10, 23, 27, 28] are exciting because they have the po-
tential to implement both efficient microwrites and large
scans. The key strength of the best WOIs is that they can
ingest data up to two orders of magnitude faster than B-
trees while matching or improving on the B-tree’s point-
and range-query performance [4, 9].

WOIs have been successful in commercial key-value
stores and databases [2,3,12,17,20,33,34], and previous
research on WOIs in file systems has shown promise [15,
25, 31]. However, progress towards a production-quality
write-optimized file system has been hampered by sev-
eral open challenges, which we address in this paper:
• Code complexity. A production-quality WOI can eas-

ily be 50,000 lines of complex code, which is difficult
to shoehorn into an OS kernel. Previous WOI file sys-
tems have been implemented in user space.

• FUSE squanders microwrite performance.
FUSE [16] issues a query to the underlying file
system before almost every update, superimposing
search-intensive workloads on top of write-intensive
workloads. Although WOIs are no worse for point
queries than any other sensible data structure, writes
are much faster than reads, and injecting needless
point queries can nullify the advantages of write
optimization.

• Mapping file system abstractions onto a WOI. We
cannot realize the full potential performance benefits
of write-optimization by simply dropping in a WOI
as a replacement for a B-tree. The schema and use
of kernel infrastructure must exploit the performance
advantages of the new data structure.
This paper describes the Bε -tree File System, or

BetrFS, the first in-kernel file system designed to take
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full advantage of write optimization. Specifically,
BetrFS is built using the mature, well-engineered Bε -
tree implementation from Tokutek’s Fractal Tree index,
called TokuDB [33]. Our design is tailored to the perfor-
mance characteristics of Fractal Tree indexes, but other-
wise uses them as a black-box key-value store, so many
of our design decisions may be applicable to other write-
optimized file systems.

Experiments show that BetrFS can give up to an order-
of-magnitude improvement to the performance of file
creation, random writes to large files, recursive directory
traversals (such as occur in find, recursive greps, back-
ups, and virus scans), and meta-data updates (such as up-
dating file atime each time a file is read).
The contributions of this paper are:
• The design and implementation of an in-kernel, write-

optimized file system.
• A schema, which ensures both locality and fast writes,

for mapping VFS operations to a write-optimized in-
dex.

• A design that uses unmodified OS kernel infrastruc-
ture, designed for traditional file systems, yet mini-
mizes the impact on write optimization. For instance,
BetrFS uses the OS kernel cache to accelerate reads
without throttling writes smaller than a disk sector.

• A thorough evaluation of the performance of the
BetrFS prototype. For instance, our results show
almost two orders of magnitude improvement on a
small-write microbenchmark and a 1.5× speedup on
applications such as rsync
Our results suggest that a well-designed Bε -tree-based

file system can match or outperform traditional file sys-
tems on almost every operation, some by an order of
magnitude. Comparisons with state-of-the-art file sys-
tems, such as ext4, XFS, zfs, and btrfs support this
claim. We believe that the few slower operations are not
fundamental to WOIs, but can be addressed with a com-
bination of algorithmic advances and engineering effort
in future work.

2 Motivation and Background

This section summarizes background on the increasing
importance of microwrites, explains how WOIs work,
and summarizes previous WOI-based file systems.

2.1 The microwrite problem

A microwrite is a write operation where the setup time
(i.e. seek time on a conventional disk) exceeds the data-
transfer time. Conventional file-system data structures
force file-system designers to choose between optimizing
for efficient microwrites and efficient scans.

Update-in-place file systems [11, 32] optimize for
scans by keeping related items, such as entries in a di-
rectory or consecutive blocks in a file, near each other.
However, since items are updated in place, update per-
formance is often limited by the random-write latency of
the underlying disk.

B-tree-based file systems store related items logically
adjacent in the B-tree, but B-trees do not guarantee that
logically-adjacent items will be physically adjacent. As
a B-tree ages, leaves become scattered across the disk
due to node splits from insertions and node merges from
deletions. In an aged B-tree, there is little correlation be-
tween the logical and physical order of the leaves, and the
cost of reading a new leaf involves both the data-transfer
cost and the seek cost. If leaves are too small to amor-
tize the seek costs, then range queries can be slow. The
seek costs can be amortized by using larger leaves, but
this further throttles update performance.

At the other extreme, logging file systems [5,7,26,29,
30] optimize for writes. Logging ensures that files are
created and updated rapidly, but the resulting data and
metadata can be spread throughout the log, leading to
poor performance when reading data or metadata from
disk. These performance problems are particularly no-
ticeable in large scans (recursive directory traversals and
backups) that cannot be accelerated by caching.

The microwrite bottleneck creates problems for a
range of applications. HPC checkpointing systems gen-
erate so many microwrites that a custom file system,
PLFS, was designed to efficiently handle them [5] by
exploiting the specifics of the checkpointing workload.
Email servers often struggle to manage large sets of
small messages and metadata about those messages, such
as the read flag. Desktop environments store prefer-
ences and active state in a key-value store (i.e., a reg-
istry) so that accessing and updating keys will not re-
quire file-system-level microdata operations. Unix and
Linux system administrators commonly report 10–20%
performance improvements by disabling the atime op-
tion [14]; maintaining the correct atime behavior in-
duces a heavy microwrite load, but some applications re-
quire accurate atime values.

Microwrites cause performance problems even when
the storage system uses SSDs. In a B-tree-based file sys-
tem, small writes trigger larger writes of entire B-tree
nodes, which can further be amplified to an entire erase
block on the SSD. In a log-structured file system, mi-
crowrites can induce heavy cleaning activity, especially
when the disk is nearly full. In either case, the extra write
activity reduces the lifespan of SSDs and can limit per-
formance by wasting bandwidth.

2
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2.2 Write-Optimized Indexes
In this subsection, we review write-optimized indexes
and their impact on performance. Specifically, we de-
scribe the Bε -tree [9] and why we have selected this data
structure for BetrFS. The best WOI can dominate B-trees
in performance rather than representing a different trade-
off choice between reads and writes.

Bε -trees. A Bε -tree is a B-tree, augmented with per-
node buffers. New items are inserted in the buffer of the
root node of a Bε -tree. When a node’s buffer becomes
full, messages are moved from that node’s buffer to one
of its children’s buffers. The leaves of the Bε -tree store
key-value pairs, as in a B-tree. Point and range queries
behave similarly to a B-tree, except that each buffer on
the path from root to leaf must also be checked for items
that affect the query.

Bε -trees are asymptotically faster than B-trees, as
summarized in Table 1. To see why, consider a B-
tree with N items and in which each node can hold B
keys. (For simplicity, assume keys have constant size
and that the data associated with each key has negli-
giable size.) The tree will have fanout B, so its height
will be O(logB N). Inserts and lookups will therefore re-
quire O(logB N) I/Os. A range query that returns k items
will require O(logB N + k/B) I/Os.

For comparison, a Bε -tree with nodes of size B will
have Bε children, where 0 < ε ≤ 1. Each node will store
one “pivot key” for each child, consuming Bε space per
node. The remaining B−Bε space in each node will be
used to buffer newly inserted items. Since the fanout of
the tree is Bε , its height is O(logBε N) = O( 1

ε logB N).
Consequently, searches will be slower by a factor of 1

ε .
However, each time a node flushes items to one of its
children, it will move at least (B−Bε)/Bε ≈ B1−ε ele-
ments. Since each element must be flushed O( 1

ε logB N)
times to reach a leaf, the amortized cost of inserting
N items is O( 1

εB1−ε logB N). Range queries returning k
items require O( 1

ε logB N + k/B) I/Os. If we pick, for
example, ε = 1/2, the point and range query costs of a
Bε -tree become O(logB N) and O(logB N + k/B), which
are the same as a B-tree, but the insert cost becomes
O(logB N/

√
B), which is faster by a factor of

√
B.

In practice, however, Bε -trees use much larger nodes
than B-trees. For example, a typical B-tree might
use 4KB or 64KB nodes, compared to 4MB nodes in
Tokutek’s Fractal Tree indexes. B-trees must use small
nodes because a node must be completely re-written each
time a new item is added to the database, unlike in Bε -
trees, where writes are batched. Large nodes mean that,
in practice, the height of a Bε -tree is not much larger than
the height of a B-tree on the same data. Thus, the perfor-
mance of point queries in a Bε -tree implementation can
be comparable to point query performance in a B-tree.

Large nodes also speed up range queries, since the data
is spread over fewer nodes, requiring fewer disk seeks to
read in all the data.

To get a feeling for what this speedup looks like,
consider the following example. Suppose a key-value
store holds 1TB of data, with 128-byte keys and records
(key+value) of size 1KB. Suppose that data is logged for
durability, and periodically all updates in the log are ap-
plied to the main tree in batch.

In the case of a B-tree with 4KB nodes, the fanout of
the tree will be 4KB/128B= 32. Thus the non-leaf nodes
can comfortably fit into the memory of a typical server
with 64GB of RAM, but only a negligible fraction of the
1TB of leaves will be cached at any given time. During a
random insertion workload, most updates in a batch will
require exactly 2 I/Os: 1 I/O to read in the target leaf and
1 I/O to write it back to disk after updating its contents.

For comparison, suppose a Bε -tree has branching fac-
tor of 10 and nodes of size 1MB. Once again, all but the
last level fit in memory. When a batch of logged updates
is applied to the tree, they are simply stored in the tree’s
root buffer. Since the root is cached, this requires a sin-
gle I/O. When an internal node becomes full and flushes
its buffer to a non-leaf child, this causes two writes: an
update of the parent and an update of the child. There
are no reads required since both nodes are cached. When
an internal node flushes its buffer to a leaf node, this re-
quires one additional read to load the leaf into memory.

There are 1TB/1MB=220 leaves, so since the tree has
fanout 10, its height is 1+ log10 220 ≈ 7. Each item is
therefore involved in 14 I/Os: it is written and read once
at each level.

However, each flush moves 1MB/10 = 100kB of data,
in other words, 100 items. Thus, the average per-item
cost of flushing an item to a leaf is 14/100. Since a B-
tree would require 2 I/Os for each item, the Bε -tree is
able to insert data 2/(14/100) = 14.3 times faster than a
B-tree. As key-value pairs get smaller, say for metadata
updates, this speedup factor grows.

In both cases, a point query requires a single I/O to
read the corresponding leaf for the queried key. Range
queries can be much faster, as the Bε -tree seeks only
once every 1MB vs once every 4KB in the B-tree.

Because buffered messages are variable length in our
implementation, even with fixed-size nodes, B is not con-
stant. Rather than fix ε , our implementation bounds the
range of pivots per node (Bε ) between 4 and 16.

Upserts. Bε -trees support “upserts,” an efficient method
for updating a key-value pair in the tree. When an ap-
plication wants to update the value associated with key
k in the Bε -tree, it inserts a message (k,( f ,∆)) into the
tree, where f specifies a call-back function that can be
used to apply the change specified by ∆ to the old value

3
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associated with key k. This message is inserted into the
tree like any other piece of data. However, every time
the message is flushed from one node to a child C, the
Bε -tree checks whether C’s buffer contains the old value
v associated with key k. If it does, then it replaces v with
f (v,∆) and discards the upsert message from the tree. If
an application queries for k before the callback function
is applied, then the Bε -tree computes f (v,∆) on the fly
while answering the query. This query is efficient be-
cause an upsert for key k always lies on the path from
the root of the Bε -tree to the leaf containing k. Thus, the
upsert mechanism can speed up updates by one to two
orders of magnitude without slowing down queries.

Log-structured merge trees. Log-structured merge
trees (LSM trees) [23] are a WOI with many vari-
ants [28]. They typically consist of a logarithmic num-
ber of indexes (e.g., B-trees) of exponentially increasing
size. Once an index at one level fills up, it is emptied by
merging it into the index at the next larger level.

LSM trees can be tuned to have the same insertion
complexity as a Bε -tree, but queries in a naı̈vely im-
plemented LSM tree can be slow, as shown in Table 1.
Implementers have developed methods to improve the
query performance, most notably using Bloom filters [6]
for each B-tree. A point query for an element in the data
structure is typically reported as improving to O(logB N),
thus matching a B-tree. Bloom filters are used in most
LSM tree implementations (e.g., [3, 12, 17, 20]).

Bloom filters do not help in range queries, since the
successor of any key may be in any level. In addition, the
utility of Bloom filters degrades with the use of upserts,
and upserts are key to the performance of BetrFS. To see
why, note that in order to compute the result of a query,
all relevant upserts must be applied to the key-value pair.
If there are many upserts “in flight” at different levels of
the LSM tree, then searches will need to be performed on
each such level. Bloom filters can be helpful to direct us
to the levels of interest, but that does not obviate the need
for many searches, and since the leaves of the different
LSM tree B-trees might require fetching, the search per-
formance can degrade.

BetrFS uses Bε -trees, as implemented in Tokutek’s
Fractal Tree indexes, because Fractal Tree indexes are
the only WOI implementation that matches the query
performance of B-trees for all workloads, including
the upsert-intensive workloads generated by BetrFS. In
short, LSMs match B-tree query times in special cases,
and Bε -trees match B-tree query times in general.

3 BetrFS Design

BetrFS is an in-kernel file system designed to take full
advantage of the performance strengths of Bε -trees. The

Data Insert Point Query Range Query
Struct. no Upserts w/ Upserts

B-tree logB N logB N logB N logB N + k
B

LSM logB N
εB1−ε

log2
B N
ε

log2
B N
ε

log2
B N
ε + k

B

LSM+BF logB N
εB1−ε logB N log2

B N
ε

log2
B N
ε + k

B

Bε -tree logB N
εB1−ε

logB N
ε

logB N
ε

logB N
ε + k

B

Table 1: Asymptotic I/O costs of important operations in
B-trees and several different WOIs. Fractal Tree indexes
simultaneously support efficient inserts, point queries
(even in the presence of upserts), and range queries.

Applications

User
Kernel VFS

BetrFS

TokuDB
Inode
Index Index

Data

VFS
ext4
Disk

klibc

BetrFS Schema

Figure 1: The BetrFS architecture.

overall system architecture is illustrated in Figure 1.
The BetrFS VFS schema transforms file-system opera-

tions into efficient Bε -tree operations whenever possible.
The keys to obtaining good performance from Bε -trees
are (1) to use upsert operations to update file system state
and (2) to organize data so that file-system scans can be
implemented as range queries in the Bε -trees. We de-
scribe how our schema achieves these goals in Section 4.

By implementing BetrFS as an in-kernel file system,
we avoid the performance overheads of FUSE, which can
be particularly deleterious for a write-optimized file sys-
tem. We also expose opportunities for optimizing our file
system’s interaction with the kernel’s page cache.

BetrFS’s stacked file-system design cleanly separates
the complex task of implementing write-optimized in-
dexes from block allocation and free-space management.
Our kernel port of TokuDB stores data on an underlying
ext4 file system, but any file system should suffice.

Porting a 45KLoC database into the kernel is a non-
trivial task. We ported TokuDB into the kernel by writ-
ing a shim layer, which we call klibc, that translates
the TokuDB external dependencies into kernel functions
for locking, memory allocation, and file I/O. Section 6
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Figure 2: Example of the sort order used in BetrFS.

describes klibc and summarizes our experiences and
lessons learned from the project.

4 The BetrFS File-System Schema

Bε -trees implement a key-value store, so BetrFS must
translate file-system operations into key-value opera-
tions. This section presents the BetrFS schema for per-
forming this translation and explains how this schema
takes advantage of the performance strengths of Bε -trees.

4.1 BetrFS Data and Metadata Indexes
BetrFS stores file system data and metadata using two
indexes in the underlying database: a metadata index and
a data index. Since both keys and values may be variable-
sized, BetrFS is able to pack many index entries into each
Bε -tree node.

The metadata index. The BetrFS prototype maintains
an index mapping full pathnames (relative to the mount
point) to file metadata (roughly equivalent to the contents
of struct stat):

path → (size,owner, timestamps,etc . . .)

The metadata index is designed to support efficient file
creations, deletions, lookups, and directory scans. The
index sorts paths first by the number of slashes, then lex-
icographically. Thus, items within the same directory are
stored consecutively as illustrated in Figure 2. With this
ordering, scanning a directory, either recursively or not,
can be implemented as a range query.

The data index. Though keys and values may be
variable-sized, the BetrFS prototype breaks files into
4096-byte blocks for better integration with the page
cache. Thus, the data index maps (file, offset) tuples to
blocks:

(path,block-number)→ data[4096]

Keys in the data index are also sorted lexicographically,
which guarantees that the contents of a file are logically
adjacent and therefore, as explained in Subsection 2.2,
almost always physically adjacent on disk. This enables

FS Operation Bε -tree Operation

Mkdir Upsert
Rmdir Upsert
Create Upsert
Unlink Upsert + Delete data blocks
Truncate Upsert + Delete data blocks
Setattr (e.g. chmod) Upsert
Rename Copy files
Symlink Upsert
Lookup (i.e. lstat) Point Query
Readlink Point Query
Readdir Range Query
File write Upsert
File read Range Query
MMap readpage(s) Point/Range Query
MMap writepage(s) Upsert(s)

Table 2: BetrFS implementation strategies for basic file-
system operations. Almost all operations are imple-
mented using efficient upserts, point queries, or range
queries. Unlink, Truncate, and Rename currently scale
with file and/or directory sizes.

file contents to be read sequentially at near disk band-
width. BetrFS implements sparse files by simply omit-
ting the sparse blocks from the data index.

BetrFS uses variable-sized values to avoid zero-
padding the last block of each file. This optimization
avoids the CPU overhead of zeroing out unused regions
of a buffer, and then compressing the zeros away before
writing a node to disk. For small-file benchmarks, this
optimization yielded a significant reduction in overheads.
For instance, this optimization improves throughput on
TokuBench (§7) by 50–70%.

4.2 Implementing BetrFS Operations
Favoring blind writes. A latent assumption in much
file system code is that data must be written at disk-
sector granularity. As a result, a small write must
first bring the surrounding disk block into the cache,
modify the block, and then write it back. This pat-
tern is reflected in the Linux page cache helper func-
tion block write begin(). BetrFS avoids this read-
modify-write pattern, instead issuing blind writes—
writes without reads—whenever possible.

Reading and writing files in BetrFS. BetrFS imple-
ments file reads using range queries in the data index.
Bε -trees can load the results of a large range query from
disk at effectively disk bandwidth.

BetrFS supports efficient file writes of any size via up-
serts and inserts. Application writes smaller than one 4K
block become messages of the form:

UPSERT(WRITE,(path,n),offset,v, �),

which means the application wrote � bytes of data, v, at
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the given offset into block n of the file specified by path.
Upsert messages completely encapsulate a block modifi-
cation, obviating the need for read-modify-write. Writes
of an entire block are implemented with an insert (also
called a put), which is a blind replacement of the block,
and behaves similarly.

As explained in Subsection 2.2, upserts and inserts are
messages inserted into the root node, which percolate
down the tree. By using upserts for file writes, a write-
optimized file system can aggregate many small random
writes into a single large write to disk. Thus, the data can
be committed to disk by performing a single seek and
one large write, yielding an order-of-magnitude boost in
performance for small random writes.

In the case of large writes spanning multiple blocks,
inserts follow a similar path of copying data from the
root to the leaves. The Bε -tree implementation has some
optimizations for large writes to skip intermediate nodes
on the path to a leaf, but they are not aggressive enough
to achieve full disk bandwidth for large sequential file
writes. We leave this issue for future work, as a solu-
tion must carefully address several subtle issues related
to pending messages and splitting leaf nodes.

File-system metadata operations in BetrFS. As shown
in Table 2, BetrFS also converts almost all metadata up-
dates, such timestamp changes, file creation and sym-
bolic linking, into upserts.

The only metadata updates that are not upserts in
BetrFS are unlink, truncate, and rename. We now ex-
plain the obstacles to implementing these operations as
upserts, which we leave for future work.

Unlink and truncate can both remove blocks from a
file. BetrFS performs this operation in the simplest pos-
sible way: it performs a range query on the blocks that
are to be deleted, and issues a TokuDB delete for each
such block in the data index. Although TokuDB delete
operations are implemented using upserts, issuing O(n)
upserts can make this an expensive task.

Second, keying by full path makes recursive directory
traversals efficient, but makes it non-trivial to implement
efficient renames. For example, our current implementa-
tion renames files and directories by re-inserting all the
key-value pairs under their new keys and then deleting
the old keys, effectively performing a deep copy of the
file or directory being renamed. One simple solution is
to add an inode-style layer of indirection, with a third
index. This approach is well-understood, and can sacri-
fice some read locality as the tree ages. We believe that
data-structure-level optimizations can improve the per-
formance of rename, which we leave for future work.

Although the schema described above can use upserts
to make most changes to the file system, many POSIX
file system functions specify preconditions that the OS

must check before changing the file system. For exam-
ple, when creating a file, POSIX requires the OS to check
that the file doesn’t already exist and that the user has
write permission on the containing directory. In our ex-
periments, the OS cache of file and directory information
was able to answer these queries, enabling file creation
etc., to run at the full speed of upserts.

Crash consistency. We use the TokuDB transaction
mechanism for crash consistency. TokuDB transactions
are equivalent to full data journaling, with all data and
metadata updates logged to a file in the underlying ext4

file system. Log entries are retired in-order, and no up-
dates are applied to the tree on disk ahead of the TokuDB
logging mechanism. Entries are appended to one of two
in-memory log buffers (16 MB by default). These buffers
are rotated and flushed to disk every second or when a
buffer overflows.

Although exposing a transactional API may be pos-
sible, BetrFS currently uses transactions only as an in-
ternal consistency mechanism. BetrFS generally uses
a single transaction per system call, except for writing
data, which uses a transaction per data block. In our
current implementation, transactions on metadata exe-
cute while holding appropriate VFS-level mutex locks,
making transaction conflicts and aborts vanishingly rare.

Compression. Compression is important to perfor-
mance, especially for keys. Both indexes use full
paths as keys, which can be long and repetitive, but
TokuDB’s compression mitigates these overheads. Us-
ing quicklz [24], the sorted path names in our experi-
ments compress by a factor of 20, making the disk-space
overhead manageable.

The use of data compression also means that there
isn’t a one-to-one correspondence between reading a file-
system-level block and reading a block from disk. A leaf
node is typically 4 MB, and compression can pack more
than 64 file system blocks into a leaf. In our experience
with large data reads and writes, data compression can
yield a boost to file system throughput, up to 20% over
disabling compression.

5 Write-Optimization in System Design

In designing BetrFS, we set the goal of working within
the existing Linux VFS framework. An underlying chal-
lenge is that, at points, the supporting code assumes
that reads are as expensive as writes, and necessary for
update-in-place. The use of write optimization violates
these assumptions, as sub-block writes can be faster than
a read. This section explains several strategies we found
for improving the BetrFS performance while retaining
Linux’s supporting infrastructure.
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5.1 Eternal Sunshine of the Spotless Cache

BetrFS leverages the Linux page cache to implement ef-
ficient small reads, avoid disk reads in general, and facil-
itate memory-mapped files. By default, when an appli-
cation writes to a page that is currently in cache, Linux
marks it as dirty and writes it out later. This way, several
application-level writes to a page can be absorbed in the
cache, requiring only a single write to disk. In BetrFS,
however, small writes are so cheap that this optimization
does not always make sense.

In BetrFS, the write system call never dirties a clean
page in the cache. When an application writes to a clean
cached page, BetrFS issues an upsert to the Bε -tree and
applies the write to the cached copy of that page. Thus
the contents of the cache are still in sync with the on-disk
data, and the cached page remains clean.

Note that BetrFS’ approach is not always better than
absorbing writes in the cache and writing back the entire
block. For example, if an application performs hundreds
of small writes to the same block, then it would be more
efficient to mark the page dirty and wait until the appli-
cation is done to write the final contents back to disk. A
production version of BetrFS should include heuristics to
detect this case. We found that performance in our proto-
type was good enough without this optimization, though,
so we have not yet implemented it.

The only situation where a page in the cache is dirt-
ied is when the file is memory-mapped for writing. The
memory management hardware does not support fine-
grained tracking of writes to memory-mapped files —
the OS knows only that something within in the page of
memory has been modified. Therefore, BetrFS’ mmap

implementation uses the default read and write page
mechanisms, which operate at page granularity.

Our design keeps the page cache coherent with disk.
We leverage the page cacahe for faster warm-cache
reads, but avoid unnecessary full-page writebacks.

5.2 FUSE is Write De-Optimized

We implemented BetrFS as an in-kernel file system be-
cause the FUSE architecture contains several design de-
cisions that can ruin the potential performance benefits
of a write-optimized file system. FUSE has well-known
overheads from the additional context switches and data
marshalling it performs when communicating with user-
space file systems. However, FUSE is particularly dam-
aging to write-optimized file systems for completely dif-
ferent reasons.

FUSE can transform write-intensive into read-
intensive workloads because it issues queries to the user-
space file system before (and, in fact, after) most file sys-
tem updates. For example, FUSE issues GETATTR calls

(analogous to calling stat()) for the entire path of a
file lookup, every time the file is looked up by an ap-
plication. For most in-kernel file systems, subsequent
lookups could be handled by the kernel’s directory cache,
but FUSE conservatively assumes that the underlying file
system can change asynchronously (which can be true,
e.g. in network file systems).

These searches can choke a write-optimized data
structure, where insertions are two orders of magnitude
faster than searches. The TokuFS authors explicitly cite
these searches as the cause of the disappointing perfor-
mance of their FUSE implementation [15].

The TableFS authors identified another source of
FUSE overhead: double caching of inode information in
the kernel [25]. This reduces the cache’s effective hit
rate. For slow file systems, the overhead of a few ex-
tra cache misses may not be significant. For a write-
optimized data structure working on a write-intensive
workload, the overhead of the cache misses can be sub-
stantial.

5.3 Ext4 as a Block Manager

Since TokuDB stores data in compressed nodes, which
can have variable size, TokuDB relies on an underlying
file system to act as a block and free space manager for
the disk. Conventional file systems do a good job of stor-
ing blocks of large files adjacently on disk, especially
when writes to the file are performed in large chunks.

Rather than reinvent the wheel, we stick with this de-
sign in our kernel port of TokuDB. BetrFS represents
tree nodes as blocks within one or more large files on
the underlying file system, which in our prototype is un-
modified ext4 with ordered data mode and direct IO.
We rely on ext4 to correctly issue barriers to the disk
write cache, although disabling the disk’s write cache did
not significantly impact performance of our workloads.
In other words, all BetrFS file system updates, data or
metadata, generally appear as data writes, and an fsync

to the underlying ext4 file system ensures durability of
a BetrFS log write. Although there is some duplicated
work between the layers, we expect ordered journaling
mode minimizes this, as a typical BetrFS instance spans
11 files from ext4’s perspective. That said, these re-
dundancies could be streamlined in future work.

6 Implementation

Rather than do an in-kernel implementation of a
write-optimized data structure from scratch, we ported
TokuDB into the Linux kernel as the most expedient way
to obtain a write-optimized data structure implementa-
tion. Such data structure implementations can be com-
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Component Description Lines
VFS Layer Translate VFS hooks to TokuDB queries. 1,987
TokuDB Kernel version of TokuDB. 44,293

(960 lines changed)
klibc Compatibility wrapper. 4,155
Linux Modifications 58

Table 3: Lines of code in BetrFS, by component.

Class ABIs Description
Memory 4 Allocate buffer pages and heap objects.
Threads 24 Pthreads, condition variables, and mutexes.
Files 39 Access database backend files on underly-

ing, disconnected file system.
zlib 7 Wrapper for kernel zlib.
Misc 27 Print errors, qsort, get time, etc..
Total 101

Table 4: Classes of ABI functions exported by klibc.

plex, especially in tuning the I/O and asymptotic merging
behavior.

In this section, we explain how we ported a large por-
tion of the TokuDB code into the kernel, challenges we
faced in the process, lessons learned from the experience,
and future work for the implementation. Table 3 summa-
rizes the lines of code in BetrFS, including the code in-
terfacing the VFS layer to TokuDB, the klibc code, and
minor changes to the Linux kernel code, explained be-
low. The BetrFS prototype uses Linux version 3.11.10.

6.1 Porting Approach

We initially decided the porting was feasible because
TokuDB has very few library requirements and is written
in a C-like form of C++. In other words, the C++ features
used by TokuDB are primarily implemented at compile
time (e.g., name mangling and better type checking), and
did not require runtime support for features like excep-
tions. Our approach should apply to other WOIs, such as
an LSM tree, inasmuch as the implementation follows a
similar coding style.

As a result, we were able to largely treat the TokuDB
code we used as a binary blob, creating a kernel module
(.ko file) from the code. We exported interfaces used by
the BetrFS VFS layer to use C linkage, and similarly de-
clared interfaces that TokuDB imported from klibc to
be C linkage.

We generally minimized changes to the TokuDB code,
and selected imported code at object-file granularity. In
a few cases, we added compile-time macros to eliminate
code paths or functions that would not be used yet re-
quired cumbersome dependencies. Finally, when a par-
ticularly cumbersome user-level API, such as fork, is
used in only a few places, we rewrote the code to use
a more suitable kernel API. We call the resulting set of
dependencies imported by TokuDB klibc.

6.2 The klibc Framework

Table 4 summarizes the ABIs exported by klibc. In
many cases, kernel ABIs were exported directly, such as
memcpy, or were straightforward wrappers for features
such as synchronization and memory allocation. In a few
cases, the changes were more complex.

The use of errno in the TokuDB code presented a
particular challenge. Linux passes error codes as neg-
ative return values, whereas libc simply returns nega-
tive one and places the error code in a per-thread variable
errno. Checks for a negative value and reads of errno
in TokuDB were so ubiquitous that changing the error-
handling behavior was impractical. We ultimately added
an errno field to the Linux task struct; a production
implementation would instead rework the error-passing
code.

Although wrapping pthread abstractions in kernel ab-
stractions was fairly straightforward, static initialization
and direct access to pthread structures created problems.
The primary issue is that converting pthread abstractions
to kernel abstractions replaced members in the pthread
structure definitions. Static initialization would not prop-
erly initialize the modified structure. Once the size of
pthread structures changed, we had to eliminate any code
that imported system pthread headers, lest embedded in-
stances of these structures calculate the wrong size.

In reusing ext4 as a block store, we faced some chal-
lenges in creating module-level file handles and paths.
File handles were more straightforward: we were able
to create a module-level handle table and use the pread
(cursor-less) API to ext4 for reads and writes. We
did have to modify Linux to export several VFS helper
function that accepted a struct file directly, rather
than walking the process-level file descriptor table. We
also modified ext4 to accept input for reads with the
O DIRECT flag that were not from a user-level address.

When BetrFS allocates, opens, or deletes a block store
on the underlying ext4 file system, the module essen-
tially chroots into an ext4 file system disconnected
from the main tree. Because this is kernel code, we
also wish to avoid permission checks based on the cur-
rent process’s credentials. Thus, path operations include
a “context switch” operation, where the current task’s file
system root and credentials are saved and restored.

6.3 Changes to TokuDB

With a few exceptions, we were able to use TokuDB in
the kernel without major modifications. This subsection
outlines the issues that required refactoring the code.

The first issue we encountered was that TokuDB
makes liberal use of stack allocation throughout. One
function allocated a 12KB buffer on the stack! In con-
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trast, stack sizes in the Linux kernel are fixed at compile
time, and default to 8KB. In most cases, we were able
to use compile-time warnings to identify large stack al-
location and convert them to heap allocations and add
free functions. In the case where these structures were
performance-critical, such as a database cursor, we mod-
ified the TokuDB code to use faster allocation methods,
such as a kernel cache or per-CPU variable. Similarly,
we rewrote several recursive functions to use a loop.
Nonetheless, we found that deep stacks of more modest-
sized frames were still possible, and increased the stack
size to 16 KB. We plan to reign in the maximum stack
size in future work.

Finally, we found a small mismatch between the
behavior of futexes and kernel wait queues that re-
quired code changes. Essentially, recent implemen-
tations of pthread condition variables will not wake
a sleeping thread up due to an irrelevant interrupt,
making it safe (though perhaps inadvisable) in user
space not to double-check invariants after returning
from pthread cond wait. The Linux-internal equiv-
alents, such as wait event, can spuriously wake up a
thread in a way that is difficult to distinguish without
re-checking the invariant. Thus, we had to place all
pthread cond wait calls in a loop.

6.4 Future Work and Limitations

The BetrFS prototype is an ongoing effort. The effort
has reached sufficient maturity to demonstrate the power
of write optimization in a kernel file system. However,
there are several points for improvement in future work.

The most useful feature currently missing from the
TokuDB codebase is range upserts; upserts can only be
applied to a single key, or broadcast to all keys. Cur-
rently, file deletion must be implemented by creating a
remove upsert for each data block in a file; the ability to
create a single upsert applied to a limited range would
be useful, and we leave this for future work. The pri-
mary difficulty in supporting such an abstraction is tun-
ing how aggressively the upsert should be flushed down
to the leaves versus applied to point queries on demand;
we leave this issue for future work as well.

One subtle trade-off in organizing on-disk placement
is between rename and search performance. BetrFS keys
files by their path, which currently results in rename
copying the file from one disk location to another. This
can clearly be mitigated by adding a layer of indirection
(i.e., an inode number); however, this is at odds with the
goal of preserving data locality within a directory hierar-
chy. We plan to investigate techniques for more efficient
directory manipulation that preserve locality. Similarly,
our current prototype does not support hard links.

Our current prototype also includes some double

caching of disk data. Nearly all of our experiments
measure cold-cache behavior, so this does not affect
the fidelity of our results. Profligate memory usage is
nonetheless problematic. In the long run, we intend to
better integrate these layers, as well as eliminate emu-
lated file handles and paths.

7 Evaluation

We organize our evaluation around the following ques-
tions:
• Are microwrites on BetrFS more efficient than on

other general-purpose file systems?
• Are large reads and writes on BetrFS at least competi-

tive with other general-purpose file systems?
• How do other file system operations perform on

BetrFS?
• What are the space (memory and disk) overheads of

BetrFS?
• Do applications realize better overall performance on

BetrFS?
Unless otherwise noted, benchmarks are cold-cache

tests. All file systems benefit equally from hits in the
page and directory caches; we are interested in measur-
ing the efficiency of cache misses.

All experimental results were collected on a Dell Op-
tiplex 790 with a 4-core 3.40 GHz Intel Core i7 CPU, 4
GB RAM, and a 250 GB, 7200 RPM ATA disk. Each
file system used a 4096-byte block size. The system ran
Ubuntu 13.10, 64-bit, with Linux kernel version 3.11.10.
Each experiment compared with several general purpose
file systems, including btrfs, ext4, XFS, and zfs. Er-
ror bars and ± ranges denote 95% confidence intervals.

7.1 Microwrites
We evaluated microwrite performance using both meta-
data and data intensive microbenchmarks. To exercise
file creation, we used the TokuBench benchmark [15] to
create 500,000 200-byte files in a balanced directory tree
with a fanout of 128. The results are shown in Figure 3.
TokuBench also measures the scalability of the file sys-
tem as threads are added; we measured up to 4 threads
since our machine has 4 cores.

BetrFS exhibited substantially higher throughput than
the other file systems. The closest competitor was zfs at
1 thread; as more threads were added, the gap widened
considerably. Compared to ext4, XFS, and btrfs,
BetrFS throughput was an order of magnitude higher.

This performance distinction is attributable to both
fewer total writes and fewer seeks per byte written—i.e.,
better aggregation of small writes. Based on profiling
from blktrace, one major distinction is total bytes writ-
ten: BetrFS writes 4–10× fewer total MB to disk, with
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Figure 3: Total time to create 500,000 200-byte files, us-
ing 1, 2, and 4 threads. We measure the number of files
created per second. Higher is better.

File System Time (s)
BetrFS 0.17 ± 0.01
ext4 11.60 ± 0.39
XFS 11.71 ± 0.28
btrfs 11.60 ± 0.38
zfs 14.75 ± 1.45

Table 5: Time in seconds to execute 1000 4-byte mi-
crowrites within a 1GiB file. Lower is better.

an order of magnitude fewer total write requests. Among
the other file systems, ext4, XFS, and zfs wrote roughly
the same amount of data, but realized widely varying un-
derlying write throughput. The only file system with a
comparable write throughput was zfs, but it wrote twice
as much data using 12.7× as many disk requests.

To measure microwrites to files, we wrote a custom
benchmark that performs 1,000 random 4-byte writes
within a 1GiB file, followed by an fsync(). Table 5
lists the results. BetrFS was two orders of magnitude
faster than the other file systems.

These results demonstrate that BetrFS improves mi-
crowrite performance by one to two orders of magnitude
compared to current general-purpose file systems.

7.2 Large Reads and Writes

We measured the throughput of sequentially reading and
writing a 1GiB file, 10 blocks at a time. We created
the file using random data to avoid unfairly advantaging
compression in BetrFS. In this experiment, BetrFS bene-
fits from compressing keys, but not data. We note that
with compression and moderately compressible data,
BetrFS can easily exceed disk bandwidth. The results
are illustrated in Figure 4.

In general, most general-purpose file systems can read
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Figure 4: Large file I/O. We sequentially read and write
1GiB files. Higher is better.

and write at disk bandwidth. In the case of a large se-
quential reads, BetrFS can read data at roughly 85 MiB/s.
This read rate is commensurate with overall disk uti-
lization, which we believe is a result of less aggressive
read-ahead than the other file systems. We believe this
can be addressed by re-tuning the TokuDB block cache
prefetching behavior.

In the case of large writes, the current BetrFS proto-
type achieved just below half of the disk’s throughput.
The reason for this is that each block write must percolate
down the interior tree buffers; a more efficient heuristic
would detect a large streaming write and write directly
to a leaf. As an experiment, we manually forced writes
to the leaf in an empty tree, and found write throughput
comparable to the other file systems. That said, applying
this optimization is somewhat tricky, as there are a num-
ber of edge cases where leaves must be read and rewrit-
ten or messages must be flushed. We leave this issue for
future work.

7.3 Directory Operations
In this section, we measure the impact of the BetrFS de-
sign on large directory operations. Table 6 reports the
time taken to run find, grep -r, mv, and rm -r on the
Linux 3.11.10 source tree, starting from a cold cache.
The grep test recursively searches the file contents for
the string “cpu to be64”, and the find test searches for
files named “wait.c”. The rename test renames the entire
kernel source tree, and the delete test does a recursive
removal of the source.

Both the find and grep benchmarks demonstrate the
value of sorting files and their metadata lexicographically
by full path, so that related files are stored near each other
on disk. BetrFS can search directory metadata and file
data one or two orders of magnitude faster than other file
systems, with the exception of grep on btrfs, which is
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FS find grep dir rename delete
BetrFS 0.36 ± 0.06 3.95 ± 0.28 21.17 ± 1.01 46.14 ± 1.12
btrfs 14.91 ± 1.18 3.87 ± 0.94 0.08 ± 0.05 7.82 ± 0.59
ext4 2.47 ± 0.07 46.73 ± 3.86 0.10 ± 0.02 3.01 ± 0.30
XFS 19.07 ± 3.38 66.20 ± 15.99 19.78 ± 5.29 19.78 ± 5.29
zfs 11.60 ± 0.81 41.74 ± 0.64 14.73 ± 1.64 14.73 ± 1.64

Table 6: Directory operation benchmarks, measured in seconds. Lower is better.

FS chmod mkdir open read stat unlink write
BetrFS 4913 ± 0.27 67072 ± 25.68 1697 ± 0.12 561 ± 0.01 1076 ± 0.01 47873 ± 7.7 32142 ± 4.35
btrfs 4574 ± 0.27 24805 ± 13.92 1812 ± 0.12 561 ± 0.01 1258 ± 0.01 26131 ± 0.73 3891 ± 0.08
ext4 4970 ± 0.14 41478 ± 18.99 1886 ± 0.13 556 ± 0.01 1167 ± 0.05 16209 ± 0.2 3359 ± 0.04
XFS 5342 ± 0.21 73782 ± 19.27 1757 ± 0.12 1384 ± 0.07 1134 ± 0.02 19124 ± 0.32 9192 ± 0.28
zfs 36449 ± 118.37 171080 ± 307.73 2681 ± 0.08 6467 ± 0.06 1913 ± 0.04 78946 ± 7.37 18382 ± 0.42

Table 7: Average time in cycles to execute a range of common file system calls. Lower is better.

comparable.
Both the rename and delete tests show the worst-case

behavior of BetrFS. Because BetrFS does not include a
layer of indirection from pathname to data, renaming re-
quires copying all data and metadata to new points in
the tree. We also measured large-file renames, and saw
similarly large overheads—a function of the number of
blocks in the file. Although there are known solutions
to this problem, such as by adding a layer of indirec-
tion, we plan to investigate techniques that can preserve
the appealing lexicographic locality without sacrificing
rename and delete performance.

7.4 System Call Nanobenchmarks

Finally, Table 7 shows timings for a nanobenchmark
that measures various system call times. Because this
nanobenchmark is warm-cache, it primarily exercises the
VFS layer. BetrFS is close to being the fastest file sys-
tem on open, read, and stat. On chmod, mkdir, and
unlink, BetrFS is in the middle of the pack.

Our current implementation of the write system call
appears to be slow in this benchmark because, as men-
tioned in Section 5.1, writes in BetrFS issue an upsert to
the database, even if the page being written is in cache.
This can be advantageous when a page is not written of-
ten, but that is not the case in this benchmark.

7.5 Space Overheads

The Fractal Tree index implementation in BetrFS in-
cludes a cachetable, which caches tree nodes. Cachetable
memory is bounded. BetrFS triggers background flush-
ing when memory exceeds a low watermark and forces
writeback at a high watermark. The high watermark is
currently set to one eighth of total system memory. This

Total BetrFS Disk Usage (GiB)
Input After After After
Data Writes Deletes Flushes

4 4.14 ± 0.07 4.12 ± 0.00 4.03 ± 0.12
16 16.24 ± 0.06 16.20 ± 0.00 10.14 ± 0.21
32 32.33 ± 0.02 32.34 ± 0.00 16.22 ± 0.00
64 64.57 ± 0.06 64.59 ± 0.00 34.36 ± 0.18

Table 8: BetrFS disk usage, measured in GiB, after writ-
ing large incompressible files, deleting half of those files,
and flushing Bε -tree nodes.

is configurable, but we found that additional cachetable
memory had little performance impact in our workloads.

No single rule governs BetrFS disk usage, as stale data
may remain in non-leaf nodes after delete, rename, and
overwrite operations. Background cleaner threads at-
tempt to flush pending data from 5 internal nodes per
second. This creates fluctuation in BetrFS disk usage,
but overheads swiftly decline at rest.

To evaluate the BetrFS disk footprint, we wrote sev-
eral large incompressible files, deleted half of those files,
and then initiated a Bε -tree flush. After each operation,
we calculated the BetrFS disk usage using df on the un-
derlying ext4 partition.

Writing new data to BetrFS introduced very little over-
head, as seen in Table 8. For deletes, however, BetrFS
issues an upsert for every file block, which had little im-
pact on the BetrFS footprint because stale data is lazily
reclaimed. After flushing, there was less than 3GiB of
disk overhead, regardless of the amount of live data.

7.6 Application Performance
Figure 5 presents performance measurements for a vari-
ety of metadata-intensive applications. We measured the
time to rsync the Linux 3.11.10 source code to a new di-
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Figure 5: Application benchmarks

rectory on the same file system, using the --in-place

option to avoid temporary file creation (Figure 5a). We
performed a benchmark using version 2.2.13 of the
Dovecot mail server to simulate IMAP client behavior
under a mix of read requests, requests to mark messages
as read, and requests to move a message to one of 10
other folders. The balance of requests was 50% reads,
50% flags or moves. We exercised the git version control
system using a git-clone of the local BetrFS source
tree and a git-diff between two milestone commits
(Figure 5c). Finally, we measured the time to tar and
un-tar the Linux 3.11.10 source (Figure 5d).

BetrFS yielded substantially higher performance on
several applications, primarily applications with mi-
crowrites or large streaming reads or writes. In the case
of the IMAP benchmark, marking or moving messages
is a small-file rename in a large directory—a case BetrFS
handled particularly well, cutting execution time in half
compared to most other file systems. Note that the IMAP
test is a sync-heavy workload, issuing over 26K fsync()

calls over 334 seconds, each forcing a full BetrFS log
flush. rsync on BetrFS realized significantly higher
throughput because writing a large number of modestly
sized files in lexicographic order is, on BetrFS, aggre-
gated into large, streaming disk writes. Similarly, tar
benefited from both improved reads of many files in
lexicographic order, as well as efficient aggregation of
writes. tar on BetrFS was only marginally better than
btrfs, but the execution time was at least halved com-
pared to ext4 and XFS.

The only benchmark significantly worse on BetrFS
was git-clone, which does an lstat on every new file
before creating it—despite cloning into an empty direc-
tory. Here, a slower, small read obstructs a faster write.
For comparison, the rsync --in-place test case illus-
trates that, if an application eschews querying for the ex-
istence of files before creating them, BetrFS can deliver
substantial performance benefits.

These experiments demonstrate that several real-
world, off-the-shelf applications can benefit from exe-
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cuting on a write-optimized file system without appli-
cation modifications. With modest changes to favor
blind writes, applications can perform even better. For
most applications not suited to write optimization, per-
formance is not harmed or could be tuned.

8 Related Work

Previous write-optimized file systems. TokuFS [15] is
an in-application library file system, also built using Bε -
trees. TokuFS showed that a write-optimized file system
can support efficient write-intensive and scan-intensive
workloads. TokuFS had a FUSE-based version, but the
authors explicitly omitted disappointing measurements
using FUSE.

KVFS [31] is based on a transactional variation of
an LSM-tree, called a VT-tree. Impressively, the per-
formance of their transactional, FUSE-based file sys-
tem was comparable to the performance of the in-kernel
ext4 file system, which does not support transactions.
One performance highlight was on random-writes, where
they outperformed ext4 by a factor of 2. They also used
stitching to perform well on sequential I/O in the pres-
ence of LSM-tree compaction.

TableFS [25] uses LevelDB to store file-system meta-
data. They showed substantial performance improve-
ments on metadata-intensive workloads, sometimes up to
an order of magnitude. They used ext4 as an object store
for large files, so sequential I/O performance was com-
parable to ext4. They also analyzed the FUSE overhead
relative to a library implementation of their file system
and found that FUSE could cause a 1000× increase in
disk-read traffic (see Figure 9 in their paper).

If these designs were ported to the kernel, we expect
that they would see some, but not all, of the performance
benefits of BetrFS. Because the asymptotic behavior is
better for Bε -trees than LSMs in some cases, we expect
the performance of an LSM-based file system will not be
completely comparable.

Other WOIs. COLAs [4] are an LSM tree variant that
uses fractional cascading [13] to match the performance
of Bε -trees for both insertions and queries, but we are
not aware of any full featured, production-quality COLA
implementation. xDict [8] is a cache-oblivious WOI with
asymptotic behavior similar to a Bε -tree.

Key-Value Stores. WOIs are widely used in key-value
stores, including BigTable [12], Cassandra [20], HBase
[3], LevelDB [17], TokuDB [33] and TokuMX [34].
BigTable, Cassandra, and LevelDB use LSM-tree vari-
ants. TokuDB and TokuMX use Fractal Tree indexes.
LOCS [35] optimizes LSM-trees for a key-value store
on a multi-channel SSD.

Instead of using WOIs, FAWN [1] writes to a log and

maintains an in-memory index for queries. SILT [22]
further reduces the design’s memory footprint during the
merging phase.

Alternatives to update-in-place. The Write Anywhere
File Layout (WAFL) uses files to store its metadata, giv-
ing it incredible flexibility in its block allocation and lay-
out policies [19]. WAFL does not address the microwrite
problem, however, as its main goal is to provide efficient
copy-on-write snapshots.

Log-structured File Systems and their derivatives [1,
21, 22, 26] are write-optimized in the sense that they
log data, and are thus very fast at ingesting file system
changes. However, they still rely on read-modify-write
for file updates and suffer from fragmentation.

Logical logging is a technique used by some databases
in which operations, rather than the before and after im-
ages of individual database pages, are encoded and stored
in the log [18]. Like a logical log entry, an upsert mes-
sage encodes a mutation to a value in the key-value store.
However, an upsert is a first-class storage object. Upsert
messages reside in Bε -tree buffers and are evaluated on
the fly to satisfy queries, or to be merged into leaf nodes.

9 Conclusion

The BetrFS prototype demonstrates that write-optimized
indexes are a powerful tool for file-system developers.
In some cases, BetrFS out-performs traditional designs
by orders of magnitude, advancing the state of the art
over previous results. Nonetheless, there are some cases
where additional work is needed, such as further data-
structure optimizations for large streaming I/O and effi-
cient renames of directories. Our results suggest that fur-
ther integration and optimization work is likely to yield
even better performance results.
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Abstract
Storage system benchmarks either use samples of pro-

prietary data or synthesize artificial data in simple ways
(such as using zeros or random data). However, many
storage systems behave completely differently on such
artificial data than they do on real-world data. This is the
case with systems that include data reduction techniques,
such as compression and/or deduplication.

To address this problem, we propose a benchmarking
methodology called mimicking and apply it in the domain
of data compression. Our methodology is based on char-
acterizing the properties of real data that influence the
performance of compressors. Then, we use these charac-
terizations to generate new synthetic data that mimics the
real one in many aspects of compression. Unlike current
solutions that only address the compression ratio of data,
mimicking is flexible enough to also emulate compres-
sion times and data heterogeneity. We show that these
properties matter to the system’s performance.

In our implementation, called SDGen, characteriza-
tions take at most 2.5KB per data chunk (e.g., 64KB)
and can be used to efficiently share benchmarking data
in a highly anonymized fashion; sharing it carries few or
no privacy concerns. We evaluated our data generator’s
accuracy on compressibility and compression times us-
ing real-world datasets and multiple compressors (lz4,
zlib, bzip2 and lzma). As a proof-of-concept, we in-
tegrated SDGen as a content generation layer in two pop-
ular benchmarks (LinkBench and Impressions).

1 Introduction

Benchmarking is a fundamental building block for re-
searchers and practitioners to measure the performance
of storage systems in a reproducible manner [35]. In-
deed, the research community has taken remarkable steps
towards accurately emulating observed workloads into
experimental assessments. A myriad of examples can be
found in the literature, such as benchmarks for file sys-
tems [7, 31], cloud storage [13, 16, 22] or databases [9,
15], to name a few.

However, most storage benchmarks do not pay partic-
ular attention to the contents generated during their exe-
cution [35] (see examples in Table 1). For instance, Im-
pressions [7] implements accurate statistical methods to
model the structure of a file system, but the contents of
files are by default zeros or statically generated by third-
party applications. Another example is OLTPBench [15],
which provides a rich suite of database workloads and
access patterns; however, the payload of queries is filled
with random data. Clearly these contents are not realis-
tic. Thus, the following question arises: does the content
matter to the performance analysis of systems? The an-
swer is a definitive yes when data reduction is involved.

Data reduction and performance sensitivity: To im-
prove performance and capacity, a variety of storage sys-
tems integrate data reduction techniques [11, 21, 23, 25,
27]. This can have two crucial effects on the performance
of the storage system: (i) When data is highly compress-
ible, the amount of bytes actually written to the storage
diminishes and performance can improve dramatically.
(ii) The running time of compression algorithms varies
greatly for different data types (e.g. [18]) and hence can
affect the overall throughput and latency of the system.
As a result, the performance of many systems with data
reduction techniques is extremely content-sensitive.

To illustrate this, we measured the transfer times of
ZFS, a file system with built-in compression [27, 38]. We
copied sequentially 1GB files filled with low (random)
and high (zeros) compressible data. The results in Fig. 1
support our claim: the transfer times of ZFS greatly vary
depending on the file contents. Thus, two executions of
the same benchmark may report disparate performance
results of ZFS, just depending on the data used.

Current solutions: One solution to benchmarking a
content-sensitive storage system is to use real life
datasets for executing the tests. However, this practice
is limiting due to the burden of copying large amounts of
data onto the testing system. Even more so, privacy con-
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Figure 1: Sequential transfer times of ZFS depending on
file contents with and without compression.

cerns greatly inhibit this approach as end users typically
are unwilling to share their proprietary data [33].

Another practice which is gradually being adopted is
generating synthetic data with definable compressibility.
For example, VDBench [2], Fio [4] and LinkBench [9]
all offer synthetic data with tunable compression ratio.
This tuning is achieved by mixing incompressible and
highly compressible data at appropriate and variable pro-
portions. The shortcoming of this approach is that it only
considers a single dimension —that of compressibility.
It ignores the time required for actual compression and
does not support heterogeneity of the data within files.

To exemplify this, we tested data created in LinkBench
for its compression properties. Thus, using zlib we cal-
culated the compression ratio of the original chunks [10],
defined as original size

compressed size , to generate synthetic chunks of
similar compressibility with LinkBench. The results,
shown in Fig. 2, confirm that (i) compression ratios
are fairly accurate but, unlike what happens with real
data, insensitive to the compressor, and (ii) compression
times are very inaccurate —affecting the system’s per-
formance.

Thus, we face a situation where most storage bench-
marks generate unrealistic contents, whereas representa-
tive datasets cannot be shared with the community. This
reflects a need for a common substrate for generating re-
alistic and reproducible benchmarking data.

1.1 Our Contributions

We present Synthetic Data Generator (SDGen): an open
and extensible framework for generating realistic stor-
age benchmarking contents. SDGen is devised to pro-
duce data that mimics real-world data. In this paper we
focus on mimicking compression related properties, but
we view it as a wider framework that can be used for
other properties as well. The framework consists of a
pluggable architecture of data generators and character-
izations. Basically, characterizations capture properties
of datasets and are then used by data generators to cre-
ate arbitrary amounts of similar synthetic data. A salient
feature of SDGen is that researchers can share dataset
characterizations instead of actual contents to generate
realistic synthetic data in a reproducible manner.

The main features of our solution include:

    










































   






















Figure 2: Compression ratios of LinkBench synthetic
chunks for 4 compression engines (left). Compres-
sion times cumulative distribution function (CDF) of
LinkBench data vs Canterbury corpus data (right).

Mimicking compression: Our first contribution is to
identify the properties of data that are key to the per-
formance of compressors, and therefore, to the perfor-
mance of systems. Naturally, finding a universal solu-
tion to mimic data for all compressors is hard. The rea-
son is that different compressors are guided by distinct
heuristics in order to compress data. We therefore chose
to focus on the most common category of compressors
used in storage systems. Specifically, we target lossless
compression that is either based on byte level repetition
finding (Lempel-Ziv style algorithms [41, 42]) and/or on
entropy encoding (e.g. Huffman encoding [20]).

As a second contribution, SDGen generates data that
mimics both compression ratios and compression times
of the original dataset for several compression engines.
Moreover, our synthetic data exhibits similar variabil-
ity of these parameters compared to the original datasets.
Our tests exhibit that, on average, SDGen generates syn-
thetic data for which compression ratio deviates less than
10% and its processing time deviates less than 15% from
the original data. This was shown for disparate data types
and with several different compression engines (lz4,
zlib-1, zlib-6). For other compressors that vary in
their core methods (lzma, bzip2) the results are less
tight but also acceptable. We also verify the mimicking
effect of working with our synthetic data over ZFS.

Compact and anonymized representation: Our third
contribution is to design a practical and private way of
sharing benchmarking data. SDGen users can reproduce
a synthetic dataset by sharing a compact characterization
file, being agnostic to the original dataset contents. This
approach benefits from easy mobility coupled with the
privacy of not sharing actual data. The characterization
takes just 2.5KB per data chunk (for arbitrary chunk size,
e.g. 64KB). We also explore the option to use random
sampling to efficiently scan very large datasets, creating
a constant size characterization while maintaining high
accuracy in mimicking the entire dataset. In our tests,
the overall characterization does not to exceed 8.5MB
irrespective of the dataset size, which can be Terabytes.
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Storage Domain Article/Benchmark Data Generation Method

File System

FileBench [5] (R) Internally, FileBench gets random offsets of the internal memory to fill write buffers.
Impressions [7] (C/D) Binary files are zeroed whereas text files are filled with a static list of words sorted by popularity

(English language). Impressions relies in third party applications to generate specific file types (mp3, jpeg).

Micro-benchmarks

IOzone [26] (R) Random data that can be specified with a ratio of change per-operation to specify deduplication.
VDBench [2] (M) Compression ratio supported by mixing random and zero data and block repetition for deduplication.
Bonnie++ [3] (R) Write/update operations are filled with non-initialized char arrays.
fio [4] (M) Mix of random and zero data to fill IO operations with compression defined data.

Database/KV Store
OLTP [15] (R) Payloads of queries are filled with random data.
LinkBench [9] (M) Static configuration of data compressibility that mixes new and existing data in each query.
YCSB [13] (C) The values of each table field are a string of ASCII characters of predefined length.

Cloud Storage CloudCmp [22] (R) Blobs for put operations are filled with random data.
Drago et. al. [16] (R) Benchmarking files are either random or with random words to emulate text.
COSBench [39] (R) API put operations are filled with random data.
ssbench [1] (C) Uploaded objects are filled with a single character (e.g. ‘A’).

Deduplication
Tarasov et. al. [33] (D) Generation of deduplication workloads based on a Markov model. Initial contents are delegated to a

first dataset image.
DEDISBench [9] (D) Initial contents are delegated to a first dataset image.

Generated contents are: (R)andom data, (C)onstant/zeros data, (M)ix of compressible and non-compressible data, (D)elegated to application/assumes initial dataset

Table 1: Data generation approaches for several widely adopted benchmarks in various storage domains.

Usability and integration: We plan to release SDGen
to the community1 as well as a set of public characteri-
zations for some popular data types. Users can either use
a public characterization, or create a new one in order to
mimic their proprietary data. As a proof-of-concept, we
also integrated SDGen as a data generation service into
two well-known benchmarks suites: Impressions [7] (file
system) and LinkBench [9] (social graph).

Paper organization: The rest of the paper is structured
as follows. Section 2 discusses related work on synthetic
data generation. Section 3 presents the SDGen architec-
ture and in Section 4 we present our data characterization
and generation methods for compression techniques. We
evaluate SDGen in sections 5 and 6. In section 7 we
describe the integration of SDGen with popular bench-
marking tools. We draw some conclusions in Section 8.

2 Related Work

Benchmarking storage systems has long been an impor-
tant research topic for the storage community. A vast
amount of microbenchmarks and domain-specific bench-
marks have been proposed in the last decade [5, 7, 9, 26,
28]. However, although these solutions provide flexible
and realistic [8, 32] workload modeling, they do not con-
sider the generated content as this is not their goal.

In Table 1, we summarize how many of these bench-
marks generate data as stated in the official documenta-
tion or as we inferred by inspecting their source code.
As mentioned in the introduction, some of these directly
offer compression ratio tuning and some offer simple im-
plementation also for deduplication ratio. We also refer
the reader to [35] for an excellent overview of the state-
of-the-art in storage benchmarking.

Tay [34] advocates for an application-specific bench-
marking approach [29]. This work aims to augment
an empirical dataset to an arbitrary size for database
benchmarking. It provides a theoretical study of how to
keep the internal database structure. For RDF databases

1Available at https://github.com/iostackproject/SDGen.

Schmidt et. al. [28] suggested to include document and
query generation modules based on a study of the DBLP
system. Similarly to LinkBench [9], they emulate the be-
havior of users to guide the workload execution. Adir et
al. presented an approach for benchmarking databases
in which data is generated according to the customer’s
specifications in order to match his proprietary settings
and data types [6]. They can optionally scan specified
database columns to collect statistics on used words and
use them in the benchmark.

Generating realistic contents for system benchmark-
ing seems to be gaining momentum in the field of big
data [36]. The authors of [36] propose BigDataBench,
a complete benchmark for systems such as Hadoop and
key-value stores. In particular, BigDataBench provides
a data generation module that emulates predefined data
types (e.g. text, graphs). In contrast, SDGen analyzes
any given dataset to generate similar synthetic data. That
is, a text file can be very compressible or not, depending
on its contents. SDGen is able to capture this character-
istic and generate synthetic data accordingly.

The closest work to the present paper we are aware of
is that of Tarasov et. al. [33], which identified the rele-
vance of generating realistic workloads for benchmark-
ing deduplication systems. They propose a framework to
capture and share the updates of datasets; traces repre-
senting update operations can be reproduced over other
datasets to emulate deduplication. Clearly, SDGen shares
the same spirit of [33]. However, in practice Tarasov
et. al. delegate the actual dataset contents to an initial
image/snapshot. SDGen fills this gap by providing syn-
thetic initial contents similar to the original ones, which
is a preliminary step to the deduplication benchmarking.

3 SDGen: Framework Architecture

SDGen is designed to capture characteristics of data that
can affect the outcome of applying data reduction tech-
niques on it. As we show next, SDGen works in two
phases: A priming scan phase which build data charac-
terizations to be used by a subsequent generation phase.

3



320 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Original 
Dataset

Chunk Scanner 1

Parallel Execution CC

Dataset 
Character. 

(DC)

3) Fill CCs
with scanned 
features

1) Chunking
process

CONFIG. FILE
Scanners: Scanner 

1, Scanner2..

Chunk Scanner n2) Scan
data

Dataset Scanner 1

CC

DataScanner

4) Build DC

Dataset Scanner n

Figure 3: SDGen dataset scanning and characterization.

3.1 Scan Phase: Characterizations
To capture the characteristics of data, SDGen implements
a two-level scan phase: chunk level and dataset level.

Many compression algorithms (e.g. lz4, zlib) par-
tition the input data stream into chunks, and apply com-
pression separately for every chunk [41]; such algorithms
try to exploit redundancy which stems from locality of
data (repetitions, common bytes) while minimizing the
size of their internal data structures. Therefore, a cen-
tral element in our design is the chunk characteriza-
tion (CC). A CC is a user-defined module that contains
the necessary information for every data chunk. SDGen
scans a given dataset by splitting its contents into chunks
(e.g., from 8KB to 128KB, configurable by the user) that
are characterized individually (step 1 and 2, Fig. 3). We
depict our CC design in Section 4.2.

In a higher level, SDGen builds dataset characteri-
zations (DC), which provide a more holistic characteri-
zation. In the current version of SDGen, DCs store the
deduplication ratio of the entire dataset as well as a list
of all the previously generated CCs.

To support the above scans, SDGen applies two
modules: Chunk scanners and Dataset scanners.
These modules are loaded from the configuration in
a manager class (DataScanner), which processes the
dataset, and concurrently uses it as input for the scanners
in order to build the characterization. The DataScanner
life-cycle appears in Fig. 3.

The scan phase ends by persistently storing a DC (step
4, Fig. 3). SDGen also includes a way of transparently
storing and loading DCs, enabling users to easily creat-
ing and sharing them.

3.2 Generation Phase
Once in possession of a DC, users may load it in SDGen
to generate synthetic data similar to the original dataset.

The heart of the generation phase is the generation al-
gorithm. This algorithm is designed by the user and re-
ceives as input a CC filled with the data characteristics
captured by chunk scanners (see Section 4.3). Since CCs
are read-only and independent of each other, the genera-

tion algorithm can utilize parallelism for faster data gen-
eration. A module called DataProducer orchestrates
the content generation process. The DataProducer
is also responsible for taking into account dataset-level
characteristics during the generation process. Currently,
this is mainly used for generating duplicated data. How-
ever, we concentrate on data compression, leaving the
analysis of deduplicated data for future work.

The DataProducer module generates data using two
API calls: getSynData() and getSynData(size).
The first call retrieves entire synthetic chunks with the
same size as the original chunk. This is adequate for
generating large amounts of content, such as file system
images. The second call specifies the size of the synthetic
data to be generated. This call is an optimization to avoid
wasting synthetic data in benchmarks that require small
amounts of data per operation (e.g. OLTP, databases).
Technically, successive executions of this method will re-
trieve subparts of a synthetic chunk until it is exhausted
and a new one is created.

3.3 Sampling at Chunk-level
SDGen generates a chunk characterization data structure
for each data chunk. However, the time to scan a very
large dataset can be prohibitively long and the size of
the characterizations can grow excessively. To remedy
this, we resort to sampling, i.e. scanning only a random
fraction of a given dataset.

The crux is that random sampling is a good estima-
tor for many properties of the data, and specifically for
properties that can be expressed by averages and sums
such as compression ratio or compression time. Harnik
et. al. [18] show that using random sampling on chunks
is a good estimator for compression ratio (within an addi-
tive percentage factor). The same also holds for estimat-
ing the fraction of data with specific compressibility or
within specific compression time limits. Note that com-
pression time of blocks is not bounded the way that com-
pression ratio is. Compression time typically has higher
variance, so typically its estimation is less tight than that
of compression ratio. Still we argue, and corroborate
through experimentation, that the sampling’s accuracy is
well within what is required for benchmarking.

The actual number of samples is a constant regard-
less of the size of the entire data set. In our tests we
took ∼ 3,500 chunks (this number meets accuracy guar-
antees provided in [18]2), where each chunk in the data
set is chosen with equal probability. This sampling can
be done in a simple manner when dealing with large files
or block devices, or by using the methodology of [17] for
the case of file systems and other complex structures. For

2Sample size is set by confidence and accuracy parameters. Accu-
racy (we use the value 0.05) measures the additive distance that the es-
timation can vary from the actual compression ratio, while confidence
(we use 10−6) bounds the probability of falling outside this accuracy
range (probability is taken over the randomness of the sampling).
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each of the chosen chunks, a characterization is created
and stored. In the data generation phase, data is created
by taking characterizations in a round robin fashion. We
test the accuracy of this sampling strategy in Section 6.6.

3.4 How to Extend SDGen
SDGen enables users to integrate novel data generation
methods in the framework. To this end, one should fol-
low three steps:

1. Characterization: Create a CC extending the
AbstractChunkCharacterization class. This
user-defined characterization should contain the re-
quired information for the data generation process.

2. Scanners: Provide the necessary scanners to fill
the content of CCs and DCs during the scan
process. Chunk-level scanners should extend
from AbstractChunkScanner and implement the
method setInfo, to set the appropriate CC fields.

3. Generation: Design a data generation algorithm
according to the properties captured during the
scan phase. This algorithm should be embedded
in a module extending AbstractDataGenerator,
to benefit from the parallel execution offered by
DataProducer. Concretely, a user only needs to
override the fill(byte[]) method to fill with syn-
thetic data the input array.

SDGen manages the life-cycle of the user-defined
modules to scan/generate data, which are loaded from
a simple configuration file. Finally, SDGen consists of
5,800 lines of Java code, including the framework archi-
tecture, our generation methodology (plus Deflate al-
gorithm), the integration with LinkBench, and 200 lines
of C++ code for integration with Impressions.

4 Compression-oriented Synthetic Data

Creating an efficient and accurate mimicking method is a
non-trivial task (i.e. characterization, generation). In this
section, we describe the research insights that guided the
design of our method. We evaluate it in Section 6.

4.1 Generation Method Rationale
Mimicking data for compressors requires a basic under-
standing of how compressors work. In this work we tar-
get compressors that utilize repetition elimination to re-
duce data size. We also target compressors that use en-
tropy coding (such as Huffman codes), typically on top
of repetition elimination.

With this in mind, and based on empirical tests we
identified two main characteristics that affect the perfor-
mance and behavior of compression algorithms: repeti-
tion length distribution and frequencies of bytes.
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Figure 4: Repetition length distribution (left) and byte
frequency (right) in PDFs and text data.

In repetition elimination a data byte is either repre-
sented by the byte itself (termed literal) or as part of a
repetition. Each repetition is represented by its length
and a back pointer (distance parameter). The repetition
length is key since longer repetitions contribute to better
compression ratio as well as to significantly better per-
formance of compressors and decompressors. Note that
the typical distribution of repetitions tends to follow a
power-law [12], as observed in empirical tests (see Fig.
4 (left)). The majority of repetitions in such distributions
are short ones (< 10 bytes) and consequently, compres-
sion algorithms exert effort in order to exploit these small
repetitions, which in turn has an impact on performance.
On the other hand we found that the effect of repetition
distances on compression ratio and time is minor3.

Entropy encodings utilize non-uniformity of byte level
frequencies to encode data in a more compact represen-
tation at the bit level. In essence, the encoding associates
bit level identifiers to bytes so that the most frequent
bytes are represented by the shorter identifiers, saving
storage space. This process is mimicked by capturing
the distribution of bytes during the scan process. As we
observe in Fig. 4 (right), the skew in the distribution
of byte frequency changes significantly from text files to
random-like data (PDFs). This has a strong impact on
compressibility and may also impact the encoding pro-
cess speed. These observations guided the design of our
mimicking method for compression algorithms.

4.2 Data Characterization
To capture the aforementioned data characteristics, in our
method every Chunk Characterization (CC) contains:
Byte frequency histogram. We build a histogram that
relates the bytes that appear in a data chunk with their
frequencies, encoding it as a <byte, frequency> map
that we use to generate synthetic data that mimics this
byte distribution. This information is key to emulate the
entropy of the original data, among other aspects.
Repetition length histogram. Our aim is to mimic the
distribution of lengths of repetitions as they would be
found by a compressor. Note that different compressors
will find different repetitions, depending on how much
they invest in this task. Since there is no absolute answer
here, we take a representative example of a compressor

3An entire data window typically fits in the L1 cache and thus a
longer distance does not incur a performance penalty.
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(default zlib’s Deflate algorithm) and work according
to repetitions found by this compressor. To encode the
repetitions as a histogram, we use a map whose keys rep-
resent the length of repetitions found in a chunk and the
values are frequencies of repetitions of a given length.
Compression ratio. Every CC also includes the com-
pression ratio of the original data chunk. In the gener-
ation phase, SDGen will try to create a synthetic chunk
with similar compressibility.

Note that the CC design only reveals statistical prop-
erties of data, but not data itself. This provides a high
degree of data privacy, as we discuss in Section 8.

Characterization space complexity: In our method, the
space complexity of a CC data structure is bounded irre-
spective of the scan chunk size. Specifically, to represent
a data chunk every CC contains 2 histograms whose data
is stored in a map data structure. In these maps, keys can
be encoded in byte data type (repetition length, bytes)
whereas values are expressed as integers (32-bit integer).
Therefore, in the worst case a single map requires 1,280
bytes (256 keys · 4 bytes/value). In addition, we add the
compression ratio (64-bit double), as well as the inher-
ited fields from ChunkCharacterization (size, 32-bit
integer and seed, 64-bit long).

The data chunk size can be arbitrarily large and can be
chosen according to the application at hand (see more in
Section 5). As a rule, we suggest to make it at least as
long as the size of a compressor’s compression window
(e.g., 32-128KB are typical granularities). Altogether, a
CC consumes at most 3.93% the space of a 64KB chunk.

4.3 Synthetic Content Generation
In order to generate dataSize bytes of synthetic data
(synData), we sequentially pick CCs from the list con-
tained in the dataset characterization. The scanned fea-
tures in every CC are the input values for our data gener-
ation algorithm, which is described in Algorithm 1.

Algorithm 1 generates synthetic data that mimics
some key properties of the original data (see Section 4.2):
Byte frequency: Algorithm 1 generates both unique and
repeated sequences with the function randomData that
outputs random bytes based on the histogram of byte fre-
quencies extracted from the original chunk (byteFrq).
Repetition length: We insert both random and repeated
data in sequences of length seqLen, whose values are
drawn by the repetition length histogram of the original
chunk (repLenFrq→seqLengths). Normally, to gener-
ate repeated data we use a single sequence (repSeq) of
length MAX LEN. Thus, every time we need to insert a
repetition, we select the first seqLen bytes of repSeq.
Compression ratio: For mimicking compressibility, Al-
gorithm 1 interleaves repeated or unique sequences of
bytes based on random trials (line 19) against the nor-
malized compression ratio (cr) of the original chunk4.

4Since we employ the zlib repetition finding algorithm, we also

Algorithm 1: High-level data generation algorithm
Data: dataSize, repLenFrq (Map), byteFrq (Map), cr
Result: synData

1 synData ← [];
2 uniqueBytes ← |byteFrq.keys()|;
3 /*No need for renewal by default*/
4 renewalRate ← ∞;
5 repCount ← 1;
6 i ← 0;
7 /*Special treatment for extreme data types*/
8 if uniqueBytes < MIN BY T ES then
9 renewalRate ← uniqueBytes

10 /*Initialize repetition and set it as prefix*/
11 repSeq ← randomData(byteFrq,MAX LEN);
12 /*Fill the repetitions distribution list*/
13 seqLengths ← getDescOrderSeqLen(repLenFrq);
14 previousWasRep ← False;
15 while i < dataSize do
16 if seqLengths = [] then
17 seqLengths ←

getDescOrderSeqLen(repLenFrq);

18 seqLen ← seqLengths.popFirst();
19 if randomTrial()< 1/cr then
20 synData[i : i+ seqLen]←

randomData(byteFrq,seqLen);
21 previousWasRep ← False;
22 else
23 /*Break to avoid repetition concatenation*/
24 if previousWasRep then
25 synData[i]← randomData(byteFrq,1);
26 i ← i+1;

27 /*Add repeated data*/
28 synData[i : i+seqLen]← repSeq[0 : seqLen];
29 /*Renew repetition if necessary*/
30 if (repCount mod renewalRate) = 0 then
31 repSeq ←

randomData(byteFrq,MAX LEN);

32 repCount ← repCount +1;
33 previousWasRep ← True;

34 i ← i+ seqLen;

Algorithm 1 includes several implementation nuances
resulting from our empirical insights. First, this al-
gorithm generates batches of repeated/unique byte se-
quences that are appended to the synthetic chunk in de-
creasing order by length (getDescOrderSeqLen in lines
13, 17). This choice allows algorithms with light repeti-
tion search (e.g. lz4) to find the correct synthetic rep-
etitions. We empirically found that compressors with
deeper repetitions search are insensitive to such ordering.

make use of the zlib compression ratio in our characterization. zlib
sets the maximum repetition length at 258 (MAX LEN, Algorithm 1).
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Second, we avoid the concatenation of several repeti-
tions by adding a random separator byte after every rep-
etition (line 25). The reason is that two consecutive rep-
etitions of the same length may occur more than once.
Given that we normally use a single sequence as a source
of repetitions (repSeq), these concatenations would be
interpreted as a single longer repetition.

Note that our method is susceptible to mutual effects
caused by the interplay between repetitions and byte dis-
tribution. Repetitions can slightly skew the byte distribu-
tion while a short alphabet can also affect the repetition
counts (typically making them longer). In general, our
evaluation showed that such these interplays have a mi-
nor effect on other metrics. An exception is with data
formed with a very short alphabet (e.g. DNA sequenc-
ing)5 which require special treatment. Algorithms like
zlib exhibit degraded results on such data, probably be-
cause the internal Huffman tree should be constantly up-
dated for very short sequences. To overcome this prob-
lem, we refresh the repeated sequence often during the
generation process (renewalRate), to degrade the per-
formance of compressors as in the original data (line 9).

Albeit simple, in Section 6 we show that our method
provides an attractive trade-off between characterization
complexity and accuracy, for disparate datasets. We also
show that the accuracy of our synthetic data, in terms of
compression ratios and times, is because it mimics the
key properties defined in our characterizations (e.g., rep-
etition lengths, byte distribution).

5 Experimental Setup

For clarity, our evaluation is divided into two parts: i)
evaluation of the accuracy of the synthetic data generated
by SDGen (Section 6), and ii) analysis of the benefits of
SDGen integrated with real benchmarks (Section 7).

Methodology. To quantify the accuracy of the syn-
thetic data that SDGen generates, we proceeded as fol-
lows. First, we scanned an original dataset in fixed size
chunks (32KB) to build a full characterization file. For
practicality, the scan process was done over a single .tar
file containing all the files of a dataset. Subsequently, we
generated a synthetic file as large as the original one.

Then, we analyzed the behavior of compression en-
gines (compression ratios, times) on a dataset and per-
chunk basis. For inspecting chunks, we instantiated
a fresh compressor object to digest every data chunk.
Compressors were executed sequentially, to avoid arti-
facts and interferences in compression times. This fine-
grained perspective enabled us to capture the heterogene-
ity of datasets and the reaction of compression engines.
Dataset compression times are averages of 30 executions.

We compared SDGen with LinkBench data genera-
tion, which is a representative case of solutions to gener-
ate data with predefined compressibility by simply mix-

5We empirically found alphabet size 8 to be a good threshold value.

ing compressible/incompressible sequences (see Table
1). To this end, we used zlib to obtain the compression
ratio of the original chunks. We then generated similarly
compressible data chunks with LinkBench, using its de-
fault data generation mechanism. Note that this goes far
beyond the standard implementation, which targets a pre-
configured mean data compressibility.

Setting. The evaluation was performed using a server
running a Debian 7.4 operating system, equipped with an
i5-3470 processor (4 cores), 8GB DDR-3 memory and a
HDD of 7,200 rpm and 1TB of storage capacity. Since
SSDs are becoming increasingly popular for databases,
in the integration tests of LinkBench we used a Samsung
840 SSD with 250GB of storage capacity.

We ran our sampling experiments on an Ubuntu 14.04
server equipped with an Intel Xeon x5570 processor (4
cores) with 8GB RAM. We read the files from a local
disk, compressed them and stored them to an 8-disk raid-
10 array (10K RPM SAS drives), via a 4Gbit FC port.

5.1 Compression Similarity Metrics
We evaluate the accuracy of our synthetic generation
method by targeting several metrics. First and foremost,
we aim to hit the two main parameters that are relevant
to the performance of a system:

• Compression ratio: This metric refers to the ratio
between the size of the original data to the size of
the compressed data. Thus, given a compression
algorithm, we want that a chunk of synthetic data
will be as compressible as the original data chunk.

• Compression time: This metric captures the com-
putation time taken by a compression algorithm to
compress a single data chunk.

We also analyze two properties that helped us to devise
our generation algorithm. They can serve as good indica-
tors to the potential success of SDGen in mimicking data
for other compressors that are not tested here:

• Repetition length: We compare the length of repe-
titions in both the original and synthetic data.

• Entropy: It is often associated with the compress-
ibility of data [18] and quantifies how uniformly
distributed the bytes are within a data chunk. From
a sample X = {x0, ...,xn} of byte values with a prob-
ability mass function P(X), we calculate its entropy
H(X) =−∑P(xi)log2P(xi) [30]. In a byte basis, an
entropy value of 8 (highest) means that the data is
completely random and therefore not compressible.
A value of 0 means the opposite.

In addition, we performed several experiments over
ZFS, a well-known file-system with built-in compres-
sion to measure transfer throughput. These experiments
helped us to compare and evaluate the behavior of a real
system when using synthetic/original data [23].

7
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Compression Ratio Compression Time (secs.)
Dataset Source zlib lz4 bzip2 lzma zlib lz4 bzip2 lzma

Calgary C.
OR 3.30 1.80 4.03 4.25 1.128 0.082 1.692 10.251
SD 3.15(−4.5%) 1.82(1.26%) 3.10(−23.29%) 3.58(−15.76%) 1.096(−2.8%) 0.072(−12.19%) 1.554(−8.15%) 9.064(−11.67%)
LB 3.70(12.3%) 2.79(55.39%) 3.8(5.48%) 3.71(−12.72%) 0.329(−70.8%) 0.043(−47.57%) 3.113(83.98%) 4.350(−57.56%

PDFs
OR 1.16 1.15 1.15 1.19 1.431 0.109 6.554 15.758
SD 1.13(−2.59%) 1.10(−4.34%) 1.10(−4.34%) 1.12(−5.88%) 1.551(8.38%) 0.117(7.33%) 6.514(−0.61%) 15.783(0.15%)
LB 1.46(25.85%) 1.12(−2.61%) 1.47(27.82%) 1.46(22.69%) 1.658(15.86%) 0.106(−2.75%) 5.086(−22.39%) 18.526(17.56%)

Media
OR 1.01 1.00 1.01 1.01 10.809 1.971 40.18 113.38
SD 1.00(−0.99%) 1.00(0%) 1.00(−0.99%) 1.00(−0.99%) 11.083(2.53%) 1.960(0.56%) 43.02(7.07%) 110.895(2.19%)
LB 1.30(28.71%) 1.00(0%) 1.30(28.71%) 1.29(27.72%) 11.601(7.32%) 1.941(1.52%) 30.12(−25.04%) 129.87(14.54%)

Silesia C.
OR 3.11 2.08 3.88 4.31 8.214 0.902 21.022 102.82
SD 2.82(−9.22%) 2.03(−2.40%) 2.73(−29.63%) 3.32(−22.97%) 8.826(7.45%) 0.833(−7.65%) 19.200(−8.67%) 82.33(−19.92%)
LB 3.57(14.79%) 2.69(29.32%) 3.65(−5.93%) 3.56(−17.40%) 4.002(−51.27%) 0.476(−47.23%) 35.202(67.45%) 52.07(−49.35%)

Sensor
OR 4.86 2.88 5.93 8.33 55.014 17.795 121.03 1238.3
SD 4.52(−6.99%) 2.70(−6.25%) 4.80(−19.05%) 5.67(−31.93%) 53.799(−2.21%) 16.643(−6.47%) 145.65(20.30%) 909.2(−26.57%)
LB 5.32(9.46%) 3.99(38.54%) 5.54(−6.57%) 5.34(−35.89%) 26.659(−51.54) 12.486(−29.83) 304.96(151.9%) 381.6(−69.18%)

OR=Original Dataset, SD=SDGen Synthetic Data, LB=LinkBench Synthetic Data. Relative errors compared to OR appear in parentheses.

Table 2: Dataset-level compression ratios and times of SDGen and LinkBench data (non-sampling datasets).

5.2 Datasets and Compression Engines
Next, we briefly describe the datasets used to assess the
accuracy of our data generation method. Note that we
stress the importance for a method to be accurate in the
presence of diverse and heterogeneous datasets.

• Calgary/Canterbury corpus (Text): Collection of
text and binary data files, commonly used for com-
paring data compression algorithms (18.5MB).

• PDFs: Proceedings of the last 5 editions of the
Usenix FAST conference (48.7MB).

• Silesia corpus: Standard set of files that covers the
typical data types used nowadays [14] (211.9MB).

• Media: Media files collected from the home direc-
tories of 4 IBM engineers including photos (.jpg),
music (.mp3) and video (.avi) (300.3MB).

• Sensors dataset: GPS trajectory dataset collected
in Microsoft Research Geolife project by 182 users
during three years [40](1.7GB).

• Mix (sampling test only): A private collection of
mix of files of various data types e.g. html, xml, txt,
database files and VM images (14GB).

• Enwiki9 (sampling test only): Common measuring
stick for compression methods consisting of the first
109 bytes of the English Wikipedia [37].

We measured the accuracy of our synthetic data mim-
icking these datasets by analyzing the behavior of 4 com-
pression engines: lz4, zlib (level 1, 6), bzip2 and
lzma. We used the compressors’ default implementa-
tion available on Unix distributions and the analogous
Java libraries included in SDGen. It is worth mention-
ing that these algorithms belong to different families and
adopt disparate heuristics to find redundancies within a
data stream. This can give a sense about the universal-
ity of our generation method. Specifically, lz4 targets
speed over compression ratio and has repetition elimina-
tion only. zlib is medium speed, adopting Huffman en-
coding in addition. bzip2 and lzma target compression

ratio over speed deploying various advanced, yet time
consuming methods such as the Burrows Wheeler trans-
form [24] (bzip2) or a large dictionary based variant of
LZ77 (lzma) .

6 Evaluation

Next, we describe the results comparing original and
synthetic (SDGen, LinkBench) data using the aforemen-
tioned metrics. We compare the results of two compres-
sion engines that we specifically target (zlib, lz4) with
other two of distinct families (bzip2, lzma).

6.1 Compression ratio
In Table 2 and Fig. 5, we compare the obtained com-
pression ratios of the original and synthetic datasets for
all compression engines at both dataset and chunk levels.

Table 2 shows that SDGen closely mimics the com-
pressibility of real datasets for the targeted engines
(zlib, lz4). For zlib and lz4, SDGen does not de-
viate more than 10% in compression ratio compared to
the real data. This demonstrates that our synthetic data
is sensitive to the algorithm; that is, our synthetic data
exhibits the same behavior than the real data, depending
on the compression engine used. This confirms that ana-
lyzing the structure of data is an appropriate approach to
generate realistic synthetic data.

At the dataset level, we observe that SDGen is less ac-
curate for the non-targeted compressors (bzip2, lzma).
Surprisingly, this contrasts with Fig. 5 that shows how
SDGen closely reproduces the compression ratio distri-
butions of real dataset chunks. The reason for this be-
havior is related with the chunk size.

That is, zlib and lz4 digest data in small chunks (e.g.
32KB) to reduce the size of their internal data structures.
Conversely, bzip2 and lzma digest data in window sizes
that can reach 900KB and 1GB, respectively [23]. We
do not focus on scanning data features in this broader
scope. This encourages us to research new scanners at
larger granularities to cope with other compressors.
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Figure 5: Original vs SDGen per-chunk compression ratio distributions for various datasets and compressors.
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Figure 6: Original vs SDGen per-chunk compression time distributions for various datasets and compressors.

  
























  

  
























  

Figure 7: Sequential write throughput of ZFS depend-
ing on data type. Clearly, ZFS behaves similarly when
processing SDGen synthetic data and the original one.

In general, the one-dimensional data generation ap-
proach of LinkBench deviates importantly from the com-
pressibility of the actual data, even though LinkBench
datasets were generated chunk-by-chunk to capture the
heterogeneity (Table 2). The reason is that the propor-
tion of compressible/incompressible data is determined
by one algorithm in the generation phase (zlib). Such a
synthetic data becomes inaccurate when compressed by
other engines, compared to the original dataset.

6.2 Compression time
Table 2 shows that SDGen achieves high accuracy mim-
icking compression times for zlib and lz4. At the
dataset level, our synthetic data does not deviate by more
than 13% in compression times compared to the origi-
nal data. At chunk level, on average the 70% of SDGen
chunks deviate less than 20% in terms of compression
time (Fig. 6) w.r.t. the real dataset —it is harder to be
accurate for lz4 since it is the fastest compressor. Ta-
ble 2 also illustrates that for the non-targeted compres-
sors (bzip2, lzma) our synthetic data does not deviate
by more than 26%, which we consider acceptable.

Note that in the Calgary corpus there is a particular
file that accounts for the 23% of samples, which exhibit
a much higher compression time for zlib (Fig. 6, left).

This file is the DNA sequencing of the E. coli bacte-
ria. The particularity of this file is that it is formed by
very few distinct bytes (4 in most chunks, since DNA se-
quences are composed by 4 nucleotides) and very short
repetitions. This makes compression algorithms that use
Huffman codes to perform worse, since the Huffman
tree should be constantly updated for only very short
sequences. Our generation algorithm detects these sit-
uations and reacts by increasing the repeated sequence
renewal rate. Thus, the performance of Huffman codes
becomes also worse, similar to the original data.

Unsurprisingly, Table 2 shows that LinkBench
datasets deviate importantly from the compression times
of real datasets. Such a deviation —in many cases higher
than 50%— may induce important impact on the perfor-
mance of a storage system with built-in compression.

6.3 Performance of ZFS

We want to stress the importance of using an appropriate
data generation method in a real system. Thus, we aug-
mented 3 datasets (PDFs, Calgary and Silesia) by repli-
cating them to be 1GB in size. Then, we copied 50 times
each from memory into a ZFS partition with compres-
sion enabled (lzjb, gzip) capturing the sequential write
throughput. We repeated the experiment with two syn-
thetic datasets: i) a dataset generated with LinkBench
creating chunks of the same compressibility than the
original one, and ii) a dataset generated with our method.

In Fig. 7, our synthetic data makes the system to
exhibit virtually the same write throughput as the orig-
inal dataset. That is, the difference in throughput of
ZFS between the original dataset and our data is at most
1.9% in average for lzjb and gzip. However, consid-
ering datasets generated with LinkBench, ZFS exhibits
a variation in write throughput between +12.5% and
+19% in most cases w.r.t. the original dataset. Interest-
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Figure 9: Entropy CDF of SDGen and original data.

ingly, irrespective of the dataset, ZFS achieves a similar
throughput writing LinkBench data. The reason is that
LinkBench generates data that is easy to compress for
most algorithms, for a wide range of compression ratios.
gzip (as zlib in Fig. 6) performs worse digesting

the Calgary corpus. Our method handles this behavior,
whereas the LinkBench data makes ZFS write through-
put to deviate by +44% compared to the original dataset.

Therefore, compared with current approaches, our
method provides a much more realistic substrate to
benchmark storage systems with compression built-in.

6.4 Similarity of Mimicked Characteristics

To emulate compression ratios and times, our mimicking
method captures the repetition length distribution and the
frequencies of bytes of the original data (Section 4). Now,
we inspect how close SDGen mimics these properties.

Repetition length. Fig. 8 shows the distribution of
repetition lengths for both original and synthetic datasets
(PDFs, text). We observe that the repetitions in both
cases are similar in terms of distribution shape and abso-
lute frequency numbers. This characteristic plays a key
role on the accuracy of the synthetic chunks compression
ratios and times, suggesting that mimicking it is an effec-
tive way of generating realistic data for compression.

Entropy. In Fig. 9 we depict the entropy distribu-
tion of original and synthetic chunks for two datasets.
As we can infer, the entropy distribution of the original
dataset is roughly followed by the synthetic one. The
reason for this is that we capture the byte histogram dis-
tribution in original chunks to generate bytes according
to it. This property is also interesting because our syn-
thetic data would be useful for techniques that estimate
the compressibility of data based on entropy [18].
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Figure 10: Compression times and ratios of 16KB and
64KB synthetic chunks mimicking Calgary Corpus data.
Original data was scanned at 32KB chunk granularity
(boxplot circles represent mean values).

6.5 Chunk Size Sensitivity
We obtained very similar results when varying the chunk
size from 8KB to 128KB, which are the typical size lim-
its for compression (16KB for MySQL, 8KB to 128KB
for ZFS). However, as the scan chunk size gets smaller,
the characterization file grows linearly. Normally, com-
pression algorithms tend to avoid small window sizes
since data compressibility decays. Thus, we recommend
to scan data in chunks of 16KB to 64KB.

In SDGen we scan a dataset and generate data with
a configurable chunk size. A question that arises here
is: how does the synthetic data behave when it is com-
pressed to different granularities than the one used in the
scan/generation process? To answer this question, we
compressed the Calgary corpus and the synthetic dataset
at 16KB and 64KB granularities (Fig. 10). Note that the
synthetic dataset has been scanned/generated at 32KB
granularity. We selected the Calgary corpus since it is
very heterogeneous (compression times, ratios), potenti-
ating differences depending on the scan granularity.

Interestingly, in Fig. 10 we observe that our method is
not sensitive to the scan granularity. That is, for both scan
chunk sizes, the compression times and ratios of com-
pression algorithms follow a similar trend. Although the
distribution tails are harder to model, we observe that in
most cases the boxplots for both datasets present a sim-
ilar shape. Therefore, we conclude that we can safely
mimic a dataset using granularities that are different than
the one used during the original data scan phase, while
maintaining the original content behavior.

6.6 Sampling: Scaling Characterizations
Previously, we performed full scans on the original data
(32KB chunks). Full dataset scans let us reproduce the
compressibility of data, and even the locality of compres-
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Dataset Compressor
Compression Time (sec.) Decompression Time (sec.) Compression Ratio

Orig. SDGen Zero Rand. Orig. SDGen Zero Rand. Orig. SDGen Zero Rand.

Mix
gzip-6 443.47 451.98 136.48 589.82 97.30 95.74 72.52 95.64 1.86 1.82 1030.5 1.00
gzip-1 378.28 380.45 136.34 574.46 88.30 87.21 48.64 96.32 1.84 1.82 229.3 1.00
lz4 161.82 143.21 137.15 139.93 42.11 43.50 5.98 66.63 1.79 1.78 254.7 1.00

Enwiki9
gzip-6 50.31 57.16 9.41 39.32 8.20 9.05 4.84 6.32 3.09 2.83 1030.5 1.00
gzip-1 22.08 22.92 9.45 37.93 9.18 9.27 6.05 3.23 2.64 2.54 229.3 1.00
lz4 10.00 9.60 9.40 9.39 3.20 2.93 0.41 3.92 1.97 1.91 254.7 1.00

Orig=Original Dataset, SDGen=SDGen Dataset, Zero=Zero Dataset, Rand=Random Dataset.

Table 3: Dataset-level compression ratios and times of SDGen data using sampling in the scan process.

sion with high precision. In fact, this can be achieved
with moderate characterization space requirements. For
instance, compared to the original datasets, the size of
characterization files are 4.08% (Silesia corpus), 2.14%
(Calgary corpus), and 6.38% (PDFs) —the theoretical
maximum is 7.86% for a 32KB chunk. However, con-
sidering large datasets, the size of characterizations and
the memory requirements for the scan may be too high.

Next, we want to inspect the accuracy of our synthetic
data when we only use a subset of data in the scan pro-
cess. To this end, we make use of real datasets that are
large enough to justify the use of sampling. As described
in Section 3.3, we use characterizations formed by 3,500
samples. We also tested a larger chunk size (128KB).

Table 3 shows the compression/decompression times,
as well as the compression ratios for the real and syn-
thetic datasets. “Random” and “Zeros” are datasets as
large as the real one, whose content is self-explanatory.

In general, we see in Table 3 that our sampling ap-
proach is an effective way of mimicking large datasets.
That is, SDGen datasets do not deviate more than 13.6%
and 10% in compression and decompression times, re-
spectively. SDGen compression ratios are also accurate.

Interestingly, we find that decompression times are
similar in both original and SDGen datasets; this suggest
that if the synthetic data mimics correctly compression
times, decompression times become also mimicked.

The most relevant point in this experiment is the size
of the characterizations needed to achieve these results.
That is, the Mix dataset (14GB) characterization file pro-
duced by SDGen was only 7.3MB in size (0.052%). We
conclude that SDGen provides a novel and attractive way
of sharing large datasets with very low data exchange,
high mimicking accuracy and preserving data anonymity.

6.7 Data Generation Throughput
We evaluate the throughput of SDGen generating syn-
thetic data with our method. First, SDGen utilizes the
available cores to increase the generation throughput
(Fig. 11). That is, making use of 4 cores instead of 1, the
throughput of SDGen is x3.56 and x3.45 times higher in
the case of text and media data, respectively.

Second, we noticed that the generation throughput
varies depending on the data type being generated. This
effect is caused by the behavior of our data generation
method. That is, Algorithm 1 is faster generating highly
compressible data since it reuses repetitions more fre-
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Figure 11: Throughput of our data generation algorithm
integrated in SDGen depending on the data type.

quently to generate synthetic chunks. In the case of
random-like data, Algorithm 1 performs more random
decisions to generate new bytes, which is slower than
copying an existing sequence. Note that several SDGen
servers can run in parallel to increase throughput.

7 Integration with Benchmarks

7.1 LinkBench
LinkBench [9] is a graph benchmarking tool developed
by Facebook. LinkBench provides performance predic-
tions on databases used for persistent storage of Face-
book’s production data. We integrated SDGen with
LinkBench to explore the benefits of our synthetic data.

Integration. Internally, LinkBench permits to adjust
the compressibility of data used in every experiment run.
To decouple the actual data generation from the bench-
mark execution, LinkBench provides an interface called
DataGeneration. We followed this contract by creating
an adapter class which transforms LinkBench calls into
API calls offered by our data generation system. This
clean design permits a user to choose the way synthetic
data is generated from the configuration file.

Setting. We executed LinkBench on top of MySQL
5.5 and ZFS with compression enabled (lzjb and gzip).
We evaluated the differences in performance that are
measured by LinkBench when query payloads are filled
with realistic and non-realistic synthetic data given a tar-
get dataset (text, Calgary corpus). We filled query pay-
loads with random offsets of datasets loaded in memory
prior to the benchmark execution, to avoid the potential
bias caused by the generation overhead.

We executed a write-dominated workload to observe
the effects of content on insert latencies. We evaluated
the performance of inserts due to their higher cost com-
pared to reads, since they cannot be cached. We executed
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Figure 12: Insert latency of LinkBench for 16KB pay-
loads on top of ZFS with gzip and lzjb compression.

LinkBench with 100 parallel threads for 30 minutes, re-
sulting in various millions of inserts (18GB database).
We used a Samsung 840 SSD as storage layer (250GB).

Results. In Fig. 12, we illustrate the insert latency
that LinkBench experiences depending on the payload
content. First, we want to emphasize the benefits of SD-
Gen compared to use non-realistic data. Observably, the
insert latency distributions are very similar for both the
Calgary corpus and the corresponding SDGen synthetic
dataset. This probes that SDGen produces representative
and reproducible data, since the Calgary corpus charac-
terization is ready to be shared and serve others.

Furthermore, we observe that employing naive con-
tents may lead to disparate performance results. For in-
stance, the median insert time of LinkBench is −55%
filling payloads with zeros than using the corpus (gzip).
lzjb also presents such performance variations, but they
are less significant since the algorithm is much faster.

7.2 Impressions
File systems are an important field to apply data reduc-
tion techniques. Thus, we integrated our data generation
system in the Impressions file system benchmark [7].

Integration. The integration has been done as fol-
lows. We set up a named pipe during the initial phase
of the execution of Impressions to connect with SDGen.
From that point onwards, Impressions delegates the gen-
eration of file contents to SDGen by writing in the pipe
the size and the canonical path of the files to be created.

Additionally, we added a special type of dataset char-
acterization (DC) in SDGen called file system character-
ization (Fig. 13). A file system characterization inter-
nally contains a set of regular DCs, each one associated
to what we call a file category. File categories repre-
sent a group of file types —based on their extension—
that usually contain similar contents. For instance, we
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Figure 13: Integration of SDGen with Impressions.

can define a file category called “random data” contain-
ing compressed/encrypted files, such as .zip, .mp3 and
.jpg. We found this approach very convenient to treat
the vast amount of existing file extensions, also produced
by Impressions. We provide an initial set of file cate-
gories grouping the most popular file extensions6.

To illustrate this, we recommend to see Fig. 13. In
this figure, Impressions notifies SDGen that a new file
called /Impress/dir1/1.txt of size 50KB should be
created. SDGen looks up for the file extension .txt,
which belongs to the “Text” file category. Subsequently,
SDGen generates the file content resorting to the DC of
this file category, which should be built by scanning rep-
resentative files with the corresponding extensions.

Open Trial. We release a ready-to-use trial of SDGen
integrated with Impressions. In the SDGen webpage,
we release various DCs to be loaded into the file system
characterization, which internally associates them to the
appropriate file category. These DCs come from scan-
ning file systems of our company engineers (text, images,
etc.). We also provide the modified code of Impressions,
as well as the execution instructions.

8 Discussion and Conclusions

A word on dataset privacy leakage: One of the main
concerns in data sharing, or lack thereof, is privacy lim-
itations on proprietary data. Our method relieves many
of the privacy concerns and allows free sharing of data
since no actual data is shared. More precisely, the data
being created is a random combination of bytes, albeit
with specific probabilities on byte occurrences and repe-
titions. It should be noted, however, that the characteri-
zations are not entirely free of information. That is, the
frequencies of bytes are revealed and these can actually
tell us information about the data at hand. For instance,
using such information one can distinguish the underly-
ing data type (e.g. text, image).

Inherently, the mimicking approach is susceptible to
this sort of “higher order information leakage” since the
properties we are characterizing are per se an indication
about the data at hand. However, we believe that this
novel way of sharing provides an attractive trade-off be-
tween dataset privacy and benchmarking accuracy.

Beyond compression: In this paper we focused on
compression related properties, but view mimicking as

6http://en.wikipedia.org/wiki/List_of_file_formats.
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a general approach of data generation for benchmark-
ing content-sensitive systems. One obvious extension is
deduplication which is extremely data sensitive. Dedu-
plication is more challenging for a number of reasons: (i)
It is a global dataset property, rather than being dictated
by local behavior of data. For this reason, fast scanning
using sampling is much harder to achieve when dedu-
plication is involved [19]; and (ii) deduplication ratios
achieved in storage systems are typically affected by the
order and timing in which data was written to the system
(and not only by the content). Such a time based depen-
dency is very hard to mimic. Our future research includes
extending SDGen to also mimic data de-duplicability.

Conclusions: Most workload generators for bench-
marks do not focus on the contents used in their execu-
tion, and they typically generate unrealistic data (zeros,
random data). Storage systems with built-in compression
behave differently on such naively-synthesized data than
they do on real-world data. Current solutions create data
with variable compression ratio, but they ignore other
properties such as compression time and heterogeneity,
which are critical to the performance of these systems.

We have therefore extended the basic methodology
that underlies workload generators to the data itself. Cur-
rent workload generators try to mimic real-world situa-
tions in terms of files, offsets, read/write balance and so
on; we have designed and implemented an orthogonal
component, called SDGen, to generate data that mimics
the compressibility and compression times of real data.

For mimicking real-world data SDGen produces char-
acterizations that are compact, sharable and essentially
completely anonymized. We plan to release both SDGen
and the characterizations that we have produced with it.
We hope that others will use these tools and that others
will share additional characterizations of data with the
systems research community.
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Abstract

Data deduplication has become a standard component in
modern backup systems. In order to understand the fun-
damental tradeoffs in each of its design choices (such as
prefetching and sampling), we disassemble data dedupli-
cation into a large N-dimensional parameter space. Each
point in the space is of various parameter settings, and
performs a tradeoff among backup and restore perfor-
mance, memory footprint, and storage cost. Existing and
potential solutions can be considered as specific points
in the space. Then, we propose a general-purpose frame-
work to evaluate various deduplication solutions in the
space. Given that no single solution is perfect in all met-
rics, our goal is to find some reasonable solutions that
have sustained backup performance and perform a suit-
able tradeoff between deduplication ratio, memory foot-
prints, and restore performance. Our findings from ex-
tensive experiments using real-world workloads provide
a detailed guide to make efficient design decisions ac-
cording to the desired tradeoff.

1 Introduction
Efficient storage of a huge volume of digital data be-
comes a big challenge for industry and academia. IDC
predicts that there will be 44 ZB of digital data in
2020 [3], which will continue to grow exponentially. Re-
cent work reveals the wide existence of a large amount of
duplicate data in storage systems, including primary stor-
age systems [27, 37], secondary backup systems [36],
and high-performance data centers [26]. In order to sup-
port efficient storage, data deduplication is a widely de-
ployed technique between the underlying storage system
and upper applications due to its efficiency and scala-
bility; it becomes increasingly important in large-scale
storage systems, especially backup systems.

In backup systems, data deduplication divides a back-
up stream into non-overlapping variable-sized chunks,
and identifies each chunk with a cryptographic digest,

such as SHA-1, commonly referred to as a fingerprint.
Two chunks with identical fingerprints are considered
duplicates without requiring a byte-by-byte comparison.
The probability of hash collisions is much smaller than
that of hardware errors [33], thus it is widely accepted in
real-world backup systems. A fingerprint index maps fin-
gerprints of the stored chunks to their physical addresses.
A duplicate chunk can be identified via checking the ex-
istence of its fingerprint in the index. During a backup,
the duplicate chunks are eliminated immediately for in-
line data deduplication. The chunks with unique finger-
prints that do not exist in the fingerprint index are aggre-
gated into fixed-sized containers (typically 4 MB), which
are managed in a log-structure manner [39]. A recipe
that consists of the fingerprint sequence of the backup is
written for future data recovery.

There have been many publications about data dedup-
lication [32]. However, it remains unclear how existing
solutions make their design decisions and whether poten-
tial solutions can do better. Hence, in the first part of the
paper (Section 2), we present a taxonomy to classify ex-
isting work using individual design parameters, includ-
ing key-value, fingerprint prefetching and caching,
segmenting, sampling, rewriting, restore, etc. Dif-
ferent from previous surveys [24, 32], our taxonomy is
fine-grained with in-depth discussions. We obtain an N-
dimensional parameter space, and each point in the spa-
ce performs a tradeoff among backup and restore per-
formance, memory footprint, and storage cost. Existing
solutions are considered as specific points. We figure
out how existing solutions choose their points, which al-
lows us to find potentially better solutions. For example,
similarity detection in Sparse Indexing [22] and segment
prefetching in SiLo [38] are highly complementary.

Although there are some open-source deduplication
platforms, such as dmdedup [35], none of them are
capable of evaluating the parameter space we dis-
cuss. Hence, the second part of our paper (Section 3)
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Figure 1: A typical deduplication system and the Base deduplication procedure.

presents a general-purpose Deduplication Framework
(DeFrame)1, for comprehensive data deduplication eval-
uation. DeFrame implements the entire parameter space
discussed in a modular and extensible fashion; this en-
ables apple-to-apple comparisons among both existing
and potential solutions. Our aim is to facilitate finding
solutions that provide sustained high backup and restore
performance, low memory footprints, and high storage
efficiency.

The third part of our paper (Section 4) presents our
findings in a large-scale experimental evaluation using
real-world long-term workloads. The findings provide a
detailed guide to make reasonable decisions according to
the desired tradeoff. For example, if high restore per-
formance is required, a rewriting algorithm is required
to trade storage efficiency for restore performance. With
a rewriting algorithm, the design decisions on the finger-
print index need to be changed. To the best of our knowl-
edge, this is the first work that examines the interplays
between fingerprint index and rewriting algorithms.

2 In-line Data Deduplication Space
Figure 1 depicts a typical deduplication system. Gen-
erally, we have three components on disks: (1) The fin-
gerprint index maps fingerprints of stored chunks to their
physical locations. It is used to identify duplicate chunks.
(2) The recipe store manages recipes that describe the
logical fingerprint sequences of concluded backups. A
recipe is used to reconstruct a backup stream during re-
store. (3) The container store is a log-structured storage
system. While duplicate chunks are eliminated, unique
chunks are aggregated into fixed-sized containers. We
also have a fingerprint cache in DRAM that holds popu-
lar fingerprints to boost duplication identification.

Figure 1 also shows the basic deduplication procedure,
namely Base. At the top left, we have three sample back-
up streams that correspond to the snapshots of the prima-
ry data in three consecutive days. Each backup stream is
divided into chunks, and 4 consecutive chunks constitute
a segment (a segment describes the chunk sequence of

1https://github.com/fomy/destor

Parameter list Description
sampling selecting representative fingerprints
segmenting splitting the unit of logical locality
segment selection selecting segments to be prefetched
segment prefetching exploiting segment-level locality
key-value mapping multiple logical positions per fingerprint
rewriting algorithm reducing fragmentation
restore algorithm designing restore cache

Table 1: The major parameters we discuss.

a piece of data stream; we assume a simplest segment-
ing approach the this case). Each chunk is processed in
the following steps: (1) The hash engine calculates the
SHA-1 digest for the chunk as its unique identification,
namely fingerprint. (2) Look up the fingerprint in the in-
DRAM fingerprint cache. (3) If we find a match, jump to
step 7. (4) Otherwise, look up the fingerprint in the key-
value store. (5) If we find a match, invoke a fingerprint
prefetching procedure. Jump to step 7. (6) Otherwise,
the chunk is unique. We write the chunk to the contain-
er store, insert the fingerprint to the key-value store, and
write the fingerprint to the recipe store. Jump to step 1 to
process the next chunk. (7) The chunk is a duplicate. We
eliminate the chunk and write its fingerprint to the recipe
store. Jump to step 1 to process the next chunk.

In the following sections, we (1) propose the finger-
print index subspace (the key component in data dedup-
lication systems) to characterize existing solutions and
find potentially better solutions, and (2) discuss the in-
terplays among fingerprint index, rewriting, and restore
algorithms. Table 1 lists the major parameters.

2.1 Fingerprint Index
The fingerprint index is a well-recognized performance
bottleneck in large-scale deduplication systems [39]. The
simplest fingerprint index is only a key-value store [33].
The key is a fingerprint and the value points to the chunk.
A duplicate chunk is identified via checking the exis-
tence of its fingerprint in the key-value store. Suppose
each key-value pair consumes 32 bytes (including a 20-
byte fingerprint, an 8-byte container ID, and 4-byte other
metadata) and the chunk size is 4 KB on average, in-
dexing 1 TB unique data requires at least an 8 GB-sized
key-value store. Putting all fingerprints in DRAM is not

2
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cost-efficient. To model the storage cost, we use the unit
price from Amazon.com [1]: A Western Digital Blue 1
TB 7200 RPM SATA Hard Drive costs $60, and a King-
ston HyperX Blu 8 GB 1600 MHz DDR3 DRAM costs
$80. The total storage cost is $140, 57.14% of which is
for DRAM.

An HDD-based key-value store suffers from HDD’s
poor random-access performance, since the fingerprint is
completely random in nature. For example, the through-
put of Content-Defined Chunking (CDC) is about 400
MB/s under commercial CPUs [11], and hence CDC pro-
duces 102,400 chunks per second. Each chunk incurs
a lookup request to the key-value store, i.e., 102,400
lookup requests per second. The required throughput
is significantly higher than that of HDDs, i.e., 100 IO-
PS [14]. SSDs support much higher throughput, near-
ly 75,000 IOPS as venders report [4]. However, SSDs
are much more expensive than HDDs and suffer from a
performance degradation over time due to reduced over-
provisioning space [19].

Due to the incremental nature of backup workloads,
the fingerprints of consecutive backups appear in simi-
lar sequences [39], which is known as locality. In or-
der to reduce the overhead of the key-value store, mod-
ern fingerprint indexes leverage locality to prefetch fin-
gerprints, and maintain a fingerprint cache to hold the
prefetched fingerprints in memory. The fingerprint index
hence consists of two submodules: a key-value store and
a fingerprint prefetching/caching module. The value in-
stead points to the prefetching unit. According to the use
of the key-value store, we classify the fingerprint index
into exact and near-exact deduplication.

• Exact Deduplication (ED): all duplicate chunks
are eliminated for highest deduplication ratio (the
data size before deduplication divided by the data
size after deduplication).

• Near-exact Deduplication (ND): a small number
of duplicate chunks are allowed for higher backup
performance and lower memory footprint.

According to the fingerprint prefetching policy, we clas-
sify the fingerprint index into exploiting logical and
physical locality.

• Logical Locality (LL): the chunk (fingerprint) se-
quence of a backup stream before deduplication. It
is preserved in recipes.

• Physical Locality (PL): the physical layout of
chunks (fingerprints), namely the chunk sequence
after deduplication. It is preserved in containers.

Figure 2 shows the categories of existing fingerprint
indexes. The cross-product of the deduplication and lo-

Figure 2: Categories of existing fingerprint indexes.
The typical examples include DDFS [39], Sparse Index-
ing [22], Extreme Binning [10], ChunkStash [14], Sam-
pled Index [18], SiLo [38], PRUNE [28], and BLC [25].

cality variations include EDPL, EDLL, NDPL, and ND-
LL. In the following, we discuss their parameter sub-
spaces and how to choose reasonable parameter settings.

2.1.1 Exact vs. Near-exact Deduplication
The main difference between exact and near-exact de-
duplication is the use of the key-value store. For exact
deduplication, the key-value store has to index the fin-
gerprints of all stored chunks and hence becomes too
large to be stored in DRAM. The fingerprint prefetch-
ing/caching module is employed to avoid a large frac-
tion of lookup requests to the key-value store. Due to
the strong locality in backup workloads, the prefetched
fingerprints are possibly accessed later. Although the fin-
gerprint index is typically lookup-intensive (most chunks
are duplicate in backup workloads), its key-value store is
expected not to be lookup-intensive since a large frac-
tion of lookup requests are avoided by the fingerprint
prefetching and caching. However, the fragmentation
problem discussed in Section 2.1.2 reduces the efficien-
cy of the fingerprint prefetching and caching, making the
key-value store become lookup-intensive over time.

For near-exact deduplication, only sampled represen-
tative fingerprints, namely features, are indexed to down-
size the key-value store. With a high sampling ratio
(e.g., 128:1), the key-value store is small enough to be
completely stored in DRAM. Since only a small frac-
tion of stored chunks are indexed, many duplicate chunks
cannot be found in the key-value store. The finger-
print prefetching/caching module is important to main-
tain a high deduplication ratio. Once an indexed dup-
licate fingerprint is found, many unindexed fingerprints
are prefetched to answer following lookup requests. The
sampling method is important to the prefetching efficien-
cy, and hence needs to be chosen carefully, which are
discussed in Section 2.1.2 and 2.1.3 respectively.

The memory footprint of exact deduplication is relat-
ed to the key-value store, and proportional to the number

3
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of the stored chunks. For example, if we employ Berke-
ley DB [2] paired with a Bloom filter [12] as the key-
value store, 1 byte DRAM per stored chunk is required
to maintain a low false positive ratio for the Bloom filter.
Suppose S is the average chunk size in KB and M is the
DRAM bytes per key, the storage cost per TB stored da-
ta includes $( 10∗M

S ) for DRAM and $60 for HDD. Given
M = 1 and S = 4, the storage cost per TB stored data is
$62.5 (4% for DRAM). In other underlying storage, such
as RAID [31], the proportion of DRAM decreases.

The memory footprint of near-exact deduplication de-
pends on the sampling ratio R. Suppose each key-value
pair consumes 32 bytes, M is equal to 32

R . The stor-
age cost per TB stored data includes $( 320

S∗R ) for DRAM
and $60 for HDD. For example, if R = 128 and S = 4,
the storage cost per TB data in near-exact deduplication
is $60.625 (1% for DRAM). However, it is unfair to
simply claim that near-exact deduplication saves mon-
ey, since its stored data includes duplicate chunks. Sup-
pose a 10% loss of deduplication ratio, 1 TB data in
near-exact deduplication only stores 90% of 1 TB data
in exact deduplication. Hence, near-exact deduplication
requires 1.11 TB to store the 1 TB data in exact dedup-
lication. The total storage cost in near-exact dedupli-
cation is about $67.36, higher than exact deduplication.
To decrease storage cost, near-exact deduplication has
to achieve a high deduplication ratio, no smaller than
( 320

S∗R + 60)/( 10
S + 60) of the deduplication ratio in exa-

ct deduplication. In our cost model, near-exact dedup-
lication needs to achieve 97% of the deduplication ratio
of exact deduplication, which is difficult based on our
observations in Section 4.7. Hence, near-exact dedupli-
cation generally indicates a cost increase.

2.1.2 Exploiting Physical Locality
The unique chunks (fingerprints) of a backup are aggre-
gated into containers. Due to the incremental nature of
backup workloads, the fingerprints in a container are pos-
sibly accessed together in subsequent backups [39]. The
locality preserved in containers is called physical locali-
ty. To exploit the physical locality, the value in the key-
value store is the container ID and thus the prefetching
unit is a container. If a duplicate fingerprint is identified
in the key-value store, we obtain a container ID and then
read the metadata section (a summary on the fingerprints)
of the container into the fingerprint cache. Note that only
unique fingerprints are updated with their container IDs
in the key-value store.

Although physical locality is an effective approxima-
tion of logical locality, the deviation increases over time.
For example, old containers have many useless finger-
prints for new backups. As a result, the efficiency of the
fingerprint prefetching/caching module decreases over
time. This problem is known as fragmentation, which

severely decreases restore performance as reported in re-
cent work [29, 21]. For EDPL, the fragmentation gradu-
ally changes the key-value store to be lookup-intensive,
and the ever-increasing lookup overhead results in un-
predictable backup performance. We cannot know when
the fingerprint index will become the performance bot-
tleneck in an aged system.

For NDPL, the sampling method has significant im-
pacts on deduplication ratio. We observe two sampling
methods, uniform and random. The former selects the
first fingerprint every R fingerprints in a container, while
the latter selects the fingerprints that mod R = 0 in a con-
tainer. Although Sampled Index [18] uses the random
sampling, we observe the uniform sampling is better. In
the random sampling, the missed duplicate fingerprints
would not be sampled (mod R ̸= 0) after being written
to new containers, making new containers have less fea-
tures and hence smaller probability of being prefetched.
Without this problem, the uniform sampling achieves a
significantly higher deduplication ratio.
2.1.3 Exploiting Logical Locality
To exploit logical locality preserved in recipes, each
recipe is divided into subsequences called segments. A
segment describes a fingerprint subsequence of a backup,
and maps its fingerprints to container IDs. We identify
each segment by a unique ID. The value in the key-value
store points to a segment instead of a container, and the
segment becomes the prefetching unit. Due to the local-
ity preserved in the segment, the prefetched fingerprints
are possibly accessed later. Note that in addition to u-
nique fingerprints, duplicate fingerprints have new seg-
ment IDs (unlike physical locality).

For exact deduplication whose key-value store is not
in DRAM, it is necessary to access the key-value store
as infrequently as possible. Since the Base procedure
depicted in Figure 1 follows this principle (only missed-
in-cache fingerprints are checked in the key-value store),
it is suitable for EDLL. A problem in EDLL is frequent-
ly updating the key-value store, since unique and dupli-
cate fingerprints both have new segment IDs. As a result,
all fingerprints are updated with their new segment IDs
in the key-value store. The extremely high update over-
head, which has not been discussed in previous studies,
either rapidly wears out an SSD-based key-value store
or exhausts the HDD bandwidth. We propose to sample
features in segments and only update the segment IDs of
unique fingerprints and features in the key-value store.
In theory, the sampling would increase lookup overhead,
since it leaves many fingerprints along with old seg-
ment IDs, leading to a suboptimal prefetching efficien-
cy. However, based on our observations in Section 4.3,
the increase of lookup overhead is negligible, making it
a reasonable tradeoff. One problem of the sampling op-
timization is that, after users delete some backups, the
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BLC [25] Extreme Binning [10] Sparse Index [22] SiLo [38]
Exact deduplication Yes No No No
Segmenting method FSS FDS CDS FSS & FDS
Sampling method N/A Minimum Random Minimum
Segment selection Base Top-all Top-k Top-1

Segment prefetching Yes No No Yes
Key-value mapping relationship 1:1 1:1 Varied 1:1

Table 2: Design choices for exploiting logical locality.

fingerprints pointing to stale segments may become un-
reachable. It would decrease deduplication ratio. A pos-
sible solution is to add a column in key-value store to
keep container IDs. Only the fingerprints in reclaimed
containers are removed in key-value store. The addition-
al storage cost is negligible since EDLL keeps key-value
store on disks.

Previous studies on NDLL use similarity detection
(described later) instead of the Base procedure [22, 10,
38]. Given the more complicated logic frame and ad-
ditional in-memory buffer in similarity detection, it is
still necessary to make the motivation clear. Based on
our observations in Section 4.5, the Base procedure per-
forms well in source code and database datasets (datasets
are described in Section 4.1), but underperforms in vir-
tual machine dataset. The major characteristic of virtual
machine images is that each image itself contains many
duplicate chunks, namely self-reference. Self-reference,
absent in our source code and database datasets, inter-
feres with the prefetching decision in the Base procedure.
A more efficient fingerprint prefetching policy is hence
desired in complicated datasets like virtual machine im-
ages. As a solution, similarity detection uses a buffer to
hold the processing segment, and load the most similar
stored segments in order to deduplicate the processing
segment. We summarize existing fingerprint indexes ex-
ploiting logical locality in Table 2, and discuss similarity
detection in a 5-dimensional parameter subspace: seg-
menting, sampling, segment selection, segment prefetch-
ing, and key-value mapping. Note that the following me-
thods of segmenting, sampling, and prefetching are also
applicable in the Base procedure.

Segmenting method. The File-Defined Segmenting
(FDS) considers each file as a segment [10], which suf-
fers from the greatly varied file size. The Fixed-Sized
Segmenting (FSS) aggregates a fixed number (or size) of
chunks into a segment [38]. FSS suffers from a shift-
ed content problem similar to the Fixed-Sized Chunk-
ing method, since a single chunk insertion/deletion com-
pletely changes the segment boundaries. The Content-
Defined Segmenting method (CDS) checks the finger-
prints in the backup stream [22, 16]. If a chunk’s finger-
print matches some predefined rules (e.g., last 10 bits are
zeros), the chunk is considered as a segment boundary.
CDS is shift-resistant.

Sampling method. It is impractical to calculate the

exact similarity of two segments using their all finger-
prints. According to Broder [13], the similarity of the
two randomly sampled subsets is an unbiased approxi-
mation of that of the two complete sets. A segment is
considered as a set of fingerprints. A subset of the fin-
gerprints are selected as features since the fingerprints
are already random. If two segments share some fea-
tures, they are considered similar. There are three ba-
sic sampling methods: uniform, random, and minimum.
The uniform and random sampling methods have been
explained in Section 2.1.2. Suppose the sampling ratio is
R, the minimum sampling selects the segment length

R mini-
mum fingerprints in a segment. Since the distribution of
minimum fingerprints is uneven, Aronovich et al. pro-
pose to select the fingerprint adjacent to the minimum
fingerprint [9]. Only sampled fingerprints are indexed
in the key-value store. A smaller R provides more can-
didates for the segment selection at a cost of increasing
the memory footprint. One feature per segment forces
a single candidate. The uniform sampling suffers from
the problem of content shifting, while the random and
minimum sampling are shift-resistant.

Segment selection. After features are sampled in a
new segment S, we look up the features in the key-value
store to find the IDs of similar segments. There may be
many candidates, but not all of them are loaded in the fin-
gerprint cache since too many segment reads hurt back-
up performance. The similarity-based selection, namely
Top-k, selects k most similar segments. Its procedure is
as follows: (1) a most similar segment that shares most
features with S is selected at a time; (2) the features of the
selected segment are eliminated in remaining candidates,
to avoid giving scores for features belonging to already
selected segments; (3) jump to step 1 to select the next
similar segment, until k of segments are selected or we
run out of candidates [22]. A more aggressive selection
method is to read all similar segments together, namely
Top-all. A necessary optimization for Top-all is to phys-
ically aggregate similar segments into a bin, and thus a
single I/O can fetch all similar segments [10]. A dedi-
cated bin store is hence required. It underperforms if we
sample more than 1 feature per segment, since the bins
grow big quickly.

Figure 1 illustrates how similar segments arise. Sup-
pose A1 is the first version of segment A, A2 is the sec-
ond version, and so on. Due to the incremental nature
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of backup workloads, A3 is possibly similar to its earli-
er versions, i.e., A1 and A2. Such kind of similar seg-
ments are time-oriented. Generally, reading only the lat-
est version is sufficient. An exceptional case is a segment
boundary change, which frequently occurs if fixed-sized
segmenting is used. A boundary change may move a
part of segment B to segment A, and hence A3 has two
time-oriented similar segments, A2 and B2. A larger k is
desired to handle these situations. In datasets like virtual
machine images, A can be similar with other segments,
such as E, due to self-reference. These similar segments
are space-oriented. Suppose A2 and E2 both have 8 fea-
tures, 6 of them are shared. After deduplicating E2 at a
later time than A2, 6 of A2’s features are overwritten to be
mapped to E2. E2 is selected prior to A2 when dedupli-
cating A3. A larger k increases the probability of reading
A2. Hence, with many space-oriented segments, a larger
k is required to accurately read the time-oriented similar
segment at a cost of decreased backup performance.

Segment prefetching. SiLo exploits segment-level
locality to prefetch segments [38]. Suppose A3 is sim-
ilar to A2, it is reasonable to expect the next segment
B3 is similar to B2 that is next to A2. Fortunately, B2
is adjacent to A2 in the recipe, and hence p−1 segments
following A2 are prefetched when deduplicating A3. If
more than 1 similar segments are read, segment prefetch-
ing can be applied to either all similar segments, as long
as k ∗ p segments do not overflow the fingerprint cache,
or only the most similar segment.

Segment prefetching has at least two advantages: 1)
Reducing lookup overhead. Prefetching B2 together with
A2, while deduplicating A3, avoids the additional I/O of
reading B2 for the following B3. 2) Improving dedup-
lication ratio. Assuming the similarity detection fails
for B3 (i.e., B2 is not found due to its features being
changed), the previous segment prefetching caused by
A3, whose similarity detection succeeds (i.e., A2 is read
for A3 and B2 is prefetched together), offers a dedupli-
cation opportunity for B3. Segment prefetching also alle-
viates the problem caused by segment boundary change.
In the case of two time-oriented similar segments, A2
and B2 would be prefetched for A3 even if k = 1. Seg-
ment prefetching relies on storing segments in a logical
sequence being incompatible with Top-all.

Key-value mapping relationship. The key-value
store maps features to stored segments. Since a feature
can belong to different segments (hence multiple logical
positions), the key can be mapped to multiple segment
IDs. As a result, the value becomes a FIFO queue of seg-
ment IDs, where v is the queue size. For NDLL, main-
taining the queues has low performance overhead since
the key-value store is in DRAM. A larger v provides
more similar segment candidates at a cost of a higher
memory footprint. It is useful in the following cases: 1)

Self-reference is common. A larger v alleviates the above
problem of feature overwrites caused by space-oriented
similar segments. 2) The corrupted primary data is re-
stored to an earlier version rather than the latest version
(rollback). For example, if A2 has some errors, we roll
back to A1 and thus A3 derives from A1 rather than A2. In
this case, A1 is a better candidate than A2 for deduplicat-
ing A3, however features of A1 have been overwritten by
A2. A larger v avoids this problem.

2.2 Rewriting and Restore Algorithms
Since the fragmentation decreases the restore perfor-
mance in aged systems, the rewriting algorithm, an emer-
ging dimension in the parameter space, was proposed to
allow sustained high restore performance [20, 21, 17]. It
identifies fragmented duplicate chunks and rewrites them
to new containers. Even though near-exact deduplication
trades deduplication ratio for restore performance, our
observations in Section 4.6 show that the rewriting algo-
rithm is a more efficient tradeoff. However, the rewriting
algorithm’s interplay with the fingerprint index has not
yet been discussed.

We are mainly concerned about two questions. (1)
How does the rewriting algorithm reduce the ever-
increasing lookup overhead of EDPL? Since the rewrit-
ing algorithm reduces the fragmentation, EDPL is im-
proved because of better physical locality. Our observa-
tions in Section 4.6 show that, via an efficient rewriting
algorithm, the lookup overhead of EDPL no longer in-
creases over time. EDPL then has sustained backup per-
formance. (2) Does the fingerprint index return the latest
container ID when a recently rewritten chunk is checked?
Each rewritten chunk would have a new container ID. If
the old container ID is returned when that chunk is recir-
culated, then another rewrite could occur. Based on our
observations, this problem is more pronounced and sig-
nificant in EDLL than EDPL. An intuitive explanation is
that, due to our sampling optimization mentioned in Sec-
tion 2.1.3, an old segment containing obsolete container
IDs is read for deduplication. As a result, EDPL becomes
better than EDLL due to its higher deduplication ratio.

While the rewriting algorithm determines the chunk
placement, an efficient restore algorithm leverages the
placement to gain better restore performance with a lim-
ited memory footprint. There have been three restore al-
gorithms: the basic LRU cache, the forward assembly
area (ASM) [21], and the optimal cache (OPT) [17]. In
all of them, a container serves as the prefetching unit
during a restore to leverage locality. Their major dif-
ference is that while LRU and OPT use container-level
replacement, ASM uses chunk-level replacement. We
observe these algorithms’ performances under different
placements in Section 4.6. If the fragmentation is dom-
inant, ASM is more efficient. The reason is that LRU
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Figure 3: The architecture and backup pipeline.

and OPT hold many useless chunks that are not restored
in DRAM due to their container-level replacement. On
the other hand, if an efficient rewriting algorithm has re-
duced the fragmentation, the container-level replacement
is improved due to better physical locality and OPT per-
forms best due to its accurate cache replacement.

3 The DeFrame Framework
The N-dimensional parameter space discussed in Sec-
tion 2 provides a large amount of design choices, but
there is no platform to evaluate these choices as far as we
know. In this section, we present DeFrame as a general-
purpose chunk-level deduplication framework to facil-
itate exploring alternatives. In DeFrame, existing and
potential solutions are considered as specific points in
the N-dimensional parameter space. We implement De-
Frame using C and pthreads on 64-bit Linux.

3.1 Architecture
As shown in Figure 3, DeFrame consists of three sub-
modules discussed in Section 2. In the container store,
each container is identified by a globally unique ID. The
container is the prefetching unit for exploiting physical
locality. Each container includes a metadata section that
summarizes the fingerprints of all chunks in the contain-
er. We can fetch an entire container or only its metadata
section via a container ID.

The recipe store manages recipes of all finished back-
ups. In recipes, the associated container IDs are stored
along with fingerprints so as to restore a backup with-
out the need to consult the fingerprint index. We add
some indicators of segment boundaries in each recipe to
facilitate reading a segment that is the prefetching unit
for exploiting logical locality. Each segment is identi-
fied by a globally unique ID. For example, an ID can
consist of a 2-byte pointer to a recipe, a 4-byte offset in
the recipe, and a 2-byte segment size that indicates how
many chunks are in the segment.

The fingerprint index consists of a key-value store and
a fingerprint prefetching/caching module. Two kinds of
key-value stores are currently supported: an in-DRAM
hash table and a MySQL database [6] paired with a
Bloom filter. Since we implement a virtual layer upon the

key-value store, it is easy to add a new key-value store.

3.2 Backup Pipeline
As shown in Figure 3, we divide the workflow of da-
ta deduplication into six phases: Chunk, Hash, Dedup,
Rewrite, Filter, and Append. (1) The Chunk phase
divides the backup stream into chunks. We have im-
plemented Fixed-Sized Chunking and Content-Defined
Chunking (CDC). (2) The Hash phase calculates a SHA-
1 digest for each chunk as the fingerprint. (3) The De-
dup phase aggregates chunks into segments, and iden-
tifies duplicate chunks via consulting the fingerprint in-
dex. A duplicate chunk is marked and obtains the con-
tainer ID of its stored copy. The created segments are the
prefetching units of logical locality, and the batch pro-
cess units for physical locality. We have implemented
the Base, Top-k, and Mix procedures (first Top-k then
Base). (4) The Rewrite phase identifies fragmented dup-
licate chunks, and rewrites them to improve restore per-
formance. It is a tradeoff between deduplication ratio
and restore performance. We have implemented four
rewriting algorithms, including CFL-SD [30], CBR [20],
Capping [21], and HAR [17]. Each fragmented chunk is
marked. (5) The Filter phase handles chunks according
to their marks. Unique and fragmented chunks are added
to the container buffer. Once the container buffer is full,
it is pushed to the next phase. The recipe store and key-
value store are updated. (6) The Append phase writes
full containers to the container store.

We pipeline the phases via pthreads to leverage multi-
core architecture. The dedup, rewrite, and filter phases
are separated for modularity: we can implement a new
rewriting algorithm without the need to modify the fin-
gerprint index, and vice versa.

Segmenting and Sampling. The segmenting method
is called in the dedup phase, and the sampling method
is called for each segment either in the dedup phase for
the similarity detection, or in the filter phase for the Base
procedure. All segmenting and sampling methods men-
tioned in Section 2 have been implemented. Content-
defined segmenting is implemented via checking the last
n bits of a fingerprint. If all the bits are zero, the fin-
gerprint (chunk) is considered to be the beginning of a
new segment, thus generating an average segment size
of 2n chunks. To select the first fingerprint of a content-
defined segment as a feature, the random sampling also
checks the last log2 R (< n) bits.

3.3 Restore Pipeline
The restore pipeline in DeFrame consists of three phases:
Reading Recipe, Reading Chunks, and Writing Chunks.
(1) Reading Recipe. The required backup recipe is
opened for restore. The fingerprints are read and issued
one by one to the next step. (2) Reading Chunks. Each
fingerprint incurs a chunk read request. The container
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Dataset name Kernel VMDK RDB
Total size 104 GB 1.89 TB 1.12 TB

# of versions 258 127 212
Deduplication ratio 45.28 27.36 39.1

Avg. chunk size 5.29 KB 5.25 KB 4.5 KB
Self-reference < 1% 15-20% 0
Fragmentation Severe Moderate Severe

Table 3: The characteristics of datasets.

is read from the container store to satisfy the request.
A chunk cache is maintained to hold popular chunks in
memory. We have implemented three kinds of restore
algorithms, including the basic LRU cache, the optimal
cache [17], and the rolling forward assembly area [21].
Given a chunk placement determined by the rewriting al-
gorithm, a good restore algorithm boosts the restore pro-
cedure with a limited memory footprint. The required
chunks are issued one by one to the next phase. (3) Writ-
ing Chunks. Using the received chunks, files are recon-
structed in the local file system.

3.4 Garbage Collection
After users delete expired backups, chunks become in-
valid (not referenced by any backup) and must be re-
claimed. There are a number of possible techniques
for garbage collection (GC), such as reference count-
ing [34] and mark-and-sweep [18]. Extending the De-
Frame taxonomy to allow comparison of GC techniques
is beyond the scope of this work; currently, DeFrame em-
ploys the History-Aware Rewriting (HAR) algorithm and
Container-Marker Algorithm (CMA) proposed in [17].
HAR rewrites fragmented valid chunks to new contain-
ers during backups, and CMA reclaims old containers
that are no longer referenced.

4 Evaluation
In this section, we evaluate the parameter space to find
reasonable solutions that perform suitable tradeoffs.

4.1 Experimental Setup
We use three real-world datasets as shown in Table 3.
Kernel is downloaded from the web [5]. It consists
of 258 versions of unpacked Linux kernel source code.
VMDK is from a virtual machine with Ubuntu 12.04.
We compiled the source code, patched the system, and
ran an HTTP server on the virtual machine. VMDK has
many self-references; it also has less fragmentation from
its fewer versions and random updates. RDB consists of
Redis database [7] snapshots. The database has 5 mil-
lion records, 5 GB in space and an on average 1% update
ratio. We disable the default rdbcompression option.

All datasets are divided into variable-sized chunks via
CDC. We use the content-defined segmenting with an av-
erage segment size of 1024 chunks by default. The con-
tainer size is 4 MB, which is close to the average size of
segments. The default fingerprint cache has 1024 slots

to hold prefetching units, being either containers or seg-
ments. Hence, the cache can hold 1 million fingerprints,
which is relatively large for our datasets.

4.2 Metrics and Our Goal
Our evaluations are in terms of quantitative metrics listed
as follow. (1) Deduplication ratio: the original backup
data size divided by the size of stored data. It indicates
how efficiently data deduplication eliminates duplicates,
being an important factor in the storage cost. (2) Mem-
ory footprint: the runtime DRAM consumption. A low
memory footprint is always preferred due to DRAM’s
high unit price and energy consumption. (3) Storage
cost: the cost for storing chunks and the fingerprint in-
dex, including memory footprint. We ignore the cost
for storing recipes, since it is constant. (4) Lookup re-
quests per GB: the number of required lookup requests to
the key-value store to deduplicate 1 GB of data, most of
which are random reads. (5) Update requests per GB: the
number of required update requests to the key-value store
to deduplicate 1 GB of data. A higher lookup/update
overhead degrades the backup performance. Lookup re-
quests to unique fingerprints are eliminated since most
of them are expected to be answered by the in-memory
Bloom filter. (6) Restore speed: 1 divided by mean con-
tainers read per MB of restored data [21]. It is used to
evaluate restore performance, where a higher value is
better. Since the container size is 4 MB, 4 units of re-
store speed translate to the maximum storage bandwidth.

It is practically impossible to find a solution that per-
forms the best in all metrics. Our goal is to find some
reasonable solutions with the following properties: (1)
sustained, high backup performance as the top priority;
(2) reasonable tradeoffs in the remaining metrics.

4.3 Exact Deduplication
Previous studies [39, 14] of EDPL fail to have an insight
of the impacts of the fragmentation on the backup per-
formance, since their datasets are short-term. Figure 4
shows the ever-increasing lookup overhead. We observe
6.5-12.0× and 5.1-114.4× increases in Kernel and RDB
respectively under different fingerprint cache sizes. A
larger cache cannot address the fragmentation problem;
a 4096-slot cache performs as poor as the default 1024-
slot cache. A 128-slot cache results in a 114.4× increase
in RDB, which indicates an insufficient cache can result
in unexpectedly poor performance. This causes com-
plications in practice due to the difficulty in predicting
how much memory is required to avoid unexpected per-
formance degradations. Furthermore, even with a large
cache, the lookup overhead still increases over time.

Before comparing EDLL to EDPL, we need to de-
termine the best segmenting and sampling methods for
EDLL. Figure 5(a) shows the lookup/update overheads
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Figure 4: The ever-increasing lookup overhead of EDPL in Kernel and RDB under various fingerprint cache sizes.
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Figure 5: Impacts of varying segmenting, sampling, and cache size on EDLL in VMDK. (a) FSS is Fixed-Sized
Segmenting and CDS is Content-Defined Segmenting. Points in a line are of different sampling ratios, which are 256,
128, 64, 32, and 16 from left to right. (b) EDLL is of CDS and a 256:1 random sampling ratio.
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Figure 6: Comparisons between EDPL and EDLL in terms of lookup and update overheads. R = 256 indicates a
sampling ratio of 256:1. Results come from RDB.

of EDLL under different segmenting and sampling me-
thods in VMDK. Similar results are observed in Kernel
and RDB. Increasing the sampling ratio shows an effi-
cient tradeoff: a significantly lower update overhead at a
negligible cost of a higher lookup overhead. The fixed-
sized segmenting paired with the random sampling per-
forms worst. This is because it cannot sample the first
fingerprint in a segment, which is important for the Base
procedure. The other three combinations are more effi-
cient since they sample the first fingerprint (the random
sampling performs well in the content-defined segment-
ing due to our optimization in Section 3.2). The content-
defined segmenting is better than the fixed-sized seg-
menting due to its shift-resistance. Figure 5(b) shows
the lookup overheads in VMDK under different cache
sizes. We do not observe an ever-increasing trend of
lookup overhead in EDLL. A 128-slot cache results in
additional I/O (17% more than the default) due to the

space-oriented similar segments in VMDK. Kernel and
RDB (not shown in the figure) do not cause this problem
because they have no self-reference.

Figure 6 compares EDPL and EDLL in terms of
lookup and update overheads. EDLL uses the content-
defined segmenting and random sampling. Results in
Kernel and VMDK are not shown, because they have
similar results to RDB. While EDPL suffers from the
ever-increasing lookup overhead, EDLL has a much low-
er and sustained lookup overhead (3.6× lower than ED-
PL on average). With a 256:1 sampling ratio, EDLL
has 1.29× higher update overhead since it updates sam-
pled duplicate fingerprints with their new segment IDs.
Note that lookup requests are completely random, and
update requests can be optimized to sequential writes via
a log-structured key-value store, which is a popular de-
sign [8, 23, 15]. Overall, if the highest deduplication ra-
tio is required, EDLL is a better choice due to its sus-
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tained high backup performance.

Finding (1): While the fragmentation results in an
ever-increasing lookup overhead in EDPL, EDLL
achieves sustained performance. The sampling op-
timization performs an efficient tradeoff in EDLL.

4.4 Near-exact Deduplication exploiting
Physical Locality

NDPL is simple and easy to implement. Figure 7(a)
shows how to choose an appropriate sampling method
for NDPL. We only show the results from VMDK, which
are similar to the results from Kernel and RDB. The
uniform sampling achieves significantly higher dedupli-
cation ratio than the random sampling. The reason has
been discussed in Section 2.1.2; for the random sam-
pling, the missed duplicate fingerprints are definitely not
sampled, making new containers have less features and
hence smaller probability of being prefetched. The sam-
pling ratio is a tradeoff between memory footprint and
deduplication ratio: a higher sampling ratio indicates a
lower memory footprint at a cost of a decreased dedupli-
cation ratio. Figure 7(b) shows that NDPL is surprisingly
resistent to small cache sizes: a 64-slot cache results in
only an 8% decrease of the deduplication ratio than the
default in RDB. Also observed (not shown in the figure)
are 24-93% additional I/O, which come from prefetch-
ing fingerprints. Compared to EDPL, NDPL has better
backup performance because of its in-memory key-value
store at a cost of decreasing deduplication ratio.

Finding (2): In NDPL, the uniform sampling is
better than the random sampling. The fingerprint
cache has minimal impacts on deduplication ratio.

4.5 Near-exact Deduplication exploiting
Logical Locality

Figure 8(a) compares the Base procedure (see Figure 1)
to the simplest similarity detection Top-1, which helps
to choose appropriate sampling method. The content-
defined segmenting is used due to its advantage shown
in EDLL. In the Base procedure, the random sampling
achieves comparable deduplication ratio using less mem-
ory than the uniform sampling. NDLL is expected to
outperform NDPL in terms of deduplication ratio since
NDLL does not suffer from fragmentation. However,
we surprisingly observe that, while NDLL does better in
Kernel and RDB as expected, NDPL is better in VM-
DK (shown in Figure 7(b) and 8(b)). The reason is
that self-reference is common in VMDK. The finger-
print prefetching is misguided by space-oriented similar
segments as discussed in Section 2.1.3. Moreover, the
fingerprint cache contains many duplicate fingerprints
that reduce the effective cache size, therefore a 4096-slot

cache improves deduplication ratio by 7.5%. NDPL does
not have this problem since its prefetching unit (i.e., con-
tainer) is after-deduplication. A 64-slot cache results in
23% additional I/Os in VMDK (not shown in the figure),
but has no side-effect in Kernel and RDB.

In the Top-1 procedure, only the most similar segment
is read. The minimum sampling is slightly better than the
random sampling. The Top-1 procedure is worse than the
Base procedure. The reason is two-fold as discussed in
Section 2.1.3: (1) a segment boundary change results in
more time-oriented similar segments; (2) self-reference
results in many space-oriented similar segments.

Finding (3): The Base procedure underperforms in
NDLL if self-reference is common. Reading a sin-
gle most similar segment is insufficient due to self-
reference and segment boundary changes.

We further examine the remaining NDLL subspace:
segment selection (s), segment prefetching (p), and map-
ping relationship (v). Figure 9 shows the impacts of vary-
ing the three parameters on deduplication ratio (lookup
overheads are omitted due to space limits). On the X-
axis, we have parameters in the format (s, p,v). The
s indicates the segment selection method, being either
Base or Top-k. The p indicates the number of prefetched
segments plus the selected segment. We apply segment
prefetching to all similar segments selected. The v in-
dicates the maximum number of segments that a feature
refers to. The random sampling is used, with a sampling
ratio of 128. For convenience, we use NDLL(s, p,v) to
represent a point in the space.

A larger v results in a higher lookup overhead when
k > 1, since it provides more similar segment candi-
dates. We observe that increasing v is not cost-effective
in Kernel which lacks self-reference, since it increas-
es lookup overhead without an improvement of dedup-
lication ratio. However, in RDB which also lacks of
self-reference, NDLL(Top-1,1,2) achieves better dedup-
lication ratio than NDLL(Top-1,1,1) due to the rollbacks
in RDB. A larger v is helpful to improve deduplication
ratio in VMDK where self-reference is common. For ex-
ample, NDLL(Top-1,1,2) achieves 1.31× higher dedup-
lication ratio than NDLL(Top-1,1,1) without an increase
of lookup overhead.

The segment prefetching is efficient for increasing de-
duplication ratio and decreasing lookup overhead. As
the parameter p increases from 1 to 4 in the Base proce-
dure, the deduplication ratios increase by 1.06×, 1.04×,
and 1.39× in Kernel, RDB, and VMDK respectively,
while the lookup overheads decrease by 3.81×, 3.99×,
and 3.47×. The Base procedure is sufficient to achieve
a high deduplication ratio in Kernel and RDB that lack
self-reference. Given its simple logical frame, the Base
procedure is a reasonable choice if self-reference is rare.
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The deduplication ratios are relative to those of exact deduplication.

However, the Base procedure only achieves a 73.74% de-
duplication ratio of exact deduplication in VMDK where
self-reference is common.

Finding (4): If self-reference is rare, the Base pro-
cedure is sufficient for a high deduplication ratio.

In more complicated environments like virtual ma-
chine storage, the Top-k procedure is desired. A higher k
indicates a higher deduplication ratio at a cost of a higher
lookup overhead. As k increases from NDLL(Top-1,1,1)
to NDLL(Top-4,1,1), the deduplication ratios increase by
1.17×, 1.24×, and 1.97× in Kernel, RDB, and VMDK
respectively, at a cost of 1.15×, 1.01×, and 1.56× more
segment reads. Note that Top-4 outperforms Base in
terms of deduplication ratio in all datasets. Varying k has

fewer impacts in Kernel and RDB, since they have fewer
space-oriented similar segments and hence fewer candi-
dates. The segment prefetching is a great complement
to the Top-k procedure, since it amortizes the addition-
al lookup overhead caused by increasing k. NDLL(Top-
4,4,1) reduces the lookup overheads of NDLL(Top-4,1,1)
by 2.79×, 3.97×, and 2.07× in Kernel, RDB, and VM-
DK respectively. It also improves deduplication ratio by
a factor of 1.2× in VMDK. NDLL(Top-4,4,1) achieves
a 95.83%, 99.65%, and 87.20% deduplication ratio of
exact deduplication, significantly higher than NDPL.

Finding (5): If self-reference is common, the
similarity detection is required. The segmenting
prefetching is a great complement to Top-k.
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Dataset EDPL NDPL-128 NDPL-256 NDPL-512 HAR+EDPL

Deduplication ratio
Kernel 45.35 36.86 33.52 30.66 31.26

RDB 39.10 32.64 29.31 25.86 28.28
VMDK 27.36 24.50 23.15 21.46 24.90

Restore speed
Kernel 0.50 0.92 1.04 1.19 2.60

RDB 0.50 0.82 0.87 0.95 2.26
VMDK 1.39 2.49 2.62 2.74 2.80

Table 4: Comparisons between near-exact deduplication and rewriting in terms of restore speed and deduplication
ratio. NDPL-256 indicates NDPL of a 256:1 uniform sampling ratio. HAR uses EDPL as the fingerprint index. The
restore cache contains 128 containers for Kernel, and 1024 containers for RDB and VMDK.

4.6 Rewriting Algorithm and its Interplay
Fragmentation decreases restore performance signifi-
cantly in aged systems. The rewriting algorithm is pro-
posed to trade deduplication ratio for restore perfor-
mance. To motivate the rewriting algorithm, Table 4
compares near-exact deduplication to a rewriting algo-
rithm, History-Aware Rewriting algorithm (HAR) [17].
We choose HAR due to its accuracy in identifying frag-
mentation. As the baseline, EDPL has best deduplication
ratio and hence worst restore performance. NDPL shows
its ability of improving restore performance, however
not as well as HAR. Taking RDB as an example, ND-
PL of a 512:1 uniform sampling ratio trades 33.88% de-
duplication ratio for only 1.18× improvement in restore
speed, while HAR trades 27.69% for 2.8× improvement.

We now answer the questions in Section 2.2: (1) How
does the rewriting algorithm improve EDPL in terms of
lookup overhead? (2) How does fingerprint index af-
fect the rewriting algorithm? Figure 10(a) shows how
HAR improves EDPL. We observe that HAR success-
fully stops the ever-increasing trend of lookup overhead
in EDPL. Although EDPL still has a higher lookup over-
head than EDLL, it is not a big deal because a predictable
and sustained performance is the main concern. More-
over, HAR has no impact on EDLL, since EDLL does
not exploit physical locality that HAR improves. The
periodic spikes are because of major updates in Linux
kernel, such as from 3.1 to 3.2. These result in many
new chunks, which reduce logical locality. Figure 10(b)
shows how fingerprint index affects HAR. EDPL out-
performs EDLL in terms of deduplication ratio in all
datasets. As explained in Section 2.2, EDLL could re-
turn an obsolete container ID if an old segment is read,
and hence a recently rewritten chunk would be rewrit-
ten again. Overall, with an efficient rewriting algorithm,
EDPL is a better choice than EDLL due to its higher de-
duplication ratio and sustained performance.

Finding (6): The rewriting algorithm helps EDPL
to achieve sustained backup performance. With a
rewriting algorithm, EDPL is better due to its higher
deduplication ratio than other index schemes.

We further examine three restore algorithms: the LRU
cache, the forward assembly area (ASM) [21], and the

optimal cache (OPT) [17]. Figure 11 shows the efficien-
cies of these restore algorithms with and without HAR in
Kernel and VMDK. Because the restore algorithm only
matters under limited memory, the DRAM used is smal-
ler than Table 4, 32-container-sized in Kernel and 256-
container-sized in VMDK. If no rewriting algorithm is
used, the restore performance of EDPL decreases over
time due to the fragmentation. ASM has better perfor-
mance than LRU and OPT, since it never holds useless
chunks in memory. If HAR is used, EDPL has sus-
tained high restore performance since the fragmentation
has been reduced. OPT is best in this case due to its effi-
cient cache replacement.

Finding (7): Without rewriting, the forward as-
sembly area is recommended; but with an efficient
rewriting algorithm, the optimal cache is better.

4.7 Storage Cost
As discussed in Section 2, indexing 1 TB unique data
of 4 KB chunks in DRAM, called baseline, costs $140,
57.14% of which is for DRAM. The cost is even higher
if considering the high energy consumption of DRAM.
The baseline storage costs are $0.23, $3.11, and $7.55 in
Kernel, RDB, and VMDK respectively.

To reduce the storage cost, we either use HDD instead
of DRAM for exact deduplication or index a part of fin-
gerprints in DRAM for near-exact deduplication. Table 5
shows the relative storage costs to the baseline in each
dataset. EDPL and EDLL have the identical storage cost,
since they have the same deduplication ratio and key-
value store. We assume that the key-value store in EDPL
and EDLL is a database paired with a Bloom filter, hence
1 byte DRAM per stored chunk for a low false positive
ratio. EDPL and EDLL reduce the storage cost by a fac-
tor of around 1.75. The fraction of the DRAM cost is
2.27-2.50%.

Near-exact deduplication of a high sampling ratio fur-
ther reduces the DRAM cost, at a cost of decreasing de-
duplication ratio. As discussed in Section 2.1.1, near-
exact deduplication with a 128:1 sampling ratio and 4 KB
chunk size needs to achieve 97% of deduplication ratio of
exact deduplication to avoid a cost increase. To evaluate
this tradeoff, we observe the storage costs of NDPL and
NDLL under various sampling ratios. NDPL uses the

12
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Figure 10: Interplays between fingerprint index and rewriting algorithm (i.e., HAR). (a) How does HAR improve
EDPL in terms of lookup overhead in Kernel? (b) How does fingerprint index affect HAR? The Y-axis shows the
relative deduplication ratio to that of exact deduplication without rewriting.
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Figure 11: Interplays between the rewriting and restore algorithms. EDPL is used as the fingerprint index.

Dataset Fraction EDPL/EDLL NDPL-64 NDPL-128 NDPL-256 NDLL-64 NDLL-128 NDLL-256

Kernel
DRAM 1.33% 0.83% 0.49% 0.31% 0.66% 0.34% 0.16%

HDD 57.34% 65.01% 70.56% 77.58% 59.03% 59.83% 60.23%
Total 58.67% 65.84% 71.04% 77.89% 59.69% 60.17% 60.39%

RDB
DRAM 1.40% 0.83% 0.48% 0.31% 0.70% 0.35% 0.17%

HDD 55.15% 61.25% 66.08% 73.58% 55.27% 55.34% 55.65%
Total 56.55% 62.07% 66.56% 73.89% 55.97% 55.69% 55.82%

VMDK
DRAM 1.41% 0.82% 0.45% 0.27% 0.71% 0.35% 0.18%

HDD 54.86% 60.32% 63.16% 67.10% 59.79% 62.92% 71.24%
Total 56.27% 61.14% 63.61% 67.36% 60.49% 63.27% 71.42%

Table 5: The storage costs relative to the baseline which indexes all fingerprints in DRAM. NDPL-128 is NDPL of a
128:1 uniform sampling ratio.

uniform sampling, and NDLL is of the parameter (Top-
4,4,1). As shown in Table 5, NDPL increases the storage
cost in all datasets; NDLL increases the storage cost in
most cases, except in RDB.

Finding (8): Although near-exact deduplication re-
duces the DRAM cost, it cannot reduce the total stor-
age cost.

5 Conclusions
In this paper, we discuss the parameter space of data de-
duplication in detail, and we present a general-purpose
framework called DeFrame for evaluation. DeFrame can
efficiently find reasonable solutions to explore tradeoffs
among backup and restore performance, memory foot-
prints, and storage costs. Our findings, from a large-scale
evaluation using three real-world long-term workloads,
provide a detailed guide to make efficient design deci-
sions for deduplication systems.

It is impossible to have a solution that performs the
best in all metrics, To achieve the lowest storage cost,
Exact Deduplication exploiting Logical Locality (EDLL)
is preferred due to its highest deduplication ratio and sus-
tained high backup performance. To achieve the low-
est memory footprint, Near-exact Deduplication is rec-
ommended: either exploiting Physical Locality (NDPL)
for its simpleness, or exploiting Logical Locality (ND-
LL) for better deduplication ratio. To achieve a sustained
high restore performance, Exact Deduplication exploit-
ing Physical Locality (EDPL) combined with a rewriting
algorithm would be a better choice.
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Abstract

Insights from workloads have been instrumental in

hardware and software design, problem diagnosis, and

performance optimization. The recent emergence of

software-defined data centers and application-centric

computing has further increased the interest in studying

workloads. Despite the ever-increasing interest, the lack

of general frameworks for trace capture and workload

analysis at line rate has impeded characterizing many

storage workloads and systems. This is in part due to

complexities associated with engineering a solution that

is tailored enough to use computational resources effi-

ciently yet is general enough to handle different types of

analyses or workloads.

This paper presents Chronicle, a high-throughput

framework for capturing and analyzing Network File

System (NFS) workloads at line rate. More specifi-

cally, we designed Chronicle to characterize NFS net-

work traffic at rates above 10Gb/s for days to weeks.

By leveraging the actor programming model and a

pluggable, pipelined architecture, Chronicle facilitates a

highly portable and scalable framework that imposes lit-

tle burden on application programmers. In this paper, we

demonstrate that Chronicle can reconstruct, process, and

record storage-level semantics at the rate of 14Gb/s using

general-purpose CPUs, disks, and NICs.

1 Introduction

The storage industry is in a state of flux. As new work-

loads emerge and the characteristics and economics of

the storage media change, it is vital to reevaluate the de-

sign of storage systems. Many of yesterday’s caching,

prefetching, and data tiering techniques have limited

applicability to today’s workloads and hardware. The

recent emergence of software-defined data centers and

data-driven management that support a more application-

centric view of storage has further increased the interest

in workloads. The latest trends aside, characterizing tra-

ditional workloads and storage systems is also critical.

Designing benchmarks for legacy workloads and trou-

bleshooting deployed systems, product and service se-

lection, capacity planning, and billing all hinge on some

understanding of workloads.

Despite the ever-increasing interest, the lack of high-

quality workload traces and general workload analysis

frameworks have been major stumbling blocks in char-

acterizing storage workloads and systems. Ideally, work-

load traces should be thorough and fine-grained enough

to accurately capture the dynamics of the workloads.

An I/O-by-I/O view of workloads undoubtedly provides

richer insights compared to views based on aggregate

statistics or sampling. Additionally, the trace collection

and analysis procedure should cause the least amount of

interference with the systems under study.

This paper presents Chronicle [2], a high-throughput

framework for capturing and analyzing workloads at line

rate for an extended period of time. Specifically, we

designed Chronicle to characterize Network File Sys-

tem (NFSv3) traffic at rates above 10Gb/s for days to

weeks. Chronicle runs as a Linux-based middlebox that

passively monitors network traffic via network taps or

port mirroring. The most important aspect of Chronicle

is that, through deep packet inspection (DPI), it can re-

construct storage protocol semantics at line rate. Chron-

icle has the flexibility to capture long-term traces, per-

form real-time analytics on the in-flight network traffic,

or do some combination of both.

We favored a middlebox approach over instrumenting

NFS servers or clients because it is independent of the

systems under study; and more importantly, it has no im-

pact on system performance. We also opted for a solution

based on commodity hardware. Although there are very

efficient solutions based on specialized hardware, such as

FPGA packet capture cards, monitoring in the network-

ing hardware (e.g., [5, 35]), or GPUs (e.g., MIDeA [33]

and PacketShader [21]), these systems tend to be lim-
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ited in scope. Capture cards are generally limited to

timestamping and DMAing packets; networking hard-

ware is generally optimized to perform a few operations

like lookup, filtering, and counting; and GPUs excel for

applications that conform to the single instruction, mul-

tiple threads (SIMT) mode of programming.

Earlier efforts in fields such as software routing, net-

work security, and software-defined networking (SDN)

have shown the applicability of general-purpose hard-

ware for high-speed packet processing. For instance,

RouteBricks [16] achieves a throughput of 10Gb/s,

6.4Gb/s, and 1.4Gb/s for forwarding, routing, and IPsec

encryption of 64B packets respectively. In this paper we

demonstrate that general-purpose hardware can also han-

dle more complex operations like TCP reassembly, pat-

tern matching, data checksumming, compression, real-

time analysis, and trace storage at rates higher than

10Gb/s.

Parallelizing packet processing using multicore ar-

chitectures has been the focus of many efforts in the

past [12, 16, 19, 27, 29, 34]. Partitioning and pipelining

work across threads, judicious placement and schedul-

ing of threads for better cache hit rates, and minimizing

synchronization overhead (e.g., by using lock-free data

structures for thread communication) are a few examples

of the techniques discussed in the literature. However,

constructing such carefully engineered systems imposes

great burdens on programmers, because it requires inti-

mate knowledge of hardware platforms and careful man-

agement of shared state and resources among threads.

These designs often result in systems that are heavily tai-

lored to specific hardware platforms and require manual

tuning.

To address these challenges, we developed a user-

space programming library, called Libtask, which hides

such complexities from application programmers. Lib-

task is based on the actor model paradigm [22] and en-

ables a lock-free, pluggable, pipelined architecture for

applications that use it. There are several advantages to

this architecture: (1) applications built on top of Libtask

are completely decoupled from the underlying hardware,

resulting in highly portable and scalable software; (2) in-

teractions among threads are well-defined, thus reducing

the possibility of concurrency bugs; and (3) supporting

different types of input sources, output formats, anal-

yses, and protocols, beyond what we demonstrate with

NFS, simply involves plugging in the right module in the

pipelined architecture.

To the best of our knowledge, Chronicle is the first

system of its kind to show the applicability of the ac-

tor programming model to workload capture and analy-

sis. Another novel aspect of Chronicle is that we extend

zero-copy packet parsing to what is considered the appli-

cation layer in the OSI reference model [36]. Therefore,

there is no need to copy packet payloads to a contigu-

ous buffer to reconstruct storage-level semantics. We

demonstrate the versatility of the Chronicle framework

by describing the implementation of two pipelines, one

for trace capture and one for characterizing NFS work-

loads. These pipelines can operate at the rate of 14Gb/s

using only 8 cores, a testament to the framework’s ef-

ficiency. We have successfully deployed Chronicle in a

number of production environments. Our intent is to cre-

ate a comprehensive trace library that represents different

classes of workloads across the industries that constitute

our customer base.

The rest of this paper is organized as follows:

Section 2 describes some of the main differences be-

tween Chronicle and earlier work. Section 3 presents a

high-level overview of the Chronicle architecture. Sec-

tions 4 and 5 describe the implementation of Libtask and

Chronicle pipelines respectively. Section 6 highlights

unique aspects of Chronicle relative to other frameworks.

Section 7 presents a comprehensive evaluation of Libtask

and Chronicle, and Section 8 briefly discusses of some

of the insights gained through implementing and using

Chronicle.

2 Related Work

Capture and analysis of network storage workloads

(e.g., NFS and CIFS) have been the focus of a few efforts

in the past [8, 18, 26]. Of these efforts, Driverdump [8],

a system based on modifying the network driver to di-

rectly store packets in the pcap format, is the most pow-

erful software-only solution that can operate at the rate of

1.4Gb/s. It is unfair to directly compare the performance

of Chronicle to these systems because of the hardware

advances. Instead, we would like to highlight the unique

features of Chronicle that have advanced the state of the

art in capture and analysis of network-attached storage

(NAS) workloads. These features can be summarized

as (1) TCP reassembly; (2) inline parsing; and (3) effi-

cient trace storage. As a result, Chronicle can charac-

terize workloads at higher rates, for a longer time, and

with better coverage of I/O operations compared to all

the previous efforts.

The use of multiple cores for efficient packet process-

ing is an active area of research in packet forwarding and

software routing [10, 12, 16, 17, 21, 27, 32]. These ef-

forts differ from Chronicle in that they typically do not

perform any DPI and are limited to parsing the network

header. This simple difference, however, has great im-

plications for Chronicle with respect to programmability

and functionality.

Kernel frameworks, such as the elegant and modu-

lar kernel-mode Click [25], require expert knowledge to

extend them in a performance-optimized way. Extend-

2
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ing such frameworks with arbitrary types of processing

(e.g., custom or preexisting libraries for parsing, com-

pression, etc.) can be especially daunting for nonex-

perts. The recent port of netmap [31] to user-mode Click

along with techniques such as batching packet process-

ing and recycling allocated memory, have improved the

forwarding throughput by 10x, close to the throughput of

Click’s kernel-mode implementation [32]. In Section 6,

we extensively compare the implementation of Chronicle

with a few well-known packet-processing frameworks

and demonstrate that our actor model framework facil-

itates implicit concurrency, serialization, and batching to

achieve high throughput.

Dobrescu, Argyraki et al. [15] proposed a framework

to eliminate the “tedious manual tuning” that underlay

RouteBricks [16]. They devised a formula to identify the

optimal parallelization strategy when packet-processing

elements can be cloned or pipelined across cores. This

type of framework tends to be effective in scenarios

where the exact processing cost of each packet is known.

In Chronicle’s application scenario, per-packet process-

ing cost can be quite variable, because factors such as

packet reordering and the type of the NFS operation em-

bedded in a packet affect the processing overhead.

Many papers and projects (e.g., [1, 13, 29, 34]) have

addressed efficient use of multicore architectures for DPI

or network monitoring. In addition to supporting lower

rates, many of these systems have a much narrower scope

than Chronicle because (1) their implementations are tied

to specific multicore architectures; (2) many do not do

TCP reassembly; and (3) DPI is not performed on the

whole packet payload. De Sensi [14] addresses some

of these limitations by leveraging structured parallel pro-

gramming on top of FastFlow [7].

DPI on FastFlow is similar to Chronicle, in that both

define higher-level abstractions for users to represent a

workflow. The main difference lies in the programming

model. For example, actors cannot share state in the ac-

tor model paradigm (Section 4). Another difference is

zero-copy parsing beyond the network layer by Chroni-

cle. Unfortunately, a direct comparison of the through-

put of the two frameworks is not possible because DPI

on FastFlow was evaluated using HTTP network traces,

as opposed to live NFS traffic, and presumably with

less CPU-intensive processing compared to our evalua-

tion scenario; however, this framework could operate at

11Gb/s.

3 Chronicle Overview

This section outlines at a high level the design and ar-

chitecture of Chronicle. It also describes and justifies

some of the design decisions we made to address many

challenges of workload characterization at line rate. We

especially highlight three important challenges: (1) DPI

to construct application layer semantics; (2) trace storage

at line rate; and (3) efficient use of CPU cores.

Although it is not unique to Chronicle, it is important

to point out that performing DPI to construct application

layer semantics is more involved than simply examin-

ing a few bytes of packets beyond the network header.

This complexity is due to the fact that the TCP/IP layer

is completely oblivious to the nature of the application

layer data it transports. For instance, to characterize NFS

traffic over TCP/IP, Chronicle needs to handle situations

where an RPC protocol data unit (PDU) starts in the

middle of a packet or crosses multiple packets. There-

fore, unlike high-speed packet forwarding and routing,

this type of DPI requires reassembly of TCP segments

and stateful parsing across packets. Additionally, TCP

reassembly should cope with packet loss and packet re-

transmissions.

Another important challenge is trace storage at rates

higher than 10Gb/s. At such high rates, storage band-

width can easily become a cause for concern. We could

use a high-end array of disks or SSDs, but that would

conflict with our goal of using affordable off-the-shelf

hardware. Additionally, workload capture for an ex-

tended period of time at these rates requires a consider-

able amount of storage. For example, capturing network

traces using a standard tool like tcpdump at 10Gb/s for a

week requires more than 750TB of storage.

We use three techniques to address these data stor-

age challenges. The first technique is to prune the raw

data that we capture off the wire. One by-product of

performing DPI inline is that we can identify fields of

interest in the stream of bytes we capture. For exam-

ple, in the context of our NFS workload capture imple-

mentation, Chronicle records several fields of interest in

the network header and almost all of the RPC and NFS

fields. The second technique is inline checksumming

of the NFS read and write data, which results in sub-

stantial savings over storing the raw data for data dedu-

plication analysis [28]. The third technique is to per-

form inline compression prior to writing traces. By di-

rectly writing traces in the DataSeries [9] format, we

can leverage DataSeries’ inline compression, nonblock-

ing I/O, and delta encoding functions, which reduce both

the bandwidth and capacity requirements of trace stor-

age. These techniques collectively reduce the amount of

data recorded to a rate that a single standard disk can

handle.

Although performing DPI along with inline compres-

sion and checksumming help to alleviate the storage bot-

tleneck issues, these techniques come at the expense

of increased CPU utilization. As illustrated by other

high-throughput systems such as PacketShader [21] and

RouteBricks [16], excessive processing at high rates can
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easily make CPU the bottleneck and hurt the overall

throughput of the system. For instance, RouteBricks

achieves a throughput of 10Gb/s for forwarding 64B

packets, but performing more complex operations like

routing or IPsec dropped the throughput to 6.4Gb/s and

1.4Gb/s respectively. Similarly, with netmap [31] pack-

ets can be received at 14.88Mpps (at 10Gb/s), but Open

vSwitch [30] packet forwarding on top of netmap drops

the throughput by more than 75% [32]. Considering

the more complex nature of the operations performed by

Chronicle, efficient use of CPU cores is critical.

The rest of this section describes a host of techniques

that prevent CPU from becoming the bottleneck. The

first technique, and arguably the most important one, is

the use of the Libtask library. Section 4 describes the im-

plementation of Libtask in detail. Here we briefly discuss

our main objectives in designing Libtask and its place in

the Chronicle architecture. Libtask’s main purpose is to

provide seamless scalability to many cores. It enables a

pluggable, pipelined architecture, in which each module

performs a different task in parallel. Applications writ-

ten on top of Libtask can then use all the cores in the

system without any knowledge of underlying hardware,

such as the number of cores or their topology. The seam-

less scalability to many cores results in great portability

for the Chronicle software. Additionally, the pluggable,

pipelined architecture results in a very flexible frame-

work in which, by chaining the right set of modules,

Chronicle can capture traces, do statistical analysis, or

perform some combination of both. Section 5.1 covers

the Chronicle pipelines extensively.

The second technique is zero-copy packet parsing at

both the application and network layers. As packets pass

through different modules in our pipelined architecture,

each module parses a specific layer (e.g., the network,

RPC, or NFS layer) or performs some kind of com-

putation based on information from previous pipeline

modules (e.g., checksumming of the read/write data or

compression). Therefore, to keep the overhead of the

pipelined architecture low, it is imperative to avoid any

sort of copying between different modules. Section 5.2

elaborates on our zero-copy packet parsing method.

The third technique is the use of custom network

drivers, which allows a user-space application to bypass

the kernel when reading packets. Techniques such as

DPDK [3] and netmap [31] are proposed to eliminate

most of the overhead associated with packet processing

in standard operating systems, like the overhead of copy-

ing packets, memory allocation for packet descriptors

(e.g., sk buff structures in Linux), and interrupt process-

ing. Our Chronicle implementation uses netmap to read

packets from the NICs.

4 Libtask Library

We developed Libtask as a general actor model

(AM) [22] library that facilitates seamless scalability to

many cores. Central to the AM paradigm are the con-

cepts of actor, task, and communication among actors.

An actor refers to a computational agent that processes

tasks. Each task is addressed to a target actor and in-

cludes some message, which is the information to be

shared with the target [6]. As actors process the mes-

sages in tasks, the computation in an AM system ad-

vances. Processing a task by an actor can lead to sending

a message (either to itself or to some other actor), cre-

ation of new actors, or actor replacement.

Two aspects of the AM programming that make

it highly attractive to high-throughput computing are

no sharing of state and asynchronous communication

among actors. In this paradigm, the only way in which

actors can affect each other is through sending messages

(as opposed to sharing variables). The outcome is a very

modular design in which bugs caused by concurrent ex-

ecution can be easily avoided. Asynchronous commu-

nication among actors is necessary for an actor to send

a message to itself and is desirable for our purposes be-

cause actors do not block to receive acknowledgements

from targets. These properties enable a highly scalable

and programmer-friendly framework in which many ac-

tors can be created and pipelined to carry out tasks in

parallel.

Many languages such as D, Erlang, and Scala (with

Akka toolkit) have borrowed concepts from the AM

framework. Additionally, there are languages like Go

that are based on the somewhat similar paradigm of

Communicating Sequential Processes (CSP) [23]. In-

stead of relying on existing AM frameworks, we decided

to implement our own standalone AM library in C++ for

better performance and a finer level of control. Libtask

is quite lightweight and small (fewer than 2,000 lines of

code).

The rest of this section describes a few Libtask con-

structs such as Process, Scheduler, and Message. A Lib-

task Process is equivalent to an actor, and its implemen-

tation can be thought of as an event-driven state machine

that performs a certain task. A Process has complete

ownership of the data it processes. Therefore, there is

no sharing of state among different Processes, as spec-

ified by the actor model. Each Process has a queue for

receiving incoming Messages and is runnable as long as

there is a pending Message in its queue.

A Scheduler’s job is to schedule and run Processes.

Each Scheduler has a queue of runnable Processes. On

the occasion that the queue becomes empty, the Sched-

uler may steal a Process from other Schedulers. The

Scheduler’s run queue can become empty either as a re-
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Figure 1: Simplified UML diagram for Libtask.

sult of exhausting its list of runnable processes or due

to Process-stealing. Upon getting scheduled, a Process

runs a bounded number of Messages, where each Mes-

sage is run to completion before the next is processed.

The Scheduler is implemented as a POSIX thread, and

there are typically as many Schedulers as there are logi-

cal cores (i.e., hardware threads) in the system.

We have developed two versions of Libtask for bal-

ancing load across cores. In one version, Schedulers

are pinned to distinct logical cores and prefer to steal

Processes from Schedulers running in the same NUMA

node (i.e., the same CPU), thus preserving warm caches.

In the other version, Schedulers are not tied to specific

cores and perform NUMA-agnostic Process-stealing.

Section 7.1 compares the performance of these two ver-

sions relative to implementations in Erlang and Go.

Processes use Messages as the communication mech-

anism between themselves. The main purpose of a Mes-

sage is to specify the action to be performed by the

next Process in the pipeline. A Message can contain

the data to be passed or some reference to it. In either

case, a Message exchange signals the transfer of data

ownership between the sender and the target. Figure 1

illustrates the simplified UML diagram for the Libtask

classes described earlier. One point to note is that Pro-

cess::enqueueMessage is implemented as a protected

method. This is to ensure that the sending and receiving

Processes agree on the exchanged Message type or types.

All subclasses of Process have a public wrapper method

for Process::enqueueMessage (one per Message type)

to force type checking at compile time.

5 Chronicle Implementation

We have implemented Chronicle as multiple pipelines of

Libtask Processes. Each Process corresponds to a mod-

ule in the Chronicle architecture, and performs functions

such as parsing, computation, and trace storage. All

modules and all messages exchanged between them are

implemented as subclasses of Process and Message re-

spectively. Section 5.1 describes Chronicle pipelines and

Section 5.2 describes the zero-copy parsing method used

by different pipeline modules.

5.1 Chronicle Modules and Pipelines

Figure 2(a) depicts the high-level view of the Chronicle

architecture. This figure shows a few Packet Reader and

Network Parser modules and a few Chronicle pipelines.

Each pipeline itself is made up of more modules, as il-

lustrated in Figure 2(b). The rest of this section describes

the functions of each module and its role in the overall ar-

chitecture. Discussion of the Messages passed between

modules is postponed to Section 5.2.

A Packet Reader (Reader) module reads Ethernet

frames from a NIC using the netmap [31] drivers men-

tioned in Section 3. We made small changes to netmap

to support jumbo frames and larger buffer sizes. Our im-

plementation dedicates one Reader per NIC. However,

for modern NICs that have multiple queues, it is possible

to dedicate one Reader per queue for faster processing of

the packets. Each Reader polls the corresponding NIC,

timestamps all the available packets, and copies them to

an internal packet buffer pool.

The main functions of a Network Parser module are

parsing the network header portion of a packet and mul-

tiplexing further processing across different Chronicle

pipelines. A Network Parser parses L2, L3, and L4 head-

ers in an Ethernet frame and retrieves information such

as source and destination IP addresses and port numbers,

TCP sequence number, and TCP payload offset. It then

uses the 5-tuple of source IP address, destination IP ad-

dress, source port number, destination port number, and

transport protocol to delegate further processing to one of

the Chronicle pipelines. To avoid cross-pipeline commu-

nication or locking, Network Parser designates the same

pipeline to process the packets belonging to either direc-

tion of a connection.

Figure 2(b) illustrates two examples of the pipelines

that Chronicle currently supports. The DataSeries

Pipeline is the pipeline of choice for trace capture at

high rates due to the reasons mentioned in Section 3.

We use the Workload Sizer Pipeline as an example of

a pipeline whose purpose is to perform real-time analyt-

ics on the NFS traffic. The rest of this section describes

these pipelines and their constituent modules.

5.1.1 Trace Capture Pipeline

The DataSeries pipeline receives a stream of packets

on one end and generates traces in the DataSeries for-

mat [9] on the other end. The DataSeries format is char-

acterized by efficient storage of structured serial data.

Each DataSeries trace file is composed of a series of

records, where each record is in turn composed of a se-

ries of fields. The records of the same type are orga-

nized into groups of extents, which are similar to tables

in databases. For example, in our application scenario,

we have one extent type for storing network-level infor-
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Figure 2: Overview of the Chronicle architecture.

mation, another extent type for storing RPC header in-

formation, and additional extent types for different NFS

operation types. The records in these extents correspond

to a packet, to an RPC PDU, and to an NFS operation

respectively. We use a common field called record ID to

link related records in the network, RPC, and NFS ex-

tents. The DataSeries Writer module at the end of the

DataSeries pipeline is responsible for storing traces in

the DataSeries format. This module makes extensive use

of a few features of DataSeries such as inline lzf com-

pression, relative packing (delta encoding), and unique

value packing.

For DataSeries Writer to store all the fields of inter-

est in the DataSeries format, it has to rely on informa-

tion provided by the preceding modules in the pipeline,

starting with the RPC Parser module. This module per-

forms the following main functions: (1) filtering of TCP

and RPC traffic; (2) reassembly of TCP segments; (3)

detection and parsing of RPC headers; (4) construction

of RPC PDUs; and (5) matching RPC replies with the

corresponding calls.

The RPC Parser module is the key module that facil-

itates DPI on NFS traffic. To perform DPI, this module

needs to have some kind of receive-side TCP function-

ality to handle in-order, out-of-order, and retransmitted

packets. Given that Chronicle passively captures net-

work traffic via network taps or port mirroring, it is pos-

sible for an RPC Parser to see an acknowledgement for a

TCP segment that will be seen in the future or that will

never be seen. Under these circumstances, we could not

rely on a standard TCP implementation and had to de-

velop a custom TCP reassembly facility.

Packet losses and out-of-order packets directly im-

pact the performance of the RPC Parser module and the

overall throughput of Chronicle. In the absence of any

losses and out-of-order packets, the identification of RPC

header in the byte stream is very straightforward, because

the length of a PDU is part of the header. Advancing

from the current RPC header by the length of a PDU re-

sults in finding the next RPC header in the byte stream.

This technique works well not only for cases where an

RPC header starts immediately after the TCP header but

also for commonly occurring cases where a PDU starts

in the middle of a packet, when a packet contains multi-

ple PDUs, or when a PDU spans multiple packets. When

an RPC Parser uses this technique to find RPC headers,

we deem that it is operating in the fast mode. Unfortu-

nately, this technique falters in the event of packet loss

or out-of-order delivery of packets and causes the mod-

ule to enter the slow mode. In the slow mode, the RPC

Parser module has to scan the byte stream and perform

pattern matching to find an RPC header based on its sig-

nature. Once a header is found, RPC Parser can return to

the fast mode if a complete PDU is present.

The NFS Parser module is responsible for parsing the

NFS fields in an RPC PDU. The values for these fields

are provided to the DataSeries Writer module to sup-

ply the records for the NFS operation-specific extents

in a DataSeries trace file. The Checksum module op-

erates on NFS read and write PDUs and computes 64-

bit checksums for 512B read/write data blocks at 512B-

aligned offsets. These checksums are also passed to the

DataSeries Writer module to be stored in a data check-

sum extent. The checksums computed by this module

can be used for online or offline data deduplication anal-

ysis [28].

In addition to supporting NICs with netmap drivers

for input, Chronicle supports input from NICs or files

through the standard pcap interface. It also supports writ-

ing traces in the pcap format. We will not elaborate these

capabilities much further for the following reasons: (1)

pcap NIC interfaces are quite lossy at high data rates;

(2) the focus of this paper is to characterize live NFS

network traffic; and (3) trace storage in the pcap format

is quite bulky and requires further parsing of the data.

However, these capabilities demonstrate the flexible na-

ture of our pluggable, pipelined architecture where sup-

porting new input sources, output formats, or protocols

merely involves plugging the right set of modules in the

right place in the pipeline.
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5.1.2 Workload Sizer Pipeline

Another example of our flexible, pipelined architecture is

a pipeline for sizing storage workloads. Workload sizing

is a pre-sales practice in the storage industry to identify

the right platform for a given workload. A sizer typically

takes as input workload-specific information such as the

rate of I/Os, the random read working set size, and the

ratio of random reads and writes, and generates as output

the number of heads and spindles as well as the estimated

CPU and disk utilization levels for different storage plat-

forms.

The main function of the Workload Sizer module is to

generate a workload profile that will be used as input to

an off-box sizer. This module processes each I/O request

and leverages synopsis data structures [20] due to their

speed in absorbing updates and their small memory foot-

print. This module also performs top-k analysis [11] and

quantile calculation. Other examples of real-time analy-

sis that Chronicle can support are pipelines to determine

the data deduplication rate, the hottest files by the num-

ber of bytes or requests, and the most active clients. The

insights from these pipelines are helpful in dynamically

tuning a storage system.

5.2 Zero-Copy Packet Parsing

Zero-copy parsing at the network level is a standard prac-

tice and has been used extensively in operating systems

and packet processing frameworks to avoid the cost of

data copy between different modules. Our contribution

is that we extend zero-copy parsing to the application

layer. Our approach is novel in that it does not require

copying packet payloads to a contiguous buffer to recon-

struct application layer semantics.

The key idea behind our parsing technique is to main-

tain ancillary data structures on top of the packet buffer

pool. Each entry in the buffer pool has a corresponding,

fixed packet descriptor structure that serves as a handle

to a particular buffer pool entry and holds all network-

level information about a packet (either the data itself or

its offset). Packet descriptors are allocated once at the

beginning of a Chronicle run as opposed to upon every

packet arrival.

Upon receipt of a packet, the Packet Reader mod-

ule passes the corresponding descriptor to the Network

Parser module. The Network Parser module populates

most entries in the descriptor and passes it along to the

appropriate Chronicle pipeline. The RPC Parser mod-

ule then chains packet descriptors belonging to the same

flow based on their TCP sequence number values. Prior

to chaining, the RPC Parser may adjust packet descrip-

tors to ensure that no two descriptors overlap in the TCP

Figure 3: Simplified UML diagram for the facility that

navigates TCP byte streams.

sequence number space.1 When an RPC Parser finds

an RPC PDU, it creates another ancillary data structure

called a PDU descriptor. Each PDU descriptor holds

RPC- and NFS-level information and points to the chain

of packet descriptors that constitute the PDU. The RPC

Parser then passes PDU descriptors to the next module

in the pipeline. Packet or PDU descriptors passed be-

tween modules are the embodiment of the actor model

messages described in Section 4.

The main enabler for the application layer zero-copy

parsing is the implementation of a facility for traversing

packet payloads. Figure 3 presents a simplified UML di-

agram for this facility. This facility maintains a point

of reference, which consists of a packet descriptor and a

byte offset in the payload, and uses the TCP information

to retrieve certain bytes in the byte stream. We imple-

mented an XDR parser on top of this facility for parsing

the RPC header and NFS fields. One important aspect of

this facility is that it enables parsing data (e.g., a single

field or a group of fields as in the RPC header) that cross

multiple packets. This capability is unique to Chroni-

cle and does not exist in previous NFS tracing efforts

(e.g., [8, 18]) and in standard tools like Wireshark. An-

other advantage is that it enables skipping all nonrelevant

bytes for the DPI task at hand without any data copy.

6 Comparison with Other Frameworks

This section compares and contrasts Chronicle with

the implementation of a few high-throughput packet-

processing frameworks. On the surface, there are

many similarities between Chronicle and frameworks

like Click [25]. For instance, a Click router consists of

a number of modules called elements. These elements

can get pipelined, packets can get multiplexed across

pipelines of elements, and there is zero-copy packet pars-

ing across elements. Additionally, elements can run in

the context of multiple scheduler threads [12]. However,

there are some subtle differences, particularly with re-

1This condition may occur as a result of TCP retransmissions.
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spect to the application scenario and programmability,

which are highlighted in the rest of this section.

Latency vs. Throughput: For a software router like

Click, low latency in the processing path can be as cru-

cial as high throughput. The processing path in Click

typically consists of a sequence of push and pull ele-

ments, where each element either pushes a packet to a

downstream element or pulls a packet from an upstream

element. Queue elements are typically used only when

there are transitions between pull or push paths or when

multiple paths converge to temporarily store packets.

Because only the source of a push path and the sink

of a pull path are schedulable elements, other elements

in the path must run in the context of the same thread

that schedules the source or sink element [12]. This im-

plementation minimizes thread communication, reduces

scheduling overhead and cache conflicts, and imposes

minimal queuing delay, which together reduce process-

ing latency. However, to improve throughput, recent ef-

forts [24, 32] have suggested better use of I/O and com-

putation batching so that an element can process multiple

packets at a time. In our application scenario, achieving

high throughput is the primary objective and Chronicle’s

actor model architecture, with the implicit queues at in-

dependently schedulable processing elements, facilitates

seamless I/O and computation batching.

Explicit vs. Implicit Parallelism: Despite some sim-

ilarities, parallelism in Click and Chronicle is different

in a number of ways. First, every module in Chron-

icle is schedulable and can run on any core. Second,

with the exception of Packet Readers, when a Chroni-

cle module gets scheduled, it is guaranteed that it has

some useful work to do. This is a side effect of our im-

plementation, where a Libtask Process gets placed on a

Scheduler’s queue only when it has a pending Message,

and the fact that Processes only “push” Messages to each

other. Third, for some frameworks, certain layouts of

modules require use of thread-safe queues or modules.

A positive aspect of our actor model implementation is

that such complexities are not exposed to the users of

Chronicle because the framework itself provides implicit

parallelization and serialization.

Network vs. Application Layer: Differences between

packet processing at the network and application layers

explain some of the design decisions behind Chronicle.

For instance, parsing a network header is generally not

CPU-intensive enough to justify the use of multiple cores

per packet. Therefore, spatial assignment techniques

(e.g., NetSlices [27] and TNAPI [19]) that impose fixed

mappings between packets and cores are very efficient

for parsing network headers. On the other hand, these

techniques may result in load imbalances and CPU un-

derutilization when processing is expensive or variable.

In fact, as we discovered during the evaluation of Chron-

icle (Section 7), in some scenarios, pinning threads to

cores may have adverse effects on throughput. Another

issue is that parsing at the application layer requires a

framework to be general enough to support different ap-

plication layer constructs beyond just packets (e.g., RPC

PDUs). Our general actor model framework again seam-

lessly facilitates efficient use of cores as well arbitrary

types of application layer constructs.

7 Evaluation

This section presents a comprehensive evaluation of Lib-

task and Chronicle. For these experiments, Libtask and

Chronicle run on a server with two Intel Xeon E5-2690

2.90GHz CPUs. Each CPU has 8 cores (16 logical cores

or hardware threads). The server is configured with

128GB of 1600MHz DDR3 DRAM memory (64GB per

CPU). Additionally, it has two dual-port Intel� 82599EB

10GbE NICs, which allows capture from two tapped

links or four mirrored links. The storage configuration

consists of ten 3TB SATA disks. The total cost of our

setup amounted to about $10,000. Section 7.2 illustrates

that Chronicle can support network rates higher than

10Gb/s with a much less powerful hardware configura-

tion. The server runs on a 3.2.32 Linux kernel with a

patched ixgbe driver to support netmap. The NFS server

was a NetApp� FAS6280 with two 10GbE NICs.

7.1 Libtask Evaluation

We used two microbenchmarks to measure the perfor-

mance of Libtask against similar frameworks in Erlang

(version R15B01) and Go (version 1.0.2). These evalua-

tions also compare the performance of the NUMA-aware

and NUMA-agnostic versions of Libtask. In the Message

Ring benchmark, 1,000 Processes form a ring and pass

approximately 100 million Messages around the ring, so

that there are 100 outstanding Messages within the ring

at any given time. In the All-to-All benchmark, 100 Pro-

cesses send approximately 100 million Messages to each

other in a random way.

Figure 4 presents the number of Messages exchanged

per second for different implementations as the number

of Scheduler threads varies. The results are for averages

of 10 runs. For all configurations, the NUMA-aware

Libtask performs the best, and both Libtask implemen-

tations outperform implementations in Erlang and Go,

because Libtask is a much leaner messaging framework

with none of the overhead associated with copying mes-

sage data, running inside of a virtual machine, or activ-

ities like garbage collection. The drop between the 16-

and 32-thread configurations for the NUMA-aware Lib-

task is a result of cross-socket communication. Although
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(a) Message Ring benchmark (b) All-to-All benchmark

Figure 4: Libtask evaluation.

these benchmarks do not reflect CPU-intensive tasks per-

formed by Chronicle, they are indicative of the rate at

which Libtask can distribute tasks across the cores.

To test Libtask under a more realistic setup where

competing load is present, we ran one CPU-intensive

thread in the background for the “+load” configurations

of Figure 4. Because this thread is not pinned to any

core, it only degrades the 32-thread setup for the NUMA-

aware configurations. One interesting finding for the 32-

thread setup is that NUMA-awareness degraded through-

put for Message Ring. This is because for the NUMA-

aware setup, at any given time one Scheduler was pinned

to the same core as the competing thread. The interfer-

ence resulted in a convoy effect for the Message Ring

benchmark that hurt the overall throughput.

Another interesting finding is that for the 2-, 4-, and 8-

thread NUMA-agnostic configurations, adding the extra

load improved the throughput for both benchmarks. This

effect is a direct consequence of the competing thread

pushing a larger number of Schedulers to run on the same

CPU, resulting in better cache locality for them.

The impact of the extra load suggests possible im-

provements to the NUMA-aware version of Libtask: (1)

pinning a Scheduler to a CPU, not to a core, to allevi-

ate the convoy effect; and (2) taking into account the

communication patterns of Processes to reduce the cross-

socket communication. A comprehensive analysis of

these enhancements is left as future work.

7.2 Chronicle Evaluation

We chose to evaluate Chronicle using the DataSeries

pipeline because it was more CPU- and disk-intensive

than the analysis pipelines. Figure 7 shows the experi-

ment setup. In this setup, a client machine was directly

connected to an NFS server via two 10Gb/s links. The

server running Chronicle received network traffic on both

directions of the client-server links using two fiber taps.

For all the experiments described in this section, we used

two Chronicle pipelines (one pipeline per client-server

link). Hereafter, for brevity, we use the term core when

referring to logical cores.

We experimented with many configurations to stress

Chronicle. We observed that a mix of NFS read and write

workloads resulted in the highest rates for both through-

put and I/Os per second (IOPS) on the NFS server. The

results presented in this section were all generated using

30-minute, constant-rate fio [4] workload runs. Interest-

ingly, we obtained better results with NUMA-agnostic

Libtask due to the convoy effect described in Section 7.1.

The competing activities in the trace capture scenario

were threads used by DataSeries for compression and I/O

as well as applications like Apache that ran in the back-

ground. Therefore, we present results for this configu-

ration only. This section measures the performance of

Chronicle for a number of metrics, including multicore

scalability, CPU and memory usage, and the success rate

in capturing and parsing NFS operations.

7.2.1 Maximum Throughput

Figure 5(a) shows the maximum sustained throughput

rates as we varied the number of cores used by Chron-

icle.2 The sustained throughput rates are characterized

by constant utilization of the buffer pool (Section 5.2).

Therefore, Chronicle should handle these workload rates

for an infinitely long duration. This also means that

Chronicle can support higher data rates at the expense

of higher buffer pool utilization, albeit for a bounded

amount of time.

As shown in Figure 5(a), Chronicle with one core

could support 3.05Gb/s. Adding a second core did not

help much with throughput, although it did help with

better coverage (Figure 5(d)). We suspect that polling

the NICs by the four Packet Reader modules left little

time for other modules. Near maximum CPU utilization

for these configurations, shown in Figure 5(b), illustrates

this point. However, for the 4- and 8-core configurations,

2The bars in figures 5(a), 5(b), 6(a), and 6(b) denote the average

values, and the error bars show the minimum and maximum.
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(a) Max. sustained throughput (b) CPU utilization (c) Max. buffer pool utilization (d) NFS capture loss rate

Figure 5: Maximum sustained throughput evaluation.

(a) Max. sustained IOPS (b) CPU utilization (c) Max. buffer pool utilization (d) NFS capture loss rate

Figure 6: Maximum sustained IOPS evaluation.

NFS client NFS server

Chronicle server

Network tap

Network tap

Figure 7: Experiment setup.

there were enough spare CPU cycles to sustain 5.43Gb/s

and the near maximum 13.68Gb/s respectively. Adding

an extra thread per core or the second CPU (i.e., the 16-

and 32-core configurations) did not significantly increase

the maximum sustained throughput because with 8 cores

we could almost handle the maximum rate supported by

the NFS server.

Figure 5(c) shows the highest usage of the buffer pool

to handle the maximum throughput configurations. Al-

though our application scenario is mostly concerned with

high throughput and not processing latency (except in

reading packets), the relatively low buffer utilization sug-

gests that Chronicle processed packets very quickly. It

is worth noting that the 16- and 32-core configurations

had considerably less memory utilization than the 8-

core configuration, because with more computational re-

sources Chronicle could process packets much faster.

Another important metric is the loss rate in capturing

NFS operations. These losses can happen either as a re-

sult of Packet Readers not getting scheduled fast enough

to empty the NIC ring buffers or as a result of capture

via lossy methods (e.g., port mirroring). We compared

the number of NFS operations seen by the NFS server

with the number of operations captured in the DataSeries

traces to measure Chronicle’s loss rate. For all configura-

tions in Figure 5(d), Chronicle had a negligible loss rate.

Most notably, for the 32-core configuration at 14.0Gb/s,

Chronicle missed only 84 out of the total 48,600,042

NFS operations. An interesting conclusion we can draw

from the results in Figure 5 is that a hardware configura-

tion with 1GB of RAM dedicated for Chronicle, and an

8-core CPU with hyper-threading enabled, should han-

dle 14Gb/s relatively loss-free, provided that there is a

high-quality data feed (Section 7.2.3).

7.2.2 Maximum IOPS

The goal of the experiments described in this section

was to stress Chronicle with an increasingly higher num-

ber of NFS operations until Chronicle reached its limit

and could no longer keep up. For the experiments de-

scribed in Section 7.2.1, the NFS client issued 64KB

read and write operations to maximize throughput. To

maximize IOPS, the client issued 1B read and write oper-

ations. Figure 6(a) shows the maximum sustained IOPS

Chronicle could handle for different numbers of cores.

The results suggest that with 8 cores and only 40MB

of buffer space, Chronicle could handle the maximum

IOPS supported by the NFS server (106 kIOPS) rela-

tively loss free. The CPU utilization for the 8-core setup

also implies that only 5 out of 8 cores were fully uti-

lized. Therefore, Chronicle could potentially support

10
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Figure 8: This figure illustrates a controlled experiment

to study the impact of packet loss, when the network traf-

fic rate is about 10Gb/s. The highlighted 1-minute in-

tervals correspond to periods when packets got dropped

at the rate of 0.5% to 5%. Although high loss rates

caused significant backlog for RPC Parser, Chronicle

performed well under normal network conditions and re-

covered quickly when the losses were intermittent.

much higher IOPS rates. In fact, when we traced a cus-

tomer’s metadata-intensive workload, which was gener-

ated by more than 3,000 clients, we saw that Chronicle

could sustain 150 kIOPS.

The maximum sustained IOPS results illustrate an im-

portant point about Chronicle. Chronicle with 1 core can

support twice as many small NFS operations as the 32-

core setup of Section 7.2.1 (55,000 vs. 27,000 opera-

tions/s). Clearly, the cost of processing small PDUs is

much less than that of processing large PDUs. Through

CPU profiling and by examining the size of the Mes-

sage queues for different modules, we have confirmed

that when operating in the slow mode, RPC Parser con-

sumes the most CPU cycles among all the modules. Re-

calling the discussion in Section 5.1.1, RPC Parser has to

scan packet payloads in order to find the next RPC header

while operating in the slow mode. When PDUs are small,

it scans relatively few bytes before getting back to the

fast mode. However, for large PDUs the module may po-

tentially scan 64KB or more before it can find a header.

Therefore, unlike in packet forwarding, where a high vol-

ume of small packets poses the largest overhead, a high

volume of out-of-order packets belonging to large PDUs

poses the biggest challenge to Chronicle.

7.2.3 The Impact of Packet Loss

The previous section discussed how packet loss can de-

grade Chronicle’s performance. This section describes

a controlled experiment to study this effect. For this

experiment, we used the 32-core setup of Section 7.2.1

but made two changes. We limited the network traffic

rate to about 10Gb/s, and we modified the Packet Read-

ers to uniformly drop data packets (i.e., packets that are

not empty acks) at specific time intervals. The 1-minute

time intervals during which the Packet Readers induced

packet loss are highlighted in Figure 8 and are annotated

with the loss rates. The packet loss rates ranged from

0.5% to 5% and were interspersed with 2-minute inter-

vals when there were no induced losses.

The top graph in Figure 8 shows the effective network

traffic rate ingested by Chronicle during the course of the

experiment. The middle graph illustrates the number of

NFS operations that were processed by Chronicle. The

dips in the graph correspond to the lower number of com-

plete PDUs that Chronicle managed to find during the

loss intervals. As loss rates increased, the dips became

deeper and wider. They became deeper because there

were fewer complete PDUs to be processed and they be-

came wider because the RPC Parsers stayed in the slow

mode longer (even beyond the 1-minute loss interval).

However, as soon as Chronicle processed all the packets

received during the loss intervals, it reverted to the fast

mode and very quickly made up the lost ground. The

spikes following the dips signify this behavior.

One metric that clearly captures the behavior of

Chronicle under packet loss is the size of the Mes-

sage backlog for the RPC Parsers (the bottom graph in

Figure 8). Because an RPC Parser spends more time in

the slow mode, the number of outstanding Messages in

its queue grows. Although the backlog was negligible

when packet loss was 2% or less, it grew very fast at

higher rates. Because each Message in an RPC Parser’s

queue corresponds to one packet, the backlog had a direct

impact on increased buffer pool utilization. The results

in Figure 8 suggest that Chronicle can handle packet loss

at low rates fairly well provided that the losses are inter-

mittent and that there is a buffer pool of sufficient size

to accommodate the additional processing of the out-of-

order packets.

7.2.4 Trace Compression Ratio

Unsurprisingly, the size of a trace generated by Chroni-

cle depends on the workload being captured. This sec-

tion briefly discusses a 7-hour-long trace, captured from

a production environment, to shed some light on the

advantages of inline parsing, storing the checksums of

read and write data, and inline compression over stor-

ing the raw network data, as was done in the previous

efforts. For this trace, Chronicle processed 1.8TB of net-

work traffic where 36% of the operations corresponded

to NFS reads and writes. The total trace size generated
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Figure 9: The size of different extents with and without

compression.

by Chronicle amounted to 44.6GB, which is a 40x reduc-

tion over saving raw packets. The extents corresponding

to the network header and data checksums amounted to

84% of the trace, while the extents storing the RPC and

NFS fields accounted for the rest. The trace compres-

sion ratio varied from extent to extent. For instance, the

extents storing the NFS, RPC, network, and checksum

data had compression ratios of 20:1, 15:1, 12:1, and 3:1

respectively (Figure 9).

8 Lessons Learned

Our experience with Chronicle suggests that the ac-

tor programming model is an effective, programmer-

friendly framework for workload characterization at line-

rate. We believe that some of the techniques described

in this paper have applicability beyond the NFS proto-

col. For instance, the fast- and slow-mode techniques to

identify message boundaries (Section 5.1.1) have appli-

cability to other network storage protocols such as iSCSI,

SMB/CIFS, and the RESTful key-value store protocols.

Similarly, the zero-copy application layer parsing tech-

nique (Section 5.2) has no limitations in supporting other

protocols. The experiments described in sections 7.1 and

7.2 revealed that preserving cache locality should not

come at the expense of balancing load across cores, par-

ticularly in the presence of competing load.

Chronicle has been deployed in a number of produc-

tion environments to collect traces and perform sizing.

For these deployments, the average traffic rates (3 to

6Gb/s) were lower than the results presented in this pa-

per, and Chronicle could accurately capture the dynam-

ics of the workload. One common theme among our

deployments thus far has been the concentration of I/O

by clients and by files. For instance, in a 3-day deploy-

ment there were 573 unique NFS clients, where the 25

most active clients accounted for more than 60% of read

and write bytes served by the server. Accesses to files

were also heavily concentrated. In a week-long deploy-

ment, the 25 hottest files, out of 9 million unique files

accessed, accounted for 40% of total operations on the

server. The insights facilitated by Chronicle can guide a

storage administrator or a software-defined storage con-

troller to dynamically tune a storage system. As an ex-

ample, the knowledge of hot files and their access pat-

terns can lead to better data caching and tiering solutions.

One powerful aspect of Chronicle is that it enables de-

tection of problematic scenarios that are often not fore-

seen. For instance, we noticed that in a production envi-

ronment, 8 clients out of more than 3,000 unique clients

were reissuing read operations at the aggregate rate of

40 kIOPS for days. A closer examination revealed that

these reads accounted for 31% of all the operations re-

ceived by the server and that they were all failing due to

a stale file handle!

Identifying misconfigurations is another application

scenario for Chronicle. During one deployment, we ob-

served that a server was serving getattr requests at the

average rate of 56 kIOPS. Further analysis of the top 25

client-file pairs that were present in the getattr requests

revealed that these requests were targeted at static files,

with many being Linux system utilities that rarely get

updated. Shockingly, there were on average 214 getattr

requests per second for the top client-file pair! With in-

sights from Chronicle traces, we were able to recom-

mend configuring the NFS clients with correct attribute

caching parameters to eliminate a sizable portion of un-

necessary getattr requests. Another interesting finding

was that for some clients more than 80% of read and

write operations did not fall on 4096-byte boundaries.

These misaligned I/Os are generally more expensive to

serve by a block-based storage system and can be the

result of nonbuffered I/Os at clients or incorrectly con-

figured virtual disks for virtual machines.

9 Conclusions

This paper presented the design and implementation of

Chronicle, an extremely flexible framework for charac-

terizing workloads at line rate. We demonstrated that it is

possible to capture and analyze NFS traffic at 14.0Gb/s

using general-purpose CPUs, disks, and NICs. Chron-

icle’s high-throughput architecture is facilitated by a

pluggable, pipelined design that is based on actor pro-

gramming model. Such a design enables seamless scal-

ability to many cores where CPU-intensive operations

such as stateful parsing, pattern matching, data check-

summing, and inline compression can be done inline.

Chronicle’s source code [2] is available under an aca-

demic, noncommercial license.
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Abstract

Mobile apps need to manage data, often across devices,

to provide users with a variety of features such as seam-

less access, collaboration, and offline editing. To do so

reliably, an app must anticipate and handle a host of

local and network failures while preserving data con-

sistency. For mobile environments, frugal usage of cel-

lular bandwidth and device battery are also essential.

The above requirements place an enormous burden on

the app developer. We built Simba, a data-sync service

that provides mobile app developers with a high-level

local-programming abstraction unifying tabular and ob-

ject data – a need common to mobile apps – and trans-

parently handles data storage and sync in a reliable, con-

sistent, and efficient manner. In this paper we present a

detailed description of Simba’s client software which acts

as the gateway to the data sync infrastructure. Our eval-

uation shows Simba’s effectiveness in rapid development

of robust mobile apps that are consistent under all failure

scenarios, unlike apps developed with Dropbox. Simba-

apps are also demonstrably frugal with cellular resources.

1 Introduction
Personal smart devices have become ubiquitous and users

can now enjoy a wide variety of applications, or apps

for short, running on them. Many such apps are data-

centric [2] often relying on cloud-based resources to store,

share, and analyze the data. In addition to the user inter-

face and the various features, the developer of such an app

needs to build the underlying data management infrastruc-

ture. For example, in order to deliver a high-quality note-

taking app such as Evernote, the developers have to build

a data management platform that supports rich multime-

dia notes, queries on data and metadata, collaboration, and

offline operations, while ensuring reliability and consis-

tency in the face of failures. Moreover, a mobile app de-

veloper needs to meet the above requirements while also

being efficient with the limited resources on mobile de-

vices such as cellular bandwidth and battery power. The

better the developer handles the above-mentioned issues

the more likely the app will attract and retain users.

With the rapid growth in the number and the variety

of apps in the marketplace, there is a consequent demand

∗Work done as part of an internship at NEC Labs

from practitioners for high-level abstractions that hide the

complexity and simplify the various tasks of the app de-

veloper in managing data [6, 34, 52].

Data-sync services have emerged as an aid to develop-

ers wherein an app can offload some of its data manage-

ment to a third-party service such as Dropbox, iCloud,

or Google Drive. While at first such services catered to

end-users who want access to their files across multiple

devices, more recently such services provide SDKs for

apps to use directly through CRUD (Create, Read, Up-

date, Delete) operations [15]. Sync services are built upon

decades of research on distributed and mobile data sync –

from foundational work on disconnected operations [30],

weakly-connected replicated storage [37, 55], and ver-

sion management [42], to more recent work on wide-area

database replication [58], collaborative editing [46], and

caching for mobile devices [57].

The principles and mechanisms of data sync by them-

selves are well understood, here we do not seek to rein-

vent them, but a data-sync service needs to achieve a dual

objective in order to be valuable to mobile apps. First,

it must transparently handle matters of reliability, consis-

tency, and efficiency, with little involvement from the app

developer, which is challenging. As the makers of Drop-

box also note, providing simplicity to users on the out-

side can require enormous complexity and effort under-

the-hood [24]. Second, a data-sync service must pro-

vide a data model that is beneficial to the majority of

apps; while file sync is commonplace, many apps actually

operate over inter-dependent structured and unstructured

data [11]. A high-level data model encompassing tables

and files is of great value to app developers and the trans-

parency must apply to this data model.

A data-sync service must preserve, on behalf of the

apps, the consistency between structured and unstructured

data as it is stored and shared under the presence of fail-

ures. Consider the example of photo-sharing apps such as

Picasa and Instagram; typically such an app would store

album information in a table and the actual images on the

file system or object store. In this case, the sync service

needs to ensure that there will never be dangling point-

ers from albums to images. Since mobile apps can crash

or stall frequently for a variety of reasons [10, 50], if an

app is in the middle of a data operation (a local write or

sync) when a failure occurs, the sync service needs to reli-
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ably detect and recover to a consistent state. Recent work

has shown that several data-sync services also spread cor-

rupt data when used with desktop file systems [61, 62].

While services already exist for file [4, 27, 56] and ta-

ble [15, 29, 43] data, none meet the above criteria.

To better understand how mobile apps and sync ser-

vices maintain data consistency under failures, we con-

ducted a study of popular mobile apps for Android in-

cluding ones that use Dropbox, Parse, and Kinvey for data

sync. Our study revealed that apps manage data poorly

with data loss, corruption, and inconsistent behavior.

We thus built Simba to manage data for mobile apps,

which provides a high-level abstraction unifying files and

tables. The tables may contain columns of both primitive-

type (string, integer, etc.) and arbitrary-sized objects, all

accessible through a CRUD-like interface. For ease of

adoption, the interface is kept similar to the ones already

familiar to iOS and Android developers. Apps can con-

struct a data model spanning both tables and objects and

Simba ensures that all data is reliably, consistently, and ef-

ficiently synced with the server and other mobile devices.

Simba consists of an SDK for developing mobile apps,

the Simba client app (sClient) for the mobile device, and

the Simba cloud server (sCloud); all apps written with the

Simba SDK, Simba-apps, communicate only with the lo-

cal instance of sClient which serves as the proxy for all in-

teraction with sCloud. In this paper, we focus on the trans-

parency of the high-level abstraction as it affects Simba-

apps and hence primarily discuss sClient; the entire Simba

service is presented in greater detail elsewhere [45].

Through case studies we show how Simba enabled

us to quickly develop several mobile apps, significantly

increasing development ease and functionality. Simba-

apps benefited greatly from sClient’s failure transparency;

an app written using Dropbox failed to preserve atomic-

ity of an entire data object leading to torn updates and

synced inconsistent data under failure. Benefiting from

Simba’s ability to programmatically incorporate delay-

tolerant data transfer, Simba-apps also exhibited reduced

network footprint and gave the device increased opportu-

nity to turn off the cellular radio.

2 Study of Mobile App Reliability
We studied the reliability of some popular mobile apps

and sync services (on Android) by systematically intro-

ducing failures – network disruption, local app crash, and

device power loss – and observing the recovery outcome,

if any. The apps in our study use both tables and files/ob-

jects, and rely on various existing services, i.e., Dropbox,

Parse, and Kinvey, for data sync. We setup two Android

devices with identical apps and initial state. To simulate

a network disruption we activated airplane mode and for

crashes (1) manually kill the app, and (2) pull the battery

out; the outcomes for the two crash tests do not differ and

we thus list them once, as shown in Table 1.

For the network disruption tests, some apps (e.g., Hiyu,

Tumblr) resulted in loss of data if the sync failure was not

handled immediately after reconnection. If the app (or

the notification) was closed, no recovery happened upon

restart. Some apps (UPM, TomDroid, Keepass2) did not

even notify the user that sync had failed. As most apps re-

quired the user to manually resync after failure, this over-

sight led to data perpetually pending sync. Some apps

exhibited other forms of inconsistency. For TomDroid,

if the second device contacted its server for sync even in

absence of changes, the delete operation blocked indefi-

nitely. For Evernote, manual re-sync after disruption cre-

ated multiple copies of the same note over and over.

For the crash tests, the table-only apps recovered cor-

rectly since they depended entirely on SQLite for crash

consistency. However, apps with objects showed prob-

lematic behavior including corruption and inconsistency.

For YouTube, even though the object (video) was success-

fully uploaded, the app lost the post itself. Instagram and

Keepass2 both created a local partial object; Keepass2 ad-

ditionally failed to recover the table data resulting in a

dangling pointer to the object. Dropbox created a conflict

file with a partial object (local corruption) and spread the

corruption to the second device, just like Evernote.

Our study reveals that mobile apps still lose or corrupt

data in spite of abundant prior research, analysis tools, and

data-sync services. First, handling objects was particu-

larly problematic for most apps – no app in our study was

able to correctly recover from a crash during object up-

dates. Second, instead of ensuring correct recovery, some

apps take the easier route of disabling object updates alto-

gether. Third, in several cases, apps fail to notify the user

of an error causing further corruption. The study further

motivates us to take a holistic approach for transparently

handling failures inside a data-sync service and provide a

useful high-level abstraction to apps.

3 App Development with Simba

3.1 Data Model and API

Data Model: Simba’s data model is designed such that

apps can store all of their data in a single, unified, store

without worrying about how it is stored and synced. The

high-level abstraction that enables apps to have a data

model spanning tables and objects is called a Simba Ta-

ble (sTable in short). To support this unified view of data

management, Simba, under the hood, ensures that apps al-

ways see a consistent view of data stored locally, on the

cloud, and other mobile devices.

The unit of client-server consistency in Simba is an in-

dividual row of an sTable (sRow in short) which consists

of tabular data and all objects referred in it; objects are not

shared across sRows. Simba provides causal consistency

2
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App DM Disruption Recover Outcome Crash Recover Outcome
W

it
h

T
ab

le
O

n
ly

Fetchnotes

Kinvey (notes)

T Upd/Del note ✓ Auto resync Upd/Del

note

✓ All or nothing

Syncboxapp

Dropbox (notes)

T Upd/Del note ✓ Auto resync Upd/Del

note

✓ All or nothing

Township Parse

(social game)

T Background

autosave

✗ App closed with data loss Background

autosave

✓ All or nothing

UPM Dropbox

(pwd manager)

T Set pwd ✗ No notification Set pwd ✓ All or nothing

TomDroid

(notes)

T Upd/Del note ✗ No notification. Del

blocked if other device

syncs even w/o change

Upd/Del

note

✓ All or nothing

Hiyu Kinvey

(grocery list)

T Upd/Del item ✗ Change loss if app is

closed during disruption

Upd/Del

item

✓ All or nothing

W
it

h
o
u
t

O
b
j

U
p
d
at

e

Pinterest

(social n/w)

T+O Create pin-

board

✓ Manual resync Set/Del pin ✓ All or nothing

Twitter

(social n/w)

T+O Post (re)tweet ✓ Manual resync Post/Del

tweet

✓ All or nothing

Facebook

(social n/w)

T+O Post status

Post comment

✓ Auto resync

✗ Comment loss if status is

closed during disruption

Post/Del

status

✓ All or nothing

Tumblr

(blogging)

T+O Post image ✗ Post loss if notification or

app closed during disruption

Post/Del

image

✓ All or nothing

YouTube

(video stream)

T+O Post/Del video ✓ Auto resync Del video

Post video

✓ All or nothing

✗ Post loss even for video-upload success

Instagram

(social n/w)

T+O Post image

Post comment

✓ Manual resync

✗ Comment loss if image is

closed during disruption

Del image

Post image

✓ All or nothing

✗ Partial image created locally in gallery

= corruption

W
it

h
O

b
j

U
p
d
at

e Keepass2 Drop-

box (pwd mgr)

O Set/Del pwd ✗ No notification Set pwd ✗ Password loss; partial object created lo-

cally in “kdbx” filesystem = corruption

Dropbox

(cloud store)

T+O Upd/Del file ✓ Auto resync Upd file ✗ Partial conflict file created; file corrup-

tion and spread to second client

Evernote

(notes)

T+O Upd/Del note ✗ Manual sync creates mul-

tiple copies of same note

Upd note

image

✗ Note image corrupted and spread to

second client

Table 1: Study of App Failure Recovery. DM denotes the data model (T: tables only; O: objects only; T+O: app stores both tables and

objects). ✗ denotes problem behavior and ✓ indicates correct handling. “Disruption” and “crash” columns list the workload for that test.

semantics with all-or-nothing atomicity over an sRow for

both local and sync operations; this is a stronger guar-

antee than provided by existing sync services. An app

can, of course, have a tabular-only or object-only schema,

which Simba trivially supports. Since an sRow represents

a higher-level, semantically meaningful, unit of app data,

ensuring its consistency under all scenarios is quite valu-

able to the developer and frees her from writing compli-

cated transaction management and recovery code. Fig-

ure 1 shows Simba’s data model.

Simba currently does not provide atomic sync across

sRows or sTables. While some apps may benefit from

atomic multi-row sync, our initial experience has shown

that ACID semantics under sync for whole tables would

needlessly complicate Simba design, lead to higher per-

formance overheads, and be overkill for most apps.

API: sClient’s API, described in Table 2, is similar to

the popular CRUD interface but with four additional fea-

tures: 1) CRUD operations on tables and objects 2) opera-

tions to register tables for sync 3) upcalls for new data and

conflicts 4) built-in conflict detection and support for reso-

lution. Objects are written to, or read from, using a stream

abstraction which allows Simba to support large objects; it

also enables locally reading or writing only part of a large

object – a property that is unavailable for BLOBs (binary

large objects) in relational databases [38].

Since different apps can have different sync require-

ments, Simba supports per-table sync policies controlled

by the app developer using the sync methods (register-

WriteSync etc). Each sTable can specify a non-zero pe-

riod which determines the frequency of change collection

for sync. A delay tolerance (DT) value can be speci-

fied which gives an additional opportunity for data to be

coalesced across apps before sending over the network;

DT can be set to zero for latency-sensitive data. Even

when apps have non-aligned periods, DT enables cross-

app traffic to be aligned for better utilization of the cel-

lular radio. If an app needs to sync data on-demand, it

can use the writeSyncNow() and readSyncNow() methods.

Simba’s delay-tolerant transfer mechanism directly bene-

fits from prior work [22, 49]. Since sync happens in the

background, when new data is available or conflicts occur

due to sync, apps are informed using upcalls. An app can

begin and end a conflict-resolution transaction at-will and

iterate over conflicted rows to resolve with either the local

copy, the server copy, or an entirely new choice.
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CRUD (on tables and objects)

createTable(TBL, schema, properties)

updateTable(TBL, properties)

dropTable(TBL)

outputStream[]← writeData(TBL, TBLData, objColNames)

outputStream[]← updateData(TBL, TBLData, objNames, selection)

inputStream[]← rowCursor← readData(TBL, projection, selection)

deleteData(TBL, selection)

Table and Object Synchronization

registerWriteSync(TBL, period, DT, syncpref)

unregisterWriteSync(TBL)

writeSyncNow(TBL)

registerReadSync(TBL, period, DT, syncpref)

unregisterReadSync(TBL)

readSyncNow(TBL)

Upcalls

newDataAvailable(TBL, numRows)

dataConflict(TBL, numConflictRows)

Conflict Resolution

beginCR(TBL)

getConflictedRows(TBL)

resolveConflict(TBL, row, choice)

endCR(TBL)

Table 2: Simba Client Interface. Operations available to mo-

bile apps for managing table and object data. TBL refers to table name.

3.2 Writing a Simba App

Simba’s unified API simplifies data management for apps;

this is perhaps best shown with an example. We consider a

photo-sharing app which stores and periodically syncs the

images, along with their name, date, and location. First,

create an sTable by specifying its schema:

sclient.createTable("album", "name VARCHAR, date

INTEGER, location FLOAT, photo OBJECT", FULL_SYNC);

Next, register for read (download) and write (upload)

sync. Here, the app syncs photos every 10 mins (600s)

with a DT of 1 min (60s) for both reads and writes, select-

ing WiFi for write and allowing 3G for read sync.

sclient.registerWriteSync("album",600,60,WIFI);

sclient.registerReadSync("album",600,60,3G);

A photo can be added to the table with writeData() fol-

lowed by writing to the output stream.

// byte[] photoBuffer has camera image

List<SCSOutputStream> objs = sclient.writeData("album"

, new String[]{"name=Kopa","date=15611511","

location=24.342"}, new String[] {"photo"});

objs[0].write(photoBuffer); objs[0].close();

Finally, a photo can be retrieved using a query:

SCSCursor cursor = sclient.readData("album", new

String[] { "location", "photo" }, "name=?", new

String[] { "Kopa" }, null);

// Iterate over cursor to get photo data

SCSInputStream mis = cursor.getInputStream().get(1);

4 Simba Design

4.1 Simba Server (sCloud)

The server is a scalable cloud store that manages data

across multiple apps, tables, and clients [45]. It provides a

<1fc2e,0> <1fc2e,1> <1fc2e,2> <ab1fd,0> <ab1fd,1> ....

RowId Name Photo

2 Lucy

1 Snoopy

RowId Name Photo

Snoopy1 ab1fd

2 Lucy 1fc2e

....

Table Store

Object Store

sTable (logical)

sTable (physical)

Figure 1: Simba Client Data Store. Table Store is imple-

mented using a SQL database and Object Store with a key-value store

based on LSM tree. Objects are split into fixed-size chunks.

network protocol for data sync, based on a model in which

it is the responsibility of an sClient to pull updates from

the server and push any local modifications, on behalf of

all device-local Simba-apps; the sClient may register with

the server to be notified of changes to subscribed tables.

Sync Protocol: To discuss sClient’s design we need to

refer to the semantics offered by the server through the

network protocol. The server is expected to provide dura-

bility, atomicity of row updates, and multi-version concur-

rency control. Thus, the sClient is exposed to versions,

which accompany any data in messages exchanged with

the server. Simba implements a variant of version vectors

that provides concurrency control with causal consistency

semantics [33]. Since all sClients sync to a central sCloud,

we simplify the versioning scheme to have one version

number per row instead of a vector [42]. Each sRow has

a unique identifier IDrow generated from a primary key, if

one exists, or randomly, and a version Vrow.

Row versions are incremented at the server with each

update of the row; the largest row version in a ta-

ble is maintained as the table version, Vtable, allowing

us to quickly identify which rows need to be synchro-

nized. A similar scheme is used in gossip protocols [60].

Since Simba supports variable-sized, potentially large,

objects, the protocol messages explicitly identify objects’

partially-changed sets that need to be applied atomically.

4.2 Simba Client (sClient)

sClient allows networked Simba-apps to continue to have

a local I/O model which is shown to be much easier to

program for [14]; sClient insulates the apps from server

and network disruptions and allows for a better overall

user experience. Figure 2 shows the simplified archi-

tecture of the sClient; it is designed to run as a device-

wide service which (1) provides all Simba-apps with ac-

cess to their table and object data (2) manages a device-

local replica to enable disconnected operations (3) ensures

fault-tolerance, data consistency, and row-level atomicity

(4) carries out all sync-related operations over the net-

work. Simba-apps link with sClient through a lightweight

4



USENIX Association  13th USENIX Conference on File and Storage Technologies (FAST ’15) 363

Figure 2: Simba Client Architecture.

library (sClientLib) which provides the Simba Client In-

terface (Table 2) and forwards client operations to sClient;

the apps are alerted through upcalls for events (e.g., new

data, conflict) that happen in the background. Finally,

sClient monitors liveness of apps, so that memory re-

sources can be freed in case of app crash.

The sClient data store (§4.2.1) provides a unified ab-

straction over a table store and an object store. SimbaSync

performs sync processing (§4.2.2) with the sCloud; for up-

stream sync, it collects the locally-modified data, and for

downstream sync, it applies changes obtained from the

server into the local store, detects conflicts, and gener-

ates upcalls to apps. The sync protocol and the local data

store together provide transparent failure handling for all

Simba-apps (§5). The Network Manager handles all net-

work connectivity and server notifications for the sClient

(§6); it provides an efficient utilization of the device’s cel-

lular radio through coalescing and delay-tolerance.

Implementation: sClient is currently implemented on

Android, however, the design principles can be applied

to other mobile platforms such as iOS. sClient is imple-

mented as a daemon called the Simba Content Service

(SCS) which is accessed by mobile apps via local RPC;

on Android we use an AIDL [1] interface to communicate

between the apps and the service. An alternate approach

– to link directly with the app – is followed by Drop-

box [16] and Parse [43] but our approach allows sClient to

shape network traffic for all Simba-apps on the same de-

vice thereby benefiting from several cross-app optimiza-

tions. While the benefits of using persistent connections

have been long known [35], individual apps use TCP con-

nections in a sub-optimal manner with frequent connec-

tion establishment and teardown. sClient’s design allows

it to use a single persistent TCP connection to the sCloud

on behalf of multiple apps; the same connection is also re-

used by the server for delivering notifications, providing

additional savings, similar to Thialfi [9].

A misbehaving app can potentially adversely affect

other Simba-apps. In practice, we believe that develop-

ers already have an incentive to write well-behaved apps

to keep users satisfied. In the future, fine-grained account-

ing of data, similar to Android’s accounting, can be built

into Simba to further discourage such behavior.

4.2.1 Simba Client Data Store

The sClient Data Store (SDS) is responsible for stor-

ing app data on the mobile device’s persistent storage

(typically the internal flash memory or the external SD

card). For Simba-apps, this means having the capability

to store both tabular data and objects in a logically uni-

fied manner. The primary design goal for SDS is to en-

able, and efficiently support, CRUD operations on sRows;

this requires the store to support atomic updates over

the local data. Additionally, since objects are variable-

sized and potentially large, the store also needs to sup-

port atomic sync of such objects. Since the store per-

sistently stores all local modifications, a frequent query

that it must efficiently support is change detection for up-

stream sync; SDS should be able to quickly determine

sub-object changes. Figure 1 shows the SDS data layout.

Objects are subdivided into fixed-size chunks and

stored in a key–value store (KVS) that supports range

queries. The choice of the KVS is influenced by the

need for good throughput for both appends and overwrites

since optimizing for random writes is important for mo-

bile apps [28]. Each chunk is stored as a KV–pair, with

the key being a 〈ob ject id, chunk number〉 tuple. An ob-

ject’s data is accessed by looking up the first chunk of the

object and iterating the KVS in key order.

Local State: sClient maintains additional local state,

persistent and volatile, for sync and failure handling. Two

persistent per-row flags, FlagTD (table dirty) and FlagOD

(object dirty), are used to identify locally-modified data,

needed for upstream sync. To protect against partial ob-

ject sync, we maintain for each row CountOO, the num-

ber of objects opened for update. A write transaction for

a row is considered closed when all its open objects are

closed. Each row has two more persistent flags, FlagSP

(sync pending) and FlagCF (conflict), which track its cur-

rent sync state. Finally, an in-memory dirty chunk table

(DCT) tracks chunks that have been locally modified but

not yet synced. This obviates the need to query the store

for these changes during normal operation.

Implementation: We leverage SQLite to implement

the tabular storage with an additional data type represent-

ing an object identifier (ob ject id). Object storage is im-

plemented using LevelDB [32] which is a KVS based on a

log-structured merge (LSM) tree [40]; LevelDB meets the

throughput criteria for local appends and updates. Lev-

elDB also has snapshot capability which we leverage for

atomic sync. There is no native port of LevelDB for An-

droid so we ported the original C++ LevelDB code using

Android’s Native Development Kit (NDK). We use one

instance of LevelDB to keep objects for all tables to en-

sure sequential writes for better local performance [28].

Since the local state is stored in an sRow’s tabular part,

SQLite ensures its consistent update.
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4.2.2 Sync processing

An sClient independently performs upstream and down-

stream sync. The upstream sync is initiated based on the

specified periodicity of individual tables, and using local

state maintained in (FlagTD, FlagOD) to determine dirty

row data; these flags are reset upon data collection. For

rows with dirty objects, chunks are read one-by-one and

directly packed into network messages.

Since collecting dirty data and syncing it to the server

may take a long time, we used the following techniques

to allow concurrent operations by the foreground apps.

First, sClient collects object modifications from LevelDB

snapshots of the current version. As sClient syncs a mod-

ified object only after it is closed and the local state is

updated (decrement CountOO by 1), sClient always en-

sures a consistent view of sRows at snapshots. Second,

we allow sClient to continue making modifications while

previous sync operations are in-flight; this is particularly

beneficial if the client disconnects and sync is pending

for an extended duration. These changes set sRow’s local

flags, FlagTD or FlagOD, for collection during the subse-

quent sync. For this, sClient maintains a sync pending flag

FlagSP which is set for the dirty rows, once their changes

are collected, and reset once the server indicates success.

If another sync operation starts before the previous one

completes, rows with FlagSP already set are ignored.

Downstream sync is also initiated by an sClient in re-

sponse to a server notification of changes to a table. The

client pulls all rows that have a version greater than the lo-

cal Vtable, staging the downstream data until all chunks of

a row are received and then applying it row-by-row onto

the sClient data store in increasing Vrow order.

Conflicts on upstream sync are determined through

Vrow mismatch on the server, while for downstream by

inspecting the local dirty flag of received rows. To en-

able apps to automatically resolve [31] or present to its

users, the server-returned conflicted data is staged locally

by sClient and the relevant Simba-app is notified. sClient

is designed to handle conflicting updates gracefully. Con-

flicted rows are marked (FlagCF) to prevent further up-

stream sync until the conflict is resolved. However, apps

can resolve conflicts at their own convenience and can

continue reading and writing to their local version of the

row without sync. We believe this greatly improves the

user experience since apps do not have to abruptly inter-

rupt operations when conflicts arise.

5 Transparent Failure Handling
Mobile apps operate under congested cellular net-

works [13], network disruptions [20], frequent service and

app crashes [10], and loss of battery [44]. Mobile OS

memory management can also aggressively kill apps [12].

Failure transparency is a key design objective for

sClient which it achieves through three inter-related as-

pects. First, the mechanism is comprehensive: the sys-

tem detects each possible type of failure and the recovery

leaves the system in a well-defined state for each of them.

Second, recovery leaves the system not merely in a known

state, but one that obeys high-level consistency in accor-

dance with the unified data model. Third, sClient is judi-

cious in trading-off availability and recovery cost (which

itself can be prohibitive in a mobile environment). Barring

a few optimizations (discussed in §5.2), an sClient main-

tains adequate local metadata to avoid distributing state

with the server for the purposes of recovery [41]. sClients

are stateful for a reason: it allows the sync service, hav-

ing many mobile clients, which can suffer from frequent

failures, and a centralized server, to decouple their failure

recovery thereby improving availability.

5.1 Comprehensive & High-level Consistent

sClient aims to be comprehensive in failure handling and

to do so makes the use of a state machine [53]. Each

successful operation transitions sClient from one well-

defined state to another; failures of different kinds lead

to different faulty states each with well-defined recovery.

We first discuss network failures which affect only the

sync operations. As discussed previously, the server re-

sponse to upstream sync can indicate either success or

conflict and to downstream sync can indicate either suc-

cess or incompletion. Table 3(a) describes sClient’s sta-

tus in terms of the local sync-pending state (FlagSP) and

the relevant server response (RCO, RCT , RUO, RUT ); note

that only a subset of responses may be relevant for any

given state. Each unique state following a network dis-

connection, for upstream or downstream sync, represents

either a no-fault or a fault situation; for the latter, a recov-

ery policy and action is specified sClient. Tables 3 (b) and

(c) specify the recovery actions taken for failures during

upstream and downstream sync respectively. The specific

action is determined based on a combination of the dirty

status of the local data and the server response.

Crashes affect both sync and local operations and the

state of the SDS is the same whether sClient, Simba-app,

or the device crash. sClient detects Simba-app crashes

through a signal on a listener and de-allocates in-memory

resources for the app. Table 4 shows the recovery actions

taken upon sClient restart after a crash; for a Simba-app

crash, recovery happens upon its restart.

sClient handles both network failures and crashes while

maintaining all-or-nothing update semantics for sRows –

in all cases, the state machine specifies a recovery ac-

tion that preserves the atomicity of the tabular and object

data – thereby ensuring the consistency of an app’s high-

level unified view; this is an important value proposition

of sClient’s failure transparency to mobile apps. As seen

in Table 4, when an object is both dirty and open (FlagOD

= 1 & CountOO > 0), a crash can lead to row inconsis-
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Type State Upon Network Disconnection Implication Recovery Policy Action

Up
SP=0 No sync Not needed None (no-fault)
SP=1, before SyncUpResult Missed response Reset & retry SP←0, TD←1, if ∃DCT OD←1

stream SP=1, after SyncUpResult(RCO=0) Completed Roll forward None (no-fault)
SP=1, after SyncUpResult(RCO=1) Partial response Reset & retry See Table 3(b)

Down

Before Notify No sync Not needed None (no-fault)
After Notify Sync needed Normal operation Send SyncDownstream
After SyncDownstream Missed response Retry Resend SyncDownstream

stream After SyncDownResult(RUO=0) Completed Roll forward See Table 3(c)
After SyncDownResult(RUO=1) Partial response Reset & retry See Table 3(c)

(a) Sync Failure Detection and Recovery Policy

Flags Resp.
Recovery Action

TD OD RCT
0 0 * Delete entry, SP←0
0 1 * Delete entry, SP←0, TD←1, if ∃DCT OD←1
1 0 * Delete entry, SP←0, TD←1
1 1 * Delete entry, SP←0, TD←1, if ∃DCT OD←1

(b) Recovery action for SyncUpstream

Flags Response
Recovery Action

TD OD RUT RUO

* * * 1 Delete entry, resend w/ new
Vtable: SyncDownstream

0 0 1 0 Update table data
1 * 1 0 Conflict on table data

(c) Recovery action for SyncDownstream

Table 3: Network Disconnection: State Space for Failure Detection and Recovery. CF= 0 for all the above states since

sync is in-progress; OO is irrelevant. ∃DCT→Obj exists in DIRTYCHUNKTABLE. Delete entry→Delete row in TBLCONFLICT and corresponding

object in LevelDB. TD: Table Dirty, OD: Object Dirty, SP: Sync Pending, RCO: Response conflict for object, RCT : Response conflict for table,

RUO: Response update for object, RUT : Response update for table. Note TD and OD can be re-set to 1 after SP=1 since Simba allows local ops to

safely proceed even when prior sync is in-progress. * indicates recovery action is independent.

tency, i.e., a torn write. Similarly, a network disruption

during an object sync can cause a partial sync; sClient

detects and initiates appropriate torn recovery.

5.2 Judicious

sClient balances competing demands: on the one hand,

normal operation should be efficient; on the other, failure

recovery should be transparent and cheap. sClient main-

tains persistent state to locally detect and recover from

most failures; for torn rows, after local detection, it recov-

ers efficiently through server assistance. There are two

kinds of tradeoffs it must make to keep recovery costs low.

5.2.1 Tradeoff: Local State vs. Network I/O

When sClient recovers from a crash, it can identify

whether the object was dirty using FlagOD but it cannot

determine whether it was completely or partially written

to persistent storage; the latter would require recovery.

CountOO counter enables making this determination: if

it is set to zero, sClient can be sure that local data is con-

sistent and avoid torn recovery using the server. The cost

to sClient is an extra state of 4 bytes per row. However,

one problem still remains: to sync this object, sClient still

needs to identify the dirty chunks. The in-memory DCT

will be lost post-crash and force sClient to either fetch all

chunks from the server or send all chunks to the server for

chunk-by-chunk comparison. sClient thus pays the small

cost of persisting DCT, prior to initiating sync, to prevent

re-syncing entire, potentially large, objects. Once per-

sisted, DCT is used to sync dirty chunks after a crash and

removed post-recovery. If sClient crashes before DCT is

written to disk, it sends all chunks for dirty objects.

TD OD OO SP CF Recovery action after crash (Flags)

0 0 =0 0 0 Do nothing
1 Conflict upcall

0 0 =0 1 – Restart SyncUpstream with table data and object if

∃DCT (TD←1, OD←1 if ∃DCT, SP←0)
0 0 >0 0 0 Do nothing (OO←0)

1 Conflict upcall (OO←0)
0 0 >0 1 – Restart SyncUpstream with table data and object if

∃DCT (TD←1, OD←1 if ∃DCT, OO←0, SP←0)
0 1 =0 0 0 Start SyncUpstream with full object

1 Conflict upcall
0 1 =0 1 – Restart SyncUpstreamwith full row (TD←1, SP←0)

← No information on which object is dirty
0 1 >0 0 * Recover Torn write (OD←0, OO←0)
0 1 >0 1 – Recover Torn write (OD←0, OO←0, SP←0)
1 0 =0 0 0 Start SyncUpstream with table data

1 Conflict upcall
1 0 =0 1 – Restart SyncUpstream with table data and object if

∃DCT (OD←1 if ∃DCT, SP←0)
1 0 >0 0 0 Start SyncUpstream with table data (OO←0)

1 Conflict upcall (OO←0)
1 0 >0 1 – Restart SyncUpstream with table data and object if

∃DCT (OD←1 if ∃DCT, OO←0, SP←0)
1 1 =0 0 0 Start SyncUpstream with full row

1 Conflict upcall
1 1 =0 1 – Restart SyncUpstream with full row (SP←0)
1 1 >0 0 * Recover Torn write (TD←0, OD←0, OO←0)
1 1 >0 1 – Recover Torn write (TD←0, OD←0, OO←0, SP←0)

Table 4: Client Crash: State Space for Failure Detec-

tion & Recovery. TD: Table Dirty, OD: Object Dirty, OO: Object

Open Count, SP: Sync Pending, CF: Row Conflict; * indicates recovery

action independent of flag; – indicates state with flag=1 is not possible

5.2.2 Tradeoff: Local I/O vs. Network I/O

If an object does have a non-zero CountOO post-crash, it is

indeed torn. The most obvious way to recover torn rows

is to never update data in-place in the SDS, but instead al-

ways write out-of-place first; once the data is successfully

written, it can be copied to the final location similar to a

write-ahead-log or journaling. Instead of paying the over-

head during common-case operation, in this case, sClient

takes assistance from Simba.

At any point in time, Simba has some consistent view of

7



366 13th USENIX Conference on File and Storage Technologies (FAST ’15) USENIX Association

Operation Method Throughput (MB/s)

Update In-place 2.29 ± 0.08
Out-of-place 1.37 ± 0.04

Read In-place 3.94 ± 0.04
Out-of-place 3.97 ± 0.07

Table 5: Server-assisted Recovery. Comparison of in-place

and out-of-place local throughput with 1KB rows

that row; the client relies on this observation to either roll-

back or roll-forward to a consistent state. If sClient detect

a local torn row during recovery, it obtains a consistent

version of the row from the server; this is akin to rollback

for aborted database transactions [36]. If the server has

since made progress – the client in essence rolls forward.

If the client is disconnected, recovery cannot proceed, but

also does not prevent normal operation – only the torn

rows are made unavailable for local updates. For compar-

ison, we also implement an out-of-place SDS; as shown in

Table 5, sClient is able to achieve 69% higher throughput

with in-place updates as opposed to out-of-place updates

for updating rows with 1KB objects.

6 Transparent Network Efficiency
Simba sync is designed to make judicious use of cellu-

lar bandwidth and device battery through a custom-built

network protocol with two optimizations:

Delay tolerance and coalescing: typically, many apps

run in the background as services, for example to send/re-

ceive email, update weather, synchronize RSS feeds and

news, and update social networking. sClient is designed

as a device-wide service so that sync data for multiple in-

dependent apps can be managed together and transferred

through a shared persistent TCP connection. Further,

Simba supports delay-tolerant data scheduling which can

be controlled on a per-table basis. Delay tolerance and co-

alescing has two benefits. 1) Improved network footprint:

allows data transfer to be clustered, reducing network ac-

tivity and improving the odds of the device turning off the

radio [49]. Control messages from the server are subject

to the same measures. 2) Improved scope for data com-

pression: outgoing data for multiple apps is coalesced to

improve the compression [23].

Fine-grained change detection: an entire object need

not be synced if only a part changes. Even though data is

versioned per row, sClient keeps internal soft-state (DCT)

to detect object changes at a configurable chunk level;

Simba server does the same for downstream sync.

Implementation: Even though sRows are the logi-

cal sync unit, sClient’s Network Manager packs network

messages with data from multiple rows, across multiple

tables and apps, to reduce network footprint. Simba’s net-

work protocol is implemented using Protobufs [7], which

efficiently encodes structured data, and TLS for secure

network communication; the current prototype uses two-

way SSL authentication with client and server certificates.

7 Evaluation
We wish to answer the following two questions:

• Does Simba provide failure transparency to apps?

• Does Simba perform well for sync and local I/O?

We implemented sClient for Android interchangeably

using Samsung Galaxy Nexus phones and an Asus Nexus

7 tablet all running Android 4.2. WiFi tests were on a

WPA-secured WiFi network while cellular tests were run

on 4G LTE: KT and LGU+ in South Korea and AT&T in

US. Our prototype sCloud is setup using 8 virtual ma-

chines partitioned evenly across 2 Intel Xeon servers each

with a dual 8-core 2.2 GHz CPU, 64GB DRAM, and eight

7200 RPM 2TB disks. Each VM was configured with

8GB DRAM, one data disk, and 4 CPU cores.

7.1 Building a Fault-tolerant App

The primary objective of Simba is to provide a high-level

abstraction for building fault-tolerant apps. Evaluating

success, while crucial, is highly subjective and hard to

quantify; we attempt to provide an assessment through

three qualitative means: (1) comparing the development

effort in writing equivalent apps using Simba and Drop-

box. (2) development effort in writing a number of Simba-

apps from scratch. (3) observing failure recovery upon

systematic fault-injection in sClient.

7.1.1 Writing Apps: Simba vs. Dropbox

Objective: is to implement a photo-sync app that stores

album metadata and images. AppS is to be written using

Simba and AppD using Dropbox. We choose Dropbox

since it has the most feature-rich and complete API of

existing systems and is also highly popular [56]; Drop-

box provides APIs for files (Filestore) and tables

(Datastore). AppS and AppD must provide the same

semantics to the end-user: a consistent view of photo al-

bums and reliability under common failures; we compare

the effort in developing the two equivalent apps.

Summary: achieving consistency and reliability was

straightforward for AppS taking about 5 hours to write

and test by 1 developer. However, in spite of considerable

effort (3 – 4 days), AppD did not meet all its objectives;

here we list a summary of the limitations:

1. Dropbox does not provide any mechanism to consis-

tently inter-operate the table and object stores.

2. Dropbox Datastore in-fact does not even provide

row-level atomicity during sync (only column-level)!

3. Dropbox does not have a mechanism to handle torn

rows and may sync inconsistent data.

4. Dropbox carries out conflict resolution in the back-

ground and prevents user intervention.

Methodology: we describe in brief our efforts to over-

come the limitations and make AppD equivalent to AppS ;

testing was done on 2 Android smartphones – one as

8
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Apps Description Total LOC Simba LOC

Simba-Notes “Rich” note-taking with embedded images and media; relies on Simba for conflict detection and

resolution, sharing, collaboration, and offline support. Similar to Evernote [3]

4,178 367

Surveil Surveillance app capturing images and metadata (e.g., time, location) at frequent intervals; data

periodically synced to cloud for analysis. Similar to iCamSpy [26]

258 58

HbeatMonitor Continuously monitors and records a person’s heart rate, cadence and altitude using a Zephyr

heartbeat sensor [63]; data periodically synced to cloud for analysis. Similar to Sportstracklive [8]

2,472 384

CarSensor Periodically records car engine’s RPM, speed, engine load, etc using a Soliport OBD2 sensor

attached to the car and then syncs to the cloud; similar to Torque car monitor [59]

3,063 384

SimbaBench Configurable benchmark app with tables and objects to run test workloads 207 48

AppS Simba-based photo-sync app with write/update/read/delete operations on tabular and object data 527 170
AppD Dropbox-based photo-sync app written to provide similar consistency and reliability as AppS 602 –

sClient Simba client app which runs as a background daemon on Android 11,326 –
sClientLib Implements the Simba SDK for writing mobile apps; gets packaged with a Simba-app’s .apk file 1,008 –

Table 6: Lines of Code for Simba and Apps. Total LOC counted using CLOC; Simba LOC counted manually

writer and the other as the reader. We were successful

with 1, 2 but not with 3, 4.

✓1. Consistency across stores: we store AppD images

in Filestore and album info in Datastore; to ac-

count for dependencies, we create an extra Datastore

column to store image identifiers. To detect file modifica-

tions, we maintain Dropbox listeners in AppD.

Writes: when a new image is added on the writer, the

app on the reader receives separate updates for tables and

files, Since Dropbox does not provide row-atomicity, it is

possible for Simba metadata columns to sync before app

data. To handle out-of-order arrival of images or album

info prior to Simba metadata, we set flags to indicate tab-

ular and object sync completion; when Simba metadata

arrives, we check this flag to determine if the entire row is

available. The reader then displays the image.

Updates: are more challenging. Since the reader does

not know the updated columns, and whether any objects

are updated, additional steps need to be taken to determine

the end of sync. We create a separate metadata column

(MC) to track changes to Datastore; MC stores a list

of updated app-columns at the writer. We also issue sync

of MC before other columns so that the reader is made

aware of the synced columns. Since Dropbox does not

provide atomicity over row-sync, the reader checks MC

for every table and object column update.

Deletes: once the writer deletes the tabular and object

columns, both listeners on the reader eventually get noti-

fied, after which the data is deleted locally.

✓2. Row-atomicity for tables+files: for every column up-

date, Datastore creates a separate sync message and

sends the entire row; it is therefore not possible to dis-

tinguish updated columns and their row version at sync.

Atomic sync with Dropbox thus requires even more meta-

data to track changes; we create a separate table for each

column as a workaround. For example, for an app table

having one table and one object column, two extra tables

need to be created in addition to MC.

For an update, the writer lists the to-be-synced tabular

and object columns (e.g., 〈col1, col3, ob j2〉) in MC and

issues the sync. The reader receives notifications for each

update and waits until all columns in MC are received. In

case a column update is received before MC, we log the

event and revisit upon receiving MC. Handling of new

writes and deletes are similar and omitted for brevity.

✗3. Consistency under failures: Providing consistency un-

der failures is especially thorny in the case of AppD. To

prevent torn rows from getting synced, AppD requires a

separate persistent flag to detect row-inconsistency after

a crash, along with all of the recovery mechanism to cor-

rectly handle the crash as described in §5. Since AppD

also does not know the specific object in the row that

needs to be restored, it would require a persistent data

structure to identify torn objects.

✗4. Consistent conflict detection: Dropbox provides

transparent conflict resolution for data; thus, detecting

higher-level conflicts arising in the app’s data model is

left to the app. Since there is no mechanism to check for

potential conflicts before updating an object, we needed

to create a persistent dirty flag for each object in AppD.

Moreover, an app’s local data can be rendered unrecov-

erable if the conflict resolution occurs in the background

with an “always theirs” policy. To recover from incon-

sistencies, AppD needs to log data out-of-place, requiring

separate local persistent stores.

To meet 3. and 4. implied re-implementing the majority

of sClient functionality in AppD and was not attempted.

7.1.2 Other Simba Apps

We wrote a number of Simba-apps based on existing mo-

bile apps and found the process to be easy; the apps were

robust to failures and maintained consistency when tested.

Writing the apps on average took 4 to 8 hours depending

on the GUI since Simba handled data management. Ta-

ble 6 provides a brief description of the apps along with

their total and Simba-related lines of code (LOC).

7.1.3 Reliability Testing

We injected three kinds of failures, network disruption,

Simba-app crash, and sClient crash, while issuing local,

sync, and conflict handling operations. Table 7 shows,

9
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a b c d e f g h i j k l m n o p q r s t u v w x
Tab T T S S, F, R S S, R S, R, F F, R R R, F
Obj C C, O, D C, O, D S, D S, D S, D, R S, D, T, F S, D S, D, R S, D, R, F R R, D, F R R, D, F

(a) Detection. T: FlagTD, O: FlagOD, C: CountOO, D: DCT, S: FlagSP, R: Server Response Table, F: FlagCF

a b c d e f g h i j k l m n o p q r s t u v w x
Tab N N R R, P R R, LR R, LR, P R, P LR LR, P
Obj R LR, SR LR, SR R R R, LR R, LR, P R R, LR R, LR, P R R, LR, P LR LR, P

(b) Recovery. N: No Op, R: Reset, P: Propagate Conflict, LR: Local Recovery, SR: Server-assisted Recovery

Table 7: sClient Detection and Recovery. The table shows detection and recovery policies of sClient for failure at read, write, syncup

and syncdown operations. The operations are a: read tab b: get obj readstream c: read obj d: read tab+obj e: write tab f: get obj writestream g:

write obj h: write tab+obj i: syncup tab only j: syncupresult for tab only k: syncup obj only l: send objfrag for obj only syncup m: syncupresult for

obj only n: get objfrag for obj only syncupresult o: syncup tab+obj p: syncupresult for tab+obj q: get objfrag for tab+obj syncupresult r: notify s:

syncdown t: syncdownresult for tab only u: syncdownresult for obj only v: get objfrag for obj only syncdownresult w: syncdownresult for tab+obj

syncdownresult x: get objfrag for tab+obj syncdownresult.

Figure 3: Sync Network Messages. Data and

control transfer profile

Figure 4: Sync Network Latency. Measured end-to-

end for 2 clients

in brief, the techniques employed by sClient. For a given

workload (a – x), gray cells represent unaffected or invalid

scenarios, for example, read operations. A non-empty cell

in detection implies that all cases were accounted for, and

a corresponding non-empty cell in recovery implies cor-

rective action was taken. The absence of empty cells in-

dicates that sClient correctly detected and recovered from

all of the common failures we tested for.

Detection: each cell in Table 7(a) lists the flags used

to detect the status of tables and objects after a failure.

sClient maintained adequate local state, and responses

from the server, to correctly detect all failures. Change

in tabular data was detected by FlagTD (T) for write and

FlagSP (S) for sync as FlagTD is toggled at start of sync.

sClient then performed a check on the server’s response

data (R). Sync conflict was identified by checking FlagCF

(F). Similarly, usage of writestream and object update

were detected by CountOO (C) and FlagOD (O) with the

addition of DCT (D) for sync.

Recovery: each cell in Table 7(b) lists the recovery ac-

tion taken by sClient from among no-op, reset, propa-

gate, and local or server-assisted recovery. No-op (N) im-

plies that no recovery was needed as the data was already

in a consistent state. When a conflict was detected, but

with consistent data, sClient propagated (P) an alert to the

user seeking resolution. With the help of local state, in

most cases sClient recovered locally (LR); for a torn row,

sClient relied on server-assisted recovery (SR). In some

cases, sClient needed to reset flags (R) to mark the suc-

cessful completion of recovery or a no-fault condition.

7.2 Performance and Efficiency

7.2.1 Sync Performance

We want to verify if Simba achieves its objective of pe-

riodic sync. Figure 3 shows the client-server interaction

for two mobile clients both running the SimbaBench (Ta-

ble 6); on Client 1 it creates a new row with 100 bytes

of table data and a (50% compressible) 1MB object every

10 seconds. Client 1 also registers for a 60-second pe-

riodic upstream sync. Client 2 read-subscribes the same

table also with a 60-second period. As can be seen from

the figure, the network interaction for both upstream and

downstream sync shows short periodic burst of activ-

ity followed by longer periods of inactivity. Client 2’s

read subscription timer just misses the first upstream sync

(77s− 95s), so the first downstream sync happens about a

minute later (141s− 157s); for the rest of the experiment,

downstream messages immediately follow the upstream

ones confirming that Simba meets this objective.

We want to evaluate Simba’s sync performance and
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Figure 5: Network Transfer For Multiple Apps.

how it compares with Dropbox. Figure 4 compares the

end-to-end sync latency of Simba and Dropbox over both

WiFi and 4G; y-axis is time taken with standard devia-

tion of 5 trials. For these tests we run two scenarios, both

with a single row being synced between two clients: 1)

with only a 1-byte column, and 2) with one 1-byte col-

umn and one 1KB object. The two clients were both in

South Korea. The Dropbox server was located in Califor-

nia (verified by its IP address) whereas the Simba server

was located on US east coast. As a baseline, we also mea-

sured the ping latency from clients to servers. Figure 4

shows that the network latency (“Ping”) is a small com-

ponent of the total sync latency. For both the tests, Simba

performs significantly better than Dropbox; in case 1), by

about 100% to 200%, and in case 2) by more than 1200%.

Since Dropbox is proprietary we not claim to fully under-

stand how it functions; it very well might be overloaded or

throttling traffic. The experiment demonstrates that Simba

performs well even when giving control of sync to apps.

We want to test how quickly Simba resolves conflicts

for a table with multiple writers. Figure 6 shows this be-

havior. The x-axis shows the number of clients (min. 2

clients needed for conflict) and the y-axis shows the aver-

age time to converge (sec) and standard deviation over 5

trials. For “theirs”, the server’s copy is chosen every time

and hence no changes need to be propagated back; for

“mine”, the local copy is chosen every time and re-synced

back to the server. The “no conflicts” case is shown to

establish a baseline – a normal sync still requires changes

to be synced to the server; “mine” always and “theirs”

always represent the worst-case and the best-case scenar-

ios respectively with typical usage falling somewhere in

between. The figure shows that for a reasonable number

(i.e., 5) of collaborating clients, as the number of conflict

resolution rounds increases, it does not impose a signifi-

cant overhead compared to baseline sync, even when se-

lecting the server’s copy; when selecting the local copy,

conflict resolution is fairly quick.

7.2.2 Network Efficiency

We want to evaluate Simba’s impact on network effi-

ciency. Three apps were chosen for this experiment

that generate data periodically: CarSensor app in replay

mode generating about 250 byte rows every second, Sim-

baBench set to create 1MB rows (50% compressible) ev-

ery 10s, and an app that simulates the behavior of Simba-

Notes, by generating ∼300 byte of data using Poisson

distribution with a mean value of 300s and using a fixed

seed for random number generation. CarSensor and Sim-

baBench run with a periodic upstream sync of 60s.

Figure 5 shows a scatter plot of the data transfer profile

of the apps; y-axis is message size on a log scale, and x-

axis is time in seconds. The colored bands are meant to

depict temporal clusters of activity. The “Startup” band

shows the one-time Simba authentication and setup, and

sync registration messages for the tables. We ran the

Simba apps (a) individually, (b) concurrently with Simba-

Notes’s DT=0, and (c) concurrently with Simba-Notes’s

DT=60s. Figure 5(a) shows the super-imposition of the

data transfer profile when the apps were run individually,

to simulate the behavior of the apps running without coor-

dination. As also seen in the figure, while it is possible for

uncoordinated timers to coincide, it is unlikely; especially

so when the period is large compared to the data transfer

time. Aperiodic apps like Simba-Notes also cause uncoor-

dinated transfers. Uncoordinated transfers imply frequent

radio activity and energy consumed due to large tail times.

In Figure 5(b), all apps are run concurrently. The events

generated by Simba-Notes are annotated. We see that the

network transfers of CarSensor and SimbaBench are syn-

chronized, but Simba-Notes still causes network transfer

at irregular times (the thin bands represent network trans-

fers by Simba-Notes). In Figure 5(c), we run an experi-

ment similar to (b) but this time Simba-Notes employs a

delay tolerance of 60s; its network activity is delayed un-

til the next 60s periodic timer along with all pending sync

activity (notice the absent thin bands). The resulting data

transfer is clustered, increasing the odds of the radio being

turned off. The x-axes in (b) and (c) start around 800s as

we measured after a few minutes of app start.

7.2.3 Local I/O Performance

Our objective is to determine whether sClient’s local per-

formance is acceptable for continuous operation, espe-

cially since storage can be a major contributor to perfor-

mance of mobile apps [28]. SimbaBench issues writes,
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Figure 6: Time Taken for Conflict Convergence. Figure 7: sClient Local I/O Performance.

reads, and deletes for one row of data containing one 1MB

object for both sClient with Dropbox (Core API). Fig-

ure 7 shows average times and standard deviation over 5

trials; sClient is about 10% slower than Dropbox for both

writes and reads, primarily due to IPC overhead as sClient

is a background service on Android while Dropbox di-

rectly accesses the file system. sClient performs better

for deletes through lazy deletion – data is only marked

as deleted but physically removed only after sync com-

pletion. sClient and Dropbox both perform several addi-

tional operations over Ext4 and SQLite; we provide this

comparison only as a baseline.

8 Related Work

Data sync and services: sync has been much studied in

the context of portable devices including seminal work

on disconnected operations [30], weakly-consistent repli-

cated storage [37, 55], and data staging [18, 57].

In terms of failure transparency, Bayou [55] provides a

limited discussion of its crash recovery through a write log

but it does not handle objects. LBFS [37] atomically com-

mits files on writeback, preventing corruption on crash or

disruption, but does not handle tables. We find that for

most apps, handling the dependencies – between tabular

and object data – is the biggest source of inconsistency.

Of the existing services, Dropbox is the most compre-

hensive but still does not support sync atomicity for ob-

jects and tables, breaking failure transparency for several

fault conditions. iCloud also provides separate mecha-

nisms for a key-value interface and file sync. Mobius [14]

provides a CRUD API to a table-sync store but does

not support objects at all. Similar to Simba, Parse [43]

and Kinvey [29] are mobile backend-as-a-service offering

GUI integration, administration, and limited data manage-

ment; they only support tables and provide last-writer-

wins semantics which is inadequate for many apps. No

sync service provides delay-tolerant transfer.

Fault tolerance: ViewBox [62] integrates a desktop

FS with a data-sync service so as to sync only consis-

tent views of the local data; the paper also shows how

Dropbox spreads local file corruption which ViewBox ad-

dresses through checksums. Simba focuses on providing

transparent fault-handling to apps; while ViewBox works

only for files, Simba spans both files and tables.

Storage unification: prior work for desktop file sys-

tems has considered database integration but without net-

work sync or a unified API. InversionFS [39] uses Post-

gres to implement a file system with transactional guaran-

tees and fine-grained versioning. TableFS [51] uses sep-

arate storage pools for metadata (an LSM tree) and files

to improve its own performance through metadata opera-

tions. KVFS [54] stores file data and file-system metadata

both in a single key–value store built on top of VT-Trees,

a variant of LSM trees, which enable efficient storage for

objects of various sizes; VT-Trees can be used to build a

better-performing sClient data store, in the future.

Mobile data transfer: Recent research has charac-

terized and optimized data transfer for mobile environ-

ments [21, 25, 47], especially the adverse effects of small,

sporadic transfers [17, 48]; SPDY [5] extends HTTP for

better compression and multiplexes requests over a single

connection to save round trips. This large body of net-

working research has inspired Simba’s network protocol.

9 Conclusions

Building high-quality data-centric mobile apps invariably

mandates the developer to build a reliable and efficient

data management infrastructure – a task for which few

are well-suited. Mobile app developers should not need

to worry about the complexities of network and data man-

agement but instead be able to focus on what they do best

– implement the user interface and features – and deliver

great apps to users. We built Simba to empower devel-

opers to rapidly develop and deploy robust and efficient

mobile apps; through its mobile client daemon, sClient, it

provides background data sync with flexible policies that

suit a large class of mobile apps while transparently han-

dling failures and efficiently utilizing mobile resources.

We plan to release Simba’s source code; please check with

the contact author (Nitin Agrawal) for further details.

12
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Abstract
Facebook uses flash devices extensively in its photo-
caching stack. The key design challenge for an efficient
photo cache on flash at Facebook is its workload: many
small random writes are generated by inserting cache-
missed content, or updating cache-hit content for ad-
vanced caching algorithms. The Flash Translation Layer
on flash devices performs poorly with such a workload,
lowering throughput and decreasing device lifespan. Ex-
isting coping strategies under-utilize the space on flash
devices, sacrificing cache capacity, or are limited to sim-
ple caching algorithms like FIFO, sacrificing hit ratios.

We overcome these limitations with the novel Re-
stricted Insertion Priority Queue (RIPQ) framework that
supports advanced caching algorithms with large cache
sizes, high throughput, and long device lifespan. RIPQ
aggregates small random writes, co-locates similarly pri-
oritized content, and lazily moves updated content to fur-
ther reduce device overhead. We show that two fam-
ilies of advanced caching algorithms, Segmented-LRU
and Greedy-Dual-Size-Frequency, can be easily imple-
mented with RIPQ. Our evaluation on Facebook’s photo
trace shows that these algorithms running on RIPQ in-
crease hit ratios up to ~20% over the current FIFO sys-
tem, incur low overhead, and achieve high throughput.

1 Introduction
Facebook has a deep and distributed photo-caching stack
to decrease photo delivery latency and backend load.
This stack uses flash for its capacity advantage over
DRAM and higher I/O performance than magnetic disks.

A recent study [20] shows that Facebook’s photo
caching hit ratios could be significantly improved with
more advanced caching algorithms, i.e., the Segmented-
LRU family of algorithms. However, naive implementa-
tions of these algorithms perform poorly on flash. For
example, Quadruple-Segmented-LRU, which achieved
~70% hit ratio, generates a large number of small ran-
dom writes for inserting missed content (~30% misses)
and updating hit content (~70% hits). Such a random
write heavy workload would cause frequent garbage col-
lections at the Flash Translation Layer (FTL) inside mod-
ern NAND flash devices—especially when the write size
is small—resulting in high write amplification, decreased
throughput, and shortened device lifespan [36].

Existing approaches to mitigate this problem often re-
serve a significant portion of device space for the FTL

(over-provisioning), hence reducing garbage collection
frequency. However, over-provisioning also decreases
available cache capacity. As a result, Facebook previ-
ously only used a FIFO caching policy that sacrifices
the algorithmic advantages to maximize caching capacity
and avoid small random writes.

Our goal is to design a flash cache that supports ad-
vanced caching algorithms for high hit ratios, uses most
of the caching capacity of flash, and does not cause
small random writes. To achieve this, we design and
implement the novel Restricted Insertion Priority Queue
(RIPQ) framework that efficiently approximates a prior-
ity queue on flash. RIPQ presents programmers with the
interface of a priority queue, which our experience and
prior work show to be a convenient abstraction for im-
plementing advanced caching algorithms [10, 45].

The key challenge and novelty of RIPQ is how to
translate and approximate updates to the (exact) prior-
ity queue into a flash-friendly workload. RIPQ aggre-
gates small random writes in memory, and only issues
aligned large writes through a restricted number of in-
sertion points on flash to prevent FTL garbage collec-
tion and excessive memory buffering. Objects in cache
with similar priorities are co-located among these inser-
tion points. This largely preserves the fidelity of ad-
vanced caching algorithms on top of RIPQ. RIPQ also
lazily moves content with an updated priority only when
it is about to be evicted, further reducing overhead with-
out harming the fidelity. As a result, RIPQ approximates
the priority queue abstraction with high fidelity, and only
performs consolidated large aligned writes on flash with
low write amplification.

We also present the Single Insertion Priority Queue
(SIPQ) framework that approximates a priority queue
with a single insertion point. SIPQ is designed for
memory-constrained environments and enables the use
of simple algorithms like LRU, but is not suited to sup-
port more advanced algorithms.

RIPQ and SIPQ have applicability beyond Facebook’s
photo caches. They should enable the use of advanced
caching algorithms for static-content caching—i.e., read-
only caching—on flash in general, such as in Netflix’s
flash-based video caches [38].

We evaluate RIPQ and SIPQ by implementing two
families of advanced caching algorithms, Segmented-
LRU (SLRU) [26] and Greedy-Dual-Size-Frequency
(GDSF) [12], with them and testing their performance
on traces obtained from two layers of Facebook’s photo-
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Figure 1: Facebook photo-serving stack. Requests
are directed through two layers of caches. Each cache
hashes objects to a flash equipped server.

caching stack: the Origin cache co-located with back-
end storage, and the Edge cache spread across the world
directly serving photos to the users. Our evaluation
shows that both families of algorithms achieve substan-
tially higher hit ratios with RIPQ and SIPQ. For example,
GDSF algorithms with RIPQ increase hit ratio in the Ori-
gin cache by 17-18%, resulting in a 23-28% decrease in
I/O load of the backend.

The contributions of this paper include:
• A flash performance study that identifies a significant

increase in the minimum size for max-throughput ran-
dom writes and motivates the design of RIPQ.

• The design and implementation of RIPQ, our primary
contribution. RIPQ is a framework for implementing
advanced caching algorithms on flash with high space
utilization, high throughput, and long device lifespan.

• The design and implementation of SIPQ, an upgrade
from FIFO in memory constrained environments.

• An evaluation on Facebook photo traces that demon-
strates advanced caching algorithms on RIPQ (and
LRU on SIPQ) can be implemented with high fidelity,
high throughput, and low device overhead.

2 Background & Motivation
Facebook’s photo-serving stack, shown in Figure 1, in-
cludes two caching layers: an Edge cache layer and an
Origin cache. At each cache site, individual photo ob-
jects are hashed to different caching machines according
to their URI. Each caching machine then functions as an
independent cache for its subset of objects.1

The Edge cache layer includes many independent
caches spread around the globe at Internet Points of Pres-
ence (POP). The main objective of the Edge caching
layer—in addition to decreasing latency for users—is de-
creasing the traffic sent to Facebook’s datacenters, so the
metric for evaluating its effectiveness is byte-wise hit ra-
tio. The Origin cache is a single cache distributed across

1Though the stack was originally designed to serve photos, now it
handles videos, attachments, and other static binary objects as well. We
use “objects” to refer to all targets of the cache in the text.

Device Model A Model B Model C
Capacity 670GiB 150GiB ~1.8TiB
Interface PCI-E SATA PCI-E

Seq Write Perf 590MiB/s 160MiB/s 970MiB/s
Rand Write Perf 76MiB/s 19MiB/s 140MiB/s

Read Perf 790MiB/s 260MiB/s 1500MiB/s
Max-Throughput 512MiB 256MiB 512MiBWrite Size

Table 1: Flash performance summary. Read and
write sizes are 128KiB. Max-Throughput Write Size
is the smallest power-of-2 size that achieves sustained
maximum throughput at maximum capacity.

Facebook’s datacenters that sits behind the Edge cache.
Its main objective is decreasing requests to Facebook’s
disk-based storage backends, so the metric for its effec-
tiveness is object-wise hit ratio. Facing high request rates
for a large set of objects, both the Edge and Origin caches
are equipped with flash drives.

This work is motivated by the finding that SLRU, an
advanced caching algorithm, can increase the byte-wise
and object-wise hit ratios in the Facebook stack by up
to 14% [20]. However, two factors confound naive im-
plementations of advanced caching algorithm on flash.
First, the best algorithm for workloads at different cache
sites varies. For example, since Huang et al. [20], we
have found that GDSF achieves an even higher object-
wise hit ratio than SLRU in the Origin cache by favoring
smaller objects (see Section 6.2), but SLRU still achieves
the highest byte-wise hit ratio at the Edge cache. There-
fore, a unified framework for many caching algorithms
can greatly reduce the engineering effort and hasten the
deployment of new caching policies. Second, flash-
based hardware has unique performance characteristics
that often require software customization. In particular,
a naive implementation of advanced caching algorithms
may generate a large number of small random writes on
flash, by inserting missed content or updating hit content.
The next section demonstrates that modern flash devices
perform poorly under such workloads.

3 Flash Performance Study
This section presents a study of modern flash devices that
motivates our designs. The study focuses on write work-
loads that stress the FTL on the devices because write
throughput was the bottleneck that prevented Facebook
from deploying advanced caching algorithms. Even for a
read-only cache, writes are a significant part of the work-
load as missed content is inserted with a write. At Face-
book, even with the benefits of advanced caching algo-
rithms, the maximum hit ratio is ~70%, which results in
at least 30% of accesses being writes.

Previous studies [17, 36] have shown that small ran-
dom writes are harmful for flash. In particular, Min et

2
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(a) Write amplification for Model A (b) Throughput for Model A (c) Throughput for Model B

Figure 2: Random write experiment on Model A and Model B.

al. [36] shows that at high space utilization, i.e., 90%,
random write size must be larger than 16 MB or 32 MB
to reach peak throughput on three representative SSDs
in 2012, with capacities ranging between 32 GB and 64
GB. To update our understanding to current flash de-
vices, we study the performance characteristics on three
flash cards, and their specifications and major metrics are
listed in Table 1. All three devices are recent models
from major vendors,2 and A and C are currently deployed
in Facebook photo caches.

3.1 Random Write Experiments
This subsection presents experiments that explore the
trade-off space between write size and device over-
provisioning on random write performance. In these ex-
periments we used different sizes to partition the device
and then perform aligned random writes of that size un-
der varying space utilizations. We use the flash drive as
a raw block device to avoid filesystem overheads. Be-
fore each run we use blkdiscard to clear the existing
data, and then repeatedly pick a random aligned location
to perform write/overwrite. We write to the device with
4 times the data of its total capacity before reporting the
final stabilized throughput. In each experiment, the ini-
tial throughput is always high, but as the device becomes
full, the garbage collector kicks in, causing FTL write
amplification and dramatic drop in throughput.

During garbage collection, the FTL often writes more
data to the physical device than what is issued by the
host, and the byte-wise ratio between these two write
sizes is the FTL write amplification [19]. Figure 2a and
Figure 2b show the FTL write amplification and device
throughput for the random write experiments conducted
on the flash drive Model A. The figures illustrate that
as writes become smaller or space utilization increases,
write throughput dramatically decreases and FTL write
amplification increases. For example, 8 MiB random
writes at 90% device utilization achieve only 160 MiB/s,
a ~3.7x reduction from the maximum 590 MiB/s. We
also experimented with mixed read-write workloads and
the same performance trend holds. Specifically, with a
50% read and 50% write workload, 8 MiB random writes

2Vendor/model omitted due to confidentiality agreements.

at 90% utilization lead to a ~2.3x throughput reduction.
High FTL write amplification also reduces device lifes-
pan, and as the erasure cycle continues to decrease for
large capacity flash cards, the effects of small random
writes become worse over time [5, 39].

Similar throughput results on flash drive Model B are
shown in Figure 2c. However, its FTL write amplifica-
tion is not available due to the lack of monitoring tools
for physical writes on the device. Our experiments on
flash drive Model C (details elided due to space limita-
tions) agree with Model A and B results as well. Because
of the low throughput under high utilization with small
write size, more than 1000 device hours are spent in total
to produce the data points in Figure 2.

While our findings agree with the previous study [36]
in general, we are surprised to find that under 90% device
utilization, the minimum write size to achieve peak ran-
dom write throughput has reached 256 MiB to 512 MiB.
This large write size is necessary because modern flash
hardware consists of many parallel NAND flash chips [3]
and the aggregated erase block size across all parallel
chips can add up to hundreds of megabytes. Commu-
nications with vendor engineers confirmed this hypothe-
sis. This constraint informs RIPQ’s design, which only
issues large aligned writes to achieve low write amplifi-
cation and high throughput.

3.2 Sequential Write Experiment
A common method to achieve sustained high write
throughput on flash is to issue sequential writes. The
FTL can effectively aggregate sequential writes to paral-
lel erase blocks [30], and on deletes and overwrites all
the parallel blocks can be erased together without writ-
ing back any still-valid data. As a result, the FTL write
amplification can be low or even avoided entirely. To
confirm this, we also performed sequential write experi-
ments to the same three flash devices. We observed sus-
tained high performance for all write sizes above 128KiB
as reported in Table 1.3 This result motivates the design
of SIPQ, which only issues sequential writes.

3Write amplification is low for tiny sequential writes, but they attain
lower throughput as they are bound by IOPS instead of bandwidth.

3
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4 RIPQ
This section describes the design and implementation of
the RIPQ framework. We show how it approximates the
priority queue abstraction on flash devices, present its
implementation details, and then demonstrate that it effi-
ciently supports advanced caching algorithms.

4.1 Priority Queue Abstraction
Our experience and previous studies [10, 45] have shown
that a Priority Queue is a general abstraction that natu-
rally supports various advanced caching policies. RIPQ
provides that abstraction by maintaining content in its
internal approximate priority queue, and allowing cache
operations through three primitives:

• insert(x, p): insert a new object x with priority value p.
• increase(x, p): increase the priority value of x to p.
• delete-min(): delete the object with the lowest priority.

The priority value of an object represents its utility to
the caching algorithm. On a hit, increase is called to ad-
just the priority of the accessed object. As the name sug-
gests, RIPQ limits priority adjustment to increase only.
This constraint simplifies the design of RIPQ and still al-
lows almost all caching algorithms to be implemented.
On a miss, insert is called to add the accessed object.
Delete-min is implicitly called to remove the object with
the minimum priority value when a cache eviction is trig-
gered by insertion. Figure 3 shows the architecture of
a caching solution implemented with the priority queue
abstraction, where RIPQ’s components are highlighted
in gray. These components are crucial to avoid a small-
random-writes workload, which can be generated by a
naive implementation of priority queue. RIPQ’s internal
mechanisms are further discussed in Section 4.2.

Absolute/Relative Priority Queue Cache designers
using RIPQ can specify the priority of their content based
on access time, access frequency, size, and many other
factors depending on the caching policy. Although tradi-
tional priority queues typically use absolute priority val-
ues that remain fixed over time, RIPQ operates on a dif-
ferent relative priority value interface. In a relative pri-
ority queue, an object’s priority is a number in the [0,1]
range representing the position of the object relative to
the rest of the queue. For example, if an object i has a
relative priority of 0.2, then 20% of the objects in queue
have lower priority values than i and their positions are
closer to the tail.

The relative priority of an object is explicitly changed
when increase is called on it. The relative priority of an
object is also implicitly decreased as other objects are
inserted closer to the head of the queue. For instance,
if an object j is inserted with a priority of 0.3, then all
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objects with priorities ≤ 0.3 will be pushed towards the
tail and their priority value implicitly decreased.

Many algorithms, including the SLRU family, can be
easily implemented with the relative priority queue in-
terface. Others, including the GDSF family, require an
absolute priority interface. To support these algorithms
RIPQ translates from absolutes priorities to relative pri-
orities, as we explain in Section 4.3.

4.2 Overall Design
RIPQ is a framework that converts priority queue oper-
ations into a flash-friendly workload with large writes.
Figure 4 gives a detailed illustration of the RIPQ compo-
nents highlighted in Figure 3, excluding the Index Map.

Index Map The Index Map is an in-memory hash table
which associates all objects’ keys with their metadata, in-
cluding their locations in RAM or flash, sizes, and block
IDs. The block structure is explained next.

In our system each entry is ~20 bytes, and RIPQ adds 2
bytes to store the virtual block ID of an object. Consider-
ing the capacity of the flash card and the average object
size, there are about 50 million objects in one caching
machine and the index is ~1GiB in total.

Queue Structure The major Queue Structure of RIPQ
is composed of K sections that are in turn composed
of blocks. Sections define the insertion points into
the queue and a block is the unit of data written
to flash. The relative priority value range is split

4
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Algorithm Interface Used On Miss On Hit

Segmented-L LRU Relative Priority Queue insert(x, 1
L ) increase(x, min(1,(1+�p·L�)

L ))

Greedy-Dual-Size-Frequency L Absolute Priority Queue insert(x,Lowest+ c(x)
s(x) ) increase(x,Lowest+ c(x)min(L,n(x))

s(x) )

Table 2: SLRU and GDSF with the priority queue interface provided by RIPQ.

into the K intervals corresponding to the sections:
[1, pK−1], . . . ,(pk, pk−1], . . . ,(p1,0].4 When an object is
inserted into the queue with priority p, it is placed in the
head of the section whose range contains p. For exam-
ple, in a queue with sections corresponding to [1,0.7],
(0.7,0.3] and (0.1,0], an object with priority value 0.5
would be inserted to the head of second section. Similar
to relative priority queues, when an object is inserted to a
queue of N objects, any object in the same or lower sec-
tions with priority q is implicitly demoted from priority
q to qN

N+1 . Implicit demotion captures the dynamics of
many caching algorithms, including SLRU and GDSF:
as new objects are inserted to the queue, the priority of an
old object gradually decreases and it is eventually evicted
from the cache when its priority reaches 0.

RIPQ approximates the priority queue abstraction be-
cause its design restricts where data can be inserted. The
insertion point count, K, represents the key design trade-
off in RIPQ between insertion accuracy and memory
consumption. Each section has size O( 1

K ), so larger Ks
result in smaller sections and thus higher insertion accu-
racy. However, because each active block is buffered in
RAM until it is full and flushed to flash, the memory con-
sumption of RIPQ is proportional to K. Our experiments
show K = 8 ensures that that RIPQ achieves hit ratios
similar to the exact algorithm, and we use this value in
our experiments. With 256MiB device blocks, it trans-
lates to a moderate memory footprint of 2GiB.

Device and Virtual Blocks As shown in Figure 4, each
section includes one active device block, one active vir-
tual block, and an ordered list of sealed device/virtual
blocks. An active device block accepts insertions of new
objects and buffers them in memory, i.e, the Block Buffer.
When full it is sealed, flushed to flash, and transitions
into a sealed device block. To avoid duplicating data on
flash RIPQ lazily updates the location of an object when
its priority is increased, and uses virtual blocks to track
where an object would have been moved. The active vir-
tual block at the head of each section accepts virtually-
updated objects with increased priorities. When the ac-
tive device block for a section is sealed, RIPQ also tran-
sitions the active virtual block into a sealed virtual block.
Virtual update is an in-memory only operation, which
sets the virtual block ID for the object in the Index Map,
increases the size counter for the target virtual block, and

4We have inverted the notation of intervals from [low,high) to
(high,low] to make it consistent with the priority order in the figures.

decreases the size counter of the object’s original block.
All objects associated with a sealed device block are

stored in a contiguous space on flash. Within each block,
a header records all object keys and their offsets in the
data following the header. As mentioned earlier, an up-
dated object is marked with its target virtual block ID
within the Index Map. Upon eviction of a sealed device
block, the block header is examined to determine all ob-
jects in the block. The objects are looked up in the Index
Map to see if their virtual block ID is set, i.e., their pri-
ority was increased after insertion. If so, RIPQ reinserts
the objects to the priorities represented by their virtual
blocks. The objects move into active device blocks and
their corresponding virtual objects are deleted. Because
the updated object will not be written until the old object
is about to be evicted, RIPQ maintains at most one copy
of each object and duplication is avoided. In addition,
lazy updates also allow RIPQ to coalesce all the priority
updates to an object between its insertion and reinsertion.

Device blocks occupy a large buffer in RAM (active)
or a large contiguous space on flash (sealed). In con-
trast, virtual blocks resides only in memory and are very
small. Each virtual block includes only metadata, e.g.,
its unique ID, the count of objects in it, and the total byte
size of those objects.

Naive Design One naive design of a priority queue on
flash would be to fix an object’s location on flash until it
is evicted. This design avoids any writes to flash on pri-
ority update but does not align the location of an object
with its priority. As a result the space of evicted objects
on flash would be non-contiguous and the FTL would
have to coalesce the scattered objects by copying them
forward to reuse the space, resulting in significant FTL
write amplification. RIPQ avoids this issue by group-
ing objects of similar priorities into large blocks and per-
forming writes and evictions on the block level, and by
using lazy updates to avoid writes on update.

4.3 Implementing Caching Algorithms
To demonstrate the flexibility of RIPQ, we implemented
two families of advanced caching algorithms for eval-
uation: Segmented-LRU [26], and Greedy-Dual-Size-
Frequency [12], both of which yield major caching per-
formance improvement for Facebook photo workload. A
summary of the implementation is shown in Table 2.

Segmented-LRU Segmented-L LRU (S-L-LRU)
maintains L LRU caches of equal size. On a miss, an
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Figure 5: Insertion, and increase, and delete-min operations in RIPQ.

object is inserted to the head of the L-th (the last) LRU
cache. On a hit, an object is promoted to the head of the
previous LRU cache, i.e., if it is in sub-cache l, it will
be promoted to the head of the max(l − 1,1)-th LRU
cache. An object evicted from the l-th cache will go
to the head of the (l + 1)-th cache, and objects evicted
from the last cache are evicted from the whole cache.
This algorithm was demonstrated to provide significant
cache hit ratio improvements for the Facebook Edge and
Origin caches [20].

Implementing this family of caching algorithms is
straightforward with the relative priority queue interface.
On a miss, the object is inserted with priority value
1
L , equaling to the head of the L-th cache. On a hit,
based on the existing priority p of the accessed object,
RIPQ promotes it from the �(1− p) ·L�-th cache to the
head of the previous cache with the new, higher prior-
ity min(1, 1+�p·L�

L ). With the relative priority queue ab-
straction, an object’s priority is automatically decreased
when another object is inserted/updated to a higher pri-
ority. When an object is inserted at the head of the l-th
LRU cache, all objects in l-th to L-th caches are demoted,
and ones at the tail of these caches will be either demoted
to the next lower priority cache or evicted if they are in
the last L-th cache—the dynamics of SLRU are exactly
captured by relative priority queue interface.

Greedy-Dual-Size-Frequency The Greedy-Dual-Size
algorithm [10] provides a principled way to trade-off in-
creased object-wise hit ratio with decreased byte-wise hit
ratio by favoring smaller objects. It achieves an even
higher object-wise hit ratio for the Origin cache than
SLRU (Section 2), and is favored for that use case as
the main purpose of Origin cache is to protect backend
storage from excessive IO requests. Greedy-Dual-Size-
Frequency [12] (GDSF) improves GDS by taking fre-
quency into consideration. In GDSF, we update the prior-
ity of an object x to be Lowest+c(x) · n

s(x) upon its n-th
access since it was inserted to the cache, where c(x) is the
programmer-defined penalty for a miss on x, Lowest is
the lowest priority value in the current priority queue,
and s(x) is the size of the object. We use a variant of
GDSF that caps the maximum value of the frequency of
an object to L. L is similar to the number of segments
in SLRU. It prevents the priority value of a frequently

accessed object from blowing up and adapts better to
dynamic workloads. The update rule of our variant of
GDSF algorithm is thus p(x)←Lowest+c(x) · min(L,n)

s(x) .
Because we are maximizing object-wise hit ratio we set
c(x) = 1 for all objects. GDSF uses the absolute priority
queue interface.

Limitations RIPQ also supports many other advanced
caching algorithms like LFU, LRFU [28], LRU-k [40],
LIRS [24], SIZE [1], but there are a few notable excep-
tions that are not implementable with a single RIPQ, e.g.,
MQ [48] and ARC [34]. These algorithms involve mul-
tiple queues and thus cannot be implemented with one
RIPQ. Extending our design to support them with multi-
ple RIPQs coexisting on the same hardware is one of our
future directions. A harder limitation comes from the
update interface, which only allows increasing priority
values. Algorithms that decrease the priority of an object
on its access, such as MRU [13], cannot be implemented
with RIPQ. MRU was designed to cope with scans over
large data sets and does not apply to our use case.

RIPQ does not support delete/overwrite operation be-
cause such operations are not needed for static content
such as photos. But, they are necessary for a general-
purpose read-write cache and adding support for them is
also one of our future directions.

4.4 Implementation of Basic Operations
RIPQ implements the three operations of a regular prior-
ity queue with the data structures described above.

Insert(x, p) RIPQ inserts the object to the active de-
vice block of section k that contains p, i.e., pk > p ≥
pk−1.5 The write will be buffered until that active block
is sealed. Figure 5a shows an insertion.

Increase(x, p) RIPQ avoids moving object x that is
already resident in a device block in the queue. Instead,
RIPQ virtually inserts x into the active virtual block of
section k that contains p, i.e., pk > p ≥ pk−1, and log-
ically removes it from its current location. Because we
remember the virtual block ID in the object entry in the
indexing hash table, these steps are simply implemented
by setting/resetting the virtual block ID of the object en-
try, and updating the size counters of the blocks and sec-

5A minor modification when k = K is 1 = pk ≥ p ≥ pk−1.
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Figure 6: RIPQ internal operations.

tions accordingly. No read/write to flash is performed
during this operation. Figure 5b shows an update.

Delete-min() We maintain a few reserved blocks
on flash for flushing the RAM buffers of device blocks
when they are sealed.6 When the number of reserved
blocks falls below this threshold, the Delete-min()
operation is called implicitly to free up the space on flash.
As shown in Figure 5c, the lowest-priority block in queue
is evicted from queue during the operation. However, be-
cause some of the objects in that blocks might have been
updated to higher places in the queue, they need to be
reinserted to maintain their correct priorities. The rein-
sertion (1) reads out all the keys of the objects in that
block from the block header, (2) queries the index struc-
ture to find whether an object, x, has a virtual location,
and if it has one, (3) finds the corresponding section, k,
of that virtual block and copies the data to the active de-
vice block of that section in RAM, and (4) finally sets the
virtual block field in the index entry to be empty. We call
this whole process materialization of the virtual update.

These reinsertions help preserve caching algorithm fi-
delity, but cause additional writes to flash. These addi-
tional writes cause implementation write amplification,
which is the byte-wise ratio of host-issued writes to those
required to inserted cache misses. RIPQ can explicitly
trade lower caching algorithm fidelity for lower write
amplification by skipping materialization of the virtual
objects whose priority is smaller than a given threshold,
e.g., in the last 5% of the queue. This threshold is the
logical occupancy parameter θ (0 < θ < 1).

Internal operations RIPQ must have neither too many
nor too few insertion points: too few leads to low accu-
racy, and too many leads to high memory usage. To avoid
these situations RIPQ splits a section when it grows too
large and merges consecutive sections when their to-
tal size is too small. This is similar to how B-tree [7]
splits/merges nodes to control the size of the nodes and
the depth of the tree.

A parameter α controls the number of sections of
RIPQ in a principled way. α is in (0,1) and determines

6It is not a critical parameter and we used 10 in our evaluation.

the average size of sections. RIPQ splits a section when
its relative size—i.e., a ratio based on the object count or
byte size—has reached 2α . For example, if α = 0.3 then
a section of [0.4,1.0] would be split to two sections of
[0.4,0.7) and [0.7,1.0] respectively, shown in Figure 6a.
RIPQ merges two consecutive sections if the sum of their
sizes is smaller than α , shown in Figure 6b. These op-
erations ensure there are at most � 2

α � sections, and that
each section is no larger than 2α .

No data is moved on flash for a split or merge. Split-
ting a section creates a new active device block with a
write buffer and a new active virtual block. Merging
two sections combines their two active device blocks: the
write buffer of one is copied into the write buffer of the
other. Splitting happens often and is how new sections
are added to queue as objects in the section at the tail are
evicted block-by-block. Merging is rare because it re-
quires the total size of two consecutive sections to shrink
from 2α (α is the size of a new section after a split) to α
to trigger a merge. The amortized complexity of a merge
per operation provided by the priority queue API is only
O( 1

αM ), where M is the number of blocks.

Supporting Absolute Priorities Caching algorithms
such as LFU, SIZE [1], and Greedy-Dual-Size[10] re-
quire the use of absolute priority values when perform-
ing insertion and update. RIPQ supports absolute prior-
ities with a mapping data structure that translates them
to relative priorities. The data structure maintains a dy-
namic histogram that supports insertion/deletion of ab-
solute priority values, and when given an absolute prior-
ities return approximate quantiles, which are used as the
internal relative priority values.

The histogram consists of a set of bins, and we
merge/split bins dynamically based on their relative
sizes, similar to the way we merge/split sections in RIPQ.
We can afford to use more bins than sections for this
dynamic histogram and achieve higher accuracy of the
translation, e.g., κ = 100 bins while RIPQ only uses
K = 8 sections, because the bins only contains abso-
lute priority values and do not require a large dedicated
RAM buffer as the sections do. Consistent sampling of
keys to insert priority values to the histogram can be fur-
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Parameter Symbol Our Value Description and Goal

Block Size B 256MiB To satisfy the sustained high random write throughput.
Number of Blocks M 2400 Flash caching capacity divided by the block size.

Average Section Size α 0.125 To bound the number of sections ≤ �2/α� and the size of each section ≤ 2α ,
trade-off parameter for insertion accuracy and RAM buffer usage.

Insertion Points K 8 Same as the number of sections, controlled by α and proportional to RAM buffer usage.
Logical Occupancy θ 0 Avoid reinsertion of items that will soon be permanently evicted.

Table 3: Key parameters of RIPQ for a 670GiB flash drive currently deployed in Facebook.

ther applied to reduce its memory consumption and in-
sertion/update complexity.

4.5 Other Design Considerations
Parameters Table 3 describes the parameters of RIPQ
and the value chosen for our implementation. The block
size B is chosen to surpass the threshold for a sustained
high write throughput for random writes, and the number
of blocks M is calculated directly based on cache capac-
ity. The number of blocks affects the memory consump-
tion of RIPQ, but this is dominated by the size of the
write buffers for active blocks and the indexing struc-
ture. The number of active blocks equals the number of
insertion points K in the queue. The average section size
α is used by the split and merge operations to bound the
memory consumption and approximation error of RIPQ.

Durability Durability is not a requirement for our
static-content caching use case, but not having to refill
the entire cache after a power loss is a plus. For-
tunately, because the keys and locations of the objects
are stored in the headers of the on-flash device blocks,
all objects that have been saved to flash can be recov-
ered, except for those in the RAM buffers. The ordering
of blocks/sections can be periodically flushed to flash as
well and then used to recover the priorities of the objects.

4.6 Theoretical Analysis
RIPQ is a practical approximate priority queue for im-
plementing caching algorithms on flash, but enjoys some
good theoretical properties as well. In the appendix of a
longer technical report [44] we show RIPQ can simulate
a LRU cache faithfully with 4α of additional space: if
α = 0.125, this would mean RIPQ-based LRU with 50%
additional space would provably include all the objects
in an exact LRU cache. In general RIPQ with adjusted
insertion points can simulate a S-L- LRU cache with 4Lα
of additional space. It is also easy to show the number of
writes to the flash is ≤ I +U , where I is the number of
inserts and U is the number of updates.

Using K sections/insertion points, the complexity of
finding the approximate insertion/update point takes
O(K), and the amortized complexity of split/merge in-
ternal operations is O(1), so the amortized complexity
of RIPQ is only O(K). If we arrange the sections in

a red-black tree, it can be further reduced to O(logK).
In comparison to this, with N objects, an exact imple-
mentation of priority queues using red-black tree would
take O(logN) per operation, and a Fibonacci heap takes
O(logN) per delete-min operation. (K � N, K is typ-
ically 8, N is typically 50 million). The computational
complexity of these exact, tree and heap based data struc-
tures are not ideal for a high performance system. In con-
trast, RIPQ hits the sweet spot with fast operations and
high fidelity, in terms of both theoretical analysis and em-
pirical hit ratios.

5 SIPQ
RIPQ’s buffering for large writes creates a moderate
memory footprint, e.g., 2 GiB DRAM for 8 insertion
points with 256 MiB block size in our implementation.
This is not an issue for servers at Facebook, which are
equipped with 144 GiB of RAM, but limits the use of
RIPQ in memory-constrained environments. To cope
with this issue, we propose the simpler Single Insertion
Priority Queue (SIPQ) framework.

SIPQ uses flash as a cyclic queue and only sequentially
writes to the device for high write throughput with min-
imal buffering. When the cache is full, SIPQ reclaims
device space following the same sequential order. In con-
trast to RIPQ, SIPQ maintains an exact priority queue of
the keys of the cached objects in memory and does not
co-locate similarly prioritized objects physically due to
the single insertion limit on flash. The drawback of this
approach is that reclaiming device space may incur many
reinsertions for SIPQ in order to preserve its priority ac-
curacy. Similar to RIPQ, these reinsertions constitute the
implementation write amplification of SIPQ.

To reduce the implementation write amplification,
SIPQ only includes the keys of a portion of all the cached
objects in the in-memory priority queue, referred to as
the virtual cache, and will only reinsert evicted objects
that are in this cache. All on-flash capacity is referred to
as the physical cache and the ratio between the total byte
size of objects in the virtual cache to the size of the phys-
ical cache is controlled by a logical occupancy param-
eter θ (0 < θ < 1). Because only objects in the virtual
cache are reinserted when they are about to be evicted
from the physical cache, θ provides a trade-off between

8
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priority fidelity and implementation write amplification:
the larger θ , the more objects are in the virtual cache and
the higher fidelity SIPQ has relative to the exact caching
algorithm, and on the other hand the more likely evicted
objects will need to be reinserted and thus higher write
amplification caused by SIPQ. For θ = 1, SIPQ imple-
ments an exact priority queue for all cached data on flash,
but incurs high write amplification for reinsertions. For
θ = 0, SIPQ deteriorates to FIFO with no priority en-
forcement. For θ in between, SIPQ performs additional
writes compared to FIFO but also delivers part of the im-
provement of more advanced caching algorithms. In our
evaluation, we find that SIPQ provides a good trade-off
point for Segmented-LRU algorithms with θ = 0.5, but
does not perform well for more complex algorithms like
GDSF. Therefore, with limited improvement at almost no
additional device overhead, SIPQ can serve as a simple
upgrade for FIFO when memory is tight.

6 Evaluation
We compare RIPQ, SIPQ, and Facebook’s current solu-
tion, FIFO, to answer three key questions:

1. What is the impact of RIPQ and SIPQ’s approxima-
tions of caching algorithms on hit ratios, i.e., what is
the effect on algorithm fidelity?

2. What is the write amplification caused by RIPQ and
SIPQ versus FIFO?

3. What throughput can RIPQ and SIPQ achieve?
4. How does the hit-ratio of RIPQ change as we vary the

number of insertion points?

6.1 Experimental Setup
Implementation We implemented RIPQ and SIPQ
with 1600 and 600 lines of C++ code, respectively, us-
ing the Intel TBB library [22] for the object index and
the C++11 thread library [9] for the concurrency mecha-
nisms. Both the relative and absolute priority interfaces
(enabled by an adaptive histogram translation) are sup-
ported in our prototypes.

Hardware Environment Experiments are run on
servers equipped with a Model A 670GiB flash device
and 144GiB DRAM space. All flash devices are config-
ured with 90% space utilization, leaving the remaining
10% for the FTL.

Framework Parameters RIPQ uses a 256MiB block
size to achieve high write throughput based on our per-
formance study of Model A flash in Section 3. It uses
α = 0.125, i.e., 8 sections, to provide a good trade-off
between the fidelity to the implemented algorithms and
the total DRAM space RIPQ uses for buffering: 256MiB
× 8 = 2GiB, which is moderate for a typical server.

SIPQ also uses the 256MiB block size to keep the
number of blocks on flash the same as RIPQ. Because

SIPQ only issues sequential writes, its buffering size
could be further shrunk without adverse effects. Two
logical occupancy values for SIPQ are used in evalua-
tion: 0.5, and 0.9, each representing a different trade-off
between the approximation fidelity to the exact algorithm
and implementation write amplification. These two set-
tings are noted as SIPQ-0.5 and SIPQ-0.9, respectively.

Caching Algorithms Two families of advanced
caching algorithms, Segmented-LRU (SLRU) [26]
and Greedy-Dual-Size-Frequency (GDSF) [12], are
evaluated on RIPQ and SIPQ. For Segmented-LRU,
we vary the number of segments from 1 to 3, and
report their results as SLRU-1, SLRU-2, and SLRU-3,
respectively. We similarly set L from 1 to 3 for Greedy-
Dual-Size-Frequency, denoted as GDSF-1, GDSF-2,
and GDSF-3. Description of these algorithms and their
implementations on top of the priority queue interface
are explained in Section 4.3. Results of 4 segments or
more for SLRU and L≥ 4 for GDSF are not included due
to their marginal differences in the caching performance.

Facebook Photo Trace Two sets of 15-day sampled
traces collected within the Facebook photo-serving stack
are used for evaluation, one from the Origin cache, and
the other from a large Edge cache facility. The Origin
trace contains over 4 billion requests and 100TB worth
of data, and the Edge trace contains over 600 million re-
quests and 26TB worth of data. To emulate different total
cache capacities in Origin/Edge with the same space uti-
lization of the experiment device and thus controlling for
the effect of FTL, both traces are further down sampled
through hashing: we randomly sample 1

2 , 1
3 , and 1

4 of the
cache key space of the original trace for each experiment
to emulate the effect of increasing the total caching ca-
pacity to 2X , 3X , and 4X . We report experimental results
at 2X because it closely matches our production config-
urations. For all evaluation runs, we use the first 10-day
trace to warm up the cache and measure performance
during the next 5 days. Because both the working set
and the cache size are very large, it takes hours to fill up
the cache and days for the hit ratio to stabilize.

6.2 Experimental Results
This section presents our experimental results regarding
the algorithm fidelity, write amplification, and through-
put of RIPQ and SIPQ with the Facebook photo trace.
We also include the hit ratio, write amplification and
throughput achieved by Facebook’s existing FIFO solu-
tion as a baseline. For different cache sites, only their
target hit ratio metrics are reported, i.e., object-wise hit
ratio for the Origin trace and byte-wise hit ratio for the
Edge trace. Exact algorithm hit ratios are obtained via
simulations as the baseline to judge the approximation
fidelity of implementations on top of RIPQ and SIPQ.
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(a) Object-wise hit ratios on Origin trace. (b) Byte-wise hit ratios on Edge trace.

Figure 7: Exact algorithm hit ratios on Facebook trace.

Performance of Exact Algorithms We first investi-
gate hit ratios achieved by the exact caching algorithms
to determine the gains of a fully accurate implementa-
tion. Results are shown in Figure 7.

For object-wise hit ratio on the Origin trace, Figure 7a
shows that GDSF family outperforms SLRU and FIFO
by a large margin. At 2X cache size, GDSF-3 increases
the hit ratio over FIFO by 17%, which translates a to a
23% reduction of backend IOPS. For byte-wise hit ratio
on the Edge trace, Figure 7b shows that SLRU is the best
option: at 2X cache size, SLRU-3 improves the hit ratio
over FIFO by 4.5%, which results in a bandwidth reduc-
tion between Edge and Origin by 10%. GDSF performs
poorly on the byte-wise metric because it down weights
large photos. Because different algorithms perform best
at different sites with different performance metrics, flex-
ible frameworks such as RIPQ make it easy to optimize
caching policies with minimal engineering effort.

Approximation Fidelity Exact algorithms yield con-
siderable gains in our simulation, but are also challeng-
ing to implement on flash. RIPQ and SIPQ make it sim-
ple to implement the algorithms on flash, but do so by
approximating the algorithms. To quantify the effects of
this approximation we ran experiments presented in Fig-
ures 8a and 8d. These figures present the hit ratios of dif-
ferent exact algorithms (in simulations) and their approx-
imate implementations on flash with RIPQ, SIPQ-0.5,
and SIPQ-0.9 (in experiments) at 2X cache size setup
from Figure 7. The implementation of FIFO is the same
as the exact algorithm, so we only report one number. In
general, if the hit ratio of an implementation is similar to
the exact algorithm the framework provides high fidelity.

RIPQ consistently achieves high approximation fideli-
ties for the SLRU family, and its hit ratios are less than
0.2% different for object-wise/byte-wise metric com-
pared to the exact algorithm results on Origin/Edge trace.
For the GDSF family, RIPQ’s algorithm fidelity becomes
lower as the algorithm complexity increases. The great-
est “infidelity” seen for RIPQ is a 5% difference on the
Edge trace for GDSF-1. Interestingly, for the GDSF fam-
ily, the infidelity generated by RIPQ improves byte-wise
hit ratio—the largest infidelity was a 5% improvement on

byte-wise hit-ratio compared to the exact algorithm. The
large gain on byte-wise hit ratio can be explained by the
fact that the exact GDSF algorithm is designed to trade
byte-wise hit ratio for object-wise hit ratio through fa-
voring small objects, and its RIPQ approximation shifts
this trade-off back towards a better byte-wise hit-ratio.
Not shown in the figures (due to space limitation) is that
RIPQ-based GDSF family incurs about 1% reduction in
object-wise hit ratio. Overall, RIPQ achieves high algo-
rithm fidelity on both families of caching algorithms that
perform the best in our evaluation.

SIPQ also has high fidelity when the occupancy pa-
rameter is set to 0.9, which means 90% of the caching
capacity is managed by the exact algorithm. SIPQ-0.5,
despite only half of the cache capacity being managed
by the exact algorithm, still achieves a relatively high
fidelity for SLRU algorithms: it creates a 0.24%-2.8%
object-wise hit ratio reduction on Origin, and 0.3%-0.9%
byte-wise hit ratio reduction on Edge. These algorithms
tend to put new and recently accessed objects towards the
head of the queue, which is similar to the way SIPQ in-
serts and reinserts objects at the head of the cyclic queue
on flash. However, SIPQ-0.5 provides low fidelity for the
GDSF family, causing object-wise hit ratio to decrease
on Origin and byte-wise hit ratio to increase on Edge.
Within these algorithms, objects may have diverse prior-
ity values due to their size differences even if they enter
the cache at the same time, and SIPQ’s single insertion
point design results in a poor approximation.

Write Amplification Figure 8b and 8e fur-
ther show the combined write amplification (i.e.,
FT L× implementation) of different frameworks. RIPQ
consistently achieves the lowest write amplification,
with an exception for SLRU-1 where SIPQ-0.5 has the
lowest value for both traces. This is because SLRU-1
(LRU) only inserts to one location at the queue head,
which works well with SIPQ, and the logical occupancy
0.5 further reduces the reinsertion overhead. Overall, the
write amplification of RIPQ is largely stable regardless
of the complexity of the caching algorithms, ranging
from 1.17 to 1.24 for the SLRU family, and from 1.14 to
1.25 for the GDSF family.
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(a) Object-wise hit ratio (Origin) (b) Write amplification (Origin) (c) IOPS throughput (Origin)

(d) Byte-wise hit ratio (Edge) (e) Write amplification (Edge) (f) IOPS throughput (Edge)

Figure 8: Performance of RIPQ, SIPQ, and FIFO on Origin and Edge.

SIPQ-0.5 achieves moderately low write amplifica-
tions but with lower fidelity for complex algorithms.
Its write amplification also increases with the algorithm
complexity. For SLRU, the write implementation for
SIPQ-0.5 rises from 1.08 for SLRU-1 to 1.52 for SLRU-
3 on Origin, and from 1.11 to 1.50 on Edge. For GDSF,
the value ranges from 1.33 for GDSF-1 to 1.37 to GDSF-
3 on Origin, and from 1.36 to 1.39 on Edge. Results for
SIPQ-0.9 observe a similar trend for each family of algo-
rithms, but with a much higher write amplification value
for GDSF around 5-6.

Cache Throughput Throughput results are shown in
Figure 8c and 8f. RIPQ and SIPQ-0.5 consistently
achieve over 20 000 requests per second (rps) on both
traces, but SIPQ-0.9 has considerably lower throughput,
especially for the GDSF family of algorithms. FIFO has
slightly higher throughput than RIPQ based SLRU, al-
though the latter has higher byte hit ratio and correspond-
ingly fewer writes from misses.

This performance is highly related to the write ampli-
fication results because in all three frameworks (1) work-
loads are write-heavy with below 63% hit ratios, and our
experiments are mainly write-bounded with a sustained
write-throughput around 530 MiB/sec, (2) write am-
plification proportionally consumes the write through-
put, which further throttles the overall throughput. This
is why SIPQ-0.9 often with the highest write amplifi-
cation has the lowest throughput, and also why RIPQ
based SLRU has lower throughput than FIFO. However,
RIPQ/SIPQ-0.5 still provides high performance for our
use case, with RIPQ paticularly achieving over 24 000
rps on both traces. The slightly lower throughput com-
paring to FIFO (less than 3 000 rps difference) is well
worth the hit-ratio improvement which translates to a de-

crease of backend I/O load and a decrease of bandwidth
between Edge and Origin.

Sensitivity Analysis on Number of Insertion Points
Figure 9 shows the effect of varying the number of
insertion points in RIPQ on approximation accuracy.
The number of insertion points, K, is roughly inversely
proportional to α , so we vary K to be approximately
2,4,8,16, and 32, by varying α from 1

2 ,
1
4 ,

1
8 ,

1
16 to

1
32 . We measure approximation accuracy empirically
through the object-wise hit-ratios of RIPQ based SLRU-
3 and GDSF-3 on the origin trace with 2X cache size.

Figure 9: Object-wise hit ratios sensitivity on approx-
imate number of insertion points.

When K ≈ 2 (α = 1
2 ), a section in RIPQ can grow to

the size of the entire queue before it splits. In this case
RIPQ effectively degenerates to FIFO with equivalent
hit-ratios. The SLRU-3 hit ratio saturates quickly when
K � 4, while GDSF-3 reaches its highest performance
only when K � 8. GDSF-3 uses many more insertion
points in an exact priority queue than SLRU-3 and RIPQ
thus needs more insertion points to effectively colocate
content with similar priorities. Based on this analysis we
have chosen α = 1

8 for RIPQ in our experiments.
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7 Related Work
To the best of our knowledge, no prior work provides
a flexible framework for efficiently implementing ad-
vanced caching algorithms on flash. Yet, there is a large
body of related work in several heavily-researched fields.

Flash-based Caching Solutions Flash devices have
been applied in various caching solutions for their large
capacities and high I/O performance [2, 4, 21, 23, 27,
31, 35, 37, 39, 42, 46]. To avoid their poor handling
of small random write workloads, previous studies ei-
ther use sequential eviction akin to FIFO [2], or only
perform coarse-grained caching policies at the unit of
large blocks [21, 31, 46]. Similarly, SIPQ and RIPQ
also achieve high write throughputs and low device
overheads on flash through sequential writes and large
aligned writes, respectively. In addition, they allow
efficient implementations of advanced caching policies
at a fine-grained object unit, and our experience show
that photo caches built on top of RIPQ and SIPQ yield
significant performance gains at Facebook. While our
work mainly focuses on the support of eviction part of
caching operations, techniques like selective insertions
on misses [21, 46] are orthogonal to RIPQ and can be
applied to further reduce the data written to flash.7

RAM-based Advanced Caching Caching has been an
important research topic since the early days of com-
puter science and many algorithms have been proposed
to better capture the characteristics of different work-
loads. Some well-known features include recency (LRU,
MRU [13]), frequency (LFU [33]), inter-reference time
(LIRS [24]), and size (SIZE [1]). There have also been
a plethora of more advanced algorithms that consider
multiple features, such as Multi-Queue [48] and Seg-
mented LRU (SLRU) [26] for both recency and fre-
quency, Greedy-Dual [47] and its variants like Greedy-
Dual-Size [10] and Greedy-Dual-Size-Frequency [12]
(GDSF) using a more general method to compose the
expected miss penalty and minimize it.

While more advanced algorithms can potentially yield
significant performance improvements, such as SLRU
and GDSF for Facebook photo workload, a gap still re-
mains for efficient implementations on top of flash de-
vices because most algorithms are hardware-agnostic:
they implicitly assume data can be moved and overwrit-
ten with little overhead. Such assumptions do not hold
on flash due to its asymmetric performance for reads and
writes and the performance deterioration caused by its
internal garbage collection.

Our work, RIPQ and SIPQ, bridges this gap. They
provide a priority queue interface to allow easy imple-

7We tried such techniques on our traces, but found the hit ratio
dropped because of the long-tail accesses for social network photos.

mentation of many advanced caching algorithms, provid-
ing similar caching performance while generating flash-
friendly workloads.

Flash-based Store Many flash-based storage systems,
especially key-value stores have been recently pro-
posed to work efficiently on flash hardware. Systems
such as FAWN-KV [6], SILT [32], LevelDB [16], and
RocksDB [14] group write operations from an upper
layer and only flush to the device using sequential writes.
However, they are designed for read-heavy workloads
and other performance/application metrics such as mem-
ory footprints and range-query efficiencies. As a result,
these systems make trade-offs such as conducting on-
flash data sorting and merges, that yield high device over-
head for write-heavy workloads. We have experimented
with using RocksDB as an on-flash photo store for our
application, but found it to have excessively high write
amplification (~5 even when we allocated 50% of the
flash space to garbage collection). In contrast, RIPQ and
SIPQ are specifically optimized for a (random) write-
heavy workload and only support caching-required in-
terfaces, and as a result have low write amplification.

Studies on Flash Performance and Interface While
flash hardware itself is also an important topic, works
that study the application perceived performance and in-
terface are more related to our work. For instance, previ-
ous research [8, 25, 36, 43] that reports the random write
performance deterioration on flash helps verify our ob-
servations in the flash performance study.

Systematic approaches to mitigate this specific prob-
lem have also been previously proposed at different lev-
els, such as separating the treatment of cold and hot data
in the FTL by LAST [29], and the similar technique in
filesystem by SFS [36]. These approaches work well for
skewed write workloads where only a small subset of the
data is hot and updated often, and thus can be grouped
together for garbage collection with lower overhead. In
RIPQ, cached contents are explicitly tagged with prior-
ity values that indicate their hotness, and are co-located
within the same device block if their priority values are
close. In a sense, such priorities provide a prior for iden-
tifying content hotness.

While RIPQ (and SIPQ) runs on unmodified com-
mercial flash hardware, recent studies [31, 41] which
co-design flash software/hardware could further benefit
RIPQ by reducing its memory consumption.

Priority Queue Both RIPQ and SIPQ rely on the pri-
ority queue abstract data type and the design of priority
queues with different performance characteristics have
been a classic topic in theoretical computer science as
well [11, 15, 18]. Instead of building an exact priority
queue, RIPQ uses an approximation to trade algorithm
fidelity for flash-aware optimization.
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8 Conclusion
Flash memory, with its large capacity, high IOPS, and
complex performance characteristics, poses new oppor-
tunities and challenges for caching. In this paper we
present two frameworks, RIPQ and SIPQ, that imple-
ment approximate priority queues efficiently on flash.
On top of them, advanced caching algorithms can be eas-
ily, flexibly, and efficiently implemented, as we demon-
strate for the use case of a flash-based photo cache at
Facebook. RIPQ achieves high fidelity and low write am-
plification for the SLRU and GDSF algorithms. SIPQ is
a simpler design, requires less memory and still achieves
good results for simple algorithms like LRU. Experi-
ments on both the Facebook Edge and Origin traces show
that RIPQ can improve hit ratios by up to ~20% over the
current FIFO system, reducing bandwidth consumption
between the Edge and Origin, and reducing I/O opera-
tions to backend storage.
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